Effect of concentration and temperature on the rheological behavior of collagen solution.
Lai, Guoli; Li, Yang; Li, Guoying
2008-04-01
Dynamic viscoelastic properties of collagen solutions with concentrations of 0.5-1.5% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 32.5 degrees C. All collagen solutions showed a shear-thinning flow behavior. The complex viscosity exhibited an exponential increase and the loss tangent decreased with the increase of collagen concentration (C(COL)) when the C(COL)> or =0.75%. Both storage modulus (G') and loss modulus (G'') increased with the increase of frequency and concentration, but decreased with the increase of temperature and behaved without regularity at 32.5 degrees C. The relaxation times decreased with the increase of temperature for 1.0% collagen solution. According to a three-zone model, dynamic modulus of collagen solutions showed terminal-zone and plateau-zone behavior when C(COL) was no more than 1.25% or the stated temperature was no more than 30 degrees C. The concentrated solution (1.5%) behaved being entirely in plateau zone. An application of the time-temperature superposition (TTS) allowed the construction of master curve and an Arrhenius-type TTS principle was used to yield the activation energy of 161.4 kJ mol(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, F.F.; Lash, R.P.
A phosphazene polymer with three pendant groups was synthesized and characterized as a membrane material. Substitution of the phosphazene with 64% 2-(2-methoxyethoxy)ethanol (MEE), 27% 4-methoxyphenol, and 9% 2-allyphenol yielded a hydrophilic elastomer with considerable flow at room temperature. Solution behavior showed significant aging effects where, using fresh solutions, membranes could not cast on porous ceramic supports (0.2-micron pore size) without significant polymer penetration into the pores. Solutions aged for two weeks were found to readily penetrate into the pores of the ceramic support. Analysis of fresh and aged solutions by laser light scattering showed significant loss in molecular weight withmore » time. Pervaporation of water-dye solutions using dimensionally stabilized membranes revealed in inverse correlation between flux and temperature, suggesting thermally induced morphological changes within the polymer. This polymer was found to exhibit, in the bulk state, lower critical solubility temperature (LCST) behavior where the material becomes less hydrophilic with increasing temperature. LCST behavior was probed thermally and gravimetrically and has been attributed to the anomalous pervaporation results. The degree to which LCST effects membrane transport was influenced by changes in the crosslink density and permeate side pressure.« less
Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak
2018-05-01
Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Szewczyk-Nykiel, Aneta; Kazior, Jan
2017-07-01
The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.
Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian
2016-01-01
It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427
Cruz, Madalena; Freitas, Filomena; Torres, Cristiana A V; Reis, Maria A M; Alves, Vítor D
2011-05-01
The effect of temperature on the rheology of a new fucose-containing extracellular polysaccharide (EPS) was evaluated. The steady state data revealed a shear-thinning behavior, with the viscosity being immediately recovered when the shear rate was decreased. The mechanical spectra indicated viscous solutions with entangled polymer molecules in the range of temperatures studied (from 15 °C to 65 °C). In addition, the Time-Temperature Superposition principle was successfully applied and the Cox-Merz rule was valid, reinforcing the idea of a thermorheologically simple behavior for the EPS in aqueous solution. Furthermore, the viscous and viscoelastic properties at 25 °C were maintained after consecutive heating and cooling cycles, indicating a good thermal stability under temperature fluctuations. Copyright © 2011 Elsevier B.V. All rights reserved.
Sarkar, Abhijit; Sinha, Biswajit
2016-11-15
The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinacchi, Giorgio; Domenici, Valentina
The Saupe ordering matrix of a banana-shaped mesogenic molecule as a solute in a common nematic calamitic solvent has been determined by {sup 2}H-NMR spectroscopy as a function of temperature. The temperature dependence of the Saupe ordering matrix element associated with the principal molecular axis is consistent with a glassy behavior in the reorientational motion of this particular solute molecule. The Haller expression, appropriately modified, provides a good fit to the experimental data.
Reilly, Anthony M; Briesen, Heiko
2012-01-21
The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics
Harnessing Thermoresponsive Aptamers and Gels To Trap and Release Nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Ya; Kuksenok, Olga; He, Ximin; Aizenberg, Michael; Aizenberg, Joanna; Balazs, Anna
We use computational modeling to design a device that can controllably trap and release particles in solution in response to variations in temperature. The system exploits the thermoresponsive properties of end-grafted fibers and the underlying gel substrate. The fibers mimic the temperature-dependent behavior of biological aptamers, which form a hairpin structure at low temperatures (T) and unfold at higher T, consequently losing their binding affinity. The gel substrate exhibits a lower critical solution temperature and thus, expands at low tempertures and contracts at higher T. By developing a new dissipative particle dynamics simulation, we examine the behavior of this hybrid system in a flowing fluid that contains buoyant nanoparticles. Our findings provide guidelines for creating fluidic devices that are effective at purifying contaminated solutions or trapping cells for biological assays.
Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.
Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K
2017-10-24
The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.
NASA Astrophysics Data System (ADS)
Zhao, Li; Chen, Wei; Dai, Jianwei; Wang, Zhangzhong; Zhang, Xiaobo
2017-11-01
Mg-6Gd-2Zn-0.4Zr (wt.%, GZ62K) alloy was processed by solution treatment under different temperatures. The microstructure, hardness, corrosion and wear behaviors in simulated body fluid (SBF) have been studied. The results indicate that the (Mg, Zn)3Gd phase decreases, the precipitated phases gradually increase, and the long-period stacking ordered structure disappears with the increase of solution temperature. The alloy has better corrosion resistance after solution treatment, and that solution treated at 490 °C for 12 h shows the best corrosion resistance. The friction coefficient of the alloy under dry sliding condition decreases slightly, but the mass loss increases with increasing the solution temperature. The alloy solution treated at 460 °C for 12 h exhibits the lowest friction coefficient and mass loss in SBF, and it also has the best wear resistance under dry sliding condition.
Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides
NASA Astrophysics Data System (ADS)
Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan
2014-03-01
The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.
Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.
Falibene, Agustina; Josens, Roxana
2014-12-01
Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind
2012-09-27
The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
NASA Astrophysics Data System (ADS)
Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.
2012-02-01
This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.
Three-temperature plasma shock solutions with gray radiation diffusion
Johnson, Bryan M.; Klein, Richard I.
2016-04-19
Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less
Three-temperature plasma shock solutions with gray radiation diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Bryan M.; Klein, Richard I.
Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less
Han, Bumsoo; Bischof, John C
2004-04-01
Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (< or = -40 degrees C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.
NASA Astrophysics Data System (ADS)
Cheng, Kuok Kong; Park, Chanwoo
2017-07-01
Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...
2016-08-16
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...
2014-10-03
We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less
Separation of variables solution for non-linear radiative cooling
NASA Technical Reports Server (NTRS)
Siegel, Robert
1987-01-01
A separation of variables solution has been obtained for transient radiative cooling of an absorbing-scattering plane layer. The solution applies after an initial transient period required for adjustment of the temperature and scattering source function distributions. The layer emittance, equal to the instantaneous heat loss divided by the fourth power of the instantaneous mean temperature, becomes constant. This emittance is a function of only the optical thickness of the layer and the scattering albedo; its behavior as a function of these quantities is considerably different than for a layer at constant temperature.
The Role of Solvent-Solute Interactions on The Behavior of Low Molecular Mass Organo-Gelators
NASA Astrophysics Data System (ADS)
Cavicchi, Kevin; Feng, Li
2012-02-01
Low molecular mass organo-gelators (LMOGs) are a class of small molecules that can self-assemble in organic solvents to form three-dimensional fibrillar networks. This has a profound effect on the viscoelastic properties of the solution causing physical gelation. These gels have uses in a range of industries including cosmetics, foodstuffs, plastics, petroleum and pharmaceuticals. A fundamental question in this field is: What makes a good LMOG? This talk will discuss the relationships between the viscoelastic properties and thermodynamic phase behavior of LMOG/solvent solutions. The regular solution model was used to fit the liquidus line and sol/gel transition temperature vs. concentration in different solvents to determine LMOG-solvent interaction parameters (χ = A/T). This parameter A was found to scale with the solubility parameter of the solvent, especially for non-polar solvents. This demonstrates that gelation is strongly linked to LMOG solubility and indicates that the bulk thermodynamic parameters of the LMOG (solubility parameter and melting temperature) are useful to predict the solution behavior of LMOGs.
Tarasevich, B J; Gutowska, A; Li, X S; Jeong, B-M
2009-04-01
Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery. Copyright 2008 Wiley Periodicals, Inc.
High temperature coercive field behavior of Fe-Zr powder
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2009-04-01
We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.
NASA Technical Reports Server (NTRS)
Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.
1975-01-01
Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.
Anomalous Micellization of Pluronic Block Copolymers
NASA Astrophysics Data System (ADS)
Leonardi, Amanda; Ryu, Chang Y.
2014-03-01
Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.
2001-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
Temperature Distributions in Semitransparent Coatings: A Special Two-Flux Solution
NASA Technical Reports Server (NTRS)
Siegel, Robert; Spuckler, Charles M.
1995-01-01
Radiative transfer is analyzed in a semitransparent coating on an opaque substrate and in a semitransparent layer for evaluating thermal protection behavior and ceramic component performance in high temperature applications. Some ceramics are partially transparent for radiative transfer, and at high temperatures internal emission and reflections affect their thermal performance. The behavior is examined for a ceramic component for which interior cooling is not provided. Two conditions are considered: (1) the layer is heated by penetration of radiation from hot surroundings while its external surface is simultaneously film cooled by convection, and (2) the surface is heated by convection while the semitransparent material cools from within by radiant emission leaving through the surface. By using the two-flux method, which has been found to yield good accuracy in previous studies, a special solution is obtained for these conditions. The analytical result includes isotropic scattering and requires only an integration to obtain the temperature distribution within the semitransparent material. Illustrative results are given to demonstrate the nature of the thermal behavior.
Bharmoria, Pankaj; Gehlot, Praveen Singh; Gupta, Hariom; Kumar, Arvind
2014-11-06
Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries.
Inoue, Tohru; Yamakawa, Haruka
2011-04-15
Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.
Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki
2016-07-01
Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan
2016-11-01
The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
Study of the IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujikawa, S.; Yashima, S.; Ohnishi, K.
1995-09-01
IGA/SCC of Alloy 600 steam generator (SG) tubes in the secondary side has been recognized as a matter of great concern for PWRs. IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions were studied using CERT method under potentiostatic conditions. The IGA/SCC susceptible regions were investigated as the function of pH and electrode potential. To understand the cause of IGA/SCC, the electrochemical measurements and surface film analysis were also performed in acidic and alkaline solutions. To verify the results of CERT test, the long term model boiler tests were also carried out. Thermally treated Alloy 690 showed highermore » IGA/SCC resistance than Alloy 600 under both acid and alkaline conditions.« less
Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.
Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de
2008-10-13
The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.
NASA Astrophysics Data System (ADS)
Hansch, Markus; Kaub, Hans Peter; Deck, Sascha; Carl, Nico; Huber, Klaus
2018-03-01
Dilute solutions of sodium poly(styrene sulfonate) (NaPSS) in the presence of Al3+, Ca2+, and Ba2+ were analysed by means of isothermal titration calorimetry (ITC) in order to investigate the heat effect of bond formation between those cations and the anionic SO3- residues of NaPSS. The selection of the cations was guided by the solution behavior of the corresponding PSS salts from a preceding study [M. Hansch et al., J. Chem. Phys. 148(1), 014901 (2018)], where bonds between Ba2+ and anionic PSS showed an increasing solubility with decreasing temperature and Al3+ exhibited the inverse trend. Unlike to Al3+ and Ba2+, Ca2+ is expected to behave as a purely electrostatically interacting bivalent cation and was thus included in the present study. Results from ITC satisfactorily succeeded to explain the temperature-dependent solution behavior of the salts with Al3+ and Ba2+ and confirmed the non-specific behavior of Ca2+. Additional ITC experiments with salts of Ca2+ and Ba2+ and sodium poly(acrylate) complemented the results on PSS by data from a chemically different polyanion. Availability of these joint sets of polyanion-cation combinations not only offers the chance to identify common features and subtle differences in the solution behavior of polyelectrolytes in the presence of multi-valent cations but also points to a new class of responsive materials.
Effect of amino acids on the eutectic behavior of NaCl solutions studied by DSC.
Chen, N J; Morikawa, J; Hashimoto, T
2005-06-01
The effect of a series of amino acids on the eutectic behavior of NaCl solutions at isotonic concentration has been studied by differential scanning calorimetry. The inclusion of different amino acids had different effects on eutectic formation. The amino acids were grouped into four categories based on their effect on eutectic formation: category C were amino acids that had no effect on eutectic formation; category D amino acids inhibited eutectic formation; category T amino acids shifted the melting of the eutectic to a lower temperature; category E amino acids caused the formation of a new eutectic with a melting temperature approximately -5 degrees C. The mechanism of these different effects on eutectic behavior is discussed, based on the chemical structure of the amino acids.
Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulds, J.R.; Moteff, J.; Sikka, V.K.
1983-07-01
Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25/sup 0/C and 649/sup 0/C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructuremore » in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior.« less
Thermo-responsive gels that absorb moisture and ooze water.
Matsumoto, Kazuya; Sakikawa, Nobuki; Miyata, Takashi
2018-06-13
The water content of thermo-responsive hydrogels can be drastically altered by small changes in temperature because their polymer chains change from hydrophilic to hydrophobic above their low critical solution temperature (LCST). In general, such smart hydrogels have been utilized in aqueous solutions or in their wet state, and no attempt has been made to determine the phase-transition behavior of the gels in their dried states. Here we demonstrate an application of the thermo-responsive behavior of an interpenetrating polymer network (IPN) gel comprising thermo-responsive poly(N-isopropylacrylamide) and hydrophilic sodium alginate networks in their dried states. The dried IPN gel absorbs considerable moisture from air at temperatures below its LCST and oozes the absorbed moisture as liquid water above its LCST. These phenomena provide energy exchange systems in which moisture from air can be condensed to liquid water using the controllable hydrophilic/hydrophobic properties of thermo-responsive gels with a small temperature change.
NASA Technical Reports Server (NTRS)
Peng, S. T. J.; Landel, R. F.
1983-01-01
The rheological behavior of progressively shear thickening FM-9 solutions, a time-dependent shear thickening material with characteristics of threshold behavior, is investigated as part of a study of the rheological properties of antimisting jet fuel. Flammability test results and test configurations from various sources are evaluated. A correlation is obtained between the rheological behavior and the flammability tests such that, for a given system, such as a fixed solvent system and the FM-9 polymer system, the flammability criterion can be applied to a wide range of concentrations and temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subohi, Oroosa, E-mail: oroosa@gmail.com; Shastri, Lokesh; Kumar, G.S.
2014-01-01
Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies showmore » that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T{sub c} due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample.« less
Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.
Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G
2018-04-30
Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).
Molecular dynamics simulation study of hydrogen bonding in aqueous poly(ethylene oxide) solutions.
Smith, G D; Bedrov, D; Borodin, O
2000-12-25
A molecular dynamics simulation study of hydrogen bonding in poly(ethylene oxide) (PEO)/water solutions was performed. PEO-water and water-water hydrogen bonding manifested complex dependence on both composition and temperature. Strong water clustering in concentrated solutions was seen. Saturation of hydrogen bonding at w(p) approximately equal to 0.5 and a dramatic decrease in PEO-water hydrogen bonding with increasing temperature, consistent with experimentally observed closed-loop phase behavior, were observed. Little tendency toward intermolecular bridging of PEO chains by water molecules was seen.
A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature.
Wolfrum, Stefan; Marcus, Julien; Touraud, Didier; Kunz, Werner
2016-10-01
Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5. Copyright © 2016 Elsevier B.V. All rights reserved.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-04-01
Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH
Growth of tungsten oxide nanostructures by chemical solution deposition
NASA Astrophysics Data System (ADS)
Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.
2018-05-01
Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.
Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation.
Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Dieryck, Wilfrid; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien
2017-02-13
We have designed and prepared a recombinant elastin-like polypeptide (ELP) containing precisely positioned methionine residues, and performed the selective and complete oxidation of its methionine thioether groups to both sulfoxide and sulfone derivatives. Since these oxidation reactions substantially increase methionine residue polarity, they were found to be a useful means to precisely adjust the temperature responsive behavior of ELPs in aqueous solutions. In particular, lower critical solution temperatures were found to be elevated in oxidized sample solutions, but were not eliminated. These transition temperatures were found to be further tunable by the use of solvents containing different Hofmeister salts. Overall, the ability to selectively and fully oxidize methionine residues in ELPs proved to be a convenient postmodification strategy for tuning their transition temperatures in aqueous media.
Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal.
Tian, Ye; Ju, Benzhi; Zhang, Shufen; Hou, Linan
2016-01-20
A thermoresponsive polymer, 2-hydroxy-3-butoxypropyl hydroxyethyl cellulose (HBPEC), was prepared by grafting butyl glycidyl ether (BGE) onto hydroxyethyl cellulose (HEC). The lower critical solution temperature (LCST) and critical flocculation temperature (CFT) of HBPEC were varied by changing the molar substitution (MS) and salt concentrations. Transmission electron microscopy (TEM) images and fluorescence spectroscopy showed that HBPEC can assemble into micelles. Additionally, using Nile Red as a model dye, the performance of HBPEC for the removing Nile Red from aqueous solutions via cloud point extraction procedures was investigated in detail. The encapsulation behavior of dye in the aqueous solution of HBPEC was studied by fluorescence spectroscopy and fluorescence microscope. The experimental results indicated that 99.4% of dye was removed from the aqueous solutions, and the HBPEC was recycled and reused easily, Furthermore, the recycle efficiency (RE) and maximum loading capacity portrayed little loss with the number of cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shibata, Tomohiko; Tominaga, Ayane; Takayama, Haruki; Kojima, Seiji
2013-02-01
Brillouin scattering spectroscopy has been applied to study the dynamical properties of glass transition of trehalose aqueous solutions in a high-frequency gigahertz range and in the temperature range (-190°C ≤ T ≤ 100°C). The temperature variations of sound velocity and attenuation were accurately determined using the refractive index measured by a prism-coupling method. The temperature dependence of relaxation time of the structural relaxation process was determined by the Debye model. Its temperature dependence shows Arrhenius behavior in a liquid state. The parameters of Arrhenius law were also determined as a function of trehalose concentration.
NASA Astrophysics Data System (ADS)
Meznarich, Norman Anthony Kang
Aqueous solutions of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) amphiphilic triblock copolymers (commercially known as Pluronic surfactants) undergo reversible and temperature-dependent micellization and arrangement into cubic ordered lattices known as "micelle gels". The macroscopic behavior of the ordering is a transition from a liquid to a gel. While the phase behavior and gel structure of pure Pluronic surfactant solutions have been well studied, less is known about the effects of added ternary solutes. In this dissertation, a comprehensive investigation into the effects of the added pharmaceutical methylparaben on solutions of F127 ranging from 10 to 30 wt% was conducted in order to better understand the behavior of F127 in multicomponent pharmaceutical formulations. The viscoelastic properties of F127 gel formation were studied using rheometry, where heating rates of 0.1, 1, and 10 degrees C/min were also used to probe the kinetics of the gel transition. In solutions containing methylparaben, F127 gelation occurred at up to 15 degrees C lower temperatures and was accelerated by a factor of three to four. Small angle x-ray scattering (SAXS) was used to characterize the structure of the ordered domains, and how they were affected by the presence of dissolved pharmaceuticals. It was found that ordered domain formation changed from heterogeneous nucleation and growth to possible homogeneous nucleation and growth. A roughly 2% reduction in the cubic lattice parameter was also observed for solutions containing methylparaben. Differential scanning calorimetry (DSC) experiments were performed on a series of different Pluronic surfactants in order to characterize the micellization behavior as a function of PPO center block length and PEO/PPO ratio. Added methylparaben suppressed the micellization endotherm, the degree of suppression depending linearly on the amount of added methylparaben, as well as the length of the PPO center block and PEO/PPO ratio. This dissertation yielded a thorough characterization of the changes in micellization and gelation behavior in F127 gels as a result of added pharmaceuticals. Previously unobserved behavior such as the onset of ordered domain formation in F127 gels was observed, and a greater understanding of the interactions between amphiphilic copolymer solutions and dissolved solutes was achieved.
Magnetite solubility and phase stability in alkaline media at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.
Magnetite, Fe{sub 3}O{sub 4}, is the dominant oxide constituent of the indigenous corrosion layers that form on iron base alloys in high purity, high temperature water. The apparent simultaneous stability of two distinct oxidation states of iron in this metal oxide is responsible for its unique solubility behavior. The present work was undertaken to extend the experimental and theoretical bases for estimating solubilities of an iron corrosion product (Fe{sub 3}O{sub 4}/Fe(OH){sub 2}) over a broader temperature range and in the presence of complexing, pH-controlling reagents. These results indicate that a surface layer of ferrous hydroxide controls magnetite solubility behavior atmore » low temperatures in much the same manner as a surface layer of nickel(II) hydroxide was previously reported to control the low temperature solubility behavior of NiO. The importance of Fe(III) ion complexes implies not only that most previously-derived thermodynamic properties of the Fe(OH){sub 3}{sup {minus}} ion are incorrect, but that magnetite phase stability probably shifts to favor a sodium ferric hydroxyphosphate compound in alkaline sodium phosphate solutions at elevated temperatures. The test methodology involved pumping alkaline solutions of known composition through a bed of Fe{sub 3}O{sub 4} granules and analyzing the emerging solution for Fe. Two pH-controlling reagents were tested: sodium phosphate and ammonia. Equilibria for the following reactions were described in thermodynamic terms: (a) Fe(OH){sub 2}/Fe{sub 3}O{sub 4} dissolution and transformation, (b) Fe(II) and Fe(III) ion hydroxocomplex formation (hydrolysis), (c) Fe(II) ion amminocomplex formation, and (d) Fe(II) and Fe(III) ion phosphatocomplex formation. 36 refs.« less
[Results of Simulation Studies
NASA Technical Reports Server (NTRS)
2003-01-01
Lattice Monte Carlo and off-lattice molecular dynamics simulations of h(sub 1)t(sub 4) and h(sub 4)t(sub l) (head/tail) amphiphile solutions have been performed as a function of surfactant concentration and temperature. The lattice and off-lattice systems exhibit quite different self-assembly behavior at equivalent thermodynamic conditions. We found that in the weakly aggregating regime (no preferred-size micelles), all models yield similar micelle size distributions at the same average aggregation number, albeit at different thermodynamic conditions (temperatures). In the strongly aggregating regime, this mapping between models (through temperature adjustment) fails, and the models exhibit qualitatively different micellization behavior. Incipient micellization in a model self-associating telechelic polymer solution results in a network with a transient elastic response that decays by a two-step relaxation: the first is due to a heterogeneous jump-diffusion process involving entrapment of end-groups within well-defined clusters and this is followed by rapid diffusion to neighboring clusters and a decay (terminal relaxation) due to cluster disintegration. The viscoelastic response of the solution manifests characteristics of a glass transition and entangled polymer network.
Controlling block copolymer phase behavior using ionic surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, D.; Aswal, V. K.
2016-05-23
The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at highermore » temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.« less
Tian, Zhenhua; Duan, Lian; Wu, Lei; Shen, Lirui; Li, Guoying
2016-06-01
Understanding the rheological behavior of collagen solutions crosslinked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w)=0-0.1] is fundamental either to design optimized products or to ensure stable flow. Under steady shear, all the samples exhibited pseudoplasticity with shear-thinning behavior, and the flow curves were well described by Ostwald-de Waele model and Carreau model. With increased amounts of GTA, the viscosity increased from 6.15 to 168.54 Pa·s at 0.1s(-1), and the pseudoplasticity strengthened (the flow index decreased from 0.549 to 0.117). Additionally, hysteresis loops were evaluated to analyze the thixotropy of the native and crosslinked collagen solutions, and indicated that stronger thixotropic behavior was associated with higher amount of GTA. Furthermore, the values of apparent yield stress were negative, and a flow index <1 for all the systems obtained via Herschel-Bulkley model confirmed that the native and crosslinked collagen solutions belonged to pseudoplastic fluid without apparent yield stress. However, the increment of dynamic denaturation temperature determined by dynamic temperature sweep was not obvious. The viscoelastic properties were examined based on creep-recovery measurements and then simulated using Burger model and a semi-empirical model. The increase in the proportion of recoverable compliance (instantaneous and retardant compliance) reflected that the crosslinked collagen solutions were more resistant to the deformation and exhibited more elastic behavior than the native collagen solution, accompanied by the fact that the compliance value decreased from 39.317 to 0.152 Pa(-1) and the recovery percentage increased from 1.128% to 87.604%. These data indicated that adjusting the amount of GTA could be a suitable mean for manipulating mechanical properties of collagen-based biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
Low-temperature dielectric behavior of Nb{sub 2}O{sub 5}-SiO{sub 2} solid solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choosuwan, H.; Guo, R.; Bhalla, A. S.
2003-03-01
Dielectric properties of Nb{sub 2}O{sub 5}(0.92):SiO{sub 2}(0.08) ceramic were measured in the temperature range of 10-300 K by the cryostat system. Frequency-dependent dielectric loss suggests the relaxation behavior of this material. The relaxation mechanism was analyzed by the Arrhenius relationship and the Cole-Cole plot. Calculated distribution of relaxation time reveals deviation from the pure Debye relaxation.
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution
Esmaeeli, Hadi S.; Farnam, Yaghoob; Bentz, Dale P.; Zavattieri, Pablo D.; Weiss, Jason
2016-01-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to −35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained. PMID:28082830
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.
Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason
2017-02-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.
Dynamical properties of water-methanol solutions
NASA Astrophysics Data System (ADS)
Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Cirino; Vasi, Sebastiano; Stanley, H. Eugene
2016-02-01
We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ˜ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.
NASA Technical Reports Server (NTRS)
Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David
2006-01-01
The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.
The thermal stability of the nanograin structure in a weak solute segregation system.
Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren
2017-02-08
A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.
Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature.
Chaharlang, Mahmood; Samavati, Vahid
2015-08-01
The steady shear flow properties of dispersions of Cordia myxa leaf gum (CMLG) were determined as a function of concentration (0.5-2.5%, w/w), and temperature (10-50 °C). The CMLG dispersions exhibited strong shear-thinning behavior at all concentrations and temperatures. The Power-law (Ostwald-Waele's) and Herschel-Bulkley models were employed to characterize flow behavior of CMLG solutions at 0.1-100 s(-1) shear rate. Non-Newtonian shear-thinning behavior was observed at all temperatures and concentrations. While increase in temperature decreased the viscosity and increased the flow behavior indices, adverse effect was obtained by increasing the concentration. The Power-law model was found the best model to describe steady shear flow behavior of CMLG. The pseudoplasticity of CMLG increased markedly with concentration. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 5.972-18.104 kJ/mol, as concentration increased from 0.5% to 2.5%, at a shear rate of 10 s(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Transient natural convection with density inversion from a horizontal cylinder
NASA Astrophysics Data System (ADS)
Wang, P.; Kahawita, R.; Nguyen, D. L.
1992-01-01
This paper is devoted to a numerical investigation of the free convection flow about a horizontal cylinder maintained at 0 °C in a water ambient close to the point of maximum density. Complete numerical solutions covering both the transient as well as steady state have been obtained. Principal results indicate that the proximity of the ambient temperature to the point of maximum density plays an important role in the type of convection pattern that may be obtained. When the ambient temperature is within 4.7 °C
Solution-processed flexible NiO resistive random access memory device
NASA Astrophysics Data System (ADS)
Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon
2018-04-01
Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Greenbaum, S.; Surampudi, S.
2000-01-01
Quarternary lithium-ion battery electrolyte solutions containing ester co-solvents in mixtures of carbonates have been demonstrated to have high conductivity at low temperatures (< -20C). However, in some cases the presence of such co-solvents does not directly translate into improved low temperature cell performance, presumably due to the formation of ionically resistive surface films on carbonaceous anodes. In order to understand this behavior, a number of lithium-graphite cells have been studied containing electrolytes with various ester co-solvents, including methyl acetate (MA), ethyl acetate (EA), ethyl propionate (EP), and ethyl butyrate (EB). The charge/discharge characterization of these cells indicates that the higher molecular weight esters result in electrolytes which possess superior low temperature performance in contrast to the lower molecular weight ester-containing solutions, even though these solutions display lower conductivity values.
Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method
NASA Astrophysics Data System (ADS)
Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.
2018-05-01
Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.
Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy
Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin
2016-01-01
The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at −50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation. PMID:27426919
Kanno, H; Kajiwara, K; Miyata, K
2010-05-21
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R
NASA Astrophysics Data System (ADS)
Kanno, H.; Kajiwara, K.; Miyata, K.
2010-05-01
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R
2016-06-09
The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.
NASA Technical Reports Server (NTRS)
Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.
1971-01-01
The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.
Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.
2011-01-01
The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: rav@knights.ucf.edu
2014-06-15
In his study of superfluid turbulence in the low-temperature limit, Svistunov [“Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutionsmore » holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, “Motion of a vortex filament and its relation to elastica,” J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.« less
Reimer, Joachim; Vogel, Frédéric; Steele-MacInnis, Matthew
2016-05-18
Aqueous solutions of salts at elevated pressures and temperatures play a key role in geochemical processes and in applications of supercritical water in waste and biomass treatment, for which salt management is crucial for performance. A major question in predicting salt behavior in such processes is how different salts affect the phase equilibria. Herein, molecular dynamics (MD) simulations are used to investigate molecular-scale structures of solutions of sodium and/or potassium sulfate, which show contrasting macroscopic behavior. Solutions of Na-SO4 exhibit a tendency towards forming large ionic clusters with increasing temperature, whereas solutions of K-SO4 show significantly less clustering under equivalent conditions. In mixed systems (Nax K2-x SO4 ), cluster formation is dramatically reduced with decreasing Na/(K+Na) ratio; this indicates a structure-breaking role of K. MD results allow these phenomena to be related to the characteristics of electrostatic interactions between K(+) and SO4 (2-) , compared with the analogous Na(+) -SO4 (2-) interactions. The results suggest a mechanism underlying the experimentally observed increasing solubility in ternary mixtures of solutions of Na-K-SO4 . Specifically, the propensity of sodium to associate with sulfate, versus that of potassium to break up the sodium-sulfate clusters, may affect the contrasting behavior of these salts. Thus, mutual salting-in in ternary hydrothermal solutions of Na-K-SO4 reflects the opposing, but complementary, natures of Na-SO4 versus K-SO4 interactions. The results also provide clues towards the reported liquid immiscibility in this ternary system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef.
Frelka, John C; Phinney, David M; Wick, Macdonald P; Heldman, Dennis R
2017-12-01
The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality. © 2017 Institute of Food Technologists®.
Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; ...
2016-05-13
In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less
NASA Technical Reports Server (NTRS)
Bigelow, Glen
2008-01-01
The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of these alloys during repeated actuation were investigated. Finally, the effect of quaternary alloying on the thermal stability of NiTiPdX alloys is determined via thermal cycling of the materials to increasing temperatures under load. It was found that solid solution additions of platinum and gold resulted in about a 30 C increase in upper use temperature compared to the baseline NiTiPd alloy, providing an added measure of over-temperature protection.
High Temperature Fatigue Crack Growth Behavior of Alloy 10
NASA Technical Reports Server (NTRS)
Gayda, John
2001-01-01
Methods to improve the high temperature, dwell crack growth resistance of Alloy 10, a high strength, nickel-base disk alloy, were studied. Two approaches, heat treat variations and composition modifications, were investigated. Under the heat treat approach, solution temperature, cooling rates, and stabilization, were studied. It was found that higher solution temperatures, which promote coarser grain sizes, coupled with a 1550 F stabilization treatment were found to significantly reduce dwell crack growth rates at 1300 F Changes in the niobium and tantalum content were found to have a much smaller impact on crack growth behavior. Lowering the niobium:tantalum ratio did improve crack growth resistance and this effect was most pronounced for coarse grain microstructures. Based on these findings, a coarse grain microstructure for Alloy 10 appears to be the best option for improving dwell crack growth resistance, especially in the rim of a disk where temperatures can reach or exceed 1300 T. Further, the use of advanced processing technologies, which can produce a coarse grain rim and fine grain bore, would be the preferred option for Alloy 10 to obtain the optimal balance between tensile, creep, and crack growth requirements for small gas turbine engines.
Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L
2017-12-20
An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.
Chopade, Prashant D; Sarma, Bipul; Santiso, Erik E; Simpson, Jeffrey; Fry, John C; Yurttas, Nese; Biermann, Kari L; Chen, Jie; Trout, Bernhardt L; Myerson, Allan S
2015-12-28
The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.
NASA Astrophysics Data System (ADS)
Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.; Simpson, Jeffrey; Fry, John C.; Yurttas, Nese; Biermann, Kari L.; Chen, Jie; Trout, Bernhardt L.; Myerson, Allan S.
2015-12-01
The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopade, Prashant D.; Sarma, Bipul; Santiso, Erik E.
The diterpene steviol glycoside, rebaudioside A, is a natural high potency non-caloric sweetener extracted from the leaves of Stevia rebaudiana. This compound shows a parabolic change in sweet taste intensity with temperature which contrasts with the general finding for other synthetic or natural sweeteners whose sweet taste increases with temperature. The nonmonotonic taste behavior was determined by sensory analysis using large taste panels. The conformational landscape of rebaudioside A was established at a range of temperatures by means of nuclear magnetic resonance and molecular dynamics simulation. The relationship between various conformations and the observed sweetness of rebaudioside A is described.
Liu, Jie; Lu, Xiaolong; Wu, Chunrui
2013-01-01
Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064
Diffusion coefficients of nitric oxide in water: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.
2016-09-01
Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.
Smart membranes: Hydroxypropyl cellulose for flavor delivery
NASA Astrophysics Data System (ADS)
Heitfeld, Kevin A.
2007-12-01
This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. An encapsulation system was designed to utilize the solution (phase separation) behavior of a temperature responsive gel. The gel morphology was understood and diffusive properties were tailored through morphology manipulation. Heterogeneous and homogeneous gels were processed by understanding the effect of temperature on gel morphology. A morphology model was developed linking bulk diffusive properties to molecular morphology. Flavor was encapsulated within the gel and the emulsifying capability was determined. The capsules responded to temperature similarly to the pure polymer. The release kinetcs were compared to commercial gelatin capsules and the temperature responsive polymer took longer to release.
NASA Astrophysics Data System (ADS)
Li, Xiaolei; Hyun, Kyu
2018-05-01
The effects of polyethylene oxide (PEO) homopolymer on the gelation behavior of a PEO100-PPO65-PEO100 triblock copolymer (Pluronic F127) were explored in aqueous solution under non-isothermal and isothermal conditions. Under non-isothermal conditions (temperature sweep test), two transition points were observed on increasing temperature, that is, at lower and upper gelation temperatures (LTgel and UTgel, respectively). Between LTgel and UTgel, F127 aqueous solutions maintained a hard gel state. Both molecular weight (MW) and PEO concentration affected these two gelation temperatures. In particular, relative molecular weight (MWrel ≡ molecular weight of PEO homopolymer/PEO segment of F127) affected LTgel. LTgel decreased on increasing PEO concentration at MWrel values of <1, but increased on increasing PEO concentration at MWrel values of >1. On the other hand, UTgel decreased with increasing PEO concentration regardless of MWrel. Under isothermal conditions (fixed temperature between LTgel and UTgel), the effects of PEO homopolymer on the mechanical properties of F127 hard gel were systemically investigated using small and large amplitude oscillatory shear tests. In the linear viscoelastic regime, total intra-cycle stress and elastic intra-cycle stress were similar, and viscous response increased on increasing PEO concentration. However, at large strain amplitudes, hard gels showed intra-cycle stiffening but inter-cycle softening behavior. In addition, on increasing PEO concentrations, viscous nonlinearities underwent strain-rate thickening followed by strain-rate thinning.
A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds.
Wu, Yan; Guo, Rui; Cao, Nannan; Sun, Xiangjun; Sui, Zhongquan; Guo, Qingbin
2018-01-15
The rheological properties of polysaccharide (SAP) from Sophora alopecuroides L. seeds were systematically investigated by fitting different models. The steady flow testing indicated that SAP exhibited shear-thinning behaviors, which were enhanced with increasing concentration and decreasing temperature. This was demonstrated quantitatively by Williamson and Arrhenius models. According to the generalized Morris equation, SAP exhibited random coil conformation with the potential to form weak gel-like network. On the other hand, multiple results of dynamic tests confirmed the viscoelastic properties of SAP, showing oscillatory behaviors between a dilute solution and an elastic gel. Furthermore, SAP solutions were thermorheologically stable without remarkable energetic interactions or structural heterogeneity, since their rheological patterns were successfully applied to Time-temperature superposition (TTS) principle, modified Cole-Cole analysis and Cox-Merz rule. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Agena, S. M.; Pusey, M. L.; Bogle, I. D.
1999-01-01
A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is utilized to represent the thermoelastic behavior of a thick walled composite cylinder that can be idealized as transversely isotropic. A multiaxial statement of the constitutive theory employed is presented, as well as the out of the plane of isotropy, plane stress, and plane strain reductions. The derived analytical solution presented is valid for a cylindrical tube or thin disk with a concentric hole, subjected to internal and/or external pressure and a general radial temperature distribution. A specific problem examined is that of a thick walled cylinder subjected to an internal and external pressure loading and a linear radial temperature distribution. The results are expressed in nondimensional form and the effects on the response behavior are examined for various material properties, fiber orientation and types of loadings.
Musch, Judith; Schneider, Stefanie; Lindner, Peter; Richtering, Walter
2008-05-22
The thermoresponsive behavior of poly-(N-isopropylacrylamide) (PNiPAM) microgels embedded in a covalently cross-linked polyacrylamide hydrogel matrix was investigated using ultraviolet-visible (UV-vis) spectroscopy, small-angle neutron scattering (SANS), and confocal laser scanning microscopy. The hydrogel synthesis was performed at two different temperatures, below and above the volume phase transition temperature of PNiPAM, resulting in highly swollen or fully collapsed PNiPAM microgel particles during the incorporation step. UV-vis spectroscopy experiments verify that the incorporation of thermosensitive microgels leads to temperature-sensitive optical properties of the composite materials. SANS measurements at different temperatures show that the thermosensitive swelling behavior of the PNiPAM microgels is fully retained in the composite material. Volume and structure criteria of the embedded microgel particles are compared to those of the free microgels in acrylamide solution. To visualize the temperature responsive behavior of larger PNiPAM particles, confocal fluorescence microscopy images of PNiPAM beads, of 40-microm size, were taken at two different temperatures. The micrographs also demonstrate the retained temperature sensitivity of the embedded microgels.
Effect of solution non-ideality on erythrocyte volume regulation.
Levin, R L; Cravalho, E G; Huggins, C E
1977-03-01
A non-ideal, hydrated, non-dilute pseudo-binary salt-protein-water solution model of the erythrocyte intracellular solution is presented to describe the osmotic behavior of human erythrocytes. Existing experimental activity data for salts and proteins in aqueous solutions are used to formulate van Laar type expressions for the solvent and solute activity coefficients. Reasonable estimates can therefore be made of the non-ideality of the erythrocyte intracellular solution over a wide range of osmolalities. Solution non-ideality is shown to affect significantly the degree of solute polarization within the erythrocyte intracellular solution during freezing. However, the non-ideality has very little effect upon the amount of water retained within erythrocytes cooled at sub-zero temperatures.
ERIC Educational Resources Information Center
Bergbreiter, David E.; Mijalis, Alexander J.; Fu, Hui
2012-01-01
Reversible polymer dehydration and precipitation from water due to the unfavorable entropy of hydration is examined using a melting-point apparatus. The thermoresponsive lower critical solution temperature (LCST) behavior of poly(N-isopropylacrylamide) (PNIPAM) is responsible for these effects. An experiment is described that allows students to…
de Hemptinne, Ferdinand; Slaus, Gunter; Vandendael, Mathieu; Jacquet, Wolfgang; De Moor, Roeland J; Bottenberg, Peter
2015-07-01
Heating a sodium hypochlorite solution improves its effectiveness. The aim of this study was to measure the in vivo temperature changes of sodium hypochlorite solutions that were initially preheated to 66°C or at room temperature inside root canals during routine irrigation. Thirty-five root canals were prepared to ISO size 40 with 4% taper. A type K (nickel-chromium-nickel) thermocouple microprobe (Testo NV, Ternat, Belgium) was positioned within 3 mm of the working length to measure the temperature at 1-second intervals. In each canal, 2 test protocols were evaluated in a randomized order with 3% sodium hypochlorite solutions: (1) preheated to 66°C and (2) at room temperature. The temperature measurements began 5 seconds before the 25 seconds of irrigant injections and continued for 240 seconds. This resulted in 270 data points for each protocol. The temperature of the irrigant at room temperature increased from the initial intracanal temperature after injection of 20.7°C (±1.2°C) to 30.9°C (±1.3°C) in 10 seconds and to 35°C (±0.9°C) after 240 seconds. The temperature of the preheated to 66°C solution decreased from 56.4°C (±2.7°C) to 45.4°C (±3.0°C) after 5 seconds, reached 37°C (±0.9°C) after 60 seconds, and reached 35.7°C (±0.8°C) after 240 seconds. The original temperatures of the sodium hypochlorite solutions were buffered inside the root canal and tended to rapidly evolve to equilibrium. The findings of this study contribute to an improved understanding of the thermodynamic behaviors of irrigant solutions inside root canals in vivo. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Association and dissociation of an aqueous amphiphile at elevated temperatures.
Bowron, D T; Finney, J L
2007-08-23
The hydrophobic interaction is often thought to increase with increasing temperature. Although there is good experimental evidence for decreased aqueous solubility and increased clustering of both nonpolar and amphiphilic molecules as temperature is increased, the detailed nature of the changes in intermolecular interactions with temperature remain unknown. By use of isotope substitution neutron scattering difference measurements on a 0.04 mole fraction solution of tert-butanol in water as the solute clustering passes through a temperature maximum, the changes in local intermolecular structures are examined. Although, as expected, the solute molecules cluster through increased contact between their nonpolar head groups with the exclusion of water, the detailed geometry of the mutual interactions changes as temperature increases. As the clustering breaks up with further temperature increase, the local structures formed do not mirror those that were found in the low-temperature dispersed system: the disassembly process is not the reverse of assembly. The clusters formed by the solute head groups are reminiscent of structures that are found in systems of spherical molecules, modulated by the additional constraint of near-maximal hydrogen bonding between the polar tails of the alcohol and the solvent water. Although the overall temperature behavior is qualitatively what would be expected of a hydrophobically driven system, the way the system resolves the competing interactions and their different temperature dependencies is complex, suggesting it could be misleading to think of the aggregation of aqueous amphiphiles solely in terms of a hydrophobic driving force.
Molecular description of the LCST behavior of an elastin-like polypeptide.
Li, Nan K; García Quiroz, Felipe; Hall, Carol K; Chilkoti, Ashutosh; Yingling, Yaroslava G
2014-10-13
Elastin-like polypeptides (ELPs) with the repeat sequence of VPGVG are widely used as a model system for investigation of lower critical solution temperature (LCST) transition behavior. In this paper, the effect of temperature on the structure, dynamics and association of (VPGVG)18 in aqueous solution is investigated using atomistic molecular dynamics simulations. Our simulations show that as the temperature increases the ELP backbones undergo gradual conformational changes, which are attributed to the formation of more ordered secondary structures such as β-strands. In addition, increasing temperature changes the hydrophobicity of the ELP by exposure of hydrophobic valine-side chains to the solvent and hiding of proline residues. Based on our simulations, we conclude that the transition behavior of (VPGVG)18 can be attributed to a combination of thermal disruption of the water network that surrounds the polypeptide, reduction of solvent accessible surface area of the polypeptide, and increase in its hydrophobicity. Simulations of the association of two (VPGVG)18 molecules demonstrated that the observed gradual changes in the structural properties of the single polypeptide chain are enough to cause the aggregation of polypeptides above the LCST. These results lead us to propose that the LCST phase behavior of poly(VPGVG) is a collective phenomenon that originates from the correlated gradual changes in single polypeptide structure and the abrupt change in properties of hydration water around the peptide and is a result of a competition between peptide-peptide and peptide-water interactions. This is a computational study of an important intrinsically disordered peptide system that provides an atomic-level description of structural features and interactions that are relevant in the LCST phase behavior.
Photoacoustic assay for probing amyloid formation: feasibility study
NASA Astrophysics Data System (ADS)
Petrova, Elena; Yoon, Soon Joon; Pelivanov, Ivan; O'Donnell, Matthew
2018-02-01
The formation of amyloid - aggregate of misfolded proteins - is associated with more than 50 human pathologies, including Alzheimer's disease, Parkinson's disease, and Type 2 diabetes mellitus. Investigating protein aggregation is a critical step in drug discovery and development of therapeutics targeted to these pathologies. However, screens to identify protein aggregates are challenging due to the stochastic character of aggregate nucleation. Here we employ photoacoustics (PA) to screen thermodynamic conditions and solution components leading to formation of protein aggregates. Particularly, we study the temperature dependence of the Gruneisen parameter in optically-contrasted, undersaturated and supersaturated solutions of glycoside hydrolase (lysozyme). As nucleation of protein aggregates proceeds in two steps, where the first is liquid-liquid separation (rearrangement of solute's density), the PA response from complex solutions and its temperature-dependence monitor nucleation and differentiate undersaturated and supersaturated protein solutions. We demonstrate that in the temperature range from 22 to 0° C the PA response of contrasted undersaturated protein solution behaves similar to water and exhibits zero thermal expansion at 4°C or below, while the response of contrasted supersaturated protein solution is nearly temperature independent, similar to the behavior of oils. These results can be used to develop a PA assay for high-throughput screening of multi-parametric conditions (pH, ionic strength, chaperone, etc.) for protein aggregation that can become a key tool in drug discovery, targeting aggregate formation for a variety of amyloids.
Study of IGA/SCC behavior of alloy 600 and 690 SG tubing materials in high temperature solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujikawa, S.; Yashima, S.; Hattori, T.
1996-09-01
Intergranular attack/stress corrosion cracking (IGA/SCC) of Alloy 600 Steam Generator (SG) tubes in the secondary side has been recognized as a matter of great concern for PWRs. Here, IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions was studied using constant extension rate testing (CERT) method under potentiostatic conditions. The IGA/SCC susceptible regions were investigated as a function of pH and electrode potential. The IGA/SCC resistance of SG tubing materials were ranked as, MA600 = TT600 {much_lt} TT690 in acidic solutions, and MA600 < TT600 < TT690 in alkaline solutions. TT690 showed higher corrosion resistance than MA600 andmore » TT600 in both acidic and alkaline conditions. To verify the results of CERT test, long term model boiler tests were also carried out. The model boiler which consists of combinations of several SG tubing materials and tube support plate configurations, operated for more than 15,000 hrs under the simulated operating plant conditions. The results of destructive examination showed good correspondence with the results of a fundamental study, CERT test. The improved performance of alternate SG tubing material was confirmed.« less
Viscometric and misting properties of polymer-modified fuel
NASA Technical Reports Server (NTRS)
Grens, E. A., II; Williams, M. C.
1982-01-01
Solutions of polyisobutylenes L160, L200, B200, and B230 in Jet-A were prepared at concentrations up to 3000 ppm. These polymers have molecular weights in the range 5 to 9 x 1,00,000 and have previously been shown to induce anti-misting properties in Jet-A. In connection with the pumpability of such solutions, especially at low temperatures, the shear viscosity, eta, of these solutions was measured at temperatures 25 C, 0 C, and -25 C. Concentration-dependence of eta was very similar for all four polymer solutes, the increase of eta(c) at 3000 ppm being roughly four-fold (relative to Jet-A) for the L-series and five-fold for the B-series. This behavior prevailed at all temperatures, and there was no evidence of phase separation or other chemical instability at -25 C at any concentration. In the more practical c-range for anti-misting applications, say within 1000 ppm, the increase of eta(c) was only twofold.
Understanding the dissolution of α-zein in aqueous ethanol and acetic acid solutions.
Li, Yunqi; Li, Ji; Xia, Qiuyang; Zhang, Boce; Wang, Qin; Huang, Qingrong
2012-10-04
Zein is a corn prolamin that has broad industrial applications because of its unique physical properties. Currently, the high cost of extraction and purification, which is directly related to the dispersion of zein in different solvents, is the major bottleneck of the zein industry. Solution behaviors of zein have been studied for a long time. However, the physical nature of zein in different solvents remains unclear. In this study, small-angle X-ray scattering (SAXS), static light scattering (SLS), and rheology were combined to study the structure and protein-solvent interaction of α-zein in both acetic acid and aqueous ethanol solutions. We found that the like-dissolve-like rule, the partial unfolding, and the protonation of zein are all critical to understanding the solution behaviors. Zein holds an elongated conformation (i.e., prolate ellipsoid) in all solutions, as revealed from SAXS data. There is an "aging effect" for zein in aqueous ethanol solutions, as evidenced by the transition of Newtonian rheological profiles for fresh zein solutions to the non-Newtonian shear thinning behavior for zein solutions after storage at room temperature for 24 h. Such shear thinning behavior becomes more pronounced for zein solutions at higher concentrations. The SLS results clearly show that acetic acid is a better solvent to dissolve zein than aqueous ethanol solution, as supported by a more negative second virial coefficient. This is majorly caused by the protonation of the protein, which was further verified by the dissolution of zein in water (a nonsolvent for zein) with the addition of acids.
NASA Astrophysics Data System (ADS)
Ali, A.; Bidhuri, P.; Uzair, S.
2014-07-01
Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.
Solute-solvent cavity and bridge functions. I. Varying size of the solute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyalov, I., E-mail: ivan.vyalov@iit.it; Chuev, G., E-mail: genchuev@rambler.ru; Georgi, N., E-mail: georgi@mis.mpg.de
2014-08-21
In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersenmore » theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function.« less
Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations
NASA Astrophysics Data System (ADS)
Sánchez-Mejorada, G.; Frias, D.
2006-09-01
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usman, Muhammad; Mumtaz, Arif, E-mail: arif@qau.edu.pk; Raoof, Sobia
We report the relaxor behavior of the zirconium doped barium titanate BaZr{sub x}Ti{sub 1−x}O{sub 3} solid solutions and discuss the temperature, frequency, and concentration dependence in terms of correlations among the polar nanoregions. The relaxor behavior is analyzed within the mean field theory by estimating the Edward-Anderson order parameter q{sub EA}. Additionally, we find that q{sub EA} calculated for the different concentrations obeys a scaling behavior q{sub EA}=1−(T/T{sub m}){sup n}, where T{sub m} are the respective dielectric maxima temperatures and n = 2.0 ± 0.1. The frequency dependence of the q{sub EA} also shows results consistent with the above mentioned picture.
Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution
NASA Astrophysics Data System (ADS)
Franciska, P. L.; Erryani, A.; Annur, D.; Kartika, I.
2017-05-01
Metal foam is a new class of materials with promising applications and a unique combination of physical, chemical, and mechanical properties. The purpose of biodegradable implants is to support tissue regeneration and healing in a particular application by material degradation and implant replacement through the surrounding tissue. Magnesium alloys are expected to be degraded in the body and its corrosion products not deleterious to the surrounding tissue. In the present study, the foam metal was manufactured via powder metallurgy with a different variation of sintering temperature and TiH2 used as a foaming agent which are added to Mg-1Ca-3Zn alloy as much 3% wt TiH2. The sintering temperatures were 500, 550 and 600 °C with a constant holding time of 5 hours. It’s critical that the sintering temperature is carefully selected in consideration of their corrosion behavior. This paper reports the study of the behavior of the Mg-Ca-Zn alloy metal foam which evaluated by SEM, EDX, and electrochemical corrosion test in Hank’s solutions. After exposure, the SEM result of Mg-Ca-Zn-3TiH2 to Hank’s solution, a volcano-like structure is formed. The streams of H2 bubbles form at local sites on the Mg alloy surface where electrochemical reactions are taking place, leading to the particular structure with around shape and often with a hole in the center. The corresponding EDS result maps reveal enrichment of O, Ca, P and Mg as corrosion product. Potentiodynamic polarization experiments conducted at 37 °C and pH 7.4 indicated the increased biodegradation rates resulted from porous structure of foam samples. Corrosion rate in 500oC sintering temperature were 1.99 millimiles per year (mmpy) with corrosion current density (I corr ) 87.3.10-6 A/cm2, corrosion rate in 550 °C sintering temperature were 2,16 mmpy with I corr 94.4.10-6 A/cm2 and rate in 600 °C sintering temperature were 2.41 mmpy with I corr 105.10-6 A/cm2. The results showed that the increasing of sintering temperature could influence the corrosion resistance of Mg alloy.
NASA Technical Reports Server (NTRS)
Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.
1988-01-01
The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.
2018-05-01
High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.
Quantum Critical Behavior in a Concentrated Ternary Solid Solution
Sales, Brian C.; Jin, Ke; Bei, Hongbin; Stocks, G. Malcolm; Samolyuk, German D.; May, Andrew F.; McGuire, Michael A.
2016-01-01
The face centered cubic (fcc) alloy NiCoCrx with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess –TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantum critical region. The limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system. PMID:27188715
Quantum critical behavior in a concentrated ternary solid solution
Sales, Brian C.; Bei, Hongbin; Stocks, George Malcolm; ...
2016-05-18
The face centered cubic (fcc) alloy NiCoCr x with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess –TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantummore » critical region. Lastly, the limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system.« less
NASA Astrophysics Data System (ADS)
Hasnine, M.; Tolla, B.; Vahora, N.
2018-04-01
This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.
NASA Technical Reports Server (NTRS)
Winget, J. M.; Hughes, T. J. R.
1985-01-01
The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.
Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Peter M.; Lodge, Timothy P.
2008-08-26
The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less
Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane
NASA Astrophysics Data System (ADS)
Lee, Byung-Chul
2017-10-01
The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.
Expansion of a Rarefied Gas Cloud in a Vacuum: Asymptotic Treatment
NASA Astrophysics Data System (ADS)
Zhuk, V. I.
2018-02-01
The unsteady expansion of a rarefied gas of finite mass in an unlimited space is studied. The long-time asymptotic behavior of the solution is examined at Knudsen numbers tending to zero. An asymptotic analysis shows that, in the limit of small Knudsen numbers, the behavior of the macroscopic parameters of the expanding gas cloud at long times (i.e., for small density values) has nothing to do with the free-molecular or continuum flow regimes. This conclusion is unexpected and not obvious, but follows from a uniformly suitable solution constructed by applying the method of outer and inner asymptotic expansions. In particular, the unusual temperature behavior is of interest as applied to remote sensing of rocket exhaust plumes.
On-Chip Hardware for Cell Monitoring: Contact Imaging and Notch Filtering
2005-07-07
a polymer carrier. Spectrophotometer chosen and purchased for testing optical filters and materials. Characterization and comparison of fabricated...reproducibility of behavior. Multi-level SU8 process developed. Optimization of actuator for closing vial lids and development of lid sealing technology is...bending angles characterized as a function of temperature in NaDBS solution. " Photopatternable polymers are a viable interim packaging solution; through
Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.
Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas
2016-03-08
Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.
NASA Astrophysics Data System (ADS)
Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto
2018-06-01
We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.
NASA Astrophysics Data System (ADS)
Barnes, R. G.; Han, J.-W.; Torgeson, D. R.; Baker, D. B.; Conradi, M. S.; Norberg, R. E.
1995-02-01
We report the results of measurements of the proton (1H) spin-lattice relaxation rate R1 at high temperatures (to ~1400 K) in the hcp (α) solid-solution phases of the Sc-H, Y-H, and Lu-H systems, and of R1(45Sc) in Sc-H and Sc-D solid solutions. The latter measurements show unambiguous evidence of an anomalous increase at ~1000 K, whereas R1(1H) shows no such increase at any temperature. This behavior of R1(1H) contrasts with that in the bcc V-H, etc., solid solutions where anomalous relaxation occurs below ~1000 K, and in all investigated metal dihydride phases, MH2-x. The anomalous R1(1H) behavior in α-VHx, α-NbHx, etc., may be understood in terms of fast spin relaxation in the H2 gas in equilibrium with the solid, mediated by fast gas-solid exchange of hydrogen. However, in the present systems, α-ScHx, α-YHx, etc., the H2 gas pressure in equilibrium with the hcp systems is extremely low, resulting in negligible H2 concentration in the gas phase, and consequently a negligible contribution to R1(1H). In contrast, some of the present measurements indicate that the R1(45Sc) anomaly does result from the hydrogen content of the metal, but the mechanism remains unexplained.
Liang, Xinmiao; Xu, Feng; Lin, Bingcheng; Su, Fan; Schramm, Karl-Werner; Kettrup, Antonius
2002-11-01
To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degrees C was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degrees C (k'30/k'40) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao Zhu; Jack A. Walker; J. Liang
Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phasemore » behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF/STB. The bubblepoint pressure for live oil samples varied between 1600 psi and 2100 psi. Wax precipitation is one of the most important phenomena in wax deposition and, hence, needs to be modeled. There are various models present in the literature. Won's model, which considers the wax phase as a non-ideal solution, and Pedersen's model, which considers the wax phase as an ideal solution, were compared. Comparison indicated that Pedersen's model gives better results, but the assumption of wax phase as an ideal solution is not realistic. Hence, Won's model was modified to consider different precipitation characteristics of the various constituents in the hydrocarbon fraction. The results obtained from the modified Won's model were compared with existing models, and it was found that predictions from the modified model are encouraging.« less
SRB seawater corrosion project
NASA Technical Reports Server (NTRS)
Bozack, M. J.
1991-01-01
The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.
Work statistics of charged noninteracting fermions in slowly changing magnetic fields.
Yi, Juyeon; Talkner, Peter
2011-04-01
We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at temperature β^{-1} and examine the probability density function (pdf) of the work done by a magnetic field slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the temperature. At high temperatures (β≪1) the pdf is given by an asymmetric Laplace distribution for a single particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/β(2). At low temperatures the pdf becomes strongly peaked at the center with a variance that still linearly increases with N but exponentially decreases with the temperature. We point out the consequences of these findings for the experimental confirmation of the Jarzynski equality such as the low probability issue at high temperatures and its solution at low temperatures, together with a discussion of the crossover behavior between the two temperature regimes. ©2011 American Physical Society
Work statistics of charged noninteracting fermions in slowly changing magnetic fields
NASA Astrophysics Data System (ADS)
Yi, Juyeon; Talkner, Peter
2011-04-01
We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at temperature β-1 and examine the probability density function (pdf) of the work done by a magnetic field slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the temperature. At high temperatures (β≪1) the pdf is given by an asymmetric Laplace distribution for a single particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/β2. At low temperatures the pdf becomes strongly peaked at the center with a variance that still linearly increases with N but exponentially decreases with the temperature. We point out the consequences of these findings for the experimental confirmation of the Jarzynski equality such as the low probability issue at high temperatures and its solution at low temperatures, together with a discussion of the crossover behavior between the two temperature regimes.
Sandeep, P; Sahu, S K; Kothai, P; Pandit, G G
2016-09-01
Studies on leaching behavior of metals associated with coal fly ash (FA) are of great concern because of possible contamination of the aquatic environment. In the present study, leaching behavior of metals (As, Se, Cr, Pb, V, Zn, etc.) in two different FA samples (FA1 and FA2) was investigated at various pH (2-12), temperatures of leachate solution and using TCLP. At pH 2, the highest leaching was observed for Fe (21.6 and 32.8 µg/g), whereas at pH 12, Arsenic was found to have the highest leaching (1.5 and 2.4 µg/g) in FA1 and FA2. Leachate solution temperature showed a positive effect on the metal's leachability. In TCLP, most of the metal's leachability was observed to be higher than that of batch leaching tests. The present study suggests that, leaching of As and Se from FA samples can moderately affect ground/surface water quality at the study locations.
Tensile Properties of a Cellulose Ether Hydrogel
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Gehrke, Stevin H.
2003-01-01
Poly(hydroxycellulose) solutions were molded into dumbell-shaped specimens crosslinked with divinyl sulfone. The resulting hydrogels were tested in tension at room temperature and also at a temperature above the 40 C shrinkage transition. In contrast to behavior seen in some other responsive gels, apparent initial tangent moduli were lower in the shrunken state; breaking elongations were significantly higher. Possible molecular mechanisms are suggested, and implications for the design of temperature-responsive actuators ("artificial muscles") from this material are discussed.
Optical and Transport Properties of Energetic Materials
NASA Astrophysics Data System (ADS)
Choi, Chang Sun
1990-01-01
The densities of Hydroxyl ammonium nitrate (HAN) based fast reacting liquids were measured as a function of pressure (up to 4.83 kbars) at several temperatures and the results of density measurements were fit to the Tait equation. Also the shear viscosities of this liquid were measured as a function of both pressure and temperature. The free volume model was applied to explain behavior of the shear viscosity with the assumption that only the reference temperature (T_0) in the Fulcher (1925), WLF (Williams, Landel, and Ferry) and Angell equations depends on pressure. The general relation to predict viscosity of this liquid at any temperature and pressure was derived and the difference between expected and measured values are about 5%. The phase diagrams of the HAN solution, Triethanol ammonium nitrate (TEAN) solution and LP-1845 were obtained through Differential Scanning Calorimetry (DSC) measurements. The TEAN solution has a eutectic temperature in the vicinity of 260^circK. The measured phase diagrams are in good agreement with the calculated phase diagrams. The TEAN solutions show a large supercooling effect. Some phase separation was observed in the TEAN solutions and this separation was believed to be due to eutectic composition of the TEAN solution. The expected freezing temperature of LP-1845 was almost the same with the calculated T_0 from the viscosity data. Raman spectra from the HAN solution, TEAN solution and LP-1845 were measured. Every peak in the spectra was assigned. These solutions show various interactions, such as ion-ion pairing and ion-water interaction. The strongest peak was a NO_3^- symmetric stretch mode at 1050 cm^{-1}. The time correlation functions were calculated from the Raman spectra of the 1050 cm^{-1} peak. The correlation time, which can be calculated from the linewidth, become shorter with decreasing temperatures and with increasing concentrations. The Kubo's stochastic theory explains the correlation functions very well if the solution is relatively dilute. The pressure dependence of the reaction rate was estimated by using the density data and Raman peak shift data.
Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.
Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse
2017-06-15
The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.
Influence of thermally activated processes on the deformation behavior during low temperature ECAP
NASA Astrophysics Data System (ADS)
Fritsch, S.; Scholze, M.; F-X Wagner, M.
2016-03-01
High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.
Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites
NASA Astrophysics Data System (ADS)
Saxena, Mandvi; Roy, Pinku; Acharya, Megha; Bose, Imon; Tanwar, Khagesh; Maiti, Tanmoy
2016-12-01
Environmental friendly, non-toxic double perovskite BaxSr2-xTiCoO6 compositions with 0 ≤ x ≤ 0.2 were synthesized using solid-state reaction route for high temperature thermoelectric (TE) applications. XRD and SEM studies confirmed the presence of single-phase solid solution with highly dense microstructure for all the oxide compositions. Temperature dependent electrical conductivity measurement showed semiconductor to metal (M-S) transition in these double perovskites. Incorporation of barium in Sr2TiCoO6 pushed M-S transition to higher temperature making it a potential candidate for high temperature TE applications. Conductivity behaviors of these oxides were explained by small polaron model. Furthermore, these oxides exhibit a glass like behavior resulting in low thermal conductivity. Low temperature dielectric measurement revealed relaxor ferroelectric behavior in these oxides below room temperature. Transition of these relaxors into a glassy state beyond Burns temperature (TD) was found responsible for having low thermal conductivity in these oxides. Maximum dimensionless TE figure-of-merit ZT = 0.29 at 1223 K was achieved for BaxSr2-xTiCoO6 composition with x = 0.2.
Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.
Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir
2014-01-01
The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
NASA Astrophysics Data System (ADS)
Ogawa, Emiyu; Takenoya, Hiromi; Arai, Tsunenori
2016-03-01
We have proposed to apply the photosensitization reaction in myocardium interstitial fluid using talaporfin sodium to realize less-heated electrical conduction block for a tachyarrhythmia treatment: PD Ablation®. The cytotoxicity of the extracellular photosensitization reaction efficiency may change by the talaporfin sodium binding with serum proteins. These binding would change with solution temperature. We investigated the binding behavior of talaporfin sodium with human serum albumin (HSA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) changing solution temperature from 17 to 37°C. We also studied the photocytotoxicity change by solution temperature of 17 and 37°C measuring cell lethality by WST assay using fetal bovine serum. The binding ratio of talaporfin sodium with HDL and LDL decreased 6.3% and 12.8% with temperature increasing from 17 to 37°C. There was no significant difference in the case of HSA. The cell lethality was increased about 30% with temperature increasing from 17 to 37°C. The myocardium tissue temperature increase was reported that less than 5°C in the case of our PD Ablation®. We think that the photocytotoxicity change by these temperature increasing would be negligible in our PD Ablation®. We suggest that the temperature maintaining would be necessary to keep the photocytotoxicity efficiency in the case of the open surgery that would cause the tissue surface temperature decreasing.
Study on rheological properties of CMC/Eu-Tb solutions with different concentrations
NASA Astrophysics Data System (ADS)
Fu, Z. C.; Ye, J.; Xiong, J.
2018-05-01
The rheological properties of polymer solution are sensitive to variations in the polymer structure. Carboxymethyl cellulose (CMC) aqueous solution has been used in many fields, such as food, medicine and paper industry. In this paper, the effects of different concentrations (2% - 6%) of CMC/Eu-Tb on their rheological properties were investigeted, including steady-state flow and viscoelastic response. The results show that, the viscosity of CMC/Eu-Tb is lower than that of CMC, at the same concentrations; the products solutions present a nearly Newtonian behavior at the low concentrations (2% - 3%); while at the higher concentrations (4% - 6%), the products solutions present a pseudoplastic behavior; shear-thinning behavior is due to the polymer chains unravel under the action of flow and the molecular chains are oriented in the flow direction. The results also show that the viscosity of the solutions decreases with increasing temperature. Dynamic rheological tests show that CMC/Eu-Tb has viscoelasticity in the concentrations of 2% - 6%. At lower concentrations, the elastic modulus G‧ is slightly higher than the viscous modulus G″, and as the concentrations increase, the elastic modulus G‧ is significantly higher than the viscous modulus G″. It means that at the lower solution concentrations, the solutions tend to be less elastic and easier to flow. Most of the energies are lost through the viscous flow. As the solution concentrations increase, the solutions tend to be more elastic, and the system tends to form a gel.
Wang, Hai-Yan; Lu, Shu-Shen; Lun, Zhao-Rong
2009-02-01
Knowledge of the glass transition behavior of vitrification solutions is important for research and planning of the cryopreservation of biological materials by vitrification. This brief communication shows the analysis for the glass transition and glass stability of the multi-component vitrification solutions containing propanediol (PE), dimethyl sulfoxide (Me2SO) and polyvinyl alcohol (PVA) by using differential scanning calorimetry (DSC) during the cooling and subsequent warming between 25 and -150 degrees C. The glass formation of the solutions was enhanced by introduction of PVA. Partial glass formed during cooling and the fractions of free water in the partial glass matrix increased with the increasing of PVA concentration, which caused slight decline of glass transition temperature, T(g). Exothermic peaks of devitrification were delayed and broadened, which may result from the inhibition of ice nucleation or recrystallization of PVA.
Single chain structure of a poly(N-isopropylacrylamide) surfactant in water.
Abbott, Lauren J; Tucker, Ashley K; Stevens, Mark J
2015-03-05
We present atomistic simulations of a single PNIPAM-alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer-polymer and polymer-water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water. The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. The atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.
NASA Technical Reports Server (NTRS)
Hosny, W. M.; Tabakoff, W.
1975-01-01
A two-dimensional finite difference numerical technique is presented to determine the temperature distribution in a solid blade of a radial guide vane. A computer program is written in Fortran IV for IBM 370/165 computer. The computer results obtained from these programs have a similar behavior and trend as those obtained by experimental results.
Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi
2016-04-01
Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.
Unruh thermal hadronization and the cosmological constant
NASA Astrophysics Data System (ADS)
Frassino, Antonia M.; Bleicher, Marcus; Mann, Robert B.
2018-05-01
We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.
NASA Astrophysics Data System (ADS)
Chakraborty, Sumit
2017-10-01
The equations governing the interaction of viscous deformation with porous flow of fluids give rise to wave-like solutions. Such solutions have been explored in the context of melt and fluid flow in the mantle and crust at high temperatures, where ductile behavior occurs. Now it has been shown that the coupling of the kinetics of chemical reactions with fluid flow may give rise to similar solutions. This opens intriguing new possibilities. Porosity waves may arise in low-temperature regimes, and may become more accessible to observation, or they may remain mathematical curiosities because other modes of transport dominate in such settings. A number of possibilities, questions, and future courses of research have been opened up by Omlin et al. (2017).
Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie
2008-04-01
The thermoresponsive micellization behavior of amphoteric polyurethane (APU) was studied in HCl aqueous solution (pH 2.0) through light scattering, transmission electron microscopy, and fluorescent measurement. When APU concentration is high enough, nonreversible assembly of macromolecules can be observed with temperature decreasing from 25 to 4 degrees C. However, micelles reaching equilibrium at 4 degrees C can self-assemble reversibly in the temperature range of 4-55 degrees C. According to our research, we found it is the temperature sensitivity of the poly(propylene oxide) (PPO) segments that leads to the reassembly of APU at lower temperature. We proposed that core-shell-corona micelles ultimately form with hydrophobic core, PPO shell, and hydrophilic corona when temperature increases from 4 to 25 degrees C. This structure is very stable and does not change at higher temperatures (25-55 degrees C). That provides a new way to obtain stable micelles with small size and narrow size distribution at higher concentration of APU.
A microliter capillary rheometer for characterization of protein solutions.
Hudson, Steven D; Sarangapani, Prasad; Pathak, Jai A; Migler, Kalman B
2015-02-01
Rheometry is an important characterization tool for therapeutic protein solutions because it determines syringeability and relates indirectly to solution stability and thermodynamic interactions. Despite the maturity of rheometry, there remains a need for a rheometer that meets the following three needs of the biopharamaceutical industry: small volume; large dynamic range of shear rates; and no air-sample interface. Here, we report the development of a miniaturized capillary rheometer that meets these needs and is potentially scalable to a multiwell format. These measurements consume only a few microliters of sample and have an uncertainty of a few percent. We demonstrate its performance on monoclonal antibody solutions at different concentrations and temperatures. The instrument has a dynamic range of approximately three decades (in shear rate) and can measure Newtonian, shear thinning, and yielding behaviors, which are representative of the different solution behaviors typically encountered. We compare our microliter capillary rheometer with existing instruments to describe the range of parameter space covered by our device. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Gao, Zhiwen; Zhou, Youhe
2015-04-01
Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.
Heydari, Ali; Razavi, Seyed Mohammad Ali; Irani, Mahdi
2018-03-01
In this paper, influence of temperature (25, 35, 45 and 55°C) and sugars (sucrose and lactose) at different concentrations (0, 5, 10 and 15%) on some molecular parameters of starches from two canary seed varieties (C05041 and CDC Maria) in the dilute regime were investigated in comparison to wheat starch (WS). The results indicated that the intrinsic viscosity ([η]) values of C05041, CDC Maria and WS samples were 1.42, 1.46 and 1.70dl/g at 25°C, respectively. Intrinsic viscosity of selected starches decreased with an increase in temperature, but the effect of high temperatures were somewhat unnoticeable. By increasing the sugar concentration, intrinsic viscosity of each starch solution significantly decreased in comparison with the value determined for sugar free solution. Lactose had more pronounced effect on the intrinsic viscosity reduction of CDC Maria starch and WS at 25°C and 35°C compared with sucrose (P<0.05). But at 55°C, the effect of increasing sucrose on decreasing of [η] of CDC Maria and WS samples were more considerable. The shape factor of starch samples at 25°C were spherical, but increasing temperature from 25°C to 55°C, CSSs and WS samples took an ellipsoidal shape. The interaction between starches and solvent/cosolutes is the predominant factors determining their functional properties in food systems. One of the aspects can help to understand the characteristic of biopolymers such as starches is determination of their dilute solution properties as a function of common additives which are used in food systems. As a matter of fact, dilute solution properties can help to understand the potential applications of biopolymers in food and non-food application. Attentively, dilute solution properties would give some priceless information about molecular properties, biopolymer behavior and its interaction with copolymers. For instance, intrinsic viscosity provides deep insight into fundamental properties of the solute and its interaction with the solvent and/or cosolutes, conformation of flexible chains. There are many studies which investigated the effect of different parameters such as temperature, salts and sugars on dilute solution properties of hydrocolloids, especially gums. Regrettably, few researches scrutinized the influence of various cosolutes on dilute solution properties of starch. Then in this paper, we studied the dilute solution properties of starches from two canary seed varieties (C05041 and CDC Maria), as a new potential source of starch, (CSSs), in comparison to wheat starch at different experimental conditions (temperatures and sugars at different concentrations) in order to shed light on its behavior in real system in comparison to wheat starch. Because of the unique properties of wheat starch, comparison of canary seed starch with wheat starch in dilute regime can help to having better vision of this new starch source. Overall, the intrinsic viscosity, coil dimensions (R coil and V coil ), swollen specific volume, shape function, and hydration parameter of selected starches were determined affected by temperature and sugars concentration treatments. The importance of these results will be cleared when taking into account the influence of crucial additives generally used in food systems, for instance, different sugars and/or frequent processing parameters such as temperature on rheological and functional properties. Copyright © 2017 Elsevier B.V. All rights reserved.
On Chaotic Behavior of Temperature Distribution in a Heat Exchanger
NASA Astrophysics Data System (ADS)
Bagyalakshmi, Morachan; Gangadharan, Saisundarakrishnan; Ganesh, Madhu
The objective of this paper is to introduce the notion of fractional derivatives in the energy equations and to study the chaotic nature of the temperature distribution in a heat exchanger with variation of temperature dependent transport properties. The governing fractional partial differential equations are transformed to a set of recurrence relations using fractional differential transform method and solved using inverse transform. The approximate analytical solution obtained by the proposed method has good agreement with the existing results.
Tensile Properties of Poly (N-vinyl caprolactam) Gels
NASA Technical Reports Server (NTRS)
Morgret, Leslie D.; Hinkley, Jeffrey A.
2004-01-01
N-vinyl caprolactam was copolymerized with ethylene glycol dimethacrylate using a free-radical initiator in alcohol/water solution. The resulting gels were thermally-responsive in water, undergoing an approximate fivefold reversible volume shrinkage between room temperature and ca. 50 C. Tensile testing showed that the stress-strain behavior was qualitatively different in the collapsed state above the temperature-induced transition. At the higher temperature, gels were stiffer, more ductile, and showed greater time dependence. Implications for the design of gel actuators are briefly discussed.
Ambipolar thermoelectric power of chemically-exfoliated RuO2 nanosheets
NASA Astrophysics Data System (ADS)
Kim, Jeongmin; Yoo, Somi; Moon, Hongjae; Kim, Se Yun; Ko, Dong-Su; Roh, Jong Wook; Lee, Wooyoung
2018-01-01
The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.
Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.
Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike
2016-11-01
This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.
Transient Effects in Planar Solidification of Dilute Binary Alloys
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2008-01-01
The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.
Chemical thermodynamic representations of and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, T.M.; Lindemer, T.B.
1984-01-01
All available oxygen potential-temperature-composition data for the calcium fluorite-structure phase were retrieved from the literature and utilized in the development of a binary solid solution representation of the phase. The data and phase relations are found to be best described by a solution of (Pu/sub 4/3/O/sub 2/) and (PuO/sub 2/) with a temperature dependent interaction energy. The fluorite-structure is assumed to be represented by a combination of the binaries and , and thus treated as a solution of (Pu/sub 4/3/O/sub 2/), (PuO/sub 2/), (UO/sub 2/), and either (U/sub 2/O/sub 4/./sub 5/) or (U/sub 3/O/sub 7/). The resulting equations wellmore » reproduce the large amount of oxygen potential-temperature-composition data for the mixed oxide system, all of which were also retrieved from the literature. These models are the first that appear to display the appropriate oxygen potential-temperature-composition and phase relation behavior over the entire range of existence for the phases. 39 refs., 10 figs., 3 tabs.« less
Developing upconversion nanoparticle-based smart substrates for remote temperature sensing
NASA Astrophysics Data System (ADS)
Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.
2018-02-01
Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.
NASA Astrophysics Data System (ADS)
AlKhatib, Mahmoud; Eisenhauer, Anton
2017-07-01
In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in aragonite we performed precipitation experiments decoupling temperature and precipitation rates (R∗, μmol/m2 h) in the interval of about 2.3-4.5 μmol/m2 h. Aragonite is the only pure solid phase precipitated from a stirred solutions exposed to an atmosphere of NH3 and CO2 gases throughout the spontaneous decomposition of (NH4)2CO3. The order of reaction with respect to Ca ions is one and independent of temperature. However, the order of reaction with respect to the dissolved inorganic carbon (DIC) is temperature dependent and decreases from three via two to one as temperature increases from 12.5 and 25.0 to 37.5 °C, respectively. Strontium distribution coefficient (DSr) increases with decreasing temperature. However, R∗ responds differently depending on the initial Sr/Ca concentration and temperature: at 37.5 °C DSr increase as a function of increasing R∗ but decrease for 12.5 and 25 °C. Not seen at 12.5 and 37.5 °C but at 25 °C the DSr-R∗ gradient is also changing sign depending on the initial Sr/Ca ratio. Magnesium (Mg) adsorption coefficient between aragonite and aqueous solution (DMg) decreases with temperature but increases with R∗ in the range of 2.4-3.8 μmol/m2 h. Strontium isotope fractionation (Δ88/86Sraragonite-aq) follows the kinetic type of fractionation and become increasingly negative as a function of R∗ for all temperatures. In contrast Ca isotope fractionation (Δ44/40Caaragonite-aq) shows a different behavior than the Sr isotopes. At low temperatures (12.5 and 25 °C) Ca isotope fractionation (Δ44/40Caaragonite-aq) becomes positive as a function of R∗. In contrast, at 37.5 °C and as a function of increasing R∗ the Δ44/40Caaragonite-aq show a Sr type like behavior and becomes increasingly negative. Concerning both the discrepant behavior of DSr as a function of temperature as well as for the Ca isotope fractionation as a function of temperature we infer that the switch of sign in the trace element partitioning as well as in the direction of the Ca isotope fractionation is probably due to the switch of complexation from a Ca2+-NH3 complexation at and below 25 °C to an Ca2+-H2O aquacomplex at 37.5 °C. The DSr-Δ88/86Srcalcite-aq correlation for calcite is independent of temperature in contrast to aragonite. We interpreted the strong DSr-temperature dependency of aragonite, the smaller range of Sr isotope fractionation as well as the shallower Δ88/86Srcalcite-aq-R∗ gradients to be a consequence of the increased aragonite solubility and the "Mg blocking effect". In contrast to Sr the Ca isotope fractionation values in calcite and aragonite depend both on the complexation in solution and independent on polymorphism.
Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason
2015-11-01
The conventional CaCl 2 -H 2 O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl 2 -H 2 O phase diagram. This study shows that the Ca(OH) 2 present in a hydrated portland cement can interact with CaCl 2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH) 2 -CaCl 2 -H 2 O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl 2 solution as the temperature changes. Specifically, the Ca(OH) 2 can react with CaCl 2 and H 2 O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl 2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).
Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason
2015-01-01
The conventional CaCl2-H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2-H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2-CaCl2-H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C). PMID:26692655
An analytical investigation of transient effects on rewetting of heated thin flat plates
NASA Technical Reports Server (NTRS)
Platt, J. A.
1993-01-01
The rewetting of a hot surface is a problem of prime importance in the microgravity application of heat pipe technology, where rewetting controls the time before operations can be re-established following depriming of a heat pipe. Rewetting is also important in the nuclear industry (in predicting behavior during loss-of-coolant accidents), as well as in the chemical and petrochemical industries. Recently Chan and Zhang have presented a closed-form solution for the determination of the rewetting speed of a liquid film flowing over a finite (but long) hot plate subject to uniform heating. Unfortunately, their physically unreasonable initial conditions preclude a meaningful analysis of start-up transient behavior. A new nondimensionalization and closed-form solution for an infinitely-long, uniformly-heated plate is presented. Realistic initial conditions (step change in temperature across the wetting front) and boundary conditions (no spatial temperature gradients infinitely far from the wetting front) are employed. The effects of parametric variation on the resulting simpler closed-form solution are presented and compared with the predictions of a 'quasi-steady' model. The time to reach steady-state rewetting is found to be a strong function of the initial dry-region plate temperature. For heated plates it is found that in most cases the effect of the transient response terms cannot be neglected, even for large times.
Effect of some nitrogen compounds thermal stability of jet A
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1982-01-01
The effect of known concentrations of some nitrogen containing compounds on the thermal stability of a conventional fuel, namely, Jet A was investigated. The concentration range from 0.01 to 0.1 wt% nitrogen was examined. Solutions were made containing, individually, pyrrole, indole, quinoline, pyridine, and 4 ethylpyridine at 0.01, 0.03, 0.06, and 0.1 wt% nitrogen concentrations in Jet A. The measurements were all made by using a standard ASTM test for evaluating fuel thermal oxidation behavior, namely, ASTM D3241, 'thermal oxidation stability of turbine fuels (JFTOT procedure).' Measurements were made at two temperature settings, and 'breakpoint temperatures' were determined. The results show that the pyrrole and indole solutions have breakpoint temperatures substantially lower than those of the Jet A used.
NASA Astrophysics Data System (ADS)
Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping
2010-02-01
The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.
Ottonello, G; Richet, P; Vetuschi Zuccolini, M
2015-02-07
We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH2 over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negative and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (XH2O) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γel which, in pure water, is slightly higher than the nominal value (i.e., γel = 1.224 against 1.2), it attains its minimum at low H2O content (γel = 0.9958) and then rises again at infinite dilution (γel = 1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH2 molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H2O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.
Thermomechanical deformation behavior of a dynamic strain aging alloy, Hastelloy X
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Miner, Robert V.; Robinson, David N.
1992-01-01
An experimental study was performed to identify the effects of dynamic strain aging (solute drag) and metallurgical instabilities under thermomechanical loading conditions. The study involved a series of closely controlled thermomechanical deformation tests on the solid-solution-strenghened nickel-base superalloy, Hastelloy X. This alloy exhibits a strong isothermal strain aging peak at approximately 600 C, promoted by the effects of solute drag and precipitation hardening. Macroscopic thermomechanical hardening trends are correlated with microstructural characteristics through the use of transmission electron microscopy. These observations are compared and contrasted with isothermal conditions. Thermomechanical behavior unique to the isothermal database is identified and discussed. The microstructural characteristics were shown to be dominated by effects associated with the highest temperature of the thermomechanical cycle. Results indicate that the deformation behavior of Hastelloy X is thermomechanically path dependent. In addition, guidance is given pertaining to deformation modeling in the context of macroscopic unified theory. An internal state variable is formulated to qualitatively reflect the isotropic hardening trends identified in the TMD experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Z.; Song, L.; Ma, Z.
Ammonia oxidation reaction (AOR) is sluggish, especially at ambient temperature. To make kinetic study in electrochemical cell more informative and relevant to the catalysts’ performance in direct ammonia fuel cells (DAFCs) operating at about 100°C, it is desirable to study the AOR kinetics at elevated temperatures. However, ammonia evaporation accelerates with increasing temperature causing decrease of ammonia concentration with time. Here, we show a feasible solution to this issue - let argon gas bubble through concentrated ammonia before entering the electrochemical cell so that the solution can be kept ammonia saturated and oxygen free. Repeatable AOR polarization curves were obtainedmore » at temperatures up to 60°C. The AOR activities are characterized by the average currents at 0.5 V versus RHE measured at 20 mV s-1 in potential cycles below the potential of peak current. For PtIr/C, the PGM mass activities are 25 A g-1 at 25°C and 225 A g -1 at 60°C. The results for Pt/C and Ir/C and discussion of the causes for their distinct kinetic behavior will be presented at the meeting.« less
Liang, Z.; Song, L.; Ma, Z.; ...
2018-04-01
Ammonia oxidation reaction (AOR) is sluggish, especially at ambient temperature. To make kinetic study in electrochemical cell more informative and relevant to the catalysts’ performance in direct ammonia fuel cells (DAFCs) operating at about 100°C, it is desirable to study the AOR kinetics at elevated temperatures. However, ammonia evaporation accelerates with increasing temperature causing decrease of ammonia concentration with time. Here, we show a feasible solution to this issue - let argon gas bubble through concentrated ammonia before entering the electrochemical cell so that the solution can be kept ammonia saturated and oxygen free. Repeatable AOR polarization curves were obtainedmore » at temperatures up to 60°C. The AOR activities are characterized by the average currents at 0.5 V versus RHE measured at 20 mV s-1 in potential cycles below the potential of peak current. For PtIr/C, the PGM mass activities are 25 A g-1 at 25°C and 225 A g -1 at 60°C. The results for Pt/C and Ir/C and discussion of the causes for their distinct kinetic behavior will be presented at the meeting.« less
Zaleski, Curtis M; Tricard, Simon; Depperman, Ezra C; Wernsdorfer, Wolfgang; Mallah, Talal; Kirk, Martin L; Pecoraro, Vincent L
2011-11-21
The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.
NASA Technical Reports Server (NTRS)
Gayda, John
2003-01-01
As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.
Translational and rotational dynamics of monosaccharide solutions.
Lelong, Gérald; Howells, W Spencer; Brady, John W; Talón, César; Price, David L; Saboungi, Marie-Louise
2009-10-01
Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.
Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.
Lv, Fukou; Liu, Baolin; Li, Weijie; Jaganathan, Ganesh K
2014-02-01
Nanoparticles in solution offer unique electrical, mechanical and thermal properties due to their physical presence and interaction with the state of dispersion. This work is aimed to study the effects of hydroxyapatite (HA) nanoparticles on the devitrification and recrystallization events of two important cryoprotective solutions used in cell and tissue preservation namely glycerol (60%w/w) and PEG-600 (50%w/w). HA nanoparticles (20, 40 or 60 nm) were incorporated into solutions at the content of 0.1% or 0.5%(w/w), and were studied by differential scanning calorimeter (DSC) and cryomicroscopy. The presence of nanoparticles does not change the glass transition temperatures and melting temperatures of quenched solutions, but significantly affects the behavior of devitrification and recrystallization upon warming. Cryomicroscopic investigation showed the complex interactions among solution type, nanoparticle size and nanoparticle content, which apparently influence ice crystal growth or recrystallization in the quenched dispersions. These findings have significant implications for biomaterial cryopreservation, cryosurgery, and food manufacturing. The complexity of ice crystal growth kinetics in nanoparticle-containing dispersions remains to be poorly understood at the moment. Copyright © 2013 Elsevier Inc. All rights reserved.
Influence of Composition on the Thermoelectric Properties of Bi1- x Sb x Thin Films
NASA Astrophysics Data System (ADS)
Rogacheva, E. I.; Nashchekina, O. N.; Orlova, D. S.; Doroshenko, A. N.; Dresselhaus, M. S.
2017-07-01
Bi1- x Sb x solid solutions have attracted much attention as promising thermoelectric (TE) materials for cooling devices at temperatures below ˜200 K and as unique model materials for solid-state science because of a high sensitivity of their band structure to changes in composition, temperature, pressure, etc. Earlier, we revealed a non-monotonic behavior of the concentration dependences of TE properties for polycrystalline Bi1- x Sb x solid solutions and attributed these anomalies to percolation effects in the solid solution, transition to a gapless state, and to a semimetal-semiconductor transition. The goal of the present work is to find out whether the non-monotonic behavior of the concentration dependences of TE properties is observed in the thin film state as well. The objects of the study are Bi1- x Sb x thin films with thicknesses in the range d = 250-300 nm prepared by thermal evaporation of Bi1- x Sb x crystals ( x = 0-0.09) onto mica substrates. It was shown that the anomalies in the dependence of the TE properties on Bi1- x Sb x crystal composition are reproduced in thin films.
Mutual Influence of Mannitol and Trehalose on Crystallization Behavior in Frozen Solutions.
Jena, Sampreeti; Suryanarayanan, Raj; Aksan, Alptekin
2016-06-01
Phase separation of trehalose during freeze-drying could render it ineffective as a lyoprotectant. The bulking agent, mannitol, on the other hand, should crystallize readily upon freezing. It is therefore imperative to understand the mutual interaction of these sugars during freezing to ensure preservation of the API during freeze-drying. We investigated the effect of mannitol to trehalose ratio (R) on the crystallization behavior of both solutes using Differential Scanning Calorimetry, X-Ray Crystallography and FTIR Spectrosopy during controlled freezing and annealing. When R = 1, crystallization of both mannitol (as hemihydrate) and trehalose (as α-anhydrate) were observed. When R ≥ 1, extent of mannitol crystallization was directly proportional to the value of R. When R < 1, trehalose completely suppressed mannitol crystallization. At R > 1, the freeze concentrate was heterogeneous and characterized by two glass transitions - the lower temperature transition (Tg") attributed to systems containing "extra" unfrozen water. When heated above Tg", crystallization of mannitol and the associated unfrozen water resulted in Tg' (glass transition temperature of the freeze-concentrate). R and not the total solute concentration, dictates the composition of the freeze concentrate as well as the physical stability of the excipients.
NASA Astrophysics Data System (ADS)
Ochs, Oliver; Heckl, Wolfgang M.; Lackinger, Markus
2018-05-01
Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.
Temperature transition of human hemoglobin at body temperature: effects of calcium.
Kelemen, C; Chien, S; Artmann, G M
2001-01-01
We studied the effects of calcium ion concentration on the temperature dependence of rheological behavior of human red blood cells (RBCs) and concentrated hemoglobin solutions. Our previous study (G. M. Artmann, C. Kelemen, D. Porst, G. Büldt, and S. Chien, 1998, Biophys. J., 75:3179-3183) showed a critical temperature (Tc) of 36.4 +/- 0.3 degrees C at which the RBCs underwent a transition from non-passage to passage through 1.3 microm micropipettes in response to an aspiration pressure of -2.3 kPa. An increase in intracellular Ca2+ concentration by using the ionophore A23187 reduced the passability of intact RBCs through small micropipettes above T(c); the micropipette diameter needed for >90% passage increased to 1.7 microm. Viscometry of concentrated hemoglobin solutions (45 and 50 g/dl) showed a sudden viscosity transition at 36 +/- 1 degrees C (Tc(eta)) at all calcium concentrations investigated. Below Tc(eta), the viscosity value of the concentrated hemoglobin solution at 1.8 mM Ca(2+) was higher than that at other concentrations (0.2 microM, 9 mM, and 18 mM). Above Tc(eta), the viscosity was almost Ca2+ independent. At 1.8 mM Ca2+ and 36 +/- 1 degrees C, the activation energy calculated from the viscometry data showed a strong dependence on the hemoglobin concentration. We propose that the transition of rheological behavior is attributable to a high-to-low viscosity transition mediated by a partial release of the hemoglobin-bound water. PMID:11371439
Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures
Talebi, Elnaz; Tahir, Mahmood Md.; Yasreen, Airil
2014-01-01
The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system. PMID:24526915
NASA Technical Reports Server (NTRS)
Padovan, J.; Tovichakchaikul, S.
1983-01-01
This paper will develop a new solution strategy which can handle elastic-plastic-creep problems in an inherently stable manner. This is achieved by introducing a new constrained time stepping algorithm which will enable the solution of creep initiated pre/postbuckling behavior where indefinite tangent stiffnesses are encountered. Due to the generality of the scheme, both monotone and cyclic loading histories can be handled. The presentation will give a thorough overview of current solution schemes and their short comings, the development of constrained time stepping algorithms as well as illustrate the results of several numerical experiments which benchmark the new procedure.
Simulation of Layered Magma Chambers.
ERIC Educational Resources Information Center
Cawthorn, Richard Grant
1991-01-01
The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…
Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.
Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho
2015-05-19
Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.
NASA Astrophysics Data System (ADS)
Park, Chang-Soo; Lee, Kyung Su; Chu, Dongil; Lee, Juwon; Shon, Yoon; Kim, Eun Kyu
2017-12-01
We report the room temperature ferromagnetic properties of graphene adsorbed by cobalt oxide using electrochemical method. The cobalt oxide doping onto graphene was carried out in 0.1 M LiCoO2/DI-water solution. The doped graphene thin film was determined to be a single layer from Raman analysis. The CoO doped graphene has a clear ferromagnetic hysteresis at room temperature and showed a remnant magnetization, 128.2 emu/cm3. The temperature dependent conductivity of the adsorbed graphene showed the semiconducting behavior and a band gap opening of 0.12 eV.
Sun, Fengyuan; Huang, Qilin; Wu, Jianyong
2014-12-19
The rheological behaviors of an exopolysaccharide (EPS) from a Cordyceps sinensis fungus fermentation were investigated. The intrinsic viscosity of 1986 ± 55 mL/g indicated an extended and rigid chain for EPS. Shear-thinning behavior was observed and became apparent with increasing concentration. According to cross model, two critical transition concentrations (c(*) and c(**)) from dilute solution to semidilute and then to concentrated domain were 0.45 and 6.14 mg/mL. Flow activation energy was calculated by Arrhenius equation and decreased with increasing concentration, indicating a lower sensitivity to temperature. From dynamic frequency sweep, EPS system was classified to three regions including dilution solution (1.25mg/mL), entanglement network (3.75 and 5.00 mg/mL) and weak gel (≥ 7.50 mg/mL). Notably, the increase in η(*) at high frequencies was attributed to a large flow resistance depended on the rigid chain of EPS. Based on Winter-Chambon criterion, EPS formed gel at 2.6 mg/mL (cgel) and showed typical weak gel from temperature ramp and repetitive strain sweep. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Salgado, D.; Zemánková, K.; Noya, E. G.
In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less
NASA Astrophysics Data System (ADS)
Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo
2018-01-01
Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.
NASA Astrophysics Data System (ADS)
Yang, Se-fei; Wen, Ying; Yi, Pan; Xiao, Kui; Dong, Chao-fang
2017-11-01
The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.
Preparation, Electromechanical, and Structural Study of Carbon Nanotube/Gelatin Nanocomposites
2008-01-15
surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the composite and pure gelatin films were studied in order...vacuum-dried gels samples into a 0.1 M NaCl aqueous solution at room temperature. The incorporation of MWNT gradually decreased the swelling of the...ultrasonication in an aqueous medium with anionic surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the
Ionic Conductivity of TlBr1-xIx(x = 0, 0.2, 1): Candidate Gamma Ray Detector
NASA Astrophysics Data System (ADS)
Bishop, S. R.; Ciampi, G.; Lee, C. D.; Kuhn, M.; Tuller, H. L.; Higgins, W.; Shah, K. S.
2012-10-01
The ionic conductivity of TlBr, TlI and their solid solutions, candidates for high energy radiation detection, was examined using impedance spectroscopy. The orthorhombic to cubic phase change in TlI was observed via a steep change in conductivity with increasing temperature, whereas the TlBr-TlI solid solution was cubic throughout the measured temperature range, in agreement with the literature. The intrinsic conductivity of the cubic phase of each material showed nearly identical behavior, indicating that I substitution for Br has little to no effect on the combined defect formation and transport parameters in the studied range. Additionally, optical transmission was correlated with I concentration.
Tuning the critical solution temperature of polymers by copolymerization
NASA Astrophysics Data System (ADS)
Schulz, Bernhard; Chudoba, Richard; Heyda, Jan; Dzubiella, Joachim
2015-12-01
We study statistical copolymerization effects on the upper critical solution temperature (CST) of generic homopolymers by means of coarse-grained Langevin dynamics computer simulations and mean-field theory. Our systematic investigation reveals that the CST can change monotonically or non-monotonically with copolymerization, as observed in experimental studies, depending on the degree of non-additivity of the monomer (A-B) cross-interactions. The simulation findings are confirmed and qualitatively explained by a combination of a two-component Flory-de Gennes model for polymer collapse and a simple thermodynamic expansion approach. Our findings provide some rationale behind the effects of copolymerization and may be helpful for tuning CST behavior of polymers in soft material design.
A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus
NASA Astrophysics Data System (ADS)
Zhang, Yu; Cao, Yuhui
2018-04-01
In the present study, the non-Boussinesq effect in the thermal convection in an air-filled horizontal concentric annulus is studied numerically by using the variable property-based lattice Boltzmann flux solver (VPLBFS), with the radial temperature difference ratio of 1.0, the radius ratio of 2.0, and the Rayleigh number in the range 104 ≤ Ra ≤ 106. Several solutions are obtained by using the standard form or simplified versions of the VPLBFS, including the real solution with the total variation in fluid properties considered, named as the variable property solution (VPS), the constant property solution (CPS) based on the Boussinesq approximation, the solution with variable dynamic viscosity (VVS), the solution based on the partial Boussinesq approximation (PBAS), the solution with variable thermal conductivity (VCS) and the solution with variable fluid density (VDS). The discrepancy between these solutions is analyzed to illuminate the influence of the non-Boussinesq effects induced by partial or total variation in fluid properties on flow instability behaviors and heat transfer characteristics. The present study reveals the complicated flow instability behavior under non-Boussinesq conditions and its tight association with heat transfer characteristics. Also, it demonstrates the necessity of considering the integral effect of the total variation in fluid properties and highlights the essential role of the fluid density variation.
Nonequilibrium Phase Chemistry in High Temperature Structure Alloys
NASA Technical Reports Server (NTRS)
Wang, R.
1991-01-01
Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.
Electrochemistry of Sulfur Dioxide in Nonaqueous Solutions. Part I.
1981-05-18
carried out as part of a program to investigate safety hazards in nonaqueous ambient temperature lithium batteries. Comparison and discussion of...behavior of nonaqueous solutions of sulfur dioxide has been generated by the use of these systems in high energy density lithium batteries. During the past... hexafluorophosphate ) 6 at -0.13V and +0.63V (vs. AgCl coated Ag wire), which were assigned to the oxidation of S02- and 62042-. Fouchard observed that the
NASA Astrophysics Data System (ADS)
Yamamoto, Masashi; Otsuka, Takahiro; Orimo, Yoshinori; Maeda, Tomoki; Hotta, Atsushi
Peptide amphiphiles (PA) possess nanoscale micelle structures and excellent biocompatibility. In aqueous PA solution, PA molecules can self-assemble through various configurations into spherical and wormlike micelles, which can occasionally form hydrogels. C16-W3K is one of the unique PA, whose micelle configurations can transfer from spherical to wormlike structures in its aqueous solution over time, while the wormlike micelles could also lead to gelation. In our recent research, the effects of the length of the hydrophobic alkyl tail and other external factors of C16-W3K on the gelation behavior of the C16-W3K solution have been discussed. It has been revealed that longer alkyl-tails could facilitate the gelation of the C16-W3K solution, and that the external stimuli, such as mechanical shear and heat, could promote faster gelation of the C16-W3K solution. It was also found that salt could adjust the pH of the C16-W3K solution, having profound influence on the gelation behavior of the C16-W3K solution. In fact, the gelation of the C16-W3K with a higher storage modulus could be obtained from relatively acidic solutions, while the gelation of the C16-W3K solution was firmly suppressed in highly basic solutions. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI.
NASA Astrophysics Data System (ADS)
Mitsuya, Takuro; Takahashi, Kyohei; Nagashima, Kazushige
2014-09-01
"Storm glass" is a hermetically sealed glass tube containing a solution of camphor. In 19th-century England, the pattern and quantity of the crystals were observed and interpreted as a weather forecasting tool. In the present study, the appearance of camphor crystals under cyclic temperature change was studied in three sample solutions, the storm glass solution (quinary system), camphor-ethanol-water (ternary system), and camphor-ethanol (binary system), to elucidate the effect of components in the storm glass on the appearance of camphor crystals. Equilibrium temperatures of camphor crystals as a function of the camphor concentration were also obtained to estimate the quantity of camphor crystals precipitated in the solutions. During the temperature cycles, the crystal height increased and decreased. The ranges (local maxima and minima) of crystal heights gradually decreased to approximately a constant range. Not only the crystal height but also the amplitude of the height variation in the quinary and ternary systems were much larger than those in the binary system, although the estimated weights of crystals precipitated in the quinary and ternary systems were smaller than that in the binary system. This fact resulted from the formation of dendrites in the quinary and ternary systems, which caused high porosity of sedimented crystals.
Kang, Wanli; Wang, Pengxiang; Fan, Haiming; Yang, Hongbin; Dai, Caili; Yin, Xia; Zhao, Yilu; Guo, Shujun
2017-02-08
Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in wormlike micellar systems. Here we developed a pH-responsive wormlike micellar system based on a noncovalent constructed surfactant, which is formed by the complexation of N-erucamidopropyl-N,N-dimethylamine (UC 22 AMPM) and citric acid at the molar ratio of 3 : 1 (EACA). The phase behavior, aggregate microstructure and viscoelasticity of EACA solutions were investigated by macroscopic appearance observation, rheological and cryo-TEM measurements. It was found that the phase behavior of EACA solutions undergoes transition from transparent viscoelastic fluids to opalescent solutions and then phase separation with white floaters upon increasing the pH. Upon increasing the pH from 2.03 to 6.17, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼683 000 mPa s at pH 6.17. As the pH was adjusted to 7.31, the opalescent solution shows a water-like flowing behaviour and the η 0 rapidly declines to ∼1 mPa s. Thus, dramatic viscosity changes of about 6 magnitudes can be triggered by varying the pH values without any deterioration of the EACA system. This drastic variation in rheological behavior is attributed to the pH dependent interaction between UC 22 AMPM and citric acid. Furthermore, the dependence on concentration and temperature of the rheological behavior of EACA solutions was also studied to assist in obtaining the desired pH-responsive viscosity changes.
Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.
A lithium-ion capacitor model working on a wide temperature range
NASA Astrophysics Data System (ADS)
Barcellona, S.; Piegari, L.
2017-02-01
Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Ansari, Ali Reza; Mazaheri, Yousef; Karimi, Mohsen
2017-02-01
In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.
Single Chain Structure of a Poly(N-isopropylacrylamide) Surfactant in Water
Abbott, Lauren J.; Tucker, Ashley K.; Stevens, Mark J.
2015-02-10
In this paper, we present atomistic simulations of a single PNIPAM–alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer–polymer and polymer–water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water.more » The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. Finally, the atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.« less
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions
NASA Astrophysics Data System (ADS)
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying
2015-01-01
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.
Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.
Crossing the phantom divide with dissipative normal matter in the Israel-Stewart formalism
NASA Astrophysics Data System (ADS)
Cruz, Norman; Lepe, Samuel
2017-04-01
A phantom solution in the framework of the causal Israel-Stewart (IS) formalism is discussed. We assume a late time behavior of the cosmic evolution by considering only one dominant matter fluid with viscosity. In the model it is assumed a bulk viscosity of the form ξ =ξ0ρ 1 / 2, where ρ is the energy density of the fluid. We evaluate and discuss the behavior of the thermodynamical parameters associated to this solution, like the temperature, rate of entropy, entropy, relaxation time, effective pressure and effective EoS. A discussion about the assumption of near equilibrium of the formalism and the accelerated expansion of the solution is presented. The solution allows to cross the phantom divide without evoking an exotic matter fluid and the effective EoS parameter is always lesser than -1 and time independent. A future singularity (big rip) occurs, but different from the Type I (big rip) solution classified in S. Nojiri, S.D. Odintsov and S. Tsujikawa (2005) [2], if we consider other thermodynamics parameters like, for example, the effective pressure in the presence of viscosity or the relaxation time.
Solid-state properties and crystallization behavior of PHA-739521 polymorphs.
Sun, Changquan Calvin
2006-08-17
PHA-739521 is an experimental compound that exhibits polymorphism. The two anhydrous crystal forms, I and II, are characterized using powder X-ray diffractometry, thermal analyses, moisture sorption gravimetry. Both Forms I and II are non-hygroscopic and are stable to compaction pressure. The melting temperature is about 152 degrees C for Form I and 168 degrees C for Form II. Forms I and II are enantiotropically related where Form I is more stable below a transition temperature of approximately 70 degrees C. Crystallization behavior of this compound from solutions and during heating is also studied. Information obtained is used to design an appropriate crystallization process to successfully manufacture desired polymorph at large scale.
NASA Astrophysics Data System (ADS)
Nitta, Ayako; Morita, Takeshi; Saita, Shohei; Kohno, Yuki; Ohno, Hiroyuki; Nishikawa, Keiko
2015-05-01
Aqueous solutions of tetrabutylphosphonium trifluoroacetate ([P4444]CF3COO) exhibit a LCST-type phase transition with the critical point near 0.025 in mole fraction of [P4444]CF3COO at T = 302 K. The phase behavior of [P4444]CF3COO-water mixtures was investigated by evaluating their density fluctuations, which provide quantitative descriptions of the mixing states of the solutions. The concentration dependence of the density fluctuations was investigated at 293 and 301 K for the mixtures without distinguishing the components and for the individual components ([P4444]CF3COO and water). A drastic change in the mixing state was observed for the solution when the critical point was approached.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming
2016-03-01
The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.
Xanthan Gum-a lyotropic, liquid crystalline polymer and its properties as a suspending agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salamone, J.C.; Clough, S.B.; Jamison, D.E.
1982-08-01
Studies a variety of xanthan solutions of various polymer concentrations in the presence and absence of various salts under a polarized light microscope (100X) in order to test xanthan gum for liquid crystalline order. Xanthan gum, a polysaccharide used in drilling fluids and in tertiary recovery, has relatively stable viscosity properties as a function of salt concentration, pH, temperature, and shear degradation. With solutions from 2 to 10% (wt/vol) xanthan gum in distilled water at room temperature, birefringent, ordered domains were observed at 10% concentration, with a decrease in birefringence as the polymer concentration decreased. When the xanthan solution ismore » sheared between a glass slide and a cover slip, the optic axis (chain direction) aligns using the shear direction (as determined by the colors displayed using a first-order red plate). Examines liquid crystalline behavior of other naturally occurring polymers.« less
NASA Astrophysics Data System (ADS)
Mączka, M.; Hermanowicz, K.; Pietraszko, A.; Yordanova, A.; Koseva, I.
2014-01-01
Pure and Cr3+ doped nanosized Al2-xScx(WO4)3 solid solutions were prepared by co-precipitation method as well as Al2-xScx(WO4)3 single crystals were grown by high-temperature flux method. The obtained samples were characterized by X-ray, Raman, IR, absorption and luminescence methods. Single crystal X-ray diffraction showed that AlSc(WO4)3 is orthorhombic at room temperature with space group Pnca and trivalent cations are statistically distributed. Raman and IR studies showed that Al2-xScx(WO4)3 solid solutions show "two mode" behavior. They also showed that vibrational properties of nanosized samples have been weakly modified in comparison with the bulk materials. The luminescence and absorption spectra revealed that chromium ions occupy two sites of weak and strong crystal field strength.
Removal of Calcium from Scheelite Leaching Solution by Addition of CaSO4 Inoculating Crystals
NASA Astrophysics Data System (ADS)
Liu, Wenting; Li, Yongli; Zeng, Dewen; Li, Jiangtao; Zhao, Zhongwei
2018-04-01
In this work, the solubility behaviors of gypsum and anhydrite in the H2SO4-H3PO4-H2O system were investigated over the temperature range T = 30-80°C, and the results showed that the solubility of anhydrite was considerably lower than that of gypsum. On the basis of the differential solubilities of gypsum and anhydrite, a method was developed to remove calcium from the scheelite leaching solution by adding anhydrite as an inoculating crystal. The effects of the reaction time, concentration of the CaSO4 inoculating crystals, and temperature were investigated. With an addition of CaSO4 inoculating crystals at a concentration of 60 g/L, the Ca2+ concentration of the scheelite leaching solution decreased to a low level of approximately 0.76 g/L after 10 h at 70°C.
Jin, Xinfang; Wang, Jie; Jiang, Long; ...
2016-03-25
A physics-based model is presented to simulate the electrochemical behavior of mixed ion and electron conducting (MIEC) cathodes for intermediate-temperature solid oxide fuel cells. Analytic solutions for both transient and impedance models based on a finite length cylinder are derived. These solutions are compared to their infinite length counterparts. The impedance solution is also compared to experimental electrochemical impedance spectroscopy data obtained from both a traditional well-established La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) cathode and a new SrCo 0.9Nb 0.1O 3-δ (SCN) porous cathode. Lastly, the impedance simulations agree well with the experimental values, demonstrating that the new modelsmore » can be used to extract electro-kinetic parameters of MIEC SOFC cathodes.« less
A novel approach to model the transient behavior of solid-oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf
2012-09-01
This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.
Classical mutual information in mean-field spin glass models
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Inglis, Stephen; Pollet, Lode
2016-03-01
We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.
Asadishad, Bahareh; Olsson, Adam L J; Dusane, Devendra H; Ghoshal, Subhasis; Tufenkji, Nathalie
2014-07-01
In cold climate regions, microorganisms in upper layers of soil are subject to low temperatures and repeated freeze-thaw (FT) conditions during the winter. We studied the effects of cold temperature and FT cycles on the viability and survival strategies (namely motility and biofilm formation) of the common soil bacterium and model pathogen Bacillus subtilis. We also examined the effect of FT on the transport behavior of B. subtilis at two solution ionic strengths (IS: 10 and 100 mM) in quartz sand packed columns. Finally, to study the mechanical properties of the bacteria-surface bond, a quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor changes in bond stiffness when B. subtilis attached to a quartz substrate (model sand surface) under different environmental conditions. We observed that increasing the number of FT cycles decreased bacterial viability and that B. subtilis survived for longer time periods in higher IS solution. FT treatment decreased bacterial swimming motility and the transcription of flagellin encoding genes. Although FT exposure had no significant effect on the bacterial growth rate, it substantially decreased B. subtilis biofilm formation and correspondingly decreased the transcription of matrix production genes in higher IS solution. As demonstrated with QCM-D, the bond stiffness between B. subtilis and the quartz surface decreased after FT. Moreover, column transport studies showed higher bacterial retention onto sand grains after exposure to FT. This investigation demonstrates how temperature variations around the freezing point in upper layers of soil can influence key bacterial properties and behavior, including survival and subsequent transport. Copyright © 2014 Elsevier Ltd. All rights reserved.
Measurement of the linear viscoelastic behavior of antimisting kerosene
NASA Technical Reports Server (NTRS)
Ferry, J. D.
1983-01-01
Measurements of dynamic viscoelastic properties in very small oscillating shear deformations was made on solutions of a jet fuel, Jet A, containing an antimisting polymeric additive, FM-9. A few measurements were also made on solutions of FM-9 in a mixed solvent of mineral oil, Tetralin, and 0-terphenyl. Two samples of FM-9 had approximate number-average molecular weights of 12,000,000 and 8,100,000 as deduced from analysis of the measurements. The ranges of variables were 2.42 to 4.03 g/1 in concentration (0.3 to 0.5% by weight), 1 to 35 in temperature, 1.3 to 9.4 cp in solvent viscosity, and 103 to 6100 Hz in frequency. Measurements in the Jet A solvent were made both with and without a modifying carrier. The results were compared with the Zimm theory and the viscoelastic behavior was found to resemble rather closely that of ordinary non-polar polymers in theta solvents. The relation of the results to the antithixotropic behavior of such solutions a high shear rates is discussed in terms of intramolecular and intermolecular interactions.
NASA Astrophysics Data System (ADS)
Manzanares, Carlos; Diaz, Marlon; Barton, Ann; Nyaupane, Parashu R.
2017-06-01
The thermal lens technique is applied to vibrational overtone spectroscopy of solutions of naphthalene in n-hexane. The pump and probe thermal lens technique is found to be very sensitive for detecting samples of low composition (ppm) in transparent solvents. In this experiment two different probe lasers: one at 488 nm and another 568 nm were used. The C-H fifth vibrational overtone spectrum of benzene is detected at room temperature for different concentrations. A plot of normalized integrated intensity as a function of concentration of naphthalene in solution reveals a non-linear behavior at low concentrations when using the 488 nm probe and a linear behavior over the entire range of concentrations when using the 568 nm probe. The non-linearity cannot be explained assuming solvent enhancement at low concentrations. A two color absorption model that includes the simultaneous absorption of the pump and probe lasers could explain the enhanced magnitude and the non-linear behavior of the thermal lens signal. Other possible mechanisms will also be discussed.
Corrosion behavior of sensitized duplex stainless steel.
Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K
1998-01-01
The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.
NASA Astrophysics Data System (ADS)
Dhaduk, B. B.; Patel, Ch. B.; Parsania, P. H.
2017-12-01
Various thermo-acoustical parameters of 1,4-dioxane, tetrahydofuran and ethylacetae solutions of 1,1'-bis(4-isopropyloxyacetylphenoxy)cyclohexane were determined at different temperatures using density, viscosity and ultrasonic speed and correlated with concentration. Linear increase of ultrasonic speed, specific acoustical impedance, Rao's molar sound function, Van der Waals constant and free volume with concentration C and decreased with temperature. Linear decrease of adiabatic compressibility, internal pressure, intermolecular free path length, classical absorption coefficient, and viscous relaxation time with concentration and increased with temperature indicated existence of strong molecular interactions in solutions and further supported by positive values of solvation number. Gibbs free energy of activation decreased with C in all three systems. It is decreased with T in 1,4-dioxane, while increased in tetrahydrofuran and ethyl acetate. Both enthalpy of activation and entropy of activation are increased gradually with C in 1,4-dioxane, while they are negative and remained practically independent of concentration in 1,4-dioxane and tetrahydofuran systems.
Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution.
Zhang, Lei; Liu, Na; Yang, Lijun; Lin, Qing
2009-10-30
Titanium dioxide nanoparticles were employed for the sorption of selenium ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption was found to be fast, and to reach equilibrium basically within 5.0 min. The sorption has been optimized with respect to the pH, maximum sorption has been achieved from solution of pH 2-6. Sorbed Se(IV) and Se(VI) were desorbed with 2.0 mL 0.1 mol L(-1) NaOH. The kinetics and thermodynamics of the sorption of Se(IV) onto nano-TiO2 have been studied. The kinetic experimental data properly correlate with the second-order kinetic model (k(2)=0.69 g mg(-1) min(-1), 293 K). The overall rate process appears to be influenced by both boundary layer diffusion and intraparticle diffusion. The sorption data could be well interpreted by the Langmuir sorption isotherm. The mean energy of adsorption (14.46 kJ mol(-1)) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. The thermodynamic parameters for the sorption were also determined, and the DeltaH(0) and DeltaG(0) values indicate exothermic behavior.
NASA Astrophysics Data System (ADS)
Hassan, Mohsan; Faisal, Abrar; Bhatti, Muhammad Mubashir
2018-02-01
Polyvinyl alcohol (PVA) is an important industrial chemical, which is used in numerous chemical engineering applications. It is important to study and predict the flow behavior of PVA solutions and the role of nanoparticles in heat transfer applications to be used in chemical processes on industrial scale. Therefore, the present study deals with the PVA solution-based non-Newtonian Al2O3-nanofluid flow along with heat transfer over wedge. The power-law model is used for this non-Newtonian nanofluid which exhibited shear-thinning behavior. The influences of PVA and nanoparticles concentrations on the characteristics of velocity and temperature profiles are examined graphically. The impacts of these parameters on wall shear stress and convective heat transfer coefficient are also studied through tabular form. During the numerical computations, the impacts of these parameters on flow index and consistency index along with other physical properties of nanofluid are also considered. In this study, we found an improvement in heat transfer and temperature profile of fluid by distribution of Al2O3 nanoparticles. It is also noticed that resistance between adjacent layers of moving fluid is enhanced due to these nanoparticles which leads to decline in velocity profile and increases in shear stress at wall.
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
Convective boundary conditions effect on peristaltic flow of a MHD Jeffery nanofluid
NASA Astrophysics Data System (ADS)
Kothandapani, M.; Prakash, J.
2016-03-01
This work is aimed at describing the influences of MHD, chemical reaction, thermal radiation and heat source/sink parameter on peristaltic flow of Jeffery nanofluids in a tapered asymmetric channel along with slip and convective boundary conditions. The governing equations of a nanofluid are first formulated and then simplified under long-wavelength and low-Reynolds number approaches. The equation of nanoparticles temperature and concentration is coupled; hence, homotopy perturbation method has been used to obtain the solutions of temperature and concentration of nanoparticles. Analytical solutions for axial velocity, stream function and pressure gradient have also constructed. Effects of various influential flow parameters have been pointed out through with help of the graphs. Analysis indicates that the temperature of nanofluids decreases for a given increase in heat transfer Biot number and chemical reaction parameter, but it possesses converse behavior in respect of mass transfer Biot number and heat source/sink parameter.
NASA Astrophysics Data System (ADS)
Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus
2018-01-01
The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.
Sundaramurthi, Prakash; Suryanarayanan, Raj
2011-06-02
Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.
The wet solidus of silica: Predictions from the scaled particle theory and polarized continuum model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottonello, G., E-mail: giotto@dipteris.unige.it; Vetuschi Zuccolini, M.; Richet, P.
2015-02-07
We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH{sub 2} over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negativemore » and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (X{sub H{sub 2O}}) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γ{sub el} which, in pure water, is slightly higher than the nominal value (i.e., γ{sub el} = 1.224 against 1.2), it attains its minimum at low H{sub 2}O content (γ{sub el} = 0.9958) and then rises again at infinite dilution (γ{sub el} = 1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH{sub 2} molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H{sub 2}O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.« less
NASA Astrophysics Data System (ADS)
Rana, R.; Singh, S. B.; Bleck, W.; Mohanty, O. N.
2009-04-01
Crash resistance and formability relevant mechanical properties of a copper-alloyed interstitial-free (IF) steel processed under various conditions of batch annealing (BA), continuous annealing (CA), and postcontinuous annealing aging have been studied in a wide range of strain rate (3.33 × 10-4 to 200 s-1) and temperature (-100 °C to +20 °C). These properties have been compared with similarly processed traditional mild and high-strength IF steels. Assessment of various parameters such as strength, elongation, strain rate sensitivity of stress, strain-hardening capacity, temperature sensitivity of stress, activation volume, and specific energy absorption of all these steels implies that copper-alloyed IF steel is soft and formable in CA condition. It can be made stronger and more crash resistant than the conventional mild- or high-strength IF steels when aged to peak strength after CA. Room-temperature strain rate sensitivity of stress of the investigated steels exhibits a two-stage behavior. Copper in solution in ferrite causes solid solution softening at low temperatures (≤20 °C) and at high strain rates (200 s-1).
Application of Reactive Transport Modeling to Heap Bioleaching of Copper
NASA Astrophysics Data System (ADS)
Liu, W.
2017-12-01
Copper heap bioleaching is a complex industrial process that utilizes oxidative chemical leaching and microbial activities to extract copper from packed ore beds. Mathematical modelling is an effective tool for identifying key factors that determine the leaching performance. HeapSim is a modelling tool that incorporates all fundamental processes that occur in a heap under leach, such as the movement of leaching solution, chemical reaction kinetics, heat transfer, and microbial activities, to predict the leaching behavior of a heap. In this study, the HeapSim model was applied to simulate chalcocite heap bioleaching at Quebrada Blanca mine located in the Northern Chile. The main findings were that the model could be satisfactorily calibrated and validated to simulate chalcocite leaching. Heap temperature was sensitive to the changes in the raffinate temperature, raffinate flow rate, and the extent of pyrite oxidation. At high flow rates, heap temperature was controlled by the raffinate temperature. In contrast, heat removal by the raffinate solution flow was insignificant at low flow rates, leading to the accumulation of heat generated by pyrite reaction and therefore an increase in heap temperature.
NASA Astrophysics Data System (ADS)
Zhang, Z.
2015-12-01
A large amount of radioactivity was discharged by the accident of FDNPP. The long half-life radionuclide, 137Cs was transported through the atmosphere mainly as the aerosol form and deposited to the forests in Fukushima prefecture. After the dry deposition of the 137Cs, the foliar uptake process would occur. To evaluate environmental transfer of radionuclides, the dry deposition and following foliar uptake is very important. There are some pioneering studies for radionuclide foliar uptake with attaching the solution containing stable target element on the leaf, however, cesium oxide aerosols were used for these deposition study [1]. In the FDNPP case, 137Cs was transported in sulfate aerosol form [2], so the oxide aerosol behaviors could not represent the actual deposition behavior in this accident. For evaluation of whole behavior of 137Cs in vegetation system, fundamental data for deposition and uptake process of sulfate aerosol was desired. In this study, we developed aerosol generation system for simulating the dry deposition and the foliar uptake behaviors of aerosol in the different chemical constitutions. In this system, the method of aerosol generation based on the spray drying. Solution contained 137Cs was send to a nozzle by a syringe pump and spraying with a high speed air flow. The sprayed mist was generated in a chamber in the relatively high temperature. The solution in the mist was dried quickly, and micro size solid aerosols consisting 137Cs were generated. The aerosols were suctioned by an ejector and transported inside a tube by the dry air flow, then were directly blown onto the leaves. The experimental condition, such as the size of chamber, chamber temperature, solution flow rate, air flow rate and so on, were optimized. In the deposition experiment, the aerosols on leaves were observed by a SEM/EDX system and the deposition amount was evaluated by measuring the stable Cs remaining on leaf. In the presentation, we will discuss the detail results of aerosol deposition behavior using the developed system. [1]C.Madoz-Escande, et al., Journal of Environmental Radioactivity, 73 pp49-71, (2004) [2] N. Kaneyasu, et al.,Environmental Science & Technology, 2012, 46 (11), pp 5720-5726
Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods
NASA Technical Reports Server (NTRS)
Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.
1959-01-01
The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.
Sol-Gel transition behavior of pure iota-carrageenan in both salt-free and added salt states.
Hossain, K S; Miyanaga, K; Maeda, H; Nemoto, N
2001-01-01
This paper describes how strongly the gelation process of iota-carrageenan is affected by addition of metallic ions from the creep and creep recovery, dynamic viscoelasticity (DVE) and DSC measurements. Creep results at T = 25 degrees C indicate that below a polymer concentration C of 3.0 wt % the salt-free system behaves as a viscous solution, and it starts to exhibit viscoelasticity as C exceeds 3.0 wt %. In the range C = 5.0-7.0 wt %, the salt-free system shows gellike behavior whereas the added salt system, measured in the low C range 1.0-2.5 wt %, showed gellike behavior at the same temperature. The sol-gel transition temperature T(c) was determined using Winter's criterion as the temperature at which both G'(omega) and G' '(omega) follow power law behavior with the same exponent n. DSC measurements reveal that salt-free and added salt systems take different types of thermal behavior within the same temperature range. The temperature T(c) is quite close to the gelation temperature T(m) determined from DSC measurement. The Eldrige-Ferry plot was performed to estimate activaton enthalpy, which shows that physical cross-links in the salt-free iota-carrageenan is not strong in comparison with those of samples which contains metal ions. We conclude from the data analysis of C dependence of the plateau modulus using the theory developed by Jones and Marques for rigid networks based on the fractal theories that addition of metallic ions gives rise to a rigid fiber like structure even at low C of iota-carrageenan in contrast to the salt-free system for which a flexible structure has been maintained at higher C.
Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles
NASA Astrophysics Data System (ADS)
Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.
2014-03-01
Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.
Truesdell, A.H.
1974-01-01
Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275??C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln ??) between 1 molal solutions and pure water at 25, 100, and 275??C are: NaCl 0.0, -1.5, +1.0; KCl 0.0, -1.0, +2.0; LiCl -1.0, -0.6, -0.5; CaCl2 -0.4, -1.8, +0.8; MgCl2 -1.1, -0.7, -0.3; MgSO4 -1.1, +0.1, -; NaF (0.8 m) 0.0, -1.5, -0.3; and NH4Cl (0.55 m) 0.0, -1.2, -1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required. ?? 1974.
NASA Astrophysics Data System (ADS)
Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping
2018-05-01
A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.
Shakiba, Mohammad; Parson, Nick; Chen, X-Grant
2016-06-30
The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.
Shakiba, Mohammad; Parson, Nick; Chen, X.-Grant
2016-01-01
The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002–0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C–550 °C) and strain rates (0.01–10 s−1). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress. PMID:28773658
NASA Astrophysics Data System (ADS)
Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo
2018-07-01
The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }}s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }}s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.
NASA Astrophysics Data System (ADS)
Zhang, Yubi; Zhao, Yongtao; Tang, An; Yang, Wenjie; Li, Enzuo
2018-03-01
The electrochemical corrosion behavior of nickel-base alloy 718 was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization techniques at various partial pressures of CO2 (P_{{{CO}2 }} s) in a 25 wt% NaCl solution at 150 and 205 °C. The passive films composed of FeCO3 exhibit good corrosion resistance with a feature of Warburg impedance, Tafel plots show a complete passivation and the anodic reactions was dominated by a diffusion process at low P_{{{CO}2 }} s (1.8-9.8 MPa) at 150 °C. While numerous dented corrosion areas appeared on the sample surface for the P_{{{CO}2 }} of 11.6 MPa at 205 °C, the Tafel plot with three anodic peaks and the Nyquist diagram with an atrophied impedance arc were present. This dented corrosion attribute to the synergistic effects of stress, temperature, P_{{{CO}2 }} and Cl-, the temperature and stress could play crucial roles on the corrosion of the alloy 718.
Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret
2017-10-15
A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of electrochemical phenomena related to corrosion in high temperature aqueous systems
NASA Astrophysics Data System (ADS)
Biswas, Ritwik
1999-11-01
Three separate phenomena, each related to the problem of corrosion of metals, in high temperature aqueous solutions, have been studied. These are: (1) Kinetics of the Hydrogen Oxidation Reaction (HOR), (2) Effect of solutions containing sulfur oxyanions on Stainless Steel 347 and Inconel 600, and (3) Characterization of electrochemical behavior of intermetallic compounds Ni3Nb and Ni3(TiAl). The anodic transfer coefficient and the Tafel constant, for the HOR, on platinized nickel, in 0.1 m NaOH solution, was experimentally measured over the temperature range of 25°C to 300°C. Potentiodynamic polarization experiments, under controlled hydrodynamic flow conditions, in a cell with annular flow geometry, were used for these measurements. The anodic transfer coefficient and the Tafel constant were found to increase with increase in solution temperature. At high anodic potentials (>1V vs. rest potential), passivation of the platinum electrode was observed. Electron tunneling theory was used to determine that this was the result of formation of platinum oxide (PtO) on the surface of the platinum electrode. The relative corrosion properties of Stainless Steel 347 and Inconel 600, exposed to an aqueous electrolyte containing sulfur oxyanions, at temperatures up to 285°C, was studied using electrochemical tests, mathematical modeling and surface analysis. The presence of sulfur oxyanions was found to cause the breakdown of the protective passive film on both the alloy surfaces, and increase their corrosion rates. As a result of exposure to the electrolyte, a porous layer of corrosion product was formed on both alloys. This porous layer was composed principally of Ni3S2 in the case of Inconel 600 and Fe3O4 in the case of Stainless Steel 347. The corrosive effect of sulfur oxyanions was found to be greater on Inconel 600 than Stainless Steel 347. Galvanic coupling experiments were conducted on the intermetallics Ni 3Nb and Ni3(TiAl) and a nickel rich alloy. It was determined that the intermetallics acted as the anodes when coupled with the nickel rich alloy material. At room temperature, both galvanic current and galvanic potential displayed oscillatory behavior as a function of time. These were analyzed using dynamic systems theory. It was determined from such analysis that the galvanic coupling process can be theoretically described by two coupled ordinary differential equations.
NASA Astrophysics Data System (ADS)
Hrutkay, Kyle
Haynes 230 and Inconel 617 are austenitic nickel based superalloys, which are candidate structural materials for next generation high temperature nuclear reactors. High temperature deformation behavior of Haynes 230 and Inconel 617 have been investigated at the microstructural level in order to gain a better understanding of mechanical properties. Tensile tests were performed at strain rates ranging from 10-3-10-5 s -1 at room temperature, 600 °C, 800 °C and 950 °C. Subsequent microstructural analysis, including Scanning Electron Microscopy, Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and X-Ray Diffraction were used to relate the microstructural evolution at high temperatures to that of room temperature samples. Grain sizes and precipitate morphologies were used to determine high temperature behavior and fracture mechanics. Serrated flow was observed at intermediate and high temperatures as a result of discontinuous slip and dynamic recrystallization. The amplitude of serration increased with a decrease in the strain rate and increase in the temperature. Dynamic strain ageing was responsible for serrations at intermediate temperatures by means of a locking and unlocking phenomenon between dislocations and solute atoms. Dynamic recrystallization nucleated by grain and twin bulging resulting in a refinement of grain size. Existing models found in the literature were discussed to explain both of these phenomena.
Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW
NASA Technical Reports Server (NTRS)
SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.
2001-01-01
A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.
Effect on Ammonium Bromide in dielectric behavior based Alginate Solid Biopolymer electrolytes
NASA Astrophysics Data System (ADS)
Fuzlin, A. F.; Rasali, N. M. J.; Samsudin, A. S.
2018-04-01
This paper present the development of solid biopolymer electrolytes (SBEs) system which has been accomplished by incorporating various composition of ionic dopant namely ammonium bromide (NH4Br) with alginate solution casting method. The prepared sample of SBEs has been analyzed via electrical impedance spectroscopy (EIS) showed that the ionic conductivity at room temperature was increased from 4.67 x 10-7 S cm-1 for un-doped sample to optimum value at 4.41 x 10-5 S cm-1 for composition of 20 wt. % NH4Br. The SBEs system was found to obey the Arrhenius characteristics with R2~1where all sample is thermally activated when increasing temperature. The dielectric behavior of the alginate-NH4Br SBEs system were measured using complex permittivity (ε*) and complex electrical modulus (M*) and shown the non-debye behavior where no single relaxation was found for present SBEs system.
Crystallization, flow and thermal histories of lunar and terrestrial compositions
NASA Technical Reports Server (NTRS)
Uhlmann, D. R.
1979-01-01
Contents: a kinetic treatment of glass formation; effects of nucleating heterogeneities on glass formation; glass formation under continuous cooling conditions; crystallization statistics; kinetics of crystal nucleation; diffusion controlled crystal growth; crystallization of lunar compositions; crystallization between solidus and liquidus; crystallization on reheating a glass; temperature distributions during crystallization; crystallization of anorthite and anorthite-albite compositions; effect of oxidation state on viscosity; diffusive creep and viscous flow; high temperature flow behavior of glass-forming liquids, a free volume interpretation; viscous flow behavior of lunar compositions; thermal history of orange soil material; breccias formation by viscous sintering; viscous sintering; thermal histories of breccias; solute partitioning and thermal history of lunar rocks; heat flow in impact melts; and thermal histories of olivines.
Emery-Kivelson solution of the two-channel Kondo problem
NASA Astrophysics Data System (ADS)
Sengupta, Anirvan M.; Georges, Antoine
1994-04-01
We consider the two-channel Kondo model in the Emery-Kivelson approach, and calculate the total susceptibility enhancement due to the impurity χimp=χ-χbulk. We find that χimp exactly vanishes at the solvable point, in a completely analogous way to the singular part of the specific heat Cimp. A perturbative calculation around the solvable point yields the generic behavior χimp~log(1/T), Cimp~T logT and the known universal value of the Wilson ratio RW=8/3. From this calculation, the Kondo temperature can be identified and is found to behave as the inverse square of the perturbation parameter. The small-field, zero-temperature behavior χimp~log(1/h) is also recovered.
Sulfide Stress Cracking Behavior of a Martensitic Steel Controlled by Tempering Temperature
Sun, Yu; Wang, Qian; Gu, Shunjie; He, Zaoneng; Wang, Qingfeng; Zhang, Fucheng
2018-01-01
A medium-carbon Cr–Mo–V martensitic steel was thermally processed by quenching (Q) at 890 °C and tempering (T) at increasing temperatures from 650 °C to 720 °C and the effect of tempering temperature, Tt, on sulfide stress cracking (SSC) behaviors was estimated mainly via double cantilever beam (DCB) and electrochemical hydrogen permeation (EHP) tests and microstructure characterization. The results indicate that the threshold stress intensity factor for SSC, KISSC, increased with increasing Tt. The overall and local H concentration around the inclusions decreased with increasing Tt, due to reductions in the amounts of solute atoms, grain boundaries and dislocations, which effectively prevented SSC initiation. Also, increasing Tt caused an increased fraction of high-angle boundaries, which evidently lowered the SSC propagation rate by more frequently diverting the propagating direction and accordingly restricted SSC propagation. The overall SSC resistance of this Q&T–treated steel was therefore significantly enhanced. PMID:29522494
Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing
NASA Astrophysics Data System (ADS)
Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun
2017-12-01
The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.
NASA Astrophysics Data System (ADS)
Somwan, Siripong; Funsueb, Narit; Limpichaipanit, Apichart; Ngamjarurojana, Athipong
2018-05-01
In this work, Pb0.91La0.09(Zr1-xTix)0.9775O3 ceramics where x = 0.3, 0.35 and 0.4 (the composition near MPB) were prepared by solid solution method. After fabrication process, electrical property was measured by LCR meter. Polarization and induced strain behavior of the samples were investigated by using interferometry technique modified with Sawyer-Tower circuit at various temperatures. The results of dielectric, polarization and induced strain properties were due to the Zr/Ti ratios, which changed their behavior when temperature was varied (30-70 °C). The normal to macro-micro domains to relaxor and paraelectric phase transition was demonstrated which is related to linear or nonlinear increase of polarization and induced strain as a function of applied subswitching electric field.
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying
2015-01-01
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504
Argonne Bubble Experiment Thermal Model Development II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
2016-07-01
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations.more » The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.« less
A study of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; ...
2015-01-26
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of Li xMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn 1.5Ni 0.5O 4 (Phase I), Li 0.5Mnmore » 1.5Ni 0.5O 4 (Phase II) and Mn 1.5Ni 0.5O 4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less
Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
Zoppe, Justin O; Osterberg, Monika; Venditti, Richard A; Laine, Janne; Rojas, Orlando J
2011-07-11
The colloidal stability and thermoresponsive behavior of poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals (CNCs) of varying graft densities and molecular weights was investigated. Indication of the grafted polymer brushes was obtained after AFM imaging of CNCs adsorbed on silica. Also, aggregation of the nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of grafted CNCs in aqueous dispersions and as an ultrathin film was evaluated by using light scattering, viscosimetry, and colloidal probe microscopy (CPM). Light transmittance measurements showed temperature-dependent aggregation originating from the different graft densities and molecular weights. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength, as is the case for free poly(NiPAAm) in aqueous solution. Thermal responsive behavior of grafted CNCs in aqueous dispersions was observed by a sharp increase in dispersion viscosity as the temperature approached the LCST. CPM in liquid media for asymmetric systems consisting of ultrathin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on interaction and adhesive forces. The origin of such forces was found to be mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films were observed with the ionic strength of the aqueous solution. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as the main reasons for the less prominent polymer bridging between interacting surfaces.
Cooling induces phase separation in membranes derived from isolated CNS myelin
Pusterla, Julio M.; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu
2017-01-01
Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4°C and 45°C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15°C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the isolation protocol. PMID:28915267
Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan
2017-11-15
Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.
Topuzogullari, Murat; Elalmis, Yeliz Basaran; Isoglu, Sevil Dincer
2017-04-01
Solution behavior of thermo-responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo-responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo-responsive block copolymer of quaternized poly(4-vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c-Myc oncogene are also thermo-responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys
NASA Astrophysics Data System (ADS)
Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.
2017-04-01
Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.
In situ control of industrial processes using laser light scattering and optical rotation
NASA Astrophysics Data System (ADS)
Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto
2006-02-01
We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.
Tensile and creep rupture behavior of P/M processed Nb-base alloy, WC-3009
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Titran, Robert H.
1988-01-01
Due to its high strength at temperatures up to 1600 K, fabrication of niobium base alloy WC-3009 (Nb30Hf9W) by traditional methods is difficult. Powder metallurgy (P/M) processing offers an attractive fabrication alternative for this high strength alloy. Spherical powders of WC-3009 produced by electron beam atomizing (EBA) process were successfully consolidated into a one inch diameter rod by vacuum hot pressing and swaging techniques. Tensile strength of the fully dense P/M material at 300-1590 K were similar to the arc-melted material. Creep rupture tests in vacuum indicated that WC-3009 exhibits a class 1 solid solution (glide controlled) creep behavior in the 1480 to 1590 K temperature range and stress range of 14 to 70 MPa. The creep behavior was correlated with temperature and stress using a power law relationship. The calculated stress exponent n, was about 3.2 and the apparent activation energy, Q, was about 270 kJ/mol. The large creep ductility exhibited by WC-3009 was attributed to its high strain rate sensitivity.
Serrated Flow Behavior of Aisi 316l Austenitic Stainless Steel for Nuclear Reactors
NASA Astrophysics Data System (ADS)
Li, Qingshan; Shen, Yinzhong; Han, Pengcheng
2017-10-01
AISI 316L austenitic stainless steel is a candidate material for Generation IV reactors. In order to investigate the influence of temperature on serrated flow behavior, tensile tests were performed at temperatures ranging from 300 to 700 °C at an initial strain rate of 2×10-4 s-1. Another group of tensile tests were carried out at strain rates ranging from 1×10-4 to 1×10-2 s-1 at 600 °C to examine the influence of strain rates on serrated flow behavior. The steel exhibited serrated flow, suggesting the occurrence of dynamic strain ageing at 450-650°C. No plateau of yield stresses of the steel was observed at an initial strain rate of 2×10-4 s-1. The effective activation energy for serrated flow occurrence was calculated to be about 254.72 kJ/mol-1. Cr, Mn, Ni and Mo solute atoms are expected to be responsible for dynamic strain ageing at high temperatures of 450-650 °C in the steel.
Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies
NASA Astrophysics Data System (ADS)
Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team
2015-03-01
Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.
Lee, Sang-Jin; Jung, Choong-Hwan
2012-01-01
Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).
Ohno, Hiroyuki; Fukumoto, Kenta
2007-11-01
The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.
Thermal expansion behavior of fluor-chlorapatite crystalline solutions
NASA Astrophysics Data System (ADS)
Hovis, G.; Harlov, D.; Gottschalk, M.; Hudacek, W.; Wildermuth, S.
2009-04-01
Apatite Ca5(PO4)3(F,Cl,OH,CO3) occurs widely as an accessory mineral in many igneous and metamorphic rocks and in nature displays a wide range of F-Cl-OH-CO3 mixtures (e.g., O'Reilly and Griffin, 2000) that have been used to interpret the role of fluids, e.g. Cl, F, and OH activities, during metamorphic and igneous processes (e.g., Harlov and Förster, 2002). It is important, therefore, to understand the thermodynamic behavior of these solid solutions, including their thermal expansion properties. Fluorapatite - chlorapatite samples were synthesized at the GFZ-Potsdam (Hovis, Harlov, Hahn and Steigert, 2007) using an adaptation of the molten flux method of Cherniak (2000). Dry CaF2 and CaCl2 (0.1 mole total) were mixed with Ca3(PO4)2 (0.03 moles), placed in a Pt crucible, equilibrated for 15 hours at 1375 °C, cooled to 1220 °C at 3 °C/hour, removed from the oven and cooled in air. Crystals were separated from the flux by boiling the quenched product in water. F:Cl fractions for each sample were determined via Rietveld refinement of X-ray powder diffraction data. Chemical homogeneity was confirmed by Rietveld refinement and high-contrast back-scattered electron imaging. Room-temperature unit-cell volumes were determined at the GFZ-Potsdam through Rietveld analysis of X-ray powder diffraction data and also at Lafayette College by standard unit-cell refinement techniques (Holland and Redfern, 1997) using NBS/NIST 640a Si as an internal standard. High-temperature unit-cell dimensions were calculated from X-ray powder diffraction data collected at Cambridge University from room temperature to 1000 °C on a Bruker D8 X-ray diffractometer. NBS Si again was utilized as an internal standard; high-temperature Si peak positions were taken from Parrish (1953). Results indicate that despite the considerable size difference between fluorine and chlorine ions, reflected by substantially different unit-cell sizes at room temperature, the coefficient of thermal expansion across the fluor-chlorapatite series is little affected by composition. This contrasts with relationships in alkali feldspars (Hovis and coworkers, 1997, 1999), which show that K-rich feldspars expand less than Na-rich feldspars. It contrasts also with the behavior of additional AlSi3 feldspars (Hovis and others, 2008), in which room-temperature chemical expansion limits the degree to which the structure can expand thermally. It also differs from expansion in kalsilite crystalline solutions (Hovis and coworkers, 2003, 2006), which depends on K:Na ratio. Among the minerals we have studied previously, only nepheline displays expansion behavior similar to that of fluor-chlorapatite crystalline solutions in that thermal expansion shows little sensitivity to composition. In AlSi3 feldspars and kalsilite one observes a single crystallographically distinct alkali site and a dominating SiO4 tetrahedral framework that limits the vibrational characteristics of the alkali-site occupant(s). Fluor-chlorapatite crystalline solutions have no such structural framework. Moreover, the anion site in the latter changes structural character in the transition from fluorapatite to chlorapatite. This flexibility apparently allows anion vibrational characteristics, coupled with those of Ca polyhedral components, to change continuously and in a compensating manner across the series. The thermal expansion data also imply that volumes of F-Cl mixing in fluor-chlorapatite are constant from room temperature to 1000 °C. References: Cherniak, D.J. (2000) Rare earth element diffusion in apatite. Geochimica et Cosmochimica Acta 64, 3871-3885. Harlov, D.E. and Förster, H-J. (2002) High grade fluid metasomatism on both a local and regional Scale: the Seward Peninsula, Alaska and the Ivrea-Verbano Zone, Northern Italy Part II: phosphate mineral chemistry. Journal of Petrology 43, 801-824. Holland, T.J.B. and Redfern, S.A.T. (1997) Unit-cell refinement: Changing the dependent variable, and use of regression diagnostics. Mineralogical Magazine 61, 65-77. Hovis, G.L., Brennan, S., Keohane, M., Crelling, J. (1999) High-temperature X-ray investigation of sanidine - analbite crystalline solutions: Thermal expansion, phase transitions, and volumes of mixing. The Canadian Mineralogist 37, 701-709. Hovis, G.L., Crelling, J., Wattles, D., Dreibelbis, B., Dennison, A., Keohane, M., and Brennan, S. (2003) Thermal expansion of nepheline - kalsilite crystalline solutions. Mineralogical Magazine 67, 535-546. Hovis, G.L. and Graeme-Barber, A. (1997) Volumes of K-Na mixing for low albite - microcline crystalline solutions at elevated temperature: A test of regular solution thermodynamic models. American Mineralogist 82, 158-164. Hovis, G.L., Harlov, D.E., Hahn, A., and Steigert, H. (2007) Enthalpies and volumes of F-Cl mixing in fluorapatite - chlorapatite crystalline solutions. Geophysical Research Abstracts 9, abstract 01748. Hovis, G.L., Morabito, J.R. Spooner, R., Mott, A. Person, E.L., Henderson, C. Michael B., Roux, J., and Harlov, D. (2008) A simple predictive model for the thermal expansion of AlSi3 feldspars. American Mineralogist 98, 1568-1573. Hovis, G.L., Person, E., Spooner, A., and Roux, J. (2006) Thermal expansion of highly silicic nepheline - kalsilite crystalline solutions. Mineralogical Magazine 70, 383-396. O'Reilly, S.Y. and Griffin, W.L. (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53, 217-232. Parrish, W. (1953) X-Ray reflection angle tables for several standards. Technical Report No. 68, Philips Laboratories Incorporated, Irvington on Hudson, New York.
Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime
2006-02-01
Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.
Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution
NASA Astrophysics Data System (ADS)
Savinov, M.; Bovtun, V.; Tereshina-Chitrova, E.; Stupakov, A.; Dejneka, A.; Tyunina, M.
2018-01-01
Magneto-dielectric properties of (A2+)MnO3-type perovskites are attractive for applications and stimulate extensive studies of these materials. Here, the complex dielectric and magnetic responses are investigated as in epitaxial films of SrTi0.6Mn0.4O3, solid solution of paraelectric SrTiO3 and magnetic SrMnO3. The impedance and resonance measurements at frequencies of 10-2-1010 Hz and temperatures of 10-500 K reveal broad dielectric anomalies centered at 100-200 K, while the films are paramagnetic at all temperatures. Analysis shows polaronic electrical conductivity behind the observed behavior. Electron-phonon correlations, rather than spin-phonon correlations, are suggested to produce the apparent magneto-dielectric responses in many multiferroic manganites.
Complex Heat Exchangers for Improved Performance
NASA Astrophysics Data System (ADS)
Bran, Gabriela Alejandra
After a detailed literature review, it was determined that there was a need for a more comprehensive study on the transient behavior of heat exchangers. Computational power was not readily available when most of the work on transient heat exchangers was done (1956 - 1986), so most of these solutions have restrictions, or very specific assumptions. More recently, authors have obtained numerical solutions for more general problems (2003 - 2013), but they have investigated very specific conditions, and cases. For a more complex heat exchanger (i.e. with heat generation), the transient solutions from literature are no longer valid. There was a need to develop a numerical model that relaxes the restrictions of current solutions to explore conditions that have not been explored. A one dimensional transient heat exchanger model was developed. There are no restrictions on the fluids and wall conditions. The model is able to obtain a numerical solution for a wide range of fluid properties and mass flow rates. Another innovative characteristic of the numerical model is that the boundary and initial conditions are not limited to constant values. The boundary conditions can be a function of time (i.e. sinusoidal signal), and the initial conditions can be a function of position. Four different cases were explored in this work. In the first case, the start-up of a system was investigated where the whole system is assumed to be at the same temperature. In the second case, the new steady state in case one gets disrupted by a smaller inlet temperature step change. In the third case, the new steady state in case one gets disrupted by a step change in one of the mass flow rates. The response of these three cases show that there are different transient behaviors, and they depend on the conditions imposed on the system. The fourth case is a system that has a sinusoidal time varying inlet temperature for one of the flows. The results show that the sinusoidal behavior at the inlet propagates along the channel. However, the sinusoidal behavior on one of the fluids does not fully translate to the other gets damped by the wall and the heat transfer coefficients that can be barely seen on the other flow. A scaling analysis and a parametric study were performed to determine the influence the different parameters on the system have on the time a heat exchanger takes to reach steady state. The results show the dependency of tst* (time a system takes to reach steady state) on the dimensionless parameters M, C, NTUh, NTUc, and Cw. t st* depends linearly on C and Cw, and it is a power function of M. It was also shown that tst* has a logarithmic dependency on NTUh and NTUc. A correlation was generated to approximate the time a system takes to reach steady state for systems where C w << 1. A more complex heat exchanger with the specific application of solar energy storage was also investigated. This application involves a counter-flow heat exchanger with a reacting flow in one of the channels, and it includes varying properties, heat generation, varying heat transfer coefficient, and axial conduction. The application for this reactor heat exchanger is on solar energy storage, and the goals is to heat up steam to 650 °C by using the ammonia synthesis heat of reaction. One of the concerns for this system is the start-up time and also how disturbances in reacting flow can affect the steam outlet temperature. The transient behavior during the system start-up was presented. In order to achieve the desired outlet steam temperature at a reasonable time, the system must operate at high gas mass flow rates. If the inlet temperature of the gas suffers a step change, it affects the reaction rate as well as the outlet steam temperature. A small perturbation on the gas mass flow rate has an effect on the profile shape. However, the maximum temperature reached by the gas due to reaction is not affected, and consequently, it has little effect on the steam temperature. Axial conduction in the reactor heat exchanger was also investigated, specifically in the gas section. Axial conduction cannot be assumed to be negligible in the reactor heat exchanger because of the iron-based catalytic bed. Results in this section show that axial conduction is detrimental for the system. It was found that for Peclet number greater than 100, axial conduction can be neglected. An alternative solution to address axial conduction was proposed, namely to include a well-insulated non-reacting section (without a catalytic bed) upstream of the reactor. The modified reactor heat exchanger was a novel solution to avoid the negative effect of axial conduction. Results show that by having a non-reacting section, axial conduction becomes unimportant.
Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan
2017-10-18
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.
Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan
2016-08-01
An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Schultz, Marc R.
2012-01-01
A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.
Cai, Chunhua; Zhang, Liangshun; Lin, Jiaping; Wang, Liquan
2008-10-09
We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.
The crevice corrosion of cathodically modified titanium in chloride solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingen, E. van der
1995-12-01
The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less
Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics: A case study of polypropylene.
Zhan, Zhiwei; Wang, Jundong; Peng, Jinping; Xie, Qilai; Huang, Ying; Gao, Yifan
2016-09-15
Though plastics show good chemical inertness, they could sorb polychlorinated biphenyls (PCBs) and other toxic pollutants from the surrounding environment. Thus, ingestion of microplastics by marine organisms potentially enhances the transport and bioavailability of toxic chemicals. However, there is lack of studies on the sorption capacity, mechanism and factors affecting the sorption behavior. Here, sorption of PCBs by microplastics in the simulated seawater was studied using the batch oscillation equilibration technique, in which polypropylene (PP) and 3,3',4,4'-tetrachlorobiphenyl (PCB77) acted as model plastic and PCB, respectively. Factors including particle size, temperature and solution environment were investigated. Results showed that, equilibrium sorption time is about 8h and sorption capacity increase with decreasing particle size and temperature. Different sorption capacity in three solution environments was observed. Equilibrium data in three solution environments fitted very well to the Langmuir sorption model, indicating chemical sorption is the predominant mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner-Schmid, D.; Hoshi, Suwaru; Armstrong, D.W.
Aqueous solutions of nonionic surfactants are known to undergo phase separations at elevated temperatures. This phenomenon is known as clouding,' and the temperature at which it occurs is refereed to as the cloud point. Permethylhydroxypropyl-[beta]-cyclodextrin (PMHP-[beta]-CD) was synthesized and aqueous solutions containing it were found to undergo similar cloud-point behavior. Factors that affect the phase separation of PMHP-[beta]-CD were investigated. Subsequently, the cloud-point extractions of several aromatic compounds (i.e., acetanilide, aniline, 2,2[prime]-dihydroxybiphenyl, N-methylaniline, 2-naphthol, o-nitroaniline, m-nitroaniline, p-nitroaniline, nitrobenzene, o-nitrophenol, m-nitrophenol, p-nitrophenol, 4-phenazophenol, 3-phenylphenol, and 2-phenylbenzimidazole) from dilute aqueous solution were evaluated. Although the extraction efficiency of the compounds varied, mostmore » can be quantitatively extracted if sufficient PMHP-[beta]-CD is used. For those few compounds that are not extracted (e.g., o-nitroacetanilide), the cloud-point procedure may be an effective one-step isolation or purification method. 18 refs., 2 figs., 3 tabs.« less
A Malaria Transmission Model with Temperature-Dependent Incubation Period.
Wang, Xiunan; Zhao, Xiao-Qiang
2017-05-01
Malaria is an infectious disease caused by Plasmodium parasites and is transmitted among humans by female Anopheles mosquitoes. Climate factors have significant impact on both mosquito life cycle and parasite development. To consider the temperature sensitivity of the extrinsic incubation period (EIP) of malaria parasites, we formulate a delay differential equations model with a periodic time delay. We derive the basic reproduction ratio [Formula: see text] and establish a threshold type result on the global dynamics in terms of [Formula: see text], that is, the unique disease-free periodic solution is globally asymptotically stable if [Formula: see text]; and the model system admits a unique positive periodic solution which is globally asymptotically stable if [Formula: see text]. Numerically, we parameterize the model with data from Maputo Province, Mozambique, and simulate the long-term behavior of solutions. The simulation result is consistent with the obtained analytic result. In addition, we find that using the time-averaged EIP may underestimate the basic reproduction ratio.
Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism
NASA Astrophysics Data System (ADS)
Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao
2017-11-01
BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.
Polyimide Composites from 'Salt-Like' Solution Precursors
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Hou, Tan H.; Weiser, Erik S.; SaintClair, Terry L.
2001-01-01
Four NASA Langley-developed polyimide matrix resins, LaRC(TM)-IA, LaRC(TM)-IAX, LaRC(TM)-8515 and LaRC(TM)-PETI-5, were produced via a 'saltlike' process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behavior and the resin rheology were characterized. Composite molding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fiber/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (30-35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.
Joh, Hyungmok; Lee, Seung-Wook; Seong, Mingi; Lee, Woo Seok; Oh, Soong Ju
2017-06-01
All-nanocrystal (NC)-based and all-solution-processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All-solution-based, one-step photolithography techniques that integrate two distinct opposite-sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion-free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.
2016-04-29
Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20more » wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).« less
NASA Astrophysics Data System (ADS)
Larush, L.; Borgel, V.; Markevich, E.; Haik, O.; Zinigrad, E.; Aurbach, D.; Semrau, G.; Schmidt, M.
We report herein on the possibility of using ionic liquids (ILs) as additives to conventional electrolyte solutions, based on alkyl carbonates and LiPF 6 for attenuating thermal reactions in Li battery systems. As a model, a Li-Li 0.5CoO 2 system was used. The ionic liquids chosen included cations based on derivatives of pyrrolidinium and imidazolium, and the anions bioxalato borate (C 4O 8B -, BOB), (CH 3SO 2) 2N - (TFSI), and PF 3(C 2S 5) 3 - (FAP). The thermal behavior of solutions alone, solutions with Li metal, Li 0.5CoO 2 and Li metal + Li 0.5CoO 2 was studied. It was found that the presence of 10% of ILs, with derivatives of pyrrolidinium cations and FAP or TFSI anions in standard EC-DMC/LiPF 6 solutions, improves considerably the thermal stability of Li 0.5CoO 2 in electrolyte solutions. The onset temperatures of the thermal reactions of Li 0.5CoO 2 with solution species are higher and their heat evolution is considerably lower, when they contain these ionic liquids as additives. This finding opens the door for further studies and optimization of the use of selected ILs as additives that may improve the safety features of Li-ion batteries.
Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions.
Suzuki, Yoshiharu
2017-08-14
I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.
Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions
NASA Astrophysics Data System (ADS)
Suzuki, Yoshiharu
2017-08-01
I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.
Quench Crack Behavior of Nickel-base Disk Superalloys
NASA Technical Reports Server (NTRS)
Gayda, John; Kantzos, Pete; Miller, Jason
2002-01-01
There is a need to increase the temperature capability of superalloy turbine disks to allow higher operating temperatures in advanced aircraft engines. When modifying processing and chemistry of disk alloys to achieve this capability, it is important to preserve the ability to use rapid cooling during supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is an understanding of the key variables controlling the cracking tendencies of nickel-base disk alloys during quenching from supersolvus heat treatments. The objective of this study was to investigate the quench cracking tendencies of several advanced disk superalloys during simulated heat treatments. Miniature disk specimens were rapidly quenched after solution heat treatments. The responses and failure modes were compared and related to the quench cracking tendencies of actual disk forgings. Cracking along grain boundaries was generally observed to be operative. For the alloys examined in this study, the solution temperature not alloy chemistry was found to be the primary factor controlling quench cracking. Alloys with high solvus temperatures show greater tendency for quench cracking.
NASA Astrophysics Data System (ADS)
Mamontov, E.; Cole, D. R.; Dai, S.; Pawel, M. D.; Liang, C. D.; Jenkins, T.; Gasparovic, G.; Kintzel, E.
2008-09-01
Backscattering neutron spectroscopy was used to probe the dynamics of water molecules in LiCl and CaCl 2 aqueous solutions confined in 2.7, 1.9, and 1.4 nm diameter pores of various silica matrices. The pore size of 2.7 nm was found to be sufficiently large for the confined liquids to exhibit characteristic traits of bulk behavior, such as a freezing-melting transition and a phase separation. On the other hand, none of the fluids in the 1.4 nm pores exhibited a clear freezing-melting transition; instead, their dynamics at low temperatures gradually became too slow for the nanosecond resolution of the experiment. The greatest suppression of water mobility was observed in the CaCl 2 solutions, which suggests that cation charge and perhaps the cation hydration environment have a profound influence on the dynamics of the water molecules. Quasielastic neutron scattering measurements of pure H 2O and 1 m LiCl-H 2O solution confined in 1.9 nm pores revealed a dynamic transition in both liquids at practically the same temperature of 225-226 K, even though the dynamics of the solution at room temperature appeared to slow down by more than an order of magnitude compared to the pure water. The observation of the dynamic transition in the solution suggests that this transition may be a universal feature of water governed by processes acting on the local scale, such as a change in the hydrogen bonding.
NASA Astrophysics Data System (ADS)
Marshall, Jason Alexander
Photophysical properties of dichloro-bridged dimers and monomeric tris complexes of the type [M(NC)2Cl]2 and M(NC)3, where NC refers to the ortho-metalating ligands 2-phenylpyridine (ppy), benzo[h]quinoline (bzq), or 2-(p-tolyl)pyridine (ptpy) and M is Rh(III) or Ir(III), were investigated. Excited-state emission of Rh(III) complexes are highly structured and independent of temperature from 4--100 K in glassy media, with long lifetimes (102 mus to ms). Emission is not observed from the pale yellow, fluid solutions of Rh(III) complexes at room temperature. Below 7K, decay kinetics are sensitive to temperature and are complicated, requiring multi-exponential fits in 4:1 EtOH/MeOH. The spectroscopic properties are consistent with the assignment of a lowest 3pipi* excited-state manifold perturbed by an admixture of higher-lying states possessing strong spin-orbit interactions. The complicated decays are attributed to spin-relaxation-limited behavior between spin-levels in the 3pipi* manifold. Deep yellow solutions of Ir(III) complexes in 4:1 EtOH/MeOH are observed to emit in both glassy media and in fluid solution, displaying severe changes in spectral shape as the glass softens which are not attributable to rigidochromic shifts. Low-temperature spectra are structured with emission origins in the range 496--520 nm whereas room-temperature emission of complexes in fluid solution are characteristically broad structureless bands with maxima redshifted from spectra measured in rigid media. Both the emission and the excited-state lifetimes display temperature dependence, with lifetimes in the microsecond to tens of microseconds range at 77 K, increasing by more than an order of magnitude as the temperature is decreased to 4 K. Each of these characteristic band shapes arises from separate components of the emission which have been time-resolved from the low-temperature spectrum. A long-lived, structured component of the emission, only observed in rigid media, has been assigned as 3pipi*. The spectroscopic properties of the short-lived component, observed in the time-resolved low-temperature emission spectrum and in the room-temperature fluid-solution emission spectrum, are consistent with a lowest 3MLCT excited state manifold.
Strengthening of Fe3Al Aluminides by One or Two Solute Elements
NASA Astrophysics Data System (ADS)
Kratochvíl, Petr; Daniš, Stanislav; Minárik, Peter; Pešička, Josef; Král, Robert
2017-09-01
The compressive yield stress of Fe-26Al with additives Ti (0.5 to 4 at. pct), Cr (0.5 to 8 at. pct), Mo (0.5 to 4 at. pct), and V (0.5 to 8 at. pct) at 1073 K (800 °C) has been determined. The effect of the concentration of diverse solutes on the yield stress at 1073 K (800 °C) was compared, and the additivity of the effects of solutes was tested. The effects in iron aluminides with two solutes (V and Ti, Ti and Cr, V and Cr) are compared with those of a single solute V, Ti, and Cr. It is found that the additivity of yield stress increments is valid only for lower solute concentrations. When the amount of the solute atoms increases, the yield stress increment is substantially higher than the sum of the yield stress increments of single solutes. This behavior is related to the high-temperature order in iron aluminides.
Amemori, Shogo; Kokado, Kenta; Sada, Kazuki
2012-05-23
The de novo design of thermosensitive polymers in solution has been achieved by using the addition of small organic molecules (or "effectors"). Hydrogen bonding as an attractive polymer-polymer or polymer-effector interaction substantially dominates the responsivity, causing facile switching between LCST-type and UCST-type phase transitions, control of the transition temperature, and further coincidence of the two transitions. Small molecules having a high affinity for the polymer induce UCST-type phase behavior, whereas those having a low affinity for the polymer showed LCST-type phase behavior.
Structural, Kinetic And Magnetic Properties Of Mechanically Alloyed Fe-Zr Powders
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2008-04-01
We report the study of amorphous/non-equilibrium solid solution Fe100-xZrx (x = 20 to 35) alloys by mechanical alloying process. It is observed that with increasing Zr substitution, (a) the activation energy increases, (b) the saturation magnetization and coercivity show oscillating behavior. Low temperature magnetic measurements show the presence of spin-glass like phase transition even at H = 10 kOe. The oscillating behavior of magnetic parameters is explained on the basis of variations in the average internal stress calculated using magnetic data.
Dynamic strain aging and plastic instabilities
NASA Astrophysics Data System (ADS)
Mesarovic, Sinisa Dj.
1995-05-01
A constitutive model proposed by McCormick [(1988) Theory of flow localization due to dynamic strain ageing. Acta. Metall.36, 3061-3067] based on dislocation-solute interaction and describing dynamic strain aging behavior, is analyzed for the simple loading case of uniaxial tension. The model is rate dependent and includes a time-varying state variable, representing the local concentration of the impurity atoms at dislocations. Stability of the system and its post-instability behavior are considered. The methods used include analytical and numerical stability and bifurcation analysis with a numerical continuation technique. Yield point behavior and serrated yielding are found to result for well defined intervals of temperature and strain rate. Serrated yielding emerges as a branch of periodic solutions of the relaxation oscillation type, similar to frictional stick-slip. The distinction between the temporal and spatial (loss of homogeneity of strain) instability is emphasized. It is found that a critical machine stiffness exists above which a purely temporal instability cannot occur. The results are compared to the available experimental data.
Coarse-grained theory of a realistic tetrahedral liquid model
NASA Astrophysics Data System (ADS)
Procaccia, I.; Regev, I.
2012-02-01
Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.
Rarefaction waves in van der Waals fluids with an arbitrary number of degrees of freedom
Yuen, Albert; Barnard, John J.
2015-09-30
The isentropic expansion of an instantaneously and homogeneously heated foil is calculated using a 1D fluid model. The initial temperature and density are assumed to be in the vicinity of the critical temperature and solid density, respectively. The fluid is assumed to satisfy the van der Waals equation of state with an arbitrary number of degrees of freedom. Self-similar Riemann solutions are found. With a larger number of degrees of freedom f, depending on the initial dimensionless entropymore » $$˜\\atop{s_0}$$, a richer family of foil expansion behaviors have been found. We calculate the domain in parameter space where these behaviors occur. In total, eight types of rarefaction waves are found and described.« less
Multi-scaling in the critical phenomena in the quenched disordered systems
NASA Astrophysics Data System (ADS)
Wu, X. T.
2018-04-01
The Landau-Ginzburg-Wilson Hamiltonian with random temperature for the phase transition in disordered systems from the Griffiths phase to ordered phase is reexamined. From the saddle point solutions, especially the excited state solutions, it is shown that the system self-organizes into blocks coupled with their neighbors like superspins, which are emergent variables. Taking the fluctuation around these saddle point solutions into account, we get an effective Hamiltonian, including the emergent superspins of the blocks, the fluctuation around the saddle point solutions, and their couplings. Applying Stratonovich-Hubbard transformation to the part of superspins, we get a Landau-Ginzburg-Wilson Hamiltonian for the blocks. From the saddle point equations for the blocks, we can get the second generation blocks, of which sizes are much larger than the first generation blocks. Repeating this procedure again and again, we get many generations of blocks to describe the asymptotic behavior. If a field is applied, the effective field on the superspins is multiplied greatly and proportional to the block size. For a very small field, the effective field on the higher generation superspins can be so strong to cause the superspins polarized radically. This can explain the extra large critical isotherm exponent discovered in the experiments. The phase space of reduced temperature vs. field is divided into many layers , in which different generation blocks dominate the critical behavior. The sizes of the different generation emergent blocks are new relevant length scales. This can explain a lot of puzzles in the experiments and the Monte Carlo simulation.
Salis, Andrea; Rassu, Giovanna; Budai-Szűcs, Maria; Benzoni, Ilaria; Csányi, Erzsébet; Berkó, Szilvia; Maestri, Marcello; Dionigi, Paolo; Porcu, Elena P; Gavini, Elisabetta; Giunchedi, Paolo
2015-01-01
Thermosensitive chitosan/glycerophosphate (C/GP) solutions exhibiting sol-gel transition around body temperature were prepared to develop a class of injectable hydrogel platforms for the imaging and loco-regional treatment of hepatocellular carcinoma (HCC). Indocyanine green (ICG) was loaded in the thermosensitive solutions in order to assess their potential for the detection of tumor nodules by fluorescence. The gel formation of these formulations as well as their gelling time, injectability, compactness and resistance of gel structure, gelling temperature, storage conditions, biodegradability, and in vitro dye release behavior were investigated. Ex vivo studies were carried out for preliminary evaluation using an isolated bovine liver. Gel strengths and gelation rates increased with the cross-link density between C and GP. These behaviors are more evident for C/GP solutions, which displayed a gel-like precipitation at 4°C. Furthermore, formulations with the lowest cross-link density between C and GP exhibited the best injectability due to a lower resistance to flow. The loading of the dye did not influence the gelation rate. ICG was not released from the hydrogels because of a strong electrostatic interaction between C and ICG. Ex vivo preliminary studies revealed that these injectable formulations remain in correspondence of the injected site. The developed ICG-loaded hydrogels have the potential for intraoperative fluorescence imaging and local therapy of HCC as embolic agents. They form in situ compact gels and have a good potential for filling vessels and/or body cavities.
Troitzsch, R Z; Vass, H; Hossack, W J; Martyna, G J; Crain, J
2008-04-10
Free proline amino acid is a natural cryoprotectant expressed by numerous organisms under low-temperature stress. Previous reports have suggested that complex assemblies underlie its functional properties. We investigate here aqueous proline solutions as a function of temperature using combinations of Raman spectroscopy, Rayleigh-Brillouin light scattering, and molecular dynamics simulations with the view to revealing the molecular origins of the mixtures' functionality as a cryoprotectant. The evolution of the Brillouin frequency shifts and line widths with temperature shows that, above a critical proline concentration, the water-like dynamics is suppressed and viscoelastic behavior emerges: Here, the Landau-Placzek ratio also shows a temperature-independent maximum arising from concentration fluctuations. Molecular dynamics simulations reveal that the water-water correlations in the mixtures depend much more weakly on temperature than does bulk water. By contrast, the water OH Raman bands exhibit strong red-shifts on cooling similar to those seen in ices; however, no evidence of ice lattice phonons is observed in the low-frequency spectrum. We attribute this primarily to enhanced proline-water hydrogen bonding. In general, the picture that emerges is that aqueous proline is a heterogeneous mixture on molecular length scales (characterized by significant concentration fluctuations rather than well-defined aggregates). Simulations reveal that proline also appears to suppress the normal dependence of water structure on temperature and preserves the ambient-temperature correlations even in very cold solutions. The water structure in cold proline solutions therefore appears to be similar to that at a higher effective temperature. This, coupled with the emergence of glassy dynamics offers a molecular explanation for the functional properties of proline as a cryoprotectant without the need to invoke previously proposed complex aggregates.
Surface characteristics and electrochemical corrosion behavior of NiTi alloy coated with IrO2.
Li, M; Wang, Y B; Zhang, X; Li, Q H; Liu, Q; Cheng, Y; Zheng, Y F; Xi, T F; Wei, S C
2013-01-01
The aim of this work is to investigate the surface characteristics and corrosion behavior of NiTi (50.6 at.% Ni) shape memory alloy coated by a ceramic-like and highly biocompatible material, iridium oxide (IrO2). IrO2 coatings were prepared by thermal decomposition of H2IrCl6 · 6H2O precursor solution at the temperature of 300 °C, 400 °C and 500 °C, respectively. The surface morphology and microstructure of the coatings were investigated by scanning electron microscope (SEM) and glancing angle X-ray diffraction (GAXRD). X-ray photoelectron spectroscopy (XPS) was employed to determine the surface elemental composition. Corrosion resistance property of the coated samples was studied in a simulated body fluid at 37±1 °C by electrochemical method. It was found that the morphology and microstructure of the coatings were closely related to the oxidizing temperatures. A relatively smooth, intact and amorphous coating was obtained when the H2IrCl6·6H2O precursor solution (0.03 mol/L) was thermally decomposed at 300 °C for 0.5 h. Compared with the bare NiTi alloy, IrO2 coated samples exhibited better corrosion resistance behavior to some extent. Copyright © 2012 Elsevier B.V. All rights reserved.
Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.
Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong
2016-01-01
Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB.
Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars
Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong
2016-01-01
Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922
Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.
Djordjevic, N M; Fitzpatrick, F; Houdiere, F
2001-04-01
The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.
Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100
NASA Astrophysics Data System (ADS)
Wan, Quanhe; Quesnel, David J.
2013-03-01
The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.
NASA Astrophysics Data System (ADS)
Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine
2016-10-01
The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Mejorada, G.; Frias, D.
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10more » to 2500Gy) and at different temperature (from 77 to 298 deg. K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.« less
NASA Astrophysics Data System (ADS)
Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi
2013-06-01
Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.
Electrophoretic Study of the SnO2/Aqueous Solution Interface up to 260 degrees C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Santiago, V; Fedkin, Mark V.; Wesolowski, David J
2009-01-01
An electrophoresis cell developed in our laboratory was utilized to determine the zeta potential at the SnO{sub 2} (cassiterite)/aqueous solution (10{sup -3} mol kg{sup -1} NaCl) interface over the temperature range from 25 to 260 C. Experimental techniques and methods for the calculation of zeta potential at elevated temperature are described. From the obtained zeta potential data as a function of pH, the isoelectric points (IEPs) of SnO{sub 2} were obtained for the first time. From these IEP values, the standard thermodynamic functions were calculated for the protonation-deprotonation equilibrium at the SnO{sub 2} surface, using the 1-pK surface complexation model.more » It was found that the IEP values for SnO{sub 2} decrease with increasing temperature, and this behavior is compared to the predicted values by the multisite complexation (MUSIC) model and other semitheoretical treatments, and were found to be in excellent agreement.« less
Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang
2012-03-01
Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mechanism of lubrication by tricresylphosphate (TCP)
NASA Technical Reports Server (NTRS)
Faut, O. D.; Buckley, D. H.
1984-01-01
The coefficient of friction was measured as a function of temperature on a pin-on-disk tribometer. Pins and disks of 440C and 52100 steels were lubricated with tricresylphosphate (TCP), 3.45 percent TCP in squalene, and pure squalene. The M-50 pins and disks were lubricated with 3.45 percent TCP in squalene and pure squalene. Experiments were conducted under limited lubrication conditions in dry ( 100 ppm H2O) air and dry ( pp H2O) nitrogen at 50 rpm (equivalent to a sliding velocity of 13 cm sec) and a constant load of 9.8 N (1 kg). Characteristic temperatures T sub r were identified for TCP on 52100 steel and for squalene on M-50 and 52100 steels, where the friction decreased because of a chemical reaction between the lubricant and the metal surface. The behavior of squalene obscured the influence of 3.45 percent TCP solute on the friction of the system. Wear volume measurements demonstrated that wear was lowest at temperatures just above T sub r. Comparing the behavior of TCP on M-50, 440C, and 52100 steels revealed that the TCP either reacted to give T sub r behavior or produced initial failure in the temperature range 223 + or - 5 C.
NASA Astrophysics Data System (ADS)
AlKhatib, Mahmoud; Eisenhauer, Anton
2017-07-01
In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in calcite we performed precipitation (T) experiments decoupling temperature and precipitation rate (R∗). Calcite was precipitated at 12.5, 25.0 and 37.5 °C by diffusing NH3 and CO2 gases into aqueous solutions closely following the experimental setup of Lemarchand et al. (2004). The precipitation rate (R∗) for every sample was determined applying the initial rate method and from the specific surface area of almost all samples for each reaction. The order of reaction with respect to Ca2+ ions was determined to be one and independent of T. However, the order of reaction with respect to HCO3- changed from three to one as temperature increases from 12.5, 25 °C and 37.5 °C. Strontium incorporated into calcite (expressed as DSr = [Sr/Ca]calcite/[Sr/Ca]solution) was found to be R∗ and T dependent. As a function of increasing R∗ the Δ88/86Sr-values become more negative and as temperature increases the Δ88/86Sr values also increase at constant R∗. The DSr and Δ88/86Sr-values are correlated to a high degree and depend only on R∗ being independent of temperature, complexation and varying initial ratios. Latter observation may have important implications for the study of diagenesis, the paleo-sciences and the reconstruction of past environmental conditions. Calcium isotope fractionation (Δ44/40Ca) was also found to be R∗ and T dependent. For 12.5 and 25.0 °C we observe a general increase of the Δ44/40Ca values as a function of R∗ (Lemarchand et al. type behavior, Lemarchand et al. (2004)). Whereas at 37.5 °C a significant decreasing Δ44/40Ca is observed relative to increasing R∗ (Tang et al. type behavior, Tang et al. (2008)). In order to reconcile the discrepant observations we suggest that the temperature triggered change from a Ca2+-NH3-aquacomplex covalent controlled bonding to a Ca2+-H2O-aquacomplex van-der-Waals controlled bonding caused the change in sign of the R∗ - Δ44/40Ca slope due to the switch of an equilibrium type of isotope fractionation related to the covalent bonding during lower temperatures to a kinetic type of isotope fractionation at higher temperatures. This is supported by the observation that the Δ44/40Ca ratios tend to depend on the [Ca]:[DIC] ratio at 12.5 and 25 °C but is highly independent at 37.5 °C. Our observations imply the chemical fluid composition and temperature dependent complexation controls the amount and direction of Ca isotope fractionation in contrast to the Sr isotopes which do not show any change of its fractionation behavior as a function of complexation in the liquid phase.
Moghadam, Soroush; Larson, Ronald G
2017-02-06
All-atom molecular dynamic simulations (AA-MD) are performed for aqueous solutions of hydrophobic drug molecules (phenytoin) with model polymer excipients, namely, (1) N-isopropylacrylamide, (pNIPAAm), (2) pNIPAAm-co-acrylamide (Am), and (3) pNIPAAm-co-dimethylacrylamide (DMA). After validating the force field parameters using the well-known lower critical solution behavior of pNIPAAm, we simulate the polymer-drug complex in water and its behavior at temperatures below (295 K) and above the LCST (310 K). Using radial distribution functions, we find that there is an optimum comonomer molar fraction of around 20-30% DMA at which interaction with phenytoin drug molecules is strongest, consistent with recent experimental findings. The results provide evidence that molecular simulations are able to provide guidance in the optimization of novel polymer excipients for drug release.
Wei, Gang; Xu, Hui; Ding, Ping Tian; Li, San Ming; Zheng, Jun Min
2002-09-18
For ophthalmic drug delivery, Pluronic F127 solutions have a phase transition temperature too low for them to be instilled into the eye at room temperature. Refrigerator storage is usually required to make administration easier, whereas the potential irritation of cold to the sensitive ocular tissues may result in poor topical bioavailability. The purpose of this study is to develop a thermosetting gel with a suitable phase transition temperature by combining Pluronic analogs and to examine the influence of incorporating mucoadhesive polysaccharide, sodium hyaluronate (HA-Na), on the ocular retention of the gel. Dynamic rheological method and single photon emission computing tomography (SPECT) technique were used to ex/in vivo evaluate the thermosetting gels, respectively. An optimized formulation containing 21% F127 and 10% F68 increased the phase transition temperature by 9 degrees C as evaluated by elasticity modulus compared to that of individual 21% F127 solution. Rheological behaviors of the Pluronic solutions showed that the combined Pluronic formulation was free flowing liquid below 25 degrees C and converted to a firm gel under the physiological condition. Furthermore, this formulation possessed the highest viscosity both before and after tear dilution at 35 degrees C. Gamma scintigraphic data demonstrated that the clearance of the thermosetting gel labeled with 99mTc-DTPA was significantly delayed with respect to the phosphate buffered solution, and at least a threefold increase of the corneal residence time was achieved. However, no further improvement in the ocular retention was observed when adding HA-Na into the thermosetting gel due to the substantially decreased gel strength. Copyright 2002 Elsevier Science B.V.
Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang
2010-08-01
Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.
Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella
2015-08-28
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
A review of thermal methods and technologies for diabetic foot assessment.
Sousa, Paula; Felizardo, Virginie; Oliveira, Daniel; Couto, Rafael; Garcia, Nuno M
2015-07-01
Temperature analysis has been considered as a complementary method in medical evaluation and diagnosis. Several studies demonstrated that monitoring the temperature variations of the feet of diabetic patients can be helpful in the early identification of diabetic foot manifestations, and also in changing behaviors, which may contribute to reducing its incidence. In this review, several and most used techniques for assessing the temperature of the feet are presented, along with original published work on specific applications in diabetic foot complications. A review of solutions and equipment that operate according to the temperature assessment techniques is also presented. Finally, a comparison between the various technologies is presented, and the authors share their perspective on what will be the state of affairs in 5 years.
Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines
DOE Office of Scientific and Technical Information (OSTI.GOV)
NA
2004-05-18
Titanium Grade 7 (UNS R52400) is a titanium-based alloy with 0.12-0.25% Pd. The addition of the small amount of palladium is to ennoble the corrosion potential of Ti, thus improving the corrosion resistance of titanium in reducing environments. In most aqueous environments, Ti and Ti alloys demonstrate excellent corrosion resistance due to the protective oxide film that forms spontaneously and remains stable on the surface. However, Ti and Ti alloys are susceptible to corrosion in fluoride-containing environments due to the formation of complexes such as TiF{sub 6}{sup 2-} and TiF{sub 6}{sup 3-}, which are stable and soluble in electrolyte solutions.more » Without the presence of fluoride, only slight effects from [Cl{sup -}], pH and temperature have been reported [1]. It has been reported that the kinetics of passive corrosion of titanium in neutral solutions and controlled by the migration of the defects in the oxide across the surface film [2]. Thus, the increase in thickness and improvement in film properties, by thermal oxidation, would lead to a significant decrease in the susceptibility to film breakdown and in the passive corrosion rate. This report summarizes recent experiment results in studies of the environmental influence on the corrosion behavior of Titanium Grade 7 (Ti-7) in NaCl brines containing fluoride. The environmental factors to be studied include temperature, pH, chloride and fluoride concentration. This report also includes the effects of oxide film, formed during an anneal treatment, on the corrosion behavior of Ti-7. Polarization measurement techniques including potentiodynamic and potentiostatic scans were use3d to characterize corrosion kinetics and susceptibility. Due to the unique alloying in Titanium Grade 7, the long-term corrosion behavior is heavily influenced by the surface enrichment of Pd. Use of electrochemical impedance spectroscopy in conjunction with a potentiostatic scan will reveal the transformation in the corrosion behavior as a function of Pd enrichment on the metal surface. Surface characterization was done using various analytical techniques including X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The effect of fluoride ion on the corrosion behavior of Ti-7 is strongly dependent on the solution pH. In neutral (pH 8) and alkaline (pH 11) solutions, fluoride did not affect the corrosion rate significantly even though it altered the anodic polarization curve drastically. With pH decreased to 4, the corrosion rate of Ti-7 was increased significantly by the presence of fluoride.« less
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur
2015-07-08
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz
2015-01-01
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
NASA Astrophysics Data System (ADS)
Rothschild, Walter G.; Perrot, Michel
1988-11-01
In this paper we further explore the applicability of a vibrational T2 process based on the extended-exponential modulation model [Rothschild, Perrot, and Guillaume, J. Chem. Phys. 87, 7293 (1987)] to Raman correlation data of concentrated aqueous solutions of LiSCN and KSCN [Katō, Mol. Phys. 48, 1119 (1983); Katō and Takenaka, Mol. Phys. 46, 257 (1982)]. In general, the values of dispersion parameter α in the modulation function exp[-(t/τ)α], obtained from the fit of the theory to the isotropic correlation data of the CN oscillator, predict the prevalence of interrelated, collective dynamic processes in the medium that are the cause of the instantaneous oscillator transition frequency shifts (motional narrowing). In particular we predict, from the observed concentration dependence of α, strong short-time (fraction to several ps) cation-water-anion interactions that, in the more concentrated LiSCN-H2O systems at 303 K, are above a site percolation threshold with a value of α˜0.3 (close to that found in glasses). The expectation value of t,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meznarich, Norman A.K.; Juggernauth, K Anne; Batzli, Kiersten M
2011-11-17
Aqueous solutions of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) triblock copolymers (commercially available as Pluronic surfactants) micellize and structurally arrange into cubic quasicrystalline lattices as their temperature is raised. This structural evolution is seen macroscopically as a gelation, and the presence of these ordered phases can be controlled through both polymer concentration and temperature. The presence of added solutes within the dispersions can also affect the onset and kinetics of structure formation. Here we investigate the structures formed in Pluronic F127 solutions ranging from 20 to 30% with two pharmaceutical additives [methylparaben (MP) and dexamethasone (DX)] using small-angle X-ray scattering (SAXS). We observe bothmore » the progressive evolution and breakdown of these structures as the temperature is increased from 0 to 80 °C. Additionally, we conducted time-resolved SAXS measurements to elucidate the kinetics of the structural evolution. On the basis of the evolution of scattering peaks as the samples were being heated, we suggest that added MP changes the nucleation behavior of fcc phases within the sample from a heterogeneous process to a more homogeneous distribution of nucleated species. MP and DX also stabilize the micelle lattices, allowing them to persevere at higher temperatures. We observed the unusual result that the presence of DX caused the primary peaks of the structure factor to be suppressed, while preserving the higher order peaks. The primary peaks reappeared at the highest temperatures tested.« less
Sherif, El-Sayed M
2014-07-09
In this work, the results obtained from studying the anodic dissolution of pure iron and API X-65 5L pipeline steel after 40 min and 12 h exposure period in 4.0 wt % NaCl solutions at room temperature were reported. Potential-time, electrochemical impedance spectroscopy, potentiodynamic polarization, and chronoamperometric current-time at constant potential techniques were employed. It has been found that the iron electrode corrodes in the chloride test solutions faster than the API X-65 5L steel does under the same conditions. Increasing the exposure period for the electrodes from 40 min to 12 h showed a significant reduction in the corrosion parameters for both iron and steel in the 4.0 wt % NaCl solution. Results together confirmed clearly that the X-65 steel is superior to iron against corrosion in sodium chloride solutions.
Solute segregation kinetics and dislocation depinning in a binary alloy
NASA Astrophysics Data System (ADS)
Dontsova, E.; Rottler, J.; Sinclair, C. W.
2015-06-01
Static strain aging, a phenomenon caused by diffusion of solute atoms to dislocations, is an important contributor to the strength of substitutional alloys. Accurate modeling of this complex process requires both atomic spatial resolution and diffusional time scales, which is very challenging to achieve with commonly used atomistic computational methods. In this paper, we use the recently developed "diffusive molecular dynamics" (DMD) method that is capable of describing the kinetics of the solute segregation process at the atomic level while operating on diffusive time scales in a computationally efficient way. We study static strain aging in the Al-Mg system and calculate the depinning shear stress between edge and screw dislocations and their solute atmospheres formed for various waiting times with different solute content and for a range of temperatures. A simple phenomenological model is also proposed that describes the observed behavior of the critical shear stress as a function of segregation level.
Schermeyer, Marie-Therese; Wöll, Anna K.; Eppink, Michel; Hubbuch, Jürgen
2017-01-01
ABSTRACT High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50–200 mg/ml at pH 5–9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability. PMID:28617076
NASA Astrophysics Data System (ADS)
Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.
2018-01-01
The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.
Yan, Zhihu; Dai, Caili; Feng, Haishun; Liu, Yifei; Wang, Shilu
2014-01-01
The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles. PMID:25296131
Alloy softening in binary iron solid solutions
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1976-01-01
An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.
Nagamine, Kanetada; Shimomura, Koichiro; Miyadera, Haruo; Kim, Yong-Jae; Scheicher, Ralph Hendrik; Das, Tara Prasad; Schultz, Jerome Samson
2007-01-01
A marked difference in spin relaxation behavior due to hemoglobin magnetism was found for positive muons (μ+) in deoxyhemoglobin in comparison with that observed in oxyhemoglobin in aqueous solution at room temperature under zero and external longitudinal magnetic fields upto 0.4 Tesla. At the same time, small but significant unique relaxation pattern was observed in nonmagnetic oxyhemoglobin. Combined with our previous measurements on hemoglobin in human blood, application of this type of measurement to the studies of the level of oxygenation in various regions of the human brain is suggested. PMID:24019590
Swelling Kinetics of Waxy Maize Starch
NASA Astrophysics Data System (ADS)
Desam, Gnana Prasuna Reddy
Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.
Waldeck, H.; Kao, W. J.
2013-01-01
Characterization of the degradation mechanisms and resulting products of biodegradable materials is critical in understanding the behavior of the material including solute transport and biological response. Previous mathematical analyses of a semi-interpenetrating network (sIPN) containing both labile gelatin and a stable cross-linked poly(ethylene glycol) (PEG) network found that diffusion-based models alone were unable to explain the release kinetics of solutes from the system. In this study, degradation of the sIPN and its effect on solute release and swelling kinetics were investigated. The kinetics of the primary mode of degradation, gelatin dissolution, was dependent on temperature, preparation methods, PEGdA and gelatin concentration, and the weight ratio between the gelatin and PEG. The gelatin dissolution rate positively correlated with both matrix swelling and the release kinetics of high-molecular-weight model compound, FITC-dextran. Coupled with previous in vitro studies, the kinetics of sIPN degradation provided insights into the time-dependent changes in cellular response including adhesion and protein expression. These results provide a facile guide in material formulation to control the delivery of high-molecular-weight compounds with concomitant modulation of cellular behavior. PMID:21801489
Development of thermosensitive microgel-loaded cotton fabric for controlled drug release
NASA Astrophysics Data System (ADS)
Sun, Xiao-Zhu; Wang, Xiao; Wu, Jun-Zi; Li, Shu-De
2017-05-01
COS-g-PVCL copolymer was synthesized and infiltrated into CaCO3 particles to prepare thermosensitive porous microgels which exhibited phase transition behavior at the temperature that was similar to the lower critical solution temperature(LCST) of copolymer. The incorporation of microgel to cotton was done by pad-dry-cure method from aqueous microparticle dispersion that contained citric acid as a crosslinking agent. In vitro drug release experiments were performed at two different temperatures (25 and 37 °C) in PBS of pH 7.4 to study its drug release behavior with response to temperature. Due to the shrinkage of microgels, drug release profiles obtained were found to have enhanced release for aloin when the temperature was above LCST than other release conditions. Microgel-loaded fabrics proved to be in vivo biocompatible by skin irritation studies and displayed an obviously high water vapor permeability at 40 °C. The MTT assay showed no obvious cytotoxicity of microgel-loaded cotton against mouse fibroblast cells within 5 days. The results obtained demonstrated the potential use of the thermos-responsive microgel-loaded cotton fabrics as a textile-based drug delivery system for treating sunburn or skin care.
Non-LTE radiating acoustic shocks and Ca II K2V bright points
NASA Technical Reports Server (NTRS)
Carlsson, Mats; Stein, Robert F.
1992-01-01
We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.
NASA Technical Reports Server (NTRS)
Gil, Christopher M.
1998-01-01
An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.
Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei
2017-11-17
The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.
The Conformation of Thermoresponsive Polymer Brushes Probed by Optical Reflectivity.
Varma, Siddhartha; Bureau, Lionel; Débarre, Delphine
2016-04-05
We describe a microscope-based optical setup that allows us to perform space- and time-resolved measurements of the spectral reflectance of transparent substrates coated with ultrathin films. This technique is applied to investigate the behavior in water of thermosensitive polymer brushes made of poly(N-isopropylacrylamide) grafted on glass. We show that spectral reflectance measurements yield quantitative information about the conformation and axial structure of the brushes as a function of temperature. We study how parameters such as grafting density and chain length affect the hydration state of a brush, and provide one of the few experimental evidences for the occurrence of vertical phase separation in the vicinity of the lower critical solution temperature of the polymer. The origin of the hysteretic behavior of poly(N-isopropylacrylamide) brushes upon cycling the temperature is also clarified. We thus demonstrate that our optical technique allows for in-depth characterization of stimuli-responsive polymer layers, which is crucial for the rational design of smart polymer coatings in actuation, gating, or sensing applications.
Investigations on rectifying behavior of Y{sub 0.95}Ca{sub 0.05}MnO{sub 3}/Si junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhruv, Davit; V.V.P. Engineering College, Gujarat Technological University, Rajkot – 360 005; Joshi, Zalak
2016-05-06
In this communication, we report the rectifying properties observed across the junction, consists of Ca{sup +2} doped hexagonal YMnO{sub 3} manganite film, grown on n-type (100) Si single crystalline substrate. The junction was grown using cost effective chemical solution deposition (CSD) technique by employing spin coating method. Surface morphology of Y{sub 0.9}5Ca{sub 0.05}MnO{sub 3}/Si (YCMO/Si) film was carried out by atomic force microscopy and magnetic response of film was studied by magnetic force microscopy. Current – voltage characteristics of the junction was carried out by using Keithley source meter in current perpendicular to plane (CPP) mode at different temperatures. Rectificationmore » in I – V behavior has been observed for the junction at all the temperatures studied. With increase in temperature, rectification ratio, in the range of 10{sup 4}, increases across the junction. Results have been discussed in the context of thermal effects.« less
NASA Astrophysics Data System (ADS)
Lin, Yow-Jon; Hung, Cheng-Chun
2018-02-01
The effect of the modification of a gate SiO2 dielectric using an H2O2 solution on the temperature-dependent behavior of carrier transport for pentacene-based organic thin-film transistors (OTFTs) is studied. H2O2 treatment leads to the formation of Si(-OH) x (i.e., the formation of a hydroxylated layer) on the SiO2 surface that serves to reduce the SiO2 capacitance and weaken the pentacene-SiO2 interaction, thus increasing the field-effect carrier mobility ( µ) in OTFTs. The temperature-dependent behavior of carrier transport is dominated by the multiple trapping model. Note that H2O2 treatment leads to a reduction in the activation energy. The increased value of µ is also attributed to the weakening of the interactions of the charge carriers with the SiO2 dielectric that serves to reduce the activation energy.
Friction behavior of network-structured CNT coating on pure titanium plate
NASA Astrophysics Data System (ADS)
Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi
2015-12-01
Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.
Effect of temper rolling on the bake-hardening behavior of low carbon steel
NASA Astrophysics Data System (ADS)
Kuang, Chun-fu; Zhang, Shen-gen; Li, Jun; Wang, Jian; Li, Pei
2015-01-01
In a typical process, low carbon steel was annealed at two different temperatures (660°C and 750°C), and then was temper rolled to improve the mechanical properties. Pre-straining and baking treatments were subsequently carried out to measure the bake-hardening (BH) values. The influences of annealing temperature and temper rolling on the BH behavior of the steel were investigated. The results indicated that the microstructure evolution during temper rolling was related to carbon atoms and dislocations. After an apparent increase, the BH value of the steel significantly decreased when the temper rolling reduction was increased from 0% to 5%. This was attributed to the increase in solute carbon concentration and dislocation density. The maximum BH values of the steel annealed at 660°C and 750°C were 80 MPa and 89 MPa at the reductions of 3% and 4%, respectively. Moreover, increasing the annealing temperature from 660 to 750°C resulted in an obvious increase in the BH value due to carbide dissolution.
Lateral instability of high temperature pipelines, the 20-in. Sleipner Vest pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saevik, S.; Levold, E.; Johnsen, O.K.
1996-12-01
The present paper addresses methods to control snaking behavior of high temperature pipelines resting on a flat sea bed. A case study is presented based on the detail engineering of the 12.5 km long 20 inch gas pipeline connecting the Sleipner Vest wellhead platform to the Sleipner T processing platform in the North Sea. The study includes screening and evaluation of alternative expansion control methods, ending up with a recommended method. The methodology and philosophy, used as basis to ensure sufficient structural strength throughout the lifetime of the pipeline, are thereafter presented. The results show that in order to findmore » the optimum technical solution to control snaking behavior, many aspects need to be considered such as process requirements, allowable strain, hydrodynamic stability, vertical profile, pipelay installation and trawlboard loading. It is concluded that by proper consideration of all the above aspects, the high temperature pipeline can be designed to obtain sufficient safety level.« less
Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir.
Mosquera-Giraldo, Laura I; Taylor, Lynne S
2015-02-02
Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the phase behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid phase separation (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich phase with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This phase behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich phase, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.
Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles
NASA Astrophysics Data System (ADS)
Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.
2016-06-01
The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.
Does Warming a Lysozyme Solution Cook Ones Data?
NASA Technical Reports Server (NTRS)
Pusey, Marc; Burke, Michael; Judge, Russell
2000-01-01
Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.
The influence of temperature on narrow I 1 and I 2 lines in the luminescence spectrum of Ni0.6Zn0.4O
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Pustovarov, V. A.; Ivanov, V. Yu.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.
2014-05-01
The behavior of the luminescence spectrum of solid solution Ni0.6Zn0.4O, in which two intense narrow lines were recently discovered, is investigated as a function of temperature. It is shown that the intensity of one of the lines drops in accordance with the Mott law with increasing temperature in the range between 10 and 50 K. The lines experience broadening, and the ratio of their intensities changes. In addition, the lines shift toward lower energies. This shift and broadening of both lines occur differently, suggesting that they are of different nature.
NASA Astrophysics Data System (ADS)
Pepi, John W.
2017-08-01
Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming
2015-02-15
The neptunyl Np(V)O2 + and uranyl U(VI)O2 2+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is coprecipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factorsmore » that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals.« less
Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster
NASA Astrophysics Data System (ADS)
Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom
2018-04-01
In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.
Dynamics of Magnesite Formation at Low-Temperature and High pCO2 in Aqueous Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Odeta; Dixon, David A.; Rosso, Kevin M.
2015-09-17
Like many metal carbonate minerals, despite conditions of supersaturation, precipitation of magnesite from aqueous solution is kinetically hindered at low temperatures, for reasons that remain poorly understood. The present study examines precipitation products from reaction of Mg(OH)2 in aqueous solutions saturated with supercritical CO2 at high pressures (90 atm and 110 atm) and low temperatures (35 °C and 50 °C). Traditional bulk characterization (X-ray diffraction) of the initial solid formed indicated the presence of hydrated magnesium carbonates (hydromagnesite and nesquehonite), thermodynamically metastable phases that were found to slowly react during ageing to the more stable anhydrous form, magnesite, at temperaturesmore » as low as 35 °C (135-140 days) and at a faster rate at 50 °C (56 days). Undetected by bulk measurements, detailed examination of the precipitates by scanning electron microscopy (SEM) showed that magnesite is present as a minor component at relatively early reaction times (7 days) at 50 °C. In addition to magnesite dominating the solid phases over time, we find that mangesite nucleation and growth occurs more quickly with increasing partial pressure of CO2, and in electrolyte solutions with high bicarbonate content. Furthermore, formation of magnesite was found to be enhanced in sulfate-rich solutions, compared to chloride-rich solutions. We speculate that much of this behavior is possibly due to sulfate serving as sink of protons generated during carbonation reactions. These results support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of carbon dioxide sequestration on subsurface formations at long time scales.« less
Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.
2013-01-01
Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861
NASA Astrophysics Data System (ADS)
Adam, Stefan; Koenig, Meike; Rodenhausen, Keith Brian; Eichhorn, Klaus-Jochen; Oertel, Ulrich; Schubert, Mathias; Stamm, Manfred; Uhlmann, Petra
2017-11-01
Using a combined setup of quartz crystal microbalance with dissipation monitoring together with spectroscopic ellipsometry, the thermo-responsive behavior of two different brush systems (poly(N-isopropyl acrylamide) and poly(2-oxazoline)s) was investigated and compared to the behavior of the free polymer in solution. Poly(2-oxazoline)s with three different hydrophilicities were prepared by changing the content of a hydrophilic comonomer. While both polymer types exhibit a sharp, discontinuous thermal transition in solution, in the brush state the transition gets broader in the case of poly(N-isopropyl acrylamide) and is transformed into a continuous transition for poly(2-oxazoline)s. The position of the transition in solution is influenced by the degree of hydrophilicity of the poly(2-oxazoline). The difference in areal mass detected by quartz crystal microbalance and by spectroscopic ellipsometry, has been attributed to the chain segment density profile of the polymer brushes. Applying this density profile information, for poly(N-isopropyl acrylamide) two different swelling stages could be identified, while for poly(2-oxazoline) the transition between a parabolic and more step-wise profile is found continuous. The different swelling characteristics were attributed to the different miscibility behavior types, with the brush state acting similar to a crosslinked system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winstead, Cherese; Katagumpola, Pushpika
The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivativesmore » were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), {sup 1}H Nuclear Magnetic Resonance ({sup 1}H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.« less
Characteristics of lead induced stress corrosion cracking of alloy 690 in high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.K.; Lim, J.K.; Watanabe, Yutaka
1996-10-01
Slow strain rate tests (SSRT) were conducted on alloy 690 in various lead chloride solutions and metal lead added to 100 ppm chloride solution at 288 C. The corrosion potential (rest potential) for the alloy was measured with SSRT tests. The cracking was observed by metallographic examination and electron probe micro analyzer. Also, the corrosion behavior of the alloy was evaluated by anodic polarized measurement at 30 C. Resulting from the tests, cracking was characterized by cracking behavior, crack length and crack growth rate, and lead effects on cracking. The cracking was mainly intergranular in mode, approximately from 60 ummore » to 450 um in crack length, and approximately 10{sup {minus}6} to 10{sup {minus}7} mmS-1 in crack velocity. The cracking was evaluated through the variation the corrosion potential in potential-time and lead behavior during SSRTs. The lead effect in corrosion was evaluated through active to passive transition behavior in anodic polarized curves. The corrosion reactions in the cracking region were confirmed by electron probe microanalysis. Alloy 690 is used for steam generation tubes in pressurized water reactors.« less
Combined effects on MHD flow of Newtonian fluid past infinite vertical porous plate
NASA Astrophysics Data System (ADS)
Subbanna, K.; Mohiddin, S. Gouse; Vijaya, R. Bhuvana
2018-05-01
In this paper, we discussed free convective flow of a viscous fluid past an infinite vertical porous plate under the influence of uniform transverse magnetic field. Time dependent permeability and oscillatory suction is considered. The equations of the flow field are solved by a routine perturbation method for small amplitude of the permeability. The solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with the help of profiles. The shear stress, the Nusselt number and Sherwood number are also obtained and their behavior discussed computationally
Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments
NASA Astrophysics Data System (ADS)
Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.
2012-01-01
Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.« less
Cao, Yanpeng; Tisse, Christel-Loic
2013-09-01
In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.
Intermixing in Cu/Ni multilayers induced by cold rolling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.; Perepezko, J. H., E-mail: perepezk@engr.wisc.edu; Larson, D.
2015-04-28
Repeated cold rolling was performed on multilayers of Cu60/Ni40 and Cu40/Ni60 foil arrays to study the details of driven atomic scale interfacial mixing. With increasing deformation, there is a significant layer refinement down to the nm level that leads to the formation of a solid solution phase from the elemental end members. Intriguingly, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which ismore » also in contrast to the thermal diffusion behavior. This is confirmed by observations from X-ray diffraction, electron energy loss spectrum and atom probe tomography. The diffusion coefficient induced by cold rolling is estimated as 1.7 × 10{sup −17} m{sup 2}/s, which cannot be attributed to any thermal effect. The effective temperature due to the deformation induced mixing is estimated as 1093 K and an intrinsic diffusivity d{sub b}, which quantifies the tendency towards equilibrium in the absence of thermal diffusion, is estimated as 6.38 × 10{sup −18} m{sup 2}/s. The fraction of the solid solution phase formed is illustrated by examining the layer thickness distribution and is described by using an error function representation. The evolution of mixing in the solid solution phase is described by a simplified sinusoid model, in which the amplitude decays with increased deformation level. The promoted diffusion coefficient could be related to the effective temperature concept, but the establishment of an oscillation in the composition profile is a characteristic behavior that develops due to deformation.« less
TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor
Olivares, Erick; Salgado, Simón; Maidana, Jean Paul; Herrera, Gaspar; Campos, Matías; Madrid, Rodolfo; Orio, Patricio
2015-01-01
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization. PMID:26426259
Thermal behavior spiral bevel gears. Ph.D. Thesis - Case Western Univ., Aug. 1993
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1995-01-01
An experimental and analytical study of the thermal behavior of spiral bevel gears is presented. Experimental data were taken using thermocoupled test hardware and an infrared microscope. Many operational parameters were varied to investigate their effects on the thermal behavior. The data taken were also used to validate the boundary conditions applied to the analytical model. A finite element-based solution sequence was developed. The three-dimensional model was developed based on the manufacturing process for these gears. Contact between the meshing gears was found using tooth contact analysis to describe the location, curvatures, orientations, and surface velocities. This information was then used in a three-dimensional Hertzian contact analysis to predict contact ellipse size and maximum pressure. From these results, an estimate of the heat flux magnitude and the location on the finite element model was made. The finite element model used time-averaged boundary conditions to permit the solution to attain steady state in a computationally efficient manner.Then time- and position-varying boundary conditions were applied to the model to analyze the cyclic heating and cooling due to the gears meshing and transferring heat to the surroundings, respectively. The model was run in this mode until the temperature behavior stabilized. The transient flash temperature on the surface was therefore described. The analysis can be used to predict the overall expected thermal behavior of spiral bevel gears. The experimental and analytical results were compared for this study and also with a limited number of other studies. The experimental and analytical results attained in the current study were basically within 10% of each other for the cases compared. The experimental comparison was for bulk thermocouple locations and data taken with an infrared microscope. The results of a limited number of other studies were compared with those obtained herein and predicted the same basic behavior.
Pseudo-Capacitors: SPPS Deposition and Electrochemical Analysis of α-MoO3 and Mo2N Coatings
NASA Astrophysics Data System (ADS)
Golozar, Mehdi; Chien, Ken; Lian, Keryn; Coyle, Thomas W.
2013-06-01
Solution precursor plasma spraying (SPPS) is a novel thermal spray process in which a solution precursor is injected into the high-temperature zone of a DC-arc plasma jet to allow solvent evaporation from the precursor droplets, solute precipitation, and precipitate pyrolysis prior to substrate impact. This investigation explored the potential of SPPS to fabricate α-MoO3 coatings with fine grain sizes, high porosity levels, and high surface area: characteristics needed for application as pseudo-capacitor electrodes. Since molybdenum nitride has shown a larger electrochemical stability window and higher specific area capacitance, the α-MoO3 deposits were subsequently converted into molybdenum nitride. A multistep heat-treatment procedure resulted in a topotactic phase-transformation mechanism, which retained the high surface area lath-shaped features of the original α-MoO3. The electrochemical behaviors of molybdenum oxide and molybdenum nitride deposits formed under different deposition conditions were studied using cyclic voltammetry to assess the influence of the resulting microstructure on the charge storage behavior and potential for use in pseudo-capacitors.
Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy
NASA Astrophysics Data System (ADS)
Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente
2015-12-01
We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.
SSME structural computer program development. Volume 2: BOPACE users manual
NASA Technical Reports Server (NTRS)
Vos, R. G.
1973-01-01
A computer program for use with a thermal-elastic-plastic-creep structural analyzer is presented. The following functions of the computer program are discussed: (1) analysis of very high temperature and large plastic-creep effects, (2) treatment of cyclic thermal and mechanical loads, (3) development of constitutive theory which closely follows actual behavior under variable temperature conditions, (4) stable numerical solution approach which avoids cumulative errors, and (5) capability of handling up to 1000 degrees of freedom. The computer program is written in FORTRAN IV and has been run on the IBM 360 and UNIVAC 1108 computer systems.
Conductance bistability of gold nanowires at room temperature
NASA Astrophysics Data System (ADS)
Kiguchi, Manabu; Konishi, Tatsuya; Murakoshi, Kei
2006-03-01
Quantized conductance behavior of gold nanowires was studied under electrochemical potential control. We fabricated 1-nm -long monoatomic wires in solution at room temperature. Electrochemical potential significantly affected the stability of the monoatomic wire and fractional conductance peak occurrence in the conductance histogram. We revealed that the hydrogen adsorption on gold monoatomic wires was a decisive factor of the fractional peak, which was originated from the dynamic structural transition between two bistable states of the monoatomic wire showing the unit and the fractional values of the conductance. We could tune the stability of these bistable states to make the fractional conductance state preferable.
Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments
Koziol, A.M.; Bohlen, S.R.
1992-01-01
The thermodynamic mixing properties of almandine-pyrope garnet were derived from phase equilibrium experiments at temperatures of 900 and 1000??C and pressures from 8 to 14 kbar. Almandine has essentially ideal behavior in almandine-pyrope garnet over the composition range Alm89-Alm61 at the above experimental conditions. In all experimental products a systematic partitioning of Fe and Mg between garnet and ilmenite was seen with ln Kd ??? 1.59 which was not temperature sensitive. The results support the use of garnet mixing models that incorporate ideal or nearly ideal Fe-Mg parameters. -from Authors
Morariu, Simona; Bercea, Maria
2012-01-12
The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.
Influence of entanglements on glass transition temperature of polystyrene
NASA Astrophysics Data System (ADS)
Ougizawa, Toshiaki; Kinugasa, Yoshinori
2013-03-01
Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.
Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions
Hayat, Tasawar; Haider, Farwa; Alsaedi, Ahmed
2017-01-01
Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field. PMID:28380014
Raghavan, Chinnambedu Murugesan; Chen, Tzu-Pei; Li, Shao-Sian; Chen, Wei-Liang; Lo, Chao-Yuan; Liao, Yu-Ming; Haider, Golam; Lin, Cheng-Chieh; Chen, Chia-Chun; Sankar, Raman; Chang, Yu-Ming; Chou, Fang-Cheng; Chen, Chun-Wei
2018-05-09
Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA) 2 (MA) n-1 Pb n I 3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.
Thermal behavior of polyhalite: a high-temperature synchrotron XRD study
Xu, Hongwu; Guo, Xiaofeng; Bai, Jianming
2016-09-17
As an accessory mineral in marine evaporites, polyhalite, K 2MgCa 2(SO 4) 4·2H 2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this paper, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. Tomore » determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO 4) and two langbeinite-type phases, K 2Ca x Mg 2-x (SO 4) 3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K 2CaMg(SO 4) 3, at ~919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. Finally, from the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.« less
Structural properties of glucose-dimethylsulfoxide solutions probed by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Paolantoni, Marco; Gallina, Maria Elena; Sassi, Paola; Morresi, Assunta
2009-04-01
Raman spectroscopy was employed to achieve a molecular level description of solvation properties in glucose-dimethylsulfoxide (DMSO) solutions. The analysis of Raman spectra confirms the importance of the dipole-dipole interaction in determining structural properties of pure DMSO; the overall intermolecular structure is maintained in the whole 20-75 °C temperature range investigated. The blueshift of the CH stretching modes observed at higher temperatures points out that CH3⋯O contacts contribute to the cohesive energy of the DMSO liquid system. The addition of glucose perturbs the intermolecular ordering of DMSO owing to the formation of stable solute-solvent hydrogen bonds. The average number of OH⋯OS contacts (3.2±0.3) and their corresponding energy (˜20 kJ/mol) were estimated. Besides, the concentration dependence of the CH stretching bands and the behavior of the noncoincidence effect on the SO band, suggest that the dipole-dipole and CH3⋯O interactions among DMSO molecules are disfavored within the glucose solvation layer. These findings contribute to improve our understanding about the microscopic origin of solvent properties of DMSO toward more complex biomolecular systems.
Numerical analysis of turbine blade tip treatments
NASA Technical Reports Server (NTRS)
Gopalaswamy, Nath S.; Whitaker, Kevin W.
1992-01-01
Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,
Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B
2014-01-28
We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.
Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen
2013-01-01
Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434
NASA Astrophysics Data System (ADS)
Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao
2018-04-01
The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.
NASA Astrophysics Data System (ADS)
Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo
2010-06-01
In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
NASA Astrophysics Data System (ADS)
Park, Kyeongsoon; Lee, Ga Won
2011-10-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio
2007-08-08
The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process
2011-01-01
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature. PMID:21974984
Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process.
Park, Kyeongsoon; Lee, Ga Won
2011-10-05
High-quality Ca0.8Dy0.2MnO3 nano-powders were synthesized by the solution combustion process. The size of the synthesized Ca0.8Dy0.2MnO3 powders was approximately 23 nm. The green pellets were sintered at 1150-1300°C at a step size of 50°C. Sintered Ca0.8Dy0.2MnO3 bodies crystallized in the perovskite structure with an orthorhombic symmetry. The sintering temperature did not affect the Seebeck coefficient, but significantly affected the electrical conductivity. The electrical conductivity of Ca0.8Dy0.2MnO3 increased with increasing temperature, indicating a semiconducting behavior. The absolute value of the Seebeck coefficient gradually increased with an increase in temperature. The highest power factor (3.7 × 10-5 Wm-1 K-2 at 800°C) was obtained for Ca0.8Dy0.2MnO3 sintered at 1,250°C. In this study, we investigated the microstructure and thermoelectric properties of Ca0.8Dy0.2MnO3, depending on sintering temperature.
Koutsopoulos, Sotirios; van der Oost, John; Norde, Willem
2005-01-01
Conformational characteristics and the adsorption behavior of endo-β-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133°C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature. PMID:15516527
Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System
NASA Astrophysics Data System (ADS)
Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon
2016-01-01
In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.
NASA Astrophysics Data System (ADS)
Mysen, Bjorn
2017-02-01
Our understanding of materials transport processes in the Earth relies on characterizing the behavior of fluid and melt in silicate-(C-O-H) systems at high temperature and pressure. Here, Raman spectroscopy was employed to determine structure of and carbon isotope partitioning between melts and fluids in alkali aluminosilicate-C-O-H systems. The experimental data were recorded in-situ while the samples were at equilibrium in a hydrothermal diamond anvil cell at temperatures and pressures to 825 °C and >1300 MPa, respectively. The carbon solution equilibrium in both (C-O-H)-saturated melt and coexisting, silicate-saturated (C-O-H) fluid is 2CO3 + H2O + 2Qn + 1 = 2HCO3 + 2Qn. In the Qn-notation, the superscript, n, is the number of bridging oxygen in silicate structural units. At least one oxygen in CO3 and HCO3 groups likely is shared with silicate tetrahedra. The structural behavior of volatile components described with this equilibrium governs carbon isotope fractionation factors between melt and fluid. For example, the ΔH equals 3.2 ± 0.7 kJ/mol for the bulk 13C/12C exchange equilibrium between fluid and melt. From these experimental data, it is suggested that at deep crustal and upper mantle temperatures and pressures, the δ13C-differences between coexisting silicate-saturated (C-O-H) fluid and (C-O-H)-saturated silicate melts may change by more than 100‰ as a function of temperature in the range of magmatic processes. Absent information on temperature and pressure, the use of carbon isotopes of mantle-derived magma to derive isotopic composition of magma source regions in the Earth's interior, therefore, should be exercised with care.
NASA Technical Reports Server (NTRS)
Blackburn, L. B.
1986-01-01
The thermal response and aging behavior of three 2XXX-series powder metallurgy aluminum alloys have been investigated, using Rockwell B hardness measurements, optical and electron microscopy, and energy-dispersive chemical analysis, in order to correlate microstructure with measured mechanical properties. Results of the thermal response study indicated that an increased solution heat treatment temperature was effective in resolutionizing large primary constituents in the alloy bearing more copper but had no apparent effect on the microconstituents of the other two. Aging studies conducted at room temperature and at 120, 150, and 180 C for times ranging up to 60 days indicated that classic aging response curves, as determined by hardness measurements, occurred at lower aging temperatures than were previously studied for these alloys, as well as at lower aging temperatures than are commonly used for ingot metallurgy alloys of similar compositions. Microstructural examination and fracture surface analysis of peak-aged tension specimens indicated that the highest tensile strengths are associated with extremely fine and homogeneous distributions of theta-prime or S-prime phases combined with low levels of both large constituent particles and dispersoids. Examination of the results suggest that refined solution heat treatments and lower aging temperatures may be necessary to achieve optimum mechanical properties for these 2XXX series alloys.
Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan
2012-11-01
The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.
Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys
Jin, Ke; Mu, Sai; An, Ke; ...
2016-12-27
For this research temperature dependent thermophysical properties, including specific heat capacity, lattice thermal expansion, thermal diffusivity and conductivity, have been systematically studied in Ni and eight Ni-containing single-phase face-centered-cubic concentrated solid solution alloys, at elevated temperatures up to 1273 K. The alloys have similar specific heat values of 0.4–0.5 J·g -1·K -1 at room temperature, but their temperature dependence varies greatly due to Curie and K-state transitions. The lattice, electronic, and magnetic contributions to the specific heat have been separated based on first-principles methods in NiCo, NiFe, Ni-20Cr and NiCoFeCr. The alloys have similar thermal expansion behavior, with the exceptionmore » that NiFe and NiCoFe have much lower thermal expansion coefficient in their ferromagnetic state due to magnetostriction effects. Calculations based on the quasi-harmonic approximation accurately predict the temperature dependent lattice parameter of NiCo and NiFe with < 0.2% error, but underestimated that of Ni-20Cr by 1%, compared to the values determined from neutron diffraction. In addition, all the alloys containing Cr have very similar thermal conductivity, which is much lower than that of Ni and the alloys without Cr, due to the large magnetic disorder.« less
Ma, Jian; Dasgupta, Purnendu K; Yang, Bingcheng
2011-02-01
Gas-liquid solubility equilibria (Henry's Law behavior) are of basic interest to many different areas. Temperature-dependent aqueous solubilities of various organic compounds are of fundamental importance in many branches of environmental science. In a number of situations, the gas/dissolved solute of interest has characteristic spectroscopic absorption that is distinct from that of the solvent. For such cases, we report facile nondestructive rapid measurement of the temperature-dependent Henry's law constant (K(H)) in a static sealed spectrometric cell. Combined with a special cell design, multiwavelength measurement permits a large range of K(H) to be spanned. It is possible to derive the K(H) values from the absorbance measured in the gas phase only, the liquid phase only (preferred), and both phases. Underlying principles are developed, and all three approaches are illustrated for a solute like acetone in water. A thermostatic spectrophotometer cell compartment, widely used and available, facilitates rapid temperature changes and allows rapid temperature-dependent equilibrium measurements. Applicability is shown for both acetone and methyl isobutyl ketone. Very little sample is required for the measurement; the K(H) for 4-hydroxynonenal, a marker for oxidative stress, is measured to be 56.9 ± 2.6 M/atm (n = 3) at 37.4 °C with 1 mg of the material available.
NASA Astrophysics Data System (ADS)
Halalay, Ion C.
A study of the structural glass transition trough impulsive stimulated light scattering experiments has been carried out in concentrated aqueous lithium chloride solutions, at temperatures ranging from ambient to cryogenic. A specially designed sample cell made it possible to cover the whole temperature interval from simple liquid, to viscoelastic supercooled liquid, to glass. It is shown that a phenomenological description of the results of these experiments in terms of a spectrum of relaxation times through the use of a Kohlrausch-Williams-Watts relaxation function is inadequate. Based on predictions of mode-coupling theory of the liquid-glass transition, an alternative approach to data interpretation is proposed. It is shown that for an aqueous lithium chloride solution, the prediction of simple scaling and identical scaling for mechanical and electrical susceptibilities seems to be valid. However, another prediction of theory is called into question: instead of a power-law behavior on temperature difference, it is found experimentally that the behavior of the susceptibility spectrum minimum is exponential. Similar disagreements are found for other two materials, triphenyl phosphite and polypropylene oxide. The causes for these discrepancies are discussed and it is concluded that additional experimentation is necessary to verify theoretical claims. Experiments are proposed which can test these predictions and serve as guide for the construction of theoretical models for the glass transition in real systems. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).
Asymmetric osmotic water permeation through a vesicle membrane
NASA Astrophysics Data System (ADS)
Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue
2017-05-01
Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.
Synthesis and characterization of recombinant abductin-based proteins.
Su, Renay S-C; Renner, Julie N; Liu, Julie C
2013-12-09
Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.
You, Jun; Zhou, Jinping; Li, Qian; Zhang, Lina
2012-03-20
As a weak base, β-glycerophosphate (β-GP) was used to spontaneously initiate gelation of quaternized cellulose (QC) solutions at body temperature. The QC/β-GP solutions are flowable below or at room temperature but gel rapidly under physiological conditions. In order to clarify the sol-gel transition process of the QC/β-GP systems, the complex was investigated by dynamic viscoelastic measurements. The shear storage modulus (G') and loss modulus (G″) as a function of (1) concentration of β-GP (c(β-GP)), (2) concentration of QC (c(QC)), (3) degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the anhydroglucose unit) of QC, (4) viscosity-average molecular weight (M(η)) of QC, and (5) solvent medium were studied by the oscillatory rheology. The sol-gel transition temperature of QC/β-GP solutions decreased with an increase of c(QC) and c(β-GP), the M(η) of QC, and a decrease of the DS of QC and pH of the solvent. The sol-gel transition temperature and time could be easily controlled by adjusting the concentrations of QC and β-GP, M(η) and DS of QC, and the solvent medium. Gels formed after heating were irreversible; i.e., after cooling to lower temperature they could not be dissolved to become liquid again. The aggregation and entanglement of QC chains, electrostatic interaction, and hydrogen bonding between QC and β-GP were the main factors responsible for the irreversible sol-gel transition behavior of QC/β-GP systems.
NASA Astrophysics Data System (ADS)
Michalovic, Mark Stephen
A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to cyclopolymerize, but only in DMF at 122°C and at a 10:1 solvent:monomer ratio. A multimedia educational program called The Macrogalleria dealing with polymer science was created and distributed by the world wide web and on cd-rom. The site is made in the form of a virtual shopping mall in which each store is a lesson on some aspect of polymer science. The lessons are written in informal language to make the material more accessible. Also, the lessons are connected by hypertext links in a nonlinear fashion to allow students to create their own pathways through the material. The Macrogalleria has been very successful, being used by educational institutions to incorporate polymer science into the undergraduate chemistry curriculum, and by many industrial users as well. It has received numerous awards as well.
Numerical simulation of magmatic hydrothermal systems
Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.
2010-01-01
The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.
A computer simulation study of the temperature dependence of the hydrophobic hydration
NASA Astrophysics Data System (ADS)
Guillot, B.; Guissani, Y.
1993-11-01
The test particle method is used to evaluate by molecular dynamics calculations the solubility of rare gases and of methane in water between the freezing point and the critical point. A quantitative agreement is obtained between solubility data and simulation results when the simulated water is modeled by the extended simple point charge model (SPCE). From a thermodynamical point of view, it is shown that the hierarchy of rare gases solubilities in water is governed by the solute-water interaction energy while an entropic term of cavity formation is found to be responsible for the peculiar temperature dependence of the solubility along the coexistence curve, and more precisely, of the solubility minimum exhibited by all the investigated solutes. Near the water critical point, the asymptotic behaviors of the Henry's constant and of the vapor-liquid partition coefficient, respectively, as deduced from the simulation data follow with a good accuracy the critical laws recently proposed in the literature for these quantities. Moreover, the calculated partial molar volume of the solute shows a steep increase above 473 K and becomes proportional to the isothermal compressibility of the pure solvent in the vicinity of the critical point as it is observed experimentally. From a microscopic point of view, the evaluation of the solute-solvent pair distribution functions permits to establish a relationship between the increase of the solubility with the decrease of the temperature in cold water on the one hand, and the formation of cages of the clathrate-type around the solute on the other hand. Nevertheless, as soon as the boiling point of water is reached the computer simulation shows that the water molecules of the first hydration shell are no longer oriented tangentially to the solute and tend to reorientate towards the bulk. At higher temperatures a deficit of water molecules progressively appears around the solute, a deficit which is directly associated with an increase of the partial molar volume. Although this phenomenon could be related to what is observed in supercritical mixtures it is emphasized that no long range critical fluctuation is present in the simulated sample.
Yu, Dunji; An, Ke; Chen, Xu; ...
2015-10-09
Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less
Li, Shasha; Liu, Qifeng; Lu, Rongzhu; Wu, Xiaoyang; Chen, Jian
2018-07-01
Magnetic Ni0.5Zn0.5Fe2O4 nanoparticles were prepared via the methanol combustion process, the morphology, chemical composition, microstructure and magnetic properties of them were investigated by SEM, EDX, TEM, XRD, VSM, and BET. The experimental data revealed that the solution concentration was a key factor to the Ni0.5Zn0.5Fe2O4 nanoparticles, with the solution concentration of ferric nitrate decreasing from 3.37 to 1.12 mol/L, the saturation magnetization decreased from 69.3 Am2/kg to 37.2 Am2/kg, and the average crystalline size of Ni0.5Zn0.5Fe2O4 nanoparticles decreased from 32 to 25 nm. While, with the solution concentration of ferric nitrate decreasing from 1.12 to 0.56 mol/L, the saturation magnetization increased from 37.2 Am2/kg to 104.6 Am2/kg, and the average crystalline size increased from 25 to 44 nm. The adsorption behavior of neutral red (NR) onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was investigated by UV spectroscopy at room temperature; the adsorption kinetics data related to the adsorption of NR from aqueous solutions were in good agreement with the pseudo-second-order kinetic model in a range of initial concentration of 50-300 mg/L. By comparison of the Langmuir and Freundlich models for adsorption isotherm of NR, the Langmuir model (correlation coefficient R2 = 0.9918) could be used to evaluate the adsorption isotherm of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles at room temperature, which suggested that the adsorption of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was monolayer, and the adsorption energy was constant.
Phase and structural behavior of SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohon, N.; Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Prots, Yu.
2014-02-01
Highlights: • Continuous solid solutions exist in the SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems. • Lattice parameter crossover was found in solid solutions Sm{sub 1−x}R{sub x}AlO{sub 3} (R = Eu, Gd). • Thermally induced lattice crossovers occur in Sm{sub 0.9}R{sub 0.1}AlO{sub 3} at elevated temperatures. • First-order structural phase transition Pbnm↔R3{sup ¯}c was found in Sm{sub 1−x}R{sub x}AlO{sub 3} (R = Eu, Gd). • Phase diagram of the systems SmAlO{sub 3}–EuAlO{sub 3} and SmAlO{sub 3}–GdAlO{sub 3} has been constructed. - Abstract: Phase and structural behavior in the SmAlO{sub 3}–RAlO{sub 3} (R = Eu, Gd) systems has been studiedmore » in a whole concentration range by means of laboratory X-ray diffraction, in situ synchrotron powder diffraction and differential thermal analysis techniques. Continuous solid solutions with orthorhombic perovskite structure have been found in both systems. Peculiarity of the solid solutions of Sm{sub 1−x}Eu{sub x}AlO{sub 3} and Sm{sub 1−x}Gd{sub x}AlO{sub 3} is the existence of two lattice parameter crossovers in each system occurred at x{sub Eu} = 0.07 and 0.62 and at x{sub Gd} = 0.04 and 0.33, respectively. The temperature induced lattice crossovers in the Sm{sub 0.9}Eu{sub 0.1}AlO{sub 3} and Sm{sub 0.9}Gd{sub 0.1}AlO{sub 3} samples have been found at 387 and 922 K and at 501 and 894 K. First-order reversible structural phase transformations Pbnm↔R3{sup ¯}c have been detected in both systems at the elevated temperatures. The temperatures of these transitions increase linearly with the decreasing of the samarium content. Phase diagrams of the pseudo-binary systems SmAlO{sub 3}–EuAlO{sub 3} and SmAlO{sub 3}–GdAlO{sub 3} have been constructed.« less
Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution
NASA Astrophysics Data System (ADS)
Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.
2016-08-01
Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.
Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer
NASA Astrophysics Data System (ADS)
Naranjo, R. C.; Morway, E. D.; Healy, R. W.
2016-12-01
Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.
Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.
Rehman, M; Shekunov, B Y; York, P; Colthorpe, P
2001-10-01
Solubilities of a model compound (nicotinic acid) in pure supercritical carbon dioxide (SC-CO(2)) and SC-CO(2) modified with methanol have been measured in the pressure range of 80-200 bar and between temperatures of 35 and 90 degrees C. On-line ultraviolet detection enabled a simple and relatively fast measurement of very low levels of solubility (10(-7) mol fraction) with good accuracy in pure and modified SC-CO(2). The solute solubility in both pure SC-CO(2) and SC-CO(2) modified with methanol increased with pressure at all investigated temperatures. A retrograde solubility behavior was observed in that, at pressures below 120 bar, a solubility decrease on temperature increase occurred. Solubility data were used to calculate supersaturation values and to define optimum operating conditions to obtain crystalline particles 1-5 microm in diameter using the solution-enhanced dispersion by supercritical fluids (SEDS) process, thereby demonstrating the feasibility of a one-step production process for particulate pharmaceuticals suitable for respiratory drug delivery. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1570-1582, 2001
NASA Astrophysics Data System (ADS)
Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao
2015-10-01
A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.
Liu, Yuyun; Wu, Wei; Wei, Jia; Yu, Yanlei
2017-01-11
Two types of novel reactive linear liquid crystal polymers (LLCPs) with different azotolene concentrations have been synthesized and processed into films and fibers by solution and melting processing methods. Then, the LLCPs in the obtained monodomain fiber and polydomain film were easily cross-linked with difunctional primary amines. The resulted cross-linked liquid crystal polymers (CLCPs) underwent reversible photoinduced bending and unbending behaviors in response to 445 and 530 nm visible light at room temperature, respectively. The post-cross-linking method provides a facile way to prepare the CLCP films and fibers with different shapes from LLCPs, which can be processed by traditional melting and solution methods.
II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.
Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George
2011-08-17
An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.
NASA Astrophysics Data System (ADS)
Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.
1993-04-01
The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.
Extended law of corresponding states for protein solutions
NASA Astrophysics Data System (ADS)
Platten, Florian; Valadez-Pérez, Néstor E.; Castañeda-Priego, Ramón; Egelhaaf, Stefan U.
2015-05-01
The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.
Extended law of corresponding states for protein solutions.
Platten, Florian; Valadez-Pérez, Néstor E; Castañeda-Priego, Ramón; Egelhaaf, Stefan U
2015-05-07
The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg; El-Shewy, E. K.
2015-10-15
Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions aremore » related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.« less
Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3
NASA Astrophysics Data System (ADS)
Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha
2008-02-01
Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.
Thermodynamic model for polyelectrolyte hydrogels.
Arndt, Markus C; Sadowski, Gabriele
2014-09-04
The composition and swelling behavior of hydrogels may be dramatically influenced by external stimuli. Polyelectrolyte hydrogels consisting of charged polymers are particularly well-known for a high sensitivity to the presence of ionic species. For a thermodynamic description of such systems, the polyelectrolyte Perturbed-Chain Statistical Association Fluid Theory (pePC-SAFT) equation of state was augmented and merged with an extension of the modeling of hydrogels. This combined approach allowed for two effects to be taken into account: first, charges along the polymer chain and their interaction with mobile ions of the same or opposite charge in aqueous solutions and, second, the elastic interactions of swellable networks and their effect on Helmholtz energy and pressure. Thus, predictions of the degree of counterion condensation on the polymer chains could be made both for vapor-liquid equilibria of aqueous polyelectrolyte solutions and for polyelectrolyte hydrogels in aqueous salt solutions. The influence of temperature and molecular weight thereon was predicted successfully, and the impact of the degree of neutralization and the effect of additional salts were examined in comparison to literature data. With the inclusion of the influence of the Donnan potential, our model gave good predictions of swellable polyelectrolyte hydrogel systems in salt solutions. Poly(acrylic acid) and poly(methacrylic acid) gels were studied along with their corresponding sodium salts. Their swelling behavior in aqueous NaCl and NaNO3 solutions was examined.
High-temperature ratchets with sawtooth potentials
NASA Astrophysics Data System (ADS)
Rozenbaum, Viktor M.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2016-11-01
The concept of the effective potential is suggested as an efficient instrument to get a uniform analytical description of stochastic high-temperature on-off flashing and rocking ratchets. The analytical representation for the average particle velocity, obtained within this technique, allows description of ratchets with sharp potentials (and potentials with jumps in particular). For sawtooth potentials, the explicit analytical expressions for the average velocity of on-off flashing and rocking ratchets valid for arbitrary frequencies of potential energy fluctuations are derived; the difference in their high-frequency asymptotics is explored for the smooth and cusped profiles, and profiles with jumps. The origin of the difference as well as the appearance of the jump behavior in ratchet characteristics are interpreted in terms of self-similar universal solutions which give the continuous description of the effect. It is shown how the jump behavior in motor characteristics arises from the competition between the characteristic times of the system.
Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission
Racle, Elie; Godin, Nathalie; Reynaud, Pascal; Fantozzi, Gilbert
2017-01-01
The fatigue behavior of a Ceramic Matrix Composite (CMC) at intermediate temperature under air is investigated. Because of the low density and the high tensile strength of CMC, they offer a good technical solution to design aeronautical structural components. The aim of the present study is to compare the behavior of this composite under static and cyclic loading. Comparison between incremental static and cyclic tests shows that cyclic loading with an amplitude higher than 30% of the ultimate tensile strength has significant effects on damage and material lifetimes. In order to evaluate the remaining lifetime, several damage indicators, mainly based on the investigation of the liberated energy, are introduced. These indicators highlight critical times or characteristic times, allowing an evaluation of the remaining lifetime. A link is established with the characteristic time around 25% of the total test duration and the beginning of the matrix cracking during cyclic fatigue. PMID:28773019
Nonlinear problems of the theory of heterogeneous slightly curved shells
NASA Technical Reports Server (NTRS)
Kantor, B. Y.
1973-01-01
An account if given of the variational method of the solution of physically and geometrically nonlinear problems of the theory of heterogeneous slightly curved shells. Examined are the bending and supercritical behavior of plates and conical and spherical cupolas of variable thickness in a temperature field, taking into account the dependence of the elastic parameters on temperature. The bending, stability in general and load-bearing capacity of flexible isotropic elastic-plastic shells with different criteria of plasticity, taking into account compressibility and hardening. The effect of the plastic heterogeneity caused by heat treatment, surface work hardening and irradiation by fast neutron flux is investigated. Some problems of the dynamic behavior of flexible shells are solved. Calculations are performed in high approximations. Considerable attention is given to the construction of a machine algorithm and to the checking of the convergence of iterative processes.
Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system.
Min, Bockki; Bae, In Young; Lee, Hyeon Gyu; Yoo, Sang-Ho; Lee, Suyong
2010-07-01
Water soluble pectin-enriched materials (PEMs) from apple pomace, were evaluated as a fat replacer in a model food system. When PEM solutions were subjected to steady-shear measurements, shear-thinning behavior was observed. The flow behaviors could be described by the Cross model (R(2)=0.99), and temperature effects were investigated by the Arrhenius equation. The addition of PEMs significantly increased the pasting parameters of wheat flour as measured by a starch pasting rheometer. Gelatinization temperature and enthalpy increased with increasing PEM concentrations. When PEMs were incorporated into cookie formulations in place of shortening (semisolid fat generally used in baked foods) up to 30% by the weight of shortening, the cookie spread diameter was reduced while an increase in the moisture content was observed. Moreover, replacement of shortening with PEMs contributed to a more tender texture and lighter surface color. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Glycerol, trehalose and glycerol-trehalose mixture effects on thermal stabilization of OCT
NASA Astrophysics Data System (ADS)
Barreca, D.; Laganà, G.; Magazù, S.; Migliardo, F.; Bellocco, E.
2013-10-01
The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.
Finite element solution for energy conservation using a highly stable explicit integration algorithm
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1972-01-01
Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.
Production of chitosan-based non-woven membranes using the electrospinning process
NASA Astrophysics Data System (ADS)
Pakravan Lonbani, Mehdi
Chitosan is a modified natural polymer mainly produced from chitin, one of the most abundant organic materials in the world. Highly porous chitosan mats present the specific physicochemical properties of the base material and also benefit from the physical characteristics of nanoporous membranes. Electrospinning is a novel technique developed long time ago and revisited recently that can generate polymeric fibers with nanometric size. The ultimate purpose of this work is to fabricate microporous non-woven chitosan membranes for wound healing dressings and heavy metal ion removal from drinking water. In this dissertation, two approaches have been utilized to prepare chitosan-based nanofibers; blending and co-axial electrospinning of chitosan solution with a readily electrospinnable solution, i.e. an aqueous solution of polyethylene oxide (PEO). Consequently, understanding the phase behavior and miscibility of aqueous acidic solutions of chitosan and PEO and their blends is of crucial importance, as any phase separation occurring during the electrospinning process greatly changes the morphology and physico-mechanical properties of the final products. First we employed the rheological approach on a well-known aqueous PEO solution to develop the experimental protocol. By comparing these critical points with that obtained from other experimental techniques, we showed that rheological measurements can sensitively detect early stages of phase separation. Subsequently the method was applied to 50 wt% aqueous acetic acid solutions of PEO, chitosan and their blends at different ratios. These solutions showed a lower critical solution temperature (LCST) phase diagram that is attributed to the existence of hydrogen bonds between active groups on chitosan and PEO backbone and the solvent. Critical decomposition temperatures for binodal and spinodal points were estimated from isochronal temperature sweep experiments. The obtained binodal temperatures confirmed that chitosan/PEO solutions are miscible and stable at moderate temperatures and phase separate at higher temperatures of 60-75 °C. Then, we intended to obtain a thorough understanding of chitosan/PEO solution properties that lead to a successful electrospinning process, i.e. continuous and stable, and which produces defect free uniform beadless nanofibers. The effect of blend composition and acetic acid concentration on properties such as surface tension and conductivity and, ultimately, on electrospinnability were investigated. A highly deacetylated chitosan (DDA=97.5 %) in 50% acetic acid was used, which is the maximum deacetylated chitosan grade that has been reported for the preparation of electrospun chitosan-based nanofibers. The rheological characteristics of the chitosan/PEO solutions as a controlling parameter in the electrospinning process were examined and their relationships to electrospinnability presented. As we showed that chitosan/PEO solutions are miscible and stable at moderate temperatures, a modified electrospinning set up to electrospin at temperatures of 25-70 °C was designed to achieve content as high as 90 wt% of chitosan in beadless chitosan/PEO nanofibers of 60-80 nm in diameter. It was also found that increasing chitosan/PEO ratio from 50/50 to 90/10 led to a remarkable diameter reduction from 123 to 63 nm at room temperature. Additionally, we found that moderate process temperatures help to stabilize the electrospinning process of these solutions and produce beadless nanofibers. However, at higher temperatures, the electrospun jet became unstable and beaded fiber morphology was obtained. This phenomena occurs closely at the temperature range of phase separation, previously determined by rheology studies. Therefore, temperature-induced phase separation of these solutions is considered as the reason for that observation. On the other hand, an FTIR study at room temperature on cast films and nanofibers of chitosan/PEO blends at room temperature showed the presence of hydrogen bonding interactions between chitosan and PEO that could be an another indication of miscibility between these two polymers in solution at moderate temperatures. Finally, in order to remove the blending step, reducing the amount of chitosan used and also to put chitosan right on the outer surface of the nanofibers for further related applications, a co-axial electrospinning technique was employed. By using a one-step co-axial electrospinning process, for the first time core-shell structured PEO-chitosan nanofibers from aqueous solutions were produced in which chitosan is located at the shell (outer layer) and PEO at the core (inner layer). Uniform sized defect-free nanofibers of 100-190 nm diameter were produced. The core-shell nanostructure and existence of chitosan on the shell layer were confirmed by TEM images obtained before and after washing the PEO content with water. The presence of chitosan on the surface of the composite nanofibers was further supported by XPS studies. Bulk and local compositional analysis is performed by thermal gravimetry (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively, to examine the homogeneity of the nanofibers. Additionally, it was shown that hollow chitosan nanofibers could be obtained by PEO washing of the co-axial PEO/chitosan nanofibers, which could also be of great interest in applications such as blood purification in hemodialysis.
Environmental influences on the friction behavior of glasses
NASA Astrophysics Data System (ADS)
Rolf, Jacqueline C.
Two aspects of the friction behavior of glasses were the main focus of this investigation. First, the influence of aqueous inorganic salt solutions on friction and damage on soda-lime-silica, vitreous silica, and an aluminosilicate glass high in alumina content were studied. It was found that the pH of a solution has a higher influence on the friction behavior than the concentration of electrolyte and the size of ions in the solution. A minimum at the i.e.p. (iso-electric point) of the network former of the glass was found, i.e., soda-lime-silica and vitreous silica showed a small minimum in friction at a pH of about 1.8, which corresponds to the i.e.p. of silica. Two small minima were observed for the aluminosilicate in the vicinities of the i.e.p.'s of silica and alumina respectively. The damage created by the frictional contact showed variations with environment. Microindentation experiments on the same glasses were performed in the same environments to compare the responses to the findings of the friction test. For soda-lime-silica and vitreous silica, a maximum in hardness was found at the i.e.p. of the glasses, and for the aluminosilicate, two maxima were found in the vicinity of the i.e.p.'s of silica and alumina respectively, confirming the findings of the friction tests. A data-fitting analysis showed that the major contribution to the observed trends originates from the elastic properties of the surface. A model describing the influence of surface charging on the mechanical properties of the glass surface is suggested. The second major aspect of the study was the influence of temperature on the friction coefficients and resulting surface damage of commercial glasses. Four float glasses were selected, and vitreous silica was tested for comparison. As expected, the coefficients of friction were found to increase, with increasing temperature. Very small differences in composition had an effect on the temperature dependence of the coefficients of friction. Tin and air sides exhibited differences in friction behavior, which were ascribed to chemical differences between the two sides. The float bath seems to have a large effect on friction also, since the air sides showed larger variations in coefficients of friction than the tin sides. A technique for quantitative analysis of surface damage was developed, and coefficients of friction and surface damage were found to correlate very well. Infrared reflection and emission spectroscopy were used to analyze the surface structural changes as a function of temperature. Float B, a glass which exhibited good damage resistance, displayed a very different spectrum than the other float glasses. Contact angle measurements confirmed the results of the IR-spectroscopy work and the friction tests.
Radiative-photochemical response of the mesosphere to dynamical forcing
NASA Technical Reports Server (NTRS)
Frederick, J. E.
1981-01-01
Combination of the chemical continuity equation for odd oxygen with the second law of thermodynamics yields analytic solutions which describe the coupled behavior of temperature and ozone perturbations in response to an externally specified forcing. The results appear in a form which allows easy physical interpretation of the coupling between radiative and photochemical processes. When the forcing is chosen to mimic a planetary scale wave, the theory shows that photochemical acceleration of radiative damping reduces the amplitude of the temperature perturbation by an amount which increases with the wave period. Although ozone fluctuations are anti-correlated with those in temperature, minima in ozone do not coincide exactly in longitude with temperature maxima. The percentage variation in ozone increases upward and is always larger than that in temperature at the same pressure. This demonstrates that variations in ozone on constant pressure surfaces may serve as a sensitive indicator of wave activity in the mesosphere.
NASA Astrophysics Data System (ADS)
Dalverny, O.; Alexis, J.
2018-02-01
This article deals with thermo-mechanical behavior of power electronic modules used in several transportation applications as railway, aeronautic or automotive systems. Due to a multi-layered structures, involving different materials with a large variation of coefficient of thermal expansion, temperature variations originated from active or passive cycling (respectively from die dissipation or environmental constraint) induces strain and stresses field variations, giving fatigue phenomenon of the system. The analysis of the behavior of these systems and their dimensioning require the implementation of complex modeling strategies by both the multi-physical and the multi-scale character of the power modules. In this paper we present some solutions for studying the thermomechanical behavior of brazed assemblies as well as taking into account the interfaces represented by the numerous metallizations involved in the process assembly.
NASA Astrophysics Data System (ADS)
Kanda, H.; Hashimoto, N.; Takahashi, H.
The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.
Corrosion behavior of austenitic alloy 690 under anodic and cathodic potentials
NASA Astrophysics Data System (ADS)
Dutta, R. S.; Dey, G. K.; Lobo, A.; Purandare, R.; Kulkarni, S. K.
2002-05-01
The corrosion behavior of austenitic alloy 690 in a solution-annealed condition has been evaluated with the application of anodic as well as cathodic potentials in an acidic chloride solution at room temperature (RT). In a 0.5M H2SO4 + 0.5M NaCl solution, the alloy displayed active-passive pitting behavior with the application of an anodic potential. Surface films, formed at the onset and later stage of the passive region, were characterized using X-ray photoelectron spectroscopy (XPS). The XPS revealed that the surface film formed at the onset of passivity (+ 100 mV SCE) consisted of Cr(OH)3, without any Fe+3/Fe+2. The presence of nickel in the film was found in a transition state of Ni+2 and Ni0. The passive film formed at the higher anodic potential (+ 700 mV SCE) consisted of Cr2O3 without any Fe+3/Fe+2 or even Ni+2/Ni0. Microscopic studies of alloy 690 after anodic polarization in an acidic chloride solution revealed pitting, which was found to be initiated at large, faceted TiN-type inclusions. The susceptibility of the alloy to hydrogen embrittlement has been investigated by conducting cathodic charging of the tensile samples in a 0.5M H2SO4 solution at RT and by subsequent tensile testing of the charged samples in air at a strain rate of 1.3 × 10-4 s-1 up to fracture. An indication toward hydrogen-induced ductility loss was noticed for the samples of the alloy, which is believed to be attributable to a hydrogen-enhanced microvoid growth process. Since the microvoid growth process occurs at the last stage of fracture, the effect of hydrogen on the ductility of the alloy is little.
NASA Astrophysics Data System (ADS)
Lee, Karen; Lacombe, Y.; Cheluget, E.
2008-07-01
The Advanced SCLAIRTECH™ Technology process is used to manufacture Linear Low Density Polyethylene using solution polymerization. In this process ethylene is polymerized in an inert solvent, which is subsequently evaporated and recycled. The reactor effluent in the process is a polymer solution containing the polyethylene product, which is separated from the solvent and unconverted ethylene/co-monomer before being extruded and pelletized. The design of unit operations in this process requires a detailed understanding of the thermophysical properties, phase behaviour and rheology of polymer containing streams at high temperature and pressure, and over a wide range of composition. This paper describes a device used to thermo-rheologically characterize polymer solutions under conditions prevailing in polymerization reactors, downstream heat exchangers and attendant phase separation vessels. The downstream processing of the Advanced SCLAIRTECH™ Technology reactor effluent occurs at temperatures and pressures near the critical point of the solvent and co-monomer mixture. In addition, the process trajectory encompasses regions of liquid-liquid and liquid-liquid-vapour co-existence, which are demarcated by a `cloud point' curve. Knowing the location of this phase boundary is essential for the design of downstream devolatilization processes and for optimizing operating conditions in existing plants. In addition, accurate solution rheology data are required for reliable equipment sizing and design. At NOVA Chemicals, a robust high-temperature and high-pressure-capable version of the Multi-Pass Rheometer (MPR) is used to provide data on solution rheology and phase boundary location. This sophisticated piece of equipment is used to quantify the effects of solvent types, comonomer, and free ethylene concentration on the properties of the reactor effluent. An example of the experimental methodology to characterize a polyethylene solution with hexane solvent, and the ethylene dosing technique developed for the MPR will be described. ™Advanced SCLAIRTECH is a trademark of NOVA Chemicals.
Scaling behavior near the itinerant ferromagnetic quantum critical point (FQCP) of NiCoCrx for 0.8
NASA Astrophysics Data System (ADS)
Sales, Brian; Jin, Ke; Bei, Hongbin; Nichols, John; Chisholm, Matthew; May, Andrew; McGuire, Michael
Low temperature magnetization, resistivity and heat capacity data are reported for the concentrated solid solution NiCoCrx as a function of temperature and magnetic field. In the quantum critical region the low field (0.001-0.01 T) magnetic susceptibility, Chi, diverges as T- 1 / 2 and the magnetization data exhibits T/B scaling from 0.001 2 Tesla, the crossover temperature from the QC to Fermi liquid regime is no longer linear in B, and is better described by B0.75. This scaling behavior is particularly accurate in describing the normalized magnetoresistance data [Rho(B,T)-Rho(0,T)]/T, which is equivalent to the ratio of relaxation rates associated with magnetic field and temperature TauT/TauB. The location of the QCP is sensitive to the composition x and the strain generated during synthesis. These medium-entropy alloys are interesting model systems to explore the role of chemical disorder at FQCP. Research supported by the DOE Office of Science, Materials Science and Engineering Division, and the Energy Dissipation to Defect Evolution EFRC.
Khara, Dinesh Chandra; Kumar, Jaini Praveen; Mondal, Navendu; Samanta, Anunay
2013-05-02
Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.
III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor.
Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George
2011-07-11
Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni(0) and Cu(2+). This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals - considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well.
III. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor
Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George
2011-01-01
Results are presented of an investigation of co-electrodeposition of copper and nickel from acidic solution mixtures in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on metal removal/recovery rate, current efficiency, and corrosion of the deposited metals from the cathodic particles were examined under galvanostatic operation. The quantitative and qualitative behavior of co-electrodeposition of the two metals from their mixtures differs significantly from that of the individual single metal solutions. This is primarily attributed to the metal displacement reaction between Ni0 and Cu2+. This reaction effectively reduces copper corrosion, and amplifies that for nickel (at least at high concentrations). It also amplifies the separation of the deposition regimes of the two metals in time, which indicates that the recovery of each metal as a relatively pure deposit from the mixture is possible. It was also shown that nitrogen sparging considerably increases the observed net electrodeposition rates for both metals – considerably more so than from solutions with just the single metals alone. A numerical model of co-electrodeposition, corrosion, metal displacement, and mass transfer in the cylindrical spouted electrochemical reactor is presented that describes the behavior of the experimental copper and nickel removal data quite well. PMID:21874093
Lattice thermal expansion of the solid solutions (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongdan; Lei, Xinrong; Zhang, Jinhua, E-mail: jhzhang1212@126.com
2014-09-15
Highlights: • Sm-doped La{sub 2}Ce{sub 2}O{sub 7} was prepared by the coprecipitation–calcination method. • In situ HT-XRD measurements revealed that is much stable than 8YSZ. • Its thermal expansion is better than 8YSZ. - Abstract: A series of solid solutions with the general formula (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) were prepared by the coprecipitation–calcination method. The products obtained were characterized by powder X-ray diffraction for phase purity. It was observed that La{sup 3+} and Sm{sup 3+} can form complete solid solution in (La,Sm){sub 2}Ce{sub 2}O{sub 7} with defect-fluorite-type phase. The unit cell parameters ofmore » these solutions were calculated by a least squares method and the lattice parameters decreased linearly as x increased. The lattice thermal expansion behavior of (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) was investigated by high-temperature X-ray diffraction in the temperature range 298–1623 K. The lattice parameters a{sub T} of all the solutions at different temperature can be expressed as a{sub T} = a + bT + cT{sup 2}. As x < 1, the thermal expansion has a sudden decrease at ca. 473 K. The coefficients of lattice thermal expansion of Sm{sub 2}Ce{sub 2}O{sub 7} were 10.2–13.6 × 10{sup −6} K{sup −1} from 298 to 1623 K, and without the thermal contraction at low temperature. The materials show positive or negative thermal expansion due to the asymmetric anharmonic vibration.« less
Cochrane, T T; Cochrane, T A
2016-01-01
To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were subsequently used to estimate Nf values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors' equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Following work to measure the relative densities of aqueous solutions for the calculation of Nf values and the determination of definitive t values up to and beyond bodily temperatures, the authors' equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.
Analysis of Flow Behavior of an Nb-Ti Microalloyed Steel During Hot Deformation
NASA Astrophysics Data System (ADS)
Mohebbi, Mohammad Sadegh; Parsa, Mohammad Habibi; Rezayat, Mohammad; Orovčík, L'ubomír
2018-03-01
The hot flow behavior of an Nb-Ti microalloyed steel is investigated through hot compression test at various strain rates and temperatures. By the combination of dynamic recovery (DRV) and dynamic recrystallization (DRX) models, a phenomenological constitutive model is developed to derive the flow stress. The predefined activation energy of Q = 270 kJ/mol and the exponent of n = 5 are successfully set to derive critical stress at the onset of DRX and saturation stress of DRV as functions of the Zener-Hollomon parameter by the classical hyperbolic sine equation. The remaining parameters of the constitutive model are determined by fitting them to the experiments. Through substitution of a normalized strain in the DRV model and considering the interconnections between dependent parameters, a new model is developed. It is shown that, despite its fewer parameters, this model is in good agreement with the experiments. Accurate analyses of flow data along with microstructural analyses indicate that the dissolution of NbC precipitates and its consequent solid solution strengthening and retardation of DRX are responsible for the distinguished behaviors in the two temperature ranges between T < 1100 °C and T ≥ 1100 °C. Nevertheless, it is shown that a single constitutive equation can still be employed for the present steel in the whole tested temperature ranges.
In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.
Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng
2018-06-01
Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Liang; Ferrandon, Magali; Barton, John L.
The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemicalmore » and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.« less
Extended Analytic Device Optimization Employing Asymptotic Expansion
NASA Technical Reports Server (NTRS)
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x (x =0 ,0.1 )
NASA Astrophysics Data System (ADS)
Hawley, Christopher J.; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew M.; Davies, Peter K.; Spanier, Jonathan E.
2017-08-01
The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x(x =0 ,0.1 ) is determined via complementary dielectric permittivity and Raman-scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for 83 K
NASA Astrophysics Data System (ADS)
Mola, Javad; Ullrich, Christiane; Kuang, Buxiao; Rahimi, Reza; Huang, Qiuliang; Rafaja, David; Ritzenhoff, Roman
2017-03-01
The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe -Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.
NASA Technical Reports Server (NTRS)
Chen, I. M.; Anderson, R. E.
1971-01-01
A semiempirical design-oriented model has been developed for the prediction of the effects of thermal stratification on tank pressure and heater temperature response for the Apollo supercritical oxygen tank. The heat transfer formulation describes laminar free convection at low-g and takes into account the radiation and conduction processes occurring in the tank. The nonequilibrium thermodynamic behavior of the system due to localized heating of the stored fluid is represented by the characteristics of a discrete number of fluid regions and thermal nodes. Solutions to the time dependent variable fluid property problem are obtained through the use of a reference temperature procedure. A criterion which establishes the reference temperature as a function of the fluid density ratio is derived. The analytical results are compared with the flight data.
Temperature and density anti-correlations in solar wind fluctuations
NASA Technical Reports Server (NTRS)
Zank, G. P.; Matthaeus, W. H.; Klein, L. W.
1990-01-01
Recent theoretical investigations of low Mach number flows, that describe two distinct approaches by fluids to the incompressible regime are summarized. The first includes the effects of relatively strong density and temperature fluctuations (Type I), while the second places fluctuations in mechanical pressure, density, and temperature on an equal footing (Type II). In the latter case, the relations between density and pressure are recovered, whereas the former case yields departures from incompressible behavior in that density and temperature fluctuations are predicted to be anti-correlated. It is suggested that nearly incompressible fluids can be classified as either Type I or II, and it is shown that the well-known pressure-balanced structures represent a subclass of static solutions within this classification. Two examples from Voyager data illustrate the potential for observing these distinct nearly incompressible dynamical ordering in the solar wind.
NASA Astrophysics Data System (ADS)
Stavinoha, Macy; Cooley, Joya A.; Minasian, Stefan G.; McQueen, Tyrel M.; Kauzlarich, Susan M.; Huang, C.-L.; Morosan, E.
2018-05-01
The solid solution Eu (Ga1-xAlx) 4 was grown in single crystal form to reveal a rich variety of crystallographic, magnetic, and electronic properties that differ from the isostructural end compounds EuGa4 and EuAl4, despite the similar covalent radii and electronic configurations of Ga and Al. Here we report the onset of magnetic spin reorientation and metamagnetic transitions for x =0 -1 evidenced by magnetization and temperature-dependent specific heat measurements. TN changes nonmonotonously with x , and it reaches a maximum around 20 K for x =0.50 , where the a lattice parameter also shows an extreme (minimum) value. Anomalies in the temperature-dependent resistivity consistent with charge density wave behavior exist only for x =0.50 and 1. Density functional theory calculations show increased polarization between the Ga-Al covalent bonds in the x =0.50 structure compared to the end compounds, such that crystallographic order and chemical pressure are proposed as the causes of the charge density wave behavior.
NASA Technical Reports Server (NTRS)
Fitzer, E.; Jaeger, H.
1988-01-01
The production and characteristics of the carbon fiber reinforced thermoplastics polycarbonate and polysulfone are described. The production of prepregs from defined polymer solutions is emphasized along with methods of optimizing the production of compounds. The characteristics of unidirectionally reinforced thermoplastics, such as shear strength, bending strength, and impact resistance are compared with regard to fracture behavior, the influence of intermediate layers, and the behavior under cryogenic conditions and under slightly elevated temperatures. The problem of adhesion between high strength carbon fibers and thermoplastics is examined, taking into account the effect of moisture on the shear strength and the impact resistance.
Adsorption of organic compounds onto activated carbons from recycled vegetables biomass.
Mameli, Anna; Cincotti, Alberto; Lai, Nicola; Crisafulli, Carmelo; Sciré, Salvatore; Cao, Giacomo
2004-01-01
The removal of organic species from aqueous solution by activated carbons is investigated. The latter ones are prepared from olive husks and almond shells. A wide range of surface area values are obtained varying temperature and duration of both carbonization and activation steps. The adsorption isotherm of phenol, catechol and 2,6-dichlorophenol involving the activated carbons prepared are obtained at 25 degrees C. The corresponding behavior is quantitatively correlated using classical isotherm, whose parameters are estimated by fitting the equilibrium data. A two component isotherm (phenol/2,6-dichlorophenol) is determined in order to test activated carbon behavior during competitive adsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaramurthi, Prakash; Suryanarayanan, Raj
To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less
Hot and cold water as a supercritical solvent
NASA Astrophysics Data System (ADS)
Fuentevilla, Daphne Anne
This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.
NASA Astrophysics Data System (ADS)
Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.
2018-01-01
The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.
Haso, Fadi; Li, Dong; Garai, Somenath; Pigga, Joseph M; Liu, Tianbo
2015-09-14
Two Keplerate-type macroions, [Mo(VI) 72 Fe(III) 30 O252 - (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]⋅ca. 150 H2 O= {Mo72 Fe30 } and [{Na(H2 O)12 }⊂{Mo(VI) 72 Cr(III) 30 O252 (CH3 COO)19 - (H2 O)94 }]⋅ca. 120 H2 O={Mo72 Cr30 }, with identical size and shape but different charge density, can self-assemble into spherical "blackberry"-like structures in aqueous solution by means of electrostatic interactions. These two macroanions can self-recognize each other and self-assemble into two separate types of homogeneous blackberries in their mixed dilute aqueous solution, in which they carry -7 and -5 net charges, respectively. Either adjusting the solution pH or raising temperature is expected to make the self-recognition more difficult, by making the charge densities of the two clusters closer, or by decreasing the activation energy barrier for the blackberry formation, respectively. Amazingly, the self-recognition behavior remains, as confirmed by dynamic and static light scattering, TEM, and energy dispersive spectroscopy techniques. The results prove that the self-recognition behavior of the macroions due to the long-range electrostatic interaction is universal and can be achieved when only minimum differences exist between two types of macroanions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ma, Longzhou; Roy, Shawoon K.; Hasan, Muhammad H.; Pal, Joydeep; Chatterjee, Sudin
2012-02-01
The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity-factor ( K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1/3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor ( K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 °C to 800 °C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time-dependent FCP rates of INCONEL 617 and HAYNES 230.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sumaira; Khan, Muhammad Ijaz; Alsaedi, Ahmed
2018-01-01
Simultaneous effects of viscous dissipation and Joule heating in flow by rotating disk of variable thickness are examined. Radiative flow saturating porous space is considered. Much attention is given to entropy generation outcome. Developed nonlinear ordinary differential systems are computed for the convergent series solutions. Specifically, the results of velocity, temperature, entropy generation, Bejan number, coefficient of skin friction, and local Nusselt number are discussed. Clearly the entropy generation rate depends on velocity and temperature distributions. Moreover the entropy generation rate is a decreasing function of Hartmann number, Eckert number, and Reynolds number, while they gave opposite behavior for Bejan numbers.
Restricted amide rotation with steric hindrance induced multiple conformations
NASA Astrophysics Data System (ADS)
Krishnan, V. V.; Vazquez, Salvador; Maitra, Kalyani; Maitra, Santanu
2017-12-01
The Csbnd N bond character is dependent directly upon the resonance-contributor structure population driven by the delocalized nitrogen lone-pair of electrons. In the case of N, N-dibenzyl-ortho-toluamide (o-DBET), the molecule adopts subpopulations of conformers with distinct NMR spectral features, particularly at low temperatures. This conformational adaptation is unique to o-DBET, while the corresponding meta- and para- forms do not show such behavior. Variable-temperature (VT) NMR, two-dimensional exchange spectroscopy (EXSY), and qualitative molecular modeling studies are used to demonstrate how multiple competing interactions such as restricted amide rotation and steric hindrance effects can lead to versatile molecular adaptations in the solution state.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry.
Quental, P B; Policarpo, H; Luís, R; Varela, P
2016-11-01
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
Self-regulation mechanism for charged point defects in hybrid halide perovskites
Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...
2014-12-11
Hybrid halide perovskites such as methylammonium lead iodide (CH 3NH 3PbI 3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids
NASA Astrophysics Data System (ADS)
Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad
The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.
Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Johnson, Jr., A. Burtron; Levy, Ira S.; Trimble, Dennis J.; Lanning, Donald D.; Gerber, Franna S.
1990-01-01
An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.
Magnetic behavior of R2Fe14B hydrides (R = Gd, Tb, Dy, Ho and Er)
NASA Astrophysics Data System (ADS)
Zhang, L. Y.; Pourarian, F.; Wallace, W. E.
1988-01-01
R 2Fe 14B systems, with R = Gd, Tb, By, HoandEr were hydrogenated to the composition R 2Fe 14BH x where x ranges from 3.7 to 5.4. The pressure-composition isotherms (PCIs) of the hydrides showed only a solid solution behavior. No plateau pressure region was observed between room temperature and 300° C and at pressures down to 10 -2 atm. The absorbed hydrogen leads to an increase of 2.6 to 3.4% in unit cell volume, without a change in crystal structure. Magnetic characteristics of the present compounds were investigated over the temperature range 4.2 to 1100 K and at applied field up to 20 kOe. Saturation magnetization, Ms, and magnetic ordering temperature, Tc, were enhanced upon hydrogenation. Tc, is found to be dependent on the hydriding composition. Hydrogen induces a spin-reorientation effect (SR) in Gd- and Dy-containing compounds, while it has a marked influence in raising the spin-reorientation temperature, TSR, in the Er 2Fe 14B compound. The hydride involving Tb appears to remain uniaxial to the lowest temperature studied. In all cases the anisotropy fields, HA/' were significally reduced by hydrogen absorption. These varied magnetic behaviors can be ascribed to the effects: (1) variations in the interatomic distances, (2) strengthening the 3d-3d and weakening the 4f-3d exchange interactions and (3) the interstitial site occupations of hydrogen in the lattice. The spin-reorientation phenomena observed for Gd 2Fe 14BH x suggest that there is competition among the 6 Fe sublattices in regard to the sign and temperature coefficient of anisotropy.
Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J
2012-01-11
We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.
NASA Astrophysics Data System (ADS)
Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.
2012-01-01
We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.
Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.
Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin
2016-10-01
Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.
Han, Ming-Fei; Gao, Dong; Sun, Xue-Li
2010-01-01
To compare the behaviors of rats with depressions induced by chronic forced swimming stress under two different conditions. Eighteen male rats were randomly divided into 3 groups, with 6 rats in each group. The rats in the control group (C group) were not forced into swimming, while the rats in the stress groups (S1 and S2) were forced to swim for 14 consecutive days. The rats in S1 group and S2 group swam for five minutes every morning, in water with (23 +/- 1) degree C, and (10 +/- 0.5) degree C in temperature, respectively. The weight gain, food intake, open-field test and saccharin solution test were observed on the seventh day and fourteenth day. On the seventh day following chronic swim stress, the rats in the S2 group had significant lower ratio in weight gain and food intake than the controls (P < 0.05). On the fourteenth day, the rats in the S2 group had significant lower ratio in weight gain (12.26 +/- 4.04)%, food intake (9.49 +/- 0.96)%, sucrose intake (28.63 +/- 3.51) g, and preference for saccharin solution (76.25 +/- 2.51)%, and less number of crossing (12.17 +/- 9.00) and times of rearing (3.17 +/- 3.60) than the controls (P < 0.05). The rats in the S1 group had significant lower ratio in weight gain and food intake than the controls on the seventh day following forced swimming. On the fourteenth day, the rats in the S1 group still had lower ratio in weight gain, but had higher ratio in food intake and preference for saccharin solution, and greater number of crossing than the controls. Chronic forced swimming at a lower temperature could induce depression better than at a higher temperature.
Umapathi, Reddicherla; Vepuri, Suresh B; Venkatesu, Pannuru; Soliman, Mahmoud E
2017-05-11
To provide insights into the aggregation behavior, hydration tendency and variation in phase transition temperature produced by the addition of ionic liquids (ILs) to poly(N-isopropylacrylamide) (PNIPAM) aqueous solution, systematic physicochemical studies, and molecular dynamic simulations were carried out. The influence of ILs possessing the same [Cl] - anion and a set of cations [C n mim] + with increasing alkyl chain length such as 1-ethyl-3-methylimidazolium ([Emim] + ), 1-allyl-3-methylimidazolium ([Amim] + ), 1-butyl-3-methylimidazolium ([Bmim] + ), 1-hexyl-3-methylimidazolium ([Hmim] + ), 1-benzyl-3-methylimidazolium ([Bzmim] + ), and 1-decyl-3-methylimidazolium ([Dmim] + ) on the phase transition of PNIPAM was monitored by the aid of UV-visible absorption spectra, fluorescence intensity spectra, viscosity (η), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. Furthermore, to interpret the direct images and surface morphologies of the PNIPAM-IL aggregates, we performed field emission scanning electron microscopy (FESEM). The overall specific ranking of ILs in preserving the hydration layer around the PNIPAM aqueous solution was [Emim][Cl] > [Amim][Cl] > [Bmim][Cl] > [Hmim][Cl] > [Bzmim][Cl] > [Dmim][Cl]. Moreover, to investigate the molecular mechanism behind the change in the lower critical solution temperature (LCST) of the polymer in the presence of the ILs, a molecular dynamics (MD) study was performed. The MD simulation has clearly shown the reduction in hydration shell of the polymer after interacting with the ILs at their respective LCST. MD study revealed significant changes in polymer conformation because of IL interactions and strongly supports the experimental observation of polymer phase transition at a temperature lower than typical LCST for all the studied ILs. The driving force for concomitant sharp configurational transition has been attributed to the displacement of water molecules on the polymer surface by the ILs because of their hydrophobic interaction with the polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, T. T., E-mail: agteca@hotmail.com; Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz
Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their newmore » equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f} using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.« less
Kwak, Hyo Won; Shin, Munju; Lee, Jeong Yun; Yun, Haesung; Song, Dae Woong; Yang, Yesol; Shin, Bong-Seob; Park, Young Hwan; Lee, Ki Hoon
2017-09-01
Electrospinning of aqueous gelatin solution obtained from bovine or porcine sources has been difficult to achieve without additional facilities, such as a temperature control oven or heating cover. Gelatin from cold-water fish has low contents of proline (Pro) and hydroxyproline (Hyp) compared with mammalian-derived gelatin. For this reason, the fish-derived gelatin maintains a sol state without showing gelation behavior at room temperature. In the present study, we prepared an ultrafine fish gelatin nanofibrous web by electrospinning from aqueous solutions without any additive polymers or temperature control facilities. The concentration and viscosity of fish gelatin are the most important factor in determining the electrospinnability and fiber diameter. Electrospinning of aqueous fish gelatin has the highest nanofiber productivity compared to other organic solvent systems. Using glutaraldehyde vapor (GTA), the water stability was improved and substantial enhancement was achieved in the mechanical properties. Finally, the cytotoxicity of a fish gelatin nanofibrous scaffold was evaluated based on a cell proliferation study by culturing human dermal fibroblasts (HDFs) compared with a fish gelatin film and nanofibrous mat from mammalian gelatin. The result shows better initial cell attachment and proliferation compared with the fish gelatin film and no significant difference compared with mammalian-derived gelatin nanofibrous mat. We expect that electrospinning of aqueous fish gelatin could be an effective alternative mammalian gelatin source. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M.; Dekeyser, W.
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assumingmore » equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.« less
Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature
Stadler, A. M.; Digel, I.; Artmann, G. M.; Embs, J. P.; Zaccai, G.; Büldt, G.
2008-01-01
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9°C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature. PMID:18708462
Hemoglobin dynamics in red blood cells: correlation to body temperature.
Stadler, A M; Digel, I; Artmann, G M; Embs, J P; Zaccai, G; Büldt, G
2008-12-01
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.
NASA Astrophysics Data System (ADS)
Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev
2017-05-01
Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
Jung, Joohye; Kim, Si Joon; Lee, Keun Woo; Yoon, Doo Hyun; Kim, Yeong-Gyu; Kwak, Hee Young; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae
2014-05-15
Low-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 μL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C. Our IZO TFT had a turn-on voltage (V(on)) of -0.8 V, on/off ratio of 6.94 × 10(5), and on-current (I(on)) value of 2.32 × 10(-6)A in pristine condition. A dry-wet method was applied to immobilize two dimensional double crossover tile based DNA nanostructures on the IZO surface, after which we observed a negative shift of the transfer curve accompanied by a significant increase in the Ion and degradation of the Von and on/off ratio. As the concentration of DNA target solution increased, variances in these parameters became increasingly apparent. The sensing mechanism based on the current evolution was attributed to the oxidation of DNA, in which the guanine nucleobase plays a key role. The sensing behavior obtained from flexible biosensors on a polymeric substrate fabricated under the identical conditions was exactly analogous. These results compare favorably with the conventional field-effect transistor based DNA sensors by demonstrating remarkable sensitivity and feasibility of flexible devices that arose from a different sensing mechanism and a low-temperature process, respectively. © 2013 Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peiteado, M.; Makovec, D.; Villegas, M.
2008-09-15
The solid state interaction of the Zn{sub 1-x}Co{sub x}O nominal system is investigated by means of diffusion couples and analysis of co-precipitated samples. The formation of a homogeneous Co:ZnO solid solution is found to be determined by the crystal structure from which Co{sup II} ions diffuse into the wurtzite lattice. No diffusion is observed whenever the CoO rock-salt structure is formed from the Co{sup II} precursor. On the contrary, the diffusion from the Co{sub 3}O{sub 4} spinel phase is feasible but has a limited temperature range defined by the reduction at a high temperature of Co{sup III}-Co{sup II}, since thismore » process again leads to the formation of the rock-salt structure. However, when using a highly reactive and homogeneous co-precipitated starting powder, neither the spinel phase nor the rock-salt structure is formed, and a Co{sup II}:ZnO solid solution is obtained, which remains stable up to high temperatures. - Graphical abstract: Maximum diffusion distance for the ZnO-CoO{sub x} couple as a function of temperature. Dashed gray lines represent the temperature values at which the transformations between CoO and Co{sub 3}O{sub 4} compounds take place.« less
Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi
2015-06-04
Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.
Responsive copolymers for enhanced petroleum recovery. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
1994-08-01
A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate,more » sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.« less
NASA Astrophysics Data System (ADS)
Sreenivasu, T.; Tirupathi, P.; Prabahar, K.; Suryanarayana, B.; Chandra Mouli, K.
The solid solutions of (1-x) LaFeO3-xBaTiO3 (0.0≤x≤0.25) have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT) X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to x=0.25. The dielectric permittivity shows colossal dielectric constant (CDC) at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition x=0.15, further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of x. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe-O-Fe network of LaFeO3.
Desorption behavior of sorbed flavor compounds from packaging films with ethanol solution.
Hwang, Y H; Matsui, T; Hanada, T; Shimoda, M; Matsumoto, K; Osajima, Y
2000-09-01
Desorption behavior of sorbed flavor compounds such as ethyl esters, n-aldehydes, and n-alcohols from LDPE and PET films was investigated in 0 to 100% (v/v) ethanol solutions at 20 degrees C, 50 degrees C, and 60 degrees C. In both films, the desorption apparently increased with increasing ethanol concentration and treatment temperature, depending on the compatibility of the flavor compound with the solvent. Namely, the partition coefficient of ethyl esters, n-aldehydes, and n-alcohols in the LDPE film turned out to be approximately zero at >/=60%, >/=80%, and >/=40% (v/v) ethanol, respectively (for PET film, >/=80%, >/=80%, and >/=40% (v/v) ethanol concentrations were required for complete desorption, respectively). As for physical properties (heat of fusion, melting point, and tensile strength and elongation at break) of LDPE and PET films, there were no significant differences between intact film and the treated film with 60% (v/v) ethanol for 30 min at 60 degrees C. These results suggest that it is possible to apply a desorption solvent such as ethanol solution for desorption of sorbed flavor compounds from packaging films with no physical change in the film properties by this desorption treatment.
Topological crystalline insulator SnTe nanoribbons
NASA Astrophysics Data System (ADS)
Dahal, Bishnu R.; Dulal, Rajendra P.; Pegg, Ian L.; Philip, John
2017-03-01
Topological crystalline insulators are systems in which a band inversion that is protected by crystalline mirror symmetry gives rise to nontrivial topological surface states. SnTe is a topological crystalline insulator. It exhibits p-type conductivity due to Sn vacancies and Te antisites, which leads to high carrier density in the bulk. Thus growth of high quality SnTe is a prerequisite for understanding the topological crystalline insulating behavior. We have grown SnTe nanoribbons using a solution method. The width of the SnTe ribbons varies from 500 nm to 2 μm. They exhibit rock salt crystal structure with a lattice parameter of 6.32 Å. The solution method that we have adapted uses low temperature, so the Sn vacancies can be controlled. The solution grown SnTe nanoribbons exhibit strong semiconducting behavior with an activation energy of 240 meV. This activation energy matches with the calculated band gap for SnTe with a lattice parameter of 6.32 Å, which is higher than that reported for bulk SnTe. The higher activation energy makes the thermal excitation of bulk charges very difficult on the surface. As a result, the topological surfaces will be free from the disturbance caused by the thermal excitations
NASA Astrophysics Data System (ADS)
Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.
2016-11-01
The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.
Supercritical Water Mixture (SCWM) Experiment
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Hegde, Uday G.
2012-01-01
The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.
Mineralization of aniline in aqueous solution by electrochemical activation of persulfate.
Chen, Wen-Shing; Huang, Chi-Pin
2015-04-01
Oxidative degradation of aniline in aqueous solution was carried out by coupling electrolysis with persulfate oxidation, in which a synergistic effect occurred. Experiments were performed under a batch-wise mode to evaluate the influence of various operation parameters on the electrolytic behavior, such as acidity of aqueous solution, temperature, electrode potential, persulfate anion concentration and nitrogen/oxygen gas dosage. The aniline pollutants could be almost entirely mineralized by means of electro-activated persulfate oxidation, wherein sulfate radicals were presumed to be principal oxidizing agents. Besides, electrogenerated hydrogen peroxide originated from cathodic reduction of oxygen, supplied chiefly by anodic oxidation of water, would contribute partially for decomposition of aniline. On the whole, the electro-activated persulfate process is a very promising method for treatment of aniline in wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution of castalagin and vescalagin in ethanol solutions. Identification of new derivatives.
Puech, J L; Mertz, C; Michon, V; Le Guernevé, C; Doco, T; Hervé Du Penhoat, C
1999-05-01
Brandies, cognac, armagnac, whiskeys, and rums are aged in oak barrels to improve their organoleptic properties. During this period, numerous compounds such as ellagitannins are extracted from the wood and can subsequently be transformed into new derivatives by chemical reactions. Model solutions of castalagin and vescalagin have been studied to determine the behavior of polyphenols in ethanol-water. Upon prolonged exposure to 40 and 70% (v/v) ethanol at room temperature, hemiketal derivatives containing ethoxy groups have been characterized by LC/MS and NMR. These compounds further evolve to afford the corresponding ketals. They have also been detected in the extracts of oak wood stored under similar conditions.
Chemical potential of carbon in the system UPuCON: Measurements and calculation
NASA Astrophysics Data System (ADS)
Anthonysamy, S.; Ananthasivan, K.; Kahappan, I.; Chandramouli, V.; Vasudeva Rao, P. R.; Mathews, C. K.; Jacob, K. T.
1995-05-01
The carbon potential of (U,Pu) mixed carbides with Pu/(U + Pu) ratios of 0.55 and 0.70 was measured in the temperature range 973 to 1173 K by employing a methane-hydrogen gas equilibration technique. The technique was validated by measuring the Gibbs energy of formation of WC. The compatibility of the mixed carbides with the stainless steel clad was analysed by using the measured carbon potentials. The carbon potentials of mixed carbides of other compositions were calculated theoretically in order to assess their compatibility. The calculations assume ideal solution behavior for all the solid solutions present in the UPuCON system.
Aoki, Daisuke; Ajiro, Hiroharu
2018-06-13
In order to prepare thermoresponsive polyurethane gels, a novel polyurethane bearing oligo(ethylene glycol) (OEG) as the side chain is successfully synthesized with hexamethylene diisocyanate and OEG tartrate ester. The aqueous solution of the polyurethane shows sharp and clear lower critical solution temperature behavior at 34 °C. Furthermore, a hydrogel based on the same polyurethane is also successfully prepared using glycerol as the crosslinker. This polyurethane hydrogel including 10 mol% of glycerol presents a large swelling ratio change between 4 °C and 37 °C from 250% to 40%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
II. Electrodeposition/removal of nickel in a spouted electrochemical reactor
Grimshaw, Pengpeng; Calo, Joseph M.; Shirvanian, Pezhman A.; Hradil, George
2011-01-01
An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well. PMID:22039317
THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; A.M. Ougouag
2011-12-01
The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less
NASA Astrophysics Data System (ADS)
Lu, Yulin
Low cycle fatigue (LCF) and fatigue crack growth (FCG) experiments on three superalloys HASTELLOY X, HAYNES 230, and HAYNES 188 have been conducted at temperatures from 649 to 982°C. Hold times were imposed at the maximum strain or load to investigate the hold-time effect. In general, the fatigue life decreased as the temperature or hold time increased. However, for the HAYNES 230 alloy at total strain ranges higher than 1.0% and without a hold time, the LCF life was longer at 927°C than at 816°C. This "abnormal" behavior was found to result from the smaller plastic strain amplitude at half-life at 927°C than that at 816°C. An increase in the temperature and/or the introduction of a hold time decreased the hardening rate and increased the softening rate for all the three alloys. The introduction of a hold time and/or the increase of the test temperature progressively changed the fracture mode from the transgranular to mixed trans/inter-granular, then to intergranular feature. Within the two phases of the fatigue process, crack initiation was more severely influenced by the change of the hold time and/or temperature. The FCG data of HASTELLOY X and HAYNES 230 alloys were analyzed with an emphasis on hold-time and temperature effects. The crack grew faster at a higher temperature and a longer hold time. Fracture-mechanics parameters, C*, Ct, and (Ct)avg, were applied to correlate the crack-growth rates. The fatigue-cracking path was mainly transgranular at 816 and 927°C. The cracking path became dominantly intergranular if the hold time increased to 2 min, indicating that the time-dependent damage mechanisms were in control. The Ct and (Ct)avg parameters were capable of consolidating time dependent crack growth rate from different temperatures and alloys. The tests were conducted in air. Therefore, the fracture surfaces were frequently covered with a dark layer of oxides, making fracture feature difficult to identify under scanning-electron-microscopy. To overcome this problem, an oxide-stripping technique has been developed. The sample is first boiled in a potassium permanganate solution for 1 h, and then electrolytically cleaned in an alkaline solution for 5 min.
NASA Astrophysics Data System (ADS)
Amini, Noushin; Hassan, Yassin A.
2012-12-01
Optical distortions caused by non-uniformities of the refractive index within the measurement volume is a major impediment for all laser diagnostic imaging techniques applied in experimental fluid dynamic studies. Matching the refractive indices of the working fluid and the test section walls and interfaces provides an effective solution to this problem. The experimental set-ups designed to be used along with laser imaging techniques are typically constructed of transparent solid materials. In this investigation, different types of aqueous salt solutions and various organic fluids are studied for refractive index matching with acrylic and fused quartz, which are commonly used in construction of the test sections. One aqueous CaCl2·2H2O solution (63 % by weight) and two organic fluids, Dibutyl Phthalate and P-Cymene, are suggested for refractive index matching with fused quartz and acrylic, respectively. Moreover, the temperature dependence of the refractive indices of these fluids is investigated, and the Thermooptic Constant is calculated for each fluid. Finally, the fluid viscosity for different shear rates is measured as a function of temperature and is applied to characterize the physical behavior of the proposed fluids.
The Effect of Stabilization Treatments on Disk Alloy CH98
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy P.; Ellis, David L.
2003-01-01
Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickelbase superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatments are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 or 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments can also decrease creep capability. In this study, a systematic variation of stabilization temperature and time was investigated to determine its effect on 1300 F tensile and, more importantly, creep behavior. Dwell crack growth rates were also measured for selected stabilization conditions. As these advanced disk alloys may be given a supersolvus solution or a subsolvus solution heat treatment for a given application, it was decided that both options would be studied.
Density functional theory investigation of the LiIn 1-xGa xSe 2 solid solution
Wiggins, Brenden; Batista, Enrique; Burger, Arnold; ...
2016-06-07
Here, the electronic structure and optical properties of the LiIn 1-xGa xSe 2 (x=0, 0.25, 0.5, 0.75, 1) solid solution were studied by density functional theory (DFT) with pure functionals. The exchange-correlation is treated within the local density approximation (LDA) and generalized-gradient approximation (GGA). The electronic structures for each respective compound are discussed in detail. Calculations reveal that gallium incorporation can be used to tune the optical-electrical properties of the solid solution and correlates with the lattice parameter. The band gap trend of the LiIn 1-xGa xSe 2 system follows a nonlinear behavior between the LiInSe 2 and LiGaSe 2more » ternary boundaries. The bowing parameter is estimated to be on the order of 0.1- 0.3 eV at the point. Low-temperature optical absorption revealed a 30% change in the temperature dependence of the band gap for the intermediate compound LiIn 0.6Ga 0.4Se 2 compared to ternary boundaries and suggests the heat capacity to be another control element through strain.« less
NASA Astrophysics Data System (ADS)
Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.
2014-12-01
The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.
Ploetz, Elizabeth A; Karunaweera, Sadish; Smith, Paul E
2015-01-28
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.
NASA Astrophysics Data System (ADS)
Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.
2015-01-01
Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.
Scaling behavior of fully spin-coated TFT
NASA Astrophysics Data System (ADS)
Mondal, Sandip; Kumar, Arvind; Rao, K. S. R. Koteswara; Venkataraman, V.
2017-05-01
We studied channel scaling behavior of fully spin coated, low temperature solution processed thin film transistor (TFT) fabricated on p++ - Si (˜1021 cm-3) as bottom gate. The solution processed, spin coated 40 nm thick amorphous Indium Gallium Zinc Oxide (a-IGZO) and 50 nm thick amorphous zirconium di-oxide (a-ZrO2) has been used as channel and low leakage dielectric at 350°C respectively. The channel scaling effect of the TFT with different width/length ratio (W/L= 2.5, 5 and 15) for same channel length (L = 10 μm) has been demonstrated. The lowest threshold voltage (Vth) is 6.25 V for the W/L=50/10. The maximum field effect mobility (μFE) has been found to be 0.123 cm2/Vs from W/L of 50/10 with the drain to source voltage (VD) of 10V and 20V gate to source voltage (VG). We also demonstrated that there is no contact resistance effect on the mobility of the fully sol-gel spin coated TFT.
Corrosion behavior of a superduplex stainless steel in chloride aqueous solution
NASA Astrophysics Data System (ADS)
Dabalà, Manuele; Calliari, Irene; Variola, Alessandra
2004-04-01
Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.
Melting behavior of (Mg,Fe)O solid solutions at high pressure
NASA Astrophysics Data System (ADS)
Zhang, Li; Fei, Yingwei
2008-07-01
High pressure melting of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's lower mantle, is of fundamental importance for understanding the chemical differentiation, geodynamics and thermal evolution of the Earth's interior. We report the first systematic experimental study of melting behavior in the MgO-FeO system up to 3600 K and 7 GPa, indicating the ideal solution between solid and liquid (Mg,Fe)O in the MgO-rich portion. The zero pressure melting slope of MgO is ~221 K/GPa derived from our resistance heating measurements, which is several times higher than the value from the previous measurements in a CO2-laser heated diamond anvil cell, but consistent with the theoretically predicted melting curves. Our results combined with the previous first-principles simulations suggest that the melting temperature of MgO-rich (Mg,Fe)O is significantly higher than the geotherm through the lower mantle and this would place an upper bound on the solidus of the lower mantle.
Pham, Hieu H; Taylor, Christopher D; Henson, Neil J
2013-01-24
We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.
Guo, Huangying; Kim, Jin-Chul
2015-10-15
The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome. Copyright © 2015 Elsevier B.V. All rights reserved.
Mechanism of Dynamic Strain Aging in a Niobium-Stabilized Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zhou, Hongwei; Bai, Fengmei; Yang, Lei; Wei, Hailian; Chen, Yan; Peng, Guosheng; He, Yizhu
2018-04-01
Dynamic strain aging (DSA) behavior of a niobium (Nb)-stabilized austenitic stainless steel (TP347H) was studied from room temperature (RT) to 973 K via tensile testing, transmission electron microscopy (TEM), and internal friction (IF) measurements. The DSA effect is nearly negligible from 573 K to 673 K, and it becomes significant at temperatures between 773 K and 873 K with strain rates of 3 × 10-3 s-1, 8 × 10-4 s-1, and 8 × 10-5 s-1, respectively. The results indicate that a dislocation planar slip is dominant in the strong DSA regime. The Snoek-like peak located at 625 K is highly sensitive to the diffusion of free carbon (C) atoms in solid solution. C-Nb octahedrons are formed by C chemical affinity to substitutional Nb solute atoms. Octahedron structure is very stable and captures most free C atoms and inhibits DSA at low tensile test temperatures of 573 K to 673 K. At high test temperatures in the range from 773 K to 873 K, C-Nb octahedrons break up and release free C and Nb atoms, resulting in the stronger Snoek-like peak. The interaction between C atoms and dislocations is responsible for DSA at low temperatures ranging from 573 K to 673 K. At higher temperature of 773 K to 873 K, the Cr and Nb atoms lock the dislocations, and this formation contributes to DSA.
NASA Astrophysics Data System (ADS)
McCormick, Mark Alan
The goal of this work was to produce BaTiO3 and BaxSr (1-x)TiO3 (BST) thin films with high dielectric constants, using a low-temperature (<100°C) hydrothermal synthesis route. To accomplish this, titanium metal-organic precursor films were spin-cast onto metal-coated glass substrates and converted to polycrystalline BaTiO3 or BST upon reacting in aqueous solutions of Ba(OH)2 or Ba(OH)2 and Sr(OH)2. The influences of solution molarity, processing temperature, and reaction time on thin film reaction kinetics, microstructure, and dielectric properties were examined for BaTiO3 films. Post-deposition annealing at temperatures as low as 200°C substantially affected the lattice parameter, dielectric constant, and dielectric loss. This behavior is explained in terms of hydroxyl defect incorporation during film formation. Current-voltage (I-V) measurements were performed to determine the dominant conduction mechanism(s) during application of a do field, and to extract the metal/ceramic barrier height. In particular, Schottky barrier-limited conduction and Poole-Frenkel conduction were investigated as potential leakage mechanisms. For BST thin films, film stoichiometry deviated from the initial solution composition, with a preferred incorporation of Sr2+ into the perovskite lattice. The dielectric constant of the BST films was measured as a function of composition (Ba:Sr ratio) and temperature over the range 25--150°C. Finally, capacitance-voltage (C-V) measurements were made for BST films to determine the influence of film composition on dielectric tunability.
Janecek, Jirí; Netz, Roland R
2009-02-21
Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye-Huckel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye-Huckel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye-Huckel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.
1987-01-01
The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.
NASA Astrophysics Data System (ADS)
Ruiz-Luna, H.; Porcayo-Calderon, J.; Alvarado-Orozco, J. M.; Mora-García, A. G.; Martinez-Gomez, L.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.
2017-12-01
The low-temperature electrochemical behavior of HVOF Ni-20Cr coatings was assessed. The coatings were evaluated in different conditions including as-sprayed, as-ground, and heat-treated in air and argon atmospheres. A detailed analysis of the coatings was carried out by means of XRD, SEM, and EPMA, prior and after the corrosion test. The corrosion rate was analyzed in a NaCl solution saturated with CO2. Results demonstrate that the use of a low-oxygen partial pressure favors the formation of a Cr2O3 layer on the surface of the coatings. According to the electrochemical results, the lower corrosion rates were obtained for the heat-treated coatings irrespective of the surface finishing, being the ground and argon heat-treated condition that shows the best corrosion performance. This behavior is due to the synergistic effect of the low-pressure heat treatment and the grinding processes. The grinding promotes a more homogeneous reaction area without surface heterogeneities such as voids, and the pre-oxidation treatment decreases the porosity content of the coating and also allows the growing of a Cr-rich oxide scale which acts as a barrier against the ions of the aqueous solution.
Synthesis and characterization of nickel oxide particulate annealed at different temperatures
NASA Astrophysics Data System (ADS)
Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.
2018-04-01
Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.
Refractory materials for high-temperature thermoelectric energy conversion
NASA Technical Reports Server (NTRS)
Wood, C.; Emin, D.
1983-01-01
Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT 1 is realizable. These materials are divided into two classes: (1) the rare-earth chalcogenides which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (2) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.
Inoue, Tohru; Higuchi, Yuka; Misono, Takeshi
2009-10-01
The melting behavior of polyethyleneglycol dodecyl ethers (C(12)E(6), C(12)E(7), and C(12)E(8)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), was investigated by means of differential scanning calorimetry (DSC). The melting temperature as a function of the surfactant concentration, combined with the cmc curve and cloud point curve, provided phase diagrams for the surfactant/bmimBF(4) mixtures in solvent-rich region. The characteristic feature of the mixtures is an existence of the Krafft temperature which is usually not observed with aqueous solutions of nonionic surfactants. The heat of fusion as a function of the surfactant concentration provided the interaction energy between the surfactant and bmimBF(4). The interaction energy shows a linear dependence on the length of polyoxyethylene (POE) chain of the surfactants, which suggests that the solvation takes place around the POE chain.
Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum
NASA Astrophysics Data System (ADS)
Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.
2018-05-01
Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.
NASA Technical Reports Server (NTRS)
Yuen, D. A.; Schubert, G.
1976-01-01
Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.
Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films
NASA Astrophysics Data System (ADS)
Mongkolsuttirat, Kittisun
Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured modulus relaxation of Au films also proves that the films exhibit linear viscoelastic behavior. From this, a linear viscoelastic model is shown to fit very well to experimental steady state stress relaxation data and can predict time dependent stress for complex loading histories including the ability to predict stress-time behavior at other strain rates during loading. Two specific factors that are expected to influence the viscoelastic behavior-degree of alloying and grain size are investigated to explore the influence of V concentration in solid solution and grain size of pure Au. It is found that the normalized modulus of Au films is dependent on both concentration (C) and grain size (D) with proportionalities of C1/3 and D 2, respectively. A quantitative model of the rate-equation for dislocation glide plasticity based on Frost and Ashby is proposed and fitted well with steady state anelastic stress relaxation experimental data. The activation volume and the density of mobile dislocations is determined using repeated stress relaxation tests in order to further understand the viscoelastic relaxation mechanism. A rapid decrease of mobile dislocation density is found at the beginning of relaxation, which correlates well with a large reduction of viscoelastic modulus at the early stage of relaxation. The extracted activation volume and dislocation mobility can be ascribed to mobile dislocation loops with double kinks generated at grain boundaries, consistent with the dislocation mechanism proposed for the low activation energy measured in this study.
Effect of hydrophobic environments on the hypothesized liquid-liquid critical point of water.
Strekalova, Elena G; Corradini, Dario; Mazza, Marco G; Buldyrev, Sergey V; Gallo, Paola; Franzese, Giancarlo; Stanley, H Eugene
2012-01-01
The complex behavior of liquid water, along with its anomalies and their crucial role in the existence of life, continue to attract the attention of researchers. The anomalous behavior of water is more pronounced at subfreezing temperatures and numerous theoretical and experimental studies are directed towards developing a coherent thermodynamic and dynamic framework for understanding supercooled water. The existence of a liquid-liquid critical point in the deep supercooled region has been related to the anomalous behavior of water. However, the experimental study of supercooled water at very low temperatures is hampered by the homogeneous nucleation of the crystal. Recently, water confined in nanoscopic structures or in solutions has attracted interest because nucleation can be delayed. These systems have a tremendous relevance also for current biological advances; e.g., supercooled water is often confined in cell membranes and acts as a solvent for biological molecules. In particular, considerable attention has been recently devoted to understanding hydrophobic interactions or the behavior of water in the presence of apolar interfaces due to their fundamental role in self-assembly of micelles, membrane formation and protein folding. This article reviews and compares two very recent computational works aimed at elucidating the changes in the thermodynamic behavior in the supercooled region and the liquid-liquid critical point phenomenon for water in contact with hydrophobic environments. The results are also compared to previous reports for water in hydrophobic environments.
NASA Astrophysics Data System (ADS)
Jahangiribabavi, Negin
The objective of this research is to study the corrosion behavior of the stainless steel centrifugal contactor used in the spent nuclear fuel treatment process called UREX+ process. AISI type 304L stainless steel was suggested as the material of construction for this contactor. Corrosion of 304L stainless steel in three acidic aqueous solutions of 5.0M HNO3, 5.0M HNO 3 + 0.1M HF, and 5.0M HNO3 + 0.1M HF + 0.1M Zr4+ was studied. Immersion, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) corrosion tests were conducted at test temperatures of 25, 40, and 80°C and three different rotational speeds (0, 1000, 2000 rpm) in order to mimic the operating conditions of the centrifugal contactor. The results showed that the 5.0M HNO3 + 0.1M HF solution was the most corrosive environment as the fluoride ions dissolved the passive film present on the surface of the stainless steel. The addition of 0.1M Zr 4+ ions to this acidic mixture reduced the corrosion caused by HF to levels similar to those found in HNO3 solutions and allowed the stainless steel to preserve its passive film. Further addition of zirconium ion did not result in better corrosion resistance of the stainless steel. Besides, higher corrosion rates were obtained as the solutions temperatures increased while the hydrodynamic conditions had less significant effect on corrosion rates.
NASA Astrophysics Data System (ADS)
Christov, Christomir
2007-07-01
The isopiestic method has been used to determine the osmotic coefficients of the binary solutions NaBr-H 2O (from 0.745 to 5.953 mol kg -1) and KBr-H 2O (from 0.741 to 5.683 mol kg -1) at the temperature t = 50 °C. Sodium chloride solutions have been used as isopiestic reference standards. The isopiestic results obtained have been combined with all other experimental thermodynamic quantities available in literature (osmotic coefficients, water activities, bromide mineral's solubilities) to construct a chemical model that calculates solute and solvent activities and solid-liquid equilibria in the NaBr-H 2O, KBr-H 2O and Na-K-Br-H 2O systems from dilute to high solution concentration within the 0-300 °C temperature range. The Harvie and Weare [Harvie C., and Weare J. (1980) The prediction of mineral solubilities in naturalwaters: the Na-K-Mg-Ca-Cl-SO 4-H 2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta44, 981-997] solubility modeling approach, incorporating their implementation of the concentration-dependent specific interaction equations of Pitzer [Pitzer K. (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem.77, 268-277] is employed. The model for binary systems is validated by comparing activity coefficient predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solutions model due to data insufficiencies are discussed. This model expands the variable temperature sodium-potassium model of Greenberg and Moller [Greenberg J., and Moller N. (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO 4-H 2O system to high concentration from 0 to 250 °C. Geochim. Cosmochim. Acta53, 2503-2518] by evaluating Br - pure electrolyte and mixing solution parameters and the chemical potentials of three bromide solid phases: NaBr-2H 2O (cr), NaBr (cr) and KBr (cr).
Sitaraman, Divya; Kramer, Elizabeth F.; Kahsai, Lily; Ostrowski, Daniela; Zars, Troy
2017-01-01
Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophila melanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits. PMID:29321732
Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24
Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer; ...
2018-04-18
Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less
2017-01-01
We report on the synthesis and structure–property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL’s LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating–cooling cycles. PMID:28654756
NASA Astrophysics Data System (ADS)
Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele
2017-05-01
The cooling and the dynamics of a lava flowing down an inclined channel under the effect of the gravity force is studied through the finite volume method, taking into account the effect of viscous dissipation in the heat equation. The considered rheology is shear thinning and temperature dependent. The numerical solution is tested in order to verify the independence from the mesh. The dynamic and heat problems are addressed obtaining both the stationary and the transient solution. Results indicate that, considering viscous dissipation in the heat equation, a fluid with temperature-dependent nonlinear viscosity is faster and hotter with respect to the case in which viscous dissipation is neglected. The most important effect of viscous dissipation is on the solid boundaries where the fluid warms up, and the use of a variable Reynolds number allowed us to conclude that areas in which the flow is in the laminar regime and areas in which the flow is in the turbulent regime can coexist inside the fluid. This behavior seems independent of the channel shape and can explain the observed warming back after the initial cooling in the lava flow lobes emplacement on Kilauea Volcano.
Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer
Here, we obtained a kerosene-soluble form of the lithium salt [UO 2(O 2)(OH) 2] 24 phase (Li-U 24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U 24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to –10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U 24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U 24 inmore » both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U 24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U 24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.« less
NASA Astrophysics Data System (ADS)
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys
NASA Astrophysics Data System (ADS)
Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho
2004-12-01
The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.
Dynamics of aqueous binary glass-formers confined in MCM-41.
Elamin, Khalid; Jansson, Helén; Swenson, Jan
2015-05-21
Dielectric permittivity measurements were performed on water solutions of propylene glycol (PG) and propylene glycol monomethyl ether (PGME) confined in 21 Å pores of the silica matrix MCM-41 C10 in wide frequency (10(-2)-10(6) Hz) and temperature (130-250 K) ranges. The aim was to elucidate how the formation of large hydrogen bonded structural entities, found in bulk solutions of PGME, was affected by the confined geometry, and to make comparisons with the dynamic behavior of the PG-water system. For all solutions the measurements revealed four almost concentration independent relaxation processes. The intensity of the fastest process is low compared to the other relaxation processes and might be caused by both hydroxyl groups of the pore surfaces and by local motions of water and solute molecules. The second fastest process contains contributions from both the main water relaxation as well as the intrinsic β-relaxation of the solute molecules. The third fastest process is the viscosity related α-relaxation. Its concentration independency is very different compared to the findings for the corresponding bulk systems, particularly for the PGME-water system. The experimental data suggests that the surface interactions induce a micro-phase separation of the two liquids, resulting in a full molecular layer of water molecules coordinating to the hydrophilic hydroxyl groups on the surfaces of the silica pores. This, in turn, increases the geometrical confinement effect for the remaining solution even more and prevents the building up of the same type of larger structural entities in the PGME-water system as in the corresponding bulk solutions. The slowest process is mainly hidden in the high conductivity contribution at low frequencies, but its temperature dependence can be extracted for the PGME-water system. However, its origin is not fully clear, as will be discussed.
Horn, Jacqueline; Friess, Wolfgang
2018-01-01
The collapse temperature (Tc) and the glass transition temperature of freeze-concentrated solutions (Tg') as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM). The objective of this study was to evaluate the optical fiber system (OFS) unit as alternative tool for the analysis of Tc, Tg' and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol, and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitates online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes. PMID:29435445