Sample records for solution structure theorems

  1. A Maximal Element Theorem in FWC-Spaces and Its Applications

    PubMed Central

    Hu, Qingwen; Miao, Yulin

    2014-01-01

    A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature. PMID:24782672

  2. Use of the reciprocity theorem for a closed form solution of scattering of the lowest axially symmetric torsional wave mode by a defect in a pipe.

    PubMed

    Lee, Jaesun; Achenbach, Jan D; Cho, Younho

    2018-03-01

    Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A variational theorem for creep with applications to plates and columns

    NASA Technical Reports Server (NTRS)

    Sanders, J Lyell, Jr; Mccomb, Harvey G , Jr; Schlechte, Floyd R

    1958-01-01

    A variational theorem is presented for a body undergoing creep. Solutions to problems of the creep behavior of plates, columns, beams, and shells can be obtained by means of the direct methods of the calculus of variations in conjunction with the stated theorem. The application of the theorem is illustrated for plates and columns by the solution of two sample problems.

  4. Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem.

    PubMed

    Altürk, Ahmet

    2016-01-01

    Mean value theorems for both derivatives and integrals are very useful tools in mathematics. They can be used to obtain very important inequalities and to prove basic theorems of mathematical analysis. In this article, a semi-analytical method that is based on weighted mean-value theorem for obtaining solutions for a wide class of Fredholm integral equations of the second kind is introduced. Illustrative examples are provided to show the significant advantage of the proposed method over some existing techniques.

  5. Analytic solution and pulse area theorem for three-level atoms

    NASA Astrophysics Data System (ADS)

    Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.

    2015-12-01

    We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.

  6. Fluctuation theorem for channel-facilitated membrane transport of interacting and noninteracting solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2008-05-15

    In this paper, we discuss the fluctuation theorem for channel-facilitated transport of solutes through a membrane separating two reservoirs. The transport is characterized by the probability, P(n)(t), that n solute particles have been transported from one reservoir to the other in time t. The fluctuation theorem establishes a relation between P(n)(t) and P-(n)(t): The ratio P(n)(t)/P-(n)(t) is independent of time and equal to exp(nbetaA), where betaA is the affinity measured in the thermal energy units. We show that the same fluctuation theorem is true for both single- and multichannel transport of noninteracting particles and particles which strongly repel each other.

  7. Periodic solution of neutral Lotka-Volterra system with periodic delays

    NASA Astrophysics Data System (ADS)

    Liu, Zhijun; Chen, Lansun

    2006-12-01

    A nonautonomous n-species Lotka-Volterra system with neutral delays is investigated. A set of verifiable sufficient conditions is derived for the existence of at least one strictly positive periodic solution of this Lotka-Volterra system by applying an existence theorem and some analysis techniques, where the assumptions of the existence theorem are different from that of Gaines and Mawhin's continuation theorem [R.E. Gaines, J.L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977] and that of abstract continuation theory for k-set contraction [W. Petryshyn, Z. Yu, Existence theorem for periodic solutions of higher order nonlinear periodic boundary value problems, Nonlinear Anal. 6 (1982) 943-969]. Moreover, a problem proposed by Freedman and Wu [H.I. Freedman, J. Wu, Periodic solution of single species models with periodic delay, SIAM J. Math. Anal. 23 (1992) 689-701] is answered.

  8. Counting spanning trees on fractal graphs and their asymptotic complexity

    NASA Astrophysics Data System (ADS)

    Anema, Jason A.; Tsougkas, Konstantinos

    2016-09-01

    Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.

  9. Coincidence degree and periodic solutions of neutral equations

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Mawhin, J.

    1973-01-01

    The problem of existence of periodic solutions for some nonautonomous neutral functional differential equations is examined. It is an application of a basic theorem on the Fredholm alternative for periodic solutions of some linear neutral equations and of a generalized Leray-Schauder theory. Although proofs are simple, the results are nontrivial extensions to the neutral case of existence theorems for periodic solutions of functional differential equations.

  10. Pythagoras and Four Colours

    ERIC Educational Resources Information Center

    Unal, Hasan

    2008-01-01

    One way to teach Pythagoras' Theorem is through use of puzzles. Marshall (2004:1) points out that, "in creating their individual solutions to puzzles, students may reveal mathematical thinking on which approaches to the standard curriculum could be based." This article describes a puzzle-like spatial structuring activity related to…

  11. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less

  12. Existence of solutions of a two-dimensional boundary value problem for a system of nonlinear equations arising in growing cell populations.

    PubMed

    Jeribi, Aref; Krichen, Bilel; Mefteh, Bilel

    2013-01-01

    In the paper [A. Ben Amar, A. Jeribi, and B. Krichen, Fixed point theorems for block operator matrix and an application to a structured problem under boundary conditions of Rotenberg's model type, to appear in Math. Slovaca. (2014)], the existence of solutions of the two-dimensional boundary value problem (1) and (2) was discussed in the product Banach space L(p)×L(p) for p∈(1, ∞). Due to the lack of compactness on L1 spaces, the analysis did not cover the case p=1. The purpose of this work is to extend the results of Ben Amar et al. to the case p=1 by establishing new variants of fixed-point theorems for a 2×2 operator matrix, involving weakly compact operators.

  13. Infinite time interval backward stochastic differential equations with continuous coefficients.

    PubMed

    Zong, Zhaojun; Hu, Feng

    2016-01-01

    In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).

  14. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  15. The existence of solutions of q-difference-differential equations.

    PubMed

    Wang, Xin-Li; Wang, Hua; Xu, Hong-Yan

    2016-01-01

    By using the Nevanlinna theory of value distribution, we investigate the existence of solutions of some types of non-linear q-difference differential equations. In particular, we generalize the Rellich-Wittich-type theorem and Malmquist-type theorem about differential equations to the case of q-difference differential equations (system).

  16. Number Theoretic Background

    NASA Astrophysics Data System (ADS)

    Rudnick, Z.

    Contents: 1. Introduction 2. Divisibility 2.1. Basics on Divisibility 2.2. The Greatest Common Divisor 2.3. The Euclidean Algorithm 2.4. The Diophantine Equation ax+by=c 3. Prime Numbers 3.1. The Fundamental Theorem of Arithmetic 3.2. There Are Infinitely Many Primes 3.3. The Density of Primes 3.4. Primes in Arithmetic Progressions 4. Continued Fractions 5. Modular Arithmetic 5.1. Congruences 5.2. Modular Inverses 5.3. The Chinese Remainder Theorem 5.4. The Structure of the Multiplicative Group (Z/NZ)^* 5.5. Primitive Roots 6. Quadratic Congruences 6.1. Euler's Criterion 6.2. The Legendre Symbol and Quadratic Reciprocity 7. Pell's Equation 7.1. The Group Law 7.2. Integer Solutions 7.3. Finding the Fundamental Solution 8. The Riemann Zeta Function 8.1 Analytic Continuation and Functinal Equation of ζ(s) 8.2 Connecting the Primes and the Zeros of ζ(s) 8.3 The Riemann Hypothesis References

  17. When 95% Accurate Isn't: Exploring Bayes's Theorem

    ERIC Educational Resources Information Center

    CadwalladerOlsker, Todd D.

    2011-01-01

    Bayes's theorem is notorious for being a difficult topic to learn and to teach. Problems involving Bayes's theorem (either implicitly or explicitly) generally involve calculations based on two or more given probabilities and their complements. Further, a correct solution depends on students' ability to interpret the problem correctly. Most people…

  18. Boundedness and almost Periodicity in Time of Solutions of Evolutionary Variational Inequalities

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.

    1983-04-01

    In this paper existence theorems are obtained for the solutions of abstract parabolic variational inequalities, which are bounded with respect to time (in the Stepanov and L^\\infty norms). The regularity and almost periodicity properties of such solutions are studied. Theorems are also established concerning their solvability in spaces of Besicovitch almost periodic functions. The majority of the results are obtained without any compactness assumptions. Bibliography: 30 titles.

  19. Closed-form solutions and scaling laws for Kerr frequency combs

    PubMed Central

    Renninger, William H.; Rakich, Peter T.

    2016-01-01

    A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810

  20. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-03-01

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f (ϕ ) . We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f (ϕ ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f (ϕ ).

  1. Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories.

    PubMed

    Antoniou, G; Bakopoulos, A; Kanti, P

    2018-03-30

    We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function f(ϕ). We demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon and an asymptotically flat solution may be easily constructed under mild assumptions for f(ϕ). We show that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with scalar hair are then presented for a plethora of coupling functions f(ϕ).

  2. Persistent superconductor currents in holographic lattices.

    PubMed

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  3. General self-tuning solutions and no-go theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förste, Stefan; Kim, Jihn E.; Lee, Hyun Min, E-mail: forste@th.physik.uni-bonn.de, E-mail: jihnekim@gmail.com, E-mail: hyun.min.lee@kias.re.kr

    2013-03-01

    We consider brane world models with one extra dimension. In the bulk there is in addition to gravity a three form gauge potential or equivalently a scalar (by generalisation of electric magnetic duality). We find classical solutions for which the 4d effective cosmological constant is adjusted by choice of integration constants. No go theorems for such self-tuning mechanism are circumvented by unorthodox Lagrangians for the three form respectively the scalar. It is argued that the corresponding effective 4d theory always includes tachyonic Kaluza-Klein excitations or ghosts. Known no go theorems are extended to a general class of models with unorthodoxmore » Lagrangians.« less

  4. On some properties of bone functional adaptation phenomenon useful in mechanical design.

    PubMed

    Nowak, Michał

    2010-01-01

    The paper discusses some unique properties of trabecular bone functional adaptation phenomenon, useful in mechanical design. On the basis of the biological process observations and the principle of constant strain energy density on the surface of the structure, the generic structural optimisation system has been developed. Such approach allows fulfilling mechanical theorem for the stiffest design, comprising the optimisations of size, shape and topology, using the concepts known from biomechanical studies. Also the biomimetic solution of multiple load problems is presented.

  5. Radiation and scattering by thin-wire structures in the complex frequency domain. [electromagnetic theory for thin-wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.

  6. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  7. Micromechanics of Size Effect in Failure Due to Distributed Cracking

    DTIC Science & Technology

    1990-02-26

    Eshelby’s theorem for eigenstrains in elliptical inclusions in an infinite elastic solid. The special cases of localization of strain into a spherical...into an ellipsoidal region in an infinite solid. The Department at Civil Engineering, solution exploits Eshelby’s theorem for eigenstrains in...band does not represent an exact solution because the strain eO (the eigenstrain ) in order to fit into the hole perfectly boundary conditions cannot be

  8. Stability of equilibrium solutions of Hamiltonian systems with n-degrees of freedom and single resonance in the critical case

    NASA Astrophysics Data System (ADS)

    dos Santos, Fabio; Vidal, Claudio

    2018-04-01

    In this paper we give new results for the stability of one equilibrium solution of an autonomous analytic Hamiltonian system in a neighborhood of the equilibrium point with n-degrees of freedom. Our Main Theorem generalizes several results existing in the literature and mainly we give information in the critical cases (i.e., the condition of stability and instability is not fulfilled). In particular, our Main Theorem provides necessary and sufficient conditions for stability of the equilibrium solutions under the existence of a single resonance. Using analogous tools used in the Main Theorem for the critical case, we study the stability or instability of degenerate equilibrium points in Hamiltonian systems with one degree of freedom. We apply our results to the stability of Hamiltonians of the type of cosmological models as in planar as in the spatial case.

  9. Geography and the Properties of Surfaces. The Sandwich Theorem - A Basic One for Geography.

    DTIC Science & Technology

    the nature of the Sandwich Theorem and its relationship to Geography and provides an algorithm and a complete program to achieve ’solutions.’ Also included is a translation of one work of Hugo Steinhaus . (Author)

  10. Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian

    NASA Astrophysics Data System (ADS)

    Huang, Guangyue; Li, Zhi

    2018-03-01

    In this paper, we consider Liouville type theorems for positive solutions to the following nonlinear elliptic equation: Δ _V u+aulog u=0, where a is a nonzero real constant. By using gradient estimates, we obtain upper bounds of |\

  11. Fermat's Last Theorem for Factional and Irrational Exponents

    ERIC Educational Resources Information Center

    Morgan, Frank

    2010-01-01

    Fermat's Last Theorem says that for integers n greater than 2, there are no solutions to x[superscript n] + y[superscript n] = z[superscript n] among positive integers. What about rational exponents? Irrational n? Negative n? See what an undergraduate senior seminar discovered.

  12. Prolongation structures of nonlinear evolution equations. II

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1976-01-01

    The prolongation structure of a closed ideal of exterior differential forms is further discussed, and its use illustrated by application to an ideal (in six dimensions) representing the cubically nonlinear Schroedinger equation. The prolongation structure in this case is explicitly given, and recurrence relations derived which support the conjecture that the structure is open - i.e., does not terminate as a set of structure relations of a finite-dimensional Lie group. We introduce the use of multiple pseudopotentials to generate multiple Baecklund transformation, and derive the double Baecklund transformation. This symmetric transformation concisely expresses the (usually conjectured) theorem of permutability, which must consequently apply to all solutions irrespective of asymptotic constraints.

  13. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  14. An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore D.; Eyink, Gregory L.

    2017-12-01

    We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.

  15. Existence and discrete approximation for optimization problems governed by fractional differential equations

    NASA Astrophysics Data System (ADS)

    Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng

    2018-06-01

    We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.

  16. Solution of the two-dimensional spectral factorization problem

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  17. Optimal Harvesting in a Periodic Food Chain Model with Size Structures in Predators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng-Qin, E-mail: zhafq@263.net; Liu, Rong; Chen, Yuming, E-mail: ychen@wlu.ca

    In this paper, we investigate a periodic food chain model with harvesting, where the predators have size structures and are described by first-order partial differential equations. First, we establish the existence of a unique non-negative solution by using the Banach fixed point theorem. Then, we provide optimality conditions by means of normal cone and adjoint system. Finally, we derive the existence of an optimal strategy by means of Ekeland’s variational principle. Here the objective functional represents the net economic benefit yielded from harvesting.

  18. Lattice Truss Structural Response Using Energy Methods

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred Scottson

    1996-01-01

    A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.

  19. Farmer Brown v. Rancher Wyatt: Teaching the Coase Theorem

    ERIC Educational Resources Information Center

    Gourley, Patrick

    2018-01-01

    The Coase Theorem is a fundamental tenet of environmental economics and is taught to thousands of principles of microeconomics students each year. Its counterintuitive conclusion, that a Pareto optimal solution can result between private parties regardless of the initial allocation of property rights over a scarce resource, is difficult for…

  20. The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexities

    NASA Astrophysics Data System (ADS)

    Cain, George L., Jr.; González, Luis

    2008-02-01

    The Knaster-Kuratowski-Mazurkiewicz covering theorem (KKM), is the basic ingredient in the proofs of many so-called "intersection" theorems and related fixed point theorems (including the famous Brouwer fixed point theorem). The KKM theorem was extended from Rn to Hausdorff linear spaces by Ky Fan. There has subsequently been a plethora of attempts at extending the KKM type results to arbitrary topological spaces. Virtually all these involve the introduction of some sort of abstract convexity structure for a topological space, among others we could mention H-spaces and G-spaces. We have introduced a new abstract convexity structure that generalizes the concept of a metric space with a convex structure, introduced by E. Michael in [E. Michael, Convex structures and continuous selections, Canad. J. MathE 11 (1959) 556-575] and called a topological space endowed with this structure an M-space. In an article by Shie Park and Hoonjoo Kim [S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996) 173-187], the concepts of G-spaces and metric spaces with Michael's convex structure, were mentioned together but no kind of relationship was shown. In this article, we prove that G-spaces and M-spaces are close related. We also introduce here the concept of an L-space, which is inspired in the MC-spaces of J.V. Llinares [J.V. Llinares, Unified treatment of the problem of existence of maximal elements in binary relations: A characterization, J. Math. Econom. 29 (1998) 285-302], and establish relationships between the convexities of these spaces with the spaces previously mentioned.

  1. Painlevé IV Solutions from Hamiltonians with Equidistant Gapped Spectrum

    NASA Astrophysics Data System (ADS)

    Estrada-Delgado, M. I.; Fernández C, D. J.

    2016-03-01

    Supersymmetry transformations are applied to the harmonic oscillator for generating potentials Vk j whose spectra have a gap with respect to the initial one. The extremal states are found and, as the reduction theorem conditions are satisfied, ensuring that the system has third order ladder operators and it is connected with Painlevé IV (PIV) equation, then solutions to this equation can be generated. An alternative transformation is applied, by adding the levels needed to recover the spectrum of Vk j . The extremal states are found and, as the reduction theorem is met again, we get also solutions to the PIV equation which will be analysed.

  2. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  3. The application of Green's theorem to the solution of boundary-value problems in linearized supersonic wing theory

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1950-01-01

    Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.

  4. Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type and the relation with the 7th Hilbert problem (non-resonant case)

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.

  5. Prescribing the mixed scalar curvature of a foliated Riemann-Cartan manifold

    NASA Astrophysics Data System (ADS)

    Rovenski, Vladimir Y.; Zelenko, Leonid

    2018-03-01

    The mixed scalar curvature is the simplest curvature invariant of a foliated Riemannian manifold. We explore the problem of prescribing the leafwise constant mixed scalar curvature of a foliated Riemann-Cartan manifold by conformal change of the structure in tangent and normal to the leaves directions. Under certain geometrical assumptions and in two special cases: along a compact leaf and for a closed fibered manifold, we reduce the problem to solution of a nonlinear leafwise elliptic equation for the conformal factor. We are looking for its solutions that are stable stationary solutions of the associated parabolic equation. Our main tool is using of majorizing and minorizing nonlinear heat equations with constant coefficients and application of comparison theorems for solutions of Cauchy's problem for parabolic equations.

  6. Elementary solutions of coupled model equations in the kinetic theory of gases

    NASA Technical Reports Server (NTRS)

    Kriese, J. T.; Siewert, C. E.; Chang, T. S.

    1974-01-01

    The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature-density effects in a linearized BGK model in the kinetic theory of gases. Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism. The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the H matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperature-slip coefficient is reported.

  7. Solution of Tikhonov's Motion-Separation Problem Using the Modified Newton-Kantorovich Theorem

    NASA Astrophysics Data System (ADS)

    Belolipetskii, A. A.; Ter-Krikorov, A. M.

    2018-02-01

    The paper presents a new way to prove the existence of a solution of the well-known Tikhonov's problem on systems of ordinary differential equations in which one part of the variables performs "fast" motions and the other part, "slow" motions. Tikhonov's problem has been the subject of a large number of works in connection with its applications to a wide range of mathematical models in natural science and economics. Only a short list of publications, which present the proof of the existence of solutions in this problem, is cited. The aim of the paper is to demonstrate the possibility of applying the modified Newton-Kantorovich theorem to prove the existence of a solution in Tikhonov's problem. The technique proposed can be used to prove the existence of solutions of other classes of problems with a small parameter.

  8. Causality and a -theorem constraints on Ricci polynomial and Riemann cubic gravities

    NASA Astrophysics Data System (ADS)

    Li, Yue-Zhou; Lü, H.; Wu, Jun-Bao

    2018-01-01

    In this paper, we study Einstein gravity extended with Ricci polynomials and derive the constraints on the coupling constants from the considerations of being ghost-free, exhibiting an a -theorem and maintaining causality. The salient feature is that Einstein metrics with appropriate effective cosmological constants continue to be solutions with the inclusion of such Ricci polynomials and the causality constraint is automatically satisfied. The ghost-free and a -theorem conditions can only be both met starting at the quartic order. We also study these constraints on general Riemann cubic gravities.

  9. The Riesz-Radon-Fréchet problem of characterization of integrals

    NASA Astrophysics Data System (ADS)

    Zakharov, Valerii K.; Mikhalev, Aleksandr V.; Rodionov, Timofey V.

    2010-11-01

    This paper is a survey of results on characterizing integrals as linear functionals. It starts from the familiar result of F. Riesz (1909) on integral representation of bounded linear functionals by Riemann-Stieltjes integrals on a closed interval, and is directly connected with Radon's famous theorem (1913) on integral representation of bounded linear functionals by Lebesgue integrals on a compact subset of {R}^n. After the works of Radon, Fréchet, and Hausdorff, the problem of characterizing integrals as linear functionals took the particular form of the problem of extending Radon's theorem from {R}^n to more general topological spaces with Radon measures. This problem turned out to be difficult, and its solution has a long and rich history. Therefore, it is natural to call it the Riesz-Radon-Fréchet problem of characterization of integrals. Important stages of its solution are associated with such eminent mathematicians as Banach (1937-1938), Saks (1937-1938), Kakutani (1941), Halmos (1950), Hewitt (1952), Edwards (1953), Prokhorov (1956), Bourbaki (1969), and others. Essential ideas and technical tools were developed by A.D. Alexandrov (1940-1943), Stone (1948-1949), Fremlin (1974), and others. Most of this paper is devoted to the contemporary stage of the solution of the problem, connected with papers of König (1995-2008), Zakharov and Mikhalev (1997-2009), and others. The general solution of the problem is presented in the form of a parametric theorem on characterization of integrals which directly implies the characterization theorems of the indicated authors. Bibliography: 60 titles.

  10. A reciprocal theorem for a mixture theory. [development of linearized theory of interacting media

    NASA Technical Reports Server (NTRS)

    Martin, C. J.; Lee, Y. M.

    1972-01-01

    A dynamic reciprocal theorem for a linearized theory of interacting media is developed. The constituents of the mixture are a linear elastic solid and a linearly viscous fluid. In addition to Steel's field equations, boundary conditions and inequalities on the material constants that have been shown by Atkin, Chadwick and Steel to be sufficient to guarantee uniqueness of solution to initial-boundary value problems are used. The elements of the theory are given and two different boundary value problems are considered. The reciprocal theorem is derived with the aid of the Laplace transform and the divergence theorem and this section is concluded with a discussion of the special cases which arise when one of the constituents of the mixture is absent.

  11. Global structure of five-dimensional fuzzballs

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Warner, N. P.

    2014-01-01

    We describe and study families of BPS microstate geometries, namely, smooth, horizonless asymptotically flat solutions to supergravity. We examine these solutions from the perspective of earlier attempts to find solitonic solutions in gravity and show how the microstate geometries circumvent the earlier ‘no-go’ theorems. In particular, we re-analyze the Smarr formula and show how it must be modified in the presence of non-trivial second homology. This, combined with the supergravity Chern-Simons terms, allows the existence of rich classes of BPS, globally hyperbolic, asymptotically flat, microstate geometries whose spatial topology is the connected sum of N copies of S2 × S2 with a ‘point at infinity’ removed. These solutions also exhibit ‘evanescent ergo-regions,’ that is, the non-space-like Killing vector guaranteed by supersymmetry is time-like everywhere except on time-like hypersurfaces (ergo-surfaces) where the Killing vector becomes null. As a by-product of our work, we are able to resolve the puzzle of why some regular soliton solutions violate the BPS bound: their spacetimes do not admit a spin structure.

  12. Positive solutions of fractional integral equations by the technique of measure of noncompactness.

    PubMed

    Nashine, Hemant Kumar; Arab, Reza; Agarwal, Ravi P; De la Sen, Manuel

    2017-01-01

    In the present study, we work on the problem of the existence of positive solutions of fractional integral equations by means of measures of noncompactness in association with Darbo's fixed point theorem. To achieve the goal, we first establish new fixed point theorems using a new contractive condition of the measure of noncompactness in Banach spaces. By doing this we generalize Darbo's fixed point theorem along with some recent results of (Aghajani et al. (J. Comput. Appl. Math. 260:67-77, 2014)), (Aghajani et al. (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358, 2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś et al. (Dyn. Syst. Appl. 18:251-264, 2009)), and (Samadi et al. (Abstr. Appl. Anal. 2014:852324, 2014)). We also derive corresponding coupled fixed point results. Finally, we give an illustrative example to verify the effectiveness and applicability of our results.

  13. Acoustic and elastic multiple scattering and radiation from cylindrical structures

    NASA Astrophysics Data System (ADS)

    Amirkulova, Feruza Abdukadirovna

    Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an incident wave to produce zero total field over a finite spatial region. The approach precisely determines the necessary source amplitudes and enables a cloaked region to be determined using Graf's theorem. To apply the approach, the infinite series of multipole expansions are truncated, and the accuracy of cloaking is studied by modifying the truncation parameter.

  14. Bopp-Podolsky black holes and the no-hair theorem

    NASA Astrophysics Data System (ADS)

    Cuzinatto, R. R.; de Melo, C. A. M.; Medeiros, L. G.; Pimentel, B. M.; Pompeia, P. J.

    2018-01-01

    Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekenstein's method. It is shown that the solutions split up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwell's solutions leading to a Reissner-Nordström black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwell one. Thus, in the light of the energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.

  15. Estimates of green tensors for certain boundary value problems

    NASA Technical Reports Server (NTRS)

    Solonnikov, V.

    1988-01-01

    Consider the first boundary value problem for a stationary Navier-Stokes system in a bounded three-dimensional region Omega with the boundary S: delta v = grad p+f, div v=0, v/s=0. Odqvist (1930) developed the potential theory and formulated the Green tensor for the above problem. The basic singular solution used by Odqvist to express the Green tensor is given. A theorem generalizing his results is presented along with four associated theorems. A specific problem associated with the study of the differential properties of the solution of stationary problems of magnetohydrodynamics is examined.

  16. Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions: A biological membrane separates a plasmatic from a non-plasmatic phase.

    PubMed

    Moog, Daniel; Maier, Uwe G

    2017-08-01

    Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism. © 2017 WILEY Periodicals, Inc.

  17. The invariant of the stiffness filter function with the weight filter function of the power function form

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Sui, Yun-Kang

    2012-12-01

    Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.

  18. Fractional cable model for signal conduction in spiny neuronal dendrites

    NASA Astrophysics Data System (ADS)

    Vitali, Silvia; Mainardi, Francesco

    2017-06-01

    The cable model is widely used in several fields of science to describe the propagation of signals. A relevant medical and biological example is the anomalous subdiffusion in spiny neuronal dendrites observed in several studies of the last decade. Anomalous subdiffusion can be modelled in several ways introducing some fractional component into the classical cable model. The Chauchy problem associated to these kind of models has been investigated by many authors, but up to our knowledge an explicit solution for the signalling problem has not yet been published. Here we propose how this solution can be derived applying the generalized convolution theorem (known as Efros theorem) for Laplace transforms. The fractional cable model considered in this paper is defined by replacing the first order time derivative with a fractional derivative of order α ∈ (0, 1) of Caputo type. The signalling problem is solved for any input function applied to the accessible end of a semi-infinite cable, which satisfies the requirements of the Efros theorem. The solutions corresponding to the simple cases of impulsive and step inputs are explicitly calculated in integral form containing Wright functions. Thanks to the variability of the parameter α, the corresponding solutions are expected to adapt to the qualitative behaviour of the membrane potential observed in experiments better than in the standard case α = 1.

  19. Generalized Dandelin’s Theorem

    NASA Astrophysics Data System (ADS)

    Kheyfets, A. L.

    2017-11-01

    The paper gives a geometric proof of the theorem which states that in case of the plane section of a second-order surface of rotation (quadrics of rotation, QR), such conics as an ellipse, a hyperbola or a parabola (types of conic sections) are formed. The theorem supplements the well-known Dandelin’s theorem which gives the geometric proof only for a circular cone and applies the proof to all QR, namely an ellipsoid, a hyperboloid, a paraboloid and a cylinder. That’s why the considered theorem is known as the generalized Dandelin’s theorem (GDT). The GDT proof is based on a relatively unknown generalized directrix definition (GDD) of conics. The work outlines the GDD proof for all types of conics as their necessary and sufficient condition. Based on the GDD, the author proves the GDT for all QR in case of a random position of the cutting plane. The graphical stereometric structures necessary for the proof are given. The implementation of the structures by 3d computer methods is considered. The article shows the examples of the builds made in the AutoCAD package. The theorem is intended for the training course of theoretical training of elite student groups of architectural and construction specialties.

  20. Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions

    USDA-ARS?s Scientific Manuscript database

    Analytical solutions of the advection-dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective-dispersive transport subj...

  1. Overdetermined elliptic problems in topological disks

    NASA Astrophysics Data System (ADS)

    Mira, Pablo

    2018-06-01

    We introduce a method, based on the Poincaré-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems.

  2. Characterization of Generalized Young Measures Generated by Symmetric Gradients

    NASA Astrophysics Data System (ADS)

    De Philippis, Guido; Rindler, Filip

    2017-06-01

    This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.

  3. A coupled mode formulation by reciprocity and a variational principle

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A coupled mode formulation for parallel dielectric waveguides is presented via two methods: a reciprocity theorem and a variational principle. In the first method, a generalized reciprocity relation for two sets of field solutions satisfying Maxwell's equations and the boundary conditions in two different media, respectively, is derived. Based on the generalized reciprocity theorem, the coupled mode equations can then be formulated. The second method using a variational principle is also presented for a general waveguide system which can be lossy. The results of the variational principle can also be shown to be identical to those from the reciprocity theorem. The exact relations governing the 'conventional' and the new coupling coefficients are derived. It is shown analytically that the present formulation satisfies the reciprocity theorem and power conservation exactly, while the conventional theory violates the power conservation and reciprocity theorem by as much as 55 percent and the Hardy-Streifer (1985, 1986) theory by 0.033 percent, for example.

  4. Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions

    NASA Astrophysics Data System (ADS)

    Volkov-Bogorodskii, D. B.; Lurie, S. A.

    2016-03-01

    We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich-Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby-Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976. This paper is the first to present the exact analytical solution of the Eshelby-Christensen problem for the gradient theory, which permits estimating the influence of scale effects on the stress state and the effective properties of the dispersed composites under study.We also analyze the influence of scale factors.

  5. Oblique rotaton in canonical correlation analysis reformulated as maximizing the generalized coefficient of determination.

    PubMed

    Satomura, Hironori; Adachi, Kohei

    2013-07-01

    To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.

  6. APPROXIMATION OF SOLUTIONS OF THE EQUATION \\overline\\partial^jf=0, j\\geq1, IN DOMAINS WITH QUASICONFORMAL BOUNDARY

    NASA Astrophysics Data System (ADS)

    Andrievskiĭ, V. V.; Belyĭ, V. I.; Maĭmeskul, V. V.

    1991-02-01

    This article establishes direct and inverse theorems of approximation theory (of the same type as theorems of Dzyadyk) that describe the quantitative connection between the smoothness properties of solutions of the equation \\overline\\partial^jf=0, j\\geq1, and the rate of their approximation by "module" polynomials of the form \\displaystyle P_N(z)=\\sum_{n=0}^{j-1}\\sum_{m=0}^{N-n}a_{m,n}z^m\\overline{z}^n,\\qquad N\\geq j-1.In particular, a constructive characterization is obtained for generalized Hölder classes of such functions on domains with quasiconformal boundary.Bibliography: 19 titles.

  7. A duality theorem-based algorithm for inexact quadratic programming problems: Application to waste management under uncertainty

    NASA Astrophysics Data System (ADS)

    Kong, X. M.; Huang, G. H.; Fan, Y. R.; Li, Y. P.

    2016-04-01

    In this study, a duality theorem-based algorithm (DTA) for inexact quadratic programming (IQP) is developed for municipal solid waste (MSW) management under uncertainty. It improves upon the existing numerical solution method for IQP problems. The comparison between DTA and derivative algorithm (DAM) shows that the DTA method provides better solutions than DAM with lower computational complexity. It is not necessary to identify the uncertain relationship between the objective function and decision variables, which is required for the solution process of DAM. The developed method is applied to a case study of MSW management and planning. The results indicate that reasonable solutions have been generated for supporting long-term MSW management and planning. They could provide more information as well as enable managers to make better decisions to identify desired MSW management policies in association with minimized cost under uncertainty.

  8. Exploring the Tomlin-Varadarajan quantum constraints in U (1 )3 loop quantum gravity: Solutions and the Minkowski theorem

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jerzy; Lin, Chun-Yen

    2017-03-01

    We explicitly solved the anomaly-free quantum constraints proposed by Tomlin and Varadarajan for the weak Euclidean model of canonical loop quantum gravity, in a large subspace of the model's kinematic Hilbert space, which is the space of the charge network states. In doing so, we first identified the subspace on which each of the constraints acts convergingly, and then by explicitly evaluating such actions we found the complete set of the solutions in the identified subspace. We showed that the space of solutions consists of two classes of states, with the first class having a property that involves the condition known from the Minkowski theorem on polyhedra, and the second class satisfying a weaker form of the spatial diffeomorphism invariance.

  9. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  10. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  11. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulatemore » a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.« less

  12. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  13. Discovering Theorems in Abstract Algebra Using the Software "GAP"

    ERIC Educational Resources Information Center

    Blyth, Russell D.; Rainbolt, Julianne G.

    2010-01-01

    A traditional abstract algebra course typically consists of the professor stating and then proving a sequence of theorems. As an alternative to this classical structure, the students could be expected to discover some of the theorems even before they are motivated by classroom examples. This can be done by using a software system to explore a…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less

  15. Wormholes with fluid sources: A no-go theorem and new examples

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Baleevskikh, K. A.; Skvortsova, M. V.

    2017-12-01

    For static, spherically symmetric space-times in general relativity (GR), a no-go theorem is proved: it excludes the existence of wormholes with flat and/or anti-de Sitter asymptotic regions on both sides of the throat if the source matter is isotropic, i.e., the radial and tangential pressures coincide. It explains why in all previous attempts to build such solutions it was necessary to introduce boundaries with thin shells that manifestly violate the isotropy of matter. Under a simple assumption on the behavior of the spherical radius r (x ), we obtain a number of examples of wormholes with isotropic matter and one or both de Sitter asymptotic regions, allowed by the no-go theorem. We also obtain twice asymptotically flat wormholes with anisotropic matter, both symmetric and asymmetric with respect to the throat, under the assumption that the scalar curvature is zero. These solutions may be on equal grounds interpreted as those of GR with a traceless stress-energy tensor and as vacuum solutions in a brane world. For such wormholes, the traversability conditions and gravitational lensing properties are briefly discussed. As a byproduct, we obtain twice asymptotically flat regular black hole solutions with up to four Killing horizons. As another byproduct, we point out intersection points in families of integral curves for the function A (x )=gt t, parametrized by its values on the throat.

  16. Structure theorems and the dynamics of nitrogen catabolite repression in yeast

    PubMed Central

    Boczko, Erik M.; Cooper, Terrance G.; Gedeon, Tomas; Mischaikow, Konstantin; Murdock, Deborah G.; Pratap, Siddharth; Wells, K. Sam

    2005-01-01

    By using current biological understanding, a conceptually simple, but mathematically complex, model is proposed for the dynamics of the gene circuit responsible for regulating nitrogen catabolite repression (NCR) in yeast. A variety of mathematical “structure” theorems are described that allow one to determine the asymptotic dynamics of complicated systems under very weak hypotheses. It is shown that these theorems apply to several subcircuits of the full NCR circuit, most importantly to the URE2–GLN3 subcircuit that is independent of the other constituents but governs the switching behavior of the full NCR circuit under changes in nitrogen source. Under hypotheses that are fully consistent with biological data, it is proven that the dynamics of this subcircuit is simple periodic behavior in synchrony with the cell cycle. Although the current mathematical structure theorems do not apply to the full NCR circuit, extensive simulations suggest that the dynamics is constrained in much the same way as that of the URE2–GLN3 subcircuit. This finding leads to the proposal that mathematicians study genetic circuits to find new geometries for which structure theorems may exist. PMID:15814615

  17. Solution of differential equations by application of transformation groups

    NASA Technical Reports Server (NTRS)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  18. Cone and trumpet concentrators in light of the general edge-ray theorem

    NASA Astrophysics Data System (ADS)

    Ries, Harald; Spirkl, Wolfgang; Winston, Roland

    1995-08-01

    Cone and trumpet are nonimaging concentrators which do not obey the traditional edge-ray principle. The latter states that edge rays from the source should be transferred to the edge of the target. These concentrators have traditionally been described in terms of the heuristic flow line principle. The edge-ray theorem has been generalized to include nonimaging reflectors with multiple reflections. One includes all multiply reflected rays as an auxiliary domain. The general edge-ray theorem then states that the edge rays to the union of source and auxiliary domain must be reflected to edge of the union of target and auxiliary domain by the first reflection. We show the setup for which cone and trumpet constitute perfect nonimaging concentrators in the light of the generalized edge-ray theorem. We discuss the cases where cones are very good approximations for the solutions of nonimaging problems.

  19. A Layer Framework to Investigate Student Understanding and Application of the Existence and Uniqueness Theorems of Differential Equations

    ERIC Educational Resources Information Center

    Raychaudhuri, D.

    2007-01-01

    The focus of this paper is on student interpretation and usage of the existence and uniqueness theorems for first-order ordinary differential equations. The inherent structure of the theorems is made explicit by the introduction of a framework of layers concepts-conditions-connectives-conclusions, and we discuss the manners in which students'…

  20. Oscillating solutions for nonlinear Helmholtz equations

    NASA Astrophysics Data System (ADS)

    Mandel, Rainer; Montefusco, Eugenio; Pellacci, Benedetta

    2017-12-01

    Existence results for radially symmetric oscillating solutions for a class of nonlinear autonomous Helmholtz equations are given and their exact asymptotic behaviour at infinity is established. Some generalizations to nonautonomous radial equations as well as existence results for nonradial solutions are found. Our theorems prove the existence of standing waves solutions of nonlinear Klein-Gordon or Schrödinger equations with large frequencies.

  1. Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions.

    PubMed

    Mardanov, M J; Mahmudov, N I; Sharifov, Y A

    2014-01-01

    We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.

  2. Global Classical Solutions for MHD System

    NASA Astrophysics Data System (ADS)

    Casella, E.; Secchi, P.; Trebeschi, P.

    In this paper we study the equations of magneto-hydrodynamics for a 2D incompressible ideal fluid in the exterior domain and in the half-plane. We prove the existence of a global classical solution in Hölder spaces, by applying Shauder fixed point theorem.

  3. On analyticity of linear waves scattered by a layered medium

    NASA Astrophysics Data System (ADS)

    Nicholls, David P.

    2017-10-01

    The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.

  4. Apprehending Mathematical Structure: A Case Study of Coming to Understand a Commutative Ring

    ERIC Educational Resources Information Center

    Simpson, Adrian; Stehlikova, Nada

    2006-01-01

    Abstract algebra courses tend to take one of two pedagogical routes: from examples of mathematics structures through definitions to general theorems, or directly from definitions to general theorems. The former route seems to be based on the implicit pedagogical intention that students will use their understanding of particular examples of an…

  5. On the mass of static metrics with positive cosmological constant: I

    NASA Astrophysics Data System (ADS)

    Borghini, Stefano; Mazzieri, Lorenzo

    2018-06-01

    In this paper we prove a new uniqueness result for the de Sitter solution. Our theorem is based on a new notion of mass, whose well-posedness is discussed and established in the realm of static spacetimes with positive cosmological constant that are bounded by Killing horizons. This new definition is formulated in terms of the surface gravities of the Killing horizons and agrees with the usual notion when the Schwarzschild–de Sitter solutions are considered. A positive mass statement is also shown to hold in this context. The corresponding rigidity statement coincides with the above mentioned characterization of the de Sitter solution as the only static vacuum metric with zero mass. Finally, exploiting some particular features of our formalism, we show how the same analysis can be fruitfully employed to treat the case of negative cosmological constant, leading to a new uniqueness theorem for the anti-de Sitter spacetime, which holds under a very feeble assumption on the asymptotic behavior of the solution.

  6. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    NASA Astrophysics Data System (ADS)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  7. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2005-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  8. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2002-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  9. Quantum mechanics problems in observer's mathematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Boris; Khots, Dmitriy; iMath Consulting LLC, Omaha, Nebraska

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, andmore » {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.« less

  10. Analogues of Chernoff's theorem and the Lie-Trotter theorem

    NASA Astrophysics Data System (ADS)

    Neklyudov, Alexander Yu

    2009-10-01

    This paper is concerned with the abstract Cauchy problem \\dot x=\\mathrm{A}x, x(0)=x_0\\in\\mathscr{D}(\\mathrm{A}), where \\mathrm{A} is a densely defined linear operator on a Banach space \\mathbf X. It is proved that a solution x(\\,\\cdot\\,) of this problem can be represented as the weak limit \\lim_{n\\to\\infty}\\{\\mathrm F(t/n)^nx_0\\}, where the function \\mathrm F\\colon \\lbrack 0,\\infty)\\mapsto\\mathscr L(\\mathrm X) satisfies the equality \\mathrm F'(0)y=\\mathrm{A}y, y\\in\\mathscr{D}(\\mathrm{A}), for a natural class of operators. As distinct from Chernoff's theorem, the existence of a global solution to the Cauchy problem is not assumed. Based on this result, necessary and sufficient conditions are found for the linear operator \\mathrm{C} to be closable and for its closure to be the generator of a C_0-semigroup. Also, we obtain new criteria for the sum of two generators of C_0-semigroups to be the generator of a C_0-semigroup and for the Lie-Trotter formula to hold. Bibliography: 13 titles.

  11. Warped product space-times

    NASA Astrophysics Data System (ADS)

    An, Xinliang; Wong, Willie Wai Yeung

    2018-01-01

    Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.

  12. The complete proof on the optimal ordering policy under cash discount and trade credit

    NASA Astrophysics Data System (ADS)

    Chung, Kun-Jen

    2010-04-01

    Huang ((2005), 'Buyer's Optimal Ordering Policy and Payment Policy under Supplier Credit', International Journal of Systems Science, 36, 801-807) investigates the buyer's optimal ordering policy and payment policy under supplier credit. His inventory model is correct and interesting. Basically, he uses an algebraic method to locate the optimal solution of the annual total relevant cost TRC(T) and ignores the role of the functional behaviour of TRC(T) in locating the optimal solution of it. However, as argued in this article, Huang needs to explore the functional behaviour of TRC(T) to justify his solution. So, from the viewpoint of logic, the proof about Theorem 1 in Huang has some shortcomings such that the validity of Theorem 1 in Huang is questionable. The main purpose of this article is to remove and correct those shortcomings in Huang and present the complete proofs for Huang.

  13. Specification Improvement Through Analysis of Proof Structure (SITAPS): High Assurance Software Development

    DTIC Science & Technology

    2016-02-01

    proof in mathematics. For example, consider the proof of the Pythagorean Theorem illustrated at: http://www.cut-the-knot.org/ pythagoras / where 112...methods and tools have made significant progress in their ability to model software designs and prove correctness theorems about the systems modeled...assumption criticality” or “ theorem root set size” SITAPS detects potentially brittle verification cases. SITAPS provides tools and techniques that

  14. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    NASA Astrophysics Data System (ADS)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  15. Constraints on the symmetry noninheriting scalar black hole hair

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2017-01-01

    Any recipe to grow black hole hair has to circumvent no-hair theorems by violating some of their assumptions. Recently discovered hairy black hole solutions exist due to the fact that their scalar fields don't inherit the symmetries of the spacetime metric. We present here a general analysis of the constraints which limit the possible forms of such a hair, for both the real and the complex scalar fields. These results can be taken as a novel piece of the black hole uniqueness theorems or simply as a symmetry noninheriting Ansätze guide. In addition, we introduce new classification of the gravitational field equations which might prove useful for various generalizations of the theorems about spacetimes with symmetries.

  16. Multidirectional hybrid algorithm for the split common fixed point problem and application to the split common null point problem.

    PubMed

    Li, Xia; Guo, Meifang; Su, Yongfu

    2016-01-01

    In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .

  17. Positive periodic solution for p-Laplacian neutral Rayleigh equation with singularity of attractive type.

    PubMed

    Xin, Yun; Liu, Hongmin; Cheng, Zhibo

    2018-01-01

    In this paper, we consider a kind of p -Laplacian neutral Rayleigh equation with singularity of attractive type, [Formula: see text] By applications of an extension of Mawhin's continuation theorem, sufficient conditions for the existence of periodic solution are established.

  18. Dissipative controller designs for second-order dynamic systems

    NASA Technical Reports Server (NTRS)

    Morris, K. A.; Juang, J. N.

    1990-01-01

    The passivity theorem may be used to design robust controllers for structures with positive transfer functions. This result is extended to more general configurations using dissipative system theory. A stability theorem for robust, model-independent controllers of structures which lack collocated rate sensors and actuators is given. The theory is illustrated for non-square systems and systems with displacement sensors.

  19. Theoretical prediction on corrugated sandwich panels under bending loads

    NASA Astrophysics Data System (ADS)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  20. Research in advanced formal theorem-proving techniques

    NASA Technical Reports Server (NTRS)

    Rulifson, J. F.

    1971-01-01

    The present status is summarized of a continuing research program aimed at the design and implementation of a language for expressing problem-solving procedures in several areas of artificial intelligence, including program synthesis, robot planning, and theorem proving. Notations, concepts, and procedures common to the representation and solution of many of these problems were abstracted and incorporated as features into the language. The areas of research covered are described, and abstracts of six papers that contain extensive description and technical detail of the work are presented.

  1. Advanced methods for the solution of differential equations

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Braun, W. H.

    1973-01-01

    This book is based on a course presented at the Lewis Research Center for engineers and scientists who were interested in increasing their knowledge of differential equations. Those results which can actually be used to solve equations are therefore emphasized; and detailed proofs of theorems are, for the most part, omitted. However, the conclusions of the theorems are stated in a precise manner, and enough references are given so that the interested reader can find the steps of the proofs.

  2. Structural Change and Interaction Behavior in Multimodal Networks

    DTIC Science & Technology

    2010-07-30

    S̃q~v = PD( ∑ p Sq→p)− 1 2~v, so λ and D( ∑ p Sq→p) − 1 2~v are an eigenvalue-eigenvector pair for P. By the Perron - Frobenius theorem, we know that λ... Frobenius norm, and α = 11+γ . The closed form solution is F ∗ p→q = (1 − α)(Inq − αS̃q)−1ATp→q [30, 26]. 4 Experiment We evaluated our method for...of mode Xp and the jth cluster of Xq. An approximate factorization is then achieved by minimizing a loss function comprised of the Frobenius norms of

  3. Fixed Point Results for G-α-Contractive Maps with Application to Boundary Value Problems

    PubMed Central

    Roshan, Jamal Rezaei

    2014-01-01

    We unify the concepts of G-metric, metric-like, and b-metric to define new notion of generalized b-metric-like space and discuss its topological and structural properties. In addition, certain fixed point theorems for two classes of G-α-admissible contractive mappings in such spaces are obtained and some new fixed point results are derived in corresponding partially ordered space. Moreover, some examples and an application to the existence of a solution for the first-order periodic boundary value problem are provided here to illustrate the usability of the obtained results. PMID:24895655

  4. Systems of nonlinear algebraic equations with positive solutions.

    PubMed

    Ciurte, Anca; Nedevschi, Sergiu; Rasa, Ioan

    2017-01-01

    We are concerned with the positive solutions of an algebraic system depending on a parameter [Formula: see text] and arising in economics. For [Formula: see text] we prove that the system has at least a solution. For [Formula: see text] we give three proofs of the existence and a proof of the uniqueness of the solution. Brouwer's theorem and inequalities involving convex functions are essential tools in our proofs.

  5. Existence of periodic solutions in a model of respiratory syncytial virus RSV

    NASA Astrophysics Data System (ADS)

    Arenas, Abraham J.; González, Gilberto; Jódar, Lucas

    2008-08-01

    In this paper we study the existence of a positive periodic solutions for nested models of respiratory syncytial virus RSV, by using a continuation theorem based on coincidence degree theory. Conditions for the existence of periodic solutions in the model are given. Numerical simulations related to the transmission of respiratory syncytial virus in Madrid and Rio Janeiro are included.

  6. Photoelectric effect from observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2014-12-01

    When we consider and analyze physical events with the purpose of creating corresponding models we often assume that the mathematical apparatus used in modeling is infallible. In particular, this relates to the use of infinity in various aspects and the use of Newton's definition of a limit in analysis. We believe that is where the main problem lies in contemporary study of nature. This work considers Physical aspects in a setting of arithmetic, algebra, geometry, analysis, topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided. In particular, we prove the following Theorems, which give Observer's Mathematics point of view on Einstein photoelectric effect theory and Lamb-Scully and Hanbury-Brown-Twiss experiments: Theorem 1. There are some values of light intensity where anticorrelation parameter A ∈ [0,1). Theorem 2. There are some values of light intensity where anticorrelation parameter A = 1. Theorem 3. There are some values of light intensity where anticorrelation parameter A > 1.

  7. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  8. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem

    PubMed Central

    Li, Jiawei; Kendall, Graham

    2015-01-01

    In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games. PMID:26288088

  9. Problems on Divisibility of Binomial Coefficients

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Smoak, James

    2004-01-01

    Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…

  10. Static solutions for fourth order gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William

    2010-11-15

    The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.

  11. Stable sequential Kuhn-Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem

    NASA Astrophysics Data System (ADS)

    Sumin, M. I.

    2015-06-01

    A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.

  12. A Benes-like theorem for the shuffle-exchange graph

    NASA Technical Reports Server (NTRS)

    Schwabe, Eric J.

    1992-01-01

    One of the first theorems on permutation routing, proved by V. E. Beness (1965), shows that given a set of source-destination pairs in an N-node butterfly network with at most a constant number of sources or destinations in each column of the butterfly, there exists a set of paths of lengths O(log N) connecting each pair such that the total congestion is constant. An analogous theorem yielding constant-congestion paths for off-line routing in the shuffle-exchange graph is proved here. The necklaces of the shuffle-exchange graph play the same structural role as the columns of the butterfly in Beness' theorem.

  13. A fermionic de Finetti theorem

    NASA Astrophysics Data System (ADS)

    Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens

    2017-12-01

    Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.

  14. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    NASA Astrophysics Data System (ADS)

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness properties for these sequences of approximate solutions. Some of the parts of the proof are of independent interest.

  15. Determination of Stress Coefficient Terms in Cracked Solids for Monoclinic Materials with Plane Symmetry at x3 = 0

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1998-01-01

    Determination of all the coefficients in the crack tip field expansion for monoclinic materials under two-dimensional deformation is presented in this report. For monoclinic materials with a plane of material symmetry at x(sub 3) = 0, the in-plane deformation is decoupled from the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of elasticity and Betti's reciprocal theorem, together with selected auxiliary fields, T-stress and third-order stress coefficients near the crack tip are evaluated first from path-independent line integrals. To determine the T-stress terms using the J-integral and Betti's reciprocal work theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used respectively. Through the use of Stroh formalism in anisotropic elasticity, analytical expressions for all the coefficients including the stress intensity factors are derived in a compact form that has surprisingly simple structure in terms of the Barnett-Lothe tensors, L. The solution forms for degenerated materials, orthotropic, and isotropic materials are presented.

  16. Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems.

    PubMed

    Camunas-Soler, Joan; Alemany, Anna; Ritort, Felix

    2017-01-27

    Thermodynamic bulk measurements of binding reactions rely on the validity of the law of mass action and the assumption of a dilute solution. Yet, important biological systems such as allosteric ligand-receptor binding, macromolecular crowding, or misfolded molecules may not follow these assumptions and may require a particular reaction model. Here we introduce a fluctuation theorem for ligand binding and an experimental approach using single-molecule force spectroscopy to determine binding energies, selectivity, and allostery of nucleic acids and peptides in a model-independent fashion. A similar approach could be used for proteins. This work extends the use of fluctuation theorems beyond unimolecular folding reactions, bridging the thermodynamics of small systems and the basic laws of chemical equilibrium. Copyright © 2017, American Association for the Advancement of Science.

  17. Crank-Nicholson difference scheme for a stochastic parabolic equation with a dependent operator coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashyralyev, Allaberen; Okur, Ulker

    In the present paper, the Crank-Nicolson difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is considered. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, convergence estimates for the solution of difference schemes for the numerical solution of three mixed problems for parabolic equations are obtained. The numerical results are given.

  18. Glueball spectrum and hadronic processes in low-energy QCD

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2010-10-01

    Low-energy limit of quantum chromodynamics (QCD) is obtained using a mapping theorem recently proved. This theorem states that, classically, solutions of a massless quartic scalar field theory are approximate solutions of Yang-Mills equations in the limit of the gauge coupling going to infinity. Low-energy QCD is described by a Yukawa theory further reducible to a Nambu-Jona-Lasinio model. At the leading order one can compute glue-quark interactions and one is able to calculate the properties of the σ and η-η mesons. Finally, it is seen that all the physics of strong interactions, both in the infrared and ultraviolet limit, is described by a single constant Λ arising in the ultraviolet by dimensional transmutation and in the infrared as an integration constant.

  19. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  20. On the Lagrangian description of dissipative systems

    NASA Astrophysics Data System (ADS)

    Martínez-Pérez, N. E.; Ramírez, C.

    2018-03-01

    We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.

  1. The Pythagorean Theorem and the Solid State

    ERIC Educational Resources Information Center

    Kelly, Brenda S.; Splittgerber, Allan G.

    2005-01-01

    Packing efficiency and crystal density can be calculated from basic geometric principles employing the Pythagorean theorem, if the unit-cell structure is known. The procedures illustrated have applicability in courses such as general chemistry, intermediate and advanced inorganic, materials science, and solid-state physics.

  2. On the Conservation and Convergence to Weak Solutions of Global Schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Shu, Chi-Wang

    2001-01-01

    In this paper we discuss the issue of conservation and convergence to weak solutions of several global schemes, including the commonly used compact schemes and spectral collocation schemes, for solving hyperbolic conservation laws. It is shown that such schemes, if convergent boundedly almost everywhere, will converge to weak solutions. The results are extensions of the classical Lax-Wendroff theorem concerning conservative schemes.

  3. Quadratic equations in Banach space, perturbation techniques and applications to Chandrasekhar's and related equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyros, I.K.

    1984-01-01

    In this dissertation perturbation techniques are developed, based on the contraction mapping principle which can be used to prove existence and uniqueness for the quadratic equation x = y + lambdaB(x,x) (1) in a Banach space X; here B: XxX..-->..X is a bounded, symmetric bilinear operator, lambda is a positive parameter and y as a subset of X is fixed. The following is the main result. Theorem. Suppose F: XxX..-->..X is a bounded, symmetric bilinear operator and that the equation z = y + lambdaF(z,z) has a solution z/sup */ of sufficiently small norm. Then equation (1) has a uniquemore » solution in a certain closed ball centered at z/sup */. Applications. The theorem is applied to the famous Chandrasekhar equation and to the Anselone-Moore system which are of the form (1) above and yields existence and uniqueness for a solution of (1) for larger values of lambda than previously known, as well as more accurate information on the location of solutions.« less

  4. Learning to Calculate and Learning Mathematics.

    ERIC Educational Resources Information Center

    Fearnley-Sander, Desmond

    1980-01-01

    A calculator solution of a simple computational problem is discussed with emphasis on its ramifications for the understanding of some fundamental theorems of pure mathematics and techniques of computing. (Author/MK)

  5. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  6. One-range addition theorems for derivatives of Slater-type orbitals.

    PubMed

    Guseinov, Israfil

    2004-06-01

    Using addition theorems for STOs introduced by the author with the help of complete orthonormal sets of psi(alpha)-ETOs (Guseinov II (2003) J Mol Model 9:190-194), where alpha=1, 0, -1, -2, ..., a large number of one-range addition theorems for first and second derivatives of STOs are established. These addition theorems are especially useful for computation of multicenter-multielectron integrals over STOs that arise in the Hartree-Fock-Roothaan approximation and also in the Hylleraas function method, which play a significant role for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids. The relationships obtained are valid for arbitrary quantum numbers, screening constants and location of STOs.

  7. Image registration under translation and rotation in two-dimensional planes using Fourier slice theorem.

    PubMed

    Pohit, M; Sharma, J

    2015-05-10

    Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.

  8. Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev-Petviashvili Equation

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Yu, Jun; Liu, Xi-Zhong

    2016-03-01

    The nonlocal symmetry for the potential Kadomtsev-Petviashvili (pKP) equation is derived by the truncated Painlevé analysis. The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable. Thanks to localization process, the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems. The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations. Based on the consistent tanh expansion method, a nonauto-Bäcklund transformation (BT) theorem of the pKP equation is constructed. We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem. Some special interaction solutions are investigated both in analytical and graphical ways. Supported by the National Natural Science Foundation of China under Grant Nos. 11305106, 11275129 and 11405110, the Natural Science Foundation of Zhejiang Province of China under Grant No. LQ13A050001

  9. Numerical solution of the stochastic parabolic equation with the dependent operator coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashyralyev, Allaberen; Department of Mathematics, ITTU, Ashgabat; Okur, Ulker

    2015-09-18

    In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.

  10. Evolution in Stage-Structured Populations

    PubMed Central

    Barfield, Michael; Holt, Robert D.; Gomulkiewicz, Richard

    2016-01-01

    For many organisms, stage is a better predictor of demographic rates than age. Yet no general theoretical framework exists for understanding or predicting evolution in stage-structured populations. Here, we provide a general modeling approach that can be used to predict evolution and demography of stage-structured populations. This advances our ability to understand evolution in stage-structured populations to a level previously available only for populations structured by age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates adaptive evolution to population growth, applies to stage-classified populations, assuming only normality and that evolution is slow relative to population dynamics. We extend this theorem to allow for different means or variances among stages. Our next major result is the formulation of Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world population and thereby show their practical potential to generate accurate projections of evolutionary and population dynamics. Finally, we use our framework to compare rates of evolution in age- versus stage-structured populations, which shows how our methods can yield biological insights about evolution in stage-structured populations. PMID:21460563

  11. Infinite flag varieties and conjugacy theorems

    PubMed Central

    Peterson, Dale H.; Kac, Victor G.

    1983-01-01

    We study the orbit of a highest-weight vector in an integrable highest-weight module of the group G associated to a Kac-Moody algebra [unk](A). We obtain applications to the geometric structure of the associated flag varieties and to the algebraic structure of [unk](A). In particular, we prove conjugacy theorems for Cartan and Borel subalgebras of [unk](A), so that the Cartan matrix A is an invariant of [unk](A). PMID:16593298

  12. Structure of rapidity divergences in multi-parton scattering soft factors

    NASA Astrophysics Data System (ADS)

    Vladimirov, Alexey

    2018-04-01

    We discuss the structure of rapidity divergences that are presented in the soft factors of transverse momentum dependent (TMD) factorization theorems. To provide the discussion on the most general level we consider soft factors for multi-parton scattering. We show that the rapidity divergences are result of the gluon exchanges with the distant transverse plane, and are structurally equivalent to the ultraviolet divergences. It allows to formulate and to prove the renormalization theorem for rapidity divergences. The proof is made with the help the conformal transformation which maps rapidity divergences to ultraviolet divergences. The theorem is the systematic form of the factorization of rapidity divergences, which is required for the definition of TMD parton distributions. In particular, the definition of multi parton distributions is presented. The equivalence of ultraviolet and rapidity divergences leads to the exact relation between soft and rapidity anomalous dimensions. Using this relation we derive the rapidity anomalous dimension at the three-loop order.

  13. Asymptotic Behavior of Solutions of Systems of Neutral and Convolution Equations

    NASA Astrophysics Data System (ADS)

    Basit, Bolis; Günzler, Hans

    1998-10-01

    Suppose J=[α, ∞) for someα∈R or J=R and letXbe a Banach space. We study asymptotic behavior of solutions on J of neutral system of equations with values inX. This reduces to questions concerning the behavior of solutions of convolution equations (*)H∗Ω=b, whereH=(Hj, k) is anr×rmatrix,Hj, k∈D‧L1,b=(bj) andbj∈D‧(R, X), for 1⩽j, k⩽r. We prove that ifΩis a bounded uniformly continuous solution of (*) withbfrom some translation invariant suitably closed class A, thenΩbelongs to A, provided, for example, that det Hhas countably many zeros on R andc0⊄X. In particular, ifbis (asymptotically) almost periodic, almost automorphic or recurrent,Ωis too. Our results extend theorems of Bohr, Neugebauer, Bochner, Doss, Basit, and Zhikov and also, certain theorems of Fink, Madych, Staffans, and others. Also, we investigate bounded solutions of (*). This leads to an extension of the known classes of almost periodicity to larger classes called mean-classes. We explore mean-classes and prove that bounded solutions of (*) belong to mean-classes provided certain conditions hold. These results seem new even for the simplest difference equationΩ(t+1)-Ω(t)=b(t) with J=X=R andbStepanoff almost periodic.

  14. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  15. A new blackhole theorem and its applications to cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Shouhong; Ma, Tian

    2015-04-01

    We shall present a blackhole theorem and a theorem on the structure of our Universe, proved in a recently published paper, based on 1) the Einstein general theory of relativity, and 2) the cosmological principle that the universe is homogeneous and isotropic. These two theorems are rigorously proved using astrophysical dynamical models coupling fluid dynamics and general relativity based on a symmetry-breaking principle. With the new blackhole theorem, we further demonstrate that both supernovae explosion and AGN jets, as well as many astronomical phenomena including e.g. the recent reported are due to combined relativistic, magnetic and thermal effects. The radial temperature gradient causes vertical Benard type convection cells, and the relativistic viscous force (via electromagnetic, the weak and the strong interactions) gives rise to a huge explosive radial force near the Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.

  16. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1994-01-01

    This annual report summarizes the research activities that were performed from 26 Jun. 1993 to 28 Feb. 1994. We continued to investigate the Robust Stability of Systems where transfer functions or characteristic polynomials are affine multilinear functions of parameters. An approach that differs from 'Stability by Linear Process' and that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty was found for low order, 2-order, and 3-order cases. We proved a crucial theorem, the so-called Face Theorem. Previously, we have proven Kharitonov's Vertex Theorem and the Edge Theorem by Bartlett. The detail of this proof is contained in the Appendix. This Theorem provides a tool to describe the boundary of the image of the affine multilinear function. For SPR design, we have developed some new results. The third objective for this period is to design a controller for IHM by the H-infinity optimization technique. The details are presented in the Appendix.

  17. State space approach to mixed boundary value problems.

    NASA Technical Reports Server (NTRS)

    Chen, C. F.; Chen, M. M.

    1973-01-01

    A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.

  18. Representations of the language recognition problem for a theorem prover

    NASA Technical Reports Server (NTRS)

    Minker, J.; Vanderbrug, G. J.

    1972-01-01

    Two representations of the language recognition problem for a theorem prover in first order logic are presented and contrasted. One of the representations is based on the familiar method of generating sentential forms of the language, and the other is based on the Cocke parsing algorithm. An augmented theorem prover is described which permits recognition of recursive languages. The state-transformation method developed by Cordell Green to construct problem solutions in resolution-based systems can be used to obtain the parse tree. In particular, the end-order traversal of the parse tree is derived in one of the representations. An inference system, termed the cycle inference system, is defined which makes it possible for the theorem prover to model the method on which the representation is based. The general applicability of the cycle inference system to state space problems is discussed. Given an unsatisfiable set S, where each clause has at most one positive literal, it is shown that there exists an input proof. The clauses for the two representations satisfy these conditions, as do many state space problems.

  19. Entire solutions of nonlinear differential-difference equations.

    PubMed

    Li, Cuiping; Lü, Feng; Xu, Junfeng

    2016-01-01

    In this paper, we describe the properties of entire solutions of a nonlinear differential-difference equation and a Fermat type equation, and improve several previous theorems greatly. In addition, we also deduce a uniqueness result for an entire function f(z) that shares a set with its shift [Formula: see text], which is a generalization of a result of Liu.

  20. Smooth solutions of the Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhozhaev, S I

    2014-02-28

    We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to x∈R{sup 3}. We obtain existence theorems for global (with respect to t>0) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on t, are also obtained. Bibliography: 10 titles.

  1. A Theorem on the Rank of a Product of Matrices with Illustration of Its Use in Goodness of Fit Testing.

    PubMed

    Satorra, Albert; Neudecker, Heinz

    2015-12-01

    This paper develops a theorem that facilitates computing the degrees of freedom of Wald-type chi-square tests for moment restrictions when there is rank deficiency of key matrices involved in the definition of the test. An if and only if (iff) condition is developed for a simple rule of difference of ranks to be used when computing the desired degrees of freedom of the test. The theorem is developed exploiting basics tools of matrix algebra. The theorem is shown to play a key role in proving the asymptotic chi-squaredness of a goodness of fit test in moment structure analysis, and in finding the degrees of freedom of this chi-square statistic.

  2. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

    PubMed

    Shah, Kamal; Khan, Rahmat Ali

    2016-01-01

    In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.

  3. Existence and global attractivity of unique positive periodic solution for a model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Liu, Guirong; Yan, Jurang; Zhang, Fengqin

    2007-10-01

    In this paper, we consider the generalized model of hematopoiesis By using a fixed point theorem, some criteria are established for the existence of the unique positive [omega]-periodic solution of the above equation. In particular, we not only give the conclusion of convergence of xk to , where {xk} is a successive sequence, but also show that is a global attractor of all other positive solutions.

  4. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    NASA Astrophysics Data System (ADS)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  5. Quantum Experimental Data in Psychology and Economics

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; D'Hooghe, Bart; Haven, Emmanuel

    2010-12-01

    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the ‘disjunction effect’ in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage’s Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. Our analysis puts forward a strong argument in favor of the validity of using the quantum formalism for modeling the considered psychological experimental data as considered in this paper.

  6. Towards sub-optimal stochastic control of partially observable stochastic systems

    NASA Technical Reports Server (NTRS)

    Ruzicka, G. J.

    1980-01-01

    A class of multidimensional stochastic control problems with noisy data and bounded controls encountered in aerospace design is examined. The emphasis is on suboptimal design, the optimality being taken in quadratic mean sense. To that effect the problem is viewed as a stochastic version of the Lurie problem known from nonlinear control theory. The main result is a separation theorem (involving a nonlinear Kalman-like filter) suitable for Lurie-type approximations. The theorem allows for discontinuous characteristics. As a byproduct the existence of strong solutions to a class of non-Lipschitzian stochastic differential equations in dimensions is proven.

  7. The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, Sven; De Roeck, Wojciech; Fraas, Martin

    2018-03-01

    The adiabatic theorem refers to a setup where an evolution equation contains a time-dependent parameter whose change is very slow, measured by a vanishing parameter ɛ. Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instantaneous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One important application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect.

  8. Lichnerowicz-type equations with sign-changing nonlinearities on complete manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Albanese, Guglielmo; Rigoli, Marco

    2017-12-01

    We prove an existence theorem for positive solutions to Lichnerowicz-type equations on complete manifolds with boundary (M , ∂ M , 〈 , 〉) and nonlinear Neumann conditions. This kind of nonlinear problems arise quite naturally in the study of solutions for the Einstein-scalar field equations of General Relativity in the framework of the so called Conformal Method.

  9. A result on differential inequalities and its application to higher order trajectory derivatives

    NASA Technical Reports Server (NTRS)

    Gunderson, R. W.

    1973-01-01

    A result on differential inequalities is obtained by considering the adjoint differential equation of the variational equation of the right side of the inequality. The main theorem is proved using basic results on differentiability of solutions with respect to initial conditions. The result is then applied to the problem of determining solution behavior using comparison techniques.

  10. The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlenko, V N; Potapov, D K

    2015-09-30

    This paper is concerned with the existence of semiregular solutions to the Dirichlet problem for an equation of elliptic type with discontinuous nonlinearity and when the differential operator is not assumed to be formally self-adjoint. Theorems on the existence of semiregular (positive and negative) solutions for the problem under consideration are given, and a principle of upper and lower solutions giving the existence of semiregular solutions is established. For positive values of the spectral parameter, elliptic spectral problems with discontinuous nonlinearities are shown to have nontrivial semiregular (positive and negative) solutions. Bibliography: 32 titles.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.edu, E-mail: dpsaltis@email.arizona.edu

    According to the no-hair theorem, astrophysical black holes are uniquely described by their masses and spins. An observational test of the no-hair theorem can be performed by measuring at least three different multipole moments of the spacetime of a black hole and verifying whether their values are consistent with the unique combinations of the Kerr solution. In this paper, we study quasi-periodic variability observed in the emission from black holes across the electromagnetic spectrum as a test of the no-hair theorem. We derive expressions for the Keplerian and epicyclic frequencies in a quasi-Kerr spacetime, in which the quadrupole moment ismore » a free parameter in addition to mass and spin. We show that, for moderate spins, the Keplerian frequency is practically independent of small deviations of the quadrupole moment from the Kerr value, while the epicyclic frequencies exhibit significant variations. We apply this framework to quasi-periodic oscillations (QPOs) in black hole X-ray binaries in two different scenarios. In the case that a pair of QPOs can be identified as the fundamental g- and c-modes in the accretion disk, we show that the no-hair theorem can be tested in conjunction with an independent mass measurement. If pairs of oscillations are identified with non-parametric resonance of dynamical frequencies in the accretion disk, then testing the no-hair theorem also requires an independent measurement of the black hole spin. In addition, we argue that VLBI observations of Sgr A* may test the no-hair theorem through a combination of imaging observations and the detection of quasi-periodic variability.« less

  12. The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology

    NASA Astrophysics Data System (ADS)

    Kroupa, P.

    2012-06-01

    The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase-space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy-acceleration correlation constitutes convincing evidence that galactic-scale dynamics must be Milgromian. Major problems with inflationary big bang cosmologies remain unresolved.

  13. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  14. No hair theorem in quasi-dilaton massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, De-Jun; Zhou, Shuang-Yong

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  15. Fast calculation of the sensitivity matrix in magnetic induction tomography by tetrahedral edge finite elements and the reciprocity theorem.

    PubMed

    Hollaus, K; Magele, C; Merwa, R; Scharfetter, H

    2004-02-01

    Magnetic induction tomography of biological tissue is used to reconstruct the changes in the complex conductivity distribution by measuring the perturbation of an alternating primary magnetic field. To facilitate the sensitivity analysis and the solution of the inverse problem a fast calculation of the sensitivity matrix, i.e. the Jacobian matrix, which maps the changes of the conductivity distribution onto the changes of the voltage induced in a receiver coil, is needed. The use of finite differences to determine the entries of the sensitivity matrix does not represent a feasible solution because of the high computational costs of the basic eddy current problem. Therefore, the reciprocity theorem was exploited. The basic eddy current problem was simulated by the finite element method using symmetric tetrahedral edge elements of second order. To test the method various simulations were carried out and discussed.

  16. No hair theorem in quasi-dilaton massive gravity

    DOE PAGES

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-04-11

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  17. Special relativity theorem and Pythagoras’s magic

    NASA Astrophysics Data System (ADS)

    Korkmaz, S. D.; Aybek, E. C.; Örücü, M.

    2016-03-01

    In the modern physics unit included in the course curriculum of grade 10 physics introduced in the 2007-2008 education year, the aim is that students at this grade level are aware of any developments which constitute modern physics and may be considered new, and interpret whether mass, length and time values of the motions at any velocities close to the speed of light vary or not. One of the scientific concepts and subjects among the final ones to be learned in the unit of modern physics with 12 course hours includes the special relativity theorem and its results. The special relativity theorem, the foundation of which was laid by Einstein in 1905, has three significant predictions proven by experiments and observations: time extension, dimensional shortening and mass relativity. At the first stage of this study, a simple and fast solution that uses the Pythagorean relation for problems and must be treated by using the mathematical expressions of the predictions as specified above is given, and this way of solution was taught while the relativity subject was explained to the secondary education students who are fifteen years old from grade 10 in the 2013-2014 education year. At the second stage of the study, a qualitative study is released together with grade 11 students who are sixteen years old in 2014-2015, who learnt to solve any problems in both methods, while the special relativity subject is discussed in the physics course in grade 10. The findings of the study show that the students have a misconception on the relativity theorem and prefer to solve any relativity-related problems by using the Pythagorean method constituting the first stage of this study.

  18. Quantization of Chirikov Map and Quantum KAM Theorem.

    NASA Astrophysics Data System (ADS)

    Shi, Kang-Jie

    KAM theorem is one of the most important theorems in classical nonlinear dynamics and chaos. To extend KAM theorem to the regime of quantum mechanics, we first study the quantum Chirikov map, whose classical counterpart provides a good example of KAM theorem. Under resonance condition 2pihbar = 1/N, we obtain the eigenstates of the evolution operator of this system. We find that the wave functions in the coherent state representation (CSR) are very similar to the classical trajectories. In particular, some of these wave functions have wall-like structure at the locations of classical KAM curves. We also find that a local average is necessary for a Wigner function to approach its classical limit in the phase space. We then study the general problem theoretically. Under similar conditions for establishing the classical KAM theorem, we obtain a quantum extension of KAM theorem. By constructing successive unitary transformations, we can greatly reduce the perturbation part of a near-integrable Hamiltonian system in a region associated with a Diophantine number {rm W}_{o}. This reduction is restricted only by the magnitude of hbar.. We can summarize our results as follows: In the CSR of a nearly integrable quantum system, associated with a Diophantine number {rm W}_ {o}, there is a band near the corresponding KAM torus of the classical limit of the system. In this band, a Gaussian wave packet moves quasi-periodically (and remain close to the KAM torus) for a long time, with possible diffusion in both the size and the shape of its wave packet. The upper bound of the tunnelling rate out of this band for the wave packet can be made much smaller than any given power of hbar, if the original perturbation is sufficiently small (but independent of hbar). When hbarto 0, we reproduce the classical KAM theorem. For most near-integrable systems the eigenstate wave function in the above band can either have a wall -like structure or have a vanishing amplitude. These conclusions agree with the numerical results of the quantum Chirikov map.

  19. Origin of generalized entropies and generalized statistical mechanics for superstatistical multifractal systems

    NASA Astrophysics Data System (ADS)

    Gadjiev, Bahruz; Progulova, Tatiana

    2015-01-01

    We consider a multifractal structure as a mixture of fractal substructures and introduce a distribution function f (α), where α is a fractal dimension. Then we can introduce g(p)˜ ∫- ln p μe-yf(y)dy and show that the distribution functions f (α) in the form of f(α) = δ(α-1), f(α) = δ(α-θ) , f(α) = 1/α-1 , f(y)= y α-1 lead to the Boltzmann - Gibbs, Shafee, Tsallis and Anteneodo - Plastino entropies conformably. Here δ(x) is the Dirac delta function. Therefore the Shafee entropy corresponds to a fractal structure, the Tsallis entropy describes a multifractal structure with a homogeneous distribution of fractal substructures and the Anteneodo - Plastino entropy appears in case of a power law distribution f (y). We consider the Fokker - Planck equation for a fractal substructure and determine its stationary solution. To determine the distribution function of a multifractal structure we solve the two-dimensional Fokker - Planck equation and obtain its stationary solution. Then applying the Bayes theorem we obtain a distribution function for the entire system in the form of q-exponential function. We compare the results of the distribution functions obtained due to the superstatistical approach with the ones obtained according to the maximum entropy principle.

  20. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.

    PubMed

    Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.

  1. Generalized Kinetic Description of Steady-State Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Krivorutsky, E. N.

    1997-01-01

    We present a general solution to the collisionless Boltzmann (Vlasov) equation for a free-flowing plasma along a magnetic field line using Liouville's theorem, allowing for an arbitrary potential structure including non-monotonicities. The constraints of the existing collisionless kinetic transport models are explored, and the need for a more general approach to the problem of self- consistent potential energy calculations is described. Then a technique that handles an arbitrary potential energy distribution along the field line is presented and discussed. For precipitation of magnetospherically trapped hot plasma, this model yields moment calculations that vary by up to a factor of two for various potential energy structures with the same total potential drop. The differences are much greater for the high-latitude outflow scenario, giving order of magnitude variations depending on the shape of the potential energy distribution.

  2. Inverse Jacobi multiplier as a link between conservative systems and Poisson structures

    NASA Astrophysics Data System (ADS)

    García, Isaac A.; Hernández-Bermejo, Benito

    2017-08-01

    Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka-Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided.

  3. Gleason-Busch theorem for sequential measurements

    NASA Astrophysics Data System (ADS)

    Flatt, Kieran; Barnett, Stephen M.; Croke, Sarah

    2017-12-01

    Gleason's theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957), 10.1512/iumj.1957.6.56050]. We show that Gleason's theorem contains within it also the structure of sequential measurements, and along with this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those in Busch's proof of Gleason's theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003), 10.1103/PhysRevLett.91.120403], from which the familiar Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in making clear those assumptions which underlie the security of quantum communication protocols. Interestingly, the two-time formalism is seen to arise naturally in this approach.

  4. Global exponential stability of positive periodic solution of the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays.

    PubMed

    Zhao, Kaihong

    2018-12-01

    In this paper, we study the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. The existence of positive periodic solution is proved by employing the fixed point theorem on cones. By constructing appropriate Lyapunov functional, we also obtain the global exponential stability of the positive periodic solution of this system. As an application, an interesting example is provided to illustrate the validity of our main results.

  5. On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation

    NASA Astrophysics Data System (ADS)

    Akbulut, Arzu; Taşcan, Filiz

    2018-04-01

    In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.

  6. A theorem regarding roots of the zero-order Bessel function of the first kind

    NASA Technical Reports Server (NTRS)

    Lin, X.-A.; Agrawal, O. P.

    1993-01-01

    This paper investigates a problem on the steady-state, conduction-convection heat transfer process in cylindrical porous heat exchangers. The governing partial differential equations for the system are obtained using the energy conservation law. Solution of these equations and the concept of enthalpy lead to a new approach to prove a theorem that the sum of inverse squares of all the positive roots of the zero order Bessel function of the first kind equals to one-forth. As a corollary, it is shown that the sum of one over pth power (p greater than or equal to 2) of the roots converges to some constant.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flego, S.P.; Plastino, A.; Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca

    We explore intriguing links connecting Hellmann-Feynman's theorem to a thermodynamics information-optimizing principle based on Fisher's information measure. - Highlights: > We link a purely quantum mechanical result, the Hellmann-Feynman theorem, with Jaynes' information theoretical reciprocity relations. > These relations involve the coefficients of a series expansion of the potential function. > We suggest the existence of a Legendre transform structure behind Schroedinger's equation, akin to the one characterizing thermodynamics.

  8. Tree-oriented interactive processing with an application to theorem-proving, appendix E

    NASA Technical Reports Server (NTRS)

    Hammerslag, David; Kamin, Samuel N.; Campbell, Roy H.

    1985-01-01

    The concept of unstructured structure editing and ted, an editor for unstructured trees, is described. Ted is used to manipulate hierarchies of information in an unrestricted manner. The tool was implemented and applied to the problem of organizing formal proofs. As a proof management tool, it maintains the validity of a proof and its constituent lemmas independently from the methods used to validate the proof. It includes an adaptable interface which may be used to invoke theorem provers and other aids to proof construction. Using ted, a user may construct, maintain, and verify formal proofs using a variety of theorem provers, proof checkers, and formatters.

  9. Learning With Mixed Hard/Soft Pointwise Constraints.

    PubMed

    Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello

    2015-09-01

    A learning paradigm is proposed and investigated, in which the classical framework of learning from examples is enhanced by the introduction of hard pointwise constraints, i.e., constraints imposed on a finite set of examples that cannot be violated. Such constraints arise, e.g., when requiring coherent decisions of classifiers acting on different views of the same pattern. The classical examples of supervised learning, which can be violated at the cost of some penalization (quantified by the choice of a suitable loss function) play the role of soft pointwise constraints. Constrained variational calculus is exploited to derive a representer theorem that provides a description of the functional structure of the optimal solution to the proposed learning paradigm. It is shown that such an optimal solution can be represented in terms of a set of support constraints, which generalize the concept of support vectors and open the doors to a novel learning paradigm, called support constraint machines. The general theory is applied to derive the representation of the optimal solution to the problem of learning from hard linear pointwise constraints combined with soft pointwise constraints induced by supervised examples. In some cases, closed-form optimal solutions are obtained.

  10. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-04-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.

  11. LETTER TO THE EDITOR: A theorem on topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Nutku, Y.

    1996-03-01

    We show that for three dimensional spacetimes admitting a hypersurface orthogonal Killing vector field, Deser, Jackiw and Templeton's vacuum field equations of topologically massive gravity allow only the trivial flat spacetime solution. Thus spin is necessary to support topological mass.

  12. A Historical Gem from Vito Volterra.

    ERIC Educational Resources Information Center

    Dunham, William

    1990-01-01

    Presented is the theorem proposed by Volterra based on the idea that there is no function continuous at each rational point and discontinuous at each irrational point. Discussed are the two conclusions that were drawn by Volterra based on his solution to this problem. (KR)

  13. Discover the pythagorean theorem using interactive multimedia learning

    NASA Astrophysics Data System (ADS)

    Adhitama, I.; Sujadi, I.; Pramudya, I.

    2018-04-01

    In learning process students are required to play an active role in learning. They do not just accept the concept directly from teachers, but also build their own knowledge so that the learning process becomes more meaningful. Based on the observation, when learning Pythagorean theorem, students got difficulty on determining hypotenuse. One of the solution to solve this problem is using an interactive multimedia learning. This article aims to discuss the interactive multimedia as learning media for students. This was a Research and Development (R&D) by using ADDIE model of development. The results obtained was multimedia which was developed proper for students as learning media. Besides, on Phytagorian theorem learning activity we also compare Discovery Learning (DL) model with interactive multimedia and DL without interactive multimedia, and obtained that DL with interactive gave positive effect better than DL without interactive multimedia. It was also obtainde that interactive multimedia can attract and increase the interest ot the students on learning math. Therefore, the use of interactive multimedia on DL procees can improve student learning achievement.

  14. Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics.

    PubMed

    Bustamante, Carlos

    2005-11-01

    During the last 15 years, scientists have developed methods that permit the direct mechanical manipulation of individual molecules. Using this approach, they have begun to investigate the effect of force and torque in chemical and biochemical reactions. These studies span from the study of the mechanical properties of macromolecules, to the characterization of molecular motors, to the mechanical unfolding of individual proteins and RNA. Here I present a review of some of our most recent results using mechanical force to unfold individual molecules of RNA. These studies make it possible to follow in real time the trajectory of each molecule as it unfolds and characterize the various intermediates of the reaction. Moreover, if the process takes place reversibly it is possible to extract both kinetic and thermodynamic information from these experiments at the same time that we characterize the forces that maintain the three-dimensional structure of the molecule in solution. These studies bring us closer to the biological unfolding processes in the cell as they simulate in vitro, the mechanical unfolding of RNAs carried out in the cell by helicases. If the unfolding process occurs irreversibly, I show here that single-molecule experiments can still provide equilibrium, thermodynamic information from non-equilibrium data by using recently discovered fluctuation theorems. Such theorems represent a bridge between equilibrium and non-equilibrium statistical mechanics. In fact, first derived in 1997, the first experimental demonstration of the validity of fluctuation theorems was obtained by unfolding mechanically a single molecule of RNA. It is perhaps a sign of the times that important physical results are these days used to extract information about biological systems and that biological systems are being used to test and confirm fundamental new laws in physics.

  15. Parametrization of local CR automorphisms by finite jets and applications

    NASA Astrophysics Data System (ADS)

    Lamel, Bernhard; Mir, Nordine

    2007-04-01

    For any real-analytic hypersurface Msubset {C}^N , which does not contain any complex-analytic subvariety of positive dimension, we show that for every point pin M the local real-analytic CR automorphisms of M fixing p can be parametrized real-analytically by their ell_p jets at p . As a direct application, we derive a Lie group structure for the topological group operatorname{Aut}(M,p) . Furthermore, we also show that the order ell_p of the jet space in which the group operatorname{Aut}(M,p) embeds can be chosen to depend upper-semicontinuously on p . As a first consequence, it follows that given any compact real-analytic hypersurface M in {C}^N , there exists an integer k depending only on M such that for every point pin M germs at p of CR diffeomorphisms mapping M into another real-analytic hypersurface in {C}^N are uniquely determined by their k -jet at that point. Another consequence is the following boundary version of H. Cartan's uniqueness theorem: given any bounded domain Ω with smooth real-analytic boundary, there exists an integer k depending only on partial Ω such that if H\\colon Ωto Ω is a proper holomorphic mapping extending smoothly up to partial Ω near some point pin partial Ω with the same k -jet at p with that of the identity mapping, then necessarily H=Id . Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.

  16. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    PubMed

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  17. Oscillating and static universes from a single barotropic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehayias, John; Scherrer, Robert J.

    We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, p=f(ρ). We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability (“no-go” theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.

  18. Oscillating and static universes from a single barotropic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehayias, John; Scherrer, Robert J., E-mail: john.kehayias@vanderbilt.edu, E-mail: robert.scherrer@vanderbilt.edu

    We consider cosmological solutions to general relativity with a single barotropic fluid, where the pressure is a general function of the density, p = f(ρ). We derive conditions for static and oscillating solutions and provide examples, extending earlier work to these simpler and more general single-fluid cosmologies. Generically we expect such solutions to suffer from instabilities, through effects such as quantum fluctuations or tunneling to zero size. We also find a classical instability (''no-go'' theorem) for oscillating solutions of a single barotropic perfect fluid due to a necessarily negative squared sound speed.

  19. New solutions with accelerated expansion in string theory

    DOE PAGES

    Dodelson, Matthew; Dong, Xi; Silverstein, Eva; ...

    2014-12-05

    We present concrete solutions with accelerated expansion in string theory, requiring a small, tractable list of stress energy sources. We explain how this construction (and others in progress) evades previous no go theorems for simple accelerating solutions. Our solutions respect an approximate scaling symmetry and realize discrete sequences of values for the equation of state, including one with an accumulation point at w = –1 and another accumulating near w = –1/3 from below. In another class of models, a density of defects generates scaling solutions with accelerated expansion. Here, we briefly discuss potential applications to dark energy phenomenology, andmore » to holography for cosmology.« less

  20. Self-dual gravity is completely integrable

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Sheftel, M. B.; Kalayci, J.; Yazıcı, D.

    2008-10-01

    We discover a multi-Hamiltonian structure of a complex Monge-Ampère equation (CMA) set in a real first-order 2-component form. Therefore, by Magri's theorem this is a completely integrable system in four real dimensions. We start with Lagrangian and Hamiltonian densities and obtain a symplectic form and the Hamiltonian operator that determines the Dirac bracket. We have calculated all point symmetries of the 2-component CMA system and Hamiltonians of the symmetry flows. We have found two new real recursion operators for symmetries which commute with the operator of a symmetry condition on solutions of the CMA system. These operators form two Lax pairs for the 2-component system. The recursion operators, applied to the first Hamiltonian operator, generate infinitely many real Hamiltonian structures. We show how to construct an infinite hierarchy of higher commuting flows together with the corresponding infinite chain of their Hamiltonians.

  1. Static analysis of C-shape SMA middle ear prosthesis

    NASA Astrophysics Data System (ADS)

    Latalski, Jarosław; Rusinek, Rafał

    2017-08-01

    Shape memory alloys are a family of metals with the ability to change specimen shape depending on their temperature. This unique property is useful in many areas of mechanical and biomechanical engineering. A new half-ring middle ear prosthesis design made of a shape memory alloy, that is undergoing initial clinical tests, is investigated in this research paper. The analytical model of the studied structure made of nonlinear constitutive material is solved to identify the temperature-dependent stiffness characteristics of the proposed design on the basis of the Crotti-Engesser theorem. The final integral expression for the element deflection is highly complex, thus the solution has to be computed numerically. The final results show the proposed shape memory C-shape element to behave linearly in the analysed range of loadings and temperatures. This is an important observation that significantly simplifies the analysis of the prototype structure and opens wide perspectives for further possible applications of shape memory alloys.

  2. Validity of black hole complementarity in the BTZ black hole

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    Based on the gedanken experiment for black hole complementarity in the Schwarzschild black hole, we calculate the energy required to duplicate information in the BTZ black hole under the assumption of absorbing boundary condition and its dual solution of the black string, respectively, in order to justify the validity of the no-cloning theorem in quantum mechanics. For the BTZ black hole, the required energy for the duplication of information can be made fairly small, whereas for the black string it exceeds the total mass of the black string, although they are related to each other under the dual transformation. So, the duplication of information might be possible in the BTZ black hole in contrast to the case of the black string, so that the no-cloning theorem could be violated for the former case. To save the duplication of information for the BTZ black hole, we perform an improved gedanken experiment by using the local thermodynamic quantities near the horizon rather than those defined at infinity, and show that the no-cloning theorem could be made valid even in the BTZ black hole. We also discuss how this local treatment for the no-cloning theorem can be applied to the black string as well as the Schwarzschild black hole innocuously.

  3. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  4. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms

    PubMed Central

    He, Li; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546

  5. Kohn's theorem, Larmor's equivalence principle and the Newton-Hooke group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, G.W., E-mail: gwg1@amtp.cam.ac.uk; Pope, C.N.; George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242

    2011-07-15

    Highlights: > We show that non-relativistic electrons moving in a magnetic field with trapping potential admits as relativity group the Newton-Hooke group. > We use this fact to give a group theoretic interpretation of Kohn's theorem and to obtain the spectrum. > We obtain the lightlike lift of the system exhibiting showing it coincides with the Nappi-Witten spacetime. - Abstract: We consider non-relativistic electrons, each of the same charge to mass ratio, moving in an external magnetic field with an interaction potential depending only on the mutual separations, possibly confined by a harmonic trapping potential. We show that the systemmore » admits a 'relativity group' which is a one-parameter family of deformations of the standard Galilei group to the Newton-Hooke group which is a Wigner-Inoenue contraction of the de Sitter group. This allows a group-theoretic interpretation of Kohn's theorem and related results. Larmor's theorem is used to show that the one-parameter family of deformations are all isomorphic. We study the 'Eisenhart' or 'lightlike' lift of the system, exhibiting it as a pp-wave. In the planar case, the Eisenhart lift is the Brdicka-Eardley-Nappi-Witten pp-wave solution of Einstein-Maxwell theory, which may also be regarded as a bi-invariant metric on the Cangemi-Jackiw group.« less

  6. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities.

    PubMed

    Xin, Yun; Cheng, Zhibo

    2017-01-01

    In this paper, by application of the Manasevich-Mawhin continuation theorem, we investigate the existence of a positive periodic solution for a kind of ϕ -Laplacian singular Liénard equation with attractive and repulsive singularities.

  7. On the solubility of certain classes of non-linear integral equations in p-adic string theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, Kh. A.

    2018-04-01

    We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.

  8. Essentially Entropic Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh

    2017-12-01

    The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.

  9. Bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations

    DOE PAGES

    Azunre, P.

    2016-09-21

    Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less

  10. Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.

    PubMed

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N

    2015-10-30

    A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes.

  11. Asymptotic behavior for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions

    NASA Astrophysics Data System (ADS)

    Katayama, Soichiro

    We consider the Cauchy problem for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions. Under the null condition for such systems, the global existence of small amplitude solutions is known. In this paper, we will show that the global solution is asymptotically free in the energy sense, by obtaining the asymptotic pointwise behavior of the derivatives of the solution. Nonetheless we can also show that the pointwise behavior of the solution itself may be quite different from that of the free solution. In connection with the above results, a theorem is also developed to characterize asymptotically free solutions for wave equations in arbitrary space dimensions.

  12. Application of Contraction Mappings to the Control of Nonlinear Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Killingsworth, W. R., Jr.

    1972-01-01

    The theoretical and applied aspects of successive approximation techniques are considered for the determination of controls for nonlinear dynamical systems. Particular emphasis is placed upon the methods of contraction mappings and modified contraction mappings. It is shown that application of the Pontryagin principle to the optimal nonlinear regulator problem results in necessary conditions for optimality in the form of a two point boundary value problem (TPBVP). The TPBVP is represented by an operator equation and functional analytic results on the iterative solution of operator equations are applied. The general convergence theorems are translated and applied to those operators arising from the optimal regulation of nonlinear systems. It is shown that simply structured matrices and similarity transformations may be used to facilitate the calculation of the matrix Green functions and the evaluation of the convergence criteria. A controllability theory based on the integral representation of TPBVP's, the implicit function theorem, and contraction mappings is developed for nonlinear dynamical systems. Contraction mappings are theoretically and practically applied to a nonlinear control problem with bounded input control and the Lipschitz norm is used to prove convergence for the nondifferentiable operator. A dynamic model representing community drug usage is developed and the contraction mappings method is used to study the optimal regulation of the nonlinear system.

  13. Completely integrable 2D Lagrangian systems and related integrable geodesic flows on various manifolds

    NASA Astrophysics Data System (ADS)

    Yehia, Hamad M.

    2013-08-01

    In this study we have formulated a theorem that generates deformations of the natural integrable conservative systems in the plane into integrable systems on Riemannian and other manifolds by introducing additional parameters into their structures. The relation of explicit solutions of the new and the original dynamics to the corresponding Jacobi (Maupertuis) geodesic flow is clarified. For illustration, we apply the result to three concrete examples of the many available integrable systems in the literature. Complementary integrals in those systems are polynomial in velocity with degrees 3, 4 and 6, respectively. As a special case of the first deformed system, a new several-parameter family of integrable mechanical systems (and geodesic flows) on S2 is constructed.

  14. Analysis of an age structured model for tick populations subject to seasonal effects

    NASA Astrophysics Data System (ADS)

    Liu, Kaihui; Lou, Yijun; Wu, Jianhong

    2017-08-01

    We investigate an age-structured hyperbolic equation model by allowing the birth and death functions to be density dependent and periodic in time with the consideration of seasonal effects. By studying the integral form solution of this general hyperbolic equation obtained through the method of integration along characteristics, we give a detailed proof of the uniqueness and existence of the solution in light of the contraction mapping theorem. With additional biologically natural assumptions, using the tick population growth as a motivating example, we derive an age-structured model with time-dependent periodic maturation delays, which is quite different from the existing population models with time-independent maturation delays. For this periodic differential system with seasonal delays, the basic reproduction number R0 is defined as the spectral radius of the next generation operator. Then, we show the tick population tends to die out when R0 < 1 while remains persistent if R0 > 1. When there is no intra-specific competition among immature individuals due to the sufficient availability of immature tick hosts, the global stability of the positive periodic state for the whole model system of four delay differential equations can be obtained with the observation that a scalar subsystem for the adult stage size can be decoupled. The challenge for the proof of such a global stability result can be overcome by introducing a new phase space, based on which, a periodic solution semiflow can be defined which is eventually strongly monotone and strictly subhomogeneous.

  15. Multiple positive solutions for a class of integral inclusions

    NASA Astrophysics Data System (ADS)

    Hong, Shihuang

    2008-04-01

    This paper deals with sufficient conditions for the existence of at least two positive solutions for a class of integral inclusions arising in the traffic theory. To show our main results, we apply a norm-type expansion and compression fixed point theorem for multivalued map due to Agarwal and O'Regan [A note on the existence of multiple fixed points for multivalued maps with applications, J. Differential Equation 160 (2000) 389-403].

  16. On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Shi, Yanling; Xu, Junxiang; Xu, Xindong

    2015-02-01

    In this paper, one-dimensional generalized Boussinesq equation: utt - uxx + (u2 + uxx)xx = 0 with boundary conditions ux(0, t) = ux(π, t) = uxxx(0, t) = uxxx(π, t) = 0 is considered. It is proved that the equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions with 2-dimensional Diophantine frequencies. The proof is based on an infinite dimensional Kolmogorov-Arnold-Moser theorem and Birkhoff normal form.

  17. Darboux theorems and Wronskian formulas for integrable systems I. Constrained KP flows

    NASA Astrophysics Data System (ADS)

    Oevel, W.

    1993-05-01

    Generalizations of the classical Darboux theorem are established for pseudo-differential scattering operators of the form L = limit∑i=0N u i∂ i + limitΣi=1m Φ i∂ -1limitΨi†i. Iteration of the Darboux transformations leads to a gauge transformed operator with coefficients given by Wronskian formulas involving a set of eigenfunctions of L. Nonlinear integrable partial differential equations are associated with the scattering operator L which arise as a symmetry reduction of the multicomponent KP hierarchy. With a suitable linear time evolution for the eigenfunctions the Darboux transformation is used to obtain solutions of the integrable equations in terms of Wronskian determinants.

  18. On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Fathizadeh, Farzad; Gabriel, Olivier

    2016-02-01

    The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.

  19. Solution Patterns Predicting Pythagorean Triples

    ERIC Educational Resources Information Center

    Ezenweani, Ugwunna Louis

    2013-01-01

    Pythagoras Theorem is an old mathematical treatise that has traversed the school curricula from secondary to tertiary levels. The patterns it produced are quite interesting that many researchers have tried to generate a kind of predictive approach to identifying triples. Two attempts, namely Diophantine equation and Brahmagupta trapezium presented…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David F.

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensionalmore » electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.« less

  1. Hamiltonian structure of the guiding center plasma model

    NASA Astrophysics Data System (ADS)

    Burby, J. W.; Sengupta, W.

    2018-02-01

    The guiding center plasma model (also known as kinetic MHD) is a rigorous sub-cyclotron-frequency closure of the Vlasov-Maxwell system. While the model has been known for decades and it plays a fundamental role in describing the physics of strongly magnetized collisionless plasmas, its Hamiltonian structure has never been found. We provide explicit expressions for the model's Poisson bracket and Hamiltonian and thereby prove that the model is an infinite-dimensional Hamiltonian system. The bracket is derived in a manner which ensures that it satisfies the Jacobi identity. We also report on several previously unknown circulation theorems satisfied by the guiding center plasma model. Without knowledge of the Hamiltonian structure, these circulation theorems would be difficult to guess.

  2. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  3. Decentralized Control and Multicriterion Decision Making.

    DTIC Science & Technology

    1979-12-01

    stabilizable and detectable? ’V L 42 Theorem 3.1: Existence of stabilizing solution. We assume that the system is jointly controllable R1 (0...a leader’s control that will make the system stabilizable for the follower and that in order for J to be finite the leader must choose F such1 1 that...a stabilizing solution will be developed. We restrict our attention to a formulation dealing with a linear continuous time system and in which

  4. 2×2 systems of conservation laws with L data

    NASA Astrophysics Data System (ADS)

    Bianchini, Stefano; Colombo, Rinaldo M.; Monti, Francesca

    Consider a hyperbolic system of conservation laws with genuinely nonlinear characteristic fields. We extend the classical Glimm-Lax (1970) result [13, Theorem 5.1] proving the existence of solutions for L initial datum, relaxing the assumptions taken therein on the geometry of the shock-rarefaction curves.

  5. The Paper River: A Demonstration of Externalities and Coase's Theorem.

    ERIC Educational Resources Information Center

    Hoyt, Gail M.; Ryan, Patricia L.; Houston, Robert G., Jr.

    1999-01-01

    Presents a classroom simulation in which one firm pollutes the water used by another. Includes a detailed outline and discussion of the preparations and materials required, and the procedure for running the simulation. Argues that students learn how property rights provide a market solution to pollution costs. (DSK)

  6. The Golden Mean and an Intriguing Congruence Problem.

    ERIC Educational Resources Information Center

    Pagni, David L.; Gannon, Gerald E.

    1981-01-01

    Presented is a method for finding two triangles that have five pairs of congruent parts, yet fail to be congruent. The solution is thought to involve some creative insights that should challenge both the teacher and students to recall and analyze all the congruence axioms and theorems. (MP)

  7. A no hair theorem and the problem of initial conditions. [in cosmological model

    NASA Technical Reports Server (NTRS)

    Jensen, Lars Gerhard; Stein-Schabes, Jaime A.

    1987-01-01

    It is shown that under very general conditions, any inhomogeneous cosmological model with a positive cosmological constant that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This renders the problem of initial conditions less severe.

  8. A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications

    NASA Astrophysics Data System (ADS)

    Bahrouni, Anouar; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2018-04-01

    We present a weighted version of the Caffarelli-Kohn-Nirenberg inequality in the framework of variable exponents. The combination of this inequality with a variant of the fountain theorem, yields the existence of infinitely many solutions for a class of non-homogeneous problems with Dirichlet boundary condition.

  9. Gradients and Non-Adiabatic Derivative Coupling Terms for Spin-Orbit Wavefunctions

    DTIC Science & Technology

    2011-06-01

    derivative, symmetric to the first time derivative. Solutions to the Dirac equation simultaneously satisfy the simple relativistic wave equation, the...For Pooki vi Acknowledgments I would like to thank the members of my committee for their time and...Theorem..............................................................................191 Appendix J. The Symmetric Group

  10. Maxwell Equations and the Redundant Gauge Degree of Freedom

    ERIC Educational Resources Information Center

    Wong, Chun Wa

    2009-01-01

    On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

  11. Construction of normal-regular decisions of Bessel typed special system

    NASA Astrophysics Data System (ADS)

    Tasmambetov, Zhaksylyk N.; Talipova, Meiramgul Zh.

    2017-09-01

    Studying a special system of differential equations in the separate production of the second order is solved by the degenerate hypergeometric function reducing to the Bessel functions of two variables. To construct a solution of this system near regular and irregular singularities, we use the method of Frobenius-Latysheva applying the concepts of rank and antirank. There is proved the basic theorem that establishes the existence of four linearly independent solutions of studying system type of Bessel. To prove the existence of normal-regular solutions we establish necessary conditions for the existence of such solutions. The existence and convergence of a normally regular solution are shown using the notion of rank and antirank.

  12. A continuum model for dynamic analysis of the Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Segun

    1989-01-01

    Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.

  13. Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    NASA Astrophysics Data System (ADS)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2015-07-01

    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.

  14. Regularity and Tresse's theorem for geometric structures

    NASA Astrophysics Data System (ADS)

    Sarkisyan, R. A.; Shandra, I. G.

    2008-04-01

    For any non-special bundle P\\to X of geometric structures we prove that the k-jet space J^k of this bundle with an appropriate k contains an open dense domain U_k on which Tresse's theorem holds. For every s\\geq k we prove that the pre-image \\pi^{-1}(k,s)(U_k) of U_k under the natural projection \\pi(k,s)\\colon J^s\\to J^k consists of regular points. (A point of J^s is said to be regular if the orbits of the group of diffeomorphisms induced from X have locally constant dimension in a neighbourhood of this point.)

  15. Combining Automated Theorem Provers with Symbolic Algebraic Systems: Position Paper

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Koga, Dennis (Technical Monitor)

    1999-01-01

    In contrast to pure mathematical applications where automated theorem provers (ATPs) are quite capable, proof tasks arising form real-world applications from the area of Software Engineering show quite different characteristics: they usually do not only contain much arithmetic (albeit often quite simple one), but they also often contain reasoning about specific structures (e.g. graphics, sets). Thus, an ATP must be capable of performing reasoning together with a fair amount of simplification, calculation and solving. Therefore, powerful simplifiers and other (symbolic and semi-symbolic) algorithms seem to be ideally suited to augment ATPs. In the following we shortly describe two major points of interest in combining SASs (symbolic algebraic systems) with top-down automated theorem provers (here: SETHEO [Let92, GLMS94]).

  16. A Meinardus Theorem with Multiple Singularities

    NASA Astrophysics Data System (ADS)

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  17. Almost periodic solutions to difference equations

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1975-01-01

    The theory of Massera and Schaeffer relating the existence of unique almost periodic solutions of an inhomogeneous linear equation to an exponential dichotomy for the homogeneous equation was completely extended to discretizations by a strongly stable difference scheme. In addition it is shown that the almost periodic sequence solution will converge to the differential equation solution. The preceding theory was applied to a class of exponentially stable partial differential equations to which one can apply the Hille-Yoshida theorem. It is possible to prove the existence of unique almost periodic solutions of the inhomogeneous equation (which can be approximated by almost periodic sequences) which are the solutions to appropriate discretizations. Two methods of discretizations are discussed: the strongly stable scheme and the Lax-Wendroff scheme.

  18. Generalized Optical Theorem Detection in Random and Complex Media

    NASA Astrophysics Data System (ADS)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar optical theorem theory applies to arbitrary lossless backgrounds and quite general probing fields including near fields which play a key role in super-resolution imaging. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. Furthermore, the generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks, invisible scatterers, and wireless communications. The latter developments have important military applications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a reactive optical theorem related to the reactive power changes. Meanwhile, the developed approach naturally leads to three optical theorem indicators or statistics, which can be used to detect changes or targets in unknown complex media. In addition, the optical theorem theory is generalized in the time domain so that it applies to arbitrary full vector fields, and arbitrary media including anisotropic media, nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The second component of this Ph.D. research program focuses on the application of the optical theorem to change detection. Three different forms of indicators or statistics are developed for change detection in unknown background media: a real power optical theorem detector, a reactive power optical theorem detector, and a total apparent power optical theorem detector. No prior knowledge is required of the background or the change or target. The performance of the three proposed optical theorem detectors is compared with the classical energy detector approach for change detection. The latter uses a mathematical or functional energy while the optical theorem detectors are based on real physical energy. For reference, the optical theorem detectors are also compared with the matched filter approach which (unlike the optical theorem detectors) assumes perfect target and medium information. The practical implementation of the optical theorem detectors is based for certain random and complex media on the exploitation of time reversal focusing ideas developed in the past 20 years in electromagnetics and acoustics. In the final part of the dissertation, we also discuss the implementation of the optical theorem sensors for one-dimensional propagation systems such as transmission lines. We also present a new generalized likelihood ratio test for detection that exploits a prior data constraint based on the optical theorem. Finally, we also address the practical implementation of the optical theorem sensors for optical imaging systems, by means of holography. The later is the first holographic implementation the optical theorem for arbitrary scenes and targets.

  19. Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane

    NASA Astrophysics Data System (ADS)

    Giraud, O.; Thain, A.; Hannay, J. H.

    2004-02-01

    The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.

  20. The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhmanov, E A; Suetin, S P

    2013-09-30

    The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the S-property in a harmonic external field. The existence problem for S-compact sets is solved in Theorem 2. The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potentialmore » theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the '1/9'-conjecture. The relation of the result obtained here to some results and conjectures due to Nuttall is discussed. Bibliography: 51 titles.« less

  1. Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Desoer, C. A.

    1973-01-01

    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

  2. A holographic c-theorem for Schrödinger spacetimes

    DOE PAGES

    Liu, James T.; Zhong, Weishun

    2015-12-29

    We prove a c-theorem for holographic renormalization group flows in a Schrodinger spacetime that demonstrates that the effective radius L(r) monotonically decreases from the UV to the IR, where r is the bulk radial coordinate. This result assumes that the bulk matter satisfies the null energy condition, but holds regardless of the value of the critical exponent z. We also construct several numerical examples in a model where the Schrodinger background is realized by a massive vector coupled to a real scalar. Finally, the full Schrodinger group is realized when z = 2, and in this case it is possiblemore » to construct solutions with constant effective z(r) = 2 along the entire flow.« less

  3. Excitonic magnet in external field: Complex order parameter and spin currents

    NASA Astrophysics Data System (ADS)

    Geffroy, D.; Hariki, A.; Kuneš, J.

    2018-04-01

    We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.

  4. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  5. A Numerical, Literal, and Converged Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Wiesel, William E.

    2017-09-01

    The KAM theorem and von Ziepel's method are applied to a perturbed harmonic oscillator, and it is noted that the KAM methodology does not allow for necessary frequency or angle corrections, while von Ziepel does. The KAM methodology can be carried out with purely numerical methods, since its generating function does not contain momentum dependence. The KAM iteration is extended to allow for frequency and angle changes, and in the process apparently can be successfully applied to degenerate systems normally ruled out by the classical KAM theorem. Convergence is observed to be geometric, not exponential, but it does proceed smoothly to machine precision. The algorithm produces a converged perturbation solution by numerical methods, while still retaining literal variable dependence, at least in the vicinity of a given trajectory.

  6. Multiplexed fluctuation-dissipation-theorem calibration of optical tweezers inside living cells

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Johnston, Jessica F.; Cahn, Sidney B.; King, Megan C.; Mochrie, Simon G. J.

    2017-11-01

    In order to apply optical tweezers-based force measurements within an uncharacterized viscoelastic medium such as the cytoplasm of a living cell, a quantitative calibration method that may be applied in this complex environment is needed. We describe an improved version of the fluctuation-dissipation-theorem calibration method, which has been developed to perform in situ calibration in viscoelastic media without prior knowledge of the trapped object. Using this calibration procedure, it is possible to extract values of the medium's viscoelastic moduli as well as the force constant describing the optical trap. To demonstrate our method, we calibrate an optical trap in water, in polyethylene oxide solutions of different concentrations, and inside living fission yeast (S. pombe).

  7. General analytical solutions for DC/AC circuit-network analysis

    NASA Astrophysics Data System (ADS)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2017-06-01

    In this work, we present novel general analytical solutions for the currents that are developed in the edges of network-like circuits when some nodes of the network act as sources/sinks of DC or AC current. We assume that Ohm's law is valid at every edge and that charge at every node is conserved (with the exception of the source/sink nodes). The resistive, capacitive, and/or inductive properties of the lines in the circuit define a complex network structure with given impedances for each edge. Our solution for the currents at each edge is derived in terms of the eigenvalues and eigenvectors of the Laplacian matrix of the network defined from the impedances. This derivation also allows us to compute the equivalent impedance between any two nodes of the circuit and relate it to currents in a closed circuit which has a single voltage generator instead of many input/output source/sink nodes. This simplifies the treatment that could be done via Thévenin's theorem. Contrary to solving Kirchhoff's equations, our derivation allows to easily calculate the redistribution of currents that occurs when the location of sources and sinks changes within the network. Finally, we show that our solutions are identical to the ones found from Circuit Theory nodal analysis.

  8. Black holes in higher derivative gravity.

    PubMed

    Lü, H; Perkins, A; Pope, C N; Stelle, K S

    2015-05-01

    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.

  9. Transfer Functions Via Laplace- And Fourier-Borel Transforms

    NASA Technical Reports Server (NTRS)

    Can, Sumer; Unal, Aynur

    1991-01-01

    Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.

  10. Black holes, information, and the universal coefficient theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrascu, Andrei T.

    2016-07-15

    General relativity is based on the diffeomorphism covariant formulation of the laws of physics while quantum mechanics is based on the principle of unitary evolution. In this article, I provide a possible answer to the black hole information paradox by means of homological algebra and pairings generated by the universal coefficient theorem. The unitarity of processes involving black holes is restored by the demanding invariance of the laws of physics to the change of coefficient structures in cohomology.

  11. Private algebras in quantum information and infinite-dimensional complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crann, Jason, E-mail: jason-crann@carleton.ca; Laboratoire de Mathématiques Paul Painlevé–UMR CNRS 8524, UFR de Mathématiques, Université Lille 1–Sciences et Technologies, 59655 Villeneuve d’Ascq Cédex; Kribs, David W., E-mail: dkribs@uoguelph.ca

    We introduce a generalized framework for private quantum codes using von Neumann algebras and the structure of commutants. This leads naturally to a more general notion of complementary channel, which we use to establish a generalized complementarity theorem between private and correctable subalgebras that applies to both the finite and infinite-dimensional settings. Linear bosonic channels are considered and specific examples of Gaussian quantum channels are given to illustrate the new framework together with the complementarity theorem.

  12. Structures to Resist the Effects of Accidental Explosions

    DTIC Science & Technology

    1969-06-01

    theorems, are generally used. il to Ce e same structure. reactions of the foundatio4 must also be equal to zero . e. For the analysis of structures...3. BASIS FOR STRUCTURAL D)ESIGN Section 1. Structural Response General ----------------------------------- -c--- -13- Pressure design ranges...4-11 4-.i9 V. External Blast Loads on Structures General

  13. Generalization of Jacobi's Decomposition Theorem to the Rotation and Translation of a Solid in a Fluid.

    NASA Astrophysics Data System (ADS)

    Chiang, Rong-Chang

    Jacobi found that the rotation of a symmetrical heavy top about a fixed point is composed of the two torque -free rotations of two triaxial bodies about their centers of mass. His discovery rests on the fact that the orthogonal matrix which represents the rotation of a symmetrical heavy top is decomposed into a product of two orthogonal matrices, each of which represents the torque-free rotations of two triaxial bodies. This theorem is generalized to the Kirchhoff's case of the rotation and translation of a symmetrical solid in a fluid. This theorem requires the explicit computation, by means of theta functions, of the nine direction cosines between the rotating body axes and the fixed space axes. The addition theorem of theta functions makes it possible to decompose the rotational matrix into a product of similar matrices. This basic idea of utilizing the addition theorem is simple but the carry-through of the computation is quite involved and the full proof turns out to be a lengthy process of computing rather long and complex expressions. For the translational motion we give a new treatment. The position of the center of mass as a function of the time is found by a direct evaluation of the elliptic integral by means of a new theta interpretation of Legendre's reduction formula of the elliptic integral. For the complete solution of the problem we have added further the study of the physical aspects of the motion. Based on a complete examination of the all possible manifolds of the steady helical cases it is possible to obtain a full qualitative description of the motion. Many numerical examples and graphs are given to illustrate the rotation and translation of the solid in a fluid.

  14. The Navier-Stokes Stress Principle for Viscous Fluids

    NASA Technical Reports Server (NTRS)

    Mohr, Ernst

    1942-01-01

    The Navier-Stokes stress principle is checked in the light of Maxwell's mechanism of friction and in connection herewith the possibility of another theorem is indicated. The Navier-Stokes stress principle is in general predicated upon the conception of the plastic body. Hence the process is a purely phenomenological one, which Newton himself followed with his special theorem for one-dimensional flows. It remained for Maxwell to discover the physical mechanism by which the shear inflow direction is developed: According to it, this shear is only 'fictitious' as it merely represents the substitute for a certain transport on macroscopic motion quantity, as conditioned by Brown's moiecular motion and the diffusion, respectively. It is clear that this mechanism is not bound to the special case of the one-dimensioilal flows, but holds for any flow as expression of the diffusion, by which a fluid differs sharply from a plastic body. If it is remembered, on the other hand, that the cause of the stresses on the plastic body lies in a certain cohesion of the molecules, it appears by no means self evident that this difference in the mechanism of friction between fluid and plastic body should not prevail in the stress principle as well, although it certainly is desirable in any case, at least subsequently, to establish the general theorem in the sense of Maxwell. Actually, a different theorem is suggested which, in contrast to that by Navier-Stokes, has the form of an unsymmetrical matrix. Without anticipating a final decision several reasons are advanced by way of a special flow which seem to affirm this new theorem. To make it clear that the problem involved here still awaits its final solution, is the real purpose behind the present article.

  15. Revisiting the analogue of the Jebsen-Birkhoff theorem in Brans-Dicke gravity

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio; Hammad, Fayçal; Cardini, Adriana M.; Gobeil, Thomas

    2018-04-01

    We report the explicit form of the general static, spherically symmetric, and asymptotically flat solution of vacuum Brans-Dicke gravity in the Jordan frame, assuming that the Brans-Dicke scalar field has no singularities or zeros (except possibly for a central singularity). This general solution is conformal to the Fisher-Wyman geometry of Einstein theory and its nature depends on a scalar charge parameter. Apart from the Schwarzschild black hole, only wormhole throats and central naked singularities are possible.

  16. Noether symmetries and stability of ideal gas solutions in Galileon cosmology

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Giacomini, Alex; Jamal, Sameerah; Leon, Genly; Paliathanasis, Andronikos

    2017-03-01

    A class of generalized Galileon cosmological models, which can be described by a pointlike Lagrangian, is considered in order to utilize Noether's theorem to determine conservation laws for the field equations. In the Friedmann-Lemaître-Robertson-Walker universe, the existence of a nontrivial conservation law indicates the integrability of the field equations. Because of the complexity of the latter, we apply the differential invariants approach in order to construct special power-law solutions and study their stability.

  17. A BGK model for reactive mixtures of polyatomic gases with continuous internal energy

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Monaco, R.; Soares, A. J.

    2018-03-01

    In this paper we derive a BGK relaxation model for a mixture of polyatomic gases with a continuous structure of internal energies. The emphasis of the paper is on the case of a quaternary mixture undergoing a reversible chemical reaction of bimolecular type. For such a mixture we prove an H -theorem and characterize the equilibrium solutions with the related mass action law of chemical kinetics. Further, a Chapman-Enskog asymptotic analysis is performed in view of computing the first-order non-equilibrium corrections to the distribution functions and investigating the transport properties of the reactive mixture. The chemical reaction rate is explicitly derived at the first order and the balance equations for the constituent number densities are derived at the Euler level.

  18. Deliquescence and efflorescence of small particles.

    PubMed

    McGraw, Robert; Lewis, Ernie R

    2009-11-21

    We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem.

  19. Self-consistent linear response for the spin-orbit interaction related properties

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.

    2014-07-01

    In many cases, the relativistic spin-orbit (SO) interaction can be regarded as a small perturbation to the electronic structure of solids and treated using regular perturbation theory. The major obstacle on this route comes from the fact that the SO interaction can also polarize the electron system and produce some additional contributions to the perturbation theory expansion, which arise from the electron-electron interactions in the same order of the SO coupling. In electronic structure calculations, it may even lead to the necessity of abandoning the perturbation theory and returning to the original self-consistent solution of Kohn-Sham-like equations with the effective potential v̂, incorporating simultaneously the effects of the electron-electron interactions and the SO coupling, even though the latter is small. In this work, we present the theory of self-consistent linear response (SCLR), which allows us to get rid of numerical self-consistency and formulate the last step fully analytically in the first order of the SO coupling. This strategy is applied to the unrestricted Hartree-Fock solution of an effective Hubbard-type model, derived from the first-principles electronic structure calculations in the basis of Wannier functions for the magnetically active states. We show that by using v̂, obtained in SCLR, one can successfully reproduce results of ordinary self-consistent calculations for the orbital magnetization and other properties, which emerge in the first order of the SO coupling. Particularly, SCLR appears to be an extremely useful approach for calculations of antisymmetric Dzyaloshinskii-Moriya (DM) interactions based on the magnetic force theorem, where only by using the total perturbation one can make a reliable estimate for the DM parameters. Furthermore, due to the powerful 2n+1 theorem, the SCLR theory allows us to obtain the total energy change up to the third order of the SO coupling, which can be used in calculations of magnetic anisotropy of compounds with low crystal symmetry. The fruitfulness of this approach for the analysis of complex magnetic structures is illustrated in a number of examples, including the quantitative description of the spin canting in YTiO3 and LaMnO3, formation of the spin-spiral order in BiFeO3, and the magnetic inversion symmetry breaking in BiMnO3, which gives rise to both ferroelectric activity and DM interactions, responsible for the ferromagnetism. In all these cases, the use of SCLR tremendously reduces the computational efforts related to the search for noncollinear magnetic structures in the ground state.

  20. Robin problems with a general potential and a superlinear reaction

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2017-09-01

    We consider semilinear Robin problems driven by the negative Laplacian plus an indefinite potential and with a superlinear reaction term which need not satisfy the Ambrosetti-Rabinowitz condition. We prove existence and multiplicity theorems (producing also an infinity of smooth solutions) using variational tools, truncation and perturbation techniques and Morse theory (critical groups).

  1. Cutting Solid Figures by Plane--Analytical Solution and Spreadsheet Implementation

    ERIC Educational Resources Information Center

    Benacka, Jan

    2012-01-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and…

  2. The inverse resonance problem for CMV operators

    NASA Astrophysics Data System (ADS)

    Weikard, Rudi; Zinchenko, Maxim

    2010-05-01

    We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.

  3. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    PubMed

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.

  4. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NASA Astrophysics Data System (ADS)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  5. Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays

    NASA Astrophysics Data System (ADS)

    Lv, Qiuyu; Liao, Xiaofeng

    2018-03-01

    In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.

  6. Generalized quantum no-go theorems of pure states

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Lai, Hong

    2018-07-01

    Various results of the no-cloning theorem, no-deleting theorem and no-superposing theorem in quantum mechanics have been proved using the superposition principle and the linearity of quantum operations. In this paper, we investigate general transformations forbidden by quantum mechanics in order to unify these theorems. First, we prove that any useful information cannot be created from an unknown pure state which is randomly chosen from a Hilbert space according to the Harr measure. And then, we propose a unified no-go theorem based on a generalized no-superposing result. The new theorem includes the no-cloning theorem, no-anticloning theorem, no-partial-erasure theorem, no-splitting theorem, no-superposing theorem or no-encoding theorem as a special case. Moreover, it implies various new results. Third, we extend the new theorem into another form that includes the no-deleting theorem as a special case.

  7. Factorization of standard model cross sections at ultrahigh energy

    NASA Astrophysics Data System (ADS)

    Chien, Yang-Ting; Li, Hsiang-nan

    2018-03-01

    The factorization theorem for organizing multiple electroweak boson emissions at future colliders with energy far above the electroweak scale is formulated. Taking the inclusive muon-pair production in electron-positron collisions as an example, we argue that the summation over isospins is demanded for constructing the universal distributions of leptons and gauge bosons in an electron. These parton distributions are shown to have the same infrared structure in the phases of broken and unbroken electroweak symmetry, an observation consistent with the Goldstone equivalence theorem. The electroweak factorization of processes involving protons is sketched, with an emphasis on the subtlety of the scalar distributions. This formalism, in which electroweak shower effects are handled from the viewpoint of factorization theorem for the first time, is an adequate framework for collider physics at ultra high energy.

  8. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  9. The study of nonlinear almost periodic differential equations without recourse to the H-classes of these equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slyusarchuk, V. E., E-mail: V.E.Slyusarchuk@gmail.com, E-mail: V.Ye.Slyusarchuk@NUWM.rv.ua

    2014-06-01

    The well-known theorems of Favard and Amerio on the existence of almost periodic solutions to linear and nonlinear almost periodic differential equations depend to a large extent on the H-classes and the requirement that the bounded solutions of these equations be separated. The present paper provides different conditions for the existence of almost periodic solutions. These conditions, which do not depend on the H-classes of the equations, are formulated in terms of a special functional on the set of bounded solutions of the equations under consideration. This functional is used, in particular, to test whether solutions are separated. Bibliography: 24more » titles. (paper)« less

  10. Traveling wave solutions and conservation laws for nonlinear evolution equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-02-01

    In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.

  11. Missile Interceptor Guidance System Technology (La Technologie Pour Les Systemes De Guidage Des Missiles Intercepteurs (DE Missiles Ou D’Aeronefs)

    DTIC Science & Technology

    1990-01-01

    robustness of feedback systems with structured uncertainty. Theorem: Robust Stability Fu(G,A) stable V AA iff suP (Gll(JW))Sl. Theorem: Robust ...through a gain KR. The addition of other dynamics and feedback paths creates stabilization problems for this simple roll attitude feedback control...characteristics are most useful to the designer when examined in the frequency domain. Both relative stability and robustness can be determined from an

  12. Efficient integration method for fictitious domain approaches

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2015-10-01

    In the current article, we present an efficient and accurate numerical method for the integration of the system matrices in fictitious domain approaches such as the finite cell method (FCM). In the framework of the FCM, the physical domain is embedded in a geometrically larger domain of simple shape which is discretized using a regular Cartesian grid of cells. Therefore, a spacetree-based adaptive quadrature technique is normally deployed to resolve the geometry of the structure. Depending on the complexity of the structure under investigation this method accounts for most of the computational effort. To reduce the computational costs for computing the system matrices an efficient quadrature scheme based on the divergence theorem (Gauß-Ostrogradsky theorem) is proposed. Using this theorem the dimension of the integral is reduced by one, i.e. instead of solving the integral for the whole domain only its contour needs to be considered. In the current paper, we present the general principles of the integration method and its implementation. The results to several two-dimensional benchmark problems highlight its properties. The efficiency of the proposed method is compared to conventional spacetree-based integration techniques.

  13. Chaotic coordinates for the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Hudson, Stuart; Suzuki, Yasuhiro

    2014-10-01

    The study of dynamical systems is facilitated by a coordinate framework with coordinate surfaces that coincide with invariant structures of the dynamical flow. For axisymmetric systems, a continuous family of invariant surfaces is guaranteed and straight-fieldline coordinates may be constructed. For non-integrable systems, e.g. stellarators, perturbed tokamaks, this continuous family is broken. Nevertheless, coordinates can still be constructed that simplify the description of the dynamics. The Poincare-Birkhoff theorem, the Aubry-Mather theorem, and the KAM theorem show that there are important structures that are invariant under the perturbed dynamics; namely the periodic orbits, the cantori, and the irrational flux surfaces. Coordinates adapted to these invariant sets, which we call chaotic coordinates, provide substantial advantages. The regular motion becomes straight, and the irregular motion is bounded by, and dissected by, coordinate surfaces that coincide with surfaces of locally-minimal magnetic-fieldline flux. The chaotic edge of the magnetic field, as calculated by HINT2 code, in the Large Helical Device (LHD) is examined, and a coordinate system is constructed so that the flux surfaces are ``straight'' and the islands become ``square.''

  14. Can Moral Hazard Be Resolved by Common-Knowledge in S4n-Knowledge?

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Takashi

    This article investigates the relationship between common-knowledge and agreement in multi-agent system, and to apply the agreement result by common-knowledge to the principal-agent model under non-partition information. We treat the two problems: (1) how we capture the fact that the agents agree on an event or they get consensus on it from epistemic point of view, and (2) how the agreement theorem will be able to make progress to settle a moral hazard problem in the principal-agents model under non-partition information. We shall propose a solution program for the moral hazard in the principal-agents model under non-partition information by common-knowledge. Let us start that the agents have the knowledge structure induced from a reflexive and transitive relation associated with the multi-modal logic S4n. Each agent obtains the membership value of an event under his/her private information, so he/she considers the event as fuzzy set. Specifically consider the situation that the agents commonly know all membership values of the other agents. In this circumstance we shall show the agreement theorem that consensus on the membership values among all agents can still be guaranteed. Furthermore, under certain assumptions we shall show that the moral hazard can be resolved in the principal-agent model when all the expected marginal costs are common-knowledge among the principal and agents.

  15. Numerical method for solving the nonlinear four-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhen; Lin, Jinnan

    2010-12-01

    In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.

  16. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    PubMed

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  17. The solution of transcendental equations

    NASA Technical Reports Server (NTRS)

    Agrawal, K. M.; Outlaw, R.

    1973-01-01

    Some of the existing methods to globally approximate the roots of transcendental equations namely, Graeffe's method, are studied. Summation of the reciprocated roots, Whittaker-Bernoulli method, and the extension of Bernoulli's method via Koenig's theorem are presented. The Aitken's delta squared process is used to accelerate the convergence. Finally, the suitability of these methods is discussed in various cases.

  18. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory

    DOE R&D Accomplishments Database

    Feynman, R. P.; Metropolis, N.; Teller, E.

    1947-04-28

    The Fermi-Thomas model has been used to derive the equation of state of matter at high pressures and at various temperatures. Calculations have been carried out both without and with the exchange terms. Discussion of similarity transformations lead to the virial theorem and to correlation of solutions for different Z-values.

  19. The Law of Self-Acting Machines and Irreversible Processes with Reversible Replicas

    NASA Astrophysics Data System (ADS)

    Valev, Pentcho

    2002-11-01

    Clausius and Kelvin saved Carnot theorem and developed the second law by assuming that Carnot machines can work in the absence of an operator and that all the irreversible processes have reversible replicas. The former assumption restored Carnot theorem as an experience of mankind whereas the latter generated "the law of ever increasing entropy". Both assumptions are wrong so it makes sense to return to Carnot theorem (or some equivalent) and test it experimentally. Two testable paradigms - the system performing two types of reversible work and the system in dynamical equilibrium - suggest that perpetuum mobile of the second kind in the presence of an operator is possible. The deviation from the second law prediction, expressed as difference between partial derivatives in a Maxwell relation, measures the degree of structural-functional evolution for the respective system.

  20. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    PubMed

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  1. Extension theorems for homogenization on lattice structures

    NASA Technical Reports Server (NTRS)

    Miller, Robert E.

    1992-01-01

    When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.

  2. Optimal Control and Smoothing Techniques for Computing Minimum Fuel Orbital Transfers and Rendezvous

    NASA Astrophysics Data System (ADS)

    Epenoy, R.; Bertrand, R.

    We investigate in this paper the computation of minimum fuel orbital transfers and rendezvous. Each problem is seen as an optimal control problem and is solved by means of shooting methods [1]. This approach corresponds to the use of Pontryagin's Maximum Principle (PMP) [2-4] and leads to the solution of a Two Point Boundary Value Problem (TPBVP). It is well known that this last one is very difficult to solve when the performance index is fuel consumption because in this case the optimal control law has a particular discontinuous structure called "bang-bang". We will show how to modify the performance index by a term depending on a small parameter in order to yield regular controls. Then, a continuation method on this parameter will lead us to the solution of the original problem. Convergence theorems will be given. Finally, numerical examples will illustrate the interest of our method. We will consider two particular problems: The GTO (Geostationary Transfer Orbit) to GEO (Geostationary Equatorial Orbit) transfer and the LEO (Low Earth Orbit) rendezvous.

  3. Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces

    NASA Astrophysics Data System (ADS)

    Holmes, John; Thompson, Ryan C.

    2017-10-01

    In this paper, we prove well-posedness of the Fornberg-Whitham equation in Besov spaces B2,rs in both the periodic and non-periodic cases. This will imply the existence and uniqueness of solutions in the aforementioned spaces along with the continuity of the data-to-solution map provided that the initial data belongs to B2,rs. We also establish sharpness of continuity on the data-to-solution map by showing that it is not uniformly continuous from any bounded subset of B2,rs to C ([ - T , T ] ;B2,rs). Furthermore, we prove a Cauchy-Kowalevski type theorem for this equation that establishes the existence and uniqueness of real analytic solutions and also provide blow-up criterion for solutions.

  4. On supersymmetric AdS6 solutions in 10 and 11 dimensions

    NASA Astrophysics Data System (ADS)

    Gutowski, J.; Papadopoulos, G.

    2017-12-01

    We prove a non-existence theorem for smooth, supersymmetric, warped AdS 6 solutions with connected, compact without boundary internal space in D = 11 and (massive) IIA supergravities. In IIB supergravity we show that if such AdS 6 solutions exist, then the NSNS and RR 3-form fluxes must be linearly independent and certain spinor bilinears must be appropriately restricted. Moreover we demonstrate that the internal space admits an so(3) action which leaves all the fields invariant and for smooth solutions the principal orbits must have co-dimension two. We also describe the topology and geometry of internal spaces that admit such a so(3) action and show that there are no solutions for which the internal space has topology F × S 2, where F is an oriented surface.

  5. Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems

    NASA Astrophysics Data System (ADS)

    Katzourakis, Nikos

    2017-07-01

    We introduce a new theory of generalised solutions which applies to fully nonlinear PDE systems of any order and allows for merely measurable maps as solutions. This approach bypasses the standard problems arising by the application of Distributions to PDEs and is not based on either integration by parts or on the maximum principle. Instead, our starting point builds on the probabilistic representation of derivatives via limits of difference quotients in the Young measures over a toric compactification of the space of jets. After developing some basic theory, as a first application we consider the Dirichlet problem and we prove existence-uniqueness-partial regularity of solutions to fully nonlinear degenerate elliptic 2nd order systems and also existence of solutions to the ∞-Laplace system of vectorial Calculus of Variations in L∞.

  6. A system of nonlinear set valued variational inclusions.

    PubMed

    Tang, Yong-Kun; Chang, Shih-Sen; Salahuddin, Salahuddin

    2014-01-01

    In this paper, we studied the existence theorems and techniques for finding the solutions of a system of nonlinear set valued variational inclusions in Hilbert spaces. To overcome the difficulties, due to the presence of a proper convex lower semicontinuous function ϕ and a mapping g which appeared in the considered problems, we have used the resolvent operator technique to suggest an iterative algorithm to compute approximate solutions of the system of nonlinear set valued variational inclusions. The convergence of the iterative sequences generated by algorithm is also proved. 49J40; 47H06.

  7. Some Remarks on Solutions of Fermats Last Equation in Terms of Wright’s Hypergeometric Function

    DTIC Science & Technology

    1990-02-16

    DISTRIBUTION/AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION MUNCLASSIFIED/UNLIMITED C SAME AS RPT 0 DTIC USERS UNCLASSIFIED 22a NAME...A) = (u/vl)", 4’ C \\) = (U/V)%, then from Lemma 2 we have (UsV2)n + (U2VI )n = V2) and the theorem is proved. ANOTHER DERIVATION OF EQ. (10) From Eq. (3... Ramanujan (7, pp. 71, 307] studied and derived solutions of trinonials in Chapter 3 of his notebooks (1903-1914) and in his first quarterly report

  8. Estimation of periodic solutions number of first-order differential equations

    NASA Astrophysics Data System (ADS)

    Ivanov, Gennady; Alferov, Gennady; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The paper deals with first-order differential equations under the assumption that the right-hand side is a periodic function of time and continuous in the set of arguments. Pliss V.A. obtained the first results for a particular class of equations and showed that a number of theorems can not be continued. In this paper, it was possible to reduce the restrictions on the degree of smoothness of the right-hand side of the equation and obtain upper and lower bounds on the number of possible periodic solutions.

  9. Thermodynamical properties of hairy black holes in n spacetime dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadalini, Mario; Vanzo, Luciano; Zerbini, Sergio

    The issue concerning the existence of exact black hole solutions in the presence of a nonvanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional nonasymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proved. The issue of the positivity of the entropy is discussed andmore » resolved for the case of black holes immersed in de Sitter space.« less

  10. On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions

    NASA Astrophysics Data System (ADS)

    Pomeau, Yves

    2018-03-01

    The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply. xml:lang="fr"

  11. L(2) stability for weak solutions of the Navier-Stokes equations in R(3)

    NASA Astrophysics Data System (ADS)

    Secchi, P.

    1985-11-01

    We consider the motion of a viscous fluid filling the whole space R3, governed by the classical Navier-Stokes equations (1). Existence of global (in time) regular solutions for that system of non-linear partial differential equations is still an open problem. Up to now, the only available global existence theorem (other than for sufficiently small initial data) is that of weak (turbulent) solutions. From both the mathematical and the physical point of view, an interesting property is the stability of such weak solutions. We assume that v(t,x) is a solution, with initial datum vO(x). We suppose that the initial datum is perturbed and consider one weak solution u corresponding to the new initial velocity. Then we prove that, due to viscosity, the perturbed weak solution u approaches in a suitable norm the unperturbed one, as time goes to + infinity, without smallness assumptions on the initial perturbation.

  12. Multi-Hamiltonian structure of Plebanski's second heavenly equation

    NASA Astrophysics Data System (ADS)

    Neyzi, F.; Nutku, Y.; Sheftel, M. B.

    2005-09-01

    We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.

  13. An analysis of the convergence of Newton iterations for solving elliptic Kepler's equation

    NASA Astrophysics Data System (ADS)

    Elipe, A.; Montijano, J. I.; Rández, L.; Calvo, M.

    2017-12-01

    In this note a study of the convergence properties of some starters E_0 = E_0(e,M) in the eccentricity-mean anomaly variables for solving the elliptic Kepler's equation (KE) by Newton's method is presented. By using a Wang Xinghua's theorem (Xinghua in Math Comput 68(225):169-186, 1999) on best possible error bounds in the solution of nonlinear equations by Newton's method, we obtain for each starter E_0(e,M) a set of values (e,M) \\in [0, 1) × [0, π ] that lead to the q-convergence in the sense that Newton's sequence (E_n)_{n ≥ 0} generated from E_0 = E_0(e,M) is well defined, converges to the exact solution E^* = E^*(e,M) of KE and further \\vert E_n - E^* \\vert ≤ q^{2^n -1} \\vert E_0 - E^* \\vert holds for all n ≥ 0. This study completes in some sense the results derived by Avendaño et al. (Celest Mech Dyn Astron 119:27-44, 2014) by using Smale's α -test with q=1/2. Also since in KE the convergence rate of Newton's method tends to zero as e → 0, we show that the error estimates given in the Wang Xinghua's theorem for KE can also be used to determine sets of q-convergence with q = e^k \\widetilde{q} for all e \\in [0,1) and a fixed \\widetilde{q} ≤ 1. Some remarks on the use of this theorem to derive a priori estimates of the error \\vert E_n - E^* \\vert after n Kepler's iterations are given. Finally, a posteriori bounds of this error that can be used to a dynamical estimation of the error are also obtained.

  14. Advanced development of BEM for elastic and inelastic dynamic analysis of solids

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahmad, S.; Wang, H. C.

    1989-01-01

    Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.

  15. The new electromagnetic tetrads, infinite tetrad nesting and the non-trivial emergence of complex numbers in real theories of gravitation

    NASA Astrophysics Data System (ADS)

    Garat, Alcides

    How complex numbers get into play in a non-trivial way in real theories of gravitation is relevant since in a unified structure they should be able to relate in a natural way with quantum theories. For a long time this issue has been lingering on both relativistic formulations and quantum theories. We will analyze this fundamental subject under the light of new group isomorphism theorems linking local internal groups of transformations and local groups of spacetime transformations. The bridge between these two kinds of transformations is represented by new tetrads introduced previously. It is precisely through these local tetrad structures that we will provide a non-trivial answer to this old issue. These new tetrads have two fundamental building components, the skeletons and the gauge vectors. It is these constructive elements that provide the mathematical support that allows to prove group isomorphism theorems. In addition to this, we will prove a unique new property, the infinite tetrad nesting, alternating the nesting with non-Abelian tetrads in the construction of the tetrad gauge vectors. As an application we will demonstrate an alternative proof of a new group isomorphism theorem.

  16. Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays

    NASA Astrophysics Data System (ADS)

    Wan, Li; Zhou, Qinghua

    2007-10-01

    The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.

  17. Global Hopf bifurcation analysis on a BAM neural network with delays

    NASA Astrophysics Data System (ADS)

    Sun, Chengjun; Han, Maoan; Pang, Xiaoming

    2007-01-01

    A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.

  18. Some Geometric Inequalities Relating to an Interior Point in Triangle

    ERIC Educational Resources Information Center

    Wu, Yu-Dong; Zhang, Zhi-Hua; Liang, Chun-Lei

    2010-01-01

    In this short note, by using one of Li and Liu's theorems [K.-H. Li, "The solution of CIQ. 39," "Commun. Stud. Inequal." 11(1) (2004), p. 162 (in Chinese)], "s-R-r" method, Cauchy's inequality and the theory of convex function, we solve some geometric inequalities conjectures relating to an interior point in triangle. (Contains 1 figure.)

  19. Galilean Relativity and the Work-Kinetic Energy Theorem

    ERIC Educational Resources Information Center

    Tefft, Brandon J.; Tefft, James A.

    2007-01-01

    As the topic of relativity is developed in a first-year physics class, there seems to be a tendency to move as quickly as possible to the fascinating ideas set forth in Einstein's special theory of relativity. In this paper we linger a little with the Galilean side of relativity and discuss an intriguing problem and its solution to illustrate a…

  20. Bernoulli potential in type-I and weak type-II superconductors: II. Surface dipole

    NASA Astrophysics Data System (ADS)

    Lipavský, P.; Morawetz, K.; Koláček, J.; Mareš, J. J.; Brandt, E. H.; Schreiber, M.

    2004-09-01

    The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.

  1. Approximate solution for the electronic density profile at the surface of jellium

    NASA Astrophysics Data System (ADS)

    Schmickler, Wolfgang; Henderson, Douglas

    1984-09-01

    A simple family of trial functions for the electronic density at the surface of jellium, which accounts for Friedel oscillations and incorporates the Budd-Vannimenus theorem, is proposed. The free parameters are determined by energy minimization. Model calculations give good results for the work function and for the induced surface charge in the presence of an external field.

  2. A Nonlinear Transfer Operator Theorem

    NASA Astrophysics Data System (ADS)

    Pollicott, Mark

    2017-02-01

    In recent papers, Kenyon et al. (Ergod Theory Dyn Syst 32:1567-1584 2012), and Fan et al. (C R Math Acad Sci Paris 349:961-964 2011, Adv Math 295:271-333 2016) introduced a form of non-linear thermodynamic formalism based on solutions to a non-linear equation using matrices. In this note we consider the more general setting of Hölder continuous functions.

  3. FLOWS WITH CROSS SECTIONS

    PubMed Central

    Verjovsky, Alberto

    1970-01-01

    Let M be a compact connected C∞-manifold, of dimension n, without boundary. Let ft: M → M be a Cr-flow with cross section. Let Dr(M) be the topological group of diffeomorphisms of M with Cr-topology (1 ≤ r ≤ ∞) and let Dor(M) be its connected component of the identity. Let [unk](M) be the group of I-cobordism classes in Dr(M) generated by orientation-preserving diffeomorphisms. For fεDr(M) denote by [f] its I-cobordism class. Theorem 1 deals with the dependence of M(f) on [f]. Theorem 2: S6 × S1 has at least 28 distinct differentiable structures. Let xoεS1 and let [unk]r be the set of Cr-flows (r ≥ 1) in M × S1 with cross section M × {xo} and inducing in it the identity. Theorem 3: Intuitively to a loop in Dor based at the identity there corresponds a flow in [unk]r, and to homotopic loops correspond isotopic flows. COROLLARY. complete analysis of [unk]r/ [unk] for dim M = 2. Theorems 4 and 5 refer to Anosov flows for dim M > 3. PMID:16591849

  4. A framework with Cucho algorithm for discovering regular plans in mobile clients

    NASA Astrophysics Data System (ADS)

    Tsiligaridis, John

    2017-09-01

    In a mobile computing system, broadcasting has become a very interesting and challenging research issue. The server continuously broadcasts data to mobile users; the data can be inserted into customized size relations and broadcasted as Regular Broadcast Plan (RBP) with multiple channels. Two algorithms, given the data size for each provided service, the Basic Regular (BRA) and the Partition Value Algorithm (PVA) can provide a static and dynamic RBP construction with multiple constraints solutions respectively. Servers have to define the data size of the services and can provide a feasible RBP working with many broadcasting plan operations. The operations become more complicated when there are many kinds of services and the sizes of data sets are unknown to the server. To that end a framework has been developed that also gives the ability to select low or high capacity channels for servicing. Theorems with new analytical results can provide direct conditions that can state the existence of solutions for the RBP problem with the compound criterion. Two kinds of solutions are provided: the equal and the non equal subrelation solutions. The Cucho Search Algorithm (CS) with the Levy flight behavior has been selected for the optimization. The CS for RBP (CSRP) is developed applying the theorems to the discovery of RBPs. An additional change to CS has been made in order to increase the local search. The CS can also discover RBPs with the minimum number of channels. From all the above modern servers can be upgraded with these possibilities in regards to RBPs discovery with fewer channels.

  5. Fan beam image reconstruction with generalized Fourier slice theorem.

    PubMed

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  6. A remark on fractional differential equation involving I-function

    NASA Astrophysics Data System (ADS)

    Mishra, Jyoti

    2018-02-01

    The present paper deals with the solution of the fractional differential equation using the Laplace transform operator and its corresponding properties in the fractional calculus; we derive an exact solution of a complex fractional differential equation involving a special function known as I-function. The analysis of the some fractional integral with two parameters is presented using the suggested Theorem 1. In addition, some very useful corollaries are established and their proofs presented in detail. Some obtained exact solutions are depicted to see the effect of each fractional order. Owing to the wider applicability of the I-function, we can conclude that, the obtained results in our work generalize numerous well-known results obtained by specializing the parameters.

  7. On the existence, uniqueness, and asymptotic normality of a consistent solution of the likelihood equations for nonidentically distributed observations: Applications to missing data problems

    NASA Technical Reports Server (NTRS)

    Peters, C. (Principal Investigator)

    1980-01-01

    A general theorem is given which establishes the existence and uniqueness of a consistent solution of the likelihood equations given a sequence of independent random vectors whose distributions are not identical but have the same parameter set. In addition, it is shown that the consistent solution is a MLE and that it is asymptotically normal and efficient. Two applications are discussed: one in which independent observations of a normal random vector have missing components, and the other in which the parameters in a mixture from an exponential family are estimated using independent homogeneous sample blocks of different sizes.

  8. Polynomial solutions of the Monge-Ampère equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aminov, Yu A

    2014-11-30

    The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction ofmore » such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.« less

  9. The Great Emch Closure Theorem and a combinatorial proof of Poncelet's Theorem

    NASA Astrophysics Data System (ADS)

    Avksentyev, E. A.

    2015-11-01

    The relations between the classical closure theorems (Poncelet's, Steiner's, Emch's, and the zigzag theorems) and some of their generalizations are discussed. It is known that Emch's Theorem is the most general of these, while the others follow as special cases. A generalization of Emch's Theorem to pencils of circles is proved, which (by analogy with the Great Poncelet Theorem) can be called the Great Emch Theorem. It is shown that the Great Emch and Great Poncelet Theorems are equivalent and can be derived one from the other using elementary geometry, and also that both hold in the Lobachevsky plane as well. A new closure theorem is also obtained, in which the construction of closure is slightly more involved: closure occurs on a variable circle which is tangent to a fixed pair of circles. In conclusion, a combinatorial proof of Poncelet's Theorem is given, which deduces the closure principle for an arbitrary number of steps from the principle for three steps using combinatorics and number theory. Bibliography: 20 titles.

  10. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  11. Soft theorems for shift-symmetric cosmologies

    NASA Astrophysics Data System (ADS)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  12. Stability and Hopf bifurcation in a simplified BAM neural network with two time delays.

    PubMed

    Cao, Jinde; Xiao, Min

    2007-03-01

    Various local periodic solutions may represent different classes of storage patterns or memory patterns, and arise from the different equilibrium points of neural networks (NNs) by applying Hopf bifurcation technique. In this paper, a bidirectional associative memory NN with four neurons and multiple delays is considered. By applying the normal form theory and the center manifold theorem, analysis of its linear stability and Hopf bifurcation is performed. An algorithm is worked out for determining the direction and stability of the bifurcated periodic solutions. Numerical simulation results supporting the theoretical analysis are also given.

  13. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    NASA Astrophysics Data System (ADS)

    Zhou, distributed delays [rapid communication] T.; Chen, A.; Zhou, Y.

    2005-08-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible.

  14. Editorial

    NASA Astrophysics Data System (ADS)

    Liu, Shuai

    Fractal represents a special feature of nature and functional objects. However, fractal based computing can be applied to many research domains because of its fixed property resisted deformation, variable parameters and many unpredictable changes. Theoretical research and practical application of fractal based computing have been hotspots for 30 years and will be continued. There are many pending issues awaiting solutions in this domain, thus this thematic issue containing 14 papers publishes the state-of-the-art developments in theorem and application of fractal based computing, including mathematical analysis and novel engineering applications. The topics contain fractal and multifractal features in application and solution of nonlinear odes and equation.

  15. Reduction operators of Burgers equation.

    PubMed

    Pocheketa, Oleksandr A; Popovych, Roman O

    2013-02-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.

  16. Reduction operators of Burgers equation

    PubMed Central

    Pocheketa, Oleksandr A.; Popovych, Roman O.

    2013-01-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special “no-go” case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf–Cole transformation to a parameterized family of Lie reductions of the linear heat equation. PMID:23576819

  17. On the theory of the Frankl problem for equations of mixed type

    NASA Astrophysics Data System (ADS)

    Sabitov, K. B.

    2017-02-01

    In 1956 Frankl, while studying subsonic flows past a profile with a supersonic zone terminating with a normal compression shock, arrived at a new mathematical problem for the Chaplygin equation with a non-local boundary condition. In this article we give a survey of classical and recent papers dedicated to this problem. We present theorems on the existence and uniqueness of the solution of the Frankl problem, study the spectral problem for the Lavrent'ev-Bitsadze operator, show applications of these results to the construction of a solution with the aid of a series, and state some unsolved problems.

  18. New 2D dilaton gravity for nonsingular black holes

    NASA Astrophysics Data System (ADS)

    Kunstatter, Gabor; Maeda, Hideki; Taves, Tim

    2016-05-01

    We construct a two-dimensional action that is an extension of spherically symmetric Einstein-Lanczos-Lovelock (ELL) gravity. The action contains arbitrary functions of the areal radius and the norm squared of its gradient, but the field equations are second order and obey Birkhoff’s theorem. In complete analogy with spherically symmetric ELL gravity, the field equations admit the generalized Misner-Sharp mass as the first integral that determines the form of the vacuum solution. The arbitrary functions in the action allow for vacuum solutions that describe a larger class of interesting nonsingular black hole spacetimes than previously available.

  19. On the Local Type I Conditions for the 3D Euler Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Wolf, Jörg

    2018-05-01

    We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \

  20. Dispersive approaches for three-particle final state interaction

    DOE PAGES

    Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.

    2015-10-30

    In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.

  1. Information technologies for taking into account risks in business development programme

    NASA Astrophysics Data System (ADS)

    Kalach, A. V.; Khasianov, R. R.; Rossikhina, L. V.; Zybin, D. G.; Melnik, A. A.

    2018-05-01

    The paper describes the information technologies for taking into account risks in business development programme, which rely on the algorithm for assessment of programme project risks and the algorithm of programme forming with constrained financing of high-risk projects taken into account. A method of lower-bound estimate is suggested for subsets of solutions. The corresponding theorem and lemma and their proofs are given.

  2. A Survey of Quantum Programming Languages: History, Methods, and Tools

    DTIC Science & Technology

    2008-01-01

    and entanglement , to achieve computational solutions to certain problems in less time (fewer computational cycles) than is possible using classical...superposition of quantum bits, entanglement , destructive measurement, and the no-cloning theorem. These differences must be thoroughly understood and even...computers using well-known languages such as C, C++, Java, and rapid prototyping languages such as Maple, Mathematica, and Matlab . A good on-line

  3. General Second-Order Scalar-Tensor Theory and Self-Tuning

    NASA Astrophysics Data System (ADS)

    Charmousis, Christos; Copeland, Edmund J.; Padilla, Antonio; Saffin, Paul M.

    2012-02-01

    Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.

  4. A theoretical study on tunneling based biosensor having a redox-active monolayer using physics based simulation

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Yeon; Lee, Won Cheol; Yun, Jun Yeon; Lee, Youngeun; Choi, Seoungwook; Jin, Seonghoon; Park, Young June

    2018-01-01

    We developed a numerical simulator to model the operation of a tunneling based biosensor which has a redox-active monolayer. The simulator takes a realistic device structure as a simulation domain, and it employs the drift-diffusion equation for ion transport, the non-equilibrium Green's function formalism for electron tunneling, and the Ramo-Shockley theorem for accurate calculation of non-faradaic current. We also accounted for the buffer reaction and the immobilized peptide layer. For efficient transient simulation, the implicit time integration scheme is employed where the solution at each time step is obtained from the coupled Newton-Raphson method. As an application, we studied the operation of a recently fabricated reference-electrode free biosensor in various bias conditions and confirmed the effect of buffer reaction and the current flowing mechanism. Using the simulator, we also found a strategy to maximize the sensitivity of the tunneling based sensor.

  5. Time Asymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr

    2011-09-01

    The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azunre, P.

    Here in this paper, two novel techniques for bounding the solutions of parametric weakly coupled second-order semilinear parabolic partial differential equations are developed. The first provides a theorem to construct interval bounds, while the second provides a theorem to construct lower bounds convex and upper bounds concave in the parameter. The convex/concave bounds can be significantly tighter than the interval bounds because of the wrapping effect suffered by interval analysis in dynamical systems. Both types of bounds are computationally cheap to construct, requiring solving auxiliary systems twice and four times larger than the original system, respectively. An illustrative numerical examplemore » of bound construction and use for deterministic global optimization within a simple serial branch-and-bound algorithm, implemented numerically using interval arithmetic and a generalization of McCormick's relaxation technique, is presented. Finally, problems within the important class of reaction-diffusion systems may be optimized with these tools.« less

  7. On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    The Euler equations of gas dynamics have some very interesting properties in that the flux vector is a homogeneous function of the unknowns and the equations can be cast in symmetric hyperbolic form and satisfy the entropy conservation. The Euler equations are the moments of the Boltzmann equation of the kinetic theory of gases when the velocity distribution function is a Maxwellian. The present paper shows the relationship between the symmetrizability and the Maxwellian velocity distribution. The entropy conservation is in terms of the H-function, which is a slight modification of the H-function first introduced by Boltzmann in his famous H-theorem. In view of the H-theorem, it is suggested that the development of total H-diminishing (THD) numerical methods may be more profitable than the usual total variation diminishing (TVD) methods for obtaining wiggle-free solutions.

  8. Symmetry for the duration of entropy-consuming intervals.

    PubMed

    García-García, Reinaldo; Domínguez, Daniel

    2014-05-01

    We introduce the violation fraction υ as the cumulative fraction of time that a mesoscopic system spends consuming entropy at a single trajectory in phase space. We show that the fluctuations of this quantity are described in terms of a symmetry relation reminiscent of fluctuation theorems, which involve a function Φ, which can be interpreted as an entropy associated with the fluctuations of the violation fraction. The function Φ, when evaluated for arbitrary stochastic realizations of the violation fraction, is odd upon the symmetry transformations that are relevant for the associated stochastic entropy production. This fact leads to a detailed fluctuation theorem for the probability density function of Φ. We study the steady-state limit of this symmetry in the paradigmatic case of a colloidal particle dragged by optical tweezers through an aqueous solution. Finally, we briefly discuss possible applications of our results for the estimation of free-energy differences from single-molecule experiments.

  9. Scattering amplitudes from multivariate polynomial division

    NASA Astrophysics Data System (ADS)

    Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano

    2012-11-01

    We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Gröbner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.

  10. New dimensions for wound strings: The modular transformation of geometry to topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, John; Silverstein, Eva; Starr, David

    2007-02-15

    We show, using a theorem of Milnor and Margulis, that string theory on compact negatively curved spaces grows new effective dimensions as the space shrinks, generalizing and contextualizing the results in E. Silverstein, Phys. Rev. D 73, 086004 (2006).. Milnor's theorem relates negative sectional curvature on a compact Riemannian manifold to exponential growth of its fundamental group, which translates in string theory to a higher effective central charge arising from winding strings. This exponential density of winding modes is related by modular invariance to the infrared small perturbation spectrum. Using self-consistent approximations valid at large radius, we analyze this correspondencemore » explicitly in a broad set of time-dependent solutions, finding precise agreement between the effective central charge and the corresponding infrared small perturbation spectrum. This indicates a basic relation between geometry, topology, and dimensionality in string theory.« less

  11. Brane surgery: energy conditions, traversable wormholes, and voids

    NASA Astrophysics Data System (ADS)

    Barceló1, C.; Visser, M.

    2000-09-01

    Branes are ubiquitous elements of any low-energy limit of string theory. We point out that negative tension branes violate all the standard energy conditions of the higher-dimensional spacetime they are embedded in; this opens the door to very peculiar solutions of the higher-dimensional Einstein equations. Building upon the (/3+1)-dimensional implementation of fundamental string theory, we illustrate the possibilities by considering a toy model consisting of a (/2+1)-dimensional brane propagating through our observable (/3+1)-dimensional universe. Developing a notion of ``brane surgery'', based on the Israel-Lanczos-Sen ``thin shell'' formalism of general relativity, we analyze the dynamics and find traversable wormholes, closed baby universes, voids (holes in the spacetime manifold), and an evasion (not a violation) of both the singularity theorems and the positive mass theorem. These features appear generic to any brane model that permits negative tension branes: This includes the Randall-Sundrum models and their variants.

  12. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko; González, P. A.

    2018-06-01

    In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole geometries such as Ayon-Beato-García (ABG), Bardeen, and Hayward black holes. We calculate the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can be viewed as a partially topological effect in which the deflection angle can be calculated by considering a domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify our results and explore the differences with the Kerr solution. These black holes have, in addition to the total mass and rotation parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that the deflection of light has correction terms coming from these parameters, which generalizes the Kerr deflection angle.

  13. A generalization of Lie H-pseudobialgebras

    NASA Astrophysics Data System (ADS)

    Sun, Qinxiu; Li, Fang

    2017-07-01

    We investigate Hom-Lie H-pseudobialgebras. We present some examples and a theorem that allows constructing these new algebraic structures. We consider coboundary Hom-Lie H-pseudobialgebras and the corresponding classical Hom-Yang-Baxter equations.

  14. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barquero, V.; Xu, S.; Desiati, P.

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity tomore » the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.« less

  15. Limit Theorems and Their Relation to Solute Transport in Simulated Fractured Media

    NASA Astrophysics Data System (ADS)

    Reeves, D. M.; Benson, D. A.; Meerschaert, M. M.

    2003-12-01

    Solute particles that travel through fracture networks are subject to wide velocity variations along a restricted set of directions. This may result in super-Fickian dispersion along a few primary scaling directions. The fractional advection-dispersion equation (FADE), a modification of the original advection-dispersion equation in which a fractional derivative replaces the integer-order dispersion term, has the ability to model rapid, non-Gaussian solute transport. The FADE assumes that solute particle motions converge to either α -stable or operator stable densities, which are modeled by spatial fractional derivatives. In multiple dimensions, the multi-fractional dispersion derivative dictates the order and weight of differentiation in all directions, which correspond to the statistics of large particle motions in all directions. This study numerically investigates the presence of super- Fickian solute transport through simulated two-dimensional fracture networks. An ensemble of networks is gen

  16. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    PubMed

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Partial regularity of weak solutions to a PDE system with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Xu, Xiangsheng

    2018-04-01

    In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.

  18. Illustrating the Central Limit Theorem through Microsoft Excel Simulations

    ERIC Educational Resources Information Center

    Moen, David H.; Powell, John E.

    2005-01-01

    Using Microsoft Excel, several interactive, computerized learning modules are developed to demonstrate the Central Limit Theorem. These modules are used in the classroom to enhance the comprehension of this theorem. The Central Limit Theorem is a very important theorem in statistics, and yet because it is not intuitively obvious, statistics…

  19. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  20. Traveling wave solutions to a reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Feng, Zhaosheng; Zheng, Shenzhou; Gao, David Y.

    2009-07-01

    In this paper, we restrict our attention to traveling wave solutions of a reaction-diffusion equation. Firstly we apply the Divisor Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to find a quasi-polynomial first integral of an explicit form to an equivalent autonomous system. Then through this first integral, we reduce the reaction-diffusion equation to a first-order integrable ordinary differential equation, and a class of traveling wave solutions is obtained accordingly. Comparisons with the existing results in the literature are also provided, which indicates that some analytical results in the literature contain errors. We clarify the errors and instead give a refined result in a simple and straightforward manner.

  1. Spatial Dynamics of Multilayer Cellular Neural Networks

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Liang; Hsu, Cheng-Hsiung

    2018-02-01

    The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.

  2. Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: Ambizap

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey

    2008-12-01

    Precise point positioning (PPP) has become popular for Global Positioning System (GPS) geodetic network analysis because for n stations, PPP has O(n) processing time, yet solutions closely approximate those of O(n3) full network analysis. Subsequent carrier phase ambiguity resolution (AR) further improves PPP precision and accuracy; however, full-network bootstrapping AR algorithms are O(n4), limiting single network solutions to n < 100. In this contribution, fixed point theorems of AR are derived and then used to develop "Ambizap," an O(n) algorithm designed to give results that closely approximate full network AR. Ambizap has been tested to n ≈ 2800 and proves to be O(n) in this range, adding only ˜50% to PPP processing time. Tests show that a 98-station network is resolved on a 3-GHz CPU in 7 min, versus 22 h using O(n4) AR methods. Ambizap features a novel network adjustment filter, producing solutions that precisely match O(n4) full network analysis. The resulting coordinates agree to ≪1 mm with current AR methods, much smaller than the ˜3-mm RMS precision of PPP alone. A 2000-station global network can be ambiguity resolved in ˜2.5 h. Together with PPP, Ambizap enables rapid, multiple reanalysis of large networks (e.g., ˜1000-station EarthScope Plate Boundary Observatory) and facilitates the addition of extra stations to an existing network solution without need to reprocess all data. To meet future needs, PPP plus Ambizap is designed to handle ˜10,000 stations per day on a 3-GHz dual-CPU desktop PC.

  3. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less

  4. Battling Arrow's Paradox to Discover Robust Water Management Alternatives

    NASA Astrophysics Data System (ADS)

    Kasprzyk, J. R.; Reed, P. M.; Hadka, D.

    2013-12-01

    This study explores whether or not Arrow's Impossibility Theorem, a theory of social choice, affects the formulation of water resources systems planning problems. The theorem discusses creating an aggregation function for voters choosing from more than three alternatives for society. The Impossibility Theorem is also called Arrow's Paradox, because when trying to add more voters, a single individual's preference will dictate the optimal group decision. In the context of water resources planning, our study is motivated by recent theoretical work that has generalized the insights for Arrow's Paradox to the design of complex engineered systems. In this framing of the paradox, states of society are equivalent to water planning or design alternatives, and the voters are equivalent to multiple planning objectives (e.g. minimizing cost or maximizing performance). Seen from this point of view, multi-objective water planning problems are functionally equivalent to the social choice problem described above. Traditional solutions to such multi-objective problems aggregate multiple performance measures into a single mathematical objective. The Theorem implies that a subset of performance concerns will inadvertently dictate the overall design evaluations in unpredictable ways using such an aggregation. We suggest that instead of aggregation, an explicit many-objective approach to water planning can help overcome the challenges posed by Arrow's Paradox. Many-objective planning explicitly disaggregates measures of performance while supporting the discovery of the planning tradeoffs, employing multiobjective evolutionary algorithms (MOEAs) to find solutions. Using MOEA-based search to address Arrow's Paradox requires that the MOEAs perform robustly with increasing problem complexity, such as adding additional objectives and/or decisions. This study uses comprehensive diagnostic evaluation of MOEA search performance across multiple problem formulations (both aggregated and many-objective) to show whether or not aggregating performance measures biases decision making. In this study, we explore this hypothesis using an urban water portfolio management case study in the Lower Rio Grande Valley. The diagnostic analysis shows that modern self-adaptive MOEA search is efficient, effective, and reliable for the more complex many-objective LRGV planning formulations. Results indicate that although many classical water systems planning frameworks seek to account for multiple objectives, the common practice of reducing the problem into one or more highly aggregated performance measures can severely and negatively bias planning decisions.

  5. Quintic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Guajardo, Luis; Hassaïne, Mokhtar; Oliva, Julio

    2017-04-01

    We construct a quintic quasi-topological gravity in five dimensions, i.e. a theory with a Lagrangian containing {\\mathcal{R}}^5 terms and whose field equations are of second order on spherically (hyperbolic or planar) symmetric spacetimes. These theories have recently received attention since when formulated on asymptotically AdS spacetimes might provide for gravity duals of a broad class of CFTs. For simplicity we focus on five dimensions. We show that this theory fulfils a Birkhoff's Theorem as it is the case in Lovelock gravity and therefore, for generic values of the couplings, there is no s-wave propagating mode. We prove that the spherically symmetric solution is determined by a quintic algebraic polynomial equation which resembles Wheeler's polynomial of Lovelock gravity. For the black hole solutions we compute the temperature, mass and entropy and show that the first law of black holes thermodynamics is fulfilled. Besides of being of fourth order in general, we show that the field equations, when linearized around AdS are of second order, and therefore the theory does not propagate ghosts around this background. Besides the class of theories originally introduced in arXiv:1003.4773, the general geometric structure of these Lagrangians remains an open problem.

  6. Coupled Waves on a Periodically Supported Timoshenko Beam

    NASA Astrophysics Data System (ADS)

    HECKL, MARIA A.

    2002-05-01

    A mathematical model is presented for the propagation of structural waves on an infinitely long, periodically supported Timoshenko beam. The wave types that can exist on the beam are bending waves with displacements in the horizontal and vertical directions, compressional waves and torsional waves. These waves are affected by the periodic supports in two ways: their dispersion relation spectra show passing and stopping bands, and coupling of the different wave types tends to occur. The model in this paper could represent a railway track where the beam represents the rail and an appropriately chosen support type represents the pad/sleeper/ballast system of a railway track. Hamilton's principle is used to calculate the Green function matrix of the free Timoshenko beam without supports. The supports are incorporated into the model by combining the Green function matrix with the superposition principle. Bloch's theorem is applied to describe the periodicity of the supports. This leads to polynomials with several solutions for the Bloch wave number. These solutions are obtained numerically for different combinations of wave types. Two support types are examined in detail: mass supports and spring supports. More complex support types, such as mass/spring systems, can be incorporated easily into the model.

  7. On the Mathematical Modeling of Single and Multiple Scattering of Ultrasonic Guided Waves by Small Scatterers: A Structural Health Monitoring Measurement Model

    NASA Astrophysics Data System (ADS)

    Strom, Brandon William

    In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of the interaction operator, and we show that a series solution converges due to loss of energy in the system. We see that there are four causes of resonance and plot the modulation depth as a function of spacing between the pits.

  8. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  9. Implementation of mutual information and bayes theorem for classification microarray data

    NASA Astrophysics Data System (ADS)

    Dwifebri Purbolaksono, Mahendra; Widiastuti, Kurnia C.; Syahrul Mubarok, Mohamad; Adiwijaya; Aminy Ma’ruf, Firda

    2018-03-01

    Microarray Technology is one of technology which able to read the structure of gen. The analysis is important for this technology. It is for deciding which attribute is more important than the others. Microarray technology is able to get cancer information to diagnose a person’s gen. Preparation of microarray data is a huge problem and takes a long time. That is because microarray data contains high number of insignificant and irrelevant attributes. So, it needs a method to reduce the dimension of microarray data without eliminating important information in every attribute. This research uses Mutual Information to reduce dimension. System is built with Machine Learning approach specifically Bayes Theorem. This theorem uses a statistical and probability approach. By combining both methods, it will be powerful for Microarray Data Classification. The experiment results show that system is good to classify Microarray data with highest F1-score using Bayesian Network by 91.06%, and Naïve Bayes by 88.85%.

  10. Understanding band gaps of solids in generalized Kohn–Sham theory

    PubMed Central

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  11. Finite Difference Model of a Four-Electrode Conductivity Measurement System

    DTIC Science & Technology

    2016-05-27

    for an infinite half space with electrodes placed on the air/media boundary : 1 Less...8) The left hand side of Equation (8) can be converted to a surface integral using Green’s theorem : − � ∇ ∙ �σ���∇ϕ...adjacent to a boundary between two conductivities. The discretized solutions for each face are summed to comprise the surface integral: − � σ

  12. Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies

    NASA Astrophysics Data System (ADS)

    Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz

    2017-05-01

    We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.

  13. On the invariant mass conjecture in general relativity

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.

    1988-06-01

    An asymptotic symmetries theorem is proved under certain hypotheses on the behaviour of the metric at spatial infinity. This implies that the Einstein-von Freud-ADM mass can be invariantly assigned to an asymptotically flat four dimensional end of an asymptotically empty solution of Einstein equations if the metric is a no-radiation metric or if the end is defined in terms of a collection of boost-type domains.

  14. Periodicity in cell dynamics in some mathematical models for the treatment of leukemia

    NASA Astrophysics Data System (ADS)

    Halanay, A.

    2012-11-01

    A model for the evolution of short-term hematopoietic stem cells and of leukocytes in leucemia under periodic treatment is introduced. It consists of a system of periodic delay differential equations and takes into consideration the asymmetric division. A guiding function is used, together with a theorem of Krasnoselskii, to prove the existence of a strictly positive periodic solution and its stability is investigated.

  15. Attractor scenarios and superluminal signals in k-essence cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jin U; Arnold Sommerfeld Center, Department of Physics, Ludwig-Maximilians University, Theresienstrasse 37, 80333 Munich; Vanchurin, Vitaly

    Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the Universe. These scenarios avoid the need for fine-tuned initial conditions (the 'coincidence problem') because of the attractorlike dynamics of the k-essence field {phi}. It was recently shown that all k-essence scenarios with Lagrangians p=L(X){phi}{sup -2}, where X{identical_to}(1/2){phi}{sub ,{mu}}{phi}{sup ,{mu}}, necessarily involve an epoch where perturbations of {phi} propagate faster than light (the 'no-go theorem'). We carry out a comprehensive study of attractorlike cosmological solutions ('trackers') involving a k-essence scalar field {phi} and another matter component. The result of this study is a complete classificationmore » of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K({phi})L(X). Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. An analogous 'no-go theorem' still holds for this class of models, indicating the existence of a superluminal epoch. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories.« less

  16. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.

    PubMed

    Gibbon, John D; Pal, Nairita; Gupta, Anupam; Pandit, Rahul

    2016-12-01

    We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced, incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes (CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential development of singularities (blow-up) in the contours of the order parameter ϕ is an open problem. To address this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]. By taking an L^{∞} norm of the energy of the full binary system, designated as E_{∞}, we have shown that ∫_{0}^{t}E_{∞}(τ)dτ governs the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with 128^{3} to 512^{3} collocation points and over the duration of our DNSs confirm that E_{∞} remains bounded as far as our computations allow.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizwan-uddin

    Recently, various branches of engineering and science have seen a rapid increase in the number of dynamical analyses undertaken. This modern phenomenon often obscures the fact that such analyses were sometimes carried out even before the current trend began. Moreover, these earlier analyses, which even now seem very ingenuous, were carried out at a time when the available information about dynamical systems was not as well disseminated as it is today. One such analysis, carried out in the early 1960s, showed the existence of stable limit cycles in a simple model for space-independent xenon dynamics in nuclear reactors. The authors,more » apparently unaware of the now well-known bifurcation theorem by Hopf, could not numerically discover unstable limit cycles, though they did find regions in parameter space where the fixed points are stable for small perturbations but unstable for very large perturbations. The analysis was carried out both analytically and numerically. As a tribute to these early nonlinear dynamicists in the field of nuclear engineering, in this paper, the Hopf theorem and its conclusions are briefly described, and then the solution of the space-independent xenon oscillation problem is presented, which was obtained using the bifurcation analysis BIFDD code. These solutions are presented along with a discussion of the earlier results.« less

  18. Lipschitz Metric for the Novikov Equation

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Chen, Geng; Chen, Robin Ming; Shen, Yannan

    2018-03-01

    We consider the Lipschitz continuous dependence of solutions for the Novikov equation with respect to the initial data. In particular, we construct a Finsler type optimal transport metric which renders the solution map Lipschitz continuous on bounded sets of {H^1(R)\\cap W^{1,4}(R)} , although it is not Lipschitz continuous under the natural Sobolev metric from an energy law due to the finite time gradient blowup. By an application of Thom's transversality theorem, we also prove that when the initial data is in an open dense subset of {H^1(R)\\cap W^{1,4}(R)} , the solution is piecewise smooth. This generic regularity result helps us extend the Lipschitz continuous metric to the general weak solutions. Our method of constructing the metric can be used to treat other kinds of quasi-linear equations, provided a good knowledge about the energy concentration.

  19. Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces

    NASA Astrophysics Data System (ADS)

    Ruess, W. M.; Phong, V. Q.

    Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.

  20. Highly eccentric hip-hop solutions of the 2 N-body problem

    NASA Astrophysics Data System (ADS)

    Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume

    2010-02-01

    We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.

  1. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  2. Evaluation of a Pair-Wise Conflict Detection and Resolution Algorithm in a Multiple Aircraft Scenario

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.

    2002-01-01

    The KB3D algorithm is a pairwise conflict detection and resolution (CD&R) algorithm. It detects and generates trajectory vectoring for an aircraft which has been predicted to be in an airspace minima violation within a given look-ahead time. It has been proven, using mechanized theorem proving techniques, that for a pair of aircraft, KB3D produces at least one vectoring solution and that all solutions produced are correct. Although solutions produced by the algorithm are mathematically correct, they might not be physically executable by an aircraft or might not solve multiple aircraft conflicts. This paper describes a simple solution selection method which assesses all solutions generated by KB3D and determines the solution to be executed. The solution selection method and KB3D are evaluated using a simulation in which N aircraft fly in a free-flight environment and each aircraft in the simulation uses KB3D to maintain separation. Specifically, the solution selection method filters KB3D solutions which are procedurally undesirable or physically not executable and uses a predetermined criteria for selection.

  3. Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharroubi, Idris, E-mail: kharroubi@ceremade.dauphine.fr; Lim, Thomas, E-mail: lim@ensiie.fr; Ngoupeyou, Armand, E-mail: armand.ngoupeyou@univ-paris-diderot.fr

    2013-12-15

    In this work, we study the problem of mean-variance hedging with a random horizon T∧τ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory.

  4. Real-Time Exponential Curve Fits Using Discrete Calculus

    NASA Technical Reports Server (NTRS)

    Rowe, Geoffrey

    2010-01-01

    An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.

  5. Analytic solution for quasi-Lambertian radiation transfer.

    PubMed

    Braun, Avi; Gordon, Jeffrey M

    2010-02-10

    An analytic solution is derived for radiation transfer between flat quasi-Lambertian surfaces of arbitrary orientation, i.e., surfaces that radiate in a Lambertian fashion but within a numerical aperture smaller than unity. These formulas obviate the need for ray trace simulations and provide exact, physically transparent results. Illustrative examples that capture the salient features of the flux maps and the efficiency of flux transfer are presented for a few configurations of practical interest. There is also a fundamental reciprocity relation for quasi-Lambertian exchange, akin to the reciprocity theorem for fully Lambertian surfaces. Applications include optical fiber coupling, fiber-optic biomedical procedures, and solar concentrators.

  6. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  7. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  8. Some Analogies of the Banach Contraction Principle in Fuzzy Modular Spaces

    PubMed Central

    Wongkum, Kittipong; Chaipunya, Parin; Kumam, Poom

    2013-01-01

    We established some theorems under the aim of deriving variants of the Banach contraction principle, using the classes of inner contractions and outer contractions, on the structure of fuzzy modular spaces. PMID:23766681

  9. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, S., E-mail: fishman@physics.technion.ac.il; Soffer, A., E-mail: soffer@math.rutgers.edu

    2016-07-15

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  10. Flutter analysis using transversality theory

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1993-01-01

    A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.

  11. The Non-Signalling theorem in generalizations of Bell's theorem

    NASA Astrophysics Data System (ADS)

    Walleczek, J.; Grössing, G.

    2014-04-01

    Does "epistemic non-signalling" ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the basis of an ontic, foundational interpretation of the non-signalling theorem. We here argue that the non-signalling theorem must instead be viewed as an epistemic, operational theorem i.e. one that refers exclusively to what epistemic agents can, or rather cannot, do. That is, we emphasize that the non-signalling theorem is a theorem about the operational inability of epistemic agents to signal information. In other words, as a proper principle, the non-signalling theorem may only be employed as an epistemic, phenomenological, or operational principle. Critically, our argument emphasizes that the non-signalling principle must not be used as an ontic principle about physical reality as such, i.e. as a theorem about the nature of physical reality independently of epistemic agents e.g. human observers. One major reason in favor of our conclusion is that any definition of signalling or of non-signalling invariably requires a reference to epistemic agents, and what these agents can actually measure and report. Otherwise, the non-signalling theorem would equal a general "no-influence" theorem. In conclusion, under the assumption that the non-signalling theorem is epistemic (i.e. "epistemic non-signalling"), the search for deterministic approaches to quantum mechanics, including NHVTs and an emergent quantum mechanics, continues to be a viable research program towards disclosing the foundations of physical reality at its smallest dimensions.

  12. Consistency of the adiabatic theorem.

    PubMed

    Amin, M H S

    2009-06-05

    The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we show that the reported violations of the adiabatic theorem all arise from resonant transitions between energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds. Implications for adiabatic quantum computation are discussed.

  13. Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.

    PubMed

    Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L

    2016-08-19

    In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4)  MeV in the modified minimal subtraction scheme at 2  GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations.

  14. Post-Lie algebras and factorization theorems

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans

    2017-09-01

    In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.

  15. Observability/Identifiability of Rigid Motion under Perspective Projection

    DTIC Science & Technology

    1994-03-08

    Faugeras and S. Maybank . Motion from point mathces: multiplicity of solutions. Int. J, of Computer Vision, 1990. [16] D.B. Gennery. Tracking known...sequences. Int. 9. of computer vision, 1989. [37] S. Maybank . Theory of reconstruction from image motion. Springer Verlag, 1992. [38] Andrea 6...defined in section 5; in this appendix we show a simple characterization which is due to Faugeras and Maybank [15, 371. Theorem B.l . Let Q = UCVT

  16. Inverse Problems and Imaging (Pitman Research Notes in Mathematics Series Number 245)

    DTIC Science & Technology

    1991-01-01

    Multiparamcter spectral theory in Hilbert space functional differential cquations B D Sleeman F Kappel and W Schappacher 24 Mathematical modelling...techniques 49 Sequence spaces R Aris W 11 Ruckle 25 Singular points of smooth mappings 50 Recent contributions to nonlinear C G Gibson partial...of convergence in the central limit T Husain theorem 86 Hamilton-Jacobi equations in Hilbert spaces Peter Hall V Barbu and G Da Prato 63 Solution of

  17. Probabilistic Modeling and Simulation of Metal Fatigue Life Prediction

    DTIC Science & Technology

    2002-09-01

    distribution demonstrate the central limit theorem? Obviously not! This is much the same as materials testing. If only NBA basketball stars are...60 near the exit of a NBA locker room. There would obviously be some pseudo-normal distribution with a very small standard deviation. The mean...completed, the investigators must understand how the midgets and the NBA stars will affect the total solution. D. IT IS MUCH SIMPLER TO MODEL THE

  18. Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei

    2016-07-01

    This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.

  19. Discrimination in a General Algebraic Setting

    PubMed Central

    Fine, Benjamin; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421

  20. Existence and Hadamard well-posedness of a system of simultaneous generalized vector quasi-equilibrium problems.

    PubMed

    Zhang, Wenyan; Zeng, Jing

    2017-01-01

    An existence result for the solution set of a system of simultaneous generalized vector quasi-equilibrium problems (for short, (SSGVQEP)) is obtained, which improves Theorem 3.1 of the work of Ansari et al. (J. Optim. Theory Appl. 127:27-44, 2005). Moreover, a definition of Hadamard-type well-posedness for (SSGVQEP) is introduced and sufficient conditions for Hadamard well-posedness of (SSGVQEP) are established.

  1. Optimal no-go theorem on hidden-variable predictions of effect expectations

    NASA Astrophysics Data System (ADS)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  2. Exact Closed-form Solutions for Lamb's Problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-04-01

    In this article, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem, for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's (1974) integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson (1974), which strongly confirms the correctness of our explicit formulas. It is hoped that in due time, these formulas may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  3. Exact closed-form solutions for Lamb's problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-07-01

    In this paper, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson, which strongly confirms the correctness of our explicit formulae. It is hoped that in due time, these formulae may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  4. Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions

    NASA Astrophysics Data System (ADS)

    Jahanipur, Ruhollah

    In this paper, we study a class of semilinear functional evolution equations in which the nonlinearity is demicontinuous and satisfies a semimonotone condition. We prove the existence, uniqueness and exponentially asymptotic stability of the mild solutions. Our approach is to apply a convenient version of Burkholder inequality for convolution integrals and an iteration method based on the existence and measurability results for the functional integral equations in Hilbert spaces. An Itô-type inequality is the main tool to study the uniqueness, p-th moment and almost sure sample path asymptotic stability of the mild solutions. We also give some examples to illustrate the applications of the theorems and meanwhile we compare the results obtained in this paper with some others appeared in the literature.

  5. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M.-S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one and two-dimensional problems.

  6. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  7. Using Pictures to Enhance Students' Understanding of Bayes' Theorem

    ERIC Educational Resources Information Center

    Trafimow, David

    2011-01-01

    Students often have difficulty understanding algebraic proofs of statistics theorems. However, it sometimes is possible to prove statistical theorems with pictures in which case students can gain understanding more easily. I provide examples for two versions of Bayes' theorem.

  8. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    PubMed

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  9. A closed form solution for constant flux pumping in a well under partial penetration condition

    NASA Astrophysics Data System (ADS)

    Yang, Shaw-Yang; Yeh, Hund-Der; Chiu, Pin-Yuan

    2006-05-01

    An analytical model for the constant flux pumping test is developed in a radial confined aquifer system with a partially penetrating well. The Laplace domain solution is derived by the application of the Laplace transforms with respect to time and the finite Fourier cosine transforms with respect to the vertical coordinates. A time domain solution is obtained using the inverse Laplace transforms, convolution theorem, and Bromwich integral method. The effect of partial penetration is apparent if the test well is completed with a short screen. An aquifer thickness 100 times larger than the screen length of the well can be considered as infinite. This solution can be used to investigate the effects of screen length and location on the drawdown distribution in a radial confined aquifer system and to produce type curves for the estimation of aquifer parameters with field pumping drawdown data.

  10. Multiple Instantons Representing Higher-Order Chern-Pontryagin Classes

    NASA Astrophysics Data System (ADS)

    Spruck, Joel; Tchrakian, D. H.; Yang, Yisong

    It has been shown in the work of Chakrabarti, Sherry and Tchrakian that the chiral SO+/-(4 p) Yang-Mills theory in the Euclidean 4 p (p>= 2) dimensions allows an axially symmetric self-dual system of equations similar to Witten's instanton equations in the classical 4-dimensional SU(2) SO+/-(4) theory and the solutions represent a new class of instantons. However the rigorous existence of these higher-dimensional instanton solutions has remained open except for the solution of unit charge representing a single instanton. In this paper we establish an existence and uniqueness theorem for multi-instantons of arbitrary charges in the case p>= 2. These solutions are the first known instantons, with the Chern-Pontryagin index greater than one, of the Yang-Mills model in higher dimensions. Our approach is a study of a nonlinear variational equation defined on the Poincaré half plane.

  11. A proof for loop-law constraints in stoichiometric metabolic networks

    PubMed Central

    2012-01-01

    Background Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well. Results Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves. Conclusions The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling. PMID:23146116

  12. On the symmetry foundation of double soft theorems

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Zhong; Lin, Hung-Hwa; Zhang, Shun-Qing

    2017-12-01

    Double-soft theorems, like its single-soft counterparts, arises from the underlying symmetry principles that constrain the interactions of massless particles. While single soft theorems can be derived in a non-perturbative fashion by employing current algebras, recent attempts of extending such an approach to known double soft theorems has been met with difficulties. In this work, we have traced the difficulty to two inequivalent expansion schemes, depending on whether the soft limit is taken asymmetrically or symmetrically, which we denote as type A and B respectively. The soft-behaviour for type A scheme can simply be derived from single soft theorems, and are thus non-perturbatively protected. For type B, the information of the four-point vertex is required to determine the corresponding soft theorems, and thus are in general not protected. This argument can be readily extended to general multi-soft theorems. We also ask whether unitarity can be emergent from locality together with the two kinds of soft theorems, which has not been fully investigated before.

  13. An extension of the Laplace transform to Schwartz distributions

    NASA Technical Reports Server (NTRS)

    Price, D. R.

    1974-01-01

    A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.

  14. Lorentz-violating modification of Dirac theory based on spin-nondegenerate operators

    NASA Astrophysics Data System (ADS)

    Reis, J. A. A. S.; Schreck, M.

    2017-04-01

    The Standard Model extension (SME) parametrizes all possible Lorentz-violating contributions to the Standard Model and general relativity. It can be considered as an effective framework to describe possible quantum-gravity effects for energies much below the Planck energy. In the current paper, the spin-nondegenerate operators of the SME fermion sector are the focus. The propagators, energies, and solutions to the modified Dirac equation are obtained for several families of coefficients including nonminimal ones. The particle energies and spinors are computed at first order in Lorentz violation and, with the optical theorem, they are shown to be consistent with the propagators. The optical theorem is then also used to derive the matrices formed from a spinor and its Dirac conjugate at all orders in Lorentz violation. The results are the first explicit ones derived for the spin-nondegenerate operators. They will prove helpful for future phenomenological calculations in the SME that rely on the footing of quantum field theory.

  15. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

    ERIC Educational Resources Information Center

    Smith, William R.; Missen, Ronald W.

    1989-01-01

    Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

  16. Approaching Cauchy's Theorem

    ERIC Educational Resources Information Center

    Garcia, Stephan Ramon; Ross, William T.

    2017-01-01

    We hope to initiate a discussion about various methods for introducing Cauchy's Theorem. Although Cauchy's Theorem is the fundamental theorem upon which complex analysis is based, there is no "standard approach." The appropriate choice depends upon the prerequisites for the course and the level of rigor intended. Common methods include…

  17. Linear Legendrian curves in T(3)

    NASA Astrophysics Data System (ADS)

    Ghiggini, Paolo

    2006-05-01

    Using convex surfaces and Kanda's classification theorem, we classify Legendrian isotopy classes of Legendrian linear curves in all tight contact structures on T(3) . Some of the knot types considered in this paper provide new examples of non transversally simple knot types.

  18. Ineffective higher derivative black hole hair

    NASA Astrophysics Data System (ADS)

    Goldstein, Kevin; Mashiyane, James Junior

    2018-01-01

    Inspired by the possibility that the Schwarzschild black hole may not be the unique spherically symmetric vacuum solution to generalizations of general relativity, we consider black holes in pure fourth order higher derivative gravity treated as an effective theory. Such solutions may be of interest in addressing the issue of higher derivative hair or during the later stages of black hole evaporation. Non-Schwarzschild solutions have been studied but we have put earlier results on a firmer footing by finding a systematic asymptotic expansion for the black holes and matching them with known numerical solutions obtained by integrating out from the near-horizon region. These asymptotic expansions can be cast in the form of trans-series expansions which we conjecture will be a generic feature of non-Schwarzschild higher derivative black holes. Excitingly we find a new branch of solutions with lower free energy than the Schwarzschild solution, but as found in earlier work, solutions only seem to exist for black holes with large curvatures, meaning that one should not generically neglect even higher derivative corrections. This suggests that one effectively recovers the nonhair theorems in this context.

  19. Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore

    We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. Thesemore » solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.« less

  20. Implications of the Corotation Theorem on the MRI in Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Montani, G.; Cianfrani, F.; Pugliese, D.

    2016-08-01

    We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.

  1. Early Vector Calculus: A Path through Multivariable Calculus

    ERIC Educational Resources Information Center

    Robertson, Robert L.

    2013-01-01

    The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)

  2. Pick's Theorem: What a Lemon!

    ERIC Educational Resources Information Center

    Russell, Alan R.

    2004-01-01

    Pick's theorem can be used in various ways just like a lemon. This theorem generally finds its way in the syllabus approximately at the middle school level and in fact at times students have even calculated the area of a state considering its outline with the help of the above theorem.

  3. Analytic tools for investigating the structure of network reliability measures with regard to observation correlations

    NASA Astrophysics Data System (ADS)

    Prószyński, W.; Kwaśniak, M.

    2018-03-01

    A global measure of observation correlations in a network is proposed, together with the auxiliary indices related to non-diagonal elements of the correlation matrix. Based on the above global measure, a specific representation of the correlation matrix is presented, being the result of rigorously proven theorem formulated within the present research. According to the theorem, each positive definite correlation matrix can be expressed by a scale factor and a so-called internal weight matrix. Such a representation made it possible to investigate the structure of the basic reliability measures with regard to observation correlations. Numerical examples carried out for two test networks illustrate the structure of those measures that proved to be dependent on global correlation index. Also, the levels of global correlation are proposed. It is shown that one can readily find an approximate value of the global correlation index, and hence the correlation level, for the expected values of auxiliary indices being the only knowledge about a correlation matrix of interest. The paper is an extended continuation of the previous study of authors that was confined to the elementary case termed uniform correlation. The extension covers arbitrary correlation matrices and a structure of correlation effect.

  4. Long-time predictions in nonlinear dynamics

    NASA Technical Reports Server (NTRS)

    Szebehely, V.

    1980-01-01

    It is known that nonintegrable dynamical systems do not allow precise predictions concerning their behavior for arbitrary long times. The available series solutions are not uniformly convergent according to Poincare's theorem and numerical integrations lose their meaningfulness after the elapse of arbitrary long times. Two approaches are the use of existing global integrals and statistical methods. This paper presents a generalized method along the first approach. As examples long-time predictions in the classical gravitational satellite and planetary problems are treated.

  5. Shift-Variant Multidimensional Systems.

    DTIC Science & Technology

    1985-05-29

    i=0,1,** *N-1 in (3.1), one will get 0() i_0,1,* ,N-1 which is nonnegative due to the Perron - Frobenius Theorem [24]. That is, the A nonnegativity ...and the current input. The state-space model was extended in order to model 2-D discrete LSV systems with support on a causality cone . Subsequently...formulated as a special system of linear equations with nonnegative coefficients whose solution is required to satisfy con- straints like nonnegativity in

  6. On a Game of Large-Scale Projects Competition

    NASA Astrophysics Data System (ADS)

    Nikonov, Oleg I.; Medvedeva, Marina A.

    2009-09-01

    The paper is devoted to game-theoretical control problems motivated by economic decision making situations arising in realization of large-scale projects, such as designing and putting into operations the new gas or oil pipelines. A non-cooperative two player game is considered with payoff functions of special type for which standard existence theorems and algorithms for searching Nash equilibrium solutions are not applicable. The paper is based on and develops the results obtained in [1]-[5].

  7. Symmetry enhancement of extremal horizons in D  =  5 supergravity

    NASA Astrophysics Data System (ADS)

    Kayani, U.

    2018-06-01

    We consider the near-horizon geometry of supersymmetric extremal black holes in un-gauged and gauged 5-dimensional supergravity, coupled to abelian vector multiplets. By analyzing the global properties of the Killing spinors, we prove that the near-horizon geometries undergo a supersymmetry enhancement. This follows from a set of generalized Lichnerowicz-type theorems we establish, together with an index theory argument. As a consequence, these solutions always admit a symmetry group.

  8. The Consensus Problem in Unreliable Distributed Systems (A Brief Survey).

    DTIC Science & Technology

    1983-06-01

    they might also reach conflicting conclusions about the outcome of the election and hence fail to reach agreement. Davies and Wakerly [21 realized this...15], and part (b) was shown by Dolev and Reischuk [10]. For practical applications , these bounds are not very encouraging, especially the t+I bound on...solutions is f2(n + t2)). Theorem 7, part (b) shows this bound "best possible" for authenticated algorithms. 6. Applications of Agreement Protocols The

  9. Global attractivity of an almost periodic N-species nonlinear ecological competitive model

    NASA Astrophysics Data System (ADS)

    Xia, Yonghui; Han, Maoan; Huang, Zhenkun

    2008-01-01

    By using comparison theorem and constructing suitable Lyapunov functional, we study the following almost periodic nonlinear N-species competitive Lotka-Volterra model: A set of sufficient conditions is obtained for the existence and global attractivity of a unique positive almost periodic solution of the above model. As applications, some special competition models are studied again, our new results improve and generalize former results. Examples and their simulations show the feasibility of our main results.

  10. Unbiased estimators for spatial distribution functions of classical fluids

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density ρ(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  11. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors.

    PubMed

    Nolte, Guido

    2003-11-21

    The equation for the magnetic lead field for a given magnetoencephalography (MEG) channel is well known for arbitrary frequencies omega but is not directly applicable to MEG in the quasi-static approximation. In this paper we derive an equation for omega = 0 starting from the very definition of the lead field instead of using Helmholtz's reciprocity theorems. The results are (a) the transpose of the conductivity times the lead field is divergence-free, and (b) the lead field differs from the one in any other volume conductor by a gradient of a scalar function. Consequently, for a piecewise homogeneous and isotropic volume conductor, the lead field is always tangential at the outermost surface. Based on this theoretical result, we formulated a simple and fast method for the MEG forward calculation for one shell of arbitrary shape: we correct the corresponding lead field for a spherical volume conductor by a superposition of basis functions, gradients of harmonic functions constructed here from spherical harmonics, with coefficients fitted to the boundary conditions. The algorithm was tested for a prolate spheroid of realistic shape for which the analytical solution is known. For high order in the expansion, we found the solutions to be essentially exact and for reasonable accuracies much fewer multiplications are needed than in typical implementations of the boundary element methods. The generalization to more shells is straightforward.

  12. Constrained multibody system dynamics: An automated approach

    NASA Technical Reports Server (NTRS)

    Kamman, J. W.; Huston, R. L.

    1982-01-01

    The governing equations for constrained multibody systems are formulated in a manner suitable for their automated, numerical development and solution. The closed loop problem of multibody chain systems is addressed. The governing equations are developed by modifying dynamical equations obtained from Lagrange's form of d'Alembert's principle. The modifications is based upon a solution of the constraint equations obtained through a zero eigenvalues theorem, is a contraction of the dynamical equations. For a system with n-generalized coordinates and m-constraint equations, the coefficients in the constraint equations may be viewed as constraint vectors in n-dimensional space. In this setting the system itself is free to move in the n-m directions which are orthogonal to the constraint vectors.

  13. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  14. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  15. Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang

    2018-02-01

    Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.

  16. Generalized virial theorem for massless electrons in graphene and other Dirac materials

    NASA Astrophysics Data System (ADS)

    Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.

    2016-05-01

    The virial theorem for a system of interacting electrons in a crystal, which is described within the framework of the tight-binding model, is derived. We show that, in the particular case of interacting massless electrons in graphene and other Dirac materials, the conventional virial theorem is violated. Starting from the tight-binding model, we derive the generalized virial theorem for Dirac electron systems, which contains an additional term associated with a momentum cutoff at the bottom of the energy band. Additionally, we derive the generalized virial theorem within the Dirac model using the minimization of the variational energy. The obtained theorem is illustrated by many-body calculations of the ground-state energy of an electron gas in graphene carried out in Hartree-Fock and self-consistent random-phase approximations. Experimental verification of the theorem in the case of graphene is discussed.

  17. The geometric Mean Value Theorem

    NASA Astrophysics Data System (ADS)

    de Camargo, André Pierro

    2018-05-01

    In a previous article published in the American Mathematical Monthly, Tucker (Amer Math Monthly. 1997; 104(3): 231-240) made severe criticism on the Mean Value Theorem and, unfortunately, the majority of calculus textbooks also do not help to improve its reputation. The standard argument for proving it seems to be applying Rolle's theorem to a function like Although short and effective, such reasoning is not intuitive. Perhaps for this reason, Tucker classified the Mean Value Theorem as a technical existence theorem used to prove intuitively obvious statements. Moreover, he argued that there is nothing obvious about the Mean Value Theorem without the continuity of the derivative. Under so unfair discrimination, we felt the need to come to the defense of this beautiful theorem in order to clear up these misunderstandings.

  18. A homogenization-based quasi-discrete method for the fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.

    2014-05-01

    The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.

  19. A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Li, Junpu; Chen, Wen; Fu, Zhuojia

    2018-01-01

    A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.

  20. A note on generalized Weyl's theorem

    NASA Astrophysics Data System (ADS)

    Zguitti, H.

    2006-04-01

    We prove that if either T or T* has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. If, moreover T is isoloid, and generalized Weyl's theorem holds for T, then generalized Weyl's theorem holds for f(T) for every . An application is given for algebraically paranormal operators.

  1. On the addition theorem of spherical functions

    NASA Astrophysics Data System (ADS)

    Shkodrov, V. G.

    The addition theorem of spherical functions is expressed in two reference systems, viz., an inertial system and a system rigidly fixed to a planet. A generalized addition theorem of spherical functions and a particular addition theorem for the rigidly fixed system are derived. The results are applied to the theory of a planetary potential.

  2. Curl forces and the nonlinear Fokker-Planck equation.

    PubMed

    Wedemann, R S; Plastino, A R; Tsallis, C

    2016-12-01

    Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the S_{q} entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.

  3. On flows of viscoelastic fluids under threshold-slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Baranovskii, E. S.

    2018-03-01

    We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.

  4. The Equilibrium State of Colliding Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warnock, R

    2003-12-12

    We study a nonlinear integral equation that is a necessary condition on the equilibrium phase space distribution function of stored, colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in one degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, asmore » would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.« less

  5. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  6. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution

    NASA Astrophysics Data System (ADS)

    Kreeft, Jasper; Gerritsma, Marc

    2013-05-01

    In this paper we apply the recently developed mimetic discretization method to the mixed formulation of the Stokes problem in terms of vorticity, velocity and pressure. The mimetic discretization presented in this paper and in Kreeft et al. [51] is a higher-order method for curvilinear quadrilaterals and hexahedrals. Fundamental is the underlying structure of oriented geometric objects, the relation between these objects through the boundary operator and how this defines the exterior derivative, representing the grad, curl and div, through the generalized Stokes theorem. The mimetic method presented here uses the language of differential k-forms with k-cochains as their discrete counterpart, and the relations between them in terms of the mimetic operators: reduction, reconstruction and projection. The reconstruction consists of the recently developed mimetic spectral interpolation functions. The most important result of the mimetic framework is the commutation between differentiation at the continuous level with that on the finite dimensional and discrete level. As a result operators like gradient, curl and divergence are discretized exactly. For Stokes flow, this implies a pointwise divergence-free solution. This is confirmed using a set of test cases on both Cartesian and curvilinear meshes. It will be shown that the method converges optimally for all admissible boundary conditions.

  7. Using Bayes' theorem for free energy calculations

    NASA Astrophysics Data System (ADS)

    Rogers, David M.

    Statistical mechanics is fundamentally based on calculating the probabilities of molecular-scale events. Although Bayes' theorem has generally been recognized as providing key guiding principals for setup and analysis of statistical experiments [83], classical frequentist models still predominate in the world of computational experimentation. As a starting point for widespread application of Bayesian methods in statistical mechanics, we investigate the central quantity of free energies from this perspective. This dissertation thus reviews the basics of Bayes' view of probability theory, and the maximum entropy formulation of statistical mechanics before providing examples of its application to several advanced research areas. We first apply Bayes' theorem to a multinomial counting problem in order to determine inner shell and hard sphere solvation free energy components of Quasi-Chemical Theory [140]. We proceed to consider the general problem of free energy calculations from samples of interaction energy distributions. From there, we turn to spline-based estimation of the potential of mean force [142], and empirical modeling of observed dynamics using integrator matching. The results of this research are expected to advance the state of the art in coarse-graining methods, as they allow a systematic connection from high-resolution (atomic) to low-resolution (coarse) structure and dynamics. In total, our work on these problems constitutes a critical starting point for further application of Bayes' theorem in all areas of statistical mechanics. It is hoped that the understanding so gained will allow for improvements in comparisons between theory and experiment.

  8. Discovering the Theorem of Pythagoras

    NASA Technical Reports Server (NTRS)

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  9. Bertrand's theorem and virial theorem in fractional classical mechanics

    NASA Astrophysics Data System (ADS)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  10. Guided Discovery of the Nine-Point Circle Theorem and Its Proof

    ERIC Educational Resources Information Center

    Buchbinder, Orly

    2018-01-01

    The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through…

  11. Ghost circles in lattice Aubry-Mather theory

    NASA Astrophysics Data System (ADS)

    Mramor, Blaz; Rink, Bob

    Monotone lattice recurrence relations such as the Frenkel-Kontorova lattice, arise in Hamiltonian lattice mechanics, as models for ferromagnetism and as discretization of elliptic PDEs. Mathematically, they are a multi-dimensional counterpart of monotone twist maps. Such recurrence relations often admit a variational structure, so that the solutions x:Z→R are the stationary points of a formal action function W(x). Given any rotation vector ω∈R, classical Aubry-Mather theory establishes the existence of a large collection of solutions of ∇W(x)=0 of rotation vector ω. For irrational ω, this is the well-known Aubry-Mather set. It consists of global minimizers and it may have gaps. In this paper, we study the parabolic gradient flow {dx}/{dt}=-∇W(x) and we will prove that every Aubry-Mather set can be interpolated by a continuous gradient-flow invariant family, the so-called 'ghost circle'. The existence of these ghost circles is known in dimension d=1, for rational rotation vectors and Morse action functions. The main technical result of this paper is therefore a compactness theorem for lattice ghost circles, based on a parabolic Harnack inequality for the gradient flow. This implies the existence of lattice ghost circles of arbitrary rotation vectors and for arbitrary actions. As a consequence, we can give a simple proof of the fact that when an Aubry-Mather set has a gap, then this gap must be filled with minimizers, or contain a non-minimizing solution.

  12. Statistical Mechanics and Applications in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  13. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chiun-Chang, E-mail: chlee@mail.nhcue.edu.tw

    2014-05-15

    The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem.more » Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.« less

  14. Automated analysis in generic groups

    NASA Astrophysics Data System (ADS)

    Fagerholm, Edvard

    This thesis studies automated methods for analyzing hardness assumptions in generic group models, following ideas of symbolic cryptography. We define a broad class of generic and symbolic group models for different settings---symmetric or asymmetric (leveled) k-linear groups --- and prove ''computational soundness'' theorems for the symbolic models. Based on this result, we formulate a master theorem that relates the hardness of an assumption to solving problems in polynomial algebra. We systematically analyze these problems identifying different classes of assumptions and obtain decidability and undecidability results. Then, we develop automated procedures for verifying the conditions of our master theorems, and thus the validity of hardness assumptions in generic group models. The concrete outcome is an automated tool, the Generic Group Analyzer, which takes as input the statement of an assumption, and outputs either a proof of its generic hardness or shows an algebraic attack against the assumption. Structure-preserving signatures are signature schemes defined over bilinear groups in which messages, public keys and signatures are group elements, and the verification algorithm consists of evaluating ''pairing-product equations''. Recent work on structure-preserving signatures studies optimality of these schemes in terms of the number of group elements needed in the verification key and the signature, and the number of pairing-product equations in the verification algorithm. While the size of keys and signatures is crucial for many applications, another aspect of performance is the time it takes to verify a signature. The most expensive operation during verification is the computation of pairings. However, the concrete number of pairings is not captured by the number of pairing-product equations considered in earlier work. We consider the question of what is the minimal number of pairing computations needed to verify structure-preserving signatures. We build an automated tool to search for structure-preserving signatures matching a template. Through exhaustive search we conjecture lower bounds for the number of pairings required in the Type~II setting and prove our conjecture to be true. Finally, our tool exhibits examples of structure-preserving signatures matching the lower bounds, which proves tightness of our bounds, as well as improves on previously known structure-preserving signature schemes.

  15. Lumley's PODT definition of large eddies and a trio of numerical procedures. [Proper Orthogonal Decomposition Theorem

    NASA Technical Reports Server (NTRS)

    Payne, Fred R.

    1992-01-01

    Lumley's 1967 Moscow paper provided, for the first time, a completely rational definition of the physically-useful term 'large eddy', popular for a half-century. The numerical procedures based upon his results are: (1) PODT (Proper Orthogonal Decomposition Theorem), which extracts the Large Eddy structure of stochastic processes from physical or computer simulation two-point covariances, and 2) LEIM (Large-Eddy Interaction Model), a predictive scheme for the dynamical large eddies based upon higher order turbulence modeling. Earlier Lumley's work (1964) forms the basis for the final member of the triad of numerical procedures: this predicts the global neutral modes of turbulence which have surprising agreement with both structural eigenmodes and those obtained from the dynamical equations. The ultimate goal of improved engineering design tools for turbulence may be near at hand, partly due to the power and storage of 'supermicrocomputer' workstations finally becoming adequate for the demanding numerics of these procedures.

  16. The Fluctuation-Dissipation Theorem of Colloidal Particle's energy on 2D Periodic Substrates: A Monte Carlo Study of thermal noise-like fluctuation and diffusion like Brownian motion

    NASA Astrophysics Data System (ADS)

    Najafi, Amin

    2014-05-01

    Using the Monte Carlo simulations, we have calculated mean-square fluctuations in statistical mechanics, such as those for colloids energy configuration are set on square 2D periodic substrates interacting via a long range screened Coulomb potential on any specific and fixed substrate. Random fluctuations with small deviations from the state of thermodynamic equilibrium arise from the granular structure of them and appear as thermal diffusion with Gaussian distribution structure as well. The variations are showing linear form of the Fluctuation-Dissipation Theorem on the energy of particles constitutive a canonical ensemble with continuous diffusion process of colloidal particle systems. The noise-like variation of the energy per particle and the order parameter versus the Brownian displacement of sum of large number of random steps of particles at low temperatures phase are presenting a markovian process on colloidal particles configuration, too.

  17. Practical robustness measures in multivariable control system analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.

    1981-01-01

    The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.

  18. Periodic bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde

    2006-05-01

    Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.

  19. Evolutionary Oseen Model for Generalized Newtonian Fluid with Multivalued Nonmonotone Friction Law

    NASA Astrophysics Data System (ADS)

    Migórski, Stanisław; Dudek, Sylwia

    2018-03-01

    The paper deals with the non-stationary Oseen system of equations for the generalized Newtonian incompressible fluid with multivalued and nonmonotone frictional slip boundary conditions. First, we provide a result on existence of a unique solution to an abstract evolutionary inclusion involving the Clarke subdifferential term for a nonconvex function. We employ a method based on a surjectivity theorem for multivalued L-pseudomonotone operators. Then, we exploit the abstract result to prove the weak unique solvability of the Oseen system.

  20. From Flapping Birds to Space Telescopes: The Modern Science of Origami (BNL Women in Science Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Robert J

    2010-06-24

    During the 1990s, the development and application of mathematical techniques to origami revolutionized this centuries-old Japanese art of paper folding. In his talk, Lang will describe how geometric concepts led to the solution of a broad class of origami-folding problems. Conversely, algorithms and theorems of origami design have shed light on long-standing mathematical questions and have solved practical engineering problems. Lang will discuss how origami has led to huge space telescopes, safer airbags, and more.

  1. Variational analysis of anisotropic Schrödinger equations without Ambrosetti-Rabinowitz-type condition

    NASA Astrophysics Data System (ADS)

    Afrouzi, G. A.; Mirzapour, M.; Rădulescu, Vicenţiu D.

    2018-02-01

    This article is concerned with the qualitative analysis of weak solutions to nonlinear stationary Schrödinger-type equations of the form - \\sum _{i=1}^Npartial _{x_i} a_i(x,partial _{x_i}u)+b(x)|u|^{P^+_+-2}u =λ f(x,u) &{}\\quad {in } Ω , u=0 &{}\\quad {on } partial Ω , without the Ambrosetti-Rabinowitz growth condition. Our arguments rely on the existence of a Cerami sequence by using a variant of the mountain-pass theorem due to Schechter.

  2. Transition and separation process in brine channels formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berti, Alessia, E-mail: alessia.berti@unibs.it; Bochicchio, Ivana, E-mail: ibochicchio@unisa.it; Fabrizio, Mauro, E-mail: mauro.fabrizio@unibo.it

    2016-02-15

    In this paper, we discuss the formation of brine channels in sea ice. The model includes a time-dependent Ginzburg-Landau equation for the solid-liquid phase change, a diffusion equation of the Cahn-Hilliard kind for the solute dynamics, and the heat equation for the temperature change. The macroscopic motion of the fluid is also considered, so the resulting differential system couples with the Navier-Stokes equation. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved.

  3. Polyhedral sweeping processes with unbounded nonconvex-valued perturbation

    NASA Astrophysics Data System (ADS)

    Tolstonogov, A. A.

    2017-12-01

    A polyhedral sweeping process with a multivalued perturbation whose values are nonconvex unbounded sets is studied in a separable Hilbert space. Polyhedral sweeping processes do not satisfy the traditional assumptions used to prove existence theorems for convex sweeping processes. We consider the polyhedral sweeping process as an evolution inclusion with subdifferential operators depending on time. The widely used assumption of Lipschitz continuity for the multivalued perturbation term is replaced by a weaker notion of (ρ - H) Lipschitzness. The existence of solutions is proved for this sweeping process.

  4. Robust Consumption-Investment Problem on Infinite Horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawisza, Dariusz, E-mail: dariusz.zawisza@im.uj.edu.pl

    In our paper we consider an infinite horizon consumption-investment problem under a model misspecification in a general stochastic factor model. We formulate the problem as a stochastic game and finally characterize the saddle point and the value function of that game using an ODE of semilinear type, for which we provide a proof of an existence and uniqueness theorem for its solution. Such equation is interested on its own right, since it generalizes many other equations arising in various infinite horizon optimization problems.

  5. Neuroanatomical basis for recognition primed decision making.

    PubMed

    Hudson, Darren

    2013-01-01

    Effective decision making under time constraints is often overlooked in medical decision making. The recognition primed decision making (RPDM) model was developed by Gary Klein based on previous recognized situations to develop a satisfactory solution to the current problem. Bayes Theorem is the most popular decision making model in medicine but is limited by the need for adequate time to consider all probabilities. Unlike other decision making models, there is a potential neurobiological basis for RPDM. This model has significant implication for health informatics and medical education.

  6. Global Bifurcation of Periodic Solutions with Symmetry,

    DTIC Science & Technology

    1987-07-01

    C4-family of sectorial operators on a real Hilbert (2.32.a) space X, with dense domain D(A(A)) which is independent of A E E, and with compact...Vanl, theorem 2.5.91. If .F and E’ are both Hilbert spaces with orthogonal action of r, we may drop the assumption that 1 is compact. Just take...some meandering. Let us define a limit for any sequence Si of subsets of some metric space . Following Whyburn [Why], we define lir sup Si {z: z

  7. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  8. (2 + 1)-dimensional dynamical black holes in Einstein-nonlinear Maxwell theory

    NASA Astrophysics Data System (ADS)

    Gurtug, O.; Mazharimousavi, S. Habib; Halilsoy, M.

    2018-02-01

    Radiative extensions of BTZ metric in 2 + 1 dimensions are found which are sourced by nonlinear Maxwell fields and a null current. This may be considered as generalization of the problem formulated long go by Vaidya and Bonnor. The mass and charge are functions of retarded/advanced null coordinate apt for decay/inflation. The new solutions are constructed through a Theorem that works remarkably well for any nonlinear electrodynamic model. Hawking temperature is analyzed for the case of the Born-Infeld electrodynamics.

  9. An Application of the H-Function to Curve-Fitting and Density Estimation.

    DTIC Science & Technology

    1983-12-01

    equations into a model that is linear in its coefficients. Nonlinear least squares estimation is a relatively new area developed to accomodate models which...to converge on a solution (10:9-10). For the simple linear model and when general assump- tions are made, the Gauss-Markov theorem states that the...distribution. For example, if the analyst wants to model the time between arrivals to a queue for a computer simulation, he infers the true probability

  10. Optimal decay rate for the wave equation on a square with constant damping on a strip

    NASA Astrophysics Data System (ADS)

    Stahn, Reinhard

    2017-04-01

    We consider the damped wave equation with Dirichlet boundary conditions on the unit square parametrized by Cartesian coordinates x and y. We assume the damping a to be strictly positive and constant for x<σ and zero for x>σ . We prove the exact t^{-4/3}-decay rate for the energy of classical solutions. Our main result (Theorem 1) answers question (1) of Anantharaman and Léautaud (Anal PDE 7(1):159-214, 2014, Section 2C).

  11. Exp(1076) Shades of Black: Aspects of Black Hole Microstates

    NASA Astrophysics Data System (ADS)

    Vasilakis, Orestis

    In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and examine the moduli space of solutions. Furthermore by using brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS solutions receive no quantum corrections and thus must be subject to some kind of non-renormalization theorem.

  12. Extended Full Computation-Tree Logic with Sequence Modal Operator: Representing Hierarchical Tree Structures

    NASA Astrophysics Data System (ADS)

    Kamide, Norihiro; Kaneiwa, Ken

    An extended full computation-tree logic, CTLS*, is introduced as a Kripke semantics with a sequence modal operator. This logic can appropriately represent hierarchical tree structures where sequence modal operators in CTLS* are applied to tree structures. An embedding theorem of CTLS* into CTL* is proved. The validity, satisfiability and model-checking problems of CTLS* are shown to be decidable. An illustrative example of biological taxonomy is presented using CTLS* formulas.

  13. The Poincaré-Hopf Theorem for line fields revisited

    NASA Astrophysics Data System (ADS)

    Crowley, Diarmuid; Grant, Mark

    2017-07-01

    A Poincaré-Hopf Theorem for line fields with point singularities on orientable surfaces can be found in Hopf's 1956 Lecture Notes on Differential Geometry. In 1955 Markus presented such a theorem in all dimensions, but Markus' statement only holds in even dimensions 2 k ≥ 4. In 1984 Jänich presented a Poincaré-Hopf theorem for line fields with more complicated singularities and focussed on the complexities arising in the generalized setting. In this expository note we review the Poincaré-Hopf Theorem for line fields with point singularities, presenting a careful proof which is valid in all dimensions.

  14. Common fixed point theorems for maps under a contractive condition of integral type

    NASA Astrophysics Data System (ADS)

    Djoudi, A.; Merghadi, F.

    2008-05-01

    Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].

  15. A Converse of the Mean Value Theorem Made Easy

    ERIC Educational Resources Information Center

    Mortici, Cristinel

    2011-01-01

    The aim of this article is to discuss some results about the converse mean value theorem stated by Tong and Braza [J. Tong and P. Braza, "A converse of the mean value theorem", Amer. Math. Monthly 104(10), (1997), pp. 939-942] and Almeida [R. Almeida, "An elementary proof of a converse mean-value theorem", Internat. J. Math. Ed. Sci. Tech. 39(8)…

  16. Recurrence theorems: A unified account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, David, E-mail: david.wallace@balliol.ox.ac.uk

    I discuss classical and quantum recurrence theorems in a unified manner, treating both as generalisations of the fact that a system with a finite state space only has so many places to go. Along the way, I prove versions of the recurrence theorem applicable to dynamics on linear and metric spaces and make some comments about applications of the classical recurrence theorem in the foundations of statistical mechanics.

  17. Zero-Bounded Limits as a Special Case of the Squeeze Theorem for Evaluating Single-Variable and Multivariable Limits

    ERIC Educational Resources Information Center

    Gkioulekas, Eleftherios

    2013-01-01

    Many limits, typically taught as examples of applying the "squeeze" theorem, can be evaluated more easily using the proposed zero-bounded limit theorem. The theorem applies to functions defined as a product of a factor going to zero and a factor that remains bounded in some neighborhood of the limit. This technique is immensely useful…

  18. Correcting Duporcq's theorem☆

    PubMed Central

    Nawratil, Georg

    2014-01-01

    In 1898, Ernest Duporcq stated a famous theorem about rigid-body motions with spherical trajectories, without giving a rigorous proof. Today, this theorem is again of interest, as it is strongly connected with the topic of self-motions of planar Stewart–Gough platforms. We discuss Duporcq's theorem from this point of view and demonstrate that it is not correct. Moreover, we also present a revised version of this theorem. PMID:25540467

  19. Probabilistic Relational Structures and Their Applications

    ERIC Educational Resources Information Center

    Domotor, Zoltan

    The principal objects of the investigation reported were, first, to study qualitative probability relations on Boolean algebras, and secondly, to describe applications in the theories of probability logic, information, automata, and probabilistic measurement. The main contribution of this work is stated in 10 definitions and 20 theorems. The basic…

  20. Voronovskaja's theorem revisited

    NASA Astrophysics Data System (ADS)

    Tachev, Gancho T.

    2008-07-01

    We represent a new quantitative variant of Voronovskaja's theorem for Bernstein operator. This estimate improves the recent quantitative versions of Voronovskaja's theorem for certain Bernstein-type operators, obtained by H. Gonska, P. Pitul and I. Rasa in 2006.

  1. Periodic solutions with prescribed minimal period of vortex type problems in domains

    NASA Astrophysics Data System (ADS)

    Bartsch, Thomas; Sacchet, Matteo

    2018-05-01

    We consider Hamiltonian systems with two degrees of freedom of point vortex type for in a domain . In the classical point vortex context the Hamiltonian is of the form where is the regular part of a hydrodynamic Green function in Ω, is the Robin function: , and , are the vortex strengths. We prove the existence of infinitely many periodic solutions with prescribed minimal period that are superpositions of a slow motion of the center of vorticity close to a star-shaped level line of h and of a fast rotation of the two vortices around their center of vorticity. The proofs are based on a recent higher dimensional version of the Poincaré–Birkhoff theorem due to Fonda and Ureña.

  2. Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi

    2017-05-01

    This paper studies the dynamics of solitons to the nonlinear Schrödinger’s equation (NLSE) with spatio-temporal dispersion (STD). The integration algorithm that is employed in this paper is the Riccati-Bernoulli sub-ODE method. This leads to dark and singular soliton solutions that are important in the field of optoelectronics and fiber optics. The soliton solutions appear with all necessary constraint conditions that are necessary for them to exist. There are four types of nonlinear media studied in this paper. They are Kerr law, power law, parabolic law and dual law. The conservation laws (Cls) for the Kerr law and parabolic law nonlinear media are constructed using the conservation theorem presented by Ibragimov.

  3. Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-01-01

    In this paper, we model an ecological system consisting of a predator and two preys with the newly derived two-step fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. We analyze the dynamical system for correct choice of parameter values that are biologically meaningful. The local analysis of the main model is based on the application of qualitative theory for ordinary differential equations. By using the fixed point theorem idea, we establish the existence and uniqueness of the solutions. Convergence results of the new scheme are verified in both space and time. Dynamical wave phenomena of solutions are verified via some numerical results obtained for different values of the fractional index, which have some interesting ecological implications.

  4. Nonalgebraic integrability of one reversible dynamical system of the Cremona type

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    1998-05-01

    A reversible dynamical system (RDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions [the Chew-Low-type equations with crossing-symmetry matrix A(l,1)], are considered. This RDS is split into one- and two-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous three-point functional equation. Nonalgebraic integrability of RDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a nonresonant fixed point.

  5. Stability analysis of spectral methods for hyperbolic initial-boundary value systems

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Lustman, L.; Tadmor, E.

    1986-01-01

    A constant coefficient hyperbolic system in one space variable, with zero initial data is discussed. Dissipative boundary conditions are imposed at the two points x = + or - 1. This problem is discretized by a spectral approximation in space. Sufficient conditions under which the spectral numerical solution is stable are demonstrated - moreover, these conditions have to be checked only for scalar equations. The stability theorems take the form of explicit bounds for the norm of the solution in terms of the boundary data. The dependence of these bounds on N, the number of points in the domain (or equivalently the degree of the polynomials involved), is investigated for a class of standard spectral methods, including Chebyshev and Legendre collocations.

  6. Neuronal models in infinite-dimensional spaces and their finite-dimensional projections: Part II.

    PubMed

    Brzychczy, S; Leszczyński, H; Poznanski, R R

    2012-09-01

    Application of comparison theorem is used to examine the validitiy of the "lumped parameter assumption" in describing the behavior of solutions of the continuous cable equation U(t) = DU(xx)+f(U) with the discrete cable equation dV(n)/dt = d*(V(n+1) - 2V(n) + V(n-1)) + f(V(n)), where f is a nonlinear functional describing the internal diffusion of electrical potential in single neurons. While the discrete cable equation looks like a finite difference approximation of the continuous cable equation, solutions of the two reveal significantly different behavior which imply that the compartmental models (spiking neurons) are poor quantifiers of neurons, contrary to what is commonly accepted in computational neuroscience.

  7. Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham-Broer-Kaup-Like Equations

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian

    2017-03-01

    In this article, a generalised Whitham-Broer-Kaup-Like (WBKL) equations is investigated, which can describe the bidirectional propagation of long waves in shallow water. The equations can be reduced to the dispersive long wave equations, variant Boussinesq equations, Whitham-Broer-Kaup-Like equations, etc. The Lie symmetry analysis method is used to consider the vector fields and optimal system of the equations. The similarity reductions are given on the basic of the optimal system. Furthermore, the power series solutions are derived by using the power series theory. Finally, based on a new theorem of conservation laws, the conservation laws associated with symmetries of this equations are constructed with a detailed derivation.

  8. Riemannian and Lorentzian flow-cut theorems

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  9. Random Walks on Cartesian Products of Certain Nonamenable Groups and Integer Lattices

    NASA Astrophysics Data System (ADS)

    Vishnepolsky, Rachel

    A random walk on a discrete group satisfies a local limit theorem with power law exponent \\alpha if the return probabilities follow the asymptotic law. P{ return to starting point after n steps } ˜ Crhonn-alpha.. A group has a universal local limit theorem if all random walks on the group with finitely supported step distributions obey a local limit theorem with the same power law exponent. Given two groups that obey universal local limit theorems, it is not known whether their cartesian product also has a universal local limit theorem. We settle the question affirmatively in one case, by considering a random walk on the cartesian product of a nonamenable group whose Cayley graph is a tree, and the integer lattice. As corollaries, we derive large deviations estimates and a central limit theorem.

  10. An Introduction to Kristof's Theorem for Solving Least-Square Optimization Problems Without Calculus.

    PubMed

    Waller, Niels

    2018-01-01

    Kristof's Theorem (Kristof, 1970 ) describes a matrix trace inequality that can be used to solve a wide-class of least-square optimization problems without calculus. Considering its generality, it is surprising that Kristof's Theorem is rarely used in statistics and psychometric applications. The underutilization of this method likely stems, in part, from the mathematical complexity of Kristof's ( 1964 , 1970 ) writings. In this article, I describe the underlying logic of Kristof's Theorem in simple terms by reviewing four key mathematical ideas that are used in the theorem's proof. I then show how Kristof's Theorem can be used to provide novel derivations to two cognate models from statistics and psychometrics. This tutorial includes a glossary of technical terms and an online supplement with R (R Core Team, 2017 ) code to perform the calculations described in the text.

  11. Phantom wormholes in Einstein–Maxwell-dilaton theory

    NASA Astrophysics Data System (ADS)

    Goulart, Prieslei

    2018-01-01

    In this paper we give an electrically charged traversable wormhole solution for the Einstein–Maxwell-dilaton theory when the dilaton is a phantom field, i.e. it has flipped sign kinetic term appearing in the action. In the limit when the charge is zero, we recover the anti-Fisher solution, which can be reduced to the Bronnikov–Ellis solution under certain choices of integration constants. The equations of motion of this theory share the same S-duality invariance of string theory, so the electrically charged solution is rotated into the magnetically charged one by applying such transformations. The scalar field is topological, so we compute its topological charge, and discuss that under appropriate boundary conditions we can have a lump, a kink, or an anti-kink profile. We determine the position of the throat, and show the embedding diagram of the wormhole. As a physical application, we apply the Gauss–Bonnet theorem to compute the deflection angle of a light-ray that passes close to the wormhole.

  12. Non-autonomous equations with unpredictable solutions

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2018-06-01

    To make research of chaos more amenable to investigating differential and discrete equations, we introduce the concepts of an unpredictable function and sequence. The topology of uniform convergence on compact sets is applied to define unpredictable functions [1,2]. The unpredictable sequence is defined as a specific unpredictable function on the set of integers. The definitions are convenient to be verified as solutions of differential and discrete equations. The topology is metrizable and easy for applications with integral operators. To demonstrate the effectiveness of the approach, the existence and uniqueness of the unpredictable solution for a delay differential equation are proved as well as for quasilinear discrete systems. As a corollary of the theorem, a similar assertion for a quasilinear ordinary differential equation is formulated. The results are demonstrated numerically, and an application to Hopfield neural networks is provided. In particular, Poincaré chaos near periodic orbits is observed. The completed research contributes to the theory of chaos as well as to the theory of differential and discrete equations, considering unpredictable solutions.

  13. A Possible Operational Motivation for the Orthocomplementation in Quantum Structures

    NASA Astrophysics Data System (ADS)

    D'Hooghe, Bart

    2010-11-01

    In the foundations of quantum mechanics Gleason’s theorem dictates the uniqueness of the state transition probability via the inner product of the corresponding state vectors in Hilbert space, independent of which measurement context induces this transition. We argue that the state transition probability should not be regarded as a secondary concept which can be derived from the structure on the set of states and properties, but instead should be regarded as a primitive concept for which measurement context is crucial. Accordingly, we adopt an operational approach to quantum mechanics in which a physical entity is defined by the structure of its set of states, set of properties and the possible (measurement) contexts which can be applied to this entity. We put forward some elementary definitions to derive an operational theory from this State-COntext-Property (SCOP) formalism. We show that if the SCOP satisfies a Gleason-like condition, namely that the state transition probability is independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented, which is one of the ‘quantum axioms’ used in the Piron-Solèr representation theorem for quantum systems. In this sense we obtain a possible physical meaning for the orthocomplementation widely used in quantum structures.

  14. Uniqueness of large positive solutions

    NASA Astrophysics Data System (ADS)

    López-Gómez, Julián; Maire, Luis

    2017-08-01

    We establish the uniqueness of the positive solution of the singular problem (1.1) through some standard comparison techniques involving the maximum principle. Our proofs do not invoke to the blow-up rates of the solutions, as in most of the specialized literature. We give two different types of results according to the geometrical properties of Ω and the regularity of partial Ω . Even in the autonomous case, our theorems are extremely sharp extensions of all existing results. Precisely, when a(x)≡ 1, it is shown that the monotonicity and superadditivity of f( u) with constant C≥ 0 entail the uniqueness; f is said to be superadditive with constant C≥ 0 if f(a+b) ≥ f(a) + f(b) - C \\quad for all a, b ≥ 0. This condition, introduced by Marcus and Véron (J Evol Equ 3:637-652, 2004), weakens all previous sufficient conditions for uniqueness, as it will become apparent in this paper.

  15. The Existence of the Solution to One Kind of Algebraic Riccati Equation

    NASA Astrophysics Data System (ADS)

    Liu, Jianming

    2018-03-01

    The matrix equation ATX + XA + XRX + Q = O is called algebraic Riccati equation, which is very important in the fields of automatic control and other engineering applications. Many researchers have studied the solutions to various algebraic Riccati equations and most of them mainly applied the matrix methods, while few used the functional analysis theories. This paper mainly studies the existence of the solution to the following kind of algebraic Riccati equation from the functional view point: ATX + XA + XRX ‑λX + Q = O Here, X, A, R, Q ∈ n×n , Q is a symmetric matrix, and R is a positive or negative semi-definite matrix, λ is arbitrary constants. This paper uses functional approach such as fixed point theorem and contraction mapping thinking so as to provide two sufficient conditions for the solvability about this kind of Riccati equation and to arrive at some relevant conclusions.

  16. Seismic data restoration with a fast L1 norm trust region method

    NASA Astrophysics Data System (ADS)

    Cao, Jingjie; Wang, Yanfei

    2014-08-01

    Seismic data restoration is a major strategy to provide reliable wavefield when field data dissatisfy the Shannon sampling theorem. Recovery by sparsity-promoting inversion often get sparse solutions of seismic data in a transformed domains, however, most methods for sparsity-promoting inversion are line-searching methods which are efficient but are inclined to obtain local solutions. Using trust region method which can provide globally convergent solutions is a good choice to overcome this shortcoming. A trust region method for sparse inversion has been proposed, however, the efficiency should be improved to suitable for large-scale computation. In this paper, a new L1 norm trust region model is proposed for seismic data restoration and a robust gradient projection method for solving the sub-problem is utilized. Numerical results of synthetic and field data demonstrate that the proposed trust region method can get excellent computation speed and is a viable alternative for large-scale computation.

  17. Differential Galois theory and non-integrability of planar polynomial vector fields

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara

    2018-06-01

    We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.

  18. Double soft graviton theorems and Bondi-Metzner-Sachs symmetries

    NASA Astrophysics Data System (ADS)

    Anupam, A. H.; Kundu, Arpan; Ray, Krishnendu

    2018-05-01

    It is now well understood that Ward identities associated with the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of double soft factorization theorems can be recovered. By making connections with earlier works in the literature, we argue that at the subleading order, these double soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how these nested Ward identities can be understood as Ward identities associated with BMS symmetries in scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.

  19. Entanglement bases and general structures of orthogonal complete bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Zaizhe

    2004-10-01

    In quantum mechanics and quantum information, to establish the orthogonal bases is a useful means. The existence of unextendible product bases impels us to study the 'entanglement bases' problems. In this paper, the concepts of entanglement bases and exact-entanglement bases are defined, and a theorem about exact-entanglement bases is given. We discuss the general structures of the orthogonal complete bases. Two examples of applications are given. At last, we discuss the problem of transformation of the general structure forms.

  20. Weak convergence of a projection algorithm for variational inequalities in a Banach space

    NASA Astrophysics Data System (ADS)

    Iiduka, Hideaki; Takahashi, Wataru

    2008-03-01

    Let C be a nonempty, closed convex subset of a Banach space E. In this paper, motivated by Alber [Ya.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in: Lecture Notes Pure Appl. Math., vol. 178, Dekker, New York, 1996, pp. 15-50], we introduce the following iterative scheme for finding a solution of the variational inequality problem for an inverse-strongly-monotone operator A in a Banach space: x1=x[set membership, variant]C andxn+1=[Pi]CJ-1(Jxn-[lambda]nAxn) for every , where [Pi]C is the generalized projection from E onto C, J is the duality mapping from E into E* and {[lambda]n} is a sequence of positive real numbers. Then we show a weak convergence theorem (Theorem 3.1). Finally, using this result, we consider the convex minimization problem, the complementarity problem, and the problem of finding a point u[set membership, variant]E satisfying 0=Au.

  1. The dynamics of a harvested predator-prey system with Holling type IV functional response.

    PubMed

    Liu, Xinxin; Huang, Qingdao

    2018-05-31

    The paper aims to investigate the dynamical behavior of a predator-prey system with Holling type IV functional response in which both the species are subject to capturing. We mainly consider how the harvesting affects equilibria, stability, limit cycles and bifurcations in this system. We adopt the method of qualitative and quantitative analysis, which is based on the dynamical theory, bifurcation theory and numerical simulation. The boundedness of solutions, the existence and stability of equilibrium points of the system are further studied. Based on the Sotomayor's theorem, the existence of transcritical bifurcation and saddle-node bifurcation are derived. We use the normal form theorem to analyze the Hopf bifurcation. Simulation results show that the first Lyapunov coefficient is negative and a stable limit cycle may bifurcate. Numerical simulations are performed to make analytical studies more complete. This work illustrates that using the harvesting effort as control parameter can change the behaviors of the system, which may be useful for the biological management. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Inelastic light and electron scattering in parabolic quantum dots in magnetic field: Implications of generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero-dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energy capable of being explored with the FIR, Raman, or electron energy loss spectroscopy. This implies that either of these probes should be competent in observing the localized magnetoplasmons in the system. A deeper insight into the physics of quantum dots is paving the way for their implementation in diverse fields such as quantum computing and medical imaging.

  3. A Novel Artificial Bee Colony Approach of Live Virtual Machine Migration Policy Using Bayes Theorem

    PubMed Central

    Xu, Gaochao; Hu, Liang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24385877

  4. Dynamical symmetry enhancement near N = 2, D = 4 gauged supergravity horizons

    NASA Astrophysics Data System (ADS)

    Gutowski, J.; Mohaupt, T.; Papadopoulos, G.

    2017-03-01

    We show that all smooth Killing horizons with compact horizon sections of 4-dimensional gauged N = 2 supergravity coupled to any number of vector multiplets preserve 2{c}_1(K)+4ℓ supersymmetries, where K is a pull-back of the Hodge bundle of the special Kähler manifold on the horizon spatial section. We also demonstrate that all such horizons with {c}_1(K)=0 exhibit an sl(2,R) symmetry and preserve either 4 or 8 supersymmetries. If the orbits of the sl(2,R) symmetry are 2-dimensional, the horizons are warped products of AdS2 with the horizon spatial section. Otherwise, the horizon section admits an isometry which preserves all the fields. The proof of these results is centered on the use of index theorem in conjunction with an appropriate generalization of the Lichnerowicz theorem for horizons that preserve at least one supersymmetry. In all {c}_1(K)=0 cases, we specify the local geometry of spatial horizon sections and demonstrate that the solutions are determined by first order non-linear ordinary differential equations on some of the fields.

  5. A novel artificial bee colony approach of live virtual machine migration policy using Bayes theorem.

    PubMed

    Xu, Gaochao; Ding, Yan; Zhao, Jia; Hu, Liang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on the VM placement selection of live migration for power saving. We present a novel heuristic approach which is called PS-ABC. Its algorithm includes two parts. One is that it combines the artificial bee colony (ABC) idea with the uniform random initialization idea, the binary search idea, and Boltzmann selection policy to achieve an improved ABC-based approach with better global exploration's ability and local exploitation's ability. The other one is that it uses the Bayes theorem to further optimize the improved ABC-based process to faster get the final optimal solution. As a result, the whole approach achieves a longer-term efficient optimization for power saving. The experimental results demonstrate that PS-ABC evidently reduces the total incremental power consumption and better protects the performance of VM running and migrating compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  6. A model of freezing foods with liquid nitrogen using special functions

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-05-01

    A food freezing model is analyzed analytically. The model is based on the heat diffusion equation in the case of cylindrical shaped food frozen by liquid nitrogen; and assuming that the thermal conductivity of the cylindrical food is radially modulated. The model is solved using the Laplace transform method, the Bromwich theorem, and the residue theorem. The temperature profile in the cylindrical food is presented as an infinite series of special functions. All the required computations are performed with computer algebra software, specifically Maple. Using the numeric values of the thermal and geometric parameters for the cylindrical food, as well as the thermal parameters of the liquid nitrogen freezing system, the temporal evolution of the temperature in different regions in the interior of the cylindrical food is presented both analytically and graphically. The duration of the liquid nitrogen freezing process to achieve the specified effect on the cylindrical food is computed. The analytical results are expected to be of importance in food engineering and cooking engineering. As a future research line, the formulation and solution of freezing models with thermal memory is proposed.

  7. Trends in modern system theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1976-01-01

    The topics considered are related to linear control system design, adaptive control, failure detection, control under failure, system reliability, and large-scale systems and decentralized control. It is pointed out that the design of a linear feedback control system which regulates a process about a desirable set point or steady-state condition in the presence of disturbances is a very important problem. The linearized dynamics of the process are used for design purposes. The typical linear-quadratic design involving the solution of the optimal control problem of a linear time-invariant system with respect to a quadratic performance criterion is considered along with gain reduction theorems and the multivariable phase margin theorem. The stumbling block in many adaptive design methodologies is associated with the amount of real time computation which is necessary. Attention is also given to the desperate need to develop good theories for large-scale systems, the beginning of a microprocessor revolution, the translation of the Wiener-Hopf theory into the time domain, and advances made in dynamic team theory, dynamic stochastic games, and finite memory stochastic control.

  8. Stock network stability in times of crisis

    NASA Astrophysics Data System (ADS)

    Heiberger, Raphael H.

    2014-01-01

    Despite many efforts crises on financial markets are in large part still scientific black-boxes. In this paper, we use a winner-take-all approach to construct a longitudinal network of S&P 500 companies and their correlations between 2000 and 2012. A comparison to complex ecosystems is drawn, especially whether the May-Wigner theorem can describe real-world economic phenomena. The results confirm the utility of the May-Wigner theorem as a stability indicator for the US stock market, since its development matches with the two major crises of this period, the dot-com bubble and, particularly, the financial crisis. In those times of financial turmoil, the stock network changes its composition, but unlike ecological systems it tightens and the disassortative structure of prosperous markets transforms into a more centralized topology.

  9. Visual Theorems.

    ERIC Educational Resources Information Center

    Davis, Philip J.

    1993-01-01

    Argues for a mathematics education that interprets the word "theorem" in a sense that is wide enough to include the visual aspects of mathematical intuition and reasoning. Defines the term "visual theorems" and illustrates the concept using the Marigold of Theodorus. (Author/MDH)

  10. Note on the theorems of Bjerknes and Crocco

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1946-01-01

    The theorems of Bjerknes and Crocco are of great interest in the theory of flow around airfoils at Mach numbers near and above unity. A brief note shows how both theorems are developed by short vector transformations.

  11. Analysis of non locality proofs in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2012-02-01

    Two kinds of non-locality theorems in Quantum Mechanics are taken into account: the theorems based on the criterion of reality and the quite different theorem proposed by Stapp. In the present work the analyses of the theorem due to Greenberger, Horne, Shimony and Zeilinger, based on the criterion of reality, and of Stapp's argument are shown. The results of these analyses show that the alleged violations of locality cannot be considered definitive.

  12. PYGMALION: A Creative Programming Environment

    DTIC Science & Technology

    1975-06-01

    iiiiiimimmmimm wm^m^mmm’ wi-i ,»■»’■’.■- v* 26 Examples of Purely Iconic Reasoning 1-H Pythagoras ’ original proof of the Pythagorean Theorem ... Theorem Proving Machine񓟋. His program employed properties of the representation to guide the proof of theorems . His simple heruristic "Reject...one theorem the square of the hypotenuse. "Every proposition is presented as a self-contained fact relying on its own intrinsic evidence. Instead

  13. Generalized Bloch theorem and topological characterization

    NASA Astrophysics Data System (ADS)

    Dobardžić, E.; Dimitrijević, M.; Milovanović, M. V.

    2015-03-01

    The Bloch theorem enables reduction of the eigenvalue problem of the single-particle Hamiltonian that commutes with the translational group. Based on a group theory analysis we present a generalization of the Bloch theorem that incorporates all additional symmetries of a crystal. The generalized Bloch theorem constrains the form of the Hamiltonian which becomes manifestly invariant under additional symmetries. In the case of isotropic interactions the generalized Bloch theorem gives a unique Hamiltonian. This Hamiltonian coincides with the Hamiltonian in the periodic gauge. In the case of anisotropic interactions the generalized Bloch theorem allows a family of Hamiltonians. Due to the continuity argument we expect that even in this case the Hamiltonian in the periodic gauge defines observables, such as Berry curvature, in the inverse space. For both cases we present examples and demonstrate that the average of the Berry curvatures of all possible Hamiltonians in the Bloch gauge is the Berry curvature in the periodic gauge.

  14. Competition Between Transients in the Rate of Approach to a Fixed Point

    NASA Astrophysics Data System (ADS)

    Day, Judy; Rubin, Jonathan E.; Chow, Carson C.

    2009-01-01

    The goal of this paper is to provide and apply tools for analyzing a specific aspect of transient dynamics not covered by previous theory. The question we address is whether one component of a perturbed solution to a system of differential equations can overtake the corresponding component of a reference solution as both converge to a stable node at the origin, given that the perturbed solution was initially farther away and that both solutions are nonnegative for all time. We call this phenomenon tolerance, for its relation to a biological effect. We show using geometric arguments that tolerance will exist in generic linear systems with a complete set of eigenvectors and in excitable nonlinear systems. We also define a notion of inhibition that may constrain the regions in phase space where the possibility of tolerance arises in general systems. However, these general existence theorems do not not yield an assessment of tolerance for specific initial conditions. To address that issue, we develop some analytical tools for determining if particular perturbed and reference solution initial conditions will exhibit tolerance.

  15. Online Solution of Two-Player Zero-Sum Games for Continuous-Time Nonlinear Systems With Completely Unknown Dynamics.

    PubMed

    Fu, Yue; Chai, Tianyou

    2016-12-01

    Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.

  16. Revisiting Ramakrishnan's approach to relatively. [Velocity addition theorem uniqueness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, K.K.; Shankara, T.S.

    The conditions under which the velocity addition theorem (VAT) is formulated by Ramakrishnan gave rise to doubts about the uniqueness of the theorem. These conditions are rediscussed with reference to their algebraic and experimental implications. 9 references.

  17. General Theorems about Homogeneous Ellipsoidal Inclusions

    ERIC Educational Resources Information Center

    Korringa, J.; And Others

    1978-01-01

    Mathematical theorems about the properties of ellipsoids are developed. Included are Poisson's theorem concerning the magnetization of a homogeneous body of ellipsoidal shape, the polarization of a dielectric, the transport of heat or electricity through an ellipsoid, and other problems. (BB)

  18. A no-hair theorem for black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Cañate, Pedro

    2018-01-01

    In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.

  19. Generalized Browder's and Weyl's theorems for Banach space operators

    NASA Astrophysics Data System (ADS)

    Curto, Raúl E.; Han, Young Min

    2007-12-01

    We find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized Browder's theorem. We also prove that the spectral mapping theorem holds for the Drazin spectrum and for analytic functions on an open neighborhood of [sigma](T). As applications, we show that if T is algebraically M-hyponormal, or if T is algebraically paranormal, then the generalized Weyl's theorem holds for f(T), where f[set membership, variant]H((T)), the space of functions analytic on an open neighborhood of [sigma](T). We also show that if T is reduced by each of its eigenspaces, then the generalized Browder's theorem holds for f(T), for each f[set membership, variant]H([sigma](T)).

  20. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    PubMed

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-05

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Lanchester-Type Models of Warfare. Volume II

    DTIC Science & Technology

    1980-10-01

    the so-called PERRON - FROBENIUS theorem50 for nonnegative matrices that one can guarantee that (without any further assumptions about A and B) there...always exists a vector of nonnegative values such that, for example, (7.18.6) holds. Before we state the PERRON - FROBENIUS theorem for nonnegative...a proof of this important theorem). THEOREM .5.-1.1 ( PERRON [121] and FROBENIUS [60]): Let C z 0 be an n x n matrix. Then, 1. C has a nonnegative real

  2. A remark on the energy conditions for Hawking's area theorem

    NASA Astrophysics Data System (ADS)

    Lesourd, Martin

    2018-06-01

    Hawking's area theorem is a fundamental result in black hole theory that is universally associated with the null energy condition. That this condition can be weakened is illustrated by the formulation of a strengthened version of the theorem based on an energy condition that allows for violations of the null energy condition. With the semi-classical context in mind, some brief remarks pertaining to the suitability of the area theorem and its energy condition are made.

  3. Gibbs-Curie-Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth.

    PubMed

    Li, Rongjin; Zhang, Xiaotao; Dong, Huanli; Li, Qikai; Shuai, Zhigang; Hu, Wenping

    2016-02-24

    The equilibrium crystal shape and shape evolution of organic crystals are found to follow the Gibbs-Curie-Wulff theorem. Organic crystals are grown by the physical vapor transport technique and exhibit exactly the same shape as predicted by the Gibbs-Curie-Wulff theorem under optimal conditions. This accordance provides concrete proof for the theorem. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Note on a Sampling Theorem for Functions over GF(q)n Domain

    NASA Astrophysics Data System (ADS)

    Ukita, Yoshifumi; Saito, Tomohiko; Matsushima, Toshiyasu; Hirasawa, Shigeichi

    In digital signal processing, the sampling theorem states that any real valued function ƒ can be reconstructed from a sequence of values of ƒ that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of ƒ. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of ƒ can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(q)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q)n, the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.

  5. Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with correlated noise

    NASA Astrophysics Data System (ADS)

    Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.

    2011-09-01

    A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.

  6. Coalgebraic structure of genetic inheritance.

    PubMed

    Tian, Jianjun; Li, Bai-Lian

    2004-09-01

    Although in the broadly defined genetic algebra, multiplication suggests a forward direction of from parents to progeny, when looking from the reverse direction, it also suggests to us a new algebraic structure-coalge- braic structure, which we call genetic coalgebras. It is not the dual coalgebraic structure and can be used in the construction of phylogenetic trees. Math- ematically, to construct phylogenetic trees means we need to solve equations x([n]) = a, or x([n]) = b. It is generally impossible to solve these equations inalgebras. However, we can solve them in coalgebras in the sense of tracing back for their ancestors. A thorough exploration of coalgebraic structure in genetics is apparently necessary. Here, we develop a theoretical framework of the coalgebraic structure of genetics. From biological viewpoint, we defined various fundamental concepts and examined their elementary properties that contain genetic significance. Mathematically, by genetic coalgebra, we mean any coalgebra that occurs in genetics. They are generally noncoassociative and without counit; and in the case of non-sex-linked inheritance, they are cocommutative. Each coalgebra with genetic realization has a baric property. We have also discussed the methods to construct new genetic coalgebras, including cocommutative duplication, the tensor product, linear combinations and the skew linear map, which allow us to describe complex genetic traits. We also put forward certain theorems that state the relationship between gametic coalgebra and gametic algebra. By Brower's theorem in topology, we prove the existence of equilibrium state for the in-evolution operator.

  7. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  8. The B-field soft theorem and its unification with the graviton and dilaton

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2017-10-01

    In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the graviton's soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.

  9. Abel's theorem in the noncommutative case

    NASA Astrophysics Data System (ADS)

    Leitenberger, Frank

    2004-03-01

    We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's theorem.

  10. Impossible colorings and Bell's theorem

    NASA Astrophysics Data System (ADS)

    Aravind, P. K.

    1999-11-01

    An argument due to Zimba and Penrose is generalized to show how all known non-coloring proofs of the Bell-Kochen-Specker (BKS) theorem can be converted into inequality-free proofs of Bell's nonlocality theorem. A compilation of many such inequality-free proofs is given.

  11. Understanding Rolle's Theorem

    ERIC Educational Resources Information Center

    Parameswaran, Revathy

    2009-01-01

    This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich…

  12. An Application of the Perron-Frobenius Theorem to a Damage Model Problem.

    DTIC Science & Technology

    1985-04-01

    RO-RI6I 20B AN APPLICATION OF THE PERRON - FROBENIUS THEOREM TO A ill I DAMAGOE MODEL PR BLEM.. (U) PITTSBURGH UNIV PA CENTER FOR I MULTIYARIATE...any copyright notation herein. * . .r * j * :h ~ ** . . .~. ~ % *~’ :. ~ ~ v 4 .% % %~ AN APPLICATION OF THE PERRON - FROBENIUS THEOREM TO A DAMAGE...University of Sheffield, U.K. S ~ Summry Using the Perron - Frobenius theorem, it is established that if’ (X,Y) is a random vector of non-negative

  13. International Conference on Fixed Point Theory and Applications (Colloque International Theorie Du Point Fixe et Applications)

    DTIC Science & Technology

    1989-06-09

    Theorem and the Perron - Frobenius Theorem in matrix theory. We use the Hahn-Banach theorem and do not use any fixed-point related concepts. 179 A...games defined b’, tions 87 Isac G. Fixed point theorems on convex cones , generalized pseudo-contractive mappings and the omplementarity problem 89...and (II), af(x) ° denotes the negative polar cone ot of(x). This condition are respectively called "inward" and "outward". Indeed, when X is convex

  14. Markov Property of the Conformal Field Theory Vacuum and the a Theorem.

    PubMed

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-06-30

    We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.

  15. A Polarimetric Extension of the van Cittert-Zernike Theorem for Use with Microwave Interferometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Simon, N. K.

    2004-01-01

    The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.

  16. A novel noncommutative KdV-type equation, its recursion operator, and solitons

    NASA Astrophysics Data System (ADS)

    Carillo, Sandra; Lo Schiavo, Mauro; Porten, Egmont; Schiebold, Cornelia

    2018-04-01

    A noncommutative KdV-type equation is introduced extending the Bäcklund chart in Carillo et al. [Symmetry Integrability Geom.: Methods Appl. 12, 087 (2016)]. This equation, called meta-mKdV here, is linked by Cole-Hopf transformations to the two noncommutative versions of the mKdV equations listed in Olver and Sokolov [Commun. Math. Phys. 193, 245 (1998), Theorem 3.6]. For this meta-mKdV, and its mirror counterpart, recursion operators, hierarchies, and an explicit solution class are derived.

  17. Two diverse models of embedding class one

    NASA Astrophysics Data System (ADS)

    Kuhfittig, Peter K. F.

    2018-05-01

    Embedding theorems have continued to be a topic of interest in the general theory of relativity since these help connect the classical theory to higher-dimensional manifolds. This paper deals with spacetimes of embedding class one, i.e., spacetimes that can be embedded in a five-dimensional flat spacetime. These ideas are applied to two diverse models, a complete solution for a charged wormhole admitting a one-parameter group of conformal motions and a new model to explain the flat rotation curves in spiral galaxies without the need for dark matter.

  18. Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuetao; Zhu, Quanxin, E-mail: zqx22@126.com

    2015-12-15

    In this paper, we are mainly concerned with a class of stochastic neutral functional differential equations of Sobolev-type with Poisson jumps. Under two different sets of conditions, we establish the existence of the mild solution by applying the Leray-Schauder alternative theory and the Sadakovskii’s fixed point theorem, respectively. Furthermore, we use the Bihari’s inequality to prove the Osgood type uniqueness. Also, the mean square exponential stability is investigated by applying the Gronwall inequality. Finally, two examples are given to illustrate the theory results.

  19. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    NASA Astrophysics Data System (ADS)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  20. Stationary Black Holes: Uniqueness and Beyond.

    PubMed

    Heusler, Markus

    1998-01-01

    The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.

Top