Sample records for solution temperature ph

  1. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  2. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  3. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  4. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  5. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less

  7. Stability of urea in solution and pharmaceutical preparations.

    PubMed

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  8. The Effect of Temperature and Solution pH on Tetragonal Lysozyme Nucleation Kinetics

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1998-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions, Duplicate experiments indicate the reproducibility of the technique, Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable however, was pH, where crystal numbers changed by two orders of magnitude over the pH range 4.0 to 5.2. Crystal size varied also with solution conditions, with the largest crystals being obtained at pH 5.2. Having optimized the crystallization conditions, a batch of crystals were prepared under exactly the same conditions and fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  9. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-04-01

    Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH

  10. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type.

    PubMed

    Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong

    2016-02-01

    The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.

  11. A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature.

    PubMed

    Wolfrum, Stefan; Marcus, Julien; Touraud, Didier; Kunz, Werner

    2016-10-01

    Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    PubMed

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture.

    PubMed

    Castro, Sigifredo; Davis, Lawrence C; Erickson, Larry E

    2004-01-01

    This article describes a systematic approach to understanding the effect of environmental variables on plant uptake (phyto-uptake) of organic contaminants. Uptake (and possibly phytotransformation) of xenobiotics is a complex process that may differ from nutrient uptake. A specific group of xenobiotics (benzotriazoles) were studied using sunflowers grown hydroponically with changes of environmental conditions including solution volume, temperature, pH, and mixing. The response of plants to these stimuli was evaluated and compared using physiological changes (biomass production and water uptake) and estimated uptake rates (influx into plants), which define the uptake characteristics for the xenobiotic. Stirring of the hydroponic solution had a significant impact on plant growth and water uptake. Plants were healthier, probably because of a combination of factors such as improved aeration and increase in temperature. Uptake and possibly phytotransformation of benzotriazoles was increased accordingly. Experiments at different temperatures allowed us to estimate an activation energy for the reaction leading to triazole disappearance from the solution. The estimated activation energy was 43 kJ/mol, which indicates that the uptake process is kinetically limited. Culturing plants in triazole-amended hydroponic solutions at different pH values did not strongly affect the biomass production, water uptake, and benzotriazole uptake characteristics. The sunflowers showed an unexpected capacity to buffer the solution pH.

  14. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  15. Biophysical characterization and conformational stability of Ebola and Marburg virus-like particles.

    PubMed

    Hu, Lei; Trefethen, Jared M; Zeng, Yuhong; Yee, Luisa; Ohtake, Satoshi; Lechuga-Ballesteros, David; Warfield, Kelly L; Aman, M Javad; Shulenin, Sergey; Unfer, Robert; Enterlein, Sven G; Truong-Le, Vu; Volkin, David B; Joshi, Sangeeta B; Middaugh, C Russell

    2011-12-01

    The filoviruses, Ebola virus and Marburg virus, cause severe hemorrhagic fever with up to 90% human mortality. Virus-like particles of EBOV (eVLPs) and MARV (mVLPs) are attractive vaccine candidates. For the development of stable vaccines, the conformational stability of these two enveloped VLPs produced in insect cells was characterized by various spectroscopic techniques over a wide pH and temperature range. Temperature-induced aggregation of the VLPs at various pH values was monitored by light scattering. Temperature/pH empirical phase diagrams (EPDs) of the two VLPs were constructed to summarize the large volume of data generated. The EPDs show that both VLPs lose their conformational integrity above about 50°C-60°C, depending on solution pH. The VLPs were maximally thermal stable in solution at pH 7-8, with a significant reduction in stability at pH 5 and 6. They were much less stable in solution at pH 3-4 due to increased susceptibility of the VLPs to aggregation. The characterization data and conformational stability profiles from these studies provide a basis for selection of optimized solution conditions for further vaccine formulation and long-term stability studies of eVLPs and mVLPs. Copyright © 2011 Wiley-Liss, Inc.

  16. A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture.

    PubMed

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  17. A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture

    PubMed Central

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk. PMID:22969403

  18. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.

    PubMed

    Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S

    2015-02-03

    We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.

  19. Heat-induced gelation of casein micelles in aqueous suspensions at different pH.

    PubMed

    Thomar, Peggy; Nicolai, Taco

    2016-10-01

    Heat-induced gelation of casein micelles in aqueous solution was investigated between pH 5.2 and pH 6.7 over a wide range of protein concentrations (C=25-160gL(-1)). For C≥40gL(-1) the casein micelles rapidly formed a self-supporting gel above a critical temperature (Tc). At C=160gL(-1), Tc decreased from 90°C at pH 6.5 to 30°C at pH 5.4 and increased with decreasing protein concentration. Oscillatory shear measurements during heating showed that the elastic modulus (Gel) of the gels increased strongly with increasing protein concentration, but was insensitive to the pH and the heating temperature except close to Tc where Gel decreased sharply with decreasing temperature. The microstructure of the gels was observed by confocal scanning laser microscopy. Heat-induced gelation of casein micelles was compared with that of sodium caseinate solutions free of calcium phosphate. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Conformal self-assembled thin films for optical pH sensors

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung

    2016-04-01

    Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.

  1. Stability of Hydrocortisone Preservative-Free Oral Solutions.

    PubMed

    Chappe, Julie; Osman, Névine; Cisternino, Salvatore; Fontan, Jean-Eudes; Schlatter, Joël

    2015-01-01

    The physical and chemical stability of a preservative-free oral solution of hydrocortisone succinate was studied at different pH values and storage temperatures. Oral solutions of hydrocortisone 1 mg/mL were prepared by dissolving hydrocortisone succinate powder in citrate buffers at pH 4.0, 5.5, and 6.5, or with sterile water (pH 7.4) stored in amber glass vials. Three identical samples of the formulations were prepared and stored under refrigeration (3-7°C), ambient temperature (20-22°C) and high temperature (29-31°C). A 200-μL sample was withdrawn from each of the 3 samples immediately after preparation and at 1, 7, 14, 21, and 35 days. Samples were assayed in duplicate using stability-indicating liquid chromatography. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point; stability was defined as the retention of at least 90% of the initial concentration of hydrocortisone succinate. At least 92% of the initial hydrocortisone succinate concentration in solutions pH 5.5, 6.5, and 7.4 remained throughout the 14-day study period under refrigeration. There were no detectable changes in color, odor, or pH and no visible microbial growth in these samples. In other storage conditions, hydrocortisone succinate was rapidly degraded. The hydrocortisone succinate preservative-free oral solutions at pH 5.5, 6.5, or 7.4 are chemically stable when stored under refrigeration for at least 14 days. They provide flexible and convenient dosage forms without any preservatives for pediatric patients.

  2. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  3. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    PubMed

    Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Wolfe, Marlene K; Lantagne, Daniele

    2016-01-01

    In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to <90% of initial concentration in ideal laboratory conditions. At 25-35°C, neutralized-NaOCl solutions (pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

  4. Calorimetric and Diffractometric Evidence for the Sequential Crystallization of Buffer Components and the Consequential pH Swing in Frozen Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj

    2010-06-22

    Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH < pK{sub a2} was cooled from room temperature (RT), the freeze-concentrate pH first increased and then decreased. This was attributed to the sequential crystallization of succinic acid, monosodium succinate, and finally disodium succinate. When buffered to pH > pK{sub a2}, the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followedmore » by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na{sub 2}(CH{sub 2}COO){sub 2} {center_dot} 6H{sub 2}O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.« less

  5. Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Lee, H. W.; Kang, S. K.; Wk. Lee, H.; Kim, G. C.; Lee, J. K.

    2012-07-01

    Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He+ and He(21S) radicals. Second, O3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O3 that causes chest pain and damages lung tissue when the density is very high. H2O2, HO2, and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  6. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    PubMed

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.

  7. Influence of pH, Salt and Temperature on Pressure Inactivation of Hepatitis A virus

    USDA-ARS?s Scientific Manuscript database

    The effects of pH (3-7), NaCl (0-6%), and temperature on pressure inactivation of hepatitis A virus (HAV) were determined. The HAV samples were treated at 400 MPa for 1 min at 5, 20, and 50C. Decreasing solution pH enhanced pressure inactivation of HAV. This enhanced inactivation effect was most e...

  8. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    PubMed

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-08

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.

  9. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids.

    PubMed

    Czarniak, Petra; Boddy, Michael; Sunderland, Bruce; Hughes, Jeff D

    2016-01-01

    The purpose of this study was to evaluate the chemical stability of Lincocin(®) (lincomycin hydrochloride) in commonly used intravenous fluids at room temperature (25°C), at accelerated-degradation temperatures and in selected buffer solutions. The stability of Lincocin(®) injection (containing lincomycin 600 mg/2 mL as the hydrochloride) stored at 25°C±0.1°C in sodium lactate (Hartmann's), 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin(®) in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined. Lincomycin hydrochloride w as found to maintain its shelf life at 25°C in sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days), and was least stable at pH 2 (calculated shelf life of 0.38 days). Lincocin(®) injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability.

  10. Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.

    PubMed

    Chojnacka, Katarzyna

    2005-04-01

    The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.

  11. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake.

    PubMed

    Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi

    2018-06-01

    Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.

  12. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  13. Optimization of protein solution by a novel experimental design method using thermodynamic properties.

    PubMed

    Kim, Nam Ah; An, In Bok; Lee, Sang Yeol; Park, Eun-Seok; Jeong, Seong Hoon

    2012-09-01

    In this study, the structural stability of hen egg white lysozyme in solution at various pH levels and in different types of buffers, including acetate, phosphate, histidine, and Tris, was investigated by means of differential scanning calorimetry (DSC). Reasonable pH values were selected from the buffer ranges and were analyzed statistically through design of experiment (DoE). Four factors were used to characterize the thermograms: calorimetric enthalpy (ΔH), temperature at maximum heat flux (T( m )), van't Hoff enthalpy (ΔH( V )), and apparent activation energy of protein solution (E(app)). It was possible to calculate E(app) through mathematical elaboration from the Lumry-Eyring model by changing the scan rate. The transition temperature of protein solution, T( m ), increased when the scan rate was faster. When comparing the T( m ), ΔH( V ), ΔH, and E(app) of lysozyme in various pH ranges and buffers with different priorities, lysozyme in acetate buffer at pH 4.767 (scenario 9) to pH 4.969 (scenario 11) exhibited the highest thermodynamic stability. Through this experiment, we found a significant difference in the thermal stability of lysozyme in various pH ranges and buffers and also a new approach to investigate the physical stability of protein by DoE.

  14. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  15. Influence of pH and temperature of dip-coating solution on the properties of cellulose acetate-ceramic composite membrane for ultrafiltration.

    PubMed

    Kaur, Harjot; Bulasara, Vijaya Kumar; Gupta, Raj Kumar

    2018-09-01

    Polymer-ceramic composite membranes were prepared by dip coating technique using 5 wt.% cellulose acetate (CA) solution at different temperatures (15 °C, 25 °C and 40 °C). The effect of pH (2-12) of the polymeric solution on the properties of the membranes was studied using SEM, EDAX, FTIR, gas and liquid permeation. The thickness of the polymeric layer depended on the interaction of CA solution with the surface of ceramic support. Membrane permeability decreased with increase in pH because of decrease in pore size and porosity resulting from strong interaction of the polymer layer with the ceramic support. The porosity and mean pore size of the prepared membranes were found to be 28-60% and 30-47 nm (ultrafiltration range), respectively. The optimized membrane (pH 7) was used for ultrafiltration of oil in water emulsions (100 and 200 mg/L). Oil rejection of 99.61% was obtained for 100 mg/L of oil concentration in water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Measured solubilities and speciations from oversaturation experiments of neptunium, plutonium, and americium in UE-25p No. 1 well water from the Yucca Mountain region: Milestone report 3329-WBS1.2.3.4.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, H.; Roberts, K.; Prussin, T.

    1994-04-01

    Solubility and speciation are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are a part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, and {sup 241}Am{sup 3+}/Nd{sup 3+} in a modified UE-25p No. 1 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at two different temperatures (25{degree}more » and 60{degree}C) and three pH values (6.0, 7.0, 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations significantly decreased with increasing temperature at pH 6 and 7. The concentration at pH 8.5 hardly decreased at all with increasing temperature. At both temperatures the concentrations were highest at pH 8.5, lowest at pH 7, and in between at pH 6. For the americium/neodymium solutions, the solubility decreased significantly with increasing temperature and increased somewhat with increasing pH.« less

  17. Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface.

    PubMed

    Alkan, Arda; Steinmetz, Christian; Landfester, Katharina; Wurm, Frederik R

    2015-12-02

    Triple-stimuli-responsive PEG-based materials are prepared by living anionic ring-opening copolymerization of ethylene oxide and vinyl ferrocenyl glycidyl ether and subsequent thiol-ene postpolymerization modification with cysteamine. The hydrophilicity of these materials can be tuned by three stimuli: (i) temperature (depending on the comonomer ratio), (ii) oxidation state of iron centers in the ferrocene moieties, and (iii) pH-value (through amino groups), both in aqueous solution and at the interface after covalent attachment to a glass surface. In such materials, the cloud point temperatures are adjustable in solution by changing oxidation state and/or pH. On the surface, the contact angle increases with increasing pH and temperature and after oxidation, making these smart surfaces interesting for catalytic applications. Also, their redox response can be switched by temperature and pH, making this material useful for catalysis and electrochemistry applications. Exemplarily, the temperature-dependent catalysis of the chemiluminescence of luminol (a typical blood analysis tool in forensics) was investigated with these polymers.

  18. Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.

    PubMed

    el-Shimi, N M

    1993-01-01

    Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.

  19. The effect of pH and concentration upon aggregation transitions in aqueous solutions of poloxamine T701.

    PubMed

    Armstrong, J K; Chowdhry, B Z; Snowden, M J; Dong, J; Leharne, S A

    2001-10-23

    Thermally induced aggregation transitions have been investigated for aqueous solutions of the poloxamine block copolymer T701-(OE(4)OP(13))(2)NCH(2)CH(2)N(OP(13)OE(4))(2)-using differential scanning calorimetry. The calorimetric signals obtained were fitted to a mass action model description of aggregation using a previously reported analytical procedure (Patterson et al., Langmuir 13 (1997) 2219). The presence of a central ethylene diamine moiety in the molecular structure renders the T701 molecule basic; this was confirmed and measured by acid/base titration. Basicity is shown to have an important impact upon aggregation. At low pH (2.5), the poloxamine exists in its protonated form and the bulk solution proton concentration is sufficient to suppress de-protonation, aggregation-as a consequence-is shifted to a higher temperature range. Any increase in pH reduces the temperature range over which aggregation occurs. The derived experimental calorimetric parameters, obtained from model fitting procedures, can be used to compute the fraction of poloxamine existing in an aggregated form, at any particular temperature. The data sets obtained were interpolated to show that at human body temperature (310.6 K) the fraction of poloxamine found in its aggregated form is zero at a pH of 2.5. However at a pH of 6.8, the percentage aggregation increases to about 85%. These aggregation characteristics of T701 have important implications for the design of drug delivery systems, which incorporate poloxamines.

  20. Effect of pH on the survival of Listeria innocua in calcium ascorbate solutions and on quality of fresh-cut apples.

    PubMed

    Karaibrahimoglu, Yildiz; Fan, Xuetong; Sapers, Gerald M; Sokorai, Kimberly

    2004-04-01

    Fresh-cut apple slices were dipped in calcium ascorbate (CaA) solution at pH values ranging from 2.5 to 7.0 to inhibit browning. After treatment, the cut apples were stored at 4 and 10 degrees C for up to 21 days. Color and texture of the apples were determined on days 1, 14, and 21. In a separate experiement, the pH of CaA solution was adjusted with acetic acid to six different pH levels, and the solution was inoculated with Listeria innocua. The survival of the bacterium and the stability of CaA were determined at 0, 20, and 96 h. The cut apples maintained fresh quality when the pH of the CaA solution was above 4.5, but slight discoloration of apple slices dipped in pH 4.5 solution was observed after 14 days at 10 degrees C. At pH 5.0, the CaA dip maintained the quality of the apples at both temperatures for at least 21 days. The L. innocua population was reduced by 4 to 5 log CFU/ml at pH 4.5 after 96 h. At pH 5, the bacterial population in the CaA solution was reduced by approximately 2 log CFU/ml during the same period. The CaA solution was stable at pH 5 for at least 96 h. Reduction of the pH to between 4.5 and 5.0 might reduce the risk of foodborne illness due to consumption of fresh-cut apples treated with a CaA solution contaminated with Listeria.

  1. Effect of pH of spray solution on the electrical properties of cadmium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodlur, R. M.; Gunnagol, Raghu M.; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Highly conducting transparent cadmium oxide thin films were prepared by conventional spray pyrolysis technique on glass at 375 °C substrate temperature. The pH of the spray solution was varied by adding ammonia/hydrochloric acid in the spray solution. The XRD pattern showed cubic phase. A lowest resistivity of 9.9 × 10{sup −4} Ω cm (with carrier concentration (n) = 5.1 × 10{sup 20} cm{sup −3}, mobility (µ)=12.4 cm{sup 2}/Vs) is observed for pH ∼12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70 %. Thus, without any doping, the electricalmore » conductivity of CdO films could be easily tuned by simply varying the pH of spray solution without compromising the transparency and keeping the other deposition parameters fixed.« less

  2. Sorption Capacity of Europium for Media #1 and Media #2 from Solution at Ambient Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Garland

    This dataset shows the capacity for Europium of media #1 and media #2 in a shakertable experiment. The experimental conditions were 150mL of 500ppm Eu solution, 2g of media, pH of 3.2, at ambient temperature.

  3. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less

  4. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    NASA Astrophysics Data System (ADS)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  5. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste.

    PubMed

    Atar, Necip; Olgun, Asim

    2007-07-19

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1. Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.

  6. Development of Bench and Full-Scale Temperature and pH Responsive Functionalized PVDF Membranes with Tunable Properties

    PubMed Central

    Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar

    2014-01-01

    Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434

  7. Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature.

    PubMed

    Cho, Jaepyoung; Heuzey, Marie-Claude; Bégin, André; Carreau, Pierre J

    2005-01-01

    When adding beta-glycerophosphate (beta-GP), a weak base, to chitosan aqueous solutions, the polymer remains in solution at neutral pH and room temperature, while homogeneous gelation of this system can be triggered upon heating. It is therefore one of the rare true physical chitosan hydrogels. In this study, physicochemical and rheological properties of chitosan solutions in the presence of acetic acid and beta-GP were investigated as a function of temperature in order to gain a better understanding of the gelation mechanisms. The gel structure formed at high temperature was only partially thermoreversible upon cooling to 5 degrees C because of the existence of remaining associations, confirmed by the spontaneous recovery of the gel after breakup at low temperature. Increasing temperature had no effect on the pH values of this system, while conductivity (and calculated ionic strength) increased. Values from the pH measurements were used to estimate the degree of protonation of each species as a function of temperature. The decreasing ratio of -NH3+ in chitosan and -OPO(O-)2 in beta-GP suggested reduced chitosan solubility along with a diminution of ionic interactions such as ionic bridging with increasing temperature. On the other hand, the increased ionic strength as a function of temperature, in the presence of beta-GP, enhanced screening of electrostatic repulsion and increased hydrophobic effect, resulting in favorable conditions for gel formation. Therefore, our study suggests that hydrophobic interactions and reduced solubility are the main driving force for chitosan gelation at high temperature in the presence of beta-GP.

  8. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    USDA-ARS?s Scientific Manuscript database

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  9. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant effect on the pH dependence of T(sol-gel). For PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:10, the T(sol-gel) of its 25 wt % aqueous solution increased faster with the increase of pH than that of PTEGMA-b-P(DEGEA-co-AA) with a DEGEA-to-AA molar ratio of 100:5.2. © 2012 American Chemical Society

  10. Stability of alemtuzumab solutions at room temperature.

    PubMed

    Goldspiel, Justin T; Goldspiel, Barry R; Grimes, George J; Yuan, Peng; Potti, Gopal

    2013-03-01

    The 24-hour stability of alemtuzumab solutions prepared at concentrations not included in the product label and stored in glass or polyolefin containers at room temperature was evaluated. Triplicate solutions of alemtuzumab (6.67, 40, and 120 μg/mL) in 0.9% sodium chloride were prepared in either glass bottles or polyolefin containers and stored at room temperature under normal fluorescent lighting conditions. The solutions were analyzed by a validated stability-indicating high-performance liquid chromatography (HPLC) assay at time zero and 8, 14, and 24 hours after preparation; solution pH values were measured and the containers visually inspected at all time points. Stability was defined as the retention of ≥90% of the initial alemtuzumab concentration. HPLC analysis indicated that the percentage of the initial alemtuzumab concentration retained was >90% for all solutions evaluated, with no significant changes over the study period. The most dilute alemtuzumab solution (6.67 μg/mL) showed some degradation (91% of the initial concentration retained at hour 24), whereas the retained concentration was >99% for all other preparations throughout the study period. Solution pH values varied by drug concentration but did not change significantly over 24 hours. No evidence of particle formation was detected in any solution by visual inspection at any time during the study. Solutions of alemtuzumab 6.67 μg/mL stored in glass bottles and solutions of 40 and 120 μg/mL stored in polyolefin containers were stable for at least 24 hours at room temperature.

  11. Stability studies on diloxanide furoate: effect of pH, temperature, gastric and intestinal fluids.

    PubMed

    Gadkariem, E A; Belal, F; Abounassif, M A; El-Obeid, H A; E E Ibrahim, K

    2004-04-01

    The degradation of the amoebicide diloxanide furoate in alkaline medium at different temperatures was investigated using both a spectrophotometric and a developed HPLC method. In solutions, the drug was found to undergo decomposition, i.e., temperature and pH dependent. The pH-rate profile at pH between 7.6 and 9.6 indicated a first-order dependence of Kobs on [-OH]. Arrhenius plot obtained at pH 8 was linear between 40 and 63 degrees C. The estimated activation energy of hydrolysis was found to be 18.25 kcal degree.mol(-1). The effect of simulated gastric and intestinal fluids on the drug was also investigated. A new thin-layer chromatographic (TLC) procedure for the fractionation of the drug and its alkaline hydrolysis products has been developed and was found to compare favorably with that of the British Pharmacopoeia. Three hydrolysis products of a basic methanolic solution of the drug, namely furoic acid, diloxanide and methylfuroate could be identified by the use of TLC, HPLC, infrared and mass spectrometry.

  12. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    NASA Astrophysics Data System (ADS)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  13. The effect of oxidant addition on ferrous iron removal from multi-element acidic sulphate solutions

    NASA Astrophysics Data System (ADS)

    Mbedzi, Ndishavhelafhi; Ibana, Don; Dyer, Laurence; Browner, Richard

    2017-01-01

    This study was an investigation on the hydrolytic precipitation of iron from simulated pregnant leach solution (PLS) of nickel laterite atmospheric leaching. The effect of equilibrium pH, temperature and the addition of oxidant on total iron (ferrous (Fe (II)) and ferric (Fe (III)), aluminium and chromium removal was investigated together with the associated nickel and cobalt losses to the precipitate. Systematic variations of the experimental variables revealed ≥99% of the ferric iron can be removed from solution at conditions similar to those used in standard partial neutralisation in zinc and nickel production, pH of 2.5 and temperature less than 100 °C with minimal losses (<0.5%) of both nickel and cobalt. Temperature variation from 55 to 90 °C had no significant effect on the magnitude of Fe (III) precipitation but led to a significant increase in aluminium removal from 67% to 95% and improved the filterability of the precipitates. There was no ferrous iron precipitation even at a pH of 3.75 in the absence of an oxidant with its removal (98%) achieved by oxidative precipitation with oxygen gas at pH 3.5. Unlike Fe (III) precipitation, the operating temperature significantly affects oxidative precipitation of Fe (II). Hence, in practical application, the hydrolytic precipitation and oxidation to remove iron must be operated at 85 °C to ensure both ferrous and ferric iron are precipitated.

  14. Study of a binary interpenetrated polymeric complex by correlation of rheological parameters with zeta potential and conductivity.

    PubMed

    Nita, Loredana Elena; Chiriac, Aurica P; Neamtu, Iordana; Bercea, Maria

    2010-03-01

    The interpenetrated macromolecular chains complexation between poly(aspartic acid) and poly(vinyl alcohol) in aqueous solution it was investigated. The interpolymer complexation process was evaluated through dynamic rheology. The aspects concerning the stability of the tested homopolymers and the prepared interpolymeric complex there were achieved from the evaluation of the aqueous solutions'zeta potential and also by determining the pH influence upon the zeta potential and the conductivity. The data obtained through the rheological dynamic measurements were correlated with the composition of the polymeric mixture, the dependence of zeta potential and conductivity. The study reveals the conditions for the formation of interpenetrated polymeric complex as being a ratio of 70wt.% PAS to 30wt.% PVA at 22 degrees C and 50/50 PAS/PVA ratio at 37 degrees C temperature. From the pH influence upon the zeta potential values it was evidenced the PAS aqueous solution does not reach the isoelectric point. At the same time, PVA solution and the complex PAS/PVA reaches the isoelectric point at strongly acid pH. The better stability of PAS, PVA and their mixture in solution is recorded in the alkaline domain (7.5or=12). The conductivity increases with the rising of the PAS content, pH and temperature. Other characteristics of the prepared interpenetrated polymeric structure, as for example thermal stability, there are also presented.

  15. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.

    PubMed

    Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M

    2005-07-01

    Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.

  16. Molecularly designed water soluble, intelligent, nanosize polymeric carriers.

    PubMed

    Pişkin, Erhan

    2004-06-11

    Intelligent polymers, also referred as "stimuli-responsive polymers" undergo strong property changes (in shape, surface characteristics, solubility, etc.) when only small changes in their environment (changes in temperature, pH, ionic strength light, electrical and magnetic field, etc.). They have been used in several novel applications, drug delivery systems, tissue engineering scaffolds, bioseparation, biomimetic actuators, etc. The most popular member of these type of polymers is poly(N-isopropylacrylamide) (poly(NIPA)) which exhibits temperature-sensitive character, in which the polymer chains change from water-soluble coils to water-insoluble globules in aqueous solution as temperature increases above the lower critical solution temperature (LCST) of the polymer. Copolymerization of NIPA with acrylic acid (AAc) allows the synthesis of both pH and temperature-responsive copolymers. This paper summarizes some of our related studies in which NIPA and its copolymers were synthesized and used as intelligent carriers in diverse applications.

  17. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral-solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  18. Release rate of diazinon from microcapsule based on melamine formaldehyde

    NASA Astrophysics Data System (ADS)

    Noviana Utami C., S.; Rochmadi

    2018-04-01

    The microcapsule containing diazinon as the core material and melamine formaldehyde as the membrane material have been synthesized by in situ polymerization method. The microcapsule membrane in this research is melamine formaldehyde (MF). This research aims to study the effect of pH and temperature on the release rate of diazinon from microcapsule based on melamine formaldehyde in aqueous medium. The results showed that pH and temperature has little effect on the release rate of diazinon from microcapsule based on melamine formaldehyde. This is due to the diffusion through the microcapsule membrane is not influenced by the pH and temperature of the solution outside of microcapsule.

  19. Stability of tacrolimus solutions in polyolefin containers.

    PubMed

    Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K

    2016-02-01

    Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  20. Hexavalent chromium adsorption from aqueous solution using carbon nano-onions (CNOs).

    PubMed

    Sakulthaew, Chainarong; Chokejaroenrat, Chanat; Poapolathep, Amnart; Satapanajaru, Tunlawit; Poapolathep, Saranya

    2017-10-01

    The capacity of carbon nano-onions (CNOs) to remove hexavalent chromium (Cr(VI)) from aqueous solution was investigated. Batch experiments were performed to quantify the effects of the dosage rate, pH, counter ions, and temperature. The adsorption of Cr(VI) onto CNOs was best described by a pseudo-second order rate expression. The adsorption efficiency increased with increasing adsorbent dosage and contact time and reached equilibrium in 24 h. The equilibrium data showed better compliance with a Langmuir isotherm than a Freundlich isotherm. Effective removal of Cr(VI) was demonstrated at pH values ranging from 2 to 10. The adsorption capacity of Cr(VI) was found to be highest (82%) at pH 3.4 and greatly depended on the solution pH. We found that Cr(VI) adsorption decreased with increasing pH over the pH range of 3.4-10. The adsorption capacity increased dramatically when the temperature increased from 10 °C to 50 °C regardless of the amount of CNOs used. Cr(VI) removal decreased by ∼13% when Zn(II), Cu(II), and Pb(II) were present, while there were no significant changes observed when NO 3 - or SO 4 2- was present. The overall results support that CNOs can be used as an alternative adsorbent material to remove Cr(VI) in the water treatment industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Velgosová, Oksana; Mražíková, Anna

    2017-12-01

    In this paper the influence of algae life cycle and the solutions pH on the green synthesis of colloidal Ag nanoparticles (AgNPs) as well as effect of different storage conditions on AgNPs long-term stability was investigated. Silver nanoparticles were biologically synthesized using extracts of Parachlorella kessleri algae cultivated 1, 2, 3 and 4 weeks. The formation of AgNPs was monitored using a UV-vis spectrophotometer and verified by TEM observation. The results confirmed formation of polyhedron and/or near polyhedron AgNPs, ranging between 5 and 60 nm in diameter. The age of algae influenced the synthesis rate and an amount of AgNPs in solution. The best results were obtained using tree weeks old algae. UV-vis analysis and TEM observation also revealed that the size and the stability of AgNPs depend on the pH of solution. AgNPs formed in solutions of higher pH (8 and 10) are polyhedron, fine, with narrow size interval and stabile. Nanoparticles formed in solutions of low pH (2, 4 and 6) started to lose their stability on 10th day of experiment, and the particle size interval was wide. The long-term stability of AgNPs can be influenced by light and temperature conditions. The most significant stability loss was observed at day light and room temperature (21°C). After 200-days significant amount of agglomerated particles settled on the bottom of the Erlenmeyer flask. AgNPs stored at dark and room temperature showed better long-term stability, weak particles agglomeration was observed. AgNPs stored at dark and at temperature 5°C showed the best long-term stability. Such AgNPs remained spherical, fine (5-20 nm), with narrow size interval and stable (no agglomeration) even after more than six months.

  2. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.

    PubMed

    Qiu, Wen-Yi; Wang, Kai; Wang, Yao-Yao; Ding, Zhi-Chao; Wu, Li-Xia; Cai, Wu-Dan; Yan, Jing-Kun

    2018-01-01

    A C6-carboxylated curdlan (C6-Cc) obtained from 4-acetamido-TEMPO-mediated oxidation of curdlan was used both as a reducing and stabilizing agent for green synthesis of pH-responsive AuNPs, which was carried out by controlling the pH of the C6-Cc solution at a high temperature (100°C). C6-Cc presented a semi-flexible random coil chain in the aqueous medium at pH 5.5 and became more expanded and rigid in alkaline conditions (pH 7.1-12.0), though the primary chemical structure of C6-Cc was virtually unchanged with the pH variation. The AuNPs prepared with C6-Cc at various pHs were characterized by various instrumental measurements. The shapes and sizes of AuNPs were found to be strongly dependent on the pH of the C6-Cc solution. The C6-Cc-decorated AuNPs exhibited a more well-dispersed spherical morphology with smaller particle sizes under alkaline conditions (pH 7.1-12.0). Through this study, a facile, simple, and green method has been demonstrated for preparation of stimuli-sensitive AuNPs using biocompatible polyanionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The removal of chloramphenicol from water through adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Lach, Joanna; Ociepa-Kubicka, Agnieszka

    2017-10-01

    The presented research investigated the removal of chloramphenicol from water solutions on selected activated carbon available in three grades with different porous structure and surface chemical composition. Two models of adsorption kinetics were examined, i.e. the pseudo-first order and the pseudo-second order models. For all examined cases, the results of tests with higher value of coefficient R2 were described by the equation for pseudo-second order kinetics. The adsorption kinetics was also investigated on the activated carbons modified with ozone. The measurements were taken from the solutions with pH values of 2 and 7. Chloramphenicol was the most efficiently adsorbed on the activated carbon F-300 from the solutions with pH=7, and on the activated carbon ROW 08 Supra from the solutions with pH=2. The adsorption of this antibiotic was in the majority of cases higher from the solutions with pH=2 than pH=7. The modification of the activated carbons with ozone enhanced their adsorption capacities for chloramphenicol. The adsorption is influenced by the modification method of activated carbon (i.e. the duration of ozonation of the activated carbon solution and the solution temperature). The results were described with the Freundlich and Langmuir adsorption isotherm equations. Both models well described the obtained results (high R2 values).

  4. Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFETmore » as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.« less

  5. Protection of Pyruvate,Pi Dikinase from Maize against Cold Lability by Compatible Solutes 1

    PubMed Central

    Krall, John P.; Edwards, Gerald E.; Andreo, Carlos S.

    1989-01-01

    Most C4 species are chilling sensitive and certain enzymes like pyruvate,Pi dikinase of the C4 pathway are also cold labile. The ability of cations and compatible solutes to protect maize (Zea mays) dikinase against cold lability was examined. The enzyme in desalted extracts at pH 8 from preilluminated leaves could be protected against cold lability (at 0°C) by the divalent cations Mn2+, Mg2+, and Ca2+. There was substantial protection by sulfate based salts but little protection by chloride based salts of potassium or ammonium (concentration 250 millimolar). The degree of protection against cold lability under limiting MgCl2 (5 millimolar) was pH sensitive (maximum protection at pH 8), but independent of ionic strength (up to 250 millimolar by addition of KCl). In catalysis Mg2+ is required and Mn2+ could not substitute as a cofactor. Several compatible solutes reduced or prevented the cold inactivation of dikinase (in desalted extracts and the partially purified enzyme), including glycerol, proline, glycinebetaine and trimethylamine-N-oxide (TMAO). TMAO and Mg2+ had an additive effect in protecting dikinase against cold inactivation. TMAO could largely substitute for the divalent cation and addition of TMAO during cold treatment prevented further inactivation. Cold inactivation was partially reversed by incubation at room temperature; with addition of TMAO reversal was complete. The temperature dependence of inactivation at pH 8 and 3 millimolar MgCl2 was evaluated by incubation at 2 to 17°C for 45 minutes, followed by assay at room temperature. At preincubation temperatures below 11°C there was a progressive inactivation which could be prevented by TMAO (450 millimolar). The results are discussed relative to possible effects of the solutes on the quaternary structure of this enzyme, which is known to dissociate at low temperatures. PMID:16666527

  6. Porous silicon powder as an adsorbent of heavy metal (nickel)

    NASA Astrophysics Data System (ADS)

    Nabil, Marwa; Motaweh, Hussien A.

    2018-04-01

    New and inexpensive nanoporous silicon (NPS) powder was prepared by alkali chemical etching using sonication technique and was subsequently investigated as an adsorbent in batch systems for the adsorption Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the NPS powder were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and contact time. The results indicated that the maximum adsorption capacity and the maximum removal percent of Ni(II) reached 2665.33 mg/g and 82.6%, respectively, at an initial Ni(II) concentration of 100 mg/L, adsorption time of 30 min and no effect of the solution pH and adsorption temperature.

  7. Temperature sensitivity of organic substrate decay varies with pH

    NASA Astrophysics Data System (ADS)

    Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.

    2012-12-01

    Cellulose is the most abundant biopolymer in soils and globally ubiquitous. It serves as a primary carbon source for myriad microbes able to release cellulases which cleave the cellulose into smaller molecules. For example, β-glucosidase, one type of cellulase, breaks down a terminal β-glycosidic bond of cellulose. The carbon of the liberated glucose becomes available for microbial uptake, after which it can then be mineralized and returned to the atmosphere via heterotrophic respiration. Thus, exoenzymes play an important role in the global cycling of carbon. Numerous studies suggest that global warming potentially increases the rate at which β-glucosidase breaks down cellulose, but it is not known how pH of the soil solution influences the effect of temperature on cellulose decomposition rates; this is important given the globally wide range of soil pH. Using fluorescence enzyme assay techniques, we studied the effect of temperature and pH on the reaction rate at which purified β-Glucosidase decays β-D-cellobioside (a compound often employed to simulate cellulose). We evaluated the temperature sensitivity of this reaction at five temperatures (5, 10, 15, 20, and 25°C) and six pH values (3.5, 4.5, 5.5, 6.5, 7.5, and 8.5)encompassing the naturally occurring range in soils, in a full-factorial design. First, we determined Vmax at 25°C and pH 6.5, standard conditions for measuring enzyme activities in many studies. The Vmax was 858.65 μmol h-1mg-1and was achieved at substrate concentration of 270 μM. At all pH values, the reaction rate slowed down at lower temperatures; at a pH of 3.5, no enzymatic activity was detected. The enzyme activity was significantly different between pH 4.5 and higher pHs. For example, enzyme reactivity at pH 4.5 was significantly lower than that at 7.5 at 20 and 25°C (Bonferroni-corrected P =0.0006, 0.0004, respectively), but not at lower temperatures. Similarly, enzyme reactivity at pH 4.5 was lower than that at pH 8.5 at 10, 15, and 25°C (P=0.0009, 0.0007, 0.0005, respectively), with a near-significant trend at 20°C (P=0.0023), and exhibited a nearly significant depression in response to temperature at 25°C compared to that at pH 6.5 (P=0.0015). Our results suggest that exoenzymatic cellulose decomposition with warming may be more enhanced in soil systems exhibiting higher pH. This work highlights the importance of soil solution pH as a driver of temperature sensitivity of substrate decay, and adds a level of complexity for developing accurate predictions of soil carbon cycling with climate change.

  8. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    PubMed

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  9. Monitoring of the interconversion of gamma-butyrolactone (GBL) to gamma hydroxybutyric acid (GHB) by Raman spectroscopy.

    PubMed

    Munshi, Tasnim; Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Jilani, Shelina K; Scowen, Ian J

    2013-08-01

    Gamma-hydroxybutyric acid (GHB) is a drug-of-abuse that has recently become associated with drug-facilitated sexual assault, known as date rape. For this reason the drug is commonly found 'spiked' in alcoholic beverages. When GHB is in solution it may undergo conversion into the corresponding lactone, Gamma-butyrolactone (GBL). Studies have been carried out to determine the detection limits of GHB and GBL in various solutions by Raman spectroscopy and to monitor the interconversion of GHB and GBL in solution with different pH conditions and temperature. In this study, a portable Raman spectrometer was used to study the interconversion of GHB and GBL in water and ethanol solutions as a function of pH, time, and temperature. The aim of this was to determine the optimum pH range for conversion in order to relate this to the pH ranges that the drug is likely to be subjected to, first in spiked beverages and secondly after ingestion in the digestive system. The aim was also to identify a timescale for this conversion in relation to possible scenarios, for example if GHB takes a number of hours to convert to GBL, it is likely for the beverage to be ingested before esterification can take place. GHB and GBL were then spiked into a selection of beverages of known pH in order to study the stability of GHB and GBL in real systems. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Short communication: Urea hydrolysis in dairy cattle manure under different temperature, urea, and pH conditions.

    PubMed

    Moraes, L E; Burgos, S A; DePeters, E J; Zhang, R; Fadel, J G

    2017-03-01

    The objective of the study was to quantify the rate of urea hydrolysis in dairy cattle manure under different initial urea concentration, temperature, and pH conditions. In particular, by varying all 3 factors simultaneously, the interactions between them could also be determined. Fresh feces and artificial urine solutions were combined into a slurry to characterize the rate of urea hydrolysis under 2 temperatures (15°C and 35°C), 3 urea concentrations in urine solutions (500, 1,000, and 1,500 mg of urea-N/dL), and 3 pH levels (6, 7, and 8). Urea N concentration in slurry was analyzed at 0.0167, 1, 2, 4, 6, 8, 12, 16, 20, and 24 h after initial mixing. A nonlinear mixed effects model was used to determine the effects of urea concentration, pH, and temperature treatments on the exponential rate of urea hydrolysis and to predict the hydrolysis rate for each treatment combination. We detected a significant interaction between pH and initial urea level. Increasing urea concentration from 1,000 to 1,500 mg of urea-N/dL decreased the rate of urea hydrolysis across all pH levels. Across all pH and initial urea levels, the rate of urea hydrolysis increased with temperature, but the effect of pH was only observed for pH 6 versus pH 8 at the intermediate initial urea concentration. The fast rates of urea hydrolysis indicate that urea was almost completely hydrolyzed within a few hours of urine mixing with feces. The estimated urea hydrolysis rates from this study are likely maximum rates because of the thorough mixing before each sampling. Although considerable mixing of feces and urine occurs on the barn floor of commercial dairy operations from cattle walking through the manure, such mixing may be not as quick and thorough as in this study. Consequently, the urea hydrolysis rates from this study indicate the maximum loss of urea and should be accounted for in management aimed at mitigating ammonia emissions from dairy cattle manure under similar urea concentration, pH, and temperature conditions reported in this experiment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    PubMed

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  12. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  13. Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini.

    PubMed

    Wang, Feihong; Tan, Lichao; Liu, Qi; Li, Rumin; Li, Zhanshuang; Zhang, Hongsen; Hu, Songxia; Liu, Lianhe; Wang, Jun

    2015-12-01

    Uranium biosorption from aqueous solutions by pollen pini (Pinus massoniana pollen) was studied in a bath system. The biosorbent was characterized by Fourier-transform infrared spectroscopy and scanning electron microscope. The influences of pH, contact time and initial uranium concentration at room temperature were investigated and the experimental curves were obtained. The pollen pini exhibited the highest uranium sorption capacity at pH 5.0 after 2 h contact. At pH 2.5 pollen pini also exhibited a good uranium loading capacity (>15%). Therefore biosorption characteristics of uranium from aqueous solution onto pollen pini were examined at pH 2.5 as well. The kinetics followed a pseudo-second-order rate equation and adsorption process was well fitted with the Freundlich isotherm at both pH. The adsorption of uranium by the biosorbent was confirmed by energy dispersive spectroscopy. The present study suggested that pollen pini could be a suitable biosorbent for biosorption uranium (VI) from aqueous solution in a fast, low cost and convenient approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Adsorption of cadmium by sulphur dioxide treated activated carbon.

    PubMed

    Macías-García, A; Gómez-Serrano, V; Alexandre-Franco, M F; Valenzuela-Calahorro, C

    2003-10-01

    Merck carbon (1.5 mm) was treated in three ways: heating from ambient temperature to 900 degrees C in SO(2); treatment at ambient temperature in SO(2); or successive treatments in SO(2) and H(2)S at ambient temperature. All samples were then characterised and tested as adsorbents of Cd(2+) from aqueous solution. The characterisation was in terms of composition by effecting ultimate and proximate analyses and also of textural properties by N(2) adsorption at -196 degrees C. Kinetics and extent of the adsorption process of Cd(2+) were studied at 25 and 45 degrees C at pH of the Cd(2+) solution (i.e., 6.2) and at 25 degrees C also at pH 2.0. The various treatments of the starting carbon had no significant effect on the kinetics of the adsorption of Cd(2+), but increased its adsorption capacity. The most effective treatment was heating to 900 degrees C, the adsorption in this case being 70.3% more than that of the starting carbon. The adsorption increased at 45 degrees C but decreased at pH 2.0 when compared to adsorption at 25 degrees C and pH 6.2, respectively.

  15. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C.J.; Keefer, K.D.; Lenahan, P.M.

    1985-02-25

    A method is disclosed for coating a substrate with a thin film of a predetermined porosity. The method comprises: depositing the thin film on the substrate from a non-gelled solution comprising at least one metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base; prior to said depositing step, controlling the porosity and structure of said coating for a given composition of said solution exclusive of the acid or base component and the water component, by adjusting each of the water content, the pH, the temperature and the time of standing of said solution, increasing/descreasing the water content or the pH to increase/decrease the pore size of said coating, and increasing/decreasing the temperature or time of standing of said solution to increase/decrease the pore size of said coating; and curing said deposited film at a temperature effective for curing whereby there is obtained a thin film coating of a predetermined porosity on the substrate.

  16. Boron removal from aqueous solution by direct contact membrane distillation.

    PubMed

    Hou, Deyin; Wang, Jun; Sun, Xiangcheng; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing

    2010-05-15

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  17. Effect of temperature and pH on the solubility of caseins: environmental influences on the dissociation of α(S)- and β-casein.

    PubMed

    Post, A E; Arnold, B; Weiss, J; Hinrichs, J

    2012-04-01

    Selective precipitation is a common method for the isolation of β-casein, using the different calcium sensitivities of the individual caseins and the selective solubility of β-casein at a low temperature. In previous studies, it has been indicated that the β-casein yield depends on the physicochemical characteristics of the casein raw material used for fractionation. The objective of this study was to evaluate and compare the solubility of α(S)- and β-casein in solutions of micellar casein, sodium caseinate, and calcium caseinate as a function of pH and temperature. Additionally, the solubility of isolated α(S)- and β-casein fractions in demineralized water, ultrafiltration permeate, and a calcium-depleted milk salt solution was investigated depending on the pH and temperature. Furthermore, micellar casein, sodium caseinate, and calcium caseinate were subjected to a calcium chloride-precipitation process to determine the solubility of α(S)- and β-casein in calcium chloride precipitate, which is produced during selective precipitation, as a function of temperature and pH. Generally, the temperature had only a marginal influence on the α(S)-casein solubility compared with the β-casein solubility, whereas the solubility was shown to be strongly influenced by the pH. Our results suggest that the yield of β-casein obtained during isolation by means of selective precipitation may be a result of the solubility characteristics of α(S)- and β-casein in calcium chloride precipitate. Manufacturers may consider a simple solubility experiment before the β-casein isolation process by means of selective precipitation to predict β-casein yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    PubMed Central

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  19. The function profile of compressed-air and ultrasonic nebulizers.

    PubMed

    Wu, Hsin-Lin; Lin, Yung-Zen; Wu, Wei-Fong; Huang, Fu-Yuan

    2003-01-01

    In order to study the detailed function of two kinds of nebulizers commonly used in clinical asthma treatment, compressed-air and ultrasonic, this study was conducted. At the beginning, various flow rates were adjusted, paired with different volumes of solutions in the container. The changes of temperature, pH, and osmolality during the course of nebulization were examined. Normal saline, terbutaline, and fenoterol solutions were used as the nebulized solutions. The study was performed in an environment in ambient temperature around 20 degrees C and relative humidity around 70%. The results showed a minimal 6 L/min flow rate was required to nebulize the solution when using the compressed-air nebulizer. The dead volume was about 0.8 ml for compressed-air and 8.5 ml for the ultrasonic nebulizer. When using the compressed-air nebulizer, the temperature, both in the solution and at the mouthpiece site, dropped gradually. On the contrary, the temperatures at both sites increased a little bit when using the ultrasonic nebulizer. The pH values of pure terbutaline and fenoterol nebulized solutions were acidic (3.58 and 3.00 respectively). The osmolality of terbutaline and fenoterol nebulized solutions were isotonic. The osmolality increased gradually during the course of nebulization, to a greater extent in the compressed-air nebulizer. In conclusion, both types of nebulizers have their special features. The ultrasonic nebulizer displays less extent in change of temperature and osmolality during nebulization and is expected to be a better device in treating asthmatic patients in terms of lesser effect on cooling and changing the osmolality of airway mucosa.

  20. Adsorption Effectivity Test of Andisols Clay-Zeolite (ACZ) Composite as Chromium Hexavalent (Cr(VI)) Ion Adsorbent

    NASA Astrophysics Data System (ADS)

    Pranoto; Masykur, A.; Nugroho, Y. A.

    2018-03-01

    Adsorption of chromium hexavalent (Cr(VI)) ion in aqueous solution was investigated. This research was purposed to study the influence of the composition of ACZ, temperature activation, and contact time against adsorption capacity of Cr(VI) ion in aqueous solution. Determination of adsorption effectivity using several parameter such as composition variation of ACZ, contact time, pH, activation temperature, and concentration. In this research, andisol clay and zeolite has been activated with NaOH 3 M and 1 M, respectively. Temperature variation used 100, 200, and 400°C. While composition variation ACZ used 0:100, 25:75, 50:50, 75:25, 100:0. The pH variation was used 2 – 6 and concentration variation using 2, 4, 6, 8, 10, and 12 ppm. Characterization in this research used such as UV-Vis, Surface Area Analyzer (SAA) and Acidity Analysis. Result of this research is known that optimum composition of ACZ was 50:50 with calcination temperature 100°C. Optimum adsorption of Cr(VI) at pH 4 with removal percentage 76.10 % with initial concentration 2 ppm and adsorption capacity is 0.16 mg/g. Adsorption isotherm following freundlich isotherm with value Kf = 0.17 mg/g and value n is 0.963. Based on results, ACZ composite can be used as Cr(VI) ion adsorbents in aqueous solutions.

  1. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Local environment around gold (III) in aqueous chloride solutions: An EXAFS spectroscopy study

    NASA Astrophysics Data System (ADS)

    Farges, Franã§Ois; Sharps, Julia A.; Brown, Gordon E., Jr.

    1993-03-01

    The local environment around Au (III) in aqueous solutions containing 1 M NaCl was determined as a function of pH and Au concentration using X-ray absorption spectroscopy (XAS) at ambient temperature and pressure. The solution Au concentrations studied were 10 - to 10 -3 M and the pH ranged between 2 and 9.2. No significant changes of Au speciation were detected with increasing Au concentration; however, major speciation changes were caused by variations in pH. At pH = 2, Au is coordinated by four Cl atoms ( mean d [AuCl] = 2.28 -2.29 ± 0.01 Å), whereas at pH 7.5 and 9.2, Au is coordinated by three Cl and one O (or OH) and by two Cl and two O (or OH), respectively ( mean d[AuCl] = 2.28 ± 0.02 Å; mean d[AuO or AuOH] = 1.97 ± 0.02 Å), indicating replacement of Cl by O (or OH) with increasing pH. In all solutions studied, the number of first-neighbors around Au(III) is close to four. XANES analysis suggests the presence of a square-planar geometry for AuX 4 ( X = Cl, O) at all pH values studied. These results are in excellent agreement with those from our previous Raman, resonance Raman, and UV/visible spectroscopy study of gold(III)-chloride solutions (PECK et al., 1991), which found that AuCl 4-, AuCl 3(OH) -, and AuCl 2(OH) 2- are the majority species in the pH ranges 2-6, 6-8.5, and 8.5-11, respectively. We did not find evidence for Au(I)Cl 2- or Au(I)Cl(OH) - complexes in our pH 7.5 and 9.2 solutions, as was recently suggested by PAN and WOOD (1991) for acidic gold chloride solutions at temperatures > 100°C, although we can't rule these complexes out as minority species (<10% of the total Au in solution). Our EXAFS results also provide the first direct evidence for Cl second neighbors around AuCl 4- complexes in the most acidic solutions studied ( pH = 2 and 4.5). These second-neighbor Cl atoms were also detected at low Au concentrations (10 -3 M) and are similar in number and arrangement to those observed in crystalline KAuCL 4·2H 2O (two Cl at a mean d[Au-Cl(2)] = 4.42 ± 0.03 Å). No evidence was found for second-neighbor Au atoms, which indicates little or no Au polymers or colloidal particles in any of the solutions studied. Our EXAFS results are in broad agreement with earlier predictions of Au speciation based on a variety of chemical measurements. Moreover, they directly confirm that mixed chloro-hydroxo Au (III) complexes are more stable than predicted on the basis of thermodynamically estimated stability constants.

  3. The structure and stability of aqueous rare-earth elements in hydrothermal fluids: New results on neodymium(III) aqua and chloroaqua complexes in aqueous solutions to 500 °C and 520 MPa

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2009-01-01

    X-ray absorption spectroscopy (XAS) measurements were made at the Nd L3-edge on neodymium(III) aqua and chloroaqua complexes in low pH aqueous solutions from 25 to 500????C and up to 520??MPa. Analysis of the extended X-ray absorption fine structure of the XAS spectra measured from a 0.07??m Nd/0.16??m HNO3 aqueous solution reveals a contraction of the Nd-O distance of the Nd3+ aqua ion at a uniform rate of ~ 0.013????/100????C and a uniform reduction of the number of coordinated H2O molecules from 10.0 ?? 0.9 to 7.4 ?? 0.9 over the range from 25 to 500????C and up to 370??MPa. The rate of reduction of the first-shell water molecules with temperature for Nd3+ (26%) is intermediate between the rate for the Gd3+ aqua ion (22% from 25 to 500????C) and the rates for the Eu3+ (29% from 25 to 400????C) and the Yb3+ aqua ions (42% from 25 to 500????C) indicating an intermediate stability of the Nd3+ aqua ion consistent with the tetrad effect. Nd L3-edge XAS measurements of 0.05??m NdCl3 aqueous solution at 25 to 500????C and up to 520??MPa show that stepwise inner-sphere complexes most likely of the type Nd(H2O)?? - nCln+3 - n occur in the solution at elevated temperatures, where ?? ??? 9 at 150????C decreasing to ~ 6 at 500????C and the number of chloride ions (n) of the chloroaqua complexes increases uniformly with temperature from 1.2 ?? 0.2 to 2.0 ?? 0.2 in the solution upon increase of temperature from 150 to 500????C. Conversely, the number of H2O ligands of Nd(H2O)?? - nCln+3 - n complexes is uniformly reduced with temperature from 7.5 ?? 0.8 to 3.7 ?? 0.3 in the aqueous solution, in the same temperature range. These data show greater stability of neodymium(III) than gadolinium(III) and ytterbium(III) chloride complexes in low pH aqueous solutions at elevated temperatures. Our data suggest a greater stability of aqueous light REE than that of heavy REE chloride complexes in low pH fluids at elevated temperatures consistent with REE analysis of fluids from deep-sea hydrothermal vents. ?? 2008 Elsevier B.V.

  4. PHOTOREACTION OF VALEROPHENONE IN AQUEOUS SOLUTION

    EPA Science Inventory

    Kinetics and products of the photoreaction of the phenyl ketone valerophenone were investigated as a function of temperature, pH, and wavelength in aqueous solution. Under these conditions (<10-4M), the photoreactions are pseudo-first-order with respect to valerophenone concentra...

  5. No-core fiber-based highly sensitive optical fiber pH sensor.

    PubMed

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  6. Method for providing uranium articles with a corrosion resistant anodized coating

    DOEpatents

    Waldrop, Forrest B.; Washington, Charles A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  7. Investigation of factors affecting in vitro doxorubicin release from PEGylated liposomal doxorubicin for the development of in vitro release testing conditions.

    PubMed

    Shibata, Hiroko; Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Goda, Yukihiro

    2015-01-01

    Establishing appropriate drug release testing methods of liposomal products for assuring quality and performance requires the determination of factors affecting in vitro drug release. In this study, we investigated the effects of test conditions (human plasma lot, pH/salt concentration in the test media, dilution factor, temperature, ultrasound irradiation, etc.), and liposomal preparation conditions (pH/concentration of ammonium sulfate solution), on doxorubicin (DXR) release from PEGylated liposomal DXR. Higher temperature and lower pH significantly increased DXR release. The evaluation of DXR solubility indicated that the high DXR release induced by low pH may be attributed to the high solubility of DXR at low pH. Ultrasound irradiation induced rapid DXR release in an amplitude-dependent manner. The salt concentration in the test solution, human plasma lot, and dilution factor had a limited impact on DXR-release. Variations in the ammonium sulfate concentration used in solutions for the formation/hydration of liposomes significantly affected DXR release behavior, whereas differences in pH did not. In addition, heating condition in phosphate-buffered saline at lower pH (<6.5) exhibited higher discriminative ability for the release profiles from various liposomes with different concentrations of ammonium sulfate than did ultrasound irradiation. These results are expected to be helpful in the process of establishing appropriate drug release testing methods for PEGylated liposomal DXR.

  8. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    USGS Publications Warehouse

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium.Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral–solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3−) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  9. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Nwokoro, Ogbonnaya; Anthonia, Odiase

    2015-01-01

    Amylases are among the main enzymes used in food and other industries. They hydrolyse starch molecules into polymers composing glucose units. Amylases have potential applications in a number of industrial processes including foods and pharmaceutical industries. Alkaline α-amylase has the potential of hydrolysing starch under alkaline pH and is useful in the starch and textile industries and as an ingredient of detergents. Amylases are produced from plants, however, microbial production processes have dominated applications in the industries. Optimization of microbial production processes can result in improved enzyme yields. Amylase activity was assayed by incubating the enzyme solution (0.5 ml) with 1% soluble starch (0.5 ml) in 0.1 M Tris/HCl buffer (pH 8.5). After 30 minutes, the reaction was stopped by the addition of 4 mL of 3,5-dinitrosalicylic acid (DNS) reagent then heated for 10 min in boiling water bath and cooled in a refrigerator. Absorbance readings were used to estimate the units of enzyme activity from glucose standard curve. Hydrolysed native starches from cassava, rice, corn, coco yam, maize and potato and soluble starch were adjusted to pH 8.5 prior to incubation with crude enzyme solution. Reducing sugars produced were therefore determined. The effect of pH on enzyme activity of the alkaline α-amylase was determined by using buffer solutions of different pH (potassium phosphate buffer, 6.0-7.0; Tris-HCl buffer 7.5 to 9.0 and carbonate/bicarbonate buffer, pH 9.5-11) for enzyme assay. The pH stability profile of the enzyme was determined by incubating 0.5 ml of α-amylase enzyme in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h in various buffers. The effect of temperature on enzyme activity was studied by incubating 0.5 mL of the enzyme solution contained in the test tube and 0.5 mL of 1% soluble starch (Merck) solution prepared in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (25, 30, 35, 40, 45, 50, 55 and 60°C) in a thermo static water bath. The reactions were stopped by adding DNS reagent. The enzyme activity was therefore determined. Thermal stability was studied by incubating 0.5 ml of enzyme solution in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (20, 30, 40, 50, 60 and 70°C) for 60 min. The enzyme displayed optimal activity at pH 8.0 at which it produced maximum specific activity of 34.3 units/mg protein. Maximum stability was at pH 8.0 to 9.0. Maximum activity was observed at temperature of 50°C while thermo stability of the enzyme was observed at 40-50°C. The enzyme displayed a wide range of activities on starch and caused the release of 5.86, 4.75, 5.98, 3.44, 3.96, 8.84 mg/mL reducing sugar from cassava, potato, cocoyam, corn, rice and soluble starch respectively. This investigation reports some biochemical characterization of alkaline α-amylase from Bacillus subtilis CB-18. The substrate specificities of this enzyme on various starches suggested that the alkaline α-amylase enzyme had combined activities on raw and soluble starch.

  10. Uptake of Cr3+ from aqueous solution by lignite-based humic acids.

    PubMed

    Arslan, G; Pehlivan, E

    2008-11-01

    Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.

  11. Synthesis and characterization of a thermo-sensitive poly( N-methyl acryloylglycine methyl ester) used as a drug release carrier

    NASA Astrophysics Data System (ADS)

    Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo

    2010-06-01

    In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.

  12. Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions.

    PubMed

    Sarangapani, Prasad S; Weaver, Justin; Parupudi, Arun; Besong, Tabot M D; Adams, Gary G; Harding, Stephen E; Manikwar, Prakash; Castellanos, Maria M; Bishop, Steven M; Pathak, Jai A

    2016-12-01

    The role of antibody structure (conformation) in solution rheology is probed. It is demonstrated here that pH-dependent changes in the tertiary structure of 2 mAb solutions lead to viscoelasticity and not merely a shear viscosity (η) increase. Steady shear flow curves on mAb solutions are reported over broad pH (3.0 ≤ pH ≤ 8.7) and concentration (2 mg/mL ≤ c ≤ 120 mg/mL) ranges to comprehensively characterize their rheology. Results are interpreted using size exclusion chromatography, differential scanning calorimetry, analytical ultracentrifugation, near-UV circular dichroism, and dynamic light scattering. Changes in tertiary structure with concentration lead to elastic yield stress and increased solution viscosity in solution of "mAb1." These findings are supported by dynamic light scattering and differential scanning calorimetry, which show increased hydrodynamic radius of mAb1 at low pH and a reduced melting temperature T m , respectively. Conversely, another molecule at 120 mg/mL solution concentration is a strong viscoelastic gel due to perturbed tertiary structure (seen in circular dichroism) at pH 3.0, but the same molecule responds as a viscous liquid due to reversible self-association at pH 7.4 (verified by analytical ultracentrifugation). Both protein-protein interactions and structural perturbations govern pH-dependent viscoelasticity of mAb solutions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  14. Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white.

    PubMed

    Liu, Ya-Fei; Oey, Indrawati; Bremer, Phil; Carne, Alan; Silcock, Pat

    2017-01-01

    The effect of either pulsed electric fields (PEF) or thermal processing on protein aggregation of ovomucin-depleted egg white (OdEW) solutions at different pH was assessed by solution turbidity and SDS-PAGE. Heating to 60°C for 10min caused marked protein aggregation of OdEW at pH5, 7, and 9. At constant electric field strength (E=1.4-1.8kV/cm), PEF processing under high specific energy input (W spec =260-700kJ/kg) induced some protein aggregation at pH5 and 7, but not at either pH4 or 9. Similar effects of pH on protein aggregation were observed upon PEF processing at varied E (from 0.7 to 1.7kV/cm) but with constant W spec (713kJ/kg). Analysis by SDS-PAGE revealed that proteins in the OdEW solution at pH5 were most susceptible to both PEF- and heat-induced protein aggregation and lysozyme was only involved in the formation of insoluble aggregates under PEF. The present study shows that PEF treatment has considerable potential for minimizing protein aggregation in the processing of heat-labile egg white proteins. Retaining the OdEW proteins in solution during processing has potential industry application, for example, protein fortification of drinks with OdEW, where minimizing solution turbidity would be advantageous. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  16. Molecular mechanism of plasma sterilization in solution with the reduced pH method: importance of permeation of HOO radicals into the cell membrane

    NASA Astrophysics Data System (ADS)

    Takai, Eisuke; Ikawa, Satoshi; Kitano, Katsuhisa; Kuwabara, Junpei; Shiraki, Kentaro

    2013-07-01

    Sterilization of certain infected areas of the human body surface is necessary for dental and surgical therapies. Because the blood is filled with body fluid, sterilization in solution is essential. In vitro solution sterilization has been successively carried out using a combination of low-temperature atmospheric-pressure plasma and the reduced pH method, where the solution is sufficiently acidic. Here, we show the molecular mechanism of such plasma sterilization in solution based on microbiology. Three kinds of bacteria were inactivated by plasma treatment under various pH conditions. The theoretical and experimental models revealed that the sterilization was characterized by the concentration of hydroperoxy radicals (HOO·), which were dependent on the pH value. Bacterial inactivation rates were proportional to the HOO· concentrations calculated by the theoretical model. To evaluate the penetration of radicals into the cell membrane, a bacterial model using dye-included micelles was used. Decolouration rates of the model were also in proportion with the calculated HOO· concentrations. These results indicate that the key species for plasma sterilization were hydroperoxy radicals. More importantly, the high permeation of hydroperoxy radicals into the cell membrane plays a key role for efficient bactericidal inactivation using the reduced pH method.

  17. Method of digesting an explosive nitro compound

    DOEpatents

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  18. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples

    NASA Astrophysics Data System (ADS)

    Mabood, Fazal; Hussain, Z.; Haq, H.; Arian, M. B.; Boqué, R.; Khan, K. M.; Hussain, K.; Jabeen, F.; Hussain, J.; Ahmed, M.; Alharasi, A.; Naureen, Z.; Hussain, H.; Khan, A.; Perveen, S.

    2016-01-01

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80 s, the optimal reaction temperature is 160 °C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachev, S.A.; Chakchir, B.A.; Ryabykh, L.D.

    The feasibility of radiation sterilization was studied on ephedrine hydrochloride, atropine sulfate, scopolamine hydrobromide, strychnine nitrate, morphine hydrochloride, codeine phosphate, proserine, cysteamine hydrochloride, and unithiol in form of injectable solutions and as powders. It was shown that the sterilizing dose of radioactivity results in a breakdown of the solutions as shown by changes in the pH, color, and loss of biological activity. Alkaloid powders exhibited no changes after radiation sterilization. Deaerated solutions were also stable to the radiation but such solutions could not be prepared easily under industrial conditions. Temperature had no effect on the stability of test samples exceptmore » for very low temperatures. (JPRS)« less

  20. Removal of copper(II) from some environmental samples by sorptive-flotation using powdered marble wastes as sorbents and oleic acid as surfactant.

    PubMed

    Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M

    2004-11-01

    A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.

  1. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOEpatents

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  2. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280 °C and 150 bar

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean

    2016-03-01

    The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.

  3. Fluorapatite crystal growth from modified seawater solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cappellen, P.; Berner, R.A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite (FAP) in carbonate-free NaCl-CaCl{sub 2}-NaF-Na{sub 2}HPO{sub 4} solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/M{sup 2}. The Arrhenius activation energy of the growth reaction in themore » temperature range 12 to 35C is 47 kJ/mol. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to (a{sub H{sup +}}){sup m} where m, the rate order with respect to H{sup +}, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg{sup 2+}, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10{mu}m. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.« less

  4. Synthesis of illite-smectite from smectite at earth surface temperatures and high pH

    USGS Publications Warehouse

    Eberl, D.D.; Velde, Bruce; McCormick, T.C.

    1993-01-01

    It is well known that illite-smectite can form from smectite at elevated temperatures in natural and experimental systems. However, the conversion of smectite to illite-smectite is also found in some natural systems that have never been heated. The present experiments show that illite layers can form from smectite by chemical reaction at 35° and 60°C at high solution pH. The rate of this reaction is accelerated by wetting and drying.

  5. On the thermopower and thermomagnetic properties of Er{sub x}Sn{sub 1–x}Se solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huseynov, J. I., E-mail: cih-58@mail.ru; Murguzov, M. I.; Ismayilov, Sh. S.

    2017-02-15

    The Er{sub x}Sn{sub 1–x}Se system is characterized by a significant deviation of the temperature dependence of the differential thermopower from linearity at temperatures below room temperature and a change in the sign of the thermomagnetic coefficient. The deviation of the thermopower of Er{sub x}Sn{sub 1–x}Se samples in the nonequilibrium state from linearity is found to be caused mainly by the entrainment of charge carriers by phonons α{sub ph}. The statistical forces of electronic entrainment, A{sub ph}(ε), are estimated.

  6. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  7. Role of hydrous iron oxide formation in attenuation and diel cycling of dissolved trace metals in a stream affected by acid rock drainage

    USGS Publications Warehouse

    Parker, S.R.; Gammons, C.H.; Jones, Clain A.; Nimick, D.A.

    2007-01-01

    Mining-impacted streams have been shown to undergo diel (24-h) fluctuations in concentrations of major and trace elements. Fisher Creek in south-central Montana, USA receives acid rock drainage (ARD) from natural and mining-related sources. A previous diel field study found substantial changes in dissolved metal concentrations at three sites with differing pH regimes during a 24-h period in August 2002. The current work discusses follow-up field sampling of Fisher Creek as well as field and laboratory experiments that examine in greater detail the underlying processes involved in the observed diel concentration changes. The field experiments employed in-stream chambers that were either transparent or opaque to light, filled with stream water and sediment (cobbles coated with hydrous Fe and Al oxides), and placed in the stream to maintain the same temperature. Three sets of laboratory experiments were performed: (1) equilibration of a Cu(II) and Zn(II) containing solution with Fisher Creek stream sediment at pH 6.9 and different temperatures; (2) titration of Fisher Creek water from pH 3.1 to 7 under four different isothermal conditions; and (3) analysis of the effects of temperature on the interaction of an Fe(II) containing solution with Fisher Creek stream sediment under non-oxidizing conditions. Results of these studies are consistent with a model in which Cu, Fe(II), and to a lesser extent Zn, are adsorbed or co-precipitated with hydrous Fe and Al oxides as the pH of Fisher Creek increases from 5.3 to 7.0. The extent of metal attenuation is strongly temperature-dependent, being more pronounced in warm vs. cold water. Furthermore, the sorption/co-precipitation process is shown to be irreversible; once the Cu, Zn, and Fe(II) are removed from solution in warm water, a decrease in temperature does not release the metals back to the water column. ?? 2006 Springer Science+Business Media B.V.

  8. Complexing Agents and pH Influence on Chemical Durability of Type I Molded Glass Containers.

    PubMed

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-01-01

    Among the factors that affect the glass surface chemical durability, pH and complexing agents present in aqueous solution have the main role. Glass surface attack can be also related to the delamination issue causing glass particles' appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed. The present study emphasizes the possible synergy between a few complexing agents with pH on borosilicate glass chemical durability.Hydrolytic attack was performed in small-volume 23 mL type I glass containers autoclaved according to the European Pharmacopoeia or United States Pharmacopeia for 1 h at 121 °C, in order to enhance the chemical attack due to time, temperature, and the unfavorable surface/volume ratio. Solutions of 0.048 M or 0.024 M (M/L) of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid), together with sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ±0.05 units at fixed values 5.5, 6.6, 7, 7.4, 8, and 9 by LiOH diluted solution.Because silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by inductively coupled plasma atomic emission spectrophotometry. The work was completed by the analysis of the silicon release in the worst attack conditions of molded glass, soda lime type II glass, and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by scanning electron microscopy was finally performed to check for the surface status after the worst chemical attack condition by citric acid. LAY ABSTRACT: Glass, like every packaging material, can have some usage limits, mainly in basic pH solutions. The issue of glass surface degradation particles that appear in vials (delamination) has forced a number of drug product recalls in recent years. To prevent such situations, pharmaceutical and biopharmaceutical manufacturers need to understand the reasons for accelerate surface glass corrosion mainly in the case of injectables.Some drugs can contain active components with known ability to corrode glass silica networks. Sometimes these ingredients are dissolved in an alkaline medium that dramatically increases the glass corrosion and potentially causes the issue. As this action is strongly affected by time and temperature, flaking may become visible only after a long storage time. The purpose of this investigation is to verify the borosilicate glass chemical durability during controlled conditions of time and temperature when in contact with testing solutions containing different complexing agents by varying the pH. Si concentration in the extract solution is taken as an index of glass dissolution during constant autoclaving conditions for 1 h at 121 °C, which simulates approximately five years of contact at room temperature.Acetate, citrate, ethylenediaminetetraacetic acid (EDTA), phosphate, and glutarate 0.048 M or 0.024 M solutions were used at increasing pH from 5.5 to 9.0. The chemical durability of two borosilicate tubing glass vials of different glass compositions were compared with the molded one in the worst attack conditions by citric acid. Even if no delamination issue has been experienced by this study in type I molded and tubing containers, the conclusions developed can provide pharmaceutical manufacturers with useful information to prevent glass delamination risk in their processes. © PDA, Inc. 2017.

  9. Influence of pH on optoelectronic properties of zinc sulphide thin films prepared using hydrothermal and spin coating method

    NASA Astrophysics Data System (ADS)

    Choudapur, V. H.; Bennal, A. S.; Raju, A. B.

    2018-04-01

    The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.

  10. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  11. Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO2) at temperatures ≤90 °C in aqueous solution

    NASA Astrophysics Data System (ADS)

    John, Melanie; Heuss-Aßbichler, Soraya; Ullrich, Aladin

    2016-02-01

    In this study, we present the mechanism of CuFeO2 formation in aqueous solution at low temperatures ≤90 °C, using sulfate salts as reactants. Furthermore, we demonstrate the influence of experimental conditions (alkalization, reaction and ageing temperature and time) on the synthesized nanoparticles. In all cases, GR-SO4, a Fe(II-III) layered double hydroxysulphate (Fe2+4Fe3+2(OH)12·SO4) and Cu2O precipitate first. During further OH- supply GR-SO4 oxidizes and forms Fe10O14(OH)2, Cu2O and CuFeO2 crystals. Due to the high pH further CuFeO2 crystals grow at the cost of the unstable intermediate products. The reaction rate increases with increasing ageing temperature, reaction pH and, in particular, NaOH concentrations in the solution. As a result, highly crystalline CuFeO2 (3R and 2H polytypes) nanoparticles showing hexagonal morphology can be synthesized at 70 °C within 10 h or at 50 °C within 1 week. The formation of 2H polytype is favored by additional OH- supply during the pH-stat time and rather low temperatures.

  12. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Kidd, Martin; Joubert, Elizabeth

    2018-01-01

    Mangiferin, a C-glucosyl xanthone, abundant in mango and honeybush, is increasingly targeted for its bioactive properties and thus to enhance functional properties of food. The thermal degradation kinetics of mangiferin at pH3, 4, 5, 6 and 7 were each modeled at five temperatures ranging between 60 and 140°C. First-order reaction models were fitted to the data using non-linear regression to determine the reaction rate constant at each pH-temperature combination. The reaction rate constant increased with increasing temperature and pH. Comparison of the reaction rate constants at 100°C revealed an exponential relationship between the reaction rate constant and pH. The data for each pH were also modeled with the Arrhenius equation using non-linear and linear regression to determine the activation energy and pre-exponential factor. Activation energies decreased slightly with increasing pH. Finally, a multi-linear model taking into account both temperature and pH was developed for mangiferin degradation. Sterilization (121°C for 4min) of honeybush extracts dissolved at pH4, 5 and 7 did not cause noticeable degradation of mangiferin, although the multi-linear model predicted 34% degradation at pH7. The extract matrix is postulated to exert a protective effect as changes in potential precursor content could not fully explain the stability of mangiferin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An empirical equation with tables of smoothed solubilities of methane in water and aqueous sodium chloride solutions up to 25 weight percent, 360 degrees C, and 138 MPa

    USGS Publications Warehouse

    Haas, John L.

    1978-01-01

    The total pressure for the system H2O-CH 4 is given by p(total) = P(H2O,t) + exp10[log x(CH 4) - a - b x(CH4)], where P(H2O,t) is the vapor pressure of H2O liquid at the temperature t (?C) and x(CH 4) is the molal concentration of methane in the solution. The terms a and b are functions of temperature only. Where the total pressure and temperature are known, the concentration of methane, x(CH4), is found by iteration. The concentration of methane in a sodium chloride brine, y(CH4), is estimated using the function log y(CH4) = log x(CH4) - A I, where A is the salting out constant and I is the ionic strength. For sodium chloride solutions, the ionic strength is equal to the molality of the salt. The equations are valid to 360?C, 138 MPa, and 25 weight percent sodium chloride.

  14. Opening a Can of Worm(‐like Micelle)s: The Effect of Temperature of Solutions of Functionalized Dipeptides

    PubMed Central

    Draper, Emily R.; Su, Hao; Brasnett, Christopher; Poole, Robert J.; Rogers, Sarah; Cui, Honggang; Seddon, Annela

    2017-01-01

    Abstract A simple heat/cool cycle can be used to significantly affect the properties of a solution of a low‐molecular‐weight gelator at high pH. The viscosity and extensional viscosity are increased markedly, leading to materials with very different properties than when the native solution is used. PMID:28653804

  15. Chemical oxidation of anthracite with hydrogen peroxide via the Fenton reaction

    USGS Publications Warehouse

    Heard, I.; Senftle, F.E.

    1984-01-01

    Solutions of 30% H2O2 ranging from pH = 0 to pH = 11.5 have been used to oxidize anthracite at room temperature. The inorganic impurities, primarily pyrite, catalysed the oxidation and reduction of H2O2 (the Fenton reaction) to form the hydroxyl radical; the oxidation of the organic matter was minimal and was observed only in strong acidic solutions (pH < 1.5). After acid demineralization, samples of the same anthracite underwent a significant enhancement of oxidation in both acid and alkaline solutions (pH = 0.4-11.5). As all the iron had been removed from the surface and the reactions were completed in a much shorter time, the oxidation mechanism must have been of a different nature than that for the untreated anthracite. A qualitative model based on the catalytic decomposition of H2O2 by activated carbon sites in the coal surface is used to explain the oxidation of the demineralized anthracite. ?? 1984.

  16. Removal of methylene blue from aqueous solution by Artist's Bracket fungi: kinetic and equilibrium studies.

    PubMed

    Naghipour, Daryush; Taghavi, Kamran; Moslemzadeh, Mehrdad

    2016-01-01

    In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.

  17. A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure.

    PubMed

    Kang, Wanli; Wang, Pengxiang; Fan, Haiming; Yang, Hongbin; Dai, Caili; Yin, Xia; Zhao, Yilu; Guo, Shujun

    2017-02-08

    Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in wormlike micellar systems. Here we developed a pH-responsive wormlike micellar system based on a noncovalent constructed surfactant, which is formed by the complexation of N-erucamidopropyl-N,N-dimethylamine (UC 22 AMPM) and citric acid at the molar ratio of 3 : 1 (EACA). The phase behavior, aggregate microstructure and viscoelasticity of EACA solutions were investigated by macroscopic appearance observation, rheological and cryo-TEM measurements. It was found that the phase behavior of EACA solutions undergoes transition from transparent viscoelastic fluids to opalescent solutions and then phase separation with white floaters upon increasing the pH. Upon increasing the pH from 2.03 to 6.17, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼683 000 mPa s at pH 6.17. As the pH was adjusted to 7.31, the opalescent solution shows a water-like flowing behaviour and the η 0 rapidly declines to ∼1 mPa s. Thus, dramatic viscosity changes of about 6 magnitudes can be triggered by varying the pH values without any deterioration of the EACA system. This drastic variation in rheological behavior is attributed to the pH dependent interaction between UC 22 AMPM and citric acid. Furthermore, the dependence on concentration and temperature of the rheological behavior of EACA solutions was also studied to assist in obtaining the desired pH-responsive viscosity changes.

  18. Extraction and separation of tungsten (VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant.

    PubMed

    Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan

    2016-11-25

    An aqueous two-phase system composed of Triton X-100-(NH 4 ) 2 SO 4 -H 2 O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Enhanced stability and permeation potential of nanoemulsion containing sefsol-218 oil for topical delivery of amphotericin B.

    PubMed

    Hussain, Afzal; Samad, Abdus; Singh, Sandeep Kumar; Ahsan, Mohd Neyaz; Faruk, Abdul; Ahmed, Farhan Jalees

    2015-05-01

    To characterize the enhanced stability and permeation potential of amphotericin B nanoemulsion comprising sefsol-218 oil at varying pH and temperature of aqueous continuous phase. Several batches of amphotericin B loaded nanoemulsion were prepared and evaluated for their physical and chemical stability at different pH and temperature. Also, a comparative study of ex vivo drug permeation across the albino rat skin was investigated with commercial Fungisome® and drug solution at 37 °C for 24 h. The extent of drug penetrated through the rat skin was thereby evaluated using the confocal laser scanning microscopy (CLSM). The optimized nanoemulsion demonstrated the highest flux rate 17.85 ± 0.5 µg/cm(2)/h than drug solution (5.37 ± 0.01 µg/cm(2)/h) and Fungisome® (7.97 ± 0.01 µg/cm(2)/h). Ex vivo drug penetration mechanism from the developed formulations at pH 6.8 and pH 7.4 of aqueous phase pH using the CLSM revealed enhanced penetration. Ex vivo drug penetration studies of developed formulation comprising of CLSM revealed enhanced penetration in aqueous phase at pH 6.8 and 7.4. The aggregation behavior of nanoemulsion at both the pH was found to be minimum and non-nephrotoxic. The stability of amphotericin B was obtained in terms of pH, optical density, globular size, polydispersity index and zeta potential value at different temperature for 90 days. The slowest drug degradation was observed in aqueous phase at pH 7.4 with shelf life 20.03-folds higher when stored at 4 °C (3.8 years) and 5-fold higher at 25 °C (0.951 years) than at 40 °C. The combined results suggested that nanoemulsion may hold an alternative for enhanced and sustained topical delivery system for amphotericin B.

  20. The effect of pH and heat treatments on the foaming properties of purified α-lactalbumin from camel milk.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2017-08-01

    The effect of pH (4.3 or 6.5) and heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of α-lactalbumin extracted from camel milk were studied. The increased temperature treatment changed the foaming properties of camel α-lactalbumin solution and its ability to unfold at the air-water interface. At neutral pH, heat treatment was found to improve foamability, whereas at acid pH (4.3) this property decreased. Foams were more stable after a heat treatment at pH 4.3 than at 6.5, due to higher levels of protein aggregation at low pH. Heat treatment at 90°C for 30min affected the physicochemical properties of the camel α-lactalbumin by increasing free thiol group concentration at pH 6.5. Heat treatment also caused changes in α-lactalbumin's surface charge. These results also confirm the pronounced aggregation of heated camel α-lactalbumin solution at acid pH. Copyright © 2017. Published by Elsevier B.V.

  1. Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain region; Milestone report 3010-WBS 1.2.3.4.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, H.; Gatti, R.C.; Standifer, E.M.

    1993-07-01

    Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree},more » and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.« less

  2. Behaviour of aqueous sulfamethizole solution and temperature effects in cold plasma oxidation treatment.

    PubMed

    Sokolov, Alexander; Louhi-Kultanen, Marjatta

    2018-06-07

    The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.

  3. Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations.

    PubMed

    Cai, Chunhua; Zhang, Liangshun; Lin, Jiaping; Wang, Liquan

    2008-10-09

    We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.

  4. Characterization of a backbone cleavage product of BMS-196854 (Oncostatin M), a recombinant anti-inflammatory cytokine.

    PubMed

    Zhao, F; Stein, D J; Paborji, M; Cash, P W; Root, B J; Wei, Z; Knupp, C J

    2001-01-01

    BMS-196843 (Oncostatin M) is a therapeutic recombinant protein in development. Scale-up process changes led to unexpected instability of the bulk drug substance solution during storage. A product with an apparent higher MW than the parent protein was observed by the size-exclusion chromatography (SEC). This study was aimed to fully characterize the product and to identify a solution to stabilize the protein. SEC, SDS-PAGE, tryptic mapping, and N-terminal sequencing were performed to characterize the unknown product. The effect of pH, temperature, bulk concentration, and immobilized trypsin inhibitor on the degradation rate was studied to elucidate the mechanism and to identify stabilization strategies. Despite the apparent high MW indicated initially by SEC, the unknown was characterized to be a degradation product resulted from a backbone cleavage between residues Arg145-Gly146. The resulting fragments from the backbone cleavage were, however, still linked through an intramolecular disulfide bond. Thus, the final product had a more open structure with an increased hydrodynamic radius compared to the parent protein, which explains the initial SEC results. The site-specific backbone cleavage was suspected to be catalyzed by trypsin-like protease impurities in the bulk solution. The bulk drug substance solution was subsequently treated with immobilized soybean trypsin inhibitor, and the degradation rate was significantly reduced. Furthermore, increasing the solution pH from 5 to 8 led to an increase in the degradation rate, which was consistent with the expected pH dependency of trypsin activity. In addition, the effect of bulk concentration also supported the involvement of protease impurities rather than a spontaneous peptide bond hydrolysis reaction. Trace trypsin-like protease impurities led to an unusual site-specific backbone cleavage of BMS-196854. The proteolytic degradation can be minimized by treating the bulk solution with immobilized soybean trypsin inhibitor and/or controlling the solution pH and storage temperature.

  5. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge.

    PubMed

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-15

    Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  7. Methods of synthesizing carbon-magnetite nanocomposites from renewable resource materials and application of same

    DOEpatents

    Viswanathan, Tito

    2014-07-29

    A method of synthesizing carbon-magnetite nanocomposites. In one embodiment, the method includes the steps of (a) dissolving a first amount of an alkali salt of lignosulfonate in water to form a first solution, (b) heating the first solution to a first temperature, (c) adding a second amount of iron sulfate (FeSO.sub.4) to the first solution to form a second solution, (d) heating the second solution at a second temperature for a first duration of time effective to form a third solution of iron lignosulfonate, (e) adding a third amount of 1N sodium hydroxide (NaOH) to the third solution of iron lignosulfonate to form a fourth solution with a first pH level, (f) heating the fourth solution at a third temperature for a second duration of time to form a first sample, and (g) subjecting the first sample to a microwave radiation for a third duration of time effective to form a second sample containing a plurality of carbon-magnetite nanocomposites.

  8. The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin

    In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.

  9. Modeling the oxidation kinetics of sono-activated persulfate's process on the degradation of humic acid.

    PubMed

    Songlin, Wang; Ning, Zhou; Si, Wu; Qi, Zhang; Zhi, Yang

    2015-03-01

    Ultrasound degradation of humic acid has been investigated in the presence of persulfate anions at ultrasonic frequency of 40 kHz. The effects of persulfate anion concentration, ultrasonic power input, humic acid concentration, reaction time, solution pH and temperature on humic acid removal efficiency were studied. It is found that up to 90% humic acid removal efficiency was achieved after 2 h reaction. In this system, sulfate radicals (SO₄⁻·) were considered to be the mainly oxidant to mineralize humic acid while persulfate anion can hardly react with humic acid directly. A novel kinetic model based on sulfate radicals (SO₄⁻·) oxidation was established to describe the humic acid mineralization process mathematically and chemically in sono-activated persulfate system. According to the new model, ultrasound power, persulfate dosage, solution pH and reaction temperature have great influence on humic acid degradation. Different initial concentration of persulfate anions and humic acid, ultrasonic power, initial pH and reaction temperature have been discussed to valid the effectiveness of the model, and the simulated data showed new model had good agreement with the experiments data.

  10. Determining the chemical exchange saturation transfer (CEST) behavior of citrate and spermine under in vivo conditions

    PubMed Central

    Basharat, Meer; deSouza, Nandita M.; Parkes, Harold G.

    2015-01-01

    Purpose To estimate the exchange rates of labile 1H in citrate and spermine, metabolites present in prostatic secretions, to predict the size of the citrate and spermine CEST effects in vivo. Methods CEST z‐spectra were acquired at high‐field [11.7 Tesla (T)] from citrate and spermine solutions at physiological pH (6.5) using saturation power 6 μT. CEST was performed at different temperatures to determine exchange regimes (slow, intermediate or fast). For low pH solutions of spermine, exchange rates were estimated from resonance line width, fitting z‐spectra using the Bloch equations incorporating exchange, and using quantifying exchange using saturation time experiments (QUEST). These rates were extrapolated to physiological pH. Results Citrate showed little CEST effect at pH 6.5 and temperature (T) = 310 K (maximum 0.001% mM‐1), indicating fast exchange, whereas spermine showed greater CEST effects (maximum 0.2% mM‐1) indicating intermediate‐to‐fast exchange. Extrapolating data acquired from low pH spermine solutions predicts exchange rates at pH 6.5 and T of 310 K of at least 2 × 104s‐1. Conclusion Citrate and spermine show minimal CEST effects at 11.7T even using high saturation power. These effects would be much less than 2% at clinical field‐strengths due to relatively faster exchange and would be masked by CEST from proteins. Magn Reson Med 76:742–746, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26467055

  11. Modeling hot spring chemistries with applications to martian silica formation

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.

    2011-04-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.

  12. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model. ?? 2011 Elsevier Inc.

  13. Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag.

    PubMed

    Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong

    2016-08-01

    As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of pH and temperature on the stability of UV-induced repairable pyrimidine hydrates in DNA.

    PubMed

    O'Donnell, R E; Boorstein, R J; Cunningham, R P; Teebor, G W

    1994-08-23

    UV irradiation of cytosine yields 6-hydroxy-5,6-dihydrocytosine (cytosine hydrate) whether the cytosine is in solution as base, nucleoside, or nucleotide or on the DNA backbone. Cytosine hydrate decomposes by elimination of water, yielding cytosine, or by irreversible deamination, yielding uracil hydrate, which, in turn, decomposes by dehydration yielding uracil. To determine how pH and temperature affect these decomposition reactions, alternating poly(dG-[3H]dC) copolymer was irradiated at 254 nm and incubated under different conditions of pH and temperature. The cytosine hydrate and uracil hydrate content of the DNA was determined by the use of Escherichia coli endonuclease III, which releases pyrimidine hydrates from DNA by virtue of its DNA glycosylase activity. Uracil content was determined by using uracil-DNA glycosylase. The rate of decomposition of cytosine hydrate to cytosine was determined at 4 temperatures at pH 3.1, 5.4, and 7.4. The Ea was determined from the rates by using the Arrhenius equation and proved to be the same at pH 5.4 and 7.4, although the decomposition rate at pH 5.4 was faster at all temperatures. At pH 3.1, the Ea was reduced. These results suggest that the dehydration reaction is affected by two discrete protonations, most probably of the N-3 and the OH group of C-6 of cytosine hydrate. The deamination of cytosine hydrate to uracil hydrate was maximal at pH 3.1 at all temperatures. The doubly protonated cytosine hydrate probably is the common intermediate for both competing decomposition reactions, explaining why cytosine hydrate is prone to deamination at acid pH.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release.

    PubMed

    Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei

    2018-04-15

    Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. INACTIVATION AND REACTIVATION OF B. MEGATHERIUM PHAGE

    PubMed Central

    Northrop, John H.

    1955-01-01

    Preparation of Reversibly Inactivated (R.I.) Phage.— If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5–6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.— The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0°C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.— There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20°C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active ⇌ inactive phage, may be repeated many times at 0°C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing irreversible inactivation, above). The concentration required to prevent R.I. is lower, the higher the valency of either the anion or cation. There are great differences, however, between salts of the same valency, so that the chemical nature as well as the valency is important. Peptone, urea, and the amino acids, tryptophan, leucine, isoleucine, methionine, asparagine, dl-cystine, valine, and phenylalanine, stabilize the system at pH 7, so that no change occurs if a mixture of R.I. and active phage is added to such solutions. The active phage remains active and the R.I. phage remains inactive. The R.I. phage in pH 7 peptone becomes active if the pH is changed to 5.0. This does not occur in solutions of urea or the amino acids which stabilize at pH 7.0. Kinetics of Reversible Inactivation.— The inactivation is too rapid, even at 0° to allow the determination of an accurate time-inactivation curve. The rate is independent of the phage concentration and is complete in a few seconds, even in very dilute suspensions containing <1 x 104 particles/ml. This result rules out any type of bimolecular reaction, or any precipitation or agglutination mechanism, since the minimum theoretical time for precipitation (or agglutination) of a suspension of particles in a concentration of only 1 x 104 per ml. would be about 300 days even though every collision were effective. Mechanism of Salt Reactivation.— Addition of varying concentrations of MgSO4 (or many other salts) to a suspension of either active or R.I. phage in 0.01 M, pH 6 acetate buffer results in the establishment of an equilibrium ratio for active/R.I. phage. The higher the concentration of salt, the larger proportion of the phage is active. The results, with MgSO4, are in quantitative agreement with the following reaction: See PDF for Equation Effect of Temperature.— The rate of inactivation is too rapid to be measured with any accuracy, even at 0°C. The rate of reactivation in pH 5 peptone, at 0 and 10°, was measured and found to have a temperature coefficient Q 10 = 1.5 corresponding to a value of E (Arrhenius' constant) of 6500 cal. mole–1. This agrees very well with the temperature coefficient for the reactivation of denatured soy bean trypsin inhibitor (Kunitz, 1948). The equilibrium between R.I. and active phage is shifted toward the active side by lowering the temperature. The ratio R.I.P./AP is 4.7 at 15° and 2.8 at 2°. This corresponds to a change in free energy of –600 cal. mole–1 and a heat of reaction of 11,000. These values are much lower than the comparative one for trypsin (Anson and Mirsky, 1934 a) or soy bean trypsin inhibitor (Kunitz, 1948). Neither the inactivation nor the reactivation reactions are affected by light. The results in general indicate that there is an equilibrium between active and R.I. phage. The R.I. phage is probably an intermediate step in the formation of inactive phage. The equilibrium is shifted to the active side by lowering the temperature, adjusting the pH to 7–8 (except in the presence of high concentrations of peptone), raising the salt concentration, or increasing the valency of the ions present. The reaction may be represented by the following: See PDF for Equation The assumption that the active/R.I. phage equilibrium represents an example of native/denatured protein equilibrium predicts all the results qualitatively. Quantitatively, however, it fails to predict the relative rate of digestion of the two forms by trypsin or chymotrypsin, and also the effect of temperature on the equilibrium. PMID:13271723

  17. Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.

    PubMed

    Ragoonanan, Vishard; Suryanarayanan, Raj

    2014-06-01

    We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.

  18. Development of shelf stable pork sausages using hurdle technology and their quality at ambient temperature (37±1°C) storage.

    PubMed

    Thomas, R; Anjaneyulu, A S R; Kondaiah, N

    2008-05-01

    Shelf stable pork sausages were developed using hurdle technology and their quality was evaluated during ambient temperature (37±1°C) storage. Hurdles incorporated were low pH, low water activity, vacuum packaging and post package reheating. Dipping in potassium sorbate solution prior to vacuum packaging was also studied. Reheating increased the pH of the sausages by 0.17units as against 0.11units in controls. Incorporation of hurdles significantly decreased emulsion stability, cooking yield, moisture and fat percent, yellowness and hardness, while increasing the protein percent and redness. Hurdle treatment reduced quality deterioration during storage as indicated by pH, TBARS and tyrosine values. About 1 log reduction in total plate count was observed with the different hurdles as were reductions in the coliform, anaerobic, lactobacilli and Staphylococcus aureus counts. pH, a(w) and reheating hurdles inhibited yeast and mold growth up to day 3, while additional dipping in 1% potassium sorbate solution inhibited their growth throughout the 9 days storage. Despite low initial sensory appeal, the hurdle treated sausages had an overall acceptability in the range 'very good' to 'good' up to day 6.

  19. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  20. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    NASA Astrophysics Data System (ADS)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  1. Potentiometric and spectrophotometric study of the stability of magnesium carbonate and bicarbonate ion pairs to 150 °C and aqueous inorganic carbon speciation and magnesite solubility

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2014-08-01

    The formation constants of magnesium bicarbonate and carbonate ion pairs have been experimentally determined in dilute hydrothermal solutions to 150 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using two pH indicators, 2-naphthol and 4-nitrophenol, at 25 and 80-150 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for MgHCO3+(aq) (KMgHCO3+) and MgCO3(aq) (KMgCO3) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The formation constants of MgHCO3+(aq) and MgCO3(aq) ion pairs increased significantly with increasing temperature, with values of logKMgHCO3+ = 1.14 and 1.75 and of logKMgCO3 = 2.86 and 3.48 at 10 °C and 100 °C, respectively. These ion pairs are important aqueous species under neutral to alkaline conditions in moderately dilute to concentrated Mg-containing solutions, with MgCO3(aq) predominating over CO32-(aq) in solutions at pH >8. The predominance of magnesium carbonate over carbonate is dependent on the concentration of dissolved magnesium and the ratio of magnesium over carbonate. With increasing temperature and at alkaline pH, brucite solubility further reduced the magnesium concentration to levels below 1 mmol kg-1, thus limiting availability of Mg2+(aq) for magnesite precipitation.

  2. Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution

    PubMed Central

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K. S.; Yu, Han-Qing

    2015-01-01

    Photodegradation in the absence of externally added chemicals could be an attractive solution for the removal of perfluorooctane sulfonate (PFOS) in aqueous environment, but the low decomposition rate presents a severe challenge and the underlying mechanisms are unclear. In this study, we demonstrated that PFOS could be effectively degraded in a catalyst-free aqueous solution via a reduction route. Under appropriate pH and temperature conditions, a rapid PFOS photodegradation, with a pseudo-first-order decomposition rate constant of 0.91 h−1, was achieved. In addition, hydrated electrons were considered to be the major photo-generated reductive species responsible for PFOS photodegradation in this system. Its production and reduction ability could be significantly affected by the environmental conditions such as pH, temperature and presence of oxidative species. This study gives insights into the PFOS photodegradation process and may provide useful information for developing catalyst-free photodegradation systems for decomposing PFOS and other persistent water contaminants. PMID:25879866

  3. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution.

    PubMed

    Panda, Gopal C; Das, Sujoy K; Guha, Arun K

    2009-05-15

    Jute stick powder (JSP) has been found to be a promising material for adsorptive removal of congo red (C.I. 22120) and rhodamine B (C.I. 45170) from aqueous solutions. Physico-chemical parameters like dye concentration, solution pH, temperature and contact time have been varied to study the adsorption phenomenon. Favorable adsorption occurs at around pH 7.0 whereas temperature has no significant effect on adsorption of both the dyes. The maximum adsorption capacity has been calculated to be 35.7 and 87.7mg/g of the biomass for congo red and rhodamine B, respectively. The adsorption process is in conformity with Freundlich and Langmuir isotherms for rhodamine B whereas congo red adsorption fits well to Langmuir isotherm only. In both the cases, adsorption occurs very fast initially and attains equilibrium within 60min. Kinetic results suggest the intra-particle diffusion of dyes as rate limiting step.

  4. Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass.

    PubMed

    Khani, Mohammad Hassan

    2011-06-01

    The application of response surface methodology is presented for optimizing the removal of U ions from aqueous solutions using Padina sp., a brown marine algal biomass. Box-Wilson central composite design was employed to assess individual and interactive effects of the four main parameters (pH and initial uranium concentration in solutions, contact time and temperature) on uranium uptake. Response surface analysis showed that the data were adequately fitted to second-order polynomial model. Analysis of variance showed a high coefficient of determination value (R (2)=0.9746) and satisfactory second-order regression model was derived. The optimum pH and initial uranium concentration in solutions, contact time and temperature were found to be 4.07, 778.48 mg/l, 74.31 min, and 37.47°C, respectively. Maximized uranium uptake was predicted and experimentally validated. The equilibrium data for biosorption of U onto the Padina sp. were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 376.73 mg/g.

  5. Hydrogen storage and evolution catalysed by metal hydride complexes.

    PubMed

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  6. Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance.

    PubMed

    Hu, Jinming; Li, Changhua; Liu, Shiyong

    2010-01-19

    We report on novel type of responsive double hydrophilic block copolymer (DHBC)-based multifunctional chemosensors to Hg(2+) ions, pH, and temperatures and investigate the effects of thermo-induced micellization on the detection sensitivity. Well-defined DHBCs bearing rhodamine B-based Hg(2+)-reactive moieties (RhBHA) in the thermo-responsive block, poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-RhBHA) (PEO-b-P(NIPAM-co-RhBHA)), were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Nonfluorescent RhBHA moieties are subjected to selective ring-opening reaction upon addition of Hg(2+) ions or lowering solution pH, producing highly fluorescent acyclic species. Thus, at room temperature PEO-b-P(NIPAM-co-RhBHA) DHBCs can serve as water-soluble multifunctional and efficient fluorescent chemosensors to Hg(2+) ions and pH. Upon heating above the lower critical solution temperature (approximately 36 degrees C) of the PNIPAM block, they self-assemble into micelles possessing P(NIPAM-co-RhBHA) cores and well-solvated PEO coronas, which were fully characterized by dynamic and static laser light scattering. It was found that the detection sensitivity to Hg(2+) ions and pH could be dramatically improved at elevated temperatures due to fluorescence enhancement of RhBHA residues in the acyclic form, which were embedded within hydrophobic cores of thermo-induced micellar aggregates. This work represents a proof-of-concept example of responsive DHBC-based multifunctional fluorescent chemosensors for the highly efficient detection of Hg(2+) ions, pH, and temperatures with tunable detection sensitivity. Compared to reaction-based small molecule Hg(2+) probes in previous literature reports, the integration of stimuli-responsive block copolymers with well-developed small molecule-based selective sensing moieties in the current study are expected to exhibit preferred advantages including enhanced detection sensitivity, water dispersibility, biocompatibility, facile incorporation into devices, and the ability of further functionalization for targeted imaging and detection.

  7. Searching for Clues to the Processes and Conditions of Past Martian Environments: The Roles of Episodic Solutions, Analog Sites and Fe-O(-H) Phases

    NASA Astrophysics Data System (ADS)

    King, P. L.; De Deckker, P.

    2012-12-01

    On Mars, limited solutions (water/brine) were likely present episodically. Gradients in solution abundance may have caused salt precipitation and re-solution, brine reflux, pH gradients, and cycling of anions and cations; we provide an example of such processes in a playa lake. We propose that on Mars, the limited, episodic solutions, pH and abundant Fe-O(-H) phases are significant factors in salt precipitation and in promoting adsorption/desorption of anions and cations. FACTORS LEADING TO EPISODIC SOLUTIONS: Episodic movement of solutions may be driven by punctuated processes that 1) remove surface materials (e.g., impact and sedimentary mass wasting and deflation); 2) add surface materials (e.g., impact, volcanic and sedimentary processes); and 3) increase temperature and/or decrease atmospheric pressure (e.g., seasons, diurnal cycles, variation in obliquity). Removal and addition of surface materials results in topographic gradients that change pressure gradients of any potential groundwater, films, or buried ground ice. For example, episodic fluid flow and salt precipitation/re-solution may occur at topographic discontinuities like craters/basins, channel walls, mounds and dunes. Such areas provide the opportunity to sample multiple fluid sources (with different pH, Eh and total dissolved solids, TDS) and they may be the foci of subsurface solution flow and surface transport. EARTH ANALOG: Interplay of the three processes above is seen in Lake Tyrrell (playa), western Victoria, Australia (McCumber, P, 1991 http://vro.dpi.vic.gov.au). During wetter periods, springs from the regional groundwater (low pH, oxidized, mod-high TDS) mix with lake waters and saline 'reflux' brines (mod. pH, reduced, high TDS) at the lake edge at the base of higher ground. The Br/Cl of the reflux brines indicates mineral re-solution. Gypsum and Fe-O(-H) phases precipitate near the lake edge. During hot, dry climate episodes the lake precipitates gypsum and carbonate, efflorescent salts are common, and these salts may form eolian dunes with fine particles. We may expect similar processes and mineral and chemical gradients in craters/basins on Mars like Gale Crater, the site of the Mars Science Laboratory mission. ROLE OF Fe-O(-H) PHASES: Nanophase Fe-O(-H)-phases are abundant on Mars and their precipitation results in an Fe-poor solution and salts (like Lake Tyrrell). Fe-O(-H) phases precipitate most readily at near-neutral pH; however, the high Fe of Mars' surface allows for pH>1. Nanophase Fe-O(-H)-phases have surface species that promote adsorption; which may be important in dry conditions like Mars. If we take goethite (FeO(OH)), the surface species and aqueous ions in solution are Fe3+ (pH<~2); Fe(OH)2+ (pH~2-3.5); Fe(OH)2+ (pH~3.5-~8); and FeOH4- (pH>~8). Other Fe-O(-H) phases have slightly different pH limits. Thus, at pH<~8, Fe-O(-H) surfaces sequester anions in surface complexes or in Fe-bearing salts (e.g. Fe3+-phosphate and sulfates, especially at pH<4). PO43- species have high adsorption affinity, followed by SO42-, Cl-(O) and Br-(O) species. At pH>~8, adsorption and exchange of cations are likely. These chemical variations may provide us with clues of the past pH on Mars.

  8. Characterization of Anaerobic Chemical Processes in Reservoirs: Problem Description and Conceptual Model Formulation.

    DTIC Science & Technology

    1981-04-01

    also found that almost all the Fe in soil solution was complexed with organic mat- ter. The high degree of Fe complexing in soil solution was...range of pH, the potentials were in conformity with the theoretical slope of 0.06. 45. When a soil is submerged, soil solution concentrations of...Ponnanperuma 1972). Low temperatures lead to extensive accumula- tion of organic acids in the soil solution (International Rice Research Institute (IRRI) 1969

  9. Technical note: Preservation of Trichomonas vaginalis viability in urine for laboratorial diagnosis by the wet mount examination.

    PubMed

    da Silva Dias, Mariana; Menezes, Camila Braz; Tasca, Tiana

    2016-11-01

    This study compared preservative solutions at different temperatures aiming to improve the wet mount for trichomoniasis diagnosis. The glucose-saline pH6.0 solution preserved the trophozoites up to 6h. The urine samples preservation is crucial for diagnosis and we suggest this solution as part of the clinical laboratorial routine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Capillary-Effect Root-Environment System

    NASA Technical Reports Server (NTRS)

    Wright, Bruce D.

    1991-01-01

    Capillary-effect root-environment system (CERES) is experimental apparatus for growing plants in nutrient solutions. Solution circulated at slight tension in cavity filled with plastic screen and covered by porous plastic membrane. By adsorptive attraction, root draws solution through membrane. Conceived for use in microgravity of space, also finds terrestrial application in germinating seedlings, because it protects them from extremes of temperature, moisture, and soil pH and from overexposure to fertilizers and herbicides.

  11. pH effect on structural and optical properties of nanostructured zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munef, R. A.

    2015-03-30

    ZnO nanostructures were Deposited on Objekttrager glasses for various pH values by chemical bath deposition method using Zn (NO3)2·6H2O (zinc nitrate hexahydrate) solution at 75°C reaction temperature without any posterior treatments. The ZnO nanostructures obtained were characterized by X-ray Diffraction (XRD, UV). The structure was hexagonal and it was found that some peaks disappear with various pH values. The grain sizes of ZnO films increases from 22-to-29nm with increasing pH. The transmission of the films was (85-95%)

  12. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    NASA Astrophysics Data System (ADS)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  13. Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Ojha, Priyanka; Rai, Premanjali

    2013-04-01

    The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock-Dechert-Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.

  14. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops of growth striations, and from dislocations that preferentially formed in growth sector boundaries.

  15. pH Shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions.

    PubMed

    Jiang, Jiang; Xiong, Youling L; Chen, Jie

    2010-07-14

    Soy protein isolate (SPI), beta-conglycinin (7S), and glycinin (11S) were subjected to pH-shifting treatments, that is, unfolding at pH 1.5 or 12.0 followed by refolding at pH 7.0, to induce molten globule structures. Treated samples were analyzed for protein solubility, thermal stability, and aggregation in 0, 0.1, and 0.6 M NaCl solutions at pH 2.0-8.0. The pH(12) shifting resulted in drastic increases (up to 2.5-fold) in SPI solubility in the pH 6.0-7.0 range, especially at 0 M NaCl. The pH(1.5) shifting had a generally lesser effect on solubility. 11S exhibited a solubility pattern similar to that of SPI, but the solubility of 7S was unaffected by pH shifting except at 0.6 M NaCl. The pH shifting, notably at pH 12.0, produced soluble, disulfide-linked polymers from 11S and reduced (P < 0.05) its enthalpy but not its temperature of denaturation. Soy proteins structurally altered by pH shifting had a reduced sensitivity to thermal aggregation.

  16. Structurally Caused Freezing Point Depression of Biological Tissues

    PubMed Central

    Bloch, Rene; Walters, D. H.; Kuhn, Werner

    1963-01-01

    When investigating the freezing behaviour (by thermal analysis) of the glycerol-extracted adductor muscle of Mytilus edulis it was observed that the temperature of ice formation in the muscular tissue was up to 1.5°C lower than the freezing point of the embedding liquid, a 0.25 N KCl solution with pH = 4.9 with which the tissue had been equilibrated prior to the freezing experiment. A smaller freezing point depression was observed if the pH values of the embedding 0.25 N KCl solution were above or below pH = 4.9. Reasoning from results obtained previously in analogous experiments with artificial gels, the anomalous freezing depression is explained by the impossibility of growing at the normal freezing temperature regular macroscopic crystals inside the gel, due to the presence of the gel network. The freezing temperature is here determined by the size of the microprisms penetrating the meshes of the network at the lowered freezing temperature. This process leads finally to an ice block of more or less regular structure in which the filaments are embedded. Prerequisite for this hindrance of ideal ice growth is a sufficient tensile strength of the filamental network. The existence of structurally caused freezing point depression in biological tissue is likely to invalidate many conclusions reported in the literature, in which hypertonicity was deduced from cryoscopic data. PMID:13971682

  17. A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.

    PubMed

    Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A

    1988-05-01

    A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.

  18. Structural, morphological and steady state photoluminescence spectroscopy studies of red Eu(3+)-doped Y2O3 nanophosphors prepared by the sol-gel method.

    PubMed

    Lamiri, Lyes; Guerbous, Lakhdar; Samah, Madani; Boukerika, Allaoua; Ouhenia, Salim

    2015-12-01

    Europium trivalent (Eu(3+))-doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol-gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600 °C, 800 °C or 1000 °C). The nanopowders samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu(3+)-doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu(3+) material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu(3+) showed narrow emission peaks corresponding to the (5)D0- (7) FJ (J = 0, 1, 2 and 3) transitions of the Eu(3+) ion, with the most intense red emission at 611 assigned to forced electric dipole (5)D0 → (7)F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000 °C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic-shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Experimental study of the bending elasticity of charged lipid bilayers in aqueous solutions with pH5

    NASA Astrophysics Data System (ADS)

    Mitkova, D.; Stoyanova-Ivanova, A.; Ermakov, Yu A.; Vitkova, V.

    2012-12-01

    Exposure to high concentrations of contaminations due to air polluting gases, vapours and aerosols and possibly altering the normal pH in the body could lead to undesirable changes in the properties of biological cells. Here, we study experimentally the mechanical properties of synthetic phospholipid bilayers containing increasing molar fractions (up to 0.15) of charged lipid (synthetic phosphatidylserine) in aqueous solutions with controlled ionic strength and at pH 5, which is slightly lower than the physiological values of pH. Our observations in phase contrast and fluorescence testified to the coexistence of two phases in membranes for temperatures below 29°C. Micro-sized inhomogeneities in vesicle membranes were systematically observed at temperatures lower than 29°C and for molar fractions of phosphatidylserine in the bilayer higher than 0.1. For the quantitative determination of the membrane bending rigidity, we applied thermal fluctuation analysis of the shape of quasispherical lipid vesicles. As far as the liquid-crystalline state of the bilayer is a necessary condition for the application of the experimental method, only vesicles satisfying this requirement were processed for determination of their membrane bending rigidity. The value obtained for the bending modulus of bilayers with 0.15 molar content of charged lipid is about two times higher than the bending modulus of uncharged membranes in the same bathing solution. These findings are in qualitative agreement with our previous results for the bending rigidity of charged bilayers, measured by vesicle micromanipulation.

  20. The use of microcalorimetry and HPLC for the determination of degradation kinetics and thermodynamic parameters of Perindopril Erbumine in aqueous solutions.

    PubMed

    Simoncic, Z; Roskar, R; Gartner, A; Kogej, K; Kmetec, V

    2008-05-22

    Perindopril Erbumine (PER) is one of the newly used angiotensin-converting enzyme inhibitors (ACE inhibitors) and is used for the treatment of patients with hypertension and symptomatic heart failure. It has two main degradation pathways, i.e. the degradation by hydrolysis and the degradation by cyclization. An isothermal heat conduction microcalorimetry (MC) and high pressure liquid chromatography (HPLC) were used for the characterization of aqueous solutions of PER and its stability properties. The rates of heat evolved during degradation of perindopril were measured by MC as a function of temperature and pH and from these data rate constant and change in enthalpy of the reactions were determined. With the HPLC method the concentration of perindopril and its degradation products were measured as a function of time in aqueous solutions of different pH that were stored at different temperatures. We demonstrated that reactions of degradation of perindopril at observed conditions follow the first order kinetics. The Arrhenius equation for each pH was determined. At pH 6.8 only one degradation pathway is present, i.e. the degradation by hydrolysis. Degradation constants for this pathway calculated from MC data are in good agreement with those obtained from HPLC. MC as a non-specific technique was shown to be useful in studies of PER when one reaction was present in the sample and also when more chemical and physical processes were simultaneously running.

  1. Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution.

    PubMed

    Zhang, Lei; Liu, Na; Yang, Lijun; Lin, Qing

    2009-10-30

    Titanium dioxide nanoparticles were employed for the sorption of selenium ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption was found to be fast, and to reach equilibrium basically within 5.0 min. The sorption has been optimized with respect to the pH, maximum sorption has been achieved from solution of pH 2-6. Sorbed Se(IV) and Se(VI) were desorbed with 2.0 mL 0.1 mol L(-1) NaOH. The kinetics and thermodynamics of the sorption of Se(IV) onto nano-TiO2 have been studied. The kinetic experimental data properly correlate with the second-order kinetic model (k(2)=0.69 g mg(-1) min(-1), 293 K). The overall rate process appears to be influenced by both boundary layer diffusion and intraparticle diffusion. The sorption data could be well interpreted by the Langmuir sorption isotherm. The mean energy of adsorption (14.46 kJ mol(-1)) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. The thermodynamic parameters for the sorption were also determined, and the DeltaH(0) and DeltaG(0) values indicate exothermic behavior.

  2. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.

    PubMed

    Le, M K; Zhu, X M

    2001-04-01

    Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.

  3. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.

    PubMed

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  4. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor

    NASA Astrophysics Data System (ADS)

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  5. Effect of temperature on copper, iron and lead leaching from e-waste using citrate solutions.

    PubMed

    Torres, Robinson; Segura-Bailón, Brenda; Lapidus, Gretchen T

    2018-01-01

    E-waste is a potential source of large quantities of metals. The ability of citrate solutions to recover base metals from these materials has been demonstrated. In the present study, the effect of the temperature on base metal leaching capacity by the citrate solutions is determined. The material employed consisted of a mechanically prepared, gravity concentrated e-waste, with a metallic content greater than 90%. The leaching conditions were selected based on previous research performed by the authors (0.5 M sodium citrate, pH 4.5 and 20 g per liter e-waste concentrate). Leaching tests were performed at temperatures between 0° and 70 °C. The initial leaching rates for the three metals increased with temperature. However, these tapered off with time for temperatures above 30 °C, which can be associated to citrate destruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Toxicity evaluation of pH dependent stable Achyranthes aspera herbal gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tripathi, Alok; Kumari, Sarika; Kumar, Arvind

    2016-01-01

    Nanoparticles have gained substantial attention for the control of various diseases. However, any adverse effect of herbal gold nanoparticles (HGNPs) on animals including human being has not been investigated in details. The objectives of current study are to assess the cytotoxicity of HGNPs synthesized by using leaf extract of Achyranthes aspera, and long epoch stability. The protocol deals with stability of HGNPs in pH dependent manner. Visually, HGNPs formation is characterized by colour change of extract from dark brown to dark purple after adding gold chloride solution (1 mM). The 100 μg/ml HGNPs concentration has been found nontoxic to the cultured spleenocyte cells. Spectrophotometric analysis of nanoparticles solution gave a peak at 540 nm which corresponds to surface plasmon resonance absorption band. As per scanning electron microscopy and Transmission electron microscopy (TEM), size of HGNPs are in the range of 50-80 nm (average size 70 nm) with spherical morphology. TEM-selected area electron diffraction observation showed hexagonal texture. HGNPs showed substantial stability at higher temperature (85 °C), pH 10 and salt concentration (5 M). The zeta potential value of HGNPs is -35.9 mV at temperature 25 °C, pH 10 showing its good quality with better stability in comparison to pH 6 and pH 7. The findings advocate that the protocol for the synthesis of HGNPs is easy and quick with good quality and long epoch stability at pH 10. Moreover, non-toxic dose could be widely applicable for human health as a potential nano-medicine in the future to cure diseases.

  7. Two growth mechanisms in one-step fabrication of the oxide matrix for FeSiAl soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Gao, Xinwei; Zhao, Guoliang; Jiang, Yinzhu; Yan, Mi

    2018-04-01

    Hydrolysis precipitation as a new method was used in the preparation of oxide insulation matrix for FeSiAl soft magnetic composites (SMCs). The growth and composition of the matrix can be tuned by the concentration of the Al(NO3)3 solution, reaction temperature and pH value during the hydrolysis. With optimized Al(NO3)3 concentration of 0.6 mol/L and hydrolysis temperature of 75 °C, two mechanisms have been revealed in the formation of the insulation coating depending on the pH of the Al(NO3)3 solution. When pH = 3, the coating layer contains a mixture of Al2O3 and Fe2O3, while Al2O3 and SiO2 form as the coating for pH = 8. Despite that the Al2O3 dominates for both conditions, it grows via different routes. The Al(OH)3 as the precursor forms through Al3+ hydrolysis and heterogeneous nucleation for pH = 3. With increased pH to 8, the Al3+ directly reacts with OH- to form Al(OH)3 colloidal particles which adsorb onto the surface of FeSiAl powders via electrostatic attraction. Both mechanisms give rise to satisfactory magnetic performance with high effective permeability (μe = 103.5 and 113.4) and low core loss (Pcv = 278.4 mW·cm-3 and 237.8 mW·cm-3) for pH = 3 and 8 measured at 100 mT, 50 kHz.

  8. Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent.

    PubMed

    Chaparadza, Allen; Hossenlopp, Jeanne M

    2012-01-01

    Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudoyono, Gatut, E-mail: gyudoyono@physics.its.ac.id; Zharvan, Vicran; Ichzan, Nur

    Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl{sub 3}) in aqueous medium, with NH{sub 4}OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO{sub 2} powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-anatase-brookite, rutile-brookite ormore » anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO{sub 2} rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.« less

  10. An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.

    PubMed

    Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris

    2017-07-01

    Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.

  11. Leaching Behavior of Selected Trace and Toxic Metals in Coal Fly Ash Samples Collected from Two Thermal Power Plants, India.

    PubMed

    Sandeep, P; Sahu, S K; Kothai, P; Pandit, G G

    2016-09-01

    Studies on leaching behavior of metals associated with coal fly ash (FA) are of great concern because of possible contamination of the aquatic environment. In the present study, leaching behavior of metals (As, Se, Cr, Pb, V, Zn, etc.) in two different FA samples (FA1 and FA2) was investigated at various pH (2-12), temperatures of leachate solution and using TCLP. At pH 2, the highest leaching was observed for Fe (21.6 and 32.8 µg/g), whereas at pH 12, Arsenic was found to have the highest leaching (1.5 and 2.4 µg/g) in FA1 and FA2. Leachate solution temperature showed a positive effect on the metal's leachability. In TCLP, most of the metal's leachability was observed to be higher than that of batch leaching tests. The present study suggests that, leaching of As and Se from FA samples can moderately affect ground/surface water quality at the study locations.

  12. Spent caustic oxidation using electro-generated Fenton's reagent in a batch reactor.

    PubMed

    Rodriguez, Nicolas; Hansen, Henrik K; Nunez, Patricio; Guzman, Jaime

    2008-07-01

    This work shows the results of four Electro-Fenton laboratory tests to reduce the chemical oxygen demand (COD) in spent caustic solutions. The treatment consisted of (i) a pH reduction followed by (ii) an Electro-Fenton process, which was analyzed in this work. The Fenton's reagent was produced in a specially designed reactor, where the waste stream flowed through a labyrinth made by ferrous plates. These plates acted as sacrificial anodes-releasing Fe(2 +) cations to the solution, where H(2)O(2) was also added. The Electro-Fenton process was analyzed varying the ferrous ion concentration ([Fe(+ 2)]), the spent caustic's initial temperature and the initial pH. Close to 95% removal of COD (from 8800 mg L(- 1)) was achieved at a pH of 4, a temperature of 40 degrees C and 100 mg L(- 1) of Fe(+ 2) (applying 1 A). Two models were considered to simulate the behavior of the reactor considering (i) axial dispersion and (ii) kinetic rate, respectively. The model that was based on kinetics, proved to be the slightly closest fit to the experimental values.

  13. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags.

    PubMed

    Karlage, Kelly; Earhart, Zachary; Green-Boesen, Kelly; Myrdal, Paul B

    2011-08-15

    The stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride (PVC) and polyolefin bags under varying conditions was evaluated. Triplicate solutions of midazolam hydrochloride 1-mg/mL were prepared in polyolefin and PVC i.v. bags by diluting midazolam hydrochloride injection 5 mg/mL with 5% dextrose injection. Bags were then stored under refrigeration (3-4 °C), exposed to light at room temperature (20-25 °C), or protected from light in amber bags at room temperature. Samples were taken immediately after preparation (day 0) and on days 1, 2, 3, 6, 13, 20, and 27 for analysis with a stability-indicating high-performance liquid chromatography assay in order to determine solution concentration. Stability was defined as retention of at least 90% of the initial drug concentration. The pH of each solution was also measured weekly. Sterility of the i.v. bags was determined at the end of the study by microbiological testing with culture in growth media. Differences in concentrations under the various storage conditions and bags used were analyzed using analysis of variance. All solutions retained over 98% of the initial midazolam hydrochloride concentration, with no statistically significant (p ≥ 0.05) change in concentration over the four-week period. Stability was not affected by temperature, exposure to light, or bag type. The pH of all solutions remained between 3.2 and 3.4 throughout the study. Sterility after 28 days was retained. Midazolam hydrochloride 1-mg/mL solutions diluted in 5% dextrose injection remained stable over 27 days in both polyolefin and PVC i.v. bags, regardless of storage condition.

  14. Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution.

    PubMed

    Ma, Fengfeng; Zhao, Baowei; Diao, Jingru

    2016-09-01

    The purpose of this work is to investigate adsorption characteristic of corn stalk (CS) biochar for removal of cadmium ions (Cd 2+ ) from aqueous solution. Batch adsorption experiments were carried out to evaluate the effects of pH value of solution, adsorbent particle size, adsorbent dosage, and ionic strength of solution on the adsorption of Cd 2+ onto biochar that was pyrolytically produced from CS at 300 °C. The results showed that the initial pH value of solution played an important role in adsorption. The adsorptive amount of Cd 2+ onto the biochar decreased with increasing the adsorbent dosage, adsorbent particle size, and ionic strength, while it increased with increasing the initial pH value of solution and temperature. Cd 2+ was removed efficiently and quickly from aqueous solutions by the biochar with a maximum capacity of 33.94 mg/g. The adsorption process was well described by the pseudo-second-order kinetic model with the correlation coefficients greater than 0.986. The adsorption isotherm could be well fitted by the Langmuir model. The thermodynamic studies showed that the adsorption of Cd 2+ onto the biochar was a spontaneous and exothermic process. The results indicate that CS biochar can be considered as an efficient adsorbent.

  15. Pediatric oral solutions with propranolol hydrochloride for extemporaneous compounding: the formulation and stability study.

    PubMed

    Klovrzová, Sylva; Zahálka, Lukáš; Matysová, Ludmila; Horák, Petr; Sklubalová, Zdenka

    2013-02-01

    The aim of this study is to formulate an extemporaneous pediatric oral solution of propranolol hydrochloride (PRO) 2 mg/ml for the therapy of infantile haemangioma or hypertension in a target age group of 1 month to school children and to evaluate its stability. A citric acid solution and/or a citrate-phosphate buffer solution, respectively, were used as the vehicles to achieve pH value of about 3, optimal for the stability of PRO. In order to mask the bitter taste of PRO, simple syrup was used as the sweetener. All solutions were stored in tightly closed brown glass bottles at 5 ± 3 °C and/or 25 ± 3 °C, respectively. The validated HPLC method was used to evaluate the concentration of PRO and a preservative, sodium benzoate, at time intervals of 0-180 days. All preparations were stable at both storage temperatures with pH values in the range of 2.8-3.2. According to pharmacopoeial requirements, the efficacy of sodium benzoate 0.05 % w/v was proved (Ph.Eur., 5.1.3). The preparation formulated with the citrate-phosphate buffer, in our experience, had better palatability than that formulated with the citric acid solution. propranolol hydrochloride pediatric preparation extemporaneous preparation solution stability testing HPLC.

  16. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer

    Carroll, Susan

    2014-10-17

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a “neutral” and a “basic” mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  17. Automatized sspKa measurements of dihydrogen phosphate and Tris(hydroxymethyl) aminomethane in acetonitrile/water mixtures from 20 to 60°C.

    PubMed

    Acquaviva, A; Tascon, M; Padró, J M; Gagliardi, L G; Castells, C B

    2014-09-01

    We measured pKa values of Tris(hydroxymethyl)aminomethane and dihydrogen phosphate; both are commonly used to prepare buffers for reverse-phase liquid chromatography (RPLC), in acetonitrile/water mixtures from 0% to 70% (v/v) (64.6% (w/w)) acetonitrile and at 20, 30, 40, 50, and 60°C. The procedure is based on potentiometric measurements of pH of buffer solutions of variable solvent compositions using a glass electrode and a novel automated system. The method consists in the controlled additions of small volumes of a thermostated solution from an automatic buret into another isothermal solution containing exactly the same buffer-component concentrations, but a different solvent composition. The continuous changes in the solvent composition induce changes in the potentials. Thus, only two sequences of additions are needed: increasing the amount of acetonitrile from pure water and decreasing the content of acetonitrile from 70% (v/v) (64.6% (w/w)). In the procedure with homemade apparatus, times for additions, stirring, homogenization, and data acquisition are entirely controlled by software programmed for this specific routine. This rapid, fully automated method was applied to acquire more than 40 potential data covering the whole composition range (at each temperature) in about two hours and allowed a systematic study of the effect of temperature and acetonitrile composition on acid-base equilibria of two widely used substances to control pH close to 7. The experimental pKa results were fitted to empirical functions between pKa and temperature and acetonitrile composition. These equations allowed predictions of pKa to estimate the pH of mixtures at any composition and temperature, which would be very useful, for instance, during chromatographic method development. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    PubMed

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  19. Enzymatic cascade bioreactor

    DOEpatents

    Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  20. Chlamydia trahomatis in cell culture. I. Comparison of efficiencies of infection in several chemically defined media, at various pH and temperature values, and after exposure to diethylaminoethyl-dextran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rota, T.R.; Nichols, R.L.

    1973-10-01

    Three chemically defined cell culture media, Eagle minimum essential medium (MEM) with Earle basal salt solution, Eagle MEM with Hanks basal salt solution, and a modified Eagle MEM, were tested and found capable of supporting the development of Chlamydia trachomatis in /sup 60/Co-treated McCoy cells. The enhancement of trachoma infection by diethylaminoethyl-dextran (DEAE-D) was greater at pH values closer to neutrality than at and other pH values measured at the start of the experiments. Centrifugation of the trachoma inoculum onto cell monolayers at 33 C increased the number of inclusions when compared to centrifugation at 20 C. When the inoculummore » was centrifuged onto cell monolayers and subsequent incubation was at temperatures ranging from 34 to 39 C, the greatest number of inclusions was observed after incubation from 35 through 37 C. Enhancement of the trachoma infection by DEAE-D was tested at temperatures ranging from 35 to 37 C. These cultures had three- to fivefold increases in inclusions when compared to previously reported experiments in which DEAE-D- treated cultures were incubated at 34 C. (auth)« less

  1. Co and Fe-catalysts supported on sepiolite: effects of preparation conditions on their catalytic behaviors in high temperature gas flow treatment of dye.

    PubMed

    Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan

    2016-08-01

    An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.

  2. Amp Synthesis in Aqueous Solution of Adenosine and Phosphorus Pentoxide

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Kojima, H.; Ejiri, K.; Inomata, K.

    1982-12-01

    Possible formation of a P4O10 molecule in magma, the stability of the molecule in hydrous volcanic gas at high temperatures and a possible prebiotic phosphate cycle were discussed in relation to chemical evolution. To demonstrate the utility of phosphorus pentoxide as a phosphorylating agent, aqueous solutions of adenosine (0.02M) and phosphorus pentoxide (0.2M) were incubated at 37°C for 5 months. The pH of the solutions was adjusted every day or every few days to each fixed value (9.0, 10.5, 11.5, 12.5) with 10 N NaOH. The HPLC analysis showed the formation of 2'-AMP, 3'-AMP, 5'-AMP, cyclic (2' 3')-AMP and cyclic (3' 5')-AMP. The main components of the products were 2'- and 3'-AMP, though cyclic (2' 3')-AMP was the main component in the early period of the incubation at pH 9.0. The yields (conversion rate of adenosine to AMPs) were increased almost linearly with the incubation time for 5 months in the case of pH 9.0. The final yields were about 3% (pH 9.0), 6% (pH 9.0, 1 M NaCl), 5% (pH 9.0, 0.01 M CaCl2, 0.01 M MgCl2), 7% (pH 9.0, 0.5 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 9% (pH 9.0, 1 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 32% (pH 10.5), 43% (pH 11.5), 35% (pH 12.5).

  3. A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form.

    PubMed

    Monkos, Karol

    2013-03-01

    The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.

  4. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    NASA Astrophysics Data System (ADS)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  5. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.

    PubMed

    Joshi, Ravi K; Gogate, Parag R

    2012-05-01

    The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Temperature and pH effect on reduction of graphene oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tai, Guoan; Zeng, Tian; Li, Hongxiang; Liu, Jinsong; Kong, Jizhou; Lv, Fuyong

    2014-09-01

    Reduced graphene oxides (RGOs) have usually been obtained by hydrazine reduction, but hydrazine-related compounds are corrosive, highly flammable and very hazardous, and the obtained RGOs heavily aggregated. Here we investigated extensively the effect of temperature and pH value on the structure of RGOs in hydrothermal environments without any reducing agents. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra showed that reduction rate of GOs remarkably increased with the temperature from 100 to 180 °C and with pH value from 3 to 10. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) exhibited the structural transition of the RGOs. Energy-dispersive x-ray analysis (EDX) showed the reduction degree of the RGO samples quantitatively. The results demonstrate that the GOs can be reduced controllably by a hydrothermal reduction process at pH value of 10 at 140 °C, and the large-scale RGOs are cut into small nanosheets with size from several to a few tens of nanometers with increasing temperature and duration. This study provides a feasible approach to controllably reduce GO with different nanostructures such as porous structures and quantum dots for applications in optoelectronics and biomedicals.

  7. Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Xinghao; Cheng, Cheng; Xiao, Chengjian; Shao, Dadong; Xu, Zimu; Wang, Jiaquan; Hu, Shuheng; Li, Xiaolong; Wang, Weijuan

    2017-07-01

    Polyaniline (PANI) modified bentonite (PANI/bentonie) was synthesized by plasma induced polymerization of aniline on bentonite surface, and applied to uptake of uranium(VI) ions from aqueous solution. The as-synthesized PANI/bentonie was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Batch adsorption technique was utilized to investigate the adsorption of U(VI) on bentonite and PANI/bentonite. The adsorption of U(VI) (10 mg/L) on PANI/bentonite surface is fairly depend on solution pH, ionic strength, and temperature in solution. The modified PANI on PANI/bentonite surface significantly enhances its adsorption capability for U(VI). The presence of humic acid (HA) can sound enhance U(VI) adsorption on PANI/bentonite at pH < 6.5 because of the strong complexation, and inhibits U(VI) adsorption at pH > 6.5. According to the thermodynamic parameters, the adsorption of U(VI) on PANI/bentonite surface is a spontaneous and endothermic process. The results highlight the application of PANI/bentonite composites as candidate material for the uptake of trace U(VI) from aqueous solution.

  8. REE Sorption Study of Seived -50 +100 Mesh Fraction of Media #1 in Brine #1 at Different Concentrations of REE at 70C

    DOE Data Explorer

    Gary Garland

    2015-06-29

    This dataset shows the sorption capacities of smaller grain size (-50 +100 mesh) of media #1 in brine #1 at different starting concentrations of REE's at elevated temperature of 70C. The experimental conditions are 2g of -50 +100 mesh media #1 to 150mL of REE solution at concentartions of .2ppm each, 2ppm each, and 20ppm each. The pH of the solution is 5.5, and the temperature was at 70C.

  9. Treatment of vinasse from tequila production using polyglutamic acid.

    PubMed

    Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli

    2012-03-01

    Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Comparative evaluation of stability of benzylpenicillin in acid media of natural solutions and in culture fluid].

    PubMed

    Peretokina, N S; Lin'kova, O S; Erdman, I E; Sinitsyn, M A

    1992-07-01

    Inactivation of benzylpenicillin in real media i.e. fermentation broths and their filtrates was studied in comparison with the published data on inactivation of commercial benzylpenicillin in aqueous solutions as dependent on the medium pH and temperature. The lowest constant of benzylpenicillin inactivation was shown to be in the fermentation broths.

  11. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    PubMed

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process.

    PubMed

    Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang

    2008-12-15

    Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.

  13. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    PubMed Central

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  14. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    PubMed

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  15. Biological Characterization of the Biocontrol Agent Bacillus amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes.

    PubMed

    Gotor-Vila, Amparo; Teixidó, Neus; Sisquella, María; Torres, Rosario; Usall, Josep

    2017-09-01

    This work focuses on the biological understanding of the biocontrol agent Bacillus amyloliquefaciens CPA-8 in order to accomplish the characterization required in the registration process for the development of a microorganism-based product. The tolerance of CPA-8 to grow under different pH-temperature and water activity (a w )-temperature conditions was widely demonstrated. Regarding the pH results, optimum growth at the evaluated conditions was observed at 37 °C and pH between 7 and 5. On the contrary, the slowest growth was recorded at 20 °C and pH 4.5. Moreover, the type of solute used to reduce a w had a great influence on the minimum a w at which the bacterium was able to grow. The lowest a w values for CPA-8 growth in media modified with glycerol and glucose were 0.950 and 0.960, respectively. Besides, the lowest a w for CPA-8 growth increased when the temperature decreased to 20 °C, at which CPA-8 was not able to grow at less than 0.990 a w , regardless of the type of solute. Antibiotic susceptibility tests were carried out to determine which antibiotic could affect the behavior of the bacteria and revealed that CPA-8 was clearly resistant to hygromycin. Finally, a PCR amplification assay to detect the presence of enterotoxic genes from Bacillus cereus in CPA-8 was also performed. CPA-8 gave negative results for all the genes tested except for nheA gene, which is not enough for the toxicity expression, suggesting that fruit treated with this antagonist will not be a potential vehicle for foodborne illnesses.

  16. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  17. A process for the preparation of cysteine from cystine

    DOEpatents

    Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David

    1989-01-01

    The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqeous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In a preferred embodiment the present invention provides an improved process for the preparation (regeneration) of cysteine from cystine, which includes reacting an aqueous solution of cystine at a pH of between about 9 to 13 with a reducing agent selected from hydrogen sulfide or alkali metal sulfides, sulfur dioxide, an alkali metal sulfite or mixtures thereof for a time and at a temperature effective to cleave and reduce the cystine to cysteine with subsequent recovery of the cysteine. In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.

  18. Bulk Dissolution Rates of Cadmium and Bismuth Tellurides As a Function of pH, Temperature and Dissolved Oxygen.

    PubMed

    Biver, Marc; Filella, Montserrat

    2016-05-03

    The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly.

  19. Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering.

    PubMed

    Singh, B P; Bohidar, H B; Chopra, S

    1991-10-15

    Dynamic laser light scattering studies on the heat aggregation behavior of phycobilisomes (PBS), ferritin, insulin, and immunoglobulin (IgG) in dilute aqueous solutions has been reported. Except for PBS, results are reported for heat aggregation trends in these proteins for three different pH environments (4.0, 7.5, 9.1). For PBS, studies were performed only in the neutral buffer medium (pH 7.5). The experiments were performed in the very dilute concentration regime (between 0.23 and 1.8 gL-1). For all these samples heat aggregation and dissociation trends were found to be linear with temperature. Upon temperature reversal (self-cooling), hysteresis-like behavior observed in insulin was found to be predominantly large at pH 7.5. PBS, ferritin, and IgG showed no such behavior at any of three pH values, and retraced their path of aggregation while dissociating on temperature reversal. Heat aggregation and dissociation processes in ferritin were found to be independent of pH. The IgG samples showed smooth aggregation tendency only up to 35 degrees C in the buffer media pH 4.0 and 9.1, whereas for pH 7.0 the same could be observed until 60 degrees C. Low polydispersity in the correlation spectra was observed in case of all these samples.

  20. Optimizing the synthesis conditions of silver nanoparticles using corn starch and their catalytic reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Salaheldin, Hosam I.

    2018-06-01

    In this study, silver nanoparticles (SNPs) were synthesised in an aqueous solution of corn starch. To fabricate the SNPs, reaction conditions, such as varying silver nitrate () concentration, time, temperature and solution pH of the reaction, were optimized. Since, the optimum reaction conditions were found 1 mmo l‑1, 15 min and , respectively. Then, to study the role of pH on SNP synthesis, varying pH values of the solution (3, 5, 7, 9 and 11) were investigated. Subsequently, the obtained silver/starch nanocomposites were characterised using different techniques. The x-ray diffraction (XRD) results revealed that the particles were face-centred cubic (FCC), and had an average particle size of 7.5 nm. This was confirmed by high-resolution transmission electron microscopy (HR-TEM) images. Moreover, the synthesised SNPs, at different pH values, were used as nanocatalyst for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. Under optimum reaction conditions, the higher catalytic activity was obtained with SNPs synthesised at pH 11 compared to lower pH of 7 or 9. Therefore, the rapid, reproducible, cost-effective silver/starch nanocomposite can be widely used for various applications such as drug manufacturing (e.g. analgesics and antipyretics) and the removal of pollutants from wastewater.

  1. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets.

    PubMed

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; Hu, Xi; Chen, An-wei; Wang, Ya-qin; Guo, Yi-Mming; Li, Ting-ting; Zhou, Lu; Liu, Shao-heng; Zeng, Xiao-xia

    2014-07-15

    Cd(II) has posed severe health risks worldwide. To remove this contaminant from aqueous solution, the sulfanilic acid-grafted magnetic graphene oxide sheets (MGOs/SA) were prepared and characterized. The mutual effects of Cd(II) and aniline adsorption on MGOs/SA were studied. The effects of operating parameters such as pH, ionic strength, contact time and temperature on the Cd(II) enrichment, as well as the adsorption kinetics and isotherm were also investigated. The results demonstrated that MGOs/SA could effectively remove Cd(II) and aniline from the aqueous solution and the two adsorption processes were strongly dependent on solution pH. The Cd(II) adsorption was reduced by the presence of aniline at pH<5.4 but was improved at pH>5.4. The presence of Cd(II) diminished the adsorption capacity for aniline at pH<7.8 but enhanced the aniline adsorption at pH>7.8. The decontamination of Cd(II) by MGOs/SA was influenced by ionic strength. Besides, the adsorption process could be well described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that the intraparticle diffusion was not the only rate-limiting step for the adsorption process. Moreover, the experimental data of isotherm followed the Freundlich isotherm model. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Pre-formulation and chemical stability studies of penethamate, a benzylpenicillin ester prodrug, in aqueous vehicles.

    PubMed

    Jain, Rohit; Wu, Zimei; Bork, Olaf; Tucker, Ian G

    2012-01-01

    Penethamate (PNT) is a diethylaminoethyl ester prodrug of benzylpenicillin used to treat bovine mastitis via the intramuscular route. Because of its instability, PNT products must be reconstituted before administration and the reconstituted injection has a short shelf life (7 days at 2-8°C). The purpose of this paper was to investigate whether the stability of PNT can be improved in order to achieve a chemically stable ready-to-use aqueous-based PNT formulation or at least to extend the shelf life of the reconstituted suspension. A chemical stability study of PNT in aqueous-based solutions as a function of pH, buffer strength, solvent mixtures and temperature, supported by studies of its solubility in mixed solvents, allowed predictions of the shelf life of PNT solution and suspension formulations. PNT degraded in aqueous solutions by several pathways over the pH range 2.0-9.3 with a V-shaped pH-rate profile and a minimum pH of around 4.5. The stability of PNT solutions in mixed solvents was greater than in aqueous solutions. For example, in propylene glycol:citrate buffer (60:40, v/v, pH 4.5), the half-life of PNT was 4.3 days compared with 1.8 days in aqueous buffer. However, solubility of PNT in the mixed solvent was higher than that in aqueous solution and this had an adverse effect on the stability of suspensions. By judicious choosing of pH and mixed solvent, it is possible to achieve a storage life of a PNT suspension of 5.5 months at 5°C, not sufficient for a ready-to-use product but a dramatic improvement in the storage life of the reconstituted product.

  3. New insights into heat induced structural changes of pectin methylesterase on fluorescence spectroscopy and molecular modeling basis

    NASA Astrophysics Data System (ADS)

    Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta

    2014-07-01

    Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescence spectroscopy experiments were performed at two pH value (4.5 and 7.0). At both pH values, the phase diagrams were linear, indicating the presence of two molecular species induced by thermal treatment. A red shift of 7 nm was observed at neutral pH by increasing temperature up to 60 °C, followed by a blue shift of 4 nm at 70 °C, suggesting significant conformational rearrangements. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of enzyme with increasing temperature, especially at neutral pH. The experimental results were complemented with atomic level observations on PME model behavior after performing molecular dynamics simulations at different temperatures. The inactivation kinetics of PME in buffer solutions was fitted using a first-order kinetics model, resulting in activation energy of 241.4 ± 7.51 kJ mol-1.

  4. Synthesis and characterization of LTA nanozeolite using barley husk silica: Mercury removal from standard and real solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizi, Seyed Naser, E-mail: azizi@umz.ac.ir; Dehnavi, Ahmad Roozbehani, E-mail: Roozbehanisulfur@yahoo.com; Joorabdoozha, Amir

    2013-05-15

    Highlights: ► Silica extraction from barley husk with high purity for the synthesis of A nanozeolite. ► Free template A nanozeolite synthesized via new source of silica at low temperature. ► Optimization of SiO{sub 2}/Al{sub 2}O{sub 3}, Na{sub 2}O/SiO{sub 2} ratios, temperature and time of the synthesis. ► Utilizing of synthesized A nanozeolite for mercury removal from aqueous solutions. ► Mercury removal at optimized pH, contact time and adsorbent dose from real solution. - Abstract: In this study, synthesized Lined Type A (LTA) nanozeolite from barley husk silica (BHS) was used for mercury removal from standard and real aqueous solutions.more » The BHS in amorphous phase with 80% purity was extracted from barley husk ash (BHA), and used effectively as a new source of silica for the synthesis of NaA nanozeolite. The NaA nanocrystal in pure phase has been synthesized at low temperature, without adding any organic additives. The effects of heating time, reaction temperature, SiO{sub 2}/Al{sub 2}O{sub 3}, and Na{sub 2}O/SiO{sub 2} mole ratios on the crystallization of NaA nanozeolite were studied. The adsorption capacity of mercury (II) was studied as a function of pH, contact time, and amount of adsorbent. The crystallization of NaA nanozeolite from BHS was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET), and FTIR techniques. Moreover, concentration of Hg{sup 2+} ions in the aqueous solutions was analyzed by hydride generation atomic absorption spectroscopy method (HG-AAS). The standard and real samples analysis showed that NaA nanozeolite is capable of Hg{sup 2+} ions removal from the aqueous solutions. Efficiency of mercury (II) adsorption from real solutions onto the nano-sized NaA zeolite was 98%.« less

  5. Determining the chemical exchange saturation transfer (CEST) behavior of citrate and spermine under in vivo conditions.

    PubMed

    Basharat, Meer; deSouza, Nandita M; Parkes, Harold G; Payne, Geoffrey S

    2016-09-01

    To estimate the exchange rates of labile (1) H in citrate and spermine, metabolites present in prostatic secretions, to predict the size of the citrate and spermine CEST effects in vivo. CEST z-spectra were acquired at high-field [11.7 Tesla (T)] from citrate and spermine solutions at physiological pH (6.5) using saturation power 6 μT. CEST was performed at different temperatures to determine exchange regimes (slow, intermediate or fast). For low pH solutions of spermine, exchange rates were estimated from resonance line width, fitting z-spectra using the Bloch equations incorporating exchange, and using quantifying exchange using saturation time experiments (QUEST). These rates were extrapolated to physiological pH. Citrate showed little CEST effect at pH 6.5 and temperature (T) = 310 K (maximum 0.001% mM(-1) ), indicating fast exchange, whereas spermine showed greater CEST effects (maximum 0.2% mM(-1) ) indicating intermediate-to-fast exchange. Extrapolating data acquired from low pH spermine solutions predicts exchange rates at pH 6.5 and T of 310 K of at least 2 × 10(4) s(-1) . Citrate and spermine show minimal CEST effects at 11.7T even using high saturation power. These effects would be much less than 2% at clinical field-strengths due to relatively faster exchange and would be masked by CEST from proteins. Magn Reson Med 76:742-746, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  6. Removal of oxytetracycline from aqueous solutions by hydroxyapatite as a low-cost adsorbent

    NASA Astrophysics Data System (ADS)

    Harja, Maria; Ciobanu, Gabriela

    2017-11-01

    The present paper involved a study of the adsorption process of the oxytetracycline drug from aqueous medium by using the hydroxyapatite nanopowders as adsorbent materials. The batch adsorption experiments were performed by monitoring the solution pH, contact time, adsorbent dosage and drug solution concentration. At pH 8 and ambient temperature, high oxytetracycline removal rates of about 97.58% and 89.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicate that the oxytetracycline adsorption onto nanohydroxyapatite samples follows a pseudo-second order kinetic model. The maximum adsorption capacities of 291.32 mg/g and 278.27 mg/g for uncalcined and calcined nanohydroxyapatite samples, respectively, have been found. So, the conclusion can be drawn that the hydroxyapatite shows good adsorption ability towards oxytetracycline.

  7. Self-assembly processes in the prebiotic environment

    PubMed Central

    Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen

    2006-01-01

    An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals. PMID:17008220

  8. Analysis of an explosion accident of nitrogen trichloride in a waste liquid containing ammonium ion and platinum black.

    PubMed

    Okada, Ken; Akiyoshi, Miyako; Ishizaki, Keiko; Sato, Hiroyasu; Matsunaga, Takehiro

    2014-08-15

    Five liters of sodium hypochlorite aqueous solution (12 mass%) was poured into 300 L of liquid waste containing ammonium ion of about 1.8 mol/L in a 500 L tank in a plant area; then, two minutes later the solution exploded with a flash on March 30th, 2005. The tank cover, the fluorescent lamp and the air duct were broken by the blast wave. Thus, we have conducted 40 runs of laboratory-scale explosion tests under various conditions (solution concentrations of (NH4)2SO4 and NaClO, temperatures, Pt catalysts, pH, etc.) to investigate the causes for such an explosion. When solutions of ammonium sulfate and sodium hypochlorite are mixed in the presence of platinum black, explosions result. This is ascribable to the formation of explosive nitrogen trichloride (NCl3). In the case where it is necessary to mix these 2 solutions (ammonium sulfate and sodium hypochlorite) in the presence of platinum black, the following conditions would reduce a probability of explosion; the initial concentration of NH4(+) should be less than 3 mol/L and the pH should be higher than 6. The hypochlorite solution (in 1/10 in volume) to be added at room temperature is recommended to be less than 0.6 mol/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, R.S.; Cossins, A.I.; Kem, W.R.

    The solution properties of the polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I) have been investigated by high-resolution H nuclear magnetic resonance (NMR) spectroscopy at 300 MHz. The pH dependence of the spectra has been examined over the range 1.1-12.2 at 27{degree}C. Individual pK{sub a} values have been obtained for the {alpha}-ammonium group of Ala-1 (8.6) and the side chains of Glu-8 (3.7), Tyr-36 (10.9), and Tyr-37 (10.8). For the remaining seven carboxyl groups in the molecule, four pK{sub a} values can be clearly identified. The five Lys residues titrate in the range 10.5-11, but individual pK{submore » a} values could not be obtained because of peak overlap. Conformational changes associated with the protonation of carboxylates occur below pH 4, while in the alkaline pH range major unfolding occurs above pH 10. The molecule also unfolds at elevated temperatures. Exchange of the backbone amide protons has been monitored at various values of pH and temperature in the ranges pH 4-5 and 12-27{degree}C. Comparison of these properties of Sh I in solution with those of the related polypeptides anthopleurin A and Anemonia sulcata toxins I and II indicates that Sh I is less stable thermally and that there are some significant differences in the ionic interactions that maintain the tertiary structure. The solvent accessibility of aromatic residues has been probed with photochemically induced dynamic nuclear polarization NMR at 360 MHz.« less

  12. The effect of arginine glutamate on the stability of monoclonal antibodies in solution.

    PubMed

    Kheddo, Priscilla; Tracka, Malgorzata; Armer, Jonathan; Dearman, Rebecca J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P

    2014-10-01

    Finding excipients which mitigate protein self-association and aggregation is an important task during formulation. Here, the effect of an equimolar mixture of l-Arg and l-Glu (Arg·Glu) on colloidal and conformational stability of four monoclonal antibodies (mAb1-mAb4) at different pH is explored, with the temperatures of the on-set of aggregation (Tagg) and unfolding (Tm1) measured by static light scattering and intrinsic fluorescence, respectively. Arg·Glu increased the Tagg of all four mAbs in concentration-dependent manner, especially as pH increased to neutral. Arg·Glu also increased Tm1 of the least thermally stable mAb3, but without similar direct effect on the Tm1 of other mAbs. Raising pH itself from 5 to 7 increased Tm1 for all four mAbs. Selected mAb formulations were assessed under accelerated stability conditions for the monomer fraction remaining in solution after storage. The aggregation of mAb3 was suppressed to a greater extent by Arg·Glu than by Arg·HCl. Furthermore, Arg·Glu suppressed the aggregation of mAb1 at neutral pH such that the fraction monomer was near to that at the more typical formulation pH of 5.5. We conclude that Arg·Glu can suppress mAb aggregation with increasing temperature/pH and, importantly, under accelerated stability conditions at weakly acidic to neutral pH. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Influence of pH and light on the stability of some antioxidants.

    PubMed

    Racine, P

    1981-06-01

    Summary Many organic molecules can be oxidized in the presence of oxygen. Light and traces of heavy metal ions catalyse the process of oxidation. The addition of a very small quantity of antioxidant to alcoholic perfumes and cosmetic bases is often made to retard auto-oxidations. Among the parameters which could influence the efficiency of an antioxidant, its intrinsic stability should be considered in the medium to be protected. This stability might conceivably be influenced by the pH, the presence of light, heavy metal ions and microorganisms. In this study we have concentrated on the role played by the first two factors. To eliminate a possible interference by the last two, analytical grades reagents together with chelators and high proof (80% v/v) hydroalcoholic solutions have been used. The antioxidants tested were: BHT, BHA, ethyl gallate, 2, carboxy-6, hydroxy, 2, 5, 7, 8, tetramethyl chroman (Trolox C(R)) and D-L-alpha-tocopherol. Solutions of 0.5 mmol/kg of each antioxidant were prepared in 80% v/v hydroalcoholic solutions and the pH adjusted with citric acid and potassium hydroxyde or hydrochloric acid. The pH extended from 2.5 to 10 and thus largely covers the pH range of cosmetic products. Of each solution, 100ml were kept in hermetically closed 125ml white glass bottles stored at room temperature (22 +/- 2 degrees C) and kept in the dark or exposed to the diffuse daylight of the laboratory. The antioxidants concentrations were determined by linear sweep voltametry on gold or glassy carbon electrodes. Significant differences in behaviour were observed. BHA and BHT are stable regardless of light and pH except at high pH (

  14. Stability studies on florfenicol using developed derivative spectrophotometric methods.

    PubMed

    Elimam, M M; Shantier, S W; Gadkariem, E A; Mohamed, M A; Osman, Z

    2017-01-01

    This study aims to investigate the stability of florfenicol using previously developed derivative spectrophotometric methods (D 1 and D 2 ). The studied stability-indicating pararmeters included alkali (NaOH, 1M), acid (HCl, 1M), pH changes (buffer pH 2.2-11), temperature (80°C and 100°C at pH 10) and light. A constructed pH profile for the drug degradation rate revealed a significant effect of pH on the drug stability between pH ranges 8 and 11. The obtained profile indicated first order dependence of K obs on [OH - ]. Arrhenius plot at pH 10 was found linear at temperatures 80°C and 100°C with estimated activation energy of 19.35kcal/mol. The calculated rate constant (K obs ), t ½ and t 90 at 25°C were found to be 1.8×10 -3 h, 385h and 58.3h, respectively. The photostability of florfenicol was also studied by exposing the drug solution to direct sunlight during mid-day time. The obtained results reflected the instability of florfenicol under the study conditions. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  15. Statistical analysis of environmental variability within the CELSS breadboard project's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.

    1993-01-01

    Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.

  16. Rapid Fabrication of Gold Nanoflowers Tuned by pH: Insights Into the Growth Mechanism.

    PubMed

    Lv, Chen; Zhang, Xiao-Yue; Mu, Chun-Lei; Wu, Dong; Wang, Cheng-Ming; Zhang, Qun-Lin

    2015-04-01

    We reported a one-pot, no added seeding and green method to synthesize gold nanoflowers, in which HAuC4 and H2O2 were added one by one into the alkaline protocatechuic aldehyde solution at room temperature. Au(III) was partially reduced by protocatechuic aldehyde to produce primary Au nanocrystals, and then Au nanocrystals agglomerated into loose flower-like nanoparticles as seeds, which catalyzed H2O2 reduction of the residual Au(III), thus accelerating the formation of compact 3D gold nanoflowers. The key synthesis strategy was to use protocatechuic aldehyde as a structure-induced agent to influence the growth of gold nanoflowers. The pH value of growth solution could tune the size and/or morphology of gold nanoflowers through its influence on the adhesion force of protocatechuic aldehyde on gold surfaces and the species type of Au(III) complexes. When the pH value of growth solution was above 7.26 (the pKa of protocatechuic aldehyde), the flower-like of gold nanostructural architectures with different sizes could be fabricated. The obtained gold nanoflowers had a large dimension of 198 and 157 nm at the pH of 7.6 and 8, respectively. Size control of gold nanoflowers can be accomplished in the growth solutions of pH 9.4-12.0 with a similar diameter around 60 nm. The as-synthesized gold nanoflowers exhibited good stability and have the prospects for surface-enhanced Raman scattering enhancement.

  17. Chlorite, Biotite, Illite, Muscovite, and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, S.; Smith, M.; Lammers, K.

    2016-10-05

    Summary Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces, which could affect reservoir permeability. In order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite, biotite, illite, and muscovite dissolution and developed generalized kinetic rate laws that are applicable over an expanded range of solution pH and temperature for each mineral. This report summarizes the rate equations for layered silicates where data were lacking for geothermal systems.

  18. Chlorite dissolution kinetics at pH 3–10 and temperature to 275°C

    DOE PAGES

    Smith, Megan M.; Carroll, Susan A.

    2015-12-02

    Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces which could affect reservoir permeability. Here, in order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite dissolution and developed a generalized kinetic rate law applicable over an expanded range of solution pH and temperature. Chlorite, (Mg,Al,Fe) 12(Si,Al) 8O 20(OH) 16, commonly occurs in many geothermal host rocks as either a primary mineral or alteration product.

  19. Chlorite dissolution kinetics at pH 3–10 and temperature to 275°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Megan M.; Carroll, Susan A.

    Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces which could affect reservoir permeability. Here, in order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite dissolution and developed a generalized kinetic rate law applicable over an expanded range of solution pH and temperature. Chlorite, (Mg,Al,Fe) 12(Si,Al) 8O 20(OH) 16, commonly occurs in many geothermal host rocks as either a primary mineral or alteration product.

  20. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  1. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral methylbenzylamine suggest an SN2 mechanism for the formation of dibenzylamine. These results show the interdependence of pH and speciation with amine reaction rates. We predict the distribution of primary, secondary, tertiary, and quaternary amines in hydrothermal solutions can be used to solve for the pH of subsurface reaction zones in hydrothermal systems. [1] McCollom, T.M. (2013) The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta, 104, 330-357.

  2. Experimental study of the solubilities of pyrite in NaCl-bearing aqueous solutions at 250-350°C

    NASA Astrophysics Data System (ADS)

    Ohmoto, Hiroshi; Hayashi, Ken-Ichiro; Kajisa, Yukari

    1994-05-01

    A total of sixty-three silica capsule experiments were performed to determine the solubilities of pyrite in NaCl-bearing aqueous solutions (0, 0.1, 0.5, 1, 2, 3, and 4 m) at 250, 300, and 350°C at pressures of vapor/liquid coexistence. The starting materials in the capsules were H2O(1) + FeS2( s) + S ° ( s) ± NaCl ( s). After reaction times up to ~ 60 days, the quenched solutions were analyzed for ΣFe, σH2S, ΣSO42-, and pH; the ΣFe content, ranging 5-1,300 ppm, generally increased with increasing temperature and ΣCl content of solution. The calculated solution compositions at the experimental P-T conditions fall mostly in the following ranges: pH = 2.0 to 3.2, logaH2s = -1.9 to -1.0, logaHSO4- = -3.8 to -2.0, and logaH2( aq) = -7.0 to -5.0. Evaluation of the experimental data suggests that the various redox equilibria between solution and mineral were attained in most of the experimental solutions. The pH, aH2S( aq) , and aH2( aq) of the solutions were controlled by the sulfur hydrolysis reaction (48° + 4 H2O( l) = 3 H2S( aq) + HSO4- + H+) and the sulfide/sulfate reaction ( H2S( aq) + 4 H2O( l) = 4 H2( aq) + H+ + HSO4-). The pyrite solubility is controlled by a general reaction: FeS2( s) + nCl- + 2 H+ + H2( aq) = FeCln2- n + 2 H2S( aq). The equilibrium constants for this reaction, as well as those for association of ferrous chloride complexes ( Fe2+ + nCl- = FeCln2- n), were obtained at 250, 300, and 350°C; they were used also to compute the equilibrium constants for the reactions controlling the solubilities of pyrrhotite, magnetite, and hematite: FeS( s) + 2 H+ + nCl- = FeCln2- n + H2S( aq); Fe3O4( s) + 6 H+ + 3 nCl- + H2( aq) = 3 FeCln2- n + H2O( aq); Fe2O3( s) + 4 H+ + 2 nCl- + H2( aq) = 2 FeCln2- n + 3 H2O( aq). Our experimental data suggest that the dominant Fe-Cl complex is FeCl + in solutions of ΣCl ≤ 0.5 m at 250°C and ΣCl ≤ 0.1 m at 300 and 350°C; FeCl 20 is dominant in solutions of the higher ΣCl contents at each temperature. The association constants for FeCl + and FeCl 2 estimated from this study are in good agreement with those estimated recently by HEINRICH and SEWARD (1990), DING and SEYFRIED (1992), Fein et al. (1992), and Palmer and Hyde (1992). Our solubility constants for pyrite are in good agreement with those obtained by CRERAR et al. (1978) and WOOD et al. (1987) for 3 m ΣCl solution at 350°C, but are 0.5-2 orders of magnitude higher than those obtained by them at lower temperatures and/or at lower ΣCl values. Our data suggest that natural hydrothermal fluids that are in equilibrium with pyrite, the most abundant sulfide mineral in the upper crust, are able to transport sufficient amounts (> 10 -m) of both Fe and H 2S to produce pyrite-rich ore deposits at temperatures above 250°C, and possibly at lower temperatures. The solubility of pyrite (and of other Fe-bearing minerals) is affected very little by a change of temperature, provided the pH, aH2( aq), aH2S( aq), and ΣCl values remain constant.

  3. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi

    2010-06-15

    Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (*OH), hydrogen peroxide (H(2)O(2)) and hydroperoxyl radicals (HOO*). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H(2)O(2) production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H(2)O(2) formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Method for converting sucrose to .beta.-D-glucose

    DOEpatents

    Simmons, Blake A [San Francisco, CA; Volponi, Joanne V [Livermore, CA; Ingersoll, David [Albuquerque, NM; Walker, Andrew [Woodinville, WA

    2009-07-07

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three-stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  5. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect

    NASA Astrophysics Data System (ADS)

    Phanjom, Probin; Ahmed, Giasuddin

    2017-12-01

    Synthesis of silver nanoparticles (AgNPs) under different physicochemical conditions like concentration of silver nitrate (AgNO3), pH and temperature, using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and its antibacterial properties were demonstrated. When fungal cell filtrate having neutral pH was exposed to different concentrations of aqueous solution AgNO3 (1-10 mM), formation of stable AgNPs of different sizes was observed. The size of the AgNPs decreased with the increase of AgNO3 concentration from 1 mM to 8 mM, however, the particles size increased with the increase of AgNO3 concentration from 9 mM to 10 mM. When fungal cell filtrate exposed to aqueous solution of 1 mM AgNO3 at different pH (4-10), the silver ions (Ag+) were reduced leading to the formation of stable AgNPs of different sizes. The size of the AgNPs decreased with the increase of alkaline conditions. When aqueous solution of 1mM AgNO3 with fungal cell filtrate, having neutral pH, was exposed to different temperatures (10, 30, 50, 70 and 90 °С), formation of stable AgNPs having different sizes were obtained. The size of the AgNPs decreased with the increase of temperature. Synergetic effect with antibiotics and size dependent antibacterial activities were also demonstrated against Escherichia coli (MTCC 1687), Staphylococcus aureus (MTCC 737), Bacillus subtilis (MTCC 441) and Klebseilla pneumoniae (MTCC 4030). The formation AgNPs was characterized by UV-vis spectrophotometer. Transmission electron microscope (TEM) confirmed the sizes of the obtained nanoparticles. X-ray diffractometer (XRD) spectrum confirmed the formation of metallic silver. The Fourier transform infrared spectroscopy (FTIR) confirmed the presence of protein as stabilizing agent around AgNPs. Scanning electron microscope (TEM) confirmed the morphological changes in the treated bacterial organisms.

  6. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C. Jeffrey; Keefer, Keith D.; Lenahan, Patrick M.

    1987-01-01

    A method of coating a substrate with a thin film of a polymer of predetermined porosity comprises depositing the thin film on the substrate from a non-gelled solution comprising at least one hydrolyzable metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base, prior to depositing the film, controlling the structure of the polymer for a given composition of the solution exclusive of the acid or base component and the water component, (a) by adjusting each of the water content, the pH, and the temperature to obtain the desired concentration of alkoxide, and then adjusting the time of standing of the solution prior to lowering the temperature of the solution, and (b) lowering the temperature of the solution after the time of standing to about 15 degrees C. or lower to trap the solution in a state in which, after the depositing step, a coating of the desired porosity will be obtained, and curing the deposited film at a temperature effective for curing whereby there is obtained a thin film of a polymer of a predetermined porosity and corresponding pore size on the substrate.

  7. [Dissolved aluminum and organic carbon in soil solution under six tree stands in Lushan forest ecosystems].

    PubMed

    Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing

    2003-10-01

    Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.

  8. Deciphering the Effect of Polymer-Assisted Doping on the Optoelectronic Properties of Block Copolymer-Anchored Graphene Oxide.

    PubMed

    Maity, Nabasmita; Kuila, Atanu; Nandi, Arun K

    2017-02-14

    Doping facilitates the tuning of band gap, providing an opportunity to tailor the optoelectronic properties of graphene in a simple way, and polymer-assisted doping is a new route to combine the optoelectronic properties of graphene with the properties of a polymer. In this endeavor, a linear diblock copolymer, polycaprolactone-block-poly(dimethyl aminoethyl methacrylate) (PCL 13 -b-PDMAEMA 117 ) (GPCLD) is grafted from the graphene oxide (GO) surface via consecutive ring opening and atom transfer radical polymerization. GPCLD is characterized using proton nuclear magnetic resonance ( 1 H NMR), Fourier transform infrared spectroscopy, atomic force microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy. The phase transition behavior of the GPCLD solution with varying temperature and pH is monitored using fluorescence spectroscopy and dynamic light scattering. Temperature-dependent 1 H NMR spectra at pH 9.2 indicate the influence of temperature on the interaction between GPCLD and solvent (water) molecules causing the phase separation. Fluorescence spectra at pH 4 and 9.2 give the evidence of localized p- and n-type doping of graphene assisted by the pendent PDMAEMA chains. In the impedance spectra of GPCLD films, the Nyquist plots vary with pH; at pH 4, they exhibit a semicircle at higher frequencies and a spike at lower frequencies; at pH 7.0, the spike is replaced by an arc; and at pH 9.2, the semicircle at higher frequencies vanishes and only a spike is noticed, all of these suggesting different types of doping of graphene at different pH values. The dc-conductivity also varies with pH and temperature because of the different types of doping. The current (I)-voltage (V) property of GPCLD at different pH values is very unique: at pH 9.2, an interesting feature of negative differential resistance (NDR) is observed; at pH 7, the rectification property is observed; and at pH 4, again the NDR property is observed. The temperature-dependent I-V property at pH 7 and 9.2 clearly indicates a signature of doping, dedoping, and redoping because of the change in the interaction of GO with the grafted polymer arising from coiling and decoiling of polymer chains.

  9. Study of aniline polymerization reactions through the particle size formation in acidic and neutral medium

    NASA Astrophysics Data System (ADS)

    Aribowo, Slamet; Hafizah, Mas Ayu Elita; Manaf, Azwar; Andreas

    2018-04-01

    In the present paper, we reported particle size kinetic studies on the conducting polyaniline (PANI) which synthesized through a chemical oxidative polymerization technique from aniline monomer. PANI was prepared using ammonium persulfate (APS) as oxidizing agent which carried out in acidic and neutral medium at various batch temperatures of respectively 20, 30 and 50 °C. From the studies, it was noticed that the complete polymerization reaction progressed within 480 minutes duration time. The pH of the solution during reaction kinetic reached values 0.8 - to 1.2 in acidic media, while in the neutral media the pH value reached values 3.8 - 4.9. The batch temperature controlled the polymerization reaction in which the reaction progressing, which followed by the temperature rise of solution above the batch temperature before settled down to the initial temperature. An increment in the batch temperature gave highest rise in the solution temperature for the two media which cannot be more than 50 °C. The final product of polymerization reaction was PANI confirmed by Fourier Transform Infra-Red (FTIR) spectrophotometer for molecule structure identification. The averages particle size of PANI which carried out in the two different media is evidently similar in the range 30 - 40 μm and insensitive to the batch temperature. However, the particle size of PANI which obtained from the polymerization reaction at a batch temperature of 50 °C under acidic condition reached ˜53.1 μm at the tip of the propagation stage which started in the first 5 minutes. The size is obviously being the largest among the batch temperatures. Whereas, under neutral condition the particle size is much larger which reached the size 135 μm at the batch temperature of 20 °C. It is concluded that the particle size formation during the polymerization reaction being one of the important parameter to determine particle growing of polymer which indicated the reaction kinetics mechanism of synthesize polyaniline.

  10. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening.

    PubMed

    Young, Nigel; Fairley, Peter; Mohan, Veena; Jumeaux, Coline

    2012-12-01

    Tooth whitening using hydrogen peroxide is a complex process, and there is still some controversy about the roles of pH, temperature, chemical activators, and the use of light irradiation. In this work the basic interactions between whitening agents and stain molecules are studied in simple solutions, thus avoiding the physics of diffusion and light penetration in the tooth to give clarity on the basic chemistry which is occurring. The absorbance of tea stain solution at 450 nm was measured over a period of 40 min, with various compositions of whitening agent added (including hydrogen peroxide, ferrous gluconate and potassium hydroxide) and at the same time the samples were subjected to blue light (465 nm) or infra-red light (850 nm) irradiation, or alternatively they were heated to 37°C. It is shown that the reaction rates between chromogens in the tea solution and hydrogen peroxide can be accelerated significantly using ferrous gluconate activator and blue light irradiation. Infra red irradiation does not increase the reaction rate through photochemistry, it serves only to increase the temperature. Raising the temperature leads to inefficiency through the acceleration of exothermic decomposition reactions which produce only water and oxygen. By carrying out work in simple solution it was possible to show that ferrous activators and blue light irradiation significantly enhance the whitening process, whereas infra red irradiation has no significant effect over heating. The importance of controlling the pH within the tooth structure during whitening is also demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. PEROXIDE-INHIBITED DECONTAMINATION SOLUTIONS FOR CARBON STEEL AND OTHER METALS IN THE GAS-COOLED REACTOR PROGRAM. Progress Report, November 1959-July 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meservey, A.B.

    1963-01-01

    A search for solutions suitable for dissolving uranium dioxide powder or lumps and yet noncorrosive enough to be used for decontaminating the carbon steel EGCR charge and service machines resulted in the development of buffered oxalate solutions of controlled temperature and pH, with hydrogen peroxide added to act as corrosion inhibitor, UO/sub 2/ oxidizer, and decontamination aid. Hydrogen peroxide acts either as a corrosion promoter or inhibitor, depending on factors such as its concentration, the ratio to other ingredients, acidity, temperature, the presence of complexing agents, and the ferric ion content of the solution. In general, oxalate-peroxide solutions for fissionmore » product decontamination from metal surfaces were superior to more conventional decontaminating solutions and had attractively low corrosion rates on carbon steel (less than 0.01 mil/hr), Solution instability, initially a serious drawback, was largely overcome. Of nearly a hundred formulations studied, the one having the best combination of long life, low corrosivity, high solvency for UO/sub 2/, decontamination power, safety, and ease of waste disposal was an aqueous solution of 0.4M oxalic acid, 0.18M ammonium citrate, and 0.34M H/sub 2/O/sub 2/, adjusted to pH 4.00 with ammonium hydroxide and used at 85 to 95 deg C. Similar solutions at lower pH, with increased H/sub 2/O/sub 2/ concentration to maintain noncorrosiveness, were successful decontaminants at 60 deg C when contact times were increased to several hours. Contaminated stainless steels heated to 500 deg C in helium resisted decontamination in noncorrosive reagents. Oxalate-peroxide soluttons are currently recommended as UO/sub 2/ solvents and as general decontaminants for mild steel and aluminum surfaces in the GCR program, and for stainless steels which were not strongly heated while contaminated. These solutions may also find application in the decontamination of metals used in the aqueous reprocessing of radioactive nuclear fuels. (auth)« less

  12. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  13. Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus

    NASA Astrophysics Data System (ADS)

    Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi

    2003-10-01

    We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.

  14. Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: influence of experimental parameters on degradation kinetics and mineralization efficiency.

    PubMed

    Ozcan, Ali; Sahin, Yücel; Koparal, A Savaş; Oturan, Mehmet A

    2008-06-01

    This study aims the removal of a carbamate herbicide, propham, from aqueous solution by direct electrochemical advanced oxidation process using a boron-doped diamond (BDD) anode. This electrode produces large quantities of hydroxyl radicals from oxidation of water, which leads to the oxidative degradation of propham up to its total mineralization. Effect of operational parameters such as current, temperature, pH and supporting electrolyte on the degradation and mineralization rate was studied. The applied current and temperature exert a prominent effect on the total organic carbon (TOC) removal rate of the solutions. The mineralization of propham can be performed at any pH value between 3 and 11 without any loss in oxidation efficiency. The propham decay and its overall mineralization reaction follows a pseudo-first-order kinetics. The apparent rate constant value of propham oxidation was determined as 4.8 x 10(-4)s(-1) at 100 mA and 35 degrees C in the presence of 50mM Na(2)SO(4) in acidic media (pH: 3). A general mineralization sequence was proposed considering the identified oxidation intermediates.

  15. A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

    2013-04-01

    Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can significantly improve zeolite CEC by bringing the material to near homoionic form. pH and temperature are the critical parameters for using natural zeolites as sorbents. Zeolites should not be used in extremely acidic, neither in extremely basic pH conditions, except for very short times. The exchange of Pb, requires low solution pH, to avoid precipitation but not too low because the H+ are competitive ions for ion exchange; as a result the zeolite CEC related to Pb removal may be downgraded. If pH enters the basic range (e.g. pH>8), more aquatic complexes with lower positive valence than those prevailing in lower pH are produced; these complexes are less attracted by the negative charged zeolitic matrix. Pb uptake is favored at higher temperatures as ion exchange (including the diffusion of exchangeable ions inside the material and the medium, and vice versa) is an endothermic process. With the increase of temperature there is a decrease in hydration of all available exchangeable cations that eases the movement within the channels of the solid matrix. Additionally, the mobility of the potassium ions, present in the zeolitic material, also increases with the temperature resulting in enhanced CEC.

  16. Temperature control in a 30 stage, 5-cm Centrifugal Contactor Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack D. Law; Troy G. Garn; David H. Meikrantz

    2009-09-01

    Temperature profile testing was performed using a 30 stage 5-cm centrifugal contactor pilot plant. These tests were performed to evaluate the ability to control process temperature by adjusting feed solution temperatures. This would eliminate the need for complex jacketed heat exchanger installation on the centrifugal contactors. Thermocouples were installed on the inlet and outlets of each stage, as well as directly in the mixing zone of several of the contactor stages. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 with nitric acid were the solution feeds for the temperaturemore » profile testing. Temperature data profiles for an array of total throughputs and contactor rpm values for both single-phase and two-phase systems were collected with selected profiles. The total throughput ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Inlet solution temperatures ranging from ambient up to 50 °C were tested. Results of the two-phase temperature profile testing are detailed« less

  17. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  18. Growth and characterization of organic layers deposited on porous-patterned Si surface

    NASA Astrophysics Data System (ADS)

    Gorbach, Tamara Ya.; Smertenko, Petro S.; Olkhovik, G. P.; Wisz, Grzegorz

    2017-01-01

    The organic layers with the thickness from a few nanometers up to few micrometers have been deposited from the chemical solution at room temperature on porous patterned Si surfaces using two medical solutions: thiamine diphosphide (pH=1÷2) and metamizole sodium (pH=6÷7). Based on evolution of morphology, structural and compositional features obtained by scanning electron microscopy, X-ray analysis, reflectance high energy electron diffraction the grown mechanisms in thin organic layers are discussed in the terms of terrace-step-kink model whereas self-organized assemblies evaluated more thick layers. Transport mechanism features and possible photovoltaic properties are discussed on the base of differential current-voltage characteristics.

  19. Thermal degradation of (6R,S)-5,10-methenyltetrahydrofolate in aqueous solution at pH 8

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Batschauer, A.; Wolf, E.

    2009-03-01

    The degradation of the folate (6R,S)-5,10-methenyltetrahydrofolate chloride (MTHF-Cl) in aqueous solution at pH 8 at room temperature is studied by absorption spectra measurements. Samples with and without the reducing agent β-mercaptoethanol (β-ME) both under aerobic and anaerobic conditions are investigated. MTHF-Cl hydrolyses to (6R,S)-10-formyltetrahydrofolate (10-HCO-H4folate) in all four cases. 10-HCO-H4folate oxidizes to 10-formyldihydrofolate (10-HCO-H2folate) under aerobic conditions in the absence of β-ME. The degradation dynamics is analysed theoretically and conversion rate constants of hydrolysis and oxidation are determined.

  20. Investigation on solubility of hydroxy dibasic acids in alkanolamine solutions

    NASA Astrophysics Data System (ADS)

    Du, M.

    2017-12-01

    Solubilities of three hydroxy dibasic (adipic, suberic, and sebacic) acids in alkanolamine solutions were measured within the 30-90℃ temperature range. It is found that solubility of these acids sharply grows with temperature and concentration of alkanolamine solvent. In addition, the study substantiates the adjustment of pH to optimize the CO2 absorption and desorption processes. The precipitation of added acids from alkanolamine solvents by cooling is found to be quite problematic, which makes the recovery of residual acids from lean alkanolamine solvents non-feasible and requires the application of alternative methods.

  1. Effect of pH, temperature, and moisture on the formation of volatile compounds in glycine/glucose model systems.

    PubMed

    Ames, J M; Guy, R C; Kipping, G J

    2001-09-01

    Mixtures of glycine, glucose, and starch were extrusion cooked using sodium hydroxide at 0, 3, and 6 g/L of extruder water feed, 18% moisture, and 120, 150, and 180 degrees C target die temperatures, giving extrudates with pH values of 5.6, 6.8, and 7.4. Freeze-dried equimolar solutions of glucose and glycine were heated either dry or after equilibration to approximately 13% moisture at 180 degrees C in a reaction-tube system designed to mimic the heating profile in an extruder. Volatile compounds were isolated onto Tenax and analyzed by gas chromatography-mass spectrometry. For the extrudates, total yields of volatiles increased with decreasing pH at 180 degrees C, reached a maximum at pH 6.8 at 150 degrees C, and increased with increasing pH at 120 degrees C. Amounts increased with temperature at all pH values. Pyrazines were the most abundant class for all sets of conditions (54-79% of total volatiles). Pyrroles, ketones, furans, oxazoles, and pyridines were also identified. Yields of volatiles from the reaction-tube samples increased by >60% in the moist system. Levels of individual classes also increased in the presence of moisture, except pyrazines, which decreased approximately 3.5-fold. Twenty-one of the compounds were common to the reaction-tube samples and the extrudates.

  2. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  3. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  4. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.

    PubMed

    Wang, Yongliang; Lv, Cuicui; Xiao, Li; Fu, Guoyan; Liu, Ya; Ye, Shufeng; Chen, Yunfa

    2018-02-02

    The alkaline leaching solution from arsenic-containing gold concentrate contains a large amount of arsenate ions, which should be removed because it is harmful to the production process and to the environment. In this study, conventional Fe (III) precipitation was used to remove arsenic from the leaching solution. The precipitation reaction was carried out at the normal temperature, and the effects of pH value and Fe/As ratio on the arsenic removal were investigated. The results show that the removal rate of arsenic is distinctive at different pH values, and the effect is best within the pH range of 5.25-5.96. The removal rate can be further increased by increasing the ratio of Fe/As. When the pH = 5.25-5.96 and Fe/As > 1.8, the arsenic in the solution can be reduced to below 5 mg/L. However, the crystallinity of ferric arsenate is poor, and the particle size is small, most of which is about 1 μm. The leaching toxicity test shows the leaching toxicity of precipitates gradually decreased by the increase of Fe/As. The precipitates can be stored safely as the ratio of Fe/As exceeded 2.5.

  5. Thermostability of glucose oxidase in silica gel obtained by sol-gel method and in solution studied by fluorimetric method.

    PubMed

    Przybyt, Małgorzata; Miller, Ewa; Szreder, Tomasz

    2011-04-04

    The thermostability of glucose oxidase entrapped in silica gel obtained by sol-gel method was studied by thermostimulated fluorescence of FAD at pH 5 and 7 and compared with that of the native enzyme in the solution and at the presence of ethanol. The unfolding temperatures were found to be lower for the enzyme immobilised in gel as compared with the native enzyme but higher as for the enzyme at the presence of ethanol. In gel, the thermal denaturation of glucose oxidase is independent on pH while in solution the enzyme is more stable at pH 5. The investigation the enzyme in different environment by steady-state fluorescence of FAD and tryptophan, synchronous fluorescence and time-resolved fluorescence of tryptophan indicates that the state of the molecule (tertiary structure and molecular dynamics) is different in gel and in solution. The ethanol produced during gel precursor hydrolysis is not the main factor influencing the thermostability of the enzyme but more important are interactions of the protein with the gel lattice. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A fluorescent glycosyl-imprinted polymer for pH and temperature regulated sensing of target glycopeptide antibiotic.

    PubMed

    Chen, Kuncai; He, Rong; Luo, Xiaoyan; Qin, Pengzhe; Tan, Lei; Tang, Youwen; Yang, Zhicong

    2017-08-15

    This paper demonstrates a new strategy for developing a fluorescent glycosyl-imprinted polymer for pH and temperature regulated sensing of target glycopeptide antibiotic. The technique provides amino modified Mn-doped ZnS QDs as fluorescent supports, 4-vinylphenylbronic acid as a covalent monomer, N-isopropyl acrylamide as a thermo-responsive monomer in combination with acrylamide as a non-covalent monomer, and glycosyl moiety of a glycopeptide antibiotic as a template to produce fluorescent molecularly imprinted polymer (FMIP) in aqueous solution. The FMIP can alter its functional moieties and structure with pH and temperature stimulation. This allows recognition of target molecules through control of pH and temperature. The fluorescence intensity of the FMIP was enhanced gradually as the concentration of telavancin increased, and showed selective recognition toward the target glycopeptide antibiotic preferentially among other antibiotics. Using the FMIP as a sensing material, good linear correlations were obtained over the concentration range of 3.0-300.0μg/L and with a low limit of detection of 1.0μg/L. The analysis results of telavancin in real samples were consistent with that obtained by liquid chromatography tandem mass spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry.

    PubMed

    Wang, Xiaohua; Liu, Ni; Liu, Yunguo; Jiang, Luhua; Zeng, Guangming; Tan, Xiaofei; Liu, Shaobo; Yin, Zhihong; Tian, Sirong; Li, Jiang

    2017-10-11

    Rice straw biochar that produced at three pyrolysis temperatures (400, 500 and 600 °C) were used to investigate the adsorption properties of 17β-estradiol (E2). The biochar samples were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), elemental analysis and BET surface area measurements. The influences of pyrolysis temperature, E2 concentration, pH, ionic strength, background electrolyte and humic acid were studied. Kinetic and isotherm results illustrated that the adsorption process could be well described by pseudo-second-order and Freundlich models. Experimental results showed that ionic strength had less influence on the adsorption of E2 by 500 and 600 °C rice straw biochar. Further, multivalent ions had positive impact on E2 removal than monovalent ions and the influence of the pyrolysis temperature was unremarkable when background electrolyte existed in solutions. The adsorption capacity of E2 decreased with the pH ranged from 3.0 to 12.0 and the humic acid concentration from 2 to 10 mg L -1 . Electrostatic attractions and π-π interaction were involved in the adsorption mechanisms. Compared to low-temperature biochar, high-temperature biochar exhibited a better adsorption capacity for E2 in aqueous solution, indicated it had a greater potential for E2 pollution control.

  8. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry

    PubMed Central

    Wang, Xiaohua; Liu, Ni; Liu, Yunguo; Jiang, Luhua; Zeng, Guangming; Tan, Xiaofei; Liu, Shaobo; Yin, Zhihong; Tian, Sirong; Li, Jiang

    2017-01-01

    Rice straw biochar that produced at three pyrolysis temperatures (400, 500 and 600 °C) were used to investigate the adsorption properties of 17β-estradiol (E2). The biochar samples were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), elemental analysis and BET surface area measurements. The influences of pyrolysis temperature, E2 concentration, pH, ionic strength, background electrolyte and humic acid were studied. Kinetic and isotherm results illustrated that the adsorption process could be well described by pseudo-second-order and Freundlich models. Experimental results showed that ionic strength had less influence on the adsorption of E2 by 500 and 600 °C rice straw biochar. Further, multivalent ions had positive impact on E2 removal than monovalent ions and the influence of the pyrolysis temperature was unremarkable when background electrolyte existed in solutions. The adsorption capacity of E2 decreased with the pH ranged from 3.0 to 12.0 and the humic acid concentration from 2 to 10 mg L−1. Electrostatic attractions and π-π interaction were involved in the adsorption mechanisms. Compared to low-temperature biochar, high-temperature biochar exhibited a better adsorption capacity for E2 in aqueous solution, indicated it had a greater potential for E2 pollution control. PMID:29019933

  9. Preparation and optimization of self-assembled chondroitin sulfate-nisin nanogel based on quality by design concept.

    PubMed

    Mohtashamian, Shahab; Boddohi, Soheil; Hosseinkhani, Saman

    2018-02-01

    Self-assembled nanogel was prepared by electrostatic complexation of two oppositely charged biological macromolecules, which were cationic nisin and anionic chondroitin sulfate (ChS). The critical factors affected the physical properties of ChS-nisin nanogel was screened and optimized by Plackett-Burman design (PB) and central composite design (CCD). The independent factors selected were: concentration ratio of nisin to ChS, injection rate of nisin solution, buffer solvent type, magnetic stirring rate, pH of initial buffer solution, centrifuge-cooling temperature, and centrifuge rotation speed. Among these factors, concentration ratio changed the entrapment efficiency and loading capacity significantly. In addition, the hydrodynamic diameter and loading capacity were significantly influenced by injection rate and pH of initial buffer solution. The optimized nanogel structure was obtained by concentration ratio of 6.4mg/mL nisin to 1mg/mL ChS, pH of buffer solution at 4.6, and nisin solution injection rate of 0.2mL/min. The observed values of dependent responses were close to predicted values confirmed by model from response surface methodology. The results obviously showed that quality by design concept (QbD) could be effectively applied to optimize the developed ChS-nisin nanogel. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Kinetically controlled transition from disordered aggregates to ordered lattices of a computationally designed peptide sequence.

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Zhang, Huixi; Kiick, Kristi; Saven, Jeffrey; Pochan, Darrin

    Peptides with well-defined secondary-structures have the ability to exhibit specific, local shapes, which enables the design of complex nanostructures through intermolecular assembly. Our computationally designed coiled-coil homotetrameric peptide building block can self-assemble into 2-D nanomaterial lattices with predetermined symmetries by control of the coiled-coil bundle exterior amino acid residues. And the assemblies can be controlled kinetically. Firstly, the solution pH influences the assembly by affecting the external charged state of peptide bundles which can lead the bundles to be either repulsive or attractive to each other. At room temperature when peptides are under the least charged pH conditions, disordered aggregates are formed that slowly transformed into the desired 2-D lattice structures over long periods of time (weeks). Around neutral pH, even subtle charge differences that come from small pH changes can have an influence on the thickness of afterwards formed plates. Secondly, the solution temperature can largely eliminate the formation of disordered aggregates and accelerate the assembling of matured, desired nanomaterial plates by providing extra energy for the organization process of assembly building blocks. The ability to control the assembly process kinetically makes our peptide plate assemblies very promising templates for further applications to develop inorganic-organic hybrid materials. Funding acknowledged from NSF DMREF program under awards DMR-1234161 and DMR-1235084.

  11. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  13. Experiments on the Multiphase Chemistry of Isocyanic Acid, HNCO.

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Liu, Y.

    2015-12-01

    Isocyanic acid, HNCO, has emerged as a potentially important reduced nitrogen compound that is emitted in wildfires, and may have health effect implications. The extent of the health effects depends on the solubility of HNCO in aqueous and non-aqueous solutions and the relative rates of hydrolysis versus carbamylation reactions (for example: HNCO + ROH => H2NC(O)OR). We report here results of studies of HNCO solubility and its reaction in buffered aqueous solutions (pH3), tridecane, and n-octanol at temperatures over the range 5 to 37°C. From these data, the heats of solution and activation energy of hydrolysis are estimated, and a partition coefficient between n-octanol and water at 25°C is greater than 1 for low pH solutions, indicating appreciable portioning to a non-polar phase, but HNCO will be distributed mostly in the aqueous phase at neutral pH. In addition, it was found that the rate of reaction of HNCO with n-octanol was competitive with hydrolysis under physiologically relevant conditions (pH7.4, 37°C), indicating that carbamylation of ROH groups could be significant. Based on these results, research on the carbamylation of other functional groups, and solubility and reaction studies of other isocyanates (e.g. CH3NCO) are warranted. The implications of this multi-phase chemistry for global exposures to wildfire emissions will be discussed.

  14. Sorption properties of Th(IV) on the raw diatomite--effects of contact time, pH, ionic strength and temperature.

    PubMed

    Sheng, Guodong; Hu, Jun; Wang, Xiangke

    2008-10-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  15. Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.

    PubMed

    Vidojkovic, Sonja M; Rakin, Marko P

    2017-07-01

    Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge (pH pzc ) values has been obtained. All obtained results showed that the surface of magnetite particles is negatively charged in typical high temperature thermal power plant water, which indicates the low probability of aggregation and deposition on plant metal surfaces. The results also gave strong evidence on decline of pH iep and pH pzc with temperature in the same manner as neutral pH of water. The thermodynamic parameters of magnetite surface protonation reactions were in good agreement with each other and obtained using one site/two pK and mainly one site/one pK model. All collected data provided evidences for interaction between particles, probability of deposition and eventual attachment to the steel surface at various pH and temperatures and can serve as a foundation for future surface studies aimed at optimizing plant performances and reducing of magnetite deposition. In future works it would be indispensable to provide the surface experimental data for extended temperature ranges, typical solution chemistries and metal surfaces of power plant structural components and thus obtain entire set of results useful in modeling the surface behavior and control of deposition process in power reactors and thermal plant circuits. Moreover, the acquired results will be applicable and greatly valuable to all other types of power plants, industrial facilities and technological processes using the high temperature water medium. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  17. Evaluation of calcium hydrogen carbonate mesoscopic crystals as a disinfectant for influenza A viruses

    PubMed Central

    NAKASHIMA, Ryuji; KAWAMOTO, Masaomi; MIYAZAKI, Shigeru; ONISHI, Rumiko; FURUSAKI, Koichi; OSAKI, Maho; KIRISAWA, Rikio; SAKUDO, Akikazu; ONODERA, Takashi

    2017-01-01

    In this study, the virucidal effect of a novel electrically charged disinfectant CAC-717 was investigated. CAC-717 is produced by applying an electric field to mineral water containing calcium hydrogen carbonate to generate mesoscopic crystals. Virus titration analysis showed a >3 log reduction of influenza A viruses after treatment with CAC-717 for 1 min in room temperature, while infectivity was undetectable after 15 min treatment. Adding bovine serum albumin to CAC-717 solution did not affect the disinfectant effect. Although CAC-717 is an alkaline solution (pH=12.39), upon contact with human tissue, its pH becomes almost physiological (pH 8.84) after accelerated electric discharge, which enables its use against influenza viruses. Therefore, CAC-717 may be used as a preventative measure against influenza A viruses and for biosecurity in the environment. PMID:28392537

  18. Cryoelectrolysis—electrolytic processes in a frozen physiological saline medium

    PubMed Central

    Lugnani, Franco; Macchioro, Matteo

    2017-01-01

    Background Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. Method To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Results Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. Discussion The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that interface. Conclusion Electrolysis can occur in a frozen domain at high subfreezing temperature, probably above the eutectic. It appears that the most effective period for delivering electrolytic currents in cryoelectrolysis is during the high subzero temperatures stage while freezing and immediately after cooling has stopped, throughout the thawing stage. PMID:28123904

  19. Cryoelectrolysis-electrolytic processes in a frozen physiological saline medium.

    PubMed

    Lugnani, Franco; Macchioro, Matteo; Rubinsky, Boris

    2017-01-01

    Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that interface. Electrolysis can occur in a frozen domain at high subfreezing temperature, probably above the eutectic. It appears that the most effective period for delivering electrolytic currents in cryoelectrolysis is during the high subzero temperatures stage while freezing and immediately after cooling has stopped, throughout the thawing stage.

  20. High temperature microelectrophoresis studies of the solid oxide/water interface

    NASA Astrophysics Data System (ADS)

    Fedkin, Mark Valentinovich

    Metal oxides are abundant components of geo-environmental systems and are widely used materials in industry. Many practical applications of oxide materials require the knowledge of their surface properties at both ambient and elevated temperatures. Due to substantial technical challenges associated with experimental studies of solid/water interfaces at elevated temperatures, consistent data on adsorption, surface charge, and zeta potential for most oxide materials are limited to temperatures less than 100°C. A high temperature microelectrophoresis technique, developed in this study, made it possible to extend the zeta potential measurements at the solid oxide/water interface to 200°C. The design of the high temperature electrophoresis cell allowed for the visual microscopic observation of the electrophoretic movement of suspended particles through pressure-tight sapphire windows. The electrophoretic mobilities of metal oxide particles suspended in aqueous solutions were measured in a DC electric field as a function of pH, ionic strength, and temperature. The experimental procedure and methods for evaluation of the main experimental parameters (electrophoretic mobility, electric field strength, high temperature pH, and cell constant) have been developed. Zeta potentials were calculated from the experimental data using O'Brien and White's (1978) numerical solution for electrophoretic mobility equation. Zeta potentials and isoelectric points (IEP) of the metal oxide/aqueous solution interface were experimentally determined for ZrO2, TiO 2(rutile), and alphaAl2O3 at 25, 120, and 200°C. The background solutions used for the preparation of suspensions were pure H2O, NaCl(aq) (10-4--10-2 mol.kg-1), and SrCl2 (10-4 mol.kg, for TiO2). For all studied materials, the IEPs were found to regularly decrease with increasing temperature, which agrees with available theoretical predictions. Thermodynamic functions, including Gibbs energy, enthalpy, and heat capacity, were estimated for the H +/OH- adsorption from the experimental IEP data using the 1-pK model of the oxide/water interface. The experimental information obtained in this study combined with data from potentiometric titration and other experimental methods form the basis for future theoretical studies of the electrical double layer at the oxide/water interface.

  1. High-frequency ultrasound-responsive block copolymer micelle.

    PubMed

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  2. Effect of food characteristics, storage conditions, and electron beam irradiation on active agent release from polyamide-coated LDPE films.

    PubMed

    Han, J; Castell-Perez, M E; Moreira, R G

    2008-03-01

    We investigated the effect of electron beam irradiation, storage conditions, and model food pH on the release characteristics of trans-cinnamaldehyde incorporated into polyamide-coated low-density polyethylene (LDPE) films. Active agent release rate on irradiated films (up to 20.0 kGy) decreased by 69% compared with the nonirradiated controls, from 0.252 to 0.086 microg/mL/h. Storage temperature (4, 21, and 35 degrees C) and pH (4, 7, and 10) of the food simulant solutions (10% aqueous ethanol) affected the release rate of trans-cinnamaldehyde. As expected, antimicrobial release rate decreased to 0.013 microg/mL/h at the refrigerated temperature (4 degrees C) compared to the higher temperatures (0.029 and 0.035 microg/mL/h at 21 and 35 degrees C). The fastest release rate occurred when exposed to the acidic food simulant solution (pH 4). In aqueous solution, trans-cinnamaldehyde was highly unstable to ionizing radiation, with loss in concentration from 24.50 to 1.36 microg/mL after exposure to 2.0 kGy. Fourier transform infrared (FTIR) analysis revealed that exposure to ionizing radiation up to 10.0 kGy did not affect the structural conformation of LDPE/polyamide films and the trans-cinnamaldehyde in the films, though it induced changes in the functional group of trans-cinnamaldehyde when dose increased up to 20.0 kGy. Studies with a radiation-stable compound (naphthalene) showed that ionizing radiation induced the crosslinking in polymer networks of LDPE/polyamide film and caused slow and gradual release of the compound. This study demonstrated that irradiation serves as a controlling factor for release of active compounds, with potential applications in the development of antimicrobial packaging systems.

  3. [Adsorption behavior and influence factors of p-nitroaniline on high surface area activated carbons prepared from plant stems].

    PubMed

    Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang

    2010-08-01

    Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.

  4. Dynamics of human serum albumin studied by acoustic relaxation spectroscopy.

    PubMed

    Hushcha, T; Kaatze, U; Peytcheva, A

    Sonic absorption spectra of solutions of human serum albumin (SA) in water and in aqueous phosphate buffer systems have been measured between 0.2 and 2000 MHz at different temperatures (15-35 degrees C), pH values (1.8-12.3), and protein concentrations (1-40 g/L). Several spectra, indicating relaxation processes in the whole frequency range, have been found. The spectra at neutral pH could be fitted well with an analytical function consisting of the asymptotic high frequency absorption and two relaxation contributions, a Debye-type relaxation term with discrete relaxation time and a term with asymmetric continuous distribution of relaxation times. Both relaxation contributions were observed in water and in buffer solutions and increased with protein concentration. The contribution represented by a Debye-type term is practically independent of temperature and was attributed to cooperative conformational changes of the polypeptide chain featuring a relaxation time of about 400 ns. The distribution of the relaxation times corresponding to the second relaxation contribution was characterized by a short time cutoff, between about 0.02 and 0.4 ns depending on temperature, and a long time tail extending to microseconds. Such relaxation behavior was interpreted in terms of solute-solvent interactions reflecting various hydration layers of HSA molecules. At acid and alkaline pH, an additional Debye-type contribution with relaxation time in the range of 30-100 ns exists. It seems to be due to proton transfer reactions of protein side-chain groups. The kinetic and thermodynamic parameters of these processes have been estimated from these first measurements to indicate the potential of acoustic spectra for the investigation of the elementary kinetics of albumin processes. Copyright 2004 Wiley Periodicals, Inc. Biopolymers, 2004

  5. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    USGS Publications Warehouse

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  6. Etched FBG coated with polyimide for simultaneous detection the salinity and temperature

    NASA Astrophysics Data System (ADS)

    Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah

    2017-06-01

    In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.

  7. Surface treatment process of Al-Mg alloy powder by BTSPS

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Gao, Xinbao; Lu, Yanling; Du, Fengzhen; Zhang, Li; Liu, Dazhi; Chen, Xuefang

    2018-04-01

    The surface of Al-Mg alloy powder was treated by BTSPS(bis(triethoxysilylpropyl)tetrasulfide) in order to avoid easy oxidation in air. The pH value, reaction temperature, reaction time, and reaction concentration were used as test conditions. The results show that the BTSPS can form a protected film on the surface of Al-Mg alloy powder. Select the best test solution by orthogonal test. The study found that the reaction time and reaction temperature have the biggest influence on the two indexes of the orthogonal test (melting enthalpy of heat and enthalpy of oxidation). The optimal conditions were as follows: pH value is 8, reaction concentration is 2%, reaction temperature is 25 °C, reaction time is 2 h. The oxidation weight gain of the alloy reached 74.45% and the decomposition temperature of silane film is 181.8 °C.

  8. Theory and practice in the electrometric determination of pH in precipitation

    NASA Astrophysics Data System (ADS)

    Brennan, Carla Jo; Peden, Mark E.

    Basic theory and laboratory investigations have been applied to the electrometric determination of pH in precipitation samples in an effort to improve the reliability of the results obtained from these low ionic strength samples. The theoretical problems inherent in the measurement of pH in rain have been examined using natural precipitation samples with varying ionic strengths and pH values. The importance of electrode design and construction has been stressed. The proper choice of electrode can minimize or eliminate problems arising from residual liquid junction potentials, streaming potentials and temperature differences. Reliable pH measurements can be made in precipitation samples using commercially available calibration buffers providing low ionic strength quality control solutions are routinely used to verify electrode and meter performance.

  9. The reduction of chromium (VI) by iron (II) in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pettine, Maurizio; D'Ottone, Luca; Campanella, Luigi; Millero, Frank J.; Passino, Roberto

    1998-05-01

    The rates of the reduction of Cr(VI) with Fe(II) were measured in NaCl, NaClO 4, and natural seawater as a function of pH (1.5-8.7), temperature (5-40°C) and ionic strength (I = 0.01-2 M). The pseudo first-order rate constant (log k 1) showed a parabolic dependence on pH decreasing from 1.5 to 4.5 and increasing from 5.5 to 8.7. The kinetics of the reaction in these two regions of pH also showed different influences of temperature, ionic strength, and reductant concentration. The rate of Cr(VI) reduction is described by the general expression -d[Cr(VI)]/dt = k [Cr(VI)] [Fe(II)] where k (M -1 min -1) can be determined from the log k=6.74-1.01 pH-188.5/T for the pH range 1.5-4.5 (σ = 0.2) and log k=11.93+0.95 pH-4260.1/T-1.06 I 0.5 for the pH range 5-8.7 (σ = 0.2) from 5 to 40°C and 0.01 to 2 M ionic strength. The effect of pH, temperature, and ionic strength on the reaction indicates that the reactions at low pH are due to H2CrO4+ Fe2+limit→k H2 A-Feproducts While the reactions at high pH are due to HCrO4-+ FeOH+limit→k HA-FeOHproductsHCrO4-+ Fe(OH)2limit→k HA-Fe(OH)2 products The overall rate expression over the entire pH range can be determined from (H 2A = H 2CrO 4) k=k H2 A-Feα( H2A)α( Fe2+)+k HA-FeOHα( HA-)α( FeOH+)+k HA-Fe(OH)2 α( HA-)α( Fe(OH)2) where k H2A-Fe = 5 x 10 6, k HA-FeOH = 1 x 10 6, k HA-Fe (OH)2= 5 x 10 11. In oxic aqueous systems Cr(VI) competes with O 2 in the oxidation of Fe(II) and an extension of the rate law for Cr(VI) reduction with Fe(II) in oxygenated solutions is proposed. The application of this extended rate law to environmental conditions suggests that this reaction influences the distribution of oxidized and reduced species of chromium in oxic and anoxic waters.

  10. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  11. Adsorption of Ions on Zirconium Oxide Surfaces from Aqueous Solutions at High Temperatures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Donald; Machesky, Michael L.; Benezeth, Pascale

    2009-07-01

    Surface titrations were carried out on suspensions of monoclinic ZrO{sub 2} from 25 to 290 C slightly above saturation vapor pressure at ionic strengths of 0.03, 0.1 and 1.0 mol {center_dot} kg{sup -1}(NaCl). A typical increase in surface charge was observed with increasing temperature. There was no correlation between the radius of the cations, Li{sup +}, Na{sup +}, K{sup +} and (CH{sub 3}){sub 4}N{sup +}, and the magnitude of their association with the surface. The combined results were treated with a 1-pK{sub a} MUSIC model, which yielded association constants for the cations (and chloride ion at low pH) at eachmore » temperature. The pH of zero-point-charge, pH{sub zpc}, decreased with increasing temperature as found for other metal oxides, reaching an apparent minimum value of 4.1 by 250 C. Batch experiments were performed to monitor the concentration of LiOH in solutions containing suspended ZrO{sub 2} particles from 200 to 360 C. At 350 and 360 C, Li{sup +} and OH{sup -} ions were almost totally adsorbed when the pressure was lowered to near saturation vapor pressure. This reversible trend has implications not only to pressure-water reactor, PWR, operations, but is also of general scientific and other applied interest. Additional experiments probed the feasibility that boric acid/borate ions adsorb reversibly onto ZrO{sub 2} surfaces at near-neutral pH conditions as indicated in earlier publications.« less

  12. Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18.

    PubMed

    You, Jia; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2016-02-01

    A low-temperature-active and salt-tolerant β-mannanase produced by a novel mannanase-producer, Enterobacter sp. strain N18, was isolated, purified and then evaluated for its potential application as a gel-breaker in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil field. The enzyme could lower the viscosity of guar gum solution by more than 95% within 10 min. The purified β-mannanase with molecular mass of 90 kDa displayed high activity in a broad range of pH and temperature: more than 70% of activity was retained in the pH range of 3.0-8.0 with the optimal pH 7.5, about 50% activity at 20°C with the optimal temperature 50°C. Furthermore, the enzyme retained >70% activity in the presence of 0.5-4.0 M NaCl. These properties implied that the enzyme from strain N18 had potential for serving as a gel-breaker for low temperature oil wells and other industrial fields, where chemical gel breakers were inactive due to low temperature. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  14. The degradation of the antitumor agent gemcitabine hydrochloride in an acidic aqueous solution at pH 3.2 and identification of degradation products.

    PubMed

    Jansen, P J; Akers, M J; Amos, R M; Baertschi, S W; Cooke, G G; Dorman, D E; Kemp, C A; Maple, S R; McCune, K A

    2000-07-01

    A study of the degradation kinetics of gemcitabine hydrochloride (2'-deoxy-2',2'-difluorocytidine) in aqueous solution at pH 3.2 was conducted. The degradation of gemcitabine followed pseudo first-order kinetics, and rate constants were determined at four different temperatures. These rates were used to construct an Arrhenius plot from which degradation rates at lower temperatures were extrapolated and activation energy calculated. Four major degradation products were identified. Only one of these degradation products, the uridine analogue of gemcitabine, was a known degradation product of gemcitabine and was identified by comparison with synthesized material. The other three degradation products were isolated and characterized by spectroscopic techniques. Two of these products were determined to be the diastereomeric 6-hydroxy-5, 6-dihydro-2'-deoxy-2',2'-difluorouridines, and the other product was determined to be O(6),5'-cyclo-5,6-dihydro-2'-deoxy-2', 2'-difluorouridine. The mechanisms of formation of these degradation products are discussed.

  15. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst.

    PubMed

    Kong, Liming; Zhou, Xiang; Yao, Yuan; Jian, Panming; Diao, Guowang

    2016-01-01

    SBA-15 mesoporous molecular sieves modified with copper (Cu-SBA-15) were prepared by pH-adjusting hydrothermal method and characterized by X-ray diffraction, BET, transmission electron microscopy, UV-Vis and (29)Si MAS NMR. The pH of the synthesis gel has a significant effect on the amount and the dispersion of copper on SBA-15. The Cu-SBA-15(4.5) (where 4.5 denotes the pH value of the synthesis gel) modified with highly dispersed copper was used as catalyst for the oxidation of aniline by H2O2. The Cu-SBA-15(4.5) shows a higher catalytic activity compared to CuO on the surface of SBA-15. The influences of reaction conditions, such as initial pH of the aqueous solutions, temperature, as well as the dosages of H2O2 and catalyst were investigated. Under weakly alkaline aqueous solution conditions, the aniline conversion, the H2O2 decomposition and the total organic carbon (TOC) removal could be increased significantly compared to the acid conditions. The percentage of leaching Cu(2+) could be decreased from 45.0% to 3.66% when the initial pH of solution was increased from 5 to 10. The TOC removal could be enhanced with the increases of temperature, H2O2 and catalyst dosage, but the aniline conversion and H2O2 decomposition change slightly with further increasing dosage of catalyst and H2O2. At 343 K and pH 8.0, 100% aniline conversion and 66.9% TOC removal can be achieved under the conditions of 1.0 g/L catalyst and 0.05 mol/L H2O2 after 180 min. Although copper might be slightly leached from catalyst, the homogeneous Cu(2+) contribution to the whole catalytic activity is unimportant, and the highly dispersed copper on SBA-15 plays a dominant role.

  16. Fluorapatite crystal growth from modified seawater solutions

    NASA Astrophysics Data System (ADS)

    Van Cappellen, Philippe; Berner, Robert A.

    Seeded precipitation experiments were conducted in a pH/fluoride-stat system to study the crystal growth of fluorapatite ( FAP ) in carbonate-free NaCl-CaCl 2-NaF-Na 2HPO 4 solutions, at seawater calcium concentration, chlorinity, and pH. With increasing supersaturation, the dependence of the growth rate on the relative supersaturation changes from parabolic to exponential. This is interpreted as reflecting a transition in the crystal growth mechanism from growth at dislocation-induced surface steps to surface nucleation-controlled growth. The analysis of the kinetic data leads to a mineral-aqueous solution interfacial tension for FAP of 289 mJ/m 2. The Arrhenius activation energy of the growth reaction in the temperature range 12 to 35°C is 47 kJ/mol. The inhibition of FAP growth by Mg 2+ ions was investigated over a range of total dissolved Mg of 0 to 60 mM. At dissolved magnesium concentrations typical of marine pore waters (40-60 mM), the rate of FAP growth is 15 to 20 times slower than in the absence of Mg 2+, for the same degree of supersaturation, at 25 °C and pH = 8. The inhibitory effect can be explained by the blocking of growth sites at the surface of FAP crystals by adsorbed Mg 2+ ions. A simple Langmuir adsorption model for the retardation effect of Mg 2+ is supported by the results. The effect of pH on FAP growth was tested for pH values from 7 to 8.5. In this range, growth of FAP is catalyzed by hydrogen ions. The apparent growth rate constant is proportional to ( aH+) m where m, the rate order with respect to H +, is a non-integral number which depends on pH. At identical degrees of supersaturation, the growth rate of FAP at pH = 7 is nearly twice that at pH = 8. When corrected for bottom water temperatures, pore water pH, and the retardation of Mg 2+, the experimental growth rates predict that during burial in modern phosphatic sediments, apatite particles grow to sizes on the order of 0.1-10 μrn. The relatively slow growth kinetics of FAP are consistent with the observed small particle sizes of marine sedimentary apatite.

  17. Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin.

    PubMed

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J

    2015-09-01

    Antibiotics that enter the environment can present human and ecological health risks. An understanding of antibiotic hydrolysis rates is important for predicting their environmental persistence as biologically active contaminants. In this study, hydrolysis rates and Arrhenius constants were determined as a function of pH and temperature for two amphenicol (chloramphenicol and florfenicol) and two macrolide (spiramycin and tylosin) antibiotics. Antibiotic hydrolysis rates in pH 4-9 buffer solutions at 25°C, 50°C, and 60°C were quantified, and degradation products were characterized. All of the antibiotics tested remained stable and exhibited no observable hydrolysis under ambient conditions typical of aquatic ecosystems. Acid- and base-catalyzed hydrolysis occurred at elevated temperatures (50-60°C), and hydrolysis rates increased considerably below pH 5 and above pH 8. Hydrolysis rates also increased approximately 1.5- to 2.9-fold for each 10°C increase in temperature. Based on the degradation product masses found, the functional groups that underwent hydrolysis were alkyl fluoride, amide, and cyclic ester (lactone) moieties; some of the resultant degradation products may remain bioactive, but to a lesser extent than the parent compounds. The results of this research demonstrate that amphenicol and macrolide antibiotics persist in aquatic systems under ambient temperature and pH conditions typical of natural waters. Thus, these antibiotics may present a risk in aquatic ecosystems depending on the concentration present. Copyright © 2015. Published by Elsevier Ltd.

  18. Novel Strip Test for Circulating Hormones

    DTIC Science & Technology

    1996-10-01

    estrone- 3 -glucuronide was combined with 1 equivalent of 4-amino-benzo-15-crown-5 and 1.2 equivalents of 1 -ethyl- 3 -( 3 - dimethylaminopropyl )carbodiimide...solution containing 5 mg/ml of El-g and 10 mg/ml of 1 -ethyl- 3 -( 3 -dimethylamino-propyl)carbodiimide (EDC) in water at pH 4.2. Fibers are then rinsed with... hydrochloride in water at pH 4.0. The mixture was stirred at room temperature for 48 hours and the resulting estrone- 3 -glucuronide-4-amino-benzo-15-crown

  19. Fact and fiction in spawntaking: Addenda

    USGS Publications Warehouse

    Rucker, R.R.

    1949-01-01

    The work of Ellis and Jones (1939) indicated that a solution of comon salt would prolong the life of fish sperm, although the work of Schlenk and Kahmann (1938) indicated that a more complex solution must be used. I therefore tested on sperm many solutions which waried in composition, strength, pH, and temperature. None of these prolonged viability to the point where 100-percent fertillzation could be expected after a few minutes" exposure at best. There was no difficulty in prolonging the fertilizable life of the egg: a plain salt solution was found quite effective, as mentioned by Rutter (1904).

  20. Combined Homogeneous Surface Diffusion Model - Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects.

    PubMed

    Muthukkumaran, A; Aravamudan, K

    2017-12-15

    Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOEpatents

    Fish, Richard H.

    1986-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  2. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOEpatents

    Fish, R.H.

    1987-04-21

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  3. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOEpatents

    Fish, Richard H.

    1987-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  4. Removal of phthalate esters from aqueous solutions by chitosan bead.

    PubMed

    Chen, Chih-Yu; Chung, Ying-Chien

    2006-01-01

    Removal of phthalate esters (PAEs) by chitosan bead in aqueous solution was studied. The adsorption isotherms of PAEs by chitosan bead were well described by Freundlich isotherm equations. Results of kinetic experiments indicated that diheptyl phthalate (DHpP) had the highest adsorption capacity (1.52 mg/g) among six PAEs in our research. PAE adsorption efficiency by chitosan bead was examined in both batch and continuous systems, and DHpP attained 74.9% recovery efficiency from chitosan bead by shaking with an equal volume mixture of methanol and water. The recovered chitosan bead was reusable as an adsorbent. The influences of temperature, pH, Ca+2, and NaCl on PAE adsorption were also evaluated to determine performance in different water environments (e.g., groundwater, surface water, and sea water). The results showed that PAE adsorption decreased as temperature increased. From pH experiments it appeared that pH 8.0 was optimal for adsorption. The effect of Ca+2 showed that adsorption efficiency did not change by increasing the concentrations of Ca+2 until 400 mg/L. NaCl coexistence showed an insignificant effect on PAE adsorption. Furthermore, the chitosan bead was also applied to treating the discharge of a plastics plant, and the treatment results resembled those of a laboratory continuous system. This is the first report to use chitosan bead as an adsorbent to adsorb phthalate esters from aqueous solution. These results indicate that the application of chitosan bead is feasible in the aqueous environments of Taiwan.

  5. [Establishment and optimization of systems for protoplasts isolation of soybean and chickpea that used in subcellular location].

    PubMed

    Shu, Yingjie; Huang, Liyan; Chen, Ming; Tao, Yuan; Wang, Zhankui; Ma, Hao

    2017-06-25

    Young leaves of Kabuli chickpea as well as soybean Xiangdou No.3, which are the current plants that studied in our laboratory were selected as materials. Effects on protoplasts yield and survival rate of different enzyme combination, concentration of D-Mannitol in enzyme combinations, pH of enzyme combinations and enzymolysis time are detected. The results showed that, the best condition for Xiangdou No.3 leaf protoplasts isolation is to rotate the cut materials for 6 hours in enyzme solution under temperature of 27 ℃ and rotate speed of 45 r/min for 6 h. Onozuka R-10 (0.5%), Hemicellulase (0.8%), Macerozyme R-10 (0.8%) in combination with Pectolyase Y-23 (0.4%) dissolving in CPW solution with MES (0.1%) and Mannitol (10%), pH 6.0 was found best for protoplasts isolation of Xiangdou No.3 leaves.The best condition for protoplasts isolation of Kabuli chickpea is to put the cut materials into enzymatic hydrolysate enzymolyse for 7 to 8 hours under temperature of 27 ℃ and rotate speed of 45 r/min on water bath shaker, the optimum combination of enzyme consists of Onozuka R-10 (0.5%), Hemicellulase (0.8%), Macerozyme R-10 (0.8%), MES (0.1%) and Mannitol (10%) dissolved in CPW solution with pH 4.8. The protoplasts prepared with the methods above are used in subcellular location and the effects show well.

  6. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    PubMed

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  8. Monitoring of interstitial buffer systems using micro-dialysis and infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Cocchieri, L.; Vahlsing, T.; Ihrig, D.; Elm, J.

    2017-02-01

    Nowadays, continuous sensing systems are important point-of-care devices for the hospital and personalized patient technology. FTIR-spectrometers have been successfully employed for the development of bed-side systems. In-vivo applications for critically ill patients can be envisaged for analytes and parameters, which are of interest for intensive care such as lactate, urea, pCO2 and pH. The human body maintains the blood pH around 7.4, but for severe pH level changes acidosis or alkalosis can lead to serious health problems. Three different buffer systems exist based on bicarbonate, phosphate and proteins; for the most important bicarbonate and phosphate systems infrared transmission spectra were recorded. By using the CO2 and HCO3 - bands of the bicarbonate spectra, the pH of the harvested biofluid can be predicted using the Henderson-Hasselbalch equation. Furthermore, we studied the solubility of CO2 in aqueous solutions using gas mixtures of N2 and CO2 with known composition within partial pressures of CO2 as relevant for invivo conditions. Thus, values of pCO2 up to 150 mm Hg (200 hPa) with distilled water and a Ringer solution, which is an isotonic electrolyte solution used for medical infusion, were measured at 25 °C and 37 °C (normal body temperature).

  9. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  10. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    PubMed

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  11. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook

    PubMed Central

    Kurzweil, Peter

    2009-01-01

    Novel applications of online pH determinations at temperatures from -35 °C to 130 °C in technical and biological media, which are all but ideal aqueous solutions, require new approaches to pH monitoring. The glass electrode, introduced nearly hundred years ago, and chemical sensors based on field effect transistors (ISFET) show specific drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides seem to be a promising and alternative to the state-of-the-art measuring methods, and might overcome some problems of classical hydrogen electrodes and reference electrodes. PMID:22408563

  12. Effectiveness of the Surfactant Dioctyl Sodium Sulfosuccinate (DOSS) to Disperse Oil in a Changing Marine Environment

    NASA Astrophysics Data System (ADS)

    Steffy, D. A.; Nichols, A.; Kiplagat, G.

    2011-12-01

    We investigated the surfactant which was used to disperse the oil spill which occurred in the Gulf of Mexico during the summer 2010. The surfactant DOSS is an organic sulfonic acid salt which is a synthetic detergent that disrupts the interfacial tension between the saltwater and crude oil phases. The disruption becomes maximum at or above the critical micelle concentration (CMC). The CMC for the surfactant was determined to be at 0.13 % solution in deionized water at a pH of 7.2 and a temperature of 70oF. The CMC is lower at 0.09% solution in salt water. The effect has been identified as a "salting out" effect (Somasundaran, 2006). The CMC of DOSS in both saline and deionized water occurred at lower percent solutions at higher temperatures. The surface tension versus % solution plots are modeled by a power equation, with correlation coefficients consistently over 0.94. Surface tension versus percent solution plots are scalable to fit a temperature desired by the function f(x)= (1/(1+X^α)), where α = T1/T2.

  13. Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles.

    PubMed

    Abdel-Halim, E S; Alanazi, Humaid H; Al-Deyab, Salem S

    2015-04-01

    Hydroxypropyl carboxymethyl cellulose samples having varying degrees of substitution and varying degrees of polymerization were used to reduce silver nitrate to silver nanoparticles. UV spectral analysis of silver nanoparticles colloidal solution reveal that increasing the pH of the reduction solution leads to improvement in the intensity of the absorption band for silver nanoparticles, to be maximum at pH 11. The absorption peak intensity also enhanced upon prolonging the reaction duration up to 60 min. The conversion of silver ions to metallic silver nanoparticles was found to be temperature-dependent and maximum transformation occurs at 60 °C. The reduction efficiency of hydroxypropyl carboxymethyl cellulose was found to be affected by its degree of polymerization. Colloidal solutions of silver nanoparticles having concentration up to 1000 ppm can be prepared upon fixing the ratio between silver nitrate and hydroxypropyl carboxymethyl cellulose at 0.017-0.3g per each 100ml of the reduction solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ido, Shinichiro; Kimiya, Hirokazu; Kobayashi, Kei; Kominami, Hiroaki; Matsushige, Kazumi; Yamada, Hirofumi

    2014-03-01

    The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.

  15. Dissolution and characterization of biofunctional keratin particles extracted from chicken feathers

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Gupta, Arun; Chik, Syed Mohd Saufi Bin Tuan; Yeo Gek Kee, Chua; Poddar, Pradeep Kumar

    2017-04-01

    In the present study chicken feathers were hydrolyzed in alkaline environment. The pH value of feather hydrolyzed solution was adjusted according to the principle of isoelectric precipitation. Three kinds of precipitates of keratin polypeptide were collected at pH of 3.5, 5.5 and 7.5 respectively. The keratin solution were freeze dried and denoted as FKP1, FKP2, FKP3 respectively. All keratin particles possessed smooth, uniform and round surface by scanning electron microscope (SEM). FKP1, FKP2 and FKP3 had higher glass transition temperature examined by thermogravimetry (TG). Fourier transform infrared spectroscopy (FTIR) revealed that the extracted keratin retained the most of protein backbone, with the breakage of disulfide cross-links and hydrogen bonds.

  16. Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters.

    PubMed

    Sheng, Guodong; Dong, Huaping; Li, Yimin

    2012-11-01

    Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid-base titration. Retention of radionuclide (60)Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D-R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH(0), ΔS(0) and ΔG(0)) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7-8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Long-term leaching of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Nover, Jessica; Zapf-Gottwick, Renate; Feifel, Carolin; Koch, Michael; Metzger, Jörg W.; Werner, Jürgen H.

    2017-08-01

    Some photovoltaic module technologies use toxic materials. We report long-term leaching on photovoltaic module pieces of 5 × 5 cm2 size. The pieces are cut out from modules of the four major commercial photovoltaic technologies: crystalline and amorphous silicon, cadmium telluride as well as from copper indium gallium diselenide. To simulate different environmental conditions, leaching occurs at room temperature in three different water-based solutions with pH 3, 7, and 11. No agitation is performed to simulate more representative field conditions. After 360 days, about 1.4% of lead from crystalline silicon module pieces and 62% of cadmium from cadmium telluride module pieces are leached out in acidic solutions. The leaching depends heavily on the pH and the redox potential of the aqueous solutions and it increases with time. The leaching behavior is predictable by thermodynamic stability considerations. These predictions are in good agreement with the experimental results.

  18. Removal of Cd (II) from water using the waste of jatropha fruit ( Jatropha curcas L.)

    NASA Astrophysics Data System (ADS)

    Nacke, Herbert; Gonçalves, Affonso Celso; Coelho, Gustavo Ferreira; Schwantes, Daniel; Campagnolo, Marcelo Angelo; Leismann, Eduardo Ariel Völz; Junior, Élio Conradi; Miola, Alisson Junior

    2017-10-01

    The aim of this work was to evaluate the removal of Cd (II) from water using three biosorbents originated from the biomass of jatropha (bark, endosperm, and endosperm + tegument). For that, batch tests were performed to verify the effect of solution pH, adsorbent mass, contact time, initial concentration of Cd (II), and the temperature of the process. The adsorption process was evaluated by the studies of kinetics, isotherms, and thermodynamics. The ideal conditions of solution pH were 5.5 and 8 g L-1 of adsorbent mass of biosorbents by solution volume, with an equilibrium time of 60 min. According to the Langmuir model, the maximum adsorption capacity for bark, endosperm, and bark + endosperm of jatropha was, respectively, 29.665, 19.562, and 34.674 mg g-1, predominating chemisorption in monolayers. The biosorbents presented potential for the remediation of waters contaminated with Cd (II).

  19. Adsorptive removal of patulin from aqueous solution using thiourea modified chitosan resin.

    PubMed

    Liu, Bingjie; Peng, Xiaoning; Chen, Wei; Li, Yang; Meng, Xianghong; Wang, Dongfeng; Yu, Guangli

    2015-09-01

    In the present paper, thiourea modified chitosan resin (TMCR) was firstly prepared through converting hydroxyl groups of chitosan resin into thiol groups, using glutaraldehyde as cross-linking agent and thiourea as modification agent. TMCR was characterized by FTIR, EDXS, SEM, XRD and AFM technologies. Batch adsorption experiments were performed to study the adsorption capacity of TMCR for patulin at different pH, temperature, contact time and patulin concentration. The result showed that TMCR was effective in removal of patulin from aqueous solution. The adsorption capacity of TMCR for patulin was 1.0 mg/g at pH 4.0, 25 °C for 24 h. Adsorption process could be well described by pseudo-first order model, Freundlich isotherm model and intraparticle diffusion model. It indicated that TMCR is expected to be a new material for patulin adsorption from aqueous solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Plasma Discharge with Different Electrode Diameters for Reducing Methylene Blue Concentration

    NASA Astrophysics Data System (ADS)

    Rasyidah, H.; Kusumandari; Saraswati, T. E.; Anwar, M.

    2018-03-01

    Recently, plasma technology has gained attention since it overcomes the shortcomings of water treatment. This research studies the effect of electrode diameter of plasma discharge reactors on the concentration reduction of methylene blue as an organic solution. The plasma discharge reactor was built from a pair of stainless needle electrodes connected with high-AC voltage. The electrodes were placed approximately 2 mm above the solution and stirred at 5.5 rpm. The diameters of the electrodes were 2, 3.2 and 4 mm. The times for plasma treatment were set at 2, 4, 6, 8 and 10 min. Absorbance, temperature and pH of the solution were measured to know the effects of electrode diameter of the plasma reactor. Absorbance and pH significantly decreased after plasma treatment. The best of the absorbance reduction were obtained when the sample was treated under plasma discharge using the smallest diameter electrodes for 8-10 min.

  1. Neutron studies of paramagnetic fullerenols’ assembly in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Szhogina, A. A.; Suyasova, M. V.

    2018-03-01

    Recent results on structural studies of aqueous solutions of water-soluble derivatives of endofullerenes encapsulating 4f- and 3d-elements have been presented. Neutron small angle scattering experiments allowed recognize subtle features of fullerenols assembly as dependent on chemical nature (atomic number) of interior atom, pH-factor and temperature of solutions. It was observed a fractal-type fullerenols’ ordering at the scale of correlation radii ∼ 10-20 nm when molecules with iron atoms are integrated into branched structures at low concentrations (C ≤ 1 % wt.) and organized into globular aggregates at higher amounts (C > 1 % wt.). On the other hand, for Lanthanides captured in carbon cages the supramolecular structures are mostly globular and have larger gyration radii ∼ 30 nm. They demonstrated a good stability in acidic (pH ∼ 3) and neutral (pH ∼ 7) media that is important for forthcoming medical applications.

  2. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves.

    PubMed

    Guerrero-Coronilla, Imelda; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo

    2015-04-01

    The present study explored the kinetics, equilibrium and thermodynamics of amaranth (acid red 27) anionic dye (AD) biosorption to water hyacinth leaves (LEC). The effect of LEC particle size, contact time, solution pH, initial AD concentration and temperature on AD biosorption was studied in batch experiments. AD biosorption increased with rising contact time and initial AD concentration, and with decreasing LEC particle size and solution pH. Pseudo-second-order chemical reaction kinetics provided the best correlation for the experimental data. Isotherm studies showed that the biosorption of AD onto LEC closely follows the Langmuir isotherm, with a maximum biosorption capacity of about 70 mg g(-1). The thermodynamic parameters confirm that AD biosorption by LEC is non-spontaneous and endothermic in nature. Results indicate that LEC is a strong biosorbent capable of effective detoxification of AD-laden wastewaters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature.

    PubMed

    Ma, Jie; Li, Haiyan; Chi, Liping; Chen, Hongkun; Chen, Changzhao

    2017-12-01

    Persulfate (peroxydisulfate, S 2 O 8 2- ) is the newest oxidant used for the in situ chemical oxidation (ISCO) remediation of soil and groundwater. The present study investigated impacts of solution pH, temperature, and persulfate concentration on the reaction rate constant (k 1 ), activation energy (E a ), and reaction order of the heat-activated persulfate process. Phenol was chosen as the model organic contaminant. As temperature increased from 30 °C to 70 °C, k 1 exhibited a significant increase from 0.003 h -1 ∼0.962 h -1 (pH 1.3-13.9) to 1.184 h -1 ∼9.91 h -1 (pH 1.3-13.9), which corroborated with the activation of persulfate using heat. As pH increased from 1.3 to 13.9, k 1 exhibited a 4.3-fold increase at 70 °C and a 320-fold increase at 30 °C, thereby suggesting that: 1) the phenol oxidation rate increased under alkaline conditions, and 2) the enhancement of reaction rate due to alkaline activation was more pronounced at a lower temperature. Increasing pH significantly reduced E a from 139.7 ± 1.3 kJ/mol at pH 1.3 to 52.0 ± 3.3 kJ/mol at pH 13.9. In contrast to changing pH, increasing persulfate concentration from 20 to 320 mM significantly increased k 1 but did not affect E a . Changes in E a suggest that persulfate oxidation of phenol experienced different reaction pathways or elementary reaction sequences as the pH changed from 1.3 to 13.9. In addition, the k 1 and E a data also suggest that a minimal pH threshold of ∼11 was required for the effective alkaline activation of persulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Organic Carbon Release from Groundwater Sediments under Changing Geochemical Conditions

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Bhattacharyya, A.; Fox, P. M.; Nico, P. S.

    2016-12-01

    Due to climate change, local weather patterns are expected to change, especially with respect to precipitation, the frequency of extreme storm water events, and `drought-like' conditions. This in turn, may affect groundwater recharge, the geochemical conditions in natural groundwater systems, and the chemical and microbiological processes involved in organic matter degradation. Besides the complexity of organic matter structures and local limitations in nutrients, the association of organic carbon with sediment minerals can strongly limit organic matter bioaccessability and degradability. In this study, we investigate how variations in groundwater chemistry, e.g. with respect to dissolved CO2 concentrations, may potentially affect the release of natural organic carbon from groundwater sediments, and render organic matter more bioaccessible. In lab-scale experiments under anaerobic conditions, aquifer sediments from the floodplain of the Colorado River (Rifle, USA) were brought into contact with fresh, organic-carbon free groundwater solutions, at natural or reduced CO2 concentration levels. During the repeated exchange of solutions at two temperature settings (room-temperature and 4 °C), supernatant solutions were characterized in terms of pH, dissolved metal and organic carbon (OC) concentrations, and potential changes in released OC characteristics. Sediment samples were evaluated for possible differences in Fe-speciation before and after the experiment based on EXAFS (bulk Fe K-edge). Preliminary results for 20 exchanges of groundwater solutions show a repeated release of low OC concentrations ( 0.5-2 mg OC/g sediment; 0.05-0.2% of sediment-associated OC) without any apparent depletion in the overall source term over 50 days. After 14 days, room-temperature samples released slightly higher OC concentrations than samples kept at 4 °C. An increase in solution pH, after switching to a `CO2-free' groundwater solution, did not trigger a higher OC release. Last, specific UV absorbance measurements for room-temperature samples suggest changes in released OC characteristics due to repeated solution exchanges. Additional sample characterization is ongoing, with the goal to elucidate potential changes in released OC characteristics over the course of the experiment.

  5. Stability of Ribavirin for Inhalation Packaged in Syringes or Glass Vials when Stored Frozen, Refrigerated, and at Room Temperature.

    PubMed

    Larson, Bayli; Bushman, Lane R; Casciano, Matthew L; Oldland, Alan R; Kiser, Jennifer J; Kiser, Tyree H

    2016-01-01

    The primary aim of this study was to investigate ribavirin solution for inhalation stability under three different conditions (frozen, refrigerated, room temperature) over a 45-day period. A ribavirin 6000-mg vial was reconstituted with 90 mL of Sterile Water for Injection per the package insert to yield a concentration of approximately 67 mg/mL. The solution was then placed in either syringes or empty glass vials and stored in the freezer (-20°C), in the refrigerator (~0°C to 4°C), or at room temperature (~20°C to 25°C). Original concentrations were measured on day 0 and subsequent concentrations were measured on day 2, 14, and 45 utilizing a validated liquid chromatography with tandem mass spectrometry assay. All analyses were performed in triplicate for each storage condition. Additionally, at each time point the physical stability was evaluated and the pH of solution was measured. The solution was considered stable if =90% of the original concentration was retained over the study period. A validated liquid chromatography with tandem mass spectrometry analysis demonstrated that >95% of the original ribavirin concentration was preserved over the 45-day period for all study conditions. The ribavirin concentration remained within the United States Pharmacopeia (USP)-required range of 95% to 105% of the original labeled product amount throughout the entire study period for all study conditions. Precipitation of ribavirin was noted during the thawing cycle for frozen samples, but the drug went back into solution once the thawing process was completed. No changes in color or turbidity were observed in any of the prepared solutions. Values for pH remained stable over the study period and ranged from 4.1 to 5.3. Ribavirin for inhalation solution is physically and chemically stable for at least 45 days when frozen, refrigerated, or kept at room temperature after reconstitution to a concentration of approximately 67 mg/mL and placed in syringes or glass vials. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  6. Derived and thiourea-functionalized silica for cadmium removal: isotherm, kinetic and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Omotunde, Iyanu; Okoronkwo, Afamefuna; Oluwashina, Olugbenga

    2018-03-01

    The present study explored the feasibility of using derived and thiourea-functionalized silica as adsorbent for the removal of cadmium under different experimental conditions. Effects of various parameters such as function of point of zero charge (pHPZC), solution pH, sorbent-sorbate resident time and ratio, concentration and temperature were investigated. The sorption of cadmium followed the pseudo-second-order rate kinetics. Thermodynamic studies revealed that the sorption of cadmium was endothermic and spontaneous, with good affinity toward the sorbent. Various isotherm models, viz. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkins-Jura, and Halsey isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich, Halsey, Langmuir, and Temkin models were found to be in good agreement with the experimental data with high R 2, low RMSE, and low χ 2 values. The results show that the sorption capacity increases with an increase in solution temperature from 28 to 65 °C. The maximum sorption capacity calculated from Langmuir isotherm was 27.55 and 28.41 mg g-1 for derived and thiourea-functionalized silica, respectively, at optimum condition of pH 5 and contact time of 120 min.

  7. Reversible and non-reversible thermal denaturation of lysozyme with varying pH at low ionic strength.

    PubMed

    Blumlein, Alice; McManus, Jennifer J

    2013-10-01

    DSC analysis has been used to quantify the reversibility of unfolding following thermal denaturation of lysozyme. Since the temperature at which protein unfolding occurs, Tm, varies with different solution conditions, the effect on the melting temperature and the degree of refolding after thermal denaturation in low ionic strength sodium phosphate buffers (5-1000mM) over a range of pH (5-9) in the presence/absence of disaccharides is examined. This study compares the enthalpies of unfolding during successive heating cycles to quantify reversibility following thermal denaturation. The disaccharides, trehalose and maltose were used to assess if the disaccharide induced increase in Tm is reflected in the reversibility of thermally induced denaturation. There was extensive overlap between the Tm values where non-reversible and reversible thermal denaturation occurred. Indeed, for pH6, at the highest and lowest Tm, no refolding was observed whereas refolding was observed for intermediate values, but with similar Tm values having different proportions of refolded protein. We established a method to measure the degree of reversible unfolding following thermal denaturation and hence indirectly, the degree to which protein is lost to irreversible aggregation, and show that solution conditions which increase melt transition temperatures do not automatically confer an increase in reversibility. This type of analysis may prove useful in assessing the stability of proteins in both the biopharmaceutical and food industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior.

    PubMed

    Rumpagaporn, Pinthip; Kaur, Amandeep; Campanella, Osvaldo H; Patterson, John A; Hamaker, Bruce R

    2012-01-01

    In in vitro batch fermentations, both alkali-extractable corn arabinoxylan (CAX) and its xylanase-hydrolyzate (CH) were utilized by human fecal microbiota and produced similar short chain fatty acid (SCFA) contents and desirable long fermentation profiles with low initial gas production. Fortification of these arabinoxylans into processed foods would contribute desirable dietary fiber benefits to humans. Heat and pH stability, as well as viscosity behavior of CAX and CH were investigated. Size exclusion chromatography was used to analyze the molecular size distribution after treatment at different pH's and heating temperatures for different time periods. Treated under boiling and pressure cooking conditions at pH 3, CAX was degraded to a smaller molecular size, whereas the molecular size of the CH showed only a minor decrease. CAX and CH were mostly stable at neutral pH, except when CAX was treated under pressure for 60 min that slightly lowered molecular size. At 37 °C, neither CAX nor CH was adversely affected by treatment at low or neutral pH. The viscosities of solutions containing 5% and 10% of CAX were 48.7 and 637.0 mPa.s, respectively that were higher than those of solutions containing 5% and 10% of its hydrolyzate at shear rate 1 s⁻¹. The CAX solutions showed Newtonian flow behavior, whereas shear-thinning behavior was observed in CH solutions. In conclusion, the hydrolyzate of CAX has potential to be used in high fiber drinks due to its favorable fermentation properties, higher pH and heat stability, lower and shear-thinning viscosity, and lighter color than the native CAX. Arabinoxylan extracted by an alkali from corn bran is a soluble fiber with a desirable low initial and extended fermentation property. Corn arabinoxylan hydrolyzate using an endoxylanase was much more stable at different levels of acidity and heat than the native arabinoxylan, and showed lower solution viscosity and shear-thinning property that indicates its potential as an alternative functional dietary fiber for the beverage industry. © 2011 Institute of Food Technologists®

  9. Modeling coliform-bacteria concentrations and pH in the salt-wedge reach of the Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Haushild, W.L.; Prych, Edmund A.

    1976-01-01

    Total- and fecal-coliform bacteria, plus pH, alkalinity, and dissolved inorganic carbon are water-quality parameters that have been added to an existing numerical model of water quality in the salt-wedge reach of the Duwamish River estuary in Washington. The coliform bacteria are modeled using a first-order decay (death) rate, which is a function of the local salinity, temperature, and daily solar radiation. The pH is computed by solving a set of chemical-equilibrium equations for carbonate-bicarbonate buffered aqueous solutions. Concentrations of total- and fecal-coliform bacteria computed by the model for the Duwamish River estuary during June-September 1971 generally agreed with observed concentrations within about 40 and 60 percent, respectively. The computed pH generally agreed with observed pH within about a 0.2 pH unit; however, for one 3-week period the computed pH was about a 0.4 unit lower than the observed pH. (Woodard-USGS)

  10. Effect of citric acid on the acidification of artificial pepsin solution for metacercariae isolation from fish.

    PubMed

    Kim, Min-Ki; Pyo, Kyoung-Ho; Hwang, Young-Sang; Chun, Hyang Sook; Park, Ki Hwan; Ko, Seong-Hee; Chai, Jong-Yil; Shin, Eun-Hee

    2013-11-15

    Artificial digestive solution based on pepsin is essential for collecting metacercariae from fish. To promote the enzymatic reactivity of pepsin, the pH of the solution has to be adjusted to pH 1.0-2.0. Hydrochloride (HCl) is usually used for this purpose, but the use of HCl raises safety concerns. The aim of this work was to address the usefulness of citric acid as an alternative for HCl for the acidification of pepsin solution, and to examine its potential to damage metacercariae during in vitro digestion as compared with HCl. Changes in pH after adding 1-9% of citric acid (m/v) to pepsin solution were compared to a 1% HCl (v/v) addition. Digestion of fish muscle was evaluated by measuring released protein concentrations by spectrophotometry. In addition, survival rates of metacercariae in pepsin solution were determined at different citric acid concentrations and were compared that of with 1% HCl. The present study shows that addition of citric acid reduced the pH of pepsin solutions to the required level. Addition of more than 5% of citric acid resulted in the effective digestion of fish muscle over 3h in vitro, and 5% citric acid was less lethal to metacercariae than 1% HCl in pepsin solution. Pepsin solution containing 5% citric acid had digestive capacity superior to pepsin solution containing 1% HCl after 3h incubation with released protein concentrations of 12.0 ng/ml for 5% citric acid and 9.6 ng/ml for 1% HCl. Accordingly, the present study suggests that the addition of 5% citric acid to pepsin solution is a good alternative to 1% HCl in infection studies because citric acid is a stable at room temperature and has a good safety profile. In addition, we suggest that the use of citric acid enables the preparation of commercial digestive solutions for the detection of microorganisms in fish and other vertebrate muscle tissue. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    NASA Astrophysics Data System (ADS)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  12. Stability of immobilized amyloglucosidase in the process of Cassava starch saccharification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, G.M.; De Moraes, F.F.

    1995-12-31

    The half-life of immobilized amyloglucosidase was determined in a fluidized-bed reactor operating continuously with a 30% w/v liquefied cassava starch solution at pH 4.5 and temperatures from 50 to 70{degrees}C. For the higher temperatures: 60, 65, and 70{degrees}C, thermal deactivation gives half-lives of 127, 38 and 7.3 h, respectively, in close agreement with corn starch data. For the lower temperatures: 55 and 60{degrees}C, the deposition of impurities over the immobilized enzyme particle contributes significantly to deactivation, lowering expected half-lives to 32.6 and 13.2 d, respectively. Commercial exploitation of this process would then require low temperature of operation, thorough purification ofmore » the substrate solution, and control of microbial contamination to achieve sufficiently long half-lives.« less

  13. Studies on the potent bacterial mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone: aqueous stability, XAD recovery and analytical determination in drinking water and in chlorinated humic acid solutions.

    PubMed

    Meier, J R; Knohl, R B; Coleman, W E; Ringhand, H P; Munch, J W; Kaylor, W H; Streicher, R P; Kopfler, F C

    1987-12-01

    3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was detected by gas chromatography/mass spectrometry in drinking water samples from 3 locations in the U.S.A., and also in a chlorinated humic acid solution. MX appears to account for a significant proportion of the mutagenicity of these samples, as measured in the Ames test using strain TA100 without metabolic activation. Studies on recovery of MX from spiked water samples by XAD-2/8 resin adsorption/acetone elution indicated that sample acidification prior to resin adsorption was essential to the effective recovery of MX. The stability of MX in aqueous solution was pH and temperature dependent. At 23 degrees C the order of stability, based on persistence of mutagenic activity was found to be: pH 2 greater than pH 4 greater than pH 8 greater than pH 6. The half-life at pH 8 and 23 degrees C was 4.6 days. One of the degradation products has been tentatively identified as 2-chloro-3-(dichloromethyl)-4-oxo-2-butenoic acid, an open form of MX which appears to be in the "E" configuration. Overall, these results suggest that MX is formed during water chlorination as a result of reaction of chlorine with humic substances, and that a substantial fraction of the MX formed is likely to persist throughout the distribution system.

  14. Improvement of physicomechanical properties of carbamazepine by recrystallization at different pH values.

    PubMed

    Javadzadeh, Yousef; Mohammadi, Ameneh; Khoei, Nazaninossadat Seyed; Nokhodchi, Ali

    2009-06-01

    The morphology of crystals has an appreciable impact role on the physicochemical properties of drugs. Drug properties such as flowability, dissolution, hardness and bioavailability may be affected by crystallinity behaviours of drugs. The objective of this study was to achieve an improved physicomechanical property of carbamazepine powder through recrystallization from aqueous solutions at different pH values. For this purpose, carbamazapine was recrystallized from aqueous solutions at different pH values (1, 7, 11). The morphology of crystals was investigated using scanning electron microscopy; X-ray powder diffraction (XRPD) was used to identify polymorphism; thermodynamic properties were analyzed using differential scanning calorimetery (DSC). Dissolution rate was determined using USP dissolution apparatus. Mechanical behavior of recrystallized carbamazepine powders was investigated by making tablets under different compaction pressure and measuring their hardness. SEM studies showed that the carbamazepine crystallization in different media affected the morphology and size of carbamazepine crystals. The shape of carbamazepine crystals changed from flaky or thin plate-like to needle shape. XRPD and DSC results ruled out any crystallinity changes occurring due to the temperature during recrystallization procedure or pH of crystallization media. The crushing strength of tablets indicated that all of the recrystallized carbamazepine samples had better compactiblity than the original carbamazepine powder. In vitro dissolution studies of carbamazepine samples showed a higher dissolution rate for carbamazepine crystals obtained from media with pH 11 and 1. Carbamazepine particles recrystallized from aqueous solutions of different pH values (all media) appeared to have superior mechanical properties to those of the original carbamazepine sample.

  15. Investigating the Implementation of ZnO Nanoparticles as a Tunable UV Detector for Different Skin Types

    NASA Astrophysics Data System (ADS)

    Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra

    A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.

  16. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite

    NASA Astrophysics Data System (ADS)

    Aghajani, Khadijeh; Tayebi, Habib-Allah

    2017-01-01

    In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).

  17. Interaction of two diclofenac acid salts with copolymers of ammoniomethacrylate: effect of additives and release profiles.

    PubMed

    Khalil, E; Sallam, A

    1999-04-01

    The copolymer of ammoniomethacrylate Eudragit RL (ERL) interacted with diclofenac acid salts (sodium and diethylamine salts) in aqueous solutions, forming a complex. Sorption experiments were done in aqueous solutions of either sodium lauryl sulfate (SLS), Tween 20, or Tween 80. The SLS competed strongly with the drug, even at low concentrations, and reduced significantly the amount of drug sorbed by ERL. Tweens at high concentrations exhibited two phase profiles: the sorption phase, which was short and during which drug concentration dropped sharply, and the release phase, during which the drug was released slowly over 24 hr and which was accompanied by dispersion of ERL particles into the colloidal dispersion. The interaction was dependent on temperature, ionic strength, and nature of the additives. The extent of interaction in water and phosphate buffer solutions was in the following order: water > pH 6 > pH 7-8. In-vitro dissolution studies of the dried complex were done over 24 hr. In water, the drug remained bound to the polymer. In aqueous surfactant solutions (SLS, Tween 20, and Tween 80) and phosphate buffer at pH 6.8, a linear relationship between drug concentration and the square root of time was obtained, indicating a matrix diffusion-controlled mechanism. However, 100% release was not reached, and resorption was observed in the phosphate buffer solution.

  18. The Impact of Hexametaphosphate, Orthophosphate, and Temperature on Copper Corrosion and Release

    EPA Science Inventory

    Excessive corrosion of copper plumbing can lead to elevated copper levels at consumer’s tap or pinhole leaks. Corrosion control solutions include pH adjustment or phosphate addition. Orthophosphate has been shown to reduce copper levels in some cases while the role of polyphosp...

  19. Thermal stability of tagatose in solution.

    PubMed

    Luecke, Katherine J; Bell, Leonard N

    2010-05-01

    Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.

  20. Photoacoustic assay for probing amyloid formation: feasibility study

    NASA Astrophysics Data System (ADS)

    Petrova, Elena; Yoon, Soon Joon; Pelivanov, Ivan; O'Donnell, Matthew

    2018-02-01

    The formation of amyloid - aggregate of misfolded proteins - is associated with more than 50 human pathologies, including Alzheimer's disease, Parkinson's disease, and Type 2 diabetes mellitus. Investigating protein aggregation is a critical step in drug discovery and development of therapeutics targeted to these pathologies. However, screens to identify protein aggregates are challenging due to the stochastic character of aggregate nucleation. Here we employ photoacoustics (PA) to screen thermodynamic conditions and solution components leading to formation of protein aggregates. Particularly, we study the temperature dependence of the Gruneisen parameter in optically-contrasted, undersaturated and supersaturated solutions of glycoside hydrolase (lysozyme). As nucleation of protein aggregates proceeds in two steps, where the first is liquid-liquid separation (rearrangement of solute's density), the PA response from complex solutions and its temperature-dependence monitor nucleation and differentiate undersaturated and supersaturated protein solutions. We demonstrate that in the temperature range from 22 to 0° C the PA response of contrasted undersaturated protein solution behaves similar to water and exhibits zero thermal expansion at 4°C or below, while the response of contrasted supersaturated protein solution is nearly temperature independent, similar to the behavior of oils. These results can be used to develop a PA assay for high-throughput screening of multi-parametric conditions (pH, ionic strength, chaperone, etc.) for protein aggregation that can become a key tool in drug discovery, targeting aggregate formation for a variety of amyloids.

  1. Study of the IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, S.; Yashima, S.; Ohnishi, K.

    1995-09-01

    IGA/SCC of Alloy 600 steam generator (SG) tubes in the secondary side has been recognized as a matter of great concern for PWRs. IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions were studied using CERT method under potentiostatic conditions. The IGA/SCC susceptible regions were investigated as the function of pH and electrode potential. To understand the cause of IGA/SCC, the electrochemical measurements and surface film analysis were also performed in acidic and alkaline solutions. To verify the results of CERT test, the long term model boiler tests were also carried out. Thermally treated Alloy 690 showed highermore » IGA/SCC resistance than Alloy 600 under both acid and alkaline conditions.« less

  2. Plasma Induced Degradation of Aniline in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gao, Jin-zhang; Gai, Ke; Lu, Quan-fang; Liu, Yong-jun; Wang, Xiao-yan; Deng, Hua-ling; Hu, Zhong-ai

    2002-04-01

    In this paper, the degradation of aniline by plasma which was generated in a localized zone between an electrolytic solution and an anode was reported. The influence of the initial concentration, temperature, pH and different mediums of aniline on the reaction kinetic was investigated. The results showed that temperature had a remarkable effect on the degradation of aniline, but the concentration had no appreciable effect on the degradation. There is a maximum elimination rate on the degradation of aniline in neutral condition. Iron (II) and other cations had a remarkable catalytic action on it. On the basis of the detailed analysis of the kinetical consideration, it was demonstrated that the oxidative degradation would be a first-order reaction. Some of the intermediate products of the degradatio process in the solution were detected by HPLC.

  3. Lead induced stress corrosion cracking of Alloy 690 in high temperature water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, K.K.; Lim, J.K.; Moriya, Shinichi

    1995-12-31

    Recent investigations of cracked steam generator tubes at nuclear power plants concluded that lead significantly contributed to cracking the Alloy 600 materials. In order to investigate the stress corrosion cracking (SCC) behavior of Alloy 690, slow strain rate tests (SSRT) and anodic polarization measurements were performed. The SSRTs were conducted in a lead-chloride solution (PbCl{sub 2}) and in a chloride but lead free solution (NaCl) at pH of 3 and 4.5 at 288 C. The anodic polarization measurements were carried out at 30 C using the same solutions as in SSRT. The SSRT results showed that Alloy 690 was susceptiblemore » to SCC in both solutions. In the lead chloride solution, cracking had slight dependence on lead concentration and pH. Cracking tend to increase with a higher lead concentration and a lower pH and was mainly intergranular and was to be a few tens to hundreds micrometers in length. In the chloride only solution, cracking was similar to the lead induced SCC. The results of anodic polarization measurement and electron probe micro analysis (EPMA) helped to understand lead induced SCC. Lead was a stronger active corrosive element but had a minor affect on cracking susceptibility of the alloy. While, chloride was quite different from lead effect to SCC. A possible mechanism of lead induced SCC of Alloy 690 was also discussed based on the test results.« less

  4. Two mechanisms of H+/OH- transport across phospholipid vesicular membrane facilitated by gramicidin A.

    PubMed Central

    Prabhananda, B S; Kombrabail, M H

    1996-01-01

    Two rate-limiting mechanisms have been proposed to explain the gramicidin channel facilitated decay of the pH difference across vesicular membrane (delta pH) in the pH region 6-8 and salt (MCI, M+ = K+, Na+) concentration range 50-300 mM. 1) At low pH conditions (approximately 6), H+ transport through the gramicidin channel predominantly limits the delta pH decay rate. 2) At higher pH conditions (approximately 7.5), transport of a deprotonated species (but not through the channel) predominantly limits the rate. The second mechanism has been suggested to be the hydroxyl ion propogation through water chains across the bilayer by hydrogen bond exchange. In both mechanisms alkali metal ion transport providing the compensating flux takes place through the gramicidin channels. Such an identification has been made from a detailed study of the delta pH decay rate as a function of 1) gramicidin concentration, 2) alkali metal ion concentration, 3) pH, 4) temperature, and 5) changes in the membrane order (by adding small amounts of chloroform to vesicle solutions). The apparent activation energy associated with the second mechanism (approximately 3.2 kcal/mol) is smaller than that associated with the first mechanism (approximately 12 kcal/mol). In these experiments, delta pH was created by temperature jump, and vesicles were prepared using soybean phospholipid or a mixture of 94% egg phosphatidylcholine and 6% phosphatidic acid. PMID:8968580

  5. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  6. Plasma Induced Degradation of Benzidine in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gao, Jinzhang; Gai, Ke; Yang, Wu; Dong, Yanjie

    2003-10-01

    The degradation of benzidine in aqueous solution by the low temperature plasma was examined. The results showed that the concentration of medium and the value of pH have an appreciable effect on the degradation of benzidine. What is more important is that iron ions acting as a catalyst play an important role in this reaction. For exploring the degradation mechanism of benzidine, some of the intermediate products were recorded by HPLC (high performance liquid chromatography).

  7. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  8. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.

    PubMed

    Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik

    2012-04-01

    In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Determination of aliphatic amines in mineral flotation liquors and reagents by high-performance liquid chromatography after derivatization with 4-chloro-7-nitrobenzofurazan.

    PubMed

    Hao, F; Lwin, T; Bruckard, W J; Woodcock, J T

    2004-11-05

    The method described here fulfils the need for a suitable analytical method to determine the concentrations of single and mixed aliphatic amines in the range from hexylamine (C6) to octadecylamine (C18) in flotation test solutions and in commercial flotation collectors. Amines do not have a UV-vis spectrum in aqueous solution but by reacting an amine-containing solution with 4-chloro-7-nitrobenzofurazan solution (chloro-NBD), derivatized products (amino-NBDs) are formed which have absorbance maxima at 470nm. Excess chloro-NBD and the amino-NBDs can be separated from each other by high-performance liquid chromatography (HPLC) and their concentrations measured with a UV-vis detector. Important variables in the derivatization stage are pH, temperature, chloro-NBD concentration, and reaction time, all of which interact with each other. A three-stage statistical procedure was used to determine the optimum conditions. In each stage, an 8-test design was used in which a high and low limit was set for each variable, and the chromatogram peak area of the derived amino-NBD was measured. The optimum derivatization conditions established were pH 8.9, chloro-NBD concentration 0.20% (w/v), temperature 70 degrees C, and reaction time 60 min. Optimum elution conditions for chromatography were an eluent containing 80% (v/v) acetonitrile in aqueous solution containing 40mM acetic acid at pH 4.5. With a flow rate of 2.0 ml/min, dodecylamine had a retention time of about 3 min, whereas octadecylamine had a retention time of 44 min. Straight-line calibration curves were obtained up to at least 200 ppm of amine in solution. The lower limit of detection was estimated to be 0.05 microM (10ppb) with a signal to noise ratio of 3. No interfering substances were found. The method was successfully applied to the analysis of solutions from an actual flotation test and to a solid commercial amine.

  10. Evolution of Spatial pH Distribution in Aqueous Solution induced by Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Shigenori; Mano, Kakeru; Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu

    2016-09-01

    Discharge plasma at gas-liquid interface produces some active species, and then they affect chemical reactions in aqueous solution, where pH of aqueous solution is changed due to redox species. The pH change of aqueous solution is an important factor for chemical reactions. However, spatial pH distribution in a reactor during the discharge has not been clarified yet. Thus, this work focused on spatial pH distribution of aqueous solution when pulsed discharge plasma was generated from a copper electrode in gas phase to aqueous solution in a reactor. Experiments were conducted using positive unipolar pulsed power. The unipolar pulsed voltage at +8.0 kV was applied to the copper electrode and the bottom of the reactor was grounded. The size of the reactor was 80 mm wide, 10 mm deep, and 40 mm high. The electrode was set at distance of 2 mm from the solution surface. Anthocyanins were contained in the aqueous solution as a pH indicator. The change pH solution spread horizontally, and low pH region of 10 mm in depth was formed. After discharge for 10 minutes, the low pH region was diffused toward the bottom of the reactor. After discharge for 60 minutes, the pH of the whole solution decreased.

  11. Basic mechanism of button battery ingestion injuries and novel mitigation strategies after diagnosis and removal.

    PubMed

    Jatana, Kris R; Rhoades, Keith; Milkovich, Scott; Jacobs, Ian N

    2017-06-01

    Button battery (BB) injuries continue to be a significant source of morbidity and mortality, and there is a need to confirm the mechanism of injury for development of additional mitigation strategies. Cadaveric piglet esophageal model. Lithium, silver oxide, alkaline, and zinc-air BBs were placed in thawed sections of cadaveric piglet esophagus, bathed in normal saline. Severity of gross visual burn, pH, and temperature were recorded every 30 minutes for 6 hours. In other esophageal tissue specimens, the lithium BB was removed after 24, 36, and 48 hours and the site was irrigated with either 0.25% or 3% acetic acid. Separately, ReaLemon® juice, orange juice, Coke®, Dasani® water, Pepsi®, and saline were infused over a vertically suspended esophagus with a CR2032 lithium battery every 5 minutes for 2 hours while tissue temperature and pH were measured. A gradual rise in tissue pH and minimal change in temperature was noted for all BBs. ReaLemon® and orange juice applied every 5 minutes were most effective at neutralization of tissue pH with minimal change in tissue temperature. After BB removal (24, 36, 48 hours), irrigation of esophageal tissue specimens with 50-150 mL 0.25% acetic acid neutralized the highly alkaline tissue pH. BB appear to cause an isothermic hydrolysis reaction resulting in an alkaline caustic injury. Potential new mitigation strategies include application of neutralizing weakly acidic solutions that may reduce esophageal injury progression. NA Laryngoscope, 127:1276-1282, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Fluorescence behaviour of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Batschauer, A.; Wolf, E.

    2009-06-01

    The fluorescence spectroscopic behaviour of (6R,S)-5,10-methenyltetrahydrofolate (MTHF), (6R,S)-10-formyltetrahydrofolate (10-HCO-H4folate), 10-formyldihydrofolate (10-HCO-H2folate), and 10-formylfolate (10-HCO-folate) in aqueous Tris-HCl buffer at pH 8 is studied. MTHF and 10-HCO-folate were commercially available. 10-HCO-H4folate was prepared from MTHF by hydrolysis at room temperature under anaerobic conditions. 10-HCO-H2folate was prepared by oxidation of 10-HCO-H4folate under aerobic conditions. Fluorescence quantum distributions at room temperature and fluorescence signal decays at room temperature and liquid nitrogen temperature were measured. The fluorescence lifetimes determined at room temperature (liquid nitrogen temperature) are 10 ps (2.9 ns) for MTHF, 38 ps (3.7 ns) for 10-HCO-H4folate, 80 ps (10.5 ns) for 10-HCO-H2folate, and 7.1 ns (20 ns) for 10-HCO-folate. The results are discussed in terms of dyadic (pterin-benzoyl-glutamate) photo-induced electron transfer and dyadic fluorescent dynamics.

  13. Characterizing the correlation between dephosphorization and solution pH in a calcined water treatment plant sludge.

    PubMed

    Zhou, Zhenming; Liu, Qidi; Li, Shuwen; Li, Fei; Zou, Jing; Liao, Xiaobin; Yuan, Baoling; Sun, Wenjie

    2018-04-26

    This study focused on characterizing the correlation between the dephosphorization process of calcined water treatment plant sludge (C-WTPS) and the solution initial pH in batch experiments. The specific aim was to illustrate the effect of different initial pH on the adsorption and desorption of phosphorous in C-WTPS. In addition, the effects of solution initial pH on the release of ammonia nitrogen and total organic carbon (TOC) from C-WTPS and the change of pH after adsorption were also investigated. The results demonstrated that the initial pH significantly influenced the adsorption of phosphorus on C-WTPS. When initial pH was increased from 3 to 10, the phosphorous absorption capacity reduced by 76.5%. Especially, when the initial pH reached to 11, the phosphorus adsorption capacity became a negative value, indicating that C-WTPS released phosphorus into the solution. The addition of C-WTPS to the solution had little impact on the initial pH of the solution. The absorbed phosphorous on C-WTPS was relatively stable in the pH range of 3 to 10. Nevertheless, when the solution pH was higher than 11, it can be easily released into the solution. Furthermore, by comparison with WTPS, C-WTPS released less ammonia nitrogen and TOC into the solution and adsorbed more phosphorus from the solution in the experimental pH range. Therefore, C-WTPS is more suitable to serve as a cost-effective sorbent for phosphorus removal.

  14. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  15. Synthesis of hydroxyapatite whiskers through dissolution reprecipitation process using EDTA

    NASA Astrophysics Data System (ADS)

    Seo, Dong Seok; Lee, Jong Kook

    2008-04-01

    Hydroxyapatite (HA) has been of interest in many industrial applications, such as ion exchange, catalysis and biomaterials. Chelating agents have often been used to prepare inorganic powders in the form of sphere, rod, whisker and fiber. In this study, HA whiskers were synthesized directly from typically shaped HA powders by refluxing at 80 and 100 °C for 24 h using ethylenediamine tetraacetic acid (EDTA). 3% or 6% of hydrogen peroxide (H 2O 2) was used to promote precipitation of HA crystals. The pH of the solution was adjusted at 7 or 9 by adding ammonia solution. The higher the H 2O 2 concentration, pH value and refluxing temperature, the longer and thinner whiskers were formed. The whiskers produced at 100 °C with 6% of H 2O 2 and pH 9 had the highest aspect ratio of about 50-60 (a length of 3 μm and a width of 0.05 μm).

  16. Effect of pH on ionic liquid mediated synthesis of gold nanoparticle using elaiseguineensis (palm oil) kernel extract

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Ahmad, Tausif; Moniruzzaman, Muhammad; Abdullah, Bawadi

    2017-05-01

    This study was conducted for microwave assisted synthesis of stable gold nanoparticles (AuNPs) by reduction of chloroauric acid with Elaeis Guineensis (palm oil) kernel (POK) extract which was prepared in aqueous solution of ionic liquid, [EMIM][OAc], 1-Ethyl-3-methylimidazolium acetate. Effect of initial pH of reaction mixture (3.5 - 8.5) was observed on SPR absorbance, maximum wavelength (λmax ) and size distribution of AuNPs. Change of pH of reaction mixture from acidic to basic region resulted in appearance of strong SPR absorption peaks and blue shifting of λmax from 533 nm to 522 nm. TEM analysis revealed the formation of predominantly spherical AuNPs with mean diameter of 8.51 nm. Presence of reducing moieties such as flavonoids, phenolic and carboxylic groups in POK extract was confirmed by FTIR analysis. Colloidal solution of AuNPs was remained stable at room temperature and insignificant difference in zeta value was recorded within experimental tenure of 4 months.

  17. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation.

    PubMed

    Li, Mei; Li, Ji-Tai; Sun, Han-Wen

    2008-07-01

    At its natural pH (6.95), the decolorization of Reactive red 24 in ultrasound, ultrasound/H2O2, exfoliated graphite, ultrasound/exfoliated graphite, exfoliated graphite/H2O2 and ultrasound/exfoliated graphite/H2O2 systems were compared. An enhancement was observed for the decolorization in ultrasound/exfoliated graphite/H2O2 system. The effect of solution pH, H2O2 and exfoliated graphite dosages, and temperature on the decolorization of Reactive red 24 was investigated. The sonochemical treatment in combination with exfoliated graphite/H2O2 showed a synergistic effect for the decolorization of Reactive red 24. The results indicated that under proper conditions, there was a possibility to remove Reactive red 24 very efficient from aqueous solution. The decolorization of other azo dyes (Reactive red 2, Methyl orange, Acid red 1, Acid red 73, Acid red 249, Acid orange 7, Acid blue 113, Acid brown 75, Acid green 20, Acid yellow 42, Acid mordant brown 33, Acid mordant yellow 10 and Direct green 1) was also investigated, at their natural pH.

  18. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties

    PubMed Central

    Zhao, Xue; Vázquez-Gutiérrez, José Luis; Johansson, Daniel P.; Landberg, Rikard; Langton, Maud

    2016-01-01

    A protocol for extraction of yellow mealworm larvae proteins was established, conditions were evaluated and the resulting protein extract was characterised. The freeze-dried yellow mealworm larvae contained around 33% fat, 51% crude protein and 43% true protein on a dry matter basis. The true protein content of the protein extract was about 75%, with an extraction rate of 70% under optimised extraction conditions using 0.25 M NaOH, a NaOH solution:ethanol defatted worm ratio of 15:1 mL/g, 40°C for 1 h and extraction twice. The protein extract was a good source of essential amino acids. The lowest protein solubility in distilled water solution was found between pH 4 and 5, and increased with either increasing or decreasing pH. Lower solubility was observed in 0.5 M NaCl solution compared with distilled water. The rheological tests indicated that temperature, sample concentration, addition of salt and enzyme, incubation time and pH alterations influenced the elastic modulus of yellow mealworm protein extract (YMPE). These results demonstrate that the functional properties of YMPE can be modified for different food applications. PMID:26840533

  19. Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution.

    PubMed

    Lin, Shu-Chiao; Huang, Chih-Fen; Shen, Li-Jiuan; Wang, Hsueh-Ju; Lin, Chia-Yu; Wu, Fe-Lin Lin

    2015-12-01

    Acanthamoeba keratitis is difficult to treat because Acanthamoeba cysts are resistant to the majority of antimicrobial agents. Despite the efficacy of 0.02% chlorhexidine in treating Acanthamoeba keratitis, a lack of data in the literature regarding the formulation's stability limits its clinical use. The objective of this study was to develop an optimal extemporaneous 0.02% chlorhexidine digluconate ophthalmic formulation for patients in need. With available active pharmaceutical ingredients, 0.02% chlorhexidine digluconate sample solutions were prepared by diluting with BSS Plus Solution or acetate buffer. Influences of the buffer, type of container, and temperature under daily-open condition were assessed based on the changes of pH values and chlorhexidine concentrations of the test samples weekly. To determine the beyond-use date, the optimal samples were stored at 2-8°C or room temperature, and analyzed at time 0 and at Week 1, Week 2, Week 3, Week 4, Week 5, Week 8, Week 12, and Week 24. Despite chlorhexidine exhibiting better stability in acetate buffer than in BSS solution, its shelf-life was < 14 days when stored in a light-resistant low-density polyethylene container. The acetate-buffered 0.02% chlorhexidine digluconate solution stored in light-resistant high-density polyethylene eyedroppers did not exhibit significant changes in pH or strength at any time interval. The acetate-buffered 0.02% chlorhexidine digluconate ophthalmic solution stored in light-resistant high-density polyethylene eyedroppers demonstrated excellent stability at 2-25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription. Copyright © 2014. Published by Elsevier B.V.

  20. Quaternized wood as sorbent for hexavalent chromium.

    PubMed

    Low, K S; Lee, C K; Lee, C Y

    2001-01-01

    The potential of quaternized wood (QW) chips in removing hexavalent chromium from synthetic solution and chrome waste under both batch and continuous-flow conditions was investigated. Sorption was found to be dependent on pH, metal concentration, and temperature. QW chips provide higher sorption capacity and wider pH range compared with untreated wood chips. The equilibrium data could be fitted into the Langmuir isotherm model, and maximum sorption capacities were calculated to be 27.03 and 25.77 mg/g in synthetic chromate solution and chrome waste, respectively. The presence of sulfate in high concentration appeared to suppress the uptake of chromium by QW chips. Column studies showed that bed depth influenced the breakthrough time greatly whereas flow rate of influent had little effect on its sorption on the column.

  1. Stabilized micelles of amphoteric polyurethane formed by thermoresponsive micellization in HCl aqueous solution.

    PubMed

    Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie

    2008-04-01

    The thermoresponsive micellization behavior of amphoteric polyurethane (APU) was studied in HCl aqueous solution (pH 2.0) through light scattering, transmission electron microscopy, and fluorescent measurement. When APU concentration is high enough, nonreversible assembly of macromolecules can be observed with temperature decreasing from 25 to 4 degrees C. However, micelles reaching equilibrium at 4 degrees C can self-assemble reversibly in the temperature range of 4-55 degrees C. According to our research, we found it is the temperature sensitivity of the poly(propylene oxide) (PPO) segments that leads to the reassembly of APU at lower temperature. We proposed that core-shell-corona micelles ultimately form with hydrophobic core, PPO shell, and hydrophilic corona when temperature increases from 4 to 25 degrees C. This structure is very stable and does not change at higher temperatures (25-55 degrees C). That provides a new way to obtain stable micelles with small size and narrow size distribution at higher concentration of APU.

  2. DNase 1 Retains Endodeoxyribonuclease Activity Following Gold Nanocluster Synthesis

    DTIC Science & Technology

    2014-07-04

    mM) was added to 2 mL of protein solution under vigorous stirring at 37 °C (Table 1). After 5 min, 200 μL of NaOH (1 M) was added to raise the pH to...12 for the 1, 5, and 10 mM HAuCl4 samples whereas 400 μL of NaOH (1M) was required to obtain a pH of 12 for the 20 mM HAuCl4 sample due to the... magnesium sulfate pH 5.0), containing 2 μg of dsDNA. The reaction was incubated at room temperature for 20 min followed by the addition of 2 units of

  3. The Electro-Oxidation of Ethylene Glycol on Platinum over a Wide pH Range: Oscillations and Temperature Effects

    PubMed Central

    Sitta, Elton; Nagao, Raphael; Varela, Hamilton

    2013-01-01

    We report a comprehensive study of the electro-oxidation of ethylene glycol (EG) on platinum with emphasis on the effects exerted by the electrolyte pH, the EG concentration, and temperature, under both regular and oscillatory conditions. We extracted and discussed parameters such as voltammetric activity, reaction orders (with respect to [EG]), oscillation’s amplitude, frequency and waveform, and the evolution of the mean electrode potential at six pH values from 0 to 14. In addition, we obtained the apparent activation energies under several different conditions. Overall, we observed that increasing the electrolyte pH results in a discontinuous transition in most properties studied under both voltammetric and oscillatory regimes. As a relevant result in this direction, we found that the increase in the reaction order with pH is mediated by a minimum (~ 0) at pH = 12. Furthermore, the solution pH strongly affects all features investigated, c.f. the considerable increase in the oscillatory frequency and the decrease in the, oscillatory, activation energy as the pH increase. We suggest that adsorbed CO is probably the main surface-blocking species at low pH, and its absence at high pH is likely to be the main reason behind the differences observed. The size of the parameter region investigated and the amount of comparable parameters and properties presented in this study, as well as the discussion that followed illustrate the strategy of combining investigations under conventional and oscillatory regimes of electrocatalytic systems. PMID:24058650

  4. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-05-02

    Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.

  5. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  6. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  8. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2012-05-01

    The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically <3 months). In this paper, we report for the first time on the long-term conversion of 45S5 glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 μm) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed.

  9. Parameter optimization of electrolytic process of obtaining sodium hypochlorite for disinfection of water

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu; Kuznetsov, N. N.; Boldyrev, V. S.

    2017-11-01

    Electrochlorination parameters were optimized in flowing and non-flowing modes for a cell with a volume of 1 l. At a current density of 0.1 A/cm2 in the range of flow rates from 0.8 to 6.0 l/h with a temperature of the initial solution below 20°C the outlet temperature is maintained close to the optimal 40°C. The pH of the solution during electrolysis increases to 8.8 ÷ 9.4. There was studied a process in which a solution with a temperature of 7-8°C and a concentration of sodium chloride of 25 and 35 g/l in non-flowing cell was used. The dependence of the concentration of active chlorine on the electrolysis time varies with the concentration of the initial solution of sodium chloride. In case of chloride concentration of 25 g/l virtually linear relationship makes it easy to choose the time of electrolysis with the aim of obtaining the needed concentration of the product.

  10. Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Sun, Rong; Jin, Zhu; Cui, Jing; Wei, Zhenggui

    2014-02-01

    A novel adsorbent of hydroxyapatite-gelatin (HAP-GEL) nanocomposite was developed for nitrobenzene removal from aqueous solution. The adsorbent was characterized and its performance in nitrobenzene removal was evaluated. The effects of contact time, adsorbent dosage, temperature, pH, ionic strength, humic acid, and the presence of solvent on nitrobenzene adsorption, as well as the thermodynamic parameters for adsorption equilibrium were also investigated. Results showed that HAP-GEL nanocomposite possessed good adsorption ability to nitrobenzene. The adsorption process was fast, and it reached a steady state after only 1 min. Nitrobenzene removal was increased with an increasing amount of adsorbent dosage but decreased as the temperature and pH increased. Meanwhile the amount of nitrobenzene adsorbed decreased with an increase of ionic strength from 0.01 to 1.0 mol/L and humic acid from 10 to 50 mg/L. The adsorption isotherm studies showed that both Langmuir and Freundlich models could fit the experimental data well, and the maximum adsorption capacity was estimated to be 42.373 mg/g. The thermodynamic parameters suggested that the adsorption of nitrobenzene on HAP-GEL nanocomposite was physisorption, spontaneous and exothermic in nature. Findings of this study demonstrated the potential utility of the HAP-GEL nanocomposite as an effective adsorbent for nitrobenzene removal from aqueous solution.

  11. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina.

    PubMed

    Jegadeesan, G; Mondal, K; Lalvani, S B

    2003-08-01

    The sorption characteristics of carbon-based adsorbents such as activated carbon and chitin for the removal of selenite, Se (IV), an anionic, hazardous contaminant, are compared with those of alpha and gamma alumina. Batch experiments were conducted to determine the influence of pH, concentration of adsorbate, adsorbent loading and temperature on the sorption characteristics of the adsorbents. Generally, low pH of the solution resulted in favorable selenium removal. With the exception of activated carbon, uptakes decreased with increase in temperature. In comparison, chitin was found to be far less effective for the removal of Se (IV) from aqueous solutions. The data also showed that gamma alumina provided higher selenium removal percentages (99%) compared to alpha alumina (94%), activated carbon (87%) and chitin (49%). The selenite removal was found to decrease with increasing initial Se (IV) concentration in the solution. Adsorption capacities of the adsorbents are reported in terms of their Langmuir adsorption isotherms. The adsorption capacity (on unit mass basis) of the adsorbents for selenite is in the order: chitin (specific area (sa) = 9.58 m2 g(-1)) < activated carbon (sa = 96.37 m2 g(-1)) < alpha alumina (sa = 6 m2 g(-1)) < gamma alumina (sa = 150 m2 g(-1)).

  12. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOEpatents

    Fish, R.H.

    1985-05-17

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  13. 40 CFR 799.6755 - TSCA partition coefficient (n-octanol/water), shake flask method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Qualifying statements. This method applies only to pure, water soluble substances which do not dissociate or... applied. The values presented in table 1 of this section are not necessarily representative of the results... Law applies only at constant temperature, pressure, and pH for dilute solutions. It strictly applies...

  14. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  15. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, Daniel I. C.; Avgerinos, George C.

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  16. Gelation of Regenerated Fibroin Solution

    NASA Astrophysics Data System (ADS)

    Nagarkar, Shailesh; Lele, Ashish; Chassenieux, Christophe; Nicolai, Taco; Durand, Dominique

    2008-07-01

    Silk fibroin is a high molecular weight multiblock ampiphillic protein known for its ability to form high strength fibers. It is also biocompatible; silk sutures have been traditionally used for many centuries. Recently, there has been much interest in making silk hydrogels for applications ranging from tissue engineering to controlled delivery. Fibroin gels can be formed from aqueous solutions by changing one or more state variables such as pH, temperature and ionic strength. In this work we present our investigations on the gelation of aqueous fibroin solutions derived from Bombyx Mori silk using light scattering, confocal microscopy and rheological techniques.

  17. [Active carbon from Thalia dealbata residues: its preparation and adsorption performance to crystal violet].

    PubMed

    Chu, Shu-Yi; Yang, Min; Xiao, Ji-Bo; Zhang, Jun; Zhu, Yan-Ping; Yan, Xiang-Jun; Tian, Guang-Ming

    2013-06-01

    By using phosphoric acid as activation agent, active carbon was prepared from Thalia dealbata residues. The BET specific surface area of the active carbon was 1174.13 m2 x g(-1), micropore area was 426.99 m2 x g(-1), and average pore diameter was 3.23 nm. An investigation was made on the adsorption performances of the active carbon for crystal violet from aqueous solution under various conditions of pH, initial concentration of crystal violet, contact time, and contact temperature. It was shown that the adsorbed amount of crystal violet was less affected by solution pH, and the adsorption process could be divided into two stages, i. e., fast adsorption and slow adsorption, which followed the pseudo-second-order kinetics model. At the temperature 293, 303, and 313 K, the adsorption process was more accordance with Langmuir isotherm model, and the maximum adsorption capacity was 409.83, 425.53, and 438.59 mg x g(-1), respectively. In addition, the adsorption process was spontaneous and endothermic, and the randomness of crystal violet molecules increased.

  18. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents.

    PubMed

    Sashidhar, R B; Selvi, S Kalaignana; Vinod, V T P; Kosuri, Tanuja; Raju, D; Karuna, R

    2015-10-01

    An ecofriendly green chemistry method using a natural biopolymer, Gum Kondagogu (GK) for the removal of U (VI) from aqueous, simulated nuclear effluents was studied. The adsorption characteristic of GK towards U (VI) from aqueous solution was studied at varied pH, contact time, adsorbent dose, initial U (VI) concentration and temperature using UV-Visible spectroscopy and ICP-MS. Maximum adsorption was seen at pH 4, 0.1% GK with 60 min contact time at room temperature. The GK- U (VI) composite was characterized by FT-IR, zeta potential, TEM and SEM-EDAX. The Langmuir isotherm was found to be 487 mg of U (VI) g(-1) of GK. The adsorption capacity and (%) of U (VI) was found to be 490 ± 5.4 mg g(-1) and 98.5%. Moreover adsorption of U (VI) by GK was not influenced by other cations present in the simulated effluents. The adsorbed U (VI) was efficiently stripped from composite using 1 M HCl. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes

    NASA Astrophysics Data System (ADS)

    Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu

    2017-07-01

    Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.

  20. Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber

    NASA Astrophysics Data System (ADS)

    Yudhanto, F.; Jamasri; Rochardjo, Heru S. B.

    2018-05-01

    The characterized agave cantala fiber in this research came from Sumenep, Madura, Indonesia was chemically processed using sodium hydroxide (NaOH) and hydrogen peroxide (H2O2) solution. The treatment with both solutions is called bleaching process. Tensile strength test of single fiber was used to get mechanical properties from selecting process of the various parameter are temperature, PH and concentration of H2O2 with an L9 orthogonal array by Taguchi method. The results indicate that PH is most significant parameter influencing the tensile strength followed by temperature and concentration H2O2. The influence of bleaching treatment on tensile strength showed increasing of crystallinity index of fiber by 21%. It showed by lost of hemicellulose and lignin layers of fiber can be seen from waveforms changes of 1735 (C=O), 1627 (OH), 1319 (CH2), 1250 (C-O) by FTIR graph. The photo SEM showed that the bleaching of fibers causes the fibers more roughly and clearly than untreated fibers.

  1. [Mechanism and technology of recovery flue gas desulphurization with magnesium oxide].

    PubMed

    Cui, Ke; Chai, Ming; Xu, Kang-fu; Ma, Yong-liang

    2006-05-01

    Taking magnesium oxide slurry as absorption solution, the simulation of bubbling absorption process of mixed SO2 gases was observed in laboratory. Experiment results show that with a high efficiency and stable situation, acidification of absorbing solution was caused by HSO3-; the acidification trend was in accordance with the pattern of hydrolyzing of SO2, pH changes slowly at high pH value with SO3(2-) and rapidly at low value with HSO3-. The experiments also show the insensitive effect of liquid temperature on the high desulphurization efficiency. With relatively high dissolution rate and oxidizability of MgSO3 as well as the high solubility of MgSO4, the desulphurization efficiency utilization of MgO. Industrial experiment of FGD of coal-fired boiler showed that by recycling absorbing liquid could be raised to the concentration of MgSO4 to the saturation concentration at the operation temperature (40-50 degrees C) without any adverse effects on FGD efficiency. Refinement and enrichment of active substance could promote the desulphurization process, thus showed the availability of technical and economy feasibility of recovery technology.

  2. Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP.

    PubMed

    Chaudhuri, Gouri; Chatterjee, Saswata; Venu-Babu, P; Ramasamy, K; Thilagaraj, W Richard

    2013-02-01

    The hydrolysis of p-nitrophenyl phosphate (pNPP) by calf intestinal alkaline phosphatase (CIAP) was investigated with respect to kinetic parameters such as V(max), K(m) and K(cat) under varying pH, buffers, substrate concentration, temperature and period of incubation. Highest activity was obtained with Tris-HCl at pH 11, while in the case of glycine-NaOH buffer the peak activity was recorded at pH 9.5. The enzyme showed the following kinetic characteristics with pNPP in 50 mM Tris-HCl at pH 11 and 100 mM glycine-NaOH at pH 9.5 at an incubation temperature of 37 degrees C: V(max), 3.12 and 1.6 micromoles min(-1) unit(-1); K(m), 7.6 x 10(-4) M and 4 x 10(-4) M; and K(cat), 82.98 s(-1) and 42.55 s(-1), respectively. CIAP displayed a high temperature optimum of 45 degrees C at pH 11. The kinetic behaviour of the enzyme under different parameters suggested that the enzyme might undergo subtle conformational changes in response to the buffers displaying unique characteristics. Bioprecipitation of Cu2+ from 50 ppm of CuCl2 solution was studied where 64.3% of precipitation was obtained. P(i) generated from CIAP-mediated hydrolysis of pNPP was found to bind with copper and precipitated as copper-phosphate. Thus, CIAP could be used as a test candidate in bioremediation of heavy metals from industrial wastes through generation of metal-phosphate complexes.

  3. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  4. Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2004-05-18

    Titanium Grade 7 (UNS R52400) is a titanium-based alloy with 0.12-0.25% Pd. The addition of the small amount of palladium is to ennoble the corrosion potential of Ti, thus improving the corrosion resistance of titanium in reducing environments. In most aqueous environments, Ti and Ti alloys demonstrate excellent corrosion resistance due to the protective oxide film that forms spontaneously and remains stable on the surface. However, Ti and Ti alloys are susceptible to corrosion in fluoride-containing environments due to the formation of complexes such as TiF{sub 6}{sup 2-} and TiF{sub 6}{sup 3-}, which are stable and soluble in electrolyte solutions.more » Without the presence of fluoride, only slight effects from [Cl{sup -}], pH and temperature have been reported [1]. It has been reported that the kinetics of passive corrosion of titanium in neutral solutions and controlled by the migration of the defects in the oxide across the surface film [2]. Thus, the increase in thickness and improvement in film properties, by thermal oxidation, would lead to a significant decrease in the susceptibility to film breakdown and in the passive corrosion rate. This report summarizes recent experiment results in studies of the environmental influence on the corrosion behavior of Titanium Grade 7 (Ti-7) in NaCl brines containing fluoride. The environmental factors to be studied include temperature, pH, chloride and fluoride concentration. This report also includes the effects of oxide film, formed during an anneal treatment, on the corrosion behavior of Ti-7. Polarization measurement techniques including potentiodynamic and potentiostatic scans were use3d to characterize corrosion kinetics and susceptibility. Due to the unique alloying in Titanium Grade 7, the long-term corrosion behavior is heavily influenced by the surface enrichment of Pd. Use of electrochemical impedance spectroscopy in conjunction with a potentiostatic scan will reveal the transformation in the corrosion behavior as a function of Pd enrichment on the metal surface. Surface characterization was done using various analytical techniques including X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The effect of fluoride ion on the corrosion behavior of Ti-7 is strongly dependent on the solution pH. In neutral (pH 8) and alkaline (pH 11) solutions, fluoride did not affect the corrosion rate significantly even though it altered the anodic polarization curve drastically. With pH decreased to 4, the corrosion rate of Ti-7 was increased significantly by the presence of fluoride.« less

  5. Muscovite dissolution kinetics as a function of pH at elevated temperature

    DOE PAGES

    Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.

    2017-06-07

    We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less

  6. Muscovite dissolution kinetics as a function of pH at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.

    We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less

  7. Stability of a novel corticosteroid nasal irrigation solution: betamethasone 17-valerate added to extemporaneously prepared nasal irrigation solutions.

    PubMed

    Ong, Kheng Yong; Lim, Wei Ching; Ooi, Shing Ming; Loh, Zhi Hui; Kong, Ming Chai; Chan, Lai Wah; Heng, Paul Wan Sia

    2017-05-01

    There are no commercially available nasal irrigation solutions containing corticosteroids. Instead, such preparations are extemporaneously prepared by adding existing corticosteroid formulations to nasal irrigation solutions. The stability of the corticosteroid betamethasone 17-valerate (B17V), in nasal irrigation solutions of different compositions and pH and stored under different temperatures, was studied to determine the optimal choice of solution and storage conditions. Triplicate extemporaneous preparations made with B17V were prepared by adding a predetermined volume of B17V lotion to each nasal irrigation solution: normal saline (NS), sodium bicarbonate (NaHCO 3 ) powder dissolved in tap water, and a commercially available powder mixture (FLO Sinus Care Powder), dissolved in tap water or pre-boiled tap water. Preparations were stored at 30°C and 4°C. Sampling was carried out at 0, 1, 2, 6, and 24 hours. The concentrations of B17V and its degradation compound, betamethasone 21-valerate (B21V), were determined by high-performance liquid chromatography. Preparations stored at 30°C contained a lower amount of B17V and higher amount of B21V than those stored at 4°C. B17V stability in nasal irrigation solutions decreased in the following order: NS, FLO in fresh tap water, FLO in pre-boiled tap water, and NaHCO 3 . The degradation rate of B17V increased with higher storage temperature and higher pH. B17V is most stable when added to NS and least stable in NaHCO 3 solution. FLO solution prepared with either cooled boiled water or tap water is an alternative if administered immediately. Storage at 4°C can better preserve stability of B17V, over a period of 24 hours. © 2017 ARS-AAOA, LLC.

  8. Some investigations of the deposition of travertine from Hot Springs-I. The isotopic chemistry of a travertine-depositing spring

    USGS Publications Warehouse

    Friedman, I.

    1970-01-01

    The isotopic compositions of the travertine and of the hot spring solutions were studied at Main Springs and New Highland Terrace in the Mammoth Hot Springs area of Yellowstone Park. The springs issue at 74??C and a pH of 6.65 and the carbon isotopic composition of the travertine depositing at the orifice is +2%.??C13 (PDB). As the water travels out from the orifice, it cools and loses CO2. The travertine depositing at lower temperature is enriched in C13, reaching values of +4.8%. and the solution has a pH of 8.2 at 27??C. The ??C13 of the carbon species in solution is about -2.3%. at 74?? and about +4.3 at 27??C. Therefore, the difference in ??C13 between the solid and solution is approximately 4%. at 74?? and decreases to zero at about 20??C. These differences are shown to be due to kinetic (non-equilibrium) factors. The ??O18 contents of the travertine and water show that in most samples the carbonate oxygen is in equilibrium with the water O18 at the temperatures of deposition. This is especially true for travertine depositing slowly and at temperatures above about 50??C. Calculations based on pH and alkalinity titrations of the hot spring waters in situ show that at the spring orifice the water is very high in free CO2, which is quickly lost in transit. The springs are supersaturated with respect to both aragonite and calcite during most of their travel in the open air. The carbon isotopic composition of the travertine is similar to that in the marine carbonates that are adjacent to the springs and that are the probable source of the calcium carbonate. The travertine from inactive prehistoric springs near Mammoth has similar ??C13 and O18 to that from the active springs. Soda Butte, an inactive center 25 miles east of Mammoth, contains heavier carbon and oxygen than the springs near Mammoth. ?? 1970.

  9. Experimental and Statistical Analysis of MgO Nanofluids for Thermal Enhancement in a Novel Flat Plate Heat Pipes

    NASA Astrophysics Data System (ADS)

    Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P.

    Metallic fluids like CuO, Al2O3, ZnO, SiO2 and TiO2 nanofluids were widely used for the development of working fluids in flat plate heat pipes except magnesium oxide (MgO). So, we initiate our idea to use MgO nanofluids in flat plate heat pipe as a working fluid material. MgO nanopowders were synthesized by wet chemical method. Solid state characterizations of synthesized nanopowders were carried out by Ultraviolet Spectroscopy (UV), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. Synthesized nanopowders were prepared as nanofluids by adding water and as well as water/ethylene glycol as a binary mixture. Thermal conductivity measurements of prepared nanofluids were studied using transient hot-wire apparatus. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of temperature (30-60∘C), particle fraction (1.5-4.5 vol.%), and solution pH (4-12) of nanofluids as the independent variables. A total of 17 experiments were accomplished for the construction of second-order polynomial equations for target output. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). The optimum stability and thermal conductivity of MgO nanofluids with various temperature, volume fraction and solution pH were predicted and compared with experimental results. The results revealed that increase in particle fraction and pH of MgO nanofluids at certain points would increase thermal conductivity and become stable at nominal temperature.

  10. Defect Generation for a Hydrated Layer and Thermal Stability Based on Ba0.7Sr0.3TiO3/SiO2 as H+ Sensitive Layer in Ion-Sensitive Field-Effect Transistor Devices

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Yuan; Chou, Jung-Chuan; Chou, Hsueh-Tao

    2009-04-01

    In this paper, we present a novel sensitive ion-sensitive field-effect transistor (ISFET) membrane based on Ba0.7Sr0.3TiO3 (BST)/SiO2 fabricated by sputtering deposition. The proposed device exhibits a linear shift in acidic solutions in the pH range from 1 to 10. The device sensitivity was about 50-55 mV/pH for different deposition times. We also examined the trapping behavior of the surface hydrated layer using the metal-insulator-semiconductor (MIS) structure. Results show that the hydration layer gives rise to stress polarity dependence of electron injection when immersed in pH buffer solutions. Injection from the gate electrode produces larger positive charges and interface state densities in contrast to the substrate injection, which causes simultaneous positive and negative charge trapping. A physical model that quantitatively describes the asymmetry associated with the hydrated diffusion layer is presented, and the temperature effects of BST/SiO2 ISFET devices in the range from 25 to 65 °C were examined. We observed that pH sensitivity increases with increasing temperature. The temperature coefficient of sensitivity (TCS) can be divided into two different ranges: 0.08 mV/pH °C between 25 and 45 °C, and 0.57 mV/pH °C between 45 and 65 °C. A better thermal stability is produced in the 25 and 45 °C range in comparison with other sensitive layers.

  11. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  12. Perfluorooctane sulfonate adsorption on powder activated carbon: Effect of phosphate (P) competition, pH, and temperature.

    PubMed

    Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Li, Kun; Liu, Jingjing; Lu, Bianhe; Tian, Xin

    2017-09-01

    Powdered activated carbon (PAC), as an adsorbent, was applied to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Laboratory batch experiments were performed to investigate the influences of phosphate (P) competition, temperature, and pH for PFOS adsorption onto PAC. The results showed that higher temperature favored PFOS adsorption in single and binary systems. The kinetic data fitted very well to the pseudo second-order kinetic model. Thermodynamically, the endothermic enthalpy of the PFOS adsorption in single and binary systems were 125.07 and 21.25 kJ mol -1 , respectively. The entropy of the PFOS adsorption in single and binary systems were 0.479 and 0.092 kJ mol -1  K -1 , respectively. And the Gibbs constants were negative. These results indicated that the adsorption processes were spontaneous. The adsorption isotherms of PFOS agreed well with the Langmuir model. In the single system, PFOS adsorption decreased with increased pH value. The difference in the amount of PFOS adsorption between the single and binary systems increased at higher pH. Frustrated total internal reflection (FTIR) demonstrated that P competition increased the hydrophilicity of the PAC and the electrostatic repulsion between PFOS and PAC, then the PFOS adsorption amount decreased. It also demonstrated that, at higher temperature, increased PFOS adsorption was mainly due to the higher diffusion rate of PFOS molecules and greater number of active sites opened on the PAC surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    NASA Astrophysics Data System (ADS)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth metals and lead indicate the most intensive dissolution. Greater amount of ion-exchange was observed for the lead glaze covering the ceramics from the construction periods of both buildings. Sulphate phases (e.g. anglesite, gypsum, anhydrite) newly appeared on corroded glaze parts and pits are clearly seen on the surface of the ceramics originated especially from the first renovation period of the building located in the city centre.

  14. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  15. Four-Coordinate Iron(II) Diaryl Compounds with Monodentate N-Heterocyclic Carbene Ligation: Synthesis, Characterization, and Their Tetrahedral-Square Planar Isomerization in Solution.

    PubMed

    Liu, Yuesheng; Luo, Lun; Xiao, Jie; Wang, Lei; Song, You; Qu, Jingping; Luo, Yi; Deng, Liang

    2015-05-18

    The salt elimination reactions of (IPr2Me2)2FeCl2 (IPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with the corresponding aryl Grignard reagents afford [(IPr2Me2)2FeAr2] (Ar = Ph, 3; C6H4-p-Me, 4; C6H4-p-(t)Bu, 5; C6H3-3,5-(CF3)2, 6) in good yields. X-ray crystallographic studies revealed the presence of both tetrahedral and trans square planar isomers for 3 and 6 and the tetrahedral structures for 4 and 5. Magnetic susceptibility and (57)Fe Mössbauer spectrum measurements on the solid samples indicated the high-spin (S = 2) and intermediate-spin (S = 1) nature of the tetrahedral and square planar structures, respectively. Solution property studies, including solution magnetic susceptibility measurement, variable-temperature (1)H and (19)F NMR, and absorption spectroscopy, on 3-6, as well as an (57)Fe Mössbauer spectrum study on a frozen tetrahydrofuran solution of tetrahedral [(IPr2Me2)2(57)FePh2] suggest the coexistence of tetrahedral and trans square planar structures in solution phase. Density functional theory calculations on (IPr2Me2)2FePh2 disclosed that the tetrahedral and trans square planar isomers are close in energy and that the geometry isomerization can occur by spin-change-coupled geometric transformation on four-coordinate iron(II) center.

  16. Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions - Part 1: The K-feldspar microcline

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Luo, Beiping; Peter, Thomas

    2018-05-01

    Potassium-containing feldspars (K-feldspars) have been considered as key mineral dusts for ice nucleation (IN) in mixed-phase clouds. To investigate the effect of solutes on their IN efficiency, we performed immersion freezing experiments with the K-feldspar microcline, which is highly IN active. Freezing of emulsified droplets with microcline suspended in aqueous solutions of NH3, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl, with solute concentrations corresponding to water activities aw = 0.9-1.0, were investigated by means of a differential scanning calorimeter (DSC). The measured heterogeneous IN onset temperatures, Thet(aw), deviate strongly from ThetΔawhet(aw), the values calculated from the water-activity-based approach (where ThetΔawhet(aw) = Tmelt(aw + Δawhet) with a constant offset Δawhet with respect to the ice melting point curve). Surprisingly, for very dilute solutions of NH3 and NH4+ salts (molalities ≲1 mol kg-1 corresponding to aw ≳ 0.96), we find IN temperatures raised by up to 4.5 K above the onset freezing temperature of microcline in pure water (Thet(aw = 1)) and 5.5 K above ThetΔawhet(aw), revealing NH3 and NH4+ to significantly enhance the IN of the microcline surface. Conversely, more concentrated NH3 and NH4+ solutions show a depression of the onset temperature below ThetΔawhet(aw) by as much as 13.5 K caused by a decline in IN ability accompanied with a reduction in the volume fraction of water frozen heterogeneously. All salt solutions not containing NH4+ as cation exhibit nucleation temperatures Thet(aw) < ThetΔawhet(aw) even at very small solute concentrations. In all these cases, the heterogeneous freezing peak displays a decrease as solute concentration increases. This deviation from Δawhet = const. indicates specific chemical interactions between particular solutes and the microcline surface not captured by the water-activity-based approach. One such interaction is the exchange of K+ available on the microcline surface with externally added cations (e.g., NH4+). However, the presence of a similar increase in IN efficiency in dilute ammonia solutions indicates that the cation exchange cannot explain the increase in IN temperatures. Instead, we hypothesize that NH3 molecules hydrogen bonded on the microcline surface form an ice-like overlayer, which provides hydrogen bonding favorable for ice to nucleate on, thus enhancing both the freezing temperatures and the heterogeneously frozen fraction in dilute NH3 and NH4+ solutions. Moreover, we show that aging of microcline in concentrated solutions over several days does not impair IN efficiency permanently in case of near-neutral solutions since most of it recovers when aged particles are resuspended in pure water. In contrast, exposure to severe acidity (pH ≲1.2) or alkalinity (pH ≳11.7) damages the microcline surface, hampering or even destroying the IN efficiency irreversibly. Implications for IN in airborne dust containing microcline might be multifold, ranging from a reduction of immersion freezing when exposed to dry, cold and acidic conditions to a 5 K enhancement during condensation freezing when microcline particles experience high humidity (aw≳0.96) at warm (252-257 K) and NH3/NH4+-rich conditions.

  17. Structural Characterization of Apomyoglobin Self-Associated Species in Aqueous Buffer and Urea Solution

    PubMed Central

    Chow, Charles; Kurt, Neşe; Murphy, Regina M.; Cavagnero, Silvia

    2006-01-01

    The biophysical characterization of nonfunctional protein aggregates at physiologically relevant temperatures is much needed to gain deeper insights into the kinetic and thermodynamic relationships between protein folding and misfolding. Dynamic and static laser light scattering have been employed for the detection and detailed characterization of apomyoglobin (apoMb) soluble aggregates populated at room temperature upon dissolving the purified protein in buffer at pH 6.0, both in the presence and absence of high concentrations of urea. Unlike the β-sheet self-associated aggregates previously reported for this protein at high temperatures, the soluble aggregates detected here have either α-helical or random coil secondary structure, depending on solvent and solution conditions. Hydrodynamic diameters range from 80 to 130 nm, with semiflexible chain-like morphology. The combined use of low pH and high urea concentration leads to structural unfolding and complete elimination of the large aggregates. Even upon starting from this virtually monomeric unfolded state, however, protein refolding leads to the formation of severely self-associated species with native-like secondary structure. Under these conditions, kinetic apoMb refolding proceeds via two parallel routes: one leading to native monomer, and the other leading to a misfolded and heavily self-associated state bearing native-like secondary structure. PMID:16214860

  18. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets.

    PubMed

    Rostamian, Rahele; Behnejad, Hassan

    2018-01-01

    The adsorption behavior of tetracycline (TCN), doxycycline (DCN) as the most common antibiotics in veterinary and ciprofloxacin (CPN) onto graphene oxide nanosheets (GOS) in aqueous solution was evaluated. The four factors influencing the adsorption of antibiotics (initial concentration, pH, temperature and contact time) were studied. The results showed that initial pH ∼ 6 to 7 and contact time ∼ 100 - 200min are optimum for each drug. The monolayer adsorption capacity was reduced with the increasing temperature from 25°C to 45°C. Non-linear regressions were carried out in order to define the best fit model for every system. To do this, eight error functions were applied to predict the optimum model. Among various models, Hill and Toth isotherm models represented the equilibrium adsorption data of antibiotics while the kinetic data were well fitted by pseudo second-order (PSO) kinetic model (DCN and TCN) and Elovich (CPN) models. The maximum adsorption capacity (q max ) is found to be in the following order: CPN > DCN > TCN, obtained from sips equation at the same temperature. The GOS shows highest adsorption capacity towards CPN up to 173.4mgg -1 . The study showed that GOS can be removed more efficiently from water solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.

    PubMed

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-12-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Polyphenol oxidase activity from three sicilian artichoke [ Cynara cardunculus L. Var. scolymus L. (Fiori)] cultivars: studies and technological application on minimally processed production.

    PubMed

    Todaro, Aldo; Peluso, Orazio; Catalano, Anna Eghle; Mauromicale, Giovanni; Spagna, Giovanni

    2010-02-10

    Several papers helped with the development of more methods to control browning, or study thermal polyphenol oxidase (PPO) inactivation, but did not provide any solutions to technological process problems and food process improvement. Artichokes [ Cynara cardunculus L. var. scolymus L. (Fiori)] are susceptible to browning; this alteration could affect and reduce the suitability for its use, fresh or processed. Within this study, the catecholase and cresolase activities of PPO from three different Sicilian artichokes cultivar were characterized with regard to substrate specificity and enzyme kinetics, optimum pH and temperature, temperature and pH stability, and inhibitor test; all of the results were used for technological purposes, particularly to optimize minimally processed productions (ready-to-eat and cook-chilled artichokes).

  1. Cationic and Neutral Cp*M(NO)(κ2-Ph2PCH2CH2PPh2) Complexes of Molybdenum and Tungsten: Lewis-Acid-Induced Intramolecular C-H Activation.

    PubMed

    Handford, Rex C; Wakeham, Russell J; Patrick, Brian O; Legzdins, Peter

    2017-03-20

    Treatment of CH 2 Cl 2 solutions of Cp*M(NO)Cl 2 (Cp* = η 5 -C 5 (CH 3 ) 5 ; M = Mo, W) first with 2 equiv of AgSbF 6 in the presence of PhCN and then with 1 equiv of Ph 2 PCH 2 CH 2 PPh 2 affords the yellow-orange salts [Cp*M(NO)(PhCN)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 )](SbF 6 ) 2 in good yields (M = Mo, W). Reduction of [Cp*M(NO)(PhCN)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 )](SbF 6 ) 2 with 2 equiv of Cp 2 Co in C 6 H 6 at 80 °C produces the corresponding 18e neutral compounds, Cp*M(NO)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) which have been isolated as analytically pure orange-red solids. The addition of 1 equiv of the Lewis acid, Sc(OTf) 3 , to solutions of Cp*M(NO)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) at room temperature results in the immediate formation of thermally stable Cp*M(NO→Sc(OTf) 3 )(H)(κ 3 -(C 6 H 4 )PhPCH 2 CH 2 PPh 2 ) complexes in which one of the phenyl substituents of the Ph 2 PCH 2 CH 2 PPh 2 ligands has undergone intramolecular orthometalation. In a similar manner, addition of BF 3 produces the analogous Cp*M(NO→BF 3 )(H)(κ 3 -(C 6 H 4 )PhPCH 2 CH 2 PPh 2 ) complexes. In contrast, B(C 6 F 5 ) 3 forms the 1:1 Lewis acid-base adducts, Cp*M(NO→B(C 6 F 5 ) 3 )(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) in CH 2 Cl 2 at room temperature. Upon warming to 80 °C, Cp*Mo(NO→B(C 6 F 5 ) 3 )(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) converts cleanly to the orthometalated product Cp*Mo(NO→B(C 6 F 5 ) 3 )(H)(κ 3 -(C 6 H 4 )PhPCH 2 CH 2 PPh 2 ), but Cp*W(NO→B(C 6 F 5 ) 3 )(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) generates a mixture of products whose identities remain to be ascertained. Attempts to extend this chemistry to include related Ph 2 PCH 2 PPh 2 compounds have had only limited success. All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.

  2. Escherichia albertii Inactivation following l-Lactic Acid Exposure or Cooking in Ground Beef.

    PubMed

    Jones-Ibarra, Amie M; Wall, Kayley R; Vuia-Riser, Jennifer; Kerth, Chris R; Castillo, Alejandro; Taylor, T Matthew

    2016-09-01

    Escherichia albertii is an emerging foodborne pathogen recovered from young children and adults exhibiting symptoms of gastroenteritis via pathogenesis factors including attaching and effacing lesions, cytolethal distending toxin, and Shiga toxin variants. Study objectives were to determine E. albertii survival following (i) exposure to lactic acid as a function of solution pH and incubation period and (ii) cooking ground beef patties to different endpoint temperatures. E. albertii was incubated in phosphate buffer containing 3.0% l-lactic acid adjusted to pH 3.0, 4.0, 5.0, or 7.0; survivors were determined every 30 min for 150 min. Ground beef patties (80% lean) were cooked to temperature endpoints simulating undercooking (62°C), the minimum temperature for safe cooking (71.1°C), and cooking to well done (76°C). Maximal pathogen reduction was observed after a 30-min exposure to pH 3.0 l-lactic acid. Reductions of 3.9, 4.4, and 4.9 log CFU/g were obtained following cooking ground beef patties to 62, 71.1, and 76°C, respectively, but the reductions did not differ as a function of the endpoint cooking temperature (P ≥ 0.05). E. albertii may be controlled on beef through the proper application of antimicrobial interventions and cooking.

  3. Effects of solutions treated with oxygen radicals in neutral pH region on inactivation of microorganism

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tsuyoshi; Hashizume, Hiroshi; Ohta, Takayuki; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2015-09-01

    The inactivation of microorganisms using nonequilbrium atmospheric pressure plasmas has been attracted much attention due to the low temperature processing and high speed treatment. In this study, we have inactivated E. coli suspended in solutions with neutral pH using an atmospheric-pressure oxygen radical source which can selectively supply electrically neutral oxygen radicals. E. coli cells were suspended with deionized distilled water (DDW) (pH = 6.8) or phosphate buffered saline (PBS) (pH = 7.4) or Citrate-Na buffer (pH = 6.5). The treated samples were diluted and spread on nutrient agar (Nutrient Broth). They were cultured at 37° C. The inactivation effects of oxygen radicals on those cells in solutions were evaluated by colony-counting method. O2 diluted by Ar gas were employed as a working gas for the radical source. The total gas flow rate and the gas mixture ratio of O2/(Ar + O2) were set at 5 slm and 0.6%, respectively. The distance between the radical exit and the suspension surface were set at 10 mm. As a result, the D values for DDW(pH = 6.8), PBS(pH = 7.4) and Citrate-Na buffer(pH = 6.5) were estimated to be 1.4 min, 0.9 min and 16.8 min respectively. The inactivation rates in DDW, PBS were significantly different from that in Citrate-Na buffer. This work was partly supported by JSPS KAKENHI Grant Number 26286072 and project for promoting Research Center in Meijo University.

  4. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.

    PubMed

    Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro

    2005-10-01

    Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.

  5. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution

    PubMed Central

    2017-01-01

    Various carboxylic acid-functionalized poly(N,N-dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC–PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40–58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC–PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40–PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2–3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC–PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms. PMID:28260814

  6. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  7. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate.

    PubMed

    Li, Peng; Liu, Zhipeng; Wang, Xuegang; Guo, Yadan; Wang, Lizhang

    2017-08-01

    Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe 2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar.

    PubMed

    Huang, Peng; Ge, Chengjun; Feng, Dan; Yu, Huamei; Luo, Jiwei; Li, Jiatong; Strong, P J; Sarmah, Ajit K; Bolan, Nanthi S; Wang, Hailong

    2018-03-01

    In this study, the impacts of various cations, cation strength and pH on ofloxacin (OFL) adsorption to cassava residue-derived biochars were determined. The associated adsorption mechanisms are discussed. The biochars were prepared at pyrolysis temperatures ranging from 350°C to 750°C, and labeled as CW350, CW450, CW550, CW650 and CW750. The Freundlich model provided the best fit to describe the adsorption capacity of OFL and the Freundlich coefficient (logK f ) increased with increasing pyrolysis temperature. The inclusion of Zn 2+ or Al 3+ increased OFL sorption capacities of five biochars, while Cu 2+ reduced sorption to CW450 and CW550. No significant impacts on OFL sorption were observed in the presence of K + and Ca 2+ . The concentration of Ca 2+ affected the adsorption capacity of CW550, but had no significant impact on other biochars. The pH of OFL solution, ranging from 3 to 9, had no significant changes on OFL adsorption by all the tested biochars. Results of FTIR spectra and zeta potential indicated that electrostatic interactions, cationic exchange, metal bridging and micropore filling could be the main sorption mechanism between OFL and biochars. These studies indicated that cassava residue can be converted into biochars that are effective adsorbents for removing OFL from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.

    PubMed

    Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao

    2014-05-01

    Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Purification and characterization of polyphenol oxidase from rape flower.

    PubMed

    Sun, Han-Ju; Wang, Jing; Tao, Xue-Ming; Shi, Juan; Huang, Mei-Ying; Chen, Zhe

    2012-01-25

    The purification and partial enzymology characteristics of polyphenol oxidase (PPO) from rape flower were studied. After preliminary treatments, the crude enzyme solution was in turn purified with ammonium sulfate, dialysis, and Sephadex G-75 gel chromatography. The optimal conditions and stability of PPO were examined at different pH values and temperatures. Subsequently, PPO was also characterized by substrate (catechol) concentrations, inhibitors, kinetic parameters, and molecular weight. Results showed that the optimal pH for PPO activity was 5.5 in the presence of catechol and that PPO was relatively stable at pH 3.5-5.5. PPO was moderately stable at temperatures from 60 to 70 °C, whereas it was easily denatured at 80-90 °C. Ethylenediaminetetraacetic acid, sodium chloride, and calcium chloride had little inhibitive effects on PPO, whereas citric acid, sodium sulfite, and ascorbic acid had strongly inhibitive effects. The Michaelis-Menten constant (K(m)) and maximal reaction velocity (V(max)) of PPO were 0.767 mol/L and 0.519 Ab/min/mL of the crude PPO solution, respectively. PPO was finally purified to homogeneity with a purification factor of 4.41-fold and a recovery of 12.41%. Its molecular weight was 60.4 kDa, indicating that the PPO is a dimer. The data obtained in this research may help to prevent the enzymatic browning of rape flower during its storage and processing.

  11. Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.

    PubMed

    Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet

    2009-01-15

    Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.

  12. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream.

    PubMed

    Liljeqvist, Maria; Ossandon, Francisco J; González, Carolina; Rajan, Sukithar; Stell, Adam; Valdes, Jorge; Holmes, David S; Dopson, Mark

    2015-04-01

    An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Flocculation of copper(II) and tetracycline from water using a novel pH- and temperature-responsive flocculants.

    PubMed

    Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping

    2015-12-01

    Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)

  14. Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash

    PubMed Central

    Zheng, Xuebo; Cui, Hongbiao; Zhu, Zhenqiu; Liang, Jiani

    2017-01-01

    Natural biomass ash of agricultural residuals was collected from a power plant and modified with hexagonal mesoporous silica and functionalized with 3-aminopropyltriethoxysilane. The physicochemical and morphological properties of the biomass ash were analyzed by ICP-OES, SEM, TEM-EDS, FTIR, and BET analysis. The adsorption behavior of the modified product for Cd2+ in aqueous solution was studied as a function of pH, initial metal concentration, equilibrium time, and temperature. Results showed that the specific surface area of the modified product was 9 times that of the natural biomass ash. The modified biomass ash exhibited high affinity for Cd2+ and its adsorption capacity increased sharply with increasing pH from 4.0 to 6.0. The maximum adsorption capacity was 23.95 mg/g in a pH 5 solution with an initial metal concentration of 50 mg/L and a contact time of 90 min. The adsorption of Cd2+ onto the modified biomass ash was well fitted to the Langmuir model and it followed pseudo-second-order kinetics. Thermodynamic analysis results showed that the adsorption of Cd2+ was spontaneous and endothermic in nature. The results suggest that the modified biomass ash is promising for use as an inexpensive and effective adsorbent for Cd2+ removal from aqueous solution. PMID:28348509

  15. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry.

    PubMed Central

    Nettleton, E J; Tito, P; Sunde, M; Bouchard, M; Dobson, C M; Robinson, C V

    2000-01-01

    The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils. PMID:10920035

  16. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions.

    PubMed

    Liu, Yang; Sun, Changbin; Xu, Jin; Li, Youzhi

    2009-08-30

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO(4)x5H(2)O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 degrees C to 40 degrees C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca(2+) from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S=O) of negative charge in treated BMSs. Scanning electron microscopy revealed that acid pretreatment enabled the used BMSs to form the flake-shaped structure with smooth surfaces that can supply a better interface for binding metal ions.

  17. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    PubMed Central

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II)-contaminated wastewater. PMID:25647398

  18. Simultaneous removal of SO2 and NOx from flue gas by wet scrubbing using a urea solution.

    PubMed

    Li, Ge; Wang, Baodong; Xu, Wayne Qiang; Li, Yonglong; Han, Yifan; Sun, Qi

    2018-03-27

    Nitrogen oxides (NO x ) and sulfur dioxide (SO 2 ) are major air pollutants, so simultaneously removing them from gases emitted during fossil fuel combustion in stationary systems is important. Wet denitrification using urea is used for a wide range of systems. Additives have strong effects on wet denitrification using urea, and different mechanisms are involved and different effects found using different additives. In this study, the effects of different additives, initial urea concentrations, reaction temperatures, initial pH values, gas flow rates, and reaction times on the simultaneous desulfurization and denitrification efficiencies achieved using wet denitrification using urea were studied in single factor experiment. The optimum reaction conditions for desulfurization and denitrification were found. Desulfurization and denitrification efficiencies of 97.5% and 96.3%, respectively, were achieved at a KMnO 4 concentration 5 mmol/L, a reaction temperature of 70°C, initial urea solution pH 8, a urea concentration of 9%, and a gas flow rate of 40 L/h. The concentrations of the desulfurization and denitrification reaction products in the solution were determined. NO x was mainly transformed into N 2 , and the [Formula: see text] and [Formula: see text] concentrations in the solution became very low. The reactions involved in SO 2 and NO x removal using urea were analyzed from the thermodynamic viewpoint. Increasing the temperature was not conducive to the reactions but increased the rate constant, so an optimum temperature was determined. The simultaneous desulfurization and denitrification kinetics were calculated. The urea consumption and [Formula: see text], [Formula: see text], and [Formula: see text] generation reactions were all zero order. The [Formula: see text] generation rate was greater than the [Formula: see text] generation rate. The simultaneous desulfurization and denitrification process and mechanism were studied. The results provide reference data for performing flue gas desulfurization and denitrification in factories.

  19. Structural and thermo-rheological analysis of solutions and gels of a β-lactoglobulin fraction isolated from bovine whey.

    PubMed

    Estévez, Natalia; Fuciños, Pablo; Bargiela, Verónica; Pastrana, Lorenzo; Tovar, Clara Asunción; Luisa Rúa, M

    2016-05-01

    A β-Lactoglobulin fraction (r-βLg) was isolated from milk whey hydrolysates produced with cardosins from Cynara cardunculus. The impact of the technological process on the r-βLg structure and how in turn this determined its heat-induced gelation was investigated. Results were analysed taking pure β-Lg (p-βLg) as control sample. The process induced changes in the r-βLg native conformation causing exposure of hydrophobic groups, lower thermal stability and also, shorter thermal treatments needed to give rise to non-native and aggregated species. At pH 3.2, r-βLg and p-βLg solutions exhibited two gelation steps, with the advantage that r-βLg protein may form stable gels at lower temperature than p-βLg. At pH 7.2, a specific thermo-viscoelastic stability to 73 °C was found, which corresponded to the gel point in both protein solutions. The difference was that while for p-βLg solution in sol state δ<45° (solid-like), however for r-βLg solution δ>45° (fluid-like). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A Few Good Crystals Please

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for X-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of solution conditions on the nucleation rate and final crystal size of two crystal systems; tetragonal lysozyme and glucose isomerase. Batch crystallization plates were prepared at given solution concentration and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Duplicate experiments indicate the reproducibility of the technique. Results for each system showing the effect of supersaturation, incubation temperature and solution pH on nucleation rates will be presented and discussed. In the case of lysozyme, having optimized solution conditions to produce an appropriate number of crystals of a suitable size, a batch of crystals were prepared under exactly the same conditions. Fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  1. High-capacity adsorption of Cr(VI) from aqueous solution using a hierarchical porous carbon obtained from pig bone.

    PubMed

    Wei, Shaochen; Li, Dongtian; Huang, Zhe; Huang, Yaqin; Wang, Feng

    2013-04-01

    A hierarchical porous carbon obtained from pig bone (HPC) was utilized as the adsorbent for removal of Cr(VI) from aqueous solution. The effects of solution pH value, concentration of Cr(VI), and adsorption temperature on the removal of Cr(VI) were investigated. The experimental data of the HPC fitted well with the Langmuir isotherm and its adsorption kinetic followed pseudo-second order model. Compared with a commercial activated carbon adsorbent (Norit CGP), the HPC showed an high adsorption capability for Cr(VI). The maximum Cr(VI) adsorption capacity of the HPC was 398.40 mg/g at pH 2. It is found that a part of the Cr(VI) was reduced to Cr(III) on the adsorbent surface from desorption experiment data. The regeneration showed adsorption capacity of the HPC can still achieve 92.70 mg/g even after fifth adsorption cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wei, Zhong; Zhang, Wanning; Cui, Haiyan

    2017-07-01

    Magnetic Ba3(PO4)2/Fe3O4-nanoparticle (called BPFN) was prepared, characterized, and developed as a low-cost adsorbent for malachite green (MG) from aqueous solution. Factors such as adsorption temperature, pH of solution, dosage of adsorbent, adsorption kinetics and isotherms were investigated. The maximum adsorption capacity obtained in this work was 1639 mg g- 1 at 45 °C and pH 6. The adsorption process fitted the pseudo-first-order kinetic model and Langmuir isotherm model. Evidences from zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) data revealed that the adsorption process was driven by electrostatic attraction, the interaction between Lewis base sbnd N(CH3)2 in MG and Lewis acid Ba sites of BPFN. In addition, the BPFN could be easily regenerated by a magnet and the adsorption capacity maintained at 70% after five cycles. The present study suggests that the BPFN had high potential of removing MG from wastewater.

  4. Mechanical, Corrosion, and Fatigue Properties of 15-5 PH, Inconel 718, and Rene 41 Weldments

    DTIC Science & Technology

    1975-05-01

    TUCUMvARI (PGH 2) It was originally developed for high - temperature use by Armco Steel Corporation. 2 High strength is obtained by the precipitation...Rene 41 was developed by General Electric Company as a high - temperature turbine alloy. It is a nickel-base alloy, high in chromium, cobalt, and... molybdenum . Its high strength comes from the precipitation of a gamma-prime phase consisting of Ni3AI and Ni5Ti, and from the solid solution effects of

  5. Decalcification by ascorbic acid for immuno- and affinohistochemical techniques on the inner ear.

    PubMed

    Merchán-Pérez, A; Gil-Loyzaga, P; Bartolomé, M V; Remezal, M; Fernández, P; Rodríguez, T

    1999-08-01

    An ascorbic acid decalcifying solution was applied to immuno- and affinohistochemical studies on the inner ear. Rat inner ears fixed in 4% paraformaldehyde in PBS or in 2% acetic acid in ethanol solutions were adequately decalcified in an ascorbic acid solution, at a temperature of 4 degrees C. The decalcifying solution was prepared with 1% ascorbic acid and 0.84% sodium chloride in distilled water (pH 2.5-2.6). The decalcification time was in a direct relationship to the specimen calcification. In this study, two neuroactive substances (gamma-aminobutyric acid and calcitonin gene-related peptide), neurofilaments, and the galectine endogenous lectin were successfully detected immunohistochemically.

  6. Electro deposition of cuprous oxide for thin film solar cell applications

    NASA Astrophysics Data System (ADS)

    Shahrestani, Seyed Mohammad

    p and n type copper oxide semiconductor layers were fabricated by electrochemistry using new approaches for photovoltaic applications. Thin films were electroplated by cathodic polarization on a copper foil or indium tin oxide (ITO) substrates. The optimum deposition conditions (composition, pH and temperature of the electrolyte and applied potential) of the layers as thin films have been identified; in particular the conditions that allow getting the n-type layers have been well identified for the first time. The configuration of a photo - electrochemical cell was used to characterize the spectral response of the layers. It was shown that the p type layers exhibit a photocurrent in the cathode potential region and n layers exhibit photo current in the anode potential region. Measurements of electrical resistivity of electro chemically deposited layers of p and n type Cu2O, showed that the resistivity of p-type Cu2O varies from 3.2 x 105 to 2.0 x 108 Ocm. These values depend the electrodepositing conditions such as the pH of the solution, the deposition potential and temperature. The influence of several plating parameters of the p type layers of Cu2O, such as applied potential, pH and temperature of the bath on the chemical composition, degree of crystallinity, grain size and orientation parameters of the sample was systematically studied using X-ray diffraction and scanning electron microscopy. Depending of the electro-deposition potential, two different surface morphologies with various preferential crystal orientations were obtained for the temperatures of the electro-deposition of 30 °C and pH 9. For the same temperature, the layers of p type Cu2O of highly crystalline p type are obtained at pH 12, indicating that the crystallinity depends on the pH of the bath. Also, it has been shown that the morphology of Cu2O layers was changed by varying the potential and the duration of deposition, as well as the temperature of the solution. The conditions for the electro-deposition of Cu2O n-type were identified consistently for the first time. The electro-deposition electrolyte is based 0.01M acetate copper and 0.1 M sodium acetate: it has a pH between 6.3 and 4, a potential of from 0 to -0.25 V vs. Ag / AgCl and a temperature of 60oC. The optimum annealing temperature of the n-type Cu2O layers is between 120-150oC for the annealing time of 30 to 120 minutes. Resistivity of the n-type films varies between 5 x 103 and 5 x 104 at pH 4 to pH 6.4. We have shown for the first time that bubbling nitrogen gas in the electroplating cell improves significantly the spectral response of the electro-deposited n-type thin film. A two steps electro-deposition process was implemented to make the p-n homojunction cuprous oxide. Indium tin oxide (ITO) was used as a transparent conductive oxide substrate. A p-Cu2O was electrodeposited on ITO. After heat treatment a thin film layer of n-Cu 2O was electrodeposited on top of previous layer. The performance of a p-n homojunction photovoltaic solar cell of Cu2O was determined. The short-circuit current and the open circuit voltage were respectively determined to be as 0.35 volts and 235 muA/cm2. The fill factor (FF) and conversion efficiency of light into electricity were respectively measured to be 0.305 and 0.082%.

  7. Modeling hyporheic zone processes

    USGS Publications Warehouse

    Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar

    2003-01-01

    Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.

  8. The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions.

    PubMed

    Glick, Matthew; Biddle, Perry; Jantzi, Josh; Weaver, Samantha; Schirch, Doug

    2014-09-12

    Clinical research is currently exploring the validity of the anti-tumor candidate 3-bromopyruvate (3-BP) as a novel treatment for several types of cancer. However, recent publications have overlooked rarely-cited earlier work about the instability of 3-BP and its decay to 3-hydroxypyruvate (3-HP) which have obvious implications for its mechanism of action against tumors, how it is administered, and for precautions when preparing solutions of 3-BP. This study found the first-order decay rate of 3-BP at physiological temperature and pH has a half-life of only 77 min. Lower buffer pH decreases the decay rate, while choice of buffer and concentration do not affect it. A method for preparing more stable solutions is also reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Protection of Tempered Aluminum Alloy in Contact with the Environment

    NASA Astrophysics Data System (ADS)

    Araoyinbo, A. O.; Salleh, M. A. A. Mohd; Rahmat, A.; Azmi, A. I.; Rahim, W. M. F. Wan Abd; Perju, M. C.; Jin, T. S.

    2018-06-01

    In many service applications an increasing temperature or inadequate protections often give rise to localized forms of corrosion in an initially free and unprotected system. This research understudy the corrosion chemistry, the effect of chromium as the inhibitor, Vickers hardness test, and weight loss on tempered aluminium alloy 7075 in corrosive mediums. The tempers of the aluminium alloy used are T6 and T73 where obtained by solution heat treatment at 470°C and quenched before immersion test in acidic (pH3), and slightly alkaline (pH7.5) solutions. The results obtained were characterized by conventional weight loss process and morphology observation with a microscope. The surface morphology shows exfoliation form of corrosion and the weight loss analysis shows the as received sample experience more weight loss when compared with the other heat treated samples.

  10. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  11. Chemical evolution. XXIX - Pyrimidines from hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Joshi, P. C.; Lawless, J. G.

    1978-01-01

    Compounds obtained by hydrolysis of HCN oligomers formed by allowing pH 9.2, 0.1 M cyanide to stand at room temperature for 4 to 12 months were analyzed. Hydrolysis of HCN oligomers yielded 4,5-dihydroxypyrimidine and 5-hydroxyuracil; orotic acid was detected after hydrolysis at pH 8.5. A unified pathway from diaminofumaronitrile to the pyrimidines observed is suggested. As purines, pyrimidines and amino acids are released by hydrolysis of HCN oligomers in either acidic or mildly basic aqueous solutions, they could have been formed on the primitive earth in spite of fluctuations in pH. 4,5-dihydroxypyrimidines appear to be likely candidates for incorporation into primitive nucleic acids, as they should undergo Watson-Crick hydrogen bonding with adenine.

  12. 40 CFR Appendix A to Subpart Ddd... - Free Formaldehyde Analysis of Insulation Resins by the Hydroxylamine Hydrochloride Method

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., readable to 0.01 g or better. 3.2pH meter, standardized to pH 4.0 with pH 4.0 buffer and pH 7 with pH 7.0... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0, using the...

  13. Physical stability of highly concentrated injectable drugs solutions used in intensive care units.

    PubMed

    Closset, M; Hecq, J D; Soumoy, L; Simar, J; Gonzalez, E; Charlet, L; Declave, C; Gillet, P; Galanti, L

    2017-05-01

    The intensive care department of the institution use drug solutions within higher concentration to avoid fluid overload. The purpose of the study is to prove the physical stability of different injectable drugs within high concentration (amiodarone 25mg/mL, isosorbide 0.60mg/mL, lorazepam 0.16mg/mL, noradrenalin 0.120 and 0.240mg/mL, salbutamol 0.06mg/mL and sodium valproate 12mg/mL) to ensure the patients safety. Five of 30 or 50mL polypropylene syringes were prepared for each solution under aseptic conditions and stored at room temperature. Immediately after the preparation (hour 0) and after 1, 4, 8, 24 and 48hours, 2mL of each solution were withdrawn from each syringe and placed in glass tubes to proceed to the stability test. All specimens were visually inspected in front of a black and of a white background and aliquots of each solution were centrifuged to proceed to microscopic inspection with a ten-fold magnification. The pH of each solution was measured with glass electrode pH-meter (Inolab level 1, WTW Weilhem, Germany with biotrode electrode, Hamilton, Bonaduz, Switzerland) and spectrophotometric measurements (Genesys 10 series, New-York, USA) were performed at three wavelengths (350, 410 and 550nm) to avoid the apparition of turbidity. For all the drugs included in the study, there was no significant change in pH, no color change, no turbidity or opacity and no precipitation observed in the solutions during the storage at room temperature for 48hours. No microaggregates were detected by microscope neither revealed by a change of absorbance. Within these limits, the preparations of amiodarone in 5% glucose polypropylene syringes and isosorbide, lorazepam, noradrenalin, salbutamol, valproate in 0.9% sodium chloride polypropylene syringes are physically stable at room temperature for 48hours. These results allow us to consider a study of chemical stability by high-performance liquid chromatography (HPLC). Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  14. Remediation of Hg(II) from solutions using Cajanus cajan husk as a new sorbent.

    PubMed

    Devani, Mallappa A; Munshi, Basudeb; Oubagaranadin, John U Kennedy; Lal, Bipin Bihari; Mandal, Sandip

    2017-08-01

    In this work, biosorption of mercury(II) from solutions by normal and chemically modified husk of Cajanus cajan has been explored under batch conditions. The thermogravimetric analysis of the normal biosorbent showed a surface water loss of 6.56%, 9.26% volatile matter, and 81.81% organic matter. The scanning electron microscope image indicates that the biosorbent exhibited irregular and porous structures. The Fourier transform infra-red spectrum confirmed the presence of functional groups which are responsible for biosorption of mercury (II) from solutions after activation. The influence of initial pH of solutions, initial metal concentrations, and temperature on mercury(II) uptake by the biosorbents was evaluated. The biosorption followed the Langmuir model. Maximum metal uptake was obtained as 68 and 82 mg/g for an initial mercury(II) concentration of 150 mg/L for normal and chemically activated biosorbents, respectively, at a most favorable solution pH of 5.5. The kinetics of sorption obeyed the pseudo-second-order model. An endothermic nature of the biosorption process was observed. A two-stage biosorber reduced the consumption of the biosorbents by 3.49% and 16.52% for 100 and 150 mg/L, respectively. The novelty of the work is C. cajan husk proves to be a potential biosorbent for mercury(II) from solutions.

  15. pH-Dependent, Thermosensitive Polymeric Nanocarriers for Drug Delivery to Solid Tumors

    PubMed Central

    Chen, Ching-Yi; Kim, Tae Hee; Wu, Wen-Chung; Huang, Chi-Ming; Wei, Hua; Mount, Christopher W.; Tian, Yanqing; Jang, Sei-Hum; Pun, Suzie H.; Jen, Alex K-Y

    2013-01-01

    Polymeric micelles are promising carriers for anticancer agents due to their small size, ease of assembly, and versatility for functionalization. A current challenge in the use of polymeric micelles is the sensitive balance that must be achieved between stability during prolonged blood circulation and release of active drug at the tumor site. Stimuli-responsive materials provide a mechanism for triggered drug release in the acidic tumor and intracellular microenvironments. In this work, we synthesized a series of dual pH- and temperature-responsive block copolymers containing a poly(ε-caprolactone) (PCL) hydrophobic block with a poly(triethylene glycol) block that were copolymerized with an amino acid-functionalized monomer. The block copolymers formed micellar structures in aqueous solutions. An optimized polymer that was functionalized with 6-aminocaproic acid (ACA) possessed pH-sensitive phase transitions at mildly acidic pH and body temperature. Doxorubicin-loaded micelles formed from these polymers were stable at blood pH (~7.4) and showed increased drug release at acidic pH. In addition, these micelles displayed more potent anti-cancer activity than free doxorubicin when tested in a tumor xenograft model in mice. PMID:23498892

  16. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    PubMed

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  17. Element mobilization from Bakken shales as a function of water chemistry.

    PubMed

    Wang, Lin; Burns, Scott; Giammar, Daniel E; Fortner, John D

    2016-04-01

    Waters that return to the surface after injection of a hydraulic fracturing fluid for gas and oil production contain elements, including regulated metals and metalloids, which are mobilized through interactions between the fracturing fluid and the shale formation. The rate and extent of mobilization depends on the geochemistry of the formation and the chemical characteristics of the fracturing fluid. In this work, laboratory scale experiments investigated the influence of water chemistry on element mobilization from core samples taken from the Bakken formation, one of the most productive shale oil plays in the US. Fluid properties were systematically varied and evaluated with regard to pH, oxidant level, solid:water ratio, temperature, and chemical additives. Element mobilization strongly depended on solution pH and redox conditions and to a lesser extent on the temperature and solid:water ratio. The presence of oxygen and addition of hydrogen peroxide or ammonium persulfate led to pyrite oxidation, resulting in elevated sulfate concentrations. Further, depending on the mineral carbonates available to buffer the system pH, pyrite oxidation could lower the system pH and enhance the mobility of several metals and metalloids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Permanganate Fixation of Plant Cells

    PubMed Central

    Mollenhauer, Hilton H.

    1959-01-01

    In an evaluation of procedures explored to circumvent some of the problems of osmium tetroxide-fixation and methacrylate embedding of plant materials, excised segments of root tips of Zea mays were fixed for electron microscopy in potassium permanganate in the following treatment variations: unbuffered and veronal-acetate buffered solutions of 0.6, 2.0, and 5.0 per cent KMnO4 at pH 5.0, 6.0, 6.7, and 7.5, and temperatures of 2–4°C. and 22°C. After fixation the segments were dehydrated, embedded in epoxy resin, sectioned, and observed or photographed. The cells of the central region of the rootcap are described. The fixation procedures employing unbuffered solutions containing 2.0 to 5.0 per cent KMnO4 at a temperature of 22°C. gave particularly good preservation of cell structure and all membrane systems. Similar results were obtained using a solution containing 2.0 per cent KMnO4, buffered with veronal-acetate to pH 6.0, and a fixation time of 2 hours at 22°C. The fixation procedure utilizing veronal-acetate buffered, 0.6 per cent KMnO4 at 2–4°C. and pH 6.7 also gave relatively good preservation of most cellular constituents. However, preservation of the plasma membrane was not so good, nor was the intensity of staining so great, as that with the group of fixatives containing greater concentrations of KMnO4. The other fixation procedures did not give satisfactory preservation of fine structure. A comparison is made of cell structures as fixed in KMnO4 or OsO4. PMID:14423414

  19. Speciation in the Fe(III)-Cl(I)-H2O System at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C)

    NASA Astrophysics Data System (ADS)

    Jamett, Nathalie E.; Hernández, Pía C.; Casas, Jesús M.; Taboada, María E.

    2018-02-01

    This article presents the results on speciation of ferric iron generated by the dissolution of chemical reagent hydromolysite (ferric chloride hexahydrate, FeCl3:6H2O) in water at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C). Experiments were performed with a thermoregulated system up to the equilibrium point, as manifested by solution pH. Solution samples were analyzed in terms of concentration, pH, and electrical conductivity. Measurements of density and refractive index were obtained at different temperatures and iron concentrations. A decrease of pH was observed with the increase in the amount of dissolved iron, indicating that ferric chloride is a strong electrolyte that reacts readily with water. Experimental results were modeled using the hydrogeochemical code PHREEQC in order to obtain solution speciation. Cations and neutral and anion complexes were simultaneously present in the system at the studied conditions according to model simulations, where dominant species included Cl-, FeCl2+, FeCl2 +, FeOHCl 2 0 , and H+. A decrease in the concentration of Cl- and Fe3+ ions took place with increasing temperature due to the association of Fe-Cl species. Standard equilibrium constants for the formation of FeOHCl 2 0 obtained in this study were log Kf0 = -0.8 ± 0.01 at 298.15 K (25 °C), -0.94 ± 0.02 at 313.15 K (40 °C), and -1.03 ± 0.01 at 333.15 K (60 °C).

  20. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    PubMed

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the release at this temperature.

  1. Xanthan Gum-a lyotropic, liquid crystalline polymer and its properties as a suspending agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamone, J.C.; Clough, S.B.; Jamison, D.E.

    1982-08-01

    Studies a variety of xanthan solutions of various polymer concentrations in the presence and absence of various salts under a polarized light microscope (100X) in order to test xanthan gum for liquid crystalline order. Xanthan gum, a polysaccharide used in drilling fluids and in tertiary recovery, has relatively stable viscosity properties as a function of salt concentration, pH, temperature, and shear degradation. With solutions from 2 to 10% (wt/vol) xanthan gum in distilled water at room temperature, birefringent, ordered domains were observed at 10% concentration, with a decrease in birefringence as the polymer concentration decreased. When the xanthan solution ismore » sheared between a glass slide and a cover slip, the optic axis (chain direction) aligns using the shear direction (as determined by the colors displayed using a first-order red plate). Examines liquid crystalline behavior of other naturally occurring polymers.« less

  2. Removal of arsenic compounds from spent catecholated polymer

    DOEpatents

    Fish, Richard H.

    1985-01-01

    Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.

  3. Removal of arsenic compounds from petroliferous liquids

    DOEpatents

    Fish, Richard H.

    1985-01-01

    Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.

  4. Removing sulfur dioxide from exhaust air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germerdonk, R.; Jonas, A.

    A method for removing sulfur oxides from flue gases is described. An absorption solution of glutaric acid buffered to a pH of about 3.5 to 6.5 is used. The concentration of the glutaric acid is from about 40 to 90% of the saturation concentration, its temperature is from about 20 to 25/sup 0/C, it has a concentration of heavy metal ions no more than about 10/sup -6/ mole/1, and to improve the separation of SO/sub 2/ from the absorption solution, steam is introduced into at least one separator in from about 0.01 to 0.1 kg/1 of solution to be desorbed.

  5. Stability of Adrenaline in Irrigating Solution for Intraocular Surgery.

    PubMed

    Shibata, Yuuka; Kimura, Yasuhiro; Taogoshi, Takanori; Matsuo, Hiroaki; Kihira, Kenji

    2016-01-01

    Intraocular irrigating solution containing 1 µg/mL adrenaline is widely used during cataract surgery to maintain pupil dilation. Prepared intraocular irrigating solutions are recommended for use within 6 h. After the irrigating solution is admistered for dilution, the adrenaline may become oxidized, and this may result in a decrease in its biological activity. However, the stability of adrenaline in intraocular irrigating solution is not fully understood. The aim of this study was to evaluate the stability of adrenaline in clinically used irrigating solutions of varying pH. Six hours after mixing, the adrenaline percentages remaining were 90.6%±3.7 (pH 7.2), 91.1%±2.2 (pH 7.5), and 65.2%±2.8 (pH 8.0) of the initial concentration. One hour after mixing, the percentages remaining were 97.6%±2.0 (pH 7.2), 97.4%±2.7 (pH 7.5), and 95.6%±3.3 (pH 8.0). The degradation was especially remarkable and time dependent in the solution at pH 8.0. These results indicate that the concentration of adrenaline is decreased after preparation. Moreover, we investigated the influence of sodium bisulfite on adrenaline stability in irrigating solution. The percentage adrenaline remaining at 6 h after mixing in irrigating solution (pH 8.0) containing sodium bisulfite at 0.5 µg/mL (concentration in irrigating solution) or at 500 µg/mL (concentration in the undiluted adrenaline preparation) were 57.5 and 97.3%, respectively. Therefore, the low concentration of sodium bisulfite in the irrigating solution may be a cause of the adrenaline loss. In conclusion, intraocular irrigation solution with adrenaline should be prepared just prior to its use in surgery.

  6. Postrigor citric acid enhancement can alter cooked color but not fresh color of dark-cutting beef.

    PubMed

    Stackhouse, R J; Apple, J K; Yancey, J W S; Keys, C A; Johnson, T M; Mehall, L N

    2016-04-01

    In 2 experiments, dark-cutting (DC) beef strip loins were used to test the effects of citric acid-enhancement pH on visual and instrumental color of fresh and cooked steaks. In Exp. 1 and 2, each DC (mean pH = 6.57 and 6.65, respectively) and normal-pH, low USDA Choice (CH; mean pH = 5.48 and 5.51, respectively) strip loin was cut into 2 equal-length sections, and DC sections were injected to 111% of raw section weight with pH 3.5 to 5.0 (Exp. 1) or pH 2.0 to 3.5 (Exp. 2) solutions made by mixing citric acid in either 0.05% orthophosphate (PO) solution or tap water (HO) base solutions (Exp. 1) and 0.5% PO or 0.5% tripolyphosphate solution base solutions (Exp. 2). After enhancement, sections were cut into steaks, which were assigned to either 5 d of simulated retail display or cooked to 71°C for cooked color measurement. Postenhancement pH of DC steaks enhanced with pH 3.5 to 5.0 solutions did not ( ≥ 0.180) differ from that of nonenhanced DC steaks (Exp. 1) but linearly decreased ( < 0.001) as solution pH decreased from 3.5 to 2.0 (Exp. 2). Even though fresh color scores were increased ( < 0.001) by citric acid enhancement over untreated DC steaks during the first 3 d of display, fresh steak color never ( < 0.001) approached that of nonenhanced CH steaks. When compared with nonenhanced DC steaks, enhancement with pH 3.5 to 5.0 solutions received lower cooked color scores, whereas enhancing DC sections with pH 2.5 solutions produced cooked color and degree-of-doneness scores similar ( ≥ 0.113) to those of nonenhanced CH steaks (Exp. 2). Results indicated that the pH of citric acid enhancement solutions, regardless of base solution, were insufficient to improve the fresh color of DC beef; however, enhancement with pH 2.5 citric acid solutions effectively eliminated the persistent red cooked color typically associated with DC beef comparable with that of normal-pH beef.

  7. Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas

    DOEpatents

    Chang, Shih-Ger; Liu, David K.; Griffiths, Elizabeth A.; Littlejohn, David

    1988-01-01

    The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.

  8. Electro-activation of potassium acetate, potassium citrate and calcium lactate: impact on solution acidity, Redox potential, vibrational properties of Raman spectra and antibacterial activity on E. coli O157:H7 at ambient temperature.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Aïder, Mohammed

    2016-01-01

    To study the electro-activation of potassium acetate, potassium citrate and calcium lactate aqueous solutions and to evaluate their antimicrobial effect against E. coli O157:H7 at ambient temperature. Potassium acetate, potassium citrate and calcium lactate aqueous solutions were electrically excited in the anodic compartment of a four sectional electro-activation reactor. Different properties of the electro-activated solutions were measured such as: solutions acidity (pH and titratable), Redox potential and vibrational properties by Raman spectroscopy. Moreover, the antimicrobial activity of these solutions was evaluated against E. coli O157:H7. The results showed a pH decrease from 7.07 ± 0.08, 7.53 ± 0.12 and 6.18 ± 0.1 down to 2.82 ± 0.1, 2.13 ± 0.09 and 2.26 ± 0.15, after 180 min of electro-activation of potassium acetate, potassium citrate and calcium lactate solution, respectively. These solutions were characterized by high oxidative ORP of +1076 ± 12, +958 ± 11 and +820 ± 14 mV, respectively. Raman scattering analysis of anolytes showed stretching vibrations of the hydrogen bonds with the major changes within the region of 3410-3430 cm -1 . These solutions were used against E. coli O157:H7 and the results from antimicrobial assays showed high antibacterial effect with a population reduction of ≥6 log CFU/ml within 5 min of treatment. This study demonstrated the effectiveness of the electro-activation to confer to aqueous solutions of organic salts of highly reactive properties that differ them from their conjugated commercial acids. The electro-activated solutions demonstrated significant antimicrobial activity against E. coli O157:H7. This study opens new possibilities to use electro-activated solutions of salts of weak organic acids as food preservatives to develop safe, nutritive and low heat processed foods.

  9. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  10. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90.

  12. Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation.

    PubMed

    Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai; Gao, Shuyan

    2015-02-15

    The reaction kinetics and toxicity of diclofenac (DCF) oxidation by ferrate (VI) under simulated water disinfection conditions were investigated. Experimental results indicated that the reaction between DCF and Fe(VI) followed first-order kinetics with respect to each reactant. Furthermore, the effects of pH and temperature on DCF oxidation by Fe(VI) were elucidated using a systematic examination. The apparent second-order rate constants (kapp) increased significantly from 2.54 to 11.6M(-1)s(-1), as the pH of the solution decreased from 11.0 to 7.0, and the acid-base equilibriums of Fe(VI) and DCF were proposed to explain the pH dependence of kapp. The acute toxicity of DCF solution during Fe(VI) oxidation was evaluated using a Microtox bioassay. Overall, the DCF degradation process resulted in a rapid increase of the inhibition rate of luminescent bacteria. These toxicity tests suggest that the formation of enhanced toxic intermediates during the Fe(VI) disinfection process may pose potential health risk to consumers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Assessment of the use of Moringa oleifera seed husks for removal of pesticide diuron from contaminated water.

    PubMed

    Bezerra, Charleston de O; Cusioli, Luís F; Quesada, Heloise B; Nishi, Letícia; Mantovani, Daniel; Vieira, Marcelo F; Bergamasco, Rosangela

    2018-06-22

    Considering the need of new technologies for the removal of pesticides from the aqueous environment, the Moringa oleifera seed husks (h-MO) was investigated for the diuron adsorption from contaminated water at different temperatures and solute concentrations. The biosorbent used in this study was characterized by chemical, structural and textural analyzes. The best experimental condition for the biosorption was determined by evaluating the mass of the biosorbent and the pH solution. It was found a good adsorption capacity for the herbicide where the maximum adsorption capacity was 14.74 mg/g at pH 5 and 45°C. In addition, the adsorption process of diuron by the h-MO occurred spontaneously, in which, ΔG° values increased as the temperature increased meaning that the process tends to a more energetically favorable process at higher temperatures. Both Langmuir and Sips isotherm models presented satisfactory adjustment at all temperatures and the pseudo-second-order model presented the best fit for the experimental results. The application of the intra-particle diffusion model showed that the adsorption process started instantaneously through the boundary layer of the adsorbent and that the pore diffusion step was a limiting step in the process. Finally, the capacity of the h-MO was compared with others adsorbents that had been used to diuron removal from contaminated where it was found that the adsorption capacity of the h-MO is much higher than other natural adsorbents.

  14. Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery.

    PubMed

    Amoli-Diva, Mitra; Sadighi-Bonabi, Rasoul; Pourghazi, Kamyar

    2017-07-01

    A switchable dual light- and temperature-responsive drug carrier using gold nanoparticles (Au NPs)-grafted poly(dimethylacrylamide-co-acrylamide)/poly acrylic acid [P(DMA-co-AAm)/PAAc] hydrogel was prepared by free radical polymerization procedure using N,N-methylenebisacrylamide as cross-linker and ammonium persulfate as initiator. Initial P(DMA-co-AAm) hydrogel and uniformly-distributed stable Au NPs, prepared by reduction of hydrogen tetrachloroaureate (III) hydrate in the presence of trisodium citrate, were synthesized separately. Then, the prepared P(DMA-co-AAm) and Au NPs were added to an acrylic acid solution along with the cross-linker and initiator to prepare PAAc hydrogel within the mixture. This improves the swelling ratio and stabilizes Au NPs in networks. Furthermore, a cross-linked P(DMA-co-AAm-co-AAc) random hydrogel was also prepared with the same monomer compositions as the above hydrogel for comparison of their properties. Then, swelling, thermal sensitivity and thermal and optical switching properties of the prepared hydrogels were investigated in two acidic (pH=1.2) and neutral (pH=7.4) buffered solutions to simulate stomach and intestine body conditions. Finally, loading and cumulative release (%) of ofloxacin antibiotic as model drug were considered in both thermal and optical switching conditions. Based on these results, pulsatile release vehicle was obtained which have the "on" state at higher temperatures and the "off" state at lower temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study.

    PubMed

    Mockus, Linas N; Paul, Timothy W; Pease, Nathan A; Harper, Nancy J; Basu, Prabir K; Oslos, Elizabeth A; Sacha, Gregory A; Kuu, Wei Y; Hardwick, Lisa M; Karty, Jacquelyn J; Pikal, Michael J; Hee, Eun; Khan, Mansoor A; Nail, Steven L

    2011-01-01

    A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.

  16. Evaluation of effects of pH and ionic strength on colloidal stability of IgG solutions by PEG-induced liquid-liquid phase separation.

    PubMed

    Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B

    2016-11-14

    Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.

  17. Complexing agents and pH influence on chemical durability of type I moulded glass containers.

    PubMed

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-06-16

    Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topping, R.J.; Stone, M.P.; Brush, C.K.

    The {sup 1}H NMR spectrum of the tetradeoxynucleotide d(TpCpGpA) was examined as a function of temperature, pH, and concentration. At pH 7 and above the solution conformation for this oligodeoxynucleotide appears to be a mixture of random coil and Watson-Crick duplex. At 25{degree}C, a pH titration of d(TpCpGaA) shown that distinct conformational changes occur as the pH is lowered below 7.0. These conformational changes are reversible upon readjusting the pH to neutrality, indicating the presence of a pH-dependent set of conformational equilibria. At 25{degree}C, the various conformational state in the mixture are in rapid exchange on the NMR time scale.more » Examination of the titration curve shown the presence of distinct conformational states at pH greater than 7, and between pH 4 and pH 5. When the pH titration is repeated at 5{degree}C, the conformational equilibria are in slow exchange on the NMR time scale; distinct signals from each conformational state are observable. The stable conformational state present between pH 4 and pH 5 represents an ordered conformation of d(TpCpGpA) which dissociates to a less ordered structure upon raising the temperature. The ordered conformation differs from the Watson-Crick helix, as is shown from nuclear Overhauser enhancement experiments, as well as chemical shift data. These results indicate that their ordered conformation is similar to the conformation of d(TpCpGpA) observed between pH 4 and pH 5. In the present case it is likely that stabilization of an ordered duplex conformation for d(TpCpGpA) is achieved by protonation of cytosine. A possible model which could explain the data involves formation of Hoogsteen C{sup +}:G base pairs.« less

  19. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    NASA Astrophysics Data System (ADS)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  20. Nanoscale Zero-Valent Iron Decorated on Bentonite/Graphene Oxide for Removal of Copper Ions from Aqueous Solution.

    PubMed

    Shao, Jicheng; Yu, Xiaoniu; Zhou, Min; Cai, Xiaoqing; Yu, Chuang

    2018-06-04

    The removal efficiency of Cu(II) in aqueous solution by bentonite, graphene oxide (GO), and nanoscale iron decorated on bentonite (B-nZVI) and nanoscale iron decorated on bentonite/graphene oxide (GO-B-nZVI) was investigated. The results indicated that GO-B-nZVI had the best removal efficiency in different experimental environments (with time, pH, concentration of copper ions, and temperature). For 16 hours, the removal efficiency of copper ions was 82% in GO-B-nZVI, however, it was 71% in B-nZVI, 26% in bentonite, and 18% in GO. Bentonite, GO, B-nZVI, and GO-B-nZVI showed an increased removal efficiency of copper ions with the increase of pH under a certain pH range. The removal efficiency of copper ions by GO-B-nZVI first increased and then fluctuated slightly with the increase of temperature, while B-nZVI and bentonite increased and GO decreased slightly with the increase of temperature. Lorentz-Transmission Electron Microscope (TEM) images showed the nZVI particles of GO-B-nZVI dispersed evenly with diameters ranging from 10 to 86.93 nm. Scanning electron microscope (SEM) images indicated that the nanoscale iron particles were dispersed evenly on bentonite and GO with no obvious agglomeration. The q e,cal (73.37 mg·g -1 and 83.89 mg·g -1 ) was closer to the experimental value q e,exp according to the pseudo-second-order kinetic model. The q m of B-nZVI and GO-B-nZVI were 130.7 mg·g -1 and 184.5 mg·g -1 according to the Langmuir model.

  1. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    PubMed

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    PubMed

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  3. Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb leaves.

    PubMed

    Xu, Qi-Xin; Shi, Jun-Jun; Zhang, Jian-Guo; Li, Ling; Jiang, Li; Wei, Zhao-Jun

    2016-12-01

    Plant polysaccharides are widely used in food industry as thickening and gelling agents and these attributes largely depend on their thermal, emulsifying and rheological properties. As known, the extraction methods always bring about the diversification of property and functions of polysaccharides. Thus, the Vaccinium bracteatum Thunb leaves polysaccharides (VBTLP) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The thermal, emulsifying and rheological properties of VBTLP were investigated in the present study. Within the range of 20-225°C, CHSS showed the highest peak temperature, whereas HBSS displayed the highest endothermic enthalpy and highest emulsifying activity, while, CASS showed the longest emulsifying stability. The VBTLP solutions exhibited non-Newtonian shear-thinning behavior within the concentrations of 0.6-2.5%. The apparent viscosity of VBTLP solution decreased under following conditions: acidic pH (4.0), alkaline pH (10.0), in the presence of Ca 2+ and at high temperature, while it increased in the presence of Na + and at freezing conditions. The modulus G' and G″ of VBTLP solutions were increased with increasing oscillation frequency, and the crossover frequency shifted to lower values when the polysaccharide content increased. The above results of thermal, emulsifying and rheological properties of VBTLPs supplied the basis for V. bracteatum leaves in potential industrial applications of foods. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Removal of chromium (VI) from aqueous solution using walnut hull.

    PubMed

    Wang, Xue Song; Li, Zhi Zhong; Tao, Sheng Rong

    2009-02-01

    In this study, removal of chromium (VI) from aqueous solution by walnut hull (a local low-cost adsorbent) was studied. The extent of adsorption was investigated as a function of solution pH, contact time, adsorbent and adsorbate concentration, reaction temperature and supporting electrolyte (sodium chloride). The Cr (VI) removal was pH-dependent, reaching a maximum (97.3%) at pH 1.0. The kinetic experimental data were fitted to the first-order, modified Freundlich, intraparticle diffusion and Elovich models and the corresponding parameters were obtained. A 102.78 kJ/mol Ea (activation energy) for the reaction of chromium (VI) adsorption onto walnut indicated that the rate-limiting step in this case might be a chemically controlled process. Both the Langmuir and Freundlich isotherms were suitable for describing the biosorption of chromium (VI) onto walnut hull. The uptake of chromium (VI) per weight of adsorbent increased with increasing initial chromium (VI) concentration up to 240-480 mg/L, and decreased sharply with increasing adsorbent concentration ranging from 1.0 to 5.0 g/L. An increase in sodium chloride (as supporting electrolyte) concentration was found to induce a negative effect while an increase in temperature was found to give rise to a positive effect on the chromium (VI) adsorption process. Compared to the various other adsorbents reported in the literature, the walnut hull in this study shows very good promise for practical applicability.

  5. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer.

    PubMed

    Kim, Sungwoo; Nishimoto, Satoru K; Bumgardner, Joel D; Haggard, Warren O; Gaber, M Waleed; Yang, Yunzhi

    2010-05-01

    We report here the development of a chitosan/beta-glycerophosphate(Ch/beta-GP) thermo-sensitive gel to deliver ellagic acid (EA) for cancer treatment. The properties of the Ch/beta-GP gels were characterized regarding chemical structure, surface morphology, and viscoelasticity. In vitro EA release rate from the EA loaded Ch/beta-GP gel and chitosan degradation rate were investigated. The anti-tumor effect of the EA loaded Ch/beta-GP gel on brain cancer cells (human U87 glioblastomas and rat C6 glioma cells) was evaluated by examining cell viability. Cell number and activity were monitored by the MTS assay. The Ch/beta-GP solution formed a heat-induced gel at body temperature, and the gelation temperature and time were affected by the final pH of the Ch/beta-GP solution. The lysozyme increased the EA release rate by 2.5 times higher than that in the absence of lysozyme. Dialyzed chitosan solution with final pH 6.3 greatly reduced the beta-GP needed for gelation, thereby significantly improving the biocompatibility of gel (p < 0.001). The chitosan gels containing 1% (w/v) of ellagic acid significantly reduced viability of U87 cells and C6 cells compared with the chitosan gels at 3 days incubation (p < 0.01, and p < 0.001, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Impact of the interaction with the positive charge in adsorption of benzene and other organic compounds from aqueous solutions on carbons

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Ćwiertnia, Magdalena S.; Wiśniewski, Marek; Gauden, Piotr A.; Rychlicki, Gerhard; Szymański, Grzegorz S.

    2007-02-01

    We present the results of benzene adsorption at the acidic pH level determined on the series of chemically modified activated carbons and at three temperatures. The influence of carbon surface chemical composition on benzene adsorption is discussed. It is shown that the decrease in the pH level from 7 up to 1.5 increases benzene adsorption and the only exception is carbon modified with gaseous ammonia. Basing on the results of current work and those published previously (for phenol, paracetamol, acetanilide and aniline) and using the results of quantum chemistry calculations (DFT, Gaussian 98) we show, that the value of the energy of interaction with unit positive charge is crucial during the analysis of the influence of pH level on adsorption. Obtained results allow to predict the changes in adsorption of aromatics on carbons with the decrease in the pH level.

  7. Titania Deposition on PMR-15

    NASA Technical Reports Server (NTRS)

    Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan

    2005-01-01

    The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.

  8. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    PubMed Central

    Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837

  9. TBARs distillation method: revision to minimize the interference from yellow pigments in meat products.

    PubMed

    Díaz, P; Linares, M B; Egea, M; Auqui, S M; Garrido, M D

    2014-12-01

    The aim was to study the effect of the incubation method and TBA reagent (concentration/solvent) on yellow pigment interference in meat products. Distillates from red sausage, sucrose, malondialdehyde and a mixture of sucrose-malondialdehyde were reacted with four different TBA solutions at five different temperature/time relations. Two TBA solutions were prepared at 20mM using 90% glacial acetic acid or 3.86% perchloric acid. In addition, an 80mM TBA solution was prepared using distilled water adjusted to pH4 and another using 0.8% TBA in distilled water. The temperature/time relations were: (1) 35min in a boiling water bath; (2) 70°C/30min; (3) 40°C/90min; (4) room temperature (r.t.) (24°C) in dark conditions for 20h; and (5) 60min in a boiling water bath. The results showed that aqueous or diluted acid solutions of TBA reagent and the application of 100°C for less than 1h provided the best conditions to minimize the presence of yellow pigments and maximize pink pigment formation in meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery.

    PubMed

    Kim, Jae Dong; Jung, Youn Jae; Woo, Chang Hee; Choi, Young Chan; Choi, Ji Suk; Cho, Yong Woo

    2017-01-01

    Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature. The release profiles of insulin and BSA showed sustained release for 72h. Overall, the thermo-responsive self-assembled PhENPs provide a useful tool for a range of protein delivery and tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases.

    PubMed

    Mascolo, Maria Cristina; Pei, Yongbing; Ring, Terry A

    2013-11-28

    Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C₂H₅)₄NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms) value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

  12. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  13. Structural and surface functionality changes in reticulated vitreous carbon produced from poly(furfuryl alcohol) with sodium hydroxide additions

    NASA Astrophysics Data System (ADS)

    Oishi, Silvia Sizuka; Botelho, Edson Cocchieri; Rezende, Mirabel Cerqueira; Ferreira, Neidenêi Gomes

    2017-02-01

    The use of sodium hydroxide to neutralize the acid catalyst increases the storage life of poly(furfuryl alcohol) (PFA) resin avoiding its continuous polymerization. In this work, a concentrated sodium hydroxide solution (NaOH) was added directly to the PFA resin in order to minimize the production of wastes generated when PFA is washed with diluted basic solution. Thus, different amounts of this concentrated basic solution were added to the resin up to reaching pH values of around 3, 5, 7, and 9. From these four types of modified PFA two sample sets of reticulated vitreous carbon (RVC) were processed and heat treated at two different temperatures (1000 and 1700 °C). A correlation among cross-link density of PFA and RVC morphology, structural ordering and surface functionalities was systematically studied using Fourier transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. The PFA neutralization (pH 7) led to its higher polymerization degree, promoting a crystallinity decrease on RVC treated at 1000 °C as well as its highest percentages of carboxylic groups on surface. A NaOH excess (pH 9) substantially increased the RVC oxygen content, but its crystallinity remained similar to those for samples from pH 3 and 5 treated at 1000 °C, probably due to the reduced presence of carboxylic group and the lower polymerization degree of its cured resin. Samples with pH 3 and 5 heat treated at 1000 and 1700 °C can be considered the most ordered which indicated that small quantities of NaOH may be advantageous to minimize continuous polymerization of PFA resin increasing its storage life and improving RVC microstructure.

  14. Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free materials.

    PubMed

    Kameda, Tsunenori

    2015-01-01

    We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.

  15. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  16. Release kinetics of vanadium from vanadium titano-magnetite: The effects of pH, dissolved oxygen, temperature and foreign ions.

    PubMed

    Hu, Xingyun; Yue, Yuyan; Peng, Xianjia

    2018-02-01

    As part of a broader study of the environmental geochemistry behavior of vanadium (V), the release kinetics of V from the dissolution of natural vanadium titano-magnetite under environmentally relevant conditions was investigated. In both the acidic and basic domains, the V release rate was found to be proportional to fractional powers of hydrogen ion and dissolved oxygen activities. The dependence of the rate on dissolved oxygen can also be described in terms of the Langmuir adsorption model. The empirical rate equation is given by: r [Formula: see text] where, α=0.099-0.265, k'=3.2×10 -6 -1.7×10 -5 , K=2.7×10 4 -3.9×10 4 mol/L in acid solution (pH4.1), and α=-0.494-(-0.527), k'=2.0×10 4 -2.5×10 -11 , and K=4.1×10 3 -6.5×10 3 mol/L in basic solution (pH8.8) at 20°C. Based on the effect of temperature on the release rate of V, the activation energies of minerals at pH8.8 were determined to be 148-235kJ/mol, suggesting that the dissolution of vanadium titano-magnetite is a surface-controlled process. The presence of Na + , Ca 2+ , Mg 2+ , K + , NO 3 - , Cl - , SO 4 2- and CO 3 2- was found to accelerate the V release rates. This study improves the understanding of both the V pollution risk in some mine areas and the fate of V in the environment. Copyright © 2017. Published by Elsevier B.V.

  17. In-situ observation of the transformation of amorphous calcium phosphate to crystalline hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Stammeier, Jessica; Hippler, Dorothee; Mavromatis, Vasileios; Sacher, Stephan; Dietzel, Martin

    2016-04-01

    Amorphous calcium phosphate (Ca3(PO4)2*nH2O; ACP) is often a precursor phase of the mineral (hydroxy-) apatite (Ca5(PO4)3(OH)) that can be formed in natural settings during both authigenic and biogenic mineral formation. Particularly, in the biomineralization process of fish tissue, ACP has shown to be an important transient phase. In solution ACP rapidly transforms into the crystalline phase. The transformation rate highly depends on the physico-chemical conditions of the solution: Ca & P availability, pH and temperature. In natural settings Ca can be provided by different sources: from (1) seawater, (2) porewater, or (3) diagenetically-altered carbonates, whereas local supersaturation of P can be induced by microbial activity. In this study, we performed phosphate precipitation experiments in order to monitor the transformation process of the ACP to crystalline hydroxyapatite (HAP) using in-situ Raman spectroscopy. During the experiments the temperature was kept constant at 20.0 ± 0.01 ° C and pH at 9 ± 0.1. 50 ml of 0.3 CaCl 2H2O was titrated at a rate of 5 ml/min to an equal volume of 0.2 M Na2HPO4. The pH was kept constant by titration of 1 M NaOH. During the experiment samples were taken from the solution and instantly filtered. The obtained solid samples were lyophilized and analyzed with XRD, ATR and SEM. The respective solution samples were analyzed using ion chromatography and ICP OES, coupling the spectroscopic data with detailed solution chemistry data. We observed transformation of ACP to HAP to occur within 14 hours, illustrated in a clear peak shift in Raman spectra from 950 cm-1 to 960 cm-1. The obtained results are discussed in the aspects of distribution of major elements during the formation of phosphates and/or the diagenetic alteration of carbonates to phosphates in geologic settings. Financial support by DFG-FG 736 and NAWI Graz is kindly acknowledged.

  18. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  19. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, R.W.; Kadam, K.L.; Hsu, T.A.; Philippidis, G.P.; Wyman, C.E.

    1998-01-06

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions. 7 figs.

  20. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, R.W.; Kadam, K.L.; Hsu, T.A.; Philippidis, G.P.; Wyman, C.E.

    1996-04-02

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions. 7 figs.

  1. Prehydrolysis of lignocellulose

    DOEpatents

    Torget, R.W.; Kadam, K.L.; Hsu, T.A.; Philippidis, G.P.; Wyman, C.E.

    1995-06-13

    The invention relates to the prehydrolysis of lignocellulose by passing an acidic or alkaline solution through solid lignocellulosic particles with removal of soluble components as they are formed. The technique permits a less severe combination of pH, temperature and time than conventional prehydrolysis. Furthermore, greater extraction of both hemicellulose and lignin occurs simultaneously in the same reactor and under the same conditions. 7 figs.

  2. Preparation of titanium oxide ceramic membranes

    DOEpatents

    Anderson, M.A.; Xu, Q.

    1992-03-17

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  3. New analytical methodology for analysing S(IV) species at low pH solutions by one stage titration method (bichromatometry) with a clear colour change. Could potentially replace the state-of-art-method iodometry at low pH analysis due higher accuracy

    PubMed Central

    Galfi, Istvan; Virtanen, Jorma; Gasik, Michael M.

    2017-01-01

    A new, faster and more reliable analytical methodology for S(IV) species analysis at low pH solutions by bichromatometry is proposed. For decades the state of the art methodology has been iodometry that is still well justified method for neutral solutions, thus at low pH media possess various side reactions increasing inaccuracy. In contrast, the new methodology has no side reactions at low pH media, requires only one titration step and provides a clear color change if S(IV) species are present in the solution. The method is validated using model solutions with known concentrations and applied to analyses of gaseous SO2 from purged solution in low pH media samples. The results indicate that bichromatometry can accurately analyze SO2 from liquid samples having pH even below 0 relevant to metallurgical industrial processes. PMID:29145479

  4. Considerations on prevention of phlebitis and venous pain from intravenous prostaglandin E(1) administration by adjusting solution pH: in vitro manipulations affecting pH.

    PubMed

    Kohno, Emiko; Nishikata, Mayumi; Okamura, Noboru; Matsuyama, Kenji

    2008-01-01

    Prostaglandin E(1) (PGE(1); Alprostadil Alfadex) is a potent vasodilator and inhibitor of platelet aggregation used to treat patients with peripheral vascular disease. The main adverse effects of intravenous PGE(1) administration, phlebitis and venous pain, arise from the unphysiologically low pH of infusion solutions. When PGE(1) infusion solutions with a pH value greater then 6 are used, phlebitis and venous pain are considered to be avoidable. Beginning with a PGE(1) infusion solution with pH greater than 6, we add the amount of 7% sodium bicarbonate needed to bring the solution to pH 7.4 if phlebitis or venous pain develops. In the present study we established a convenient nomogram showing the relationship between the titratable acidity of various infusion solutions and the volume of 7% sodium bicarbonate required to attain pH 7.4 for preventing the phlebitis and venous pain associated with PGE(1) infusion.

  5. Functional Biomaterials: Solution Electrospinning and Gelation of Whey Protein and Pullulan

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Tolstedt

    Utilizing biomaterials that are biodegradable, biocompatible and edible serve well for food products as well as biomedical applications. Biomaterials whey protein and pullulan both have these characteristics. Whey proteins (WP) have been used in food products for many years and more recently in pharmaceutical products. They have the ability to form both gels and stable foams. Pullulan (PULL) has also been used in both food and pharmaceutical products, and is a highly water soluble, non-gelling polysaccharide and has been used primarily as a film former. Herein, we investigate the ability of whey protein and pullulan to form nanofibers and gels. Combining their distinct properties allows the ability to uniquely manipulate nanofiber and gel characteristics and behavior for a variety of applications, from food to even tissue scaffolding. First, we determined the electrospinnability of aqueous whey protein solutions. Both whey protein isolate (WPI) and one of its major components beta--lactoglobulin (BLG), either in native or denatured form, yielded interesting micro and nanostructures when electrosprayed; while nanofiber production required blending with a spinnable polymer, poly(ethylene oxide) (PEO). WP:PEO solutions were also successfully electrospun at acidic pH (2≤pH≤3), which could improve shelf life. Fourier Transform Infrared Reflectance (FTIR) analysis of WP:PEO fiber mat indicated some variation in WP secondary structure with varying WPI concentration (as WPI increased, % alpha-helix increased and beta-turn decreased) and pH (as pH decreased from neutral (7.5) to acidic (2), % beta-sheet decreased and alpha-helix increased). X-ray Photoelectron Spectroscopy (XPS) also confirmed the presence of WP on the surface of the blend fibers, augmenting the FTIR analysis. Interestingly, WP:PEO composite nanofibers maintained its fibrous morphology at temperatures as high as 100 °C, above the 60 °C PEO melting point. Further, we show that the blend mats retained a fibrous structure after the heat treatment. Our second goal was to evaluate the ability of aqueous blends of whey protein and pullulan to form gels. We first looked at WP-PULL blend solutions at room temperature, finding an increasing linear trend in low shear viscosity as the relative concentration of pullulan increased. Blend solution samples were then heated to determine the ability of the blend solutions to form a gelled network. Starting with a homogeneous WP gel, adding PULL, at native mix or alkaline pH, maintained a transparent homogeneous microstructure, but resulted in weaker gels based on its response to stress. At WP isoelectric point (IEP) pH, both protein and blend gels became opaque due to protein aggregation, forming a particulate gel. All gels at the IEP were weaker, yielding at much lower stress and corresponding strain, due to the protein aggregation. The addition of transglutaminase enzyme yielded a stronger network than the native samples, while the addition of sodium trimetaphosphate salt yielded weaker gels and also induced relevant particle and/or course stranded microstructure in both pH 8 and IEP cases. The third part of this study demonstrated the ability of pullulan to form nanofibers in the solution electrospinning process. Aqueous pullulan solutions were able to form defect-free nanofibers with a minimum concentration of 15 w/w%. Pullulan and PULL:hydroxypropyl-beta- cyclodextrin (HPBCD) blend fibers were chemically crosslinked to form insoluble fibers using ethylene glycol diglycidyl ether (EGDGE), a chemical used in food contact coating applications. Next, solution blends of pullulan with whey protein were prepared and also electrospun at varying pH and relative biomaterial concentrations at 17 total w/w%. PULL-WP blend nanofiber mats were crosslinked via heat treatment and found to be both swellable and insoluble. When dried, the mats did not return to their original fiber state and instead appear to be gelatinous fibers in nature after soaking, and thereby making them potentially useful for tissue scaffolding applications. A fourth accomplishment was to utilize Near Infrared Reflectance (NIR) Spectroscopy and Chemometrics techniques to analyze commercial whey protein powder characteristics such as protein, fat and moisture content as well as pH. NIR has been utilized in the food and pharmaceutical industries for quality control as a valuable compliment to or replacement for more expensive testing such as High Performance Liquid Chromatography. Analysis resulted in the development of quantitative, linear regression models to correlate whey protein powder characteristics to NIR data. Whey protein's ability to form gels and pullulan's electrospinnability to form nanofibers is combined herein to form blends of both that can be changed with varying concentration, pH, temperature and supplementation with food-safe additives. The study correlates mechanical properties and microstructure of blend gels and nanofibers and provides a foundation for further study of swellable network for tissue application specifically in the use of pullulan-whey protein heat treated nanofiber mats.

  6. [Bromate reduction by granular activated carbon].

    PubMed

    Huang, Xin; Gao, Nai-yun; Lu, Pin-pin

    2007-10-01

    Batch experiments were conducted to evaluate the kinetics of reducing bromate to bromide by granular activated carbon. Solution conditions were studied in details, such as pH, ionic strength, temperature and initial bromate concentration. The results showed the removal capacity of GAC was positively relevant to surface basic functional groups. The whole process was inhibited by other anions in solution and the inhibition sequence was NO3(-) > SO4(2-) > Cl(-). Pseudo-second order rate equation and intraparticle diffusion model were applied to fit the process of bromate reduction and the process of bromide formation, respectively, with regression coefficients higher than 0.97 at most cases. Bromate removal was found to be favored under conditions with low pH value and low ionic strength. Both sorption rate of bromate and formation rate of bromide were decreased, and then increased along with the increase of temperature during 15-42 degree C. In this experiment, the maximum adsorption capacity of GAC is 769.23 micromol/g (98.4 mg/g), whereas the sorption process is slow and easily influenced. It is concluded that the sorption of bromate by the micropore portion of GAC was influenced by the release of bromide.

  7. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  8. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions.

  9. Adsorption of a textile dye "Indanthrene Blue RS (C.I. Vat Blue 4)" from aqueous solutions onto smectite-rich clayey rock.

    PubMed

    Chaari, Islem; Feki, Mongi; Medhioub, Mounir; Bouzid, Jalel; Fakhfakh, Emna; Jamoussi, Fakher

    2009-12-30

    The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.

  10. Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges

    2012-05-01

    Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the Witwatersrand Basin, South Africa may also provide habitable environments for life. The nitrogen isotope results of remaining ammonium from the partial dissociation experiments fit well with a batch equilibrium model, indicating equilibrium nitrogen isotope fractionations have been reached between ammonium and its dissociation product aqueous ammonia. Modeling yielded nitrogen isotope fractionations between ammonium and aqueous ammonia were 45.4‰ at 23 °C, 37.7‰ at 50 °C, and 33.5‰ at 70 °C, respectively. A relationship between nitrogen equilibrium isotope fractionation and temperature is determined for the experimental temperature range as: 103·lnα(aq)=25.94×{103}/{T}-42.25 Integrated with three previous theoretical estimates on nitrogen isotope equilibrium fractionations between ammonium and gaseous ammonia, we achieved three possible temperature-dependent nitrogen isotope equilibrium fractionation between aqueous ammonia and gaseous ammonia:

  11. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  12. Experiments on the Filtration of Solution of Sodium Uranate with Nitric Acid; ENSAYOS DE FILTRACION DE SOLUCIONES DE DISOLUCION DE URANATO SODICO CON ACIDO NITRICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, J.M.; Luina, A.P.; Jodra, L.G.

    1957-01-01

    In the recovery of uraniuma from leach solutions, the pilot plant of the J.E.N, does not clarify the solution and the sodium uranate carries with it a high proportion of impurities. Therefore, a study was made to determine the optimum conditions for the filtration of sodium uranate from nitric acid solution and to establish modifications in the dissolution processes at present in use for the concentrates. The effects of pressure, addition of CaSO/sub 4/ and Kieselgur, pH, and temperature were investigated The modifications made to the pilot plant as a result of these studies are briefly described. (J.S.R.)

  13. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    NASA Astrophysics Data System (ADS)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  14. Solution properties of the capsular polysaccharide produced by Klebsiella pneumoniae K40.

    PubMed

    Flaibani, A; Leonhartsberger, S; Navarini, L; Cescutti, P; Paoletti, S

    1994-04-01

    This paper reports some physicochemical properties of the capsular polysaccharide produced by Klebsiella pneumoniae serotype K40 (K40-CPS) in aqueous solution. The polymer has a linear hexasaccharide repeating unit containing one glucuronic acid residue as the only ionizable group. Potentiometric, viscometric, chiro-optical and rheological measurements have been carried out over a range of ionic strength, pH and temperature, with the aim of characterizing the conformational state of the polysaccharide in aqueous solution. All the data reported indicate that the K40-CPS does not undergo a cooperative conformational transition under the investigated experimental conditions. Furthermore, the viscosity data and the viscoelastic spectra suggest that the K40-CPS is rather flexible and adopts a random coil conformation in solution.

  15. Three-dimensional structure of Erwinia carotovora L-asparaginase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kislitsyn, Yu. A.; Kravchenko, O. V.; Nikonov, S. V.

    2006-10-15

    Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement methodmore » using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)« less

  16. Adsorption performance of mixed dyes on alkalization loofah fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Liu, Jinyan; Li, Xingxing

    2018-02-01

    When the polyporous structures of loofah fiber is adequately exposed after alkali treatment,lignin, hemicellulose and pectin are removed. Specific surface area is increased to maximum, which means the efficiency of absorptivity is highest. In this paper, by using alkalization loofah (AL) as adsorbent, the effect of loofah fiber on waste water treatment is studied under the efficiency of loofah fiber which contain acridine yellow, methylene blue, mixed solution of the two dyes. The optimum treatment conditions of loofah fiber were studied from five aspects which include dosage, temperature, mixing time, pH and concentration. The results showed that the optimal conditions are 30°C, pH 8.0, 20mg dosage of loofah fiber in 40ml solution and mixing time 25min. The optimal treatment conditions of mixed dyes were studied from the aspects of mixing time, the dosage of AL and the molar ratio of the two components in the mixed dyes.

  17. Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations.

    PubMed

    Morita, C; Sano, K; Morimatsu, S; Kiura, H; Goto, T; Kohno, T; Hong, W U; Miyoshi, H; Iwasawa, A; Nakamura, Y; Tagawa, M; Yokosuka, O; Saisho, H; Maeda, T; Katsuoka, Y

    2000-03-01

    Electrolyzed products of sodium chloride solution were examined for their disinfection potential against hepatitis B virus (HBV) and human immunodeficiency virus (HIV) in vitro. Electrolysis of 0.05% NaCl in tap water was carried out for 45 min at room temperature using a 3 A electric current in separate wells installed with positive and negative electrodes. The electrolyzed products were obtained from the positive well. The oxidation reduction potential (ORP), pH and free chlorine content of the product were 1053 mV, pH 2.34 and 4.20 ppm, respectively. The products modified the antigenicity of the surface protein of HBV as well as the infectivity of HIV in time- and concentration-dependent manner. Although the inactivating potential was decreased by the addition of contaminating protein, recycling of the product or continuous addition of fresh product may restore the complete disinfection against bloodborne pathogens.

  18. Influence of feedstock on the copper removal capacity of waste-derived biochars.

    PubMed

    Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe

    2016-07-01

    Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology.

    PubMed

    Rodrigues, Sueli; Pinto, Gustavo A S; Fernandes, Fabiano A N

    2008-01-01

    Coconut is a tropical fruit largely consumed in many countries. In some areas of the Brazilian coast, coconut shell represents more than 60% of the domestic waste volume. The coconut shell is composed mainly of lignin and cellulose, having a chemical composition very similar to wood and suitable for phenolic extraction. In this work, the use of ultrasound to extract phenolic compounds from coconut shell was evaluated. The effect of temperature, solution to solid ratio, pH and extraction time were evaluated through a 2(4) experimental planning. The extraction process was also optimized using surface response methodology. At the optimum operating condition (30 degrees C, solution to solid ratio of 50, 15 min of extraction and pH 6.5) the process yielded 22.44 mg of phenolic compounds per gram of coconut shell.

  20. Structural studies on aqueous gelatin solutions: Implications in designing a thermo-responsive nanoparticulate formulation.

    PubMed

    Ahsan, Saad M; Rao, Ch Mohan

    2017-02-01

    Gelatin as a polymer has found extensive application in the pharmaceutical industry. It is also being used, as a matrix molecule, for nanoparticle based drug delivery applications. Gelatin nanoparticles synthesised, keeping the native structure intact, show interesting properties. Synthesizing such nanoparticles requires an understanding of the structural features of gelatin under conditions of nanoparticle synthesis and preserving them during the process. To address this we have carried out an extensive characterization of gelatin using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) under various reaction conditions that are utilized in the desolvation method for gelatin nanoparticle synthesis. We investigated the gel-sol transition, hysteresis and gelatin fibre morphology under different pH and temperature conditions. We also investigated the temperature and pH dependence of triple-helix to random-coil transition in gelatin. We finally demonstrate the synthesis of gelatin nanoparticles with native gelatin. These nanoparticles show shrinkage in size (∼90nm) with increase in temperature from 30°C (369.4 ±19.8) to 40°C (282.3±9.8). Our results suggest that by carefully selecting the reaction conditions, it is possible to synthesise nanoparticles having partially folded structures and with a varying degree of sensitivity towards temperature and pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of pH value on structural and photoluminescence properties of Tb3+ -doped Lu2O3 nanopowders synthesized by sol-gel route

    NASA Astrophysics Data System (ADS)

    Mendoud, A.; Guerbous, L.; Boukerika, A.; Boudine, B.; Benrekaa, N.

    2018-01-01

    Tb3+-doped Lu2O3 nanophosphors were prepared via simple sol-gel method, at different pH value of solution (2, 5, 8 and 11), using diethanolamine (DEA) as polymerization agent. The nanopowder samples were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, room temperature steady and time resolved photoluminescence spectroscopy. The structural analysis reveals that all samples mainely crystallized in the cubic bixbyite structure with Ia3 space group. Also, it was found that the pH value of solution strongly influences the crystallite size, the vibrational frequency modes and the surface morphology of Lu2O3:Tb3+ nanocrystals. All samples show blue-greenish emissions, corresponding to 5D4 → 7FJ (J = 3, 4, 5 and 6) intraconfigurationnelles transitions. The intense green emission peak situated at 542 nm is assigned to 5D4 → 7F5 transition. The 4f8 → 4f75d1 spin-allowed and forbidden transitions, the charge transfer band (CTB) O2- → Tb3+ and the host absorption bands were observed and their dependence on pH value is discussed.

  2. Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.

    PubMed

    Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S

    2014-03-01

    In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Liu, Zhifeng; Wu, Zhibin; Zeng, Guangming; Shao, Binbin; Liu, Yujie; Jiang, Yilin; Zhong, Hua; Liu, Yang

    2018-05-01

    A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

  4. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Pashai Gatabi, Maliheh; Milani Moghaddam, Hossain; Ghorbani, Mohsen

    2016-07-01

    Adsorptive potential of maghemite decorated multiwalled carbon nanotubes (MWCNTs) for the removal of cadmium ions from aqueous solution was investigated. The magnetic nanoadsorbent was synthesized using a versatile and cost effective chemical route. Structural, magnetic and surface charge properties of the adsorbent were characterized using FTIR, XRD, TEM, VSM analysis and pHPZC determination. Batch adsorption experiments were performed under varied system parameters such as pH, contact time, initial cadmium concentration and temperature. Highest cadmium adsorption was obtained at pH 8.0 and contact time of 30 min. Adsorption behavior was kinetically studied using pseudo first-order, pseudo second-order, and Weber-Morris intra particle diffusion models among which data were mostly correlated to pseudo second-order model. Adsorbate-adsorbent interactions as a function of temperature was assessed by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models from which Freundlich model had the highest consistency with the data. The adsorption capacity increased with increasing temperature and maximum Langmuir's adsorption capacity was found to be 78.81 mg g-1 at 298 K. Thermodynamic parameters and activation energy value suggest that the process of cadmium removal was spontaneous and physical in nature, which lead to fast kinetics and high regeneration capability of the nanoadsorbent. Results of this work are of great significance for environmental applications of magnetic MWCNTs as promising adsorbent for heavy metals removal from aqueous solutions.

  5. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    PubMed

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  6. Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar

    NASA Astrophysics Data System (ADS)

    Kołodyńska, D.; Bąk, J.; Kozioł, M.; Pylypchuk, L. V.

    2017-06-01

    Magnetic biochar nanocomposites were obtained by modification of biochar by zero-valent iron. The article provides information on the impact of contact time, initial Cd(II), Co(II), Zn(II), and Pb(II) ion concentrations, dose of the sorbents, solution pH and temperature on the adsorption capacity. On the basis of experiments, it was found that the optimum parameters for the sorption process are phase contact time 360 min (after this time, the equilibrium of all concentrations is reached), the dose of sorbent equal to 5 g/dm3, pH 5 and the temperature 295 K. The values of parameters calculated from the kinetic models and isotherms present the best match to the pseudo second order and Langmuir isotherm models. The calculated thermodynamic parameters ΔH 0, ΔS 0 and ΔG 0 indicate that the sorption of heavy metal ions is an exothermic and spontaneous process as well as favoured at lower temperatures, suggesting the physical character of sorption. The solution of nitric acid(V) at the concentration 0.1 mol/dm3 was the best acidic desorbing agent used for regeneration of metal-loaded magnetic sorbents. The physicochemical properties of synthesized composites were characterized by FTIR, SEM, XRD, XPS and TG analyses. The point characteristics of the double layer for biochar pHPZC and pHIEP were designated.

  7. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  8. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Reuse of waste beer yeast sludge for biosorptive decolorization of reactive blue 49 from aqueous solution.

    PubMed

    Wang, Baoe; Guo, Xiu

    2011-06-01

    Reactive blue 49 was removed from aqueous solution by biosorption using powder waste sludge composed of Saccharomyces cerevisiae from the beer-brewing industry. The effect of initial pH, temperature and the biosorption thermodynamics, equilibrium, kinetics was investigated in this study. It was found that the biosorption capacity was at maximum at initial pH 3, that the effect of temperature on biosorption of reactive blue 49 was only slight in relation to the large biosorption capacity (25°C, 361 mg g(-1)) according as the biosorption capacity decreased only 43 mg g(-1) at the temperature increased from 25 to 50°C. The biosorption was spontaneous, exothermic in nature and the dye molecules movements decreased slightly in random at the solid/liquid interface during the biosorption of dye on biosorbents. The biosorption equilibrium data could be described by Freundich isotherm model. The biosorption rates were found to be consistent with a pseudo-second-order kinetics model. The functional group interaction analysis between waste beer yeast sludge and reactive blue 49 by the aid of Fourier transform infrared (abbr. FTIR) spectroscopy indicated that amino components involved in protein participated in the biosorption process, which may be achieved by the mutual electrostatic adsorption process between the positively charged amino groups in waste beer yeast sludge with negatively charged sulfonic groups in reactive blue 49.

  10. Acidic and basic solutions dissolve protein plugs made of lithostathine complicating choledochal cyst/pancreaticobiliary maljunction.

    PubMed

    Kaneko, Kenitiro; Ono, Yasuyuki; Tainaka, Takahisa; Sumida, Wataru; Ando, Hisami

    2009-07-01

    Symptoms of choledochal cysts are caused by protein plugs made of lithostathine, which block the long common channel and increase pancreaticobiliary ductal pressure. Agents that dissolve protein plugs can provide relief from or prevent symptoms. In the present study, drugs reportedly effective for pancreatic and biliary stones were used in dissolution tests. Protein plugs were obtained from choledochal cysts during surgery in two children (5- and 6-year-old girls). Plugs approximately 2 mm in diameter were immersed in citric acid, tartaric acid, dimethadione, bromhexine, dehydrocholic acid, sodium citrate, hydrochloric acid, and sodium hydroxide solutions under observation with a digital microscope. The pH of each solution was measured using a pH meter. Plugs dissolved in citric acid (5.2 mM; pH 2.64), tartaric acid (6.7 mM; pH 2.51), dimethadione (75 mM; pH 3.70), hydrochloric acid (0.5 mM; pH 3.13), and sodium hydroxide (75 mM; pH 12.75) solutions. Plugs did not dissolve in dimethadione (7.5 mM; pH 4.31), bromhexine (0.1%; pH 4.68), dehydrocholic acid (5%; pH 7.45), and sodium citrate (75 mM; pH 7.23) solutions. Protein plugs in choledochal cysts are dissolved in acidic and basic solutions, which may eliminate longitudinal electrostatic interactions of the lithostathine protofibrils.

  11. Crystallization of a salt of a weak organic acid and base: solubility relations, supersaturation control and polymorphic behavior.

    PubMed

    Jones, H P; Davey, R J; Cox, B G

    2005-03-24

    Control of crystallization processes for organic salts is of importance to the pharmaceutical industry as many active pharmaceutical materials are marketed as salts. In this study, a method for estimating the solubility product of a salt of a weak acid and weak base from measured pH-solubility data is described for the first time. This allows calculation of the supersaturation of solutions at known pH. Ethylenediammonium 3,5-dinitrobenzoate is a polymorphic organic salt. A detailed study of the effects of pH, supersaturation, and temperature of crystallization on the physical properties of this salt shows that the desired polymorph may be produced by appropriate selection of the pH and supersaturation of crystallization. Crystal morphology is also controlled by these crystallization conditions.

  12. Stability studies of saponins in Bacopa monnieri dried ethanolic extracts.

    PubMed

    Phrompittayarat, Watoo; Wittaya-areekul, Sakchai; Jetiyanon, Kanchalee; Putalun, Waraporn; Tanaka, Hiroyuki; Ingkaninan, Kornkanok

    2008-11-01

    Bacopa monnieri (L.) Wettst. (Brahmi) is currently used as a drug and food supplement for memory improvement. However, studies on the physical and chemical stability of the extract components, especially on the lead compound important for pre-formulation, have not yet been reported. In this study, the stabilities of the crude extract and the diluted crude extract were investigated at various temperatures using saponin glycosides, bacopaside I and bacoside A3 as markers for quantitative analysis. The stability testing of bacopaside I and bacoside A3 standard solution was performed at various temperatures and pH values. The quantity of both compounds under all conditions was analyzed using HPLC techniques. The moisture adsorption of the crude extract was determined at 5, 40, 60 and 80 degrees C at 75 % relative humidity using gravimetric methods. The results revealed that the crude extract quickly adsorbed moisture up to 54 % w/w at both 40 and 80 degrees C, while it only slowly adsorbed moisture at 5 degrees C. The amounts of intact bacopaside I and bacoside A3 in the crude extract decreased drastically at 80 degrees C, slowly at 40 and 60 degrees C, and remained unchanged at 5 degrees C during the period of investigation. Moreover, the amount of both compounds in the standard solution dropped sharply at a pH of 1.2 but slowly at pH 6.8 and 9.0, respectively. The pre-formulation data could be further used for improvement of the final product quality.

  13. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  14. Evaluation of PAN-based manganese dioxide composite for the sorptive removal of cesium-137 from aqueous solutions.

    PubMed

    Nilchi, A; Saberi, R; Garmarodi, S Rasouli; Bagheri, A

    2012-02-01

    Hydrous manganese dioxide-polyacrylonitrile (MnO(2)-PAN) was chemically synthesized and evaluated, as an organic-inorganic composite material, for the removal of radio-contaminant cesium-137 from aqueous solutions. The physico-chemical characterization was carried out by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), CHN elemental analysis, scanning electron microscopy (SEM), nitrogen adsorption-desorption studies and thermogravimetry-differential scanning calorimetry (TGA-DSC). Batch experiments were carried out as a function of contact time, interference of the coexisting ions and initial pH of adsorptive solution applying a radiotracer technique. The effect of temperature on the distribution coefficient of cesium has been utilized in order to evaluate the changes in the standard thermodynamic parameters. The results indicated that Cs(+) ions could be efficiently removed using MnO(2)-PAN composite in the pH range of 4-9 from aqueous solutions and the uptake of cesium is affected to varying degrees by the presence of some diverse co-ions. The equilibrium isotherms have been determined and the sorption data were successfully modeled using Freundlich model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Studies on the controllable transformation of ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Hui, E-mail: liuhuicn@126.co; Ma, Miaorui; Qin, Mei

    2010-09-15

    Ferrihydrite was prepared by two different procedures. Ferrihydrite-1 was prepared by dropping NaOH solution into Fe(III) solution. Ferrihydrite-2 was prepared by adding Fe(III) and NaOH solutions into a certain volume of water simultaneously. Our earlier results obtained at {approx}100 {sup o}C have shown that the structure of ferrihydrite-2 favors its solid state transformation mechanism. Further research reveals that the structure of ferrihydrite-2 favors its dissolution re-crystallization mechanism at a temperature of {<=}60 {sup o}C. Based on the transformation mechanism of ferrihydrite at different temperatures, the controllable transformation from ferrihydrite to various iron (hydr)oxides such as lepidocrocite, goethite, hematite and magnetitemore » can be achieved by adjusting the pH, transformation temperature, transformation time, the amount of Fe(II) as well as the preparation procedures of ferrihydrite. The results in the present paper give a nice example that the transformation of a precursor can be controlled with the help of mechanism. - Graphical abstract: The transformations from ferrihydrite to lepidocrocite, goethite, hematite or magnetite can be controlled with the help of mechanism.« less

  16. Method for producing rapid pH changes

    DOEpatents

    Clark, John H.; Campillo, Anthony J.; Shapiro, Stanley L.; Winn, Kenneth R.

    1981-01-01

    A method of initiating a rapid pH change in a solution by irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.

  17. Method for producing rapid pH changes

    DOEpatents

    Clark, J.H.; Campillo, A.J.; Shapiro, S.L.; Winn, K.R.

    A method of initiating a rapid pH change in a solution comprises irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.

  18. Sol gel synthesis and pH effect on the luminescent and structural properties of YPO4: Pr3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Kahouadji, B.; Guerbous, L.; Boukerika, A.; Dolić, Slobodan D.; Jovanović, Dragana J.; Dramićanin, Miroslav D.

    2017-08-01

    Pr3+ -doped YPO4 nanophosphors prepared by simple sol gel method with different pH values (2, 4, 7 and 11) were obtained. The nanopowders samples were characterized by X-ray diffraction (XRD), room temperature steady and time resolved photoluminescence spectroscopy. The thorough study of pH influence on particle's structure and luminescence of YPO4: 1 at. Pr3+ is presented. It was found that the grain size of samples increases with increases in pH value and obtained particles crystallize in a tetragonal phase with xenotime structure. Under 4f5d excitation (230 nm), all emission spectra show the inter-configurational 4f2→4f5d and under 3P2 excitation (449 nm), only the intra-configurational 1D2→3H4 red emission transition between 580 nm and 620 nm are observed. The highest luminescent intensity was obtained for samples prepared at pH = 4. Furthermore, it was found that the pH of solution has no effect of 1D2 lifetime.

  19. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2012-04-01

    Optimization of acid-catalyzed conversion conditions of wheat straw into furfural, 5-hydroxymethylfurfural (HMF), glucose, and xylose was studied by response surface methodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including reaction temperature (140-200 °C), residence time (1-41 min), pH (0.1-2.1), and liquid:solid ratio (15-195 mL/g) on furan and sugar production. The surface response analysis revealed that temperature, time and pH had a strong influence on the furfural, HMF, xylose and glucose yield, whereas liquid to solid ratio was found not to be significant. The initial pH of solution was the most important variable in acid-catalyzed conversion of wheat straw to furans. The maximum predicted furfural, HMF, xylose and glucose yields were 66%, 3.4%, 100%, and 65%, respectively. This study demonstrated that the microwave-assisted process was a very effective method for the xylose production from wheat straw by diluted acid catalysis. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Chemical durability and leaching mechanism of Ce0.5Eu0.5PO4 ceramics: Effects of temperature and pH values

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Teng, Yuancheng; Wu, Lang; Huang, Yi; Ma, Jiyan; Wang, Guolong

    2015-11-01

    Ce0.5Eu0.5PO4 ceramics with high relative density were prepared by hot-press (HPS) and pressureless (PLS) sintering. The effects of temperature and pH values on the chemical durability of the ceramics were investigated. The results show that an increase of acidity significantly accelerated the corrosion of the samples. In alkaline leachates, further release elements were prevented by the newborn surface precipitation. The leach rate (Rn) of HPS sample was similar to that of PLS specimen in deionized water, but higher Rn for PLS sample was found in pH = 11 solution. Moreover, apparent activation energy of the dissolution of Eu (40 ± 4 kJ mol-1) is much higher than that of Ce (20 ± 1 kJ mol-1), leading to the higher normalized elemental leach rate of Eu. Both the Eu and Ce elements have low leach rates (10-12-10-9 m d-1) after 42 days in all the leachates studied in this work.

Top