Sample records for solution-phase parallel synthesis

  1. Solution-phase parallel synthesis of aryloxyimino amides via a novel multicomponent reaction among aromatic (Z)-chlorooximes, isocyanides, and electron-deficient phenols.

    PubMed

    Mercalli, Valentina; Giustiniano, Mariateresa; Del Grosso, Erika; Varese, Monica; Cassese, Hilde; Massarotti, Alberto; Novellino, Ettore; Tron, Gian Cesare

    2014-11-10

    A library of 41 aryloxyimino amides was prepared via solution phase parallel synthesis by extending the multicomponent reaction of (Z)-chlorooximes and isocyanides to the use of electron-deficient phenols. The resulting aryloxyiminoamide derivatives can be used as intermediates for the synthesis of benzo[d]isoxazole-3-carboxamides, dramatically reducing the number of synthetic steps required by other methods reported in literature.

  2. Solution-Phase Synthesis of Dipeptides: A Capstone Project That Employs Key Techniques in an Organic Laboratory Course

    ERIC Educational Resources Information Center

    Marchetti, Louis; DeBoef, Brenton

    2015-01-01

    A contemporary approach to the synthesis and purification of several UV-active dipeptides has been developed for the second-year organic laboratory. This experiment exposes students to the important technique of solution-phase peptide synthesis and allows an instructor to highlight the parallel between what they are accomplishing in the laboratory…

  3. Fluorous Parallel Synthesis of A Hydantoin/Thiohydantoin Library

    PubMed Central

    Lu, Yimin; Zhang, Wei

    2007-01-01

    Fluorous tagging strategy is applied to solution-phase parallel synthesis of a library containing hydantoin and thiohydantoin analogs. Two perfluoroalkyl (Rf)-tagged α-amino esters each react with 6 aromatic aldehydes under reductive amination conditions. Twelve amino esters then each react with 10 isocyanates and isothiocyanates in parallel. The resulting 120 ureas and thioureas undergo spontaneous cyclization to form the corresponding hydantoins and thiohydantoins. The intermediate and final product purifications are performed with solid-phase extraction (SPE) over FluoroFlash™ cartridges, no chromatography is required. Using standard instruments and straightforward SPE technique, one chemist accomplished the 120-member library synthesis in less than 5 working days, including starting material synthesis and product analysis. PMID:15789556

  4. Titanium(IV) isopropoxide mediated solution phase reductive amination on an automated platform: application in the generation of urea and amide libraries.

    PubMed

    Bhattacharyya, S; Fan, L; Vo, L; Labadie, J

    2000-04-01

    Amine libraries and their derivatives are important targets for high throughput synthesis because of their versatility as medicinal agents and agrochemicals. As a part of our efforts towards automated chemical library synthesis, a titanium(IV) isopropoxide mediated solution phase reductive amination protocol was successfully translated to automation on the Trident(TM) library synthesizer of Argonaut Technologies. An array of 24 secondary amines was prepared in high yield and purity from 4 primary amines and 6 carbonyl compounds. These secondary amines were further utilized in a split synthesis to generate libraries of ureas, amides and sulfonamides in solution phase on the Trident(TM). The automated runs included 192 reactions to synthesize 96 ureas in duplicate and 96 reactions to synthesize 48 amides and 48 sulfonamides. A number of polymer-assisted solution phase protocols were employed for parallel work-up and purification of the products in each step.

  5. Further development of a robust workup process for solution-phase high-throughput library synthesis to address environmental and sample tracking issues.

    PubMed

    Kuroda, Noritaka; Hird, Nick; Cork, David G

    2006-01-01

    During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.

  6. Parallel solution-phase synthesis of a 2-aminothiazole library including fully automated work-up.

    PubMed

    Buchstaller, Hans-Peter; Anlauf, Uwe

    2011-02-01

    A straightforward and effective procedure for the solution phase preparation of a 2-aminothiazole combinatorial library is described. Reaction, work-up and isolation of the title compounds as free bases was accomplished in a fully automated fashion using the Chemspeed ASW 2000 automated synthesizer. The compounds were obtained in good yields and excellent purities without any further purification procedure.

  7. Solution-phase parallel synthesis of hexahydro-1H-isoindolone libraries via tactical combination of Cu-catalyzed three-component coupling and Diels-Alder reactions.

    PubMed

    Zhang, Lei; Lushington, Gerald H; Neuenswander, Benjamin; Hershberger, John C; Malinakova, Helena C

    2008-01-01

    Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.

  8. Solution-Phase Synthesis of a Tricyclic Pyrrole-2-Carboxamide Discovery Library Applying a Stetter-Paal-Knorr Reaction Sequence

    PubMed Central

    Iyer, Pravin S.; Fodor, Matthew D.; Coleman, Claire M.; Twining, Leslie A.; Mitasev, Branko

    2012-01-01

    The solution phase synthesis of a discovery library of 178 tricyclic pyrrole-2-carboxamides was accomplished in nine steps and seven purifications starting with three benzoyl protected amino acid methyl esters. Further diversity was introduced by two glyoxaldehydes and forty-one primary amines. The combination of Pauson-Khand, Stetter and microwave assisted Paal Knorr reactions was applied as a key sequence. The discovery library was designed with the help of QikProp 2.1 and physicochemical data are presented for all pyrroles. Library members were synthesized and purified in parallel and analyzed by LC-MS. Selected compounds were fully characterized. PMID:16677007

  9. Two-dimensional parallel array technology as a new approach to automated combinatorial solid-phase organic synthesis

    PubMed

    Brennan; Biddison; Frauendorf; Schwarcz; Keen; Ecker; Davis; Tinder; Swayze

    1998-01-01

    An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally >80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. Copyright 1998 John Wiley & Sons, Inc.

  10. Solution- and solid-phase parallel synthesis of 4-alkoxy-substituted pyrimidines with high molecular diversity.

    PubMed

    Font, David; Heras, Montserrat; Villalgordo, José M

    2003-01-01

    A simple and straightforward methodology toward the synthesis of novel 2,6-disubstituted-4-alkoxypyrimidine derivatives of type 16 and 19 has been developed. This methodology, initially developed in solution, can be perfectly adapted to the solid support under analogous conditions, taking full advantage of automated parallel synthesis systems. This successful methodology benefits from the key role played by the thioether linkage placed at the 2-position in 3, 9, or 13 in a double manner: on one side, the steric effect exerted by the thioether linkage is likely to be responsible for the very high observed selectivity toward the formation of the O-alkylation products. On the other side, this sulfur linkage can serve not only as a robust point of attachment for the heterocycle, stable to a number of reaction conditions, but also as a means of introducing a new element of diversity through activation to the corresponding sulfone (safety-catch linker concept) and subsequent ipso-substitution reaction with a variety of different N-nucleophiles.

  11. Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI-1:2) optimization.

    PubMed

    Kattar, Solomon D; Surdi, Laura M; Zabierek, Anna; Methot, Joey L; Middleton, Richard E; Hughes, Bethany; Szewczak, Alexander A; Dahlberg, William K; Kral, Astrid M; Ozerova, Nicole; Fleming, Judith C; Wang, Hongmei; Secrist, Paul; Harsch, Andreas; Hamill, Julie E; Cruz, Jonathan C; Kenific, Candia M; Chenard, Melissa; Miller, Thomas A; Berk, Scott C; Tempest, Paul

    2009-02-15

    The successful application of both solid and solution phase library synthesis, combined with tight integration into the medicinal chemistry effort, resulted in the efficient optimization of a novel structural series of selective HDAC1/HDAC2 inhibitors by the MRL-Boston Parallel Medicinal Chemistry group. An initial lead from a small parallel library was found to be potent and selective in biochemical assays. Advanced compounds were the culmination of iterative library design and possess excellent biochemical and cellular potency, as well as acceptable PK and efficacy in animal models.

  12. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  13. Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of 2-chlorobenzoyl thioureas derivatives

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Riaz; Zaib, Sumera; Rauf, Muhammad Khawar; Ebihara, Masahiro; Badshah, Amin; Zahid, Muhammad; Nadeem, Muhammad Arif; Iqbal, Jamshed

    2018-07-01

    An efficient and facile microwave-assisted solution phase parallel synthesis for a 38-member library of N-aroyl-N‧-aryl thioureas was accomplished successfully. These analogues (1-38) were synthesized under identical set of conditions. It has been observed that the reaction time was drastically reduced from 8 to 12 h for conventional methods to only 10-15 mins. Products obtained were more than 98% pure, as characterized by elemental analysis along with FT-IR and 1H, 13C NMR. The solid-phase structural analysis was accomplished by single crystal XRD analysis. The urease inhibitory potential of synthetic compounds was tested and compounds were found to inhibit urease in moderate to significant manner. Compound 17 was the most potent inhibitor of urease having an IC50 value of 0.17 ± 0.1 μM. To check the cytotoxic profile of the derivatives, lungs cancer cell lines were used. Cytotoxicity analysis revealed remarkable toxicity of the compounds against tested lungs carcinoma and compounds showed variation in inhibition activity due to the substituents attached. The molecular docking studies were carried out to identify the possible binding modes of potent inhibitors in the active site of enzyme. The results suggested that the compounds can be further investigated and used against different cancers.

  14. Phase transformation of TiO2 powder prepared by TiCl4 hydrolysis-electrolysis

    NASA Astrophysics Data System (ADS)

    Nur, Adrian; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; A. N., Richard Leonardo; Gultom, Barry Januari

    2017-01-01

    Metal oxide combined with graphite becomes an interesting composition. TiO2 is a good candidate for Li ion battery anode because of low cost, availability sufficient, and environmentally friendly. The form of TiO2 crystals is highly depended on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO2 powders. Using the electrochemical method, the particle phase can easily be controlled by simply adjusting the imposed current or potential to the system. The present work aims to investigate the effects of electrode distance in the electrolysis of TiCl4 solution to the phase transformation of anatase to rutile. The homogeneous solution for the electro-synthesis of TiO2 powders was TiCl4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5×2) cm. The electrodes were set parallel with various distances of 2.6 cm, 3 cm, and 4 cm between the electrodes and were immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply (Zhaoxin PS-3005D). The electro-synthesis was performed galvanostatically at 2.5 hours and a voltage 10 V under constant stirring at room temperature. Phase transformation from anatase to rutile occurred at 2.6 cm to 3 cm electrode distance.

  15. A Laboratory Preparation of Aspartame Analogs Using Simultaneous Multiple Parallel Synthesis Methodology

    ERIC Educational Resources Information Center

    Qvit, Nir; Barda, Yaniv; Gilon, Chaim; Shalev, Deborah E.

    2007-01-01

    This laboratory experiment provides a unique opportunity for students to synthesize three analogues of aspartame, a commonly used artificial sweetener. The students are introduced to the powerful and useful method of parallel synthesis while synthesizing three dipeptides in parallel using solid-phase peptide synthesis (SPPS) and simultaneous…

  16. Optimization of three- and four-component reactions for polysubstituted piperidines: application to the synthesis and preliminary biological screening of a prototype library.

    PubMed

    Ulaczyk-Lesanko, Agnieszka; Pelletier, Eric; Lee, Maria; Prinz, Heino; Waldmann, Herbert; Hall, Dennis G

    2007-01-01

    Several solid- and solution-phase strategies were evaluated for the preparation of libraries of polysubstituted piperidines of type 7 using the tandem aza[4+2]cycloaddition/allylboration multicomponent reaction between 1-aza-4-boronobutadienes, maleimides, and aldehydes. A novel four-component variant of this chemistry was developed in solution phase, and it circumvents the need for pre-forming the azabutadiene component. A parallel synthesis coupled with compound purification by HPLC with mass-based fraction collection allowed the preparation of a library of 944 polysubstituted piperidines in a high degree of purity suitable for biological screening. A representative subset of 244 compounds was screened against a panel of phosphatase enzymes, and despite the modest levels of activity obtained, this study demonstrated that piperidines of type 7 display the right physical properties (e.g., solubility) to be assayed effectively in high-throughput enzymatic tests.

  17. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  18. Parallel-vector computation for structural analysis and nonlinear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.

    1990-01-01

    Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.

  19. Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides

    PubMed Central

    Zhang, Wei

    2005-01-01

    The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439

  20. Role of a Modulator in the Synthesis of Phase-Pure NU-1000.

    PubMed

    Webber, Thomas E; Liu, Wei-Guang; Desai, Sai Puneet; Lu, Connie C; Truhlar, Donald G; Penn, R Lee

    2017-11-15

    NU-1000 is a robust, mesoporous metal-organic framework (MOF) with hexazirconium nodes ([Zr 6 O 16 H 16 ] 8+ , referred to as oxo-Zr 6 nodes) that can be synthesized by combining a solution of ZrOCl 2 ·8H 2 O and a benzoic acid modulator in N,N-dimethylformamide with a solution of linker (1,3,6,8-tetrakis(p-benzoic acid)pyrene, referred to as H 4 TBAPy) and by aging at an elevated temperature. Typically, the resulting crystals are primarily composed of NU-1000 domains that crystallize with a more dense phase that shares structural similarity with NU-901, which is an MOF composed of the same linker molecules and nodes. Density differences between the two polymorphs arise from the differences in the node orientation: in NU-1000, the oxo-Zr 6 nodes rotate 120° from node to node, whereas in NU-901, all nodes are aligned in parallel. Considering this structural difference leads to the hypothesis that changing the modulator from benzoic acid to a larger and more rigid biphenyl-4-carboxylic acid might lead to a stronger steric interaction between the modulator coordinating on the oxo-Zr 6 node and misaligned nodes or linkers in the large pore and inhibit the growth of the more dense NU-901-like material, resulting in phase-pure NU-1000. Side-by-side reactions comparing the products of synthesis using benzoic acid or biphenyl-4-carboxylic acid as a modulator produce structurally heterogeneous crystals and phase-pure NU-1000 crystals. It can be concluded that the larger and more rigid biphenyl-4-carboxylate inhibits the incorporation of nodes with an alignment parallel to the neighboring nodes already residing in the crystal.

  1. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  2. Immobilization methods for the rapid total chemical synthesis of proteins on microtiter plates.

    PubMed

    Zitterbart, Robert; Krumrey, Michael; Seitz, Oliver

    2017-07-01

    The chemical synthesis of proteins typically involves the solid-phase peptide synthesis of unprotected peptide fragments that are stitched together in solution by native chemical ligation (NCL). The process is slow, and throughput is limited because of the need for repeated high performance liquid chromatography purification steps after both solid-phase peptide synthesis and NCL. With an aim to provide faster access to functional proteins and to accelerate the functional analysis of synthetic proteins by parallelization, we developed a method for the high performance liquid chromatography-free synthesis of proteins on the surface of microtiter plates. The method relies on solid-phase synthesis of unprotected peptide fragments, immobilization of the C-terminal fragment and on-surface NCL with an unprotected peptide thioester in crude form. Herein, we describe the development of a suitable immobilization chemistry. We compared (i) formation of nickel(II)-oligohistidine complexes, (ii) Cu-based [2 + 3] alkine-azide cycloaddition and (iii) hydrazone ligation. The comparative study identified the hydrazone ligation as most suitable. The sequence of immobilization via hydrazone ligation, on-surface NCL and radical desulfurization furnished the targeted SH3 domains in near quantitative yield. The synthetic proteins were functional as demonstrated by an on-surface fluorescence-based saturation binding analysis. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  3. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  4. The use of solid supports to generate nucleic acid carriers.

    PubMed

    Unciti-Broceta, Asier; Díaz-Mochón, Juan José; Sánchez-Martín, Rosario M; Bradley, Mark

    2012-07-17

    Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.

  5. hcp-Co nanowires grown on metallic foams as catalysts for the Fischer-Tropsch synthesis.

    PubMed

    Soulantica, Katerina; Harmel, Justine; Peres, Laurent; Estrader, Marta; Berliet, Adrien; Maury, Sylvie; Fécant, Antoine; Chaudret, Bruno; Serp, Philippe

    2018-06-12

    The possibility to control the structural characteristics of the active phase of supported catalysts offers the opportunity to improve catalyst performance, especially in structure sensitive catalytic reactions. In parallel, heat management is of critical importance for the catalytic performance in highly endo- or exothermic reactions. The Fisher-Tropsch synthesis (FTS) is a structure sensitive exothermic reaction, which enables catalytic transformation of syngas to high quality liquid fuels. We have elaborated monolithic cobalt based heterogeneous catalysts through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires, directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst has been tested for the Fischer-Tropsch synthesis in fixed bed reactor, showing stability, and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2-Al2O3 reference catalyst under the same conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of solid solutions of perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less

  7. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  8. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface.

    PubMed

    Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham

    2017-07-01

    Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract .

  9. Parallel Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.

    1995-01-01

    Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.

  10. Total chemical synthesis of proteins without HPLC purification† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01883a Click here for additional data file.

    PubMed Central

    Loibl, S. F.; Harpaz, Z.; Zitterbart, R.

    2016-01-01

    The total chemical synthesis of proteins is a tedious and time-consuming endeavour. The typical steps involve solid phase synthesis of peptide thioesters and cysteinyl peptides, native chemical ligation (NCL) in solution, desulfurization or removal of ligation auxiliaries in the case of extended NCL as well as many intermediary and final HPLC purification steps. With an aim to facilitate and improve the throughput of protein synthesis we developed the first method for the rapid chemical total on-resin synthesis of proteins that proceeds without a single HPLC-purification step. The method relies on the combination of three orthogonal protein tags that allow sequential immobilization (via the N-terminal and C-terminal ends), extended native chemical ligation and release reactions. The peptide fragments to be ligated are prepared by conventional solid phase synthesis and used as crude materials in the subsequent steps. An N-terminal His6 unit permits selective immobilization of the full length peptide thioester onto Ni-NTA agarose beads. The C-terminal peptide fragment carries a C-terminal peptide hydrazide and an N-terminal 2-mercapto-2-phenyl-ethyl ligation auxiliary, which serves as a reactivity tag for the full length peptide. As a result, only full length peptides, not truncation products, react in the subsequent on-bead extended NCL. After auxiliary removal the ligation product is liberated into solution upon treatment with mild acid, and is concomitantly captured by an aldehyde-modified resin. This step allows the removal of the most frequently observed by-product in NCL chemistry, i.e. the hydrolysed peptide thioester (which does not contain a C-terminal peptide hydrazide). Finally, the target protein is released with diluted hydrazine or acid. We applied the method in the synthesis of 46 to 126 amino acid long MUC1 proteins comprising 2–6 copies of a 20mer tandem repeat sequence. Only three days were required for the parallel synthesis of 9 MUC1 proteins which were obtained in 8–33% overall yield with 90–98% purity despite the omission of HPLC purification. PMID:28451120

  11. Parallel-vector computation for linear structural analysis and non-linear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.

    1991-01-01

    Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.

  12. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution. PMID:23402492

  13. Synthesis of 4-(5-iodo-3-methylpyrazolyl) phenylsulfonamide and its elaboration to a COX II inhibitor library by solution-phase suzuki coupling using Pd/C as a solid-supported catalyst.

    PubMed

    Organ, Michael G; Mayer, Stanislas

    2003-01-01

    An effective synthesis of 4-(5-iodo-3-methylpyrazolyl) phenylsulfonamide has been developed. This aromatic iodide template served as an efficient oxidative addition partner for the preparation of a solution-phase library of Celecoxib analogues via Suzuki coupling using Pd/C, a readily filterable catalyst.

  14. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    PubMed

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  15. Modelling Assisted Design and Synthesis of Highly Porous Materials for Chemical Adsorbents

    DTIC Science & Technology

    2010-10-01

    two phases of crystal, a monoclinic phase within the solution, and after removal from solution a trigonal phase is obtained. The single crystal...days. Single crystal X-ray data showed there existed a monoclinic phase within the solution that, upon removal from solution, rapidly converted to a... monoclinic to trigonal upon desolvation, as the new peak which has emerged matches the simulated PXRD of the trigonal phase. Also, as the sample is

  16. 9-Fluorenylmethyloxycarbonyl/ tbutyl-based convergent protein synthesis.

    PubMed

    Barlos, K; Gatos, D

    1999-01-01

    Besides linear solid phase peptide synthesis, segment condensation in solution and chemical ligation, convergent peptide synthesis (CPS) was developed in order to enable the efficient preparation of complex peptides and small proteins. According to this synthetic strategy, solid phase synthesized and suitably protected peptide fragments corresponding to the entire peptide/protein-sequence are condensed on a solid support or in solution, to the target protein. This review summarizes CPS performed utilizing the mild 9-fluorenylmethyloxycarbonyl/tbutyloxycarbonyl-based protecting scheme for the amino acids. Copyright 1999 John Wiley & Sons, Inc.

  17. Massively Parallel Nanostructure Assembly Strategies for Sensing and Information Technology. Phase 2

    DTIC Science & Technology

    2013-05-25

    field. This work has focused on the synthesis of new functional materials and the development of high-throughput, facile methods to assemble...Hong (Seoul National University, Korea). Specifically, gapped nanowires (GNW) were identified as candidate materials for synthesis and assembly as...Throughout the course of this grant, we reported major accomplishments both in the synthesis and assembly of such structures. Synthetically, we report three

  18. Room-temperature synthesis of two-dimensional ultrathin gold nanowire parallel array with tunable spacing.

    PubMed

    Morita, Clara; Tanuma, Hiromitsu; Kawai, Chika; Ito, Yuki; Imura, Yoshiro; Kawai, Takeshi

    2013-02-05

    A series of long-chain amidoamine derivatives with different alkyl chain lengths (CnAA where n is 12, 14, 16, or 18) were synthesized and studied with regard to their ability to form organogels and to act as soft templates for the production of Au nanomaterials. These compounds were found to self-assemble into lamellar structures and exhibited gelation ability in some apolar solvents. The gelation concentration, gel-sol phase transition temperature, and lattice spacing of the lamellar structures in organic solvent all varied on the basis of the alkyl chain length of the particular CnAA compound employed. The potential for these molecules to function as templates was evaluated through the synthesis of Au nanowires (NWs) in their organogels. Ultrathin Au NWs were obtained from all CnAA/toluene gel systems, each within an optimal temperature range. Interestingly, in the case of C12AA and C14AA, it was possible to fabricate ultrathin Au NWs at room temperature. In addition, two-dimensional parallel arrays of ultrathin Au NWs were self-assembled onto TEM copper grids as a result of the drying of dispersion solutions of these NWs. The use of CnAA compounds with differing alkyl chain lengths enabled precise tuning of the distance between the Au NWs in these arrays.

  19. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  20. One-dimensional zinc oxide nanomaterials synthesis and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin A.

    As humanly engineered materials systems approach the atomic scale, top-down manufacturing approaches breakdown and following nature's example, bottom-up or self-assembly methods have the potential to emerge as the dominant paradigm. Synthesis of one-dimensional nanomaterials takes advantage of such self-assembly manufacturing techniques, but until now most efforts have relied on high temperature vapor phase schemes which are limited in scalability and compatibility with organic materials. The solution-phase approach is an attractive low temperature alternative to overcome these shortcomings. To this end, this thesis is a study of the rationale solution-phase synthesis of ZnO nanowires and applications in photovoltaics. The following thesis goals have been achieved: rationale synthesis of a single ZnO nanowire on a polymer substrate without seeding, design of a wafer-scale technique to control ZnO nanowire array density using layer-by-layer polymers, determination of optimal nanowire field emitter density to maximize the field enhancement factor, design of bridged nanowires across metal electrodes to order to circumvent post-synthesis manipulation steps, electrical characterization of bridged nanowires, rationale solution-phase synthesis of long ZnO nanowires on optical fibers, fabrication of ZnO nanowire dye-sensitized solar cells on optical fibers, electrical and optical characterization of solar cell devices, comparison studies of 2-D versus 3-D nanowire dye-sensitized solar cell devices, and achievement of 6-fold solar cell power conversion efficiency enhancement using a 3-D approach. The thesis results have implications in nanomanufacturing scale-up and next generation photovoltaics.

  1. Approximation algorithms for scheduling unrelated parallel machines with release dates

    NASA Astrophysics Data System (ADS)

    Avdeenko, T. V.; Mesentsev, Y. A.; Estraykh, I. V.

    2017-01-01

    In this paper we propose approaches to optimal scheduling of unrelated parallel machines with release dates. One approach is based on the scheme of dynamic programming modified with adaptive narrowing of search domain ensuring its computational effectiveness. We discussed complexity of the exact schedules synthesis and compared it with approximate, close to optimal, solutions. Also we explain how the algorithm works for the example of two unrelated parallel machines and five jobs with release dates. Performance results that show the efficiency of the proposed approach have been given.

  2. Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating

    DTIC Science & Technology

    2004-01-01

    fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of

  3. SIMULATION AND VISUALIZATION OF FLOW PATTERN IN MICROARRAYS FOR LIQUID PHASE OLIGONUCLEOTIDE AND PEPTIDE SYNTHESIS

    PubMed Central

    O-Charoen, Sirimon; Srivannavit, Onnop; Gulari, Erdogan

    2008-01-01

    Microfluidic microarrays have been developed for economical and rapid parallel synthesis of oligonucleotide and peptide libraries. For a synthesis system to be reproducible and uniform, it is crucial to have a uniform reagent delivery throughout the system. Computational fluid dynamics (CFD) is used to model and simulate the microfluidic microarrays to study geometrical effects on flow patterns. By proper design geometry, flow uniformity could be obtained in every microreactor in the microarrays. PMID:17480053

  4. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.

    PubMed

    Wang, Dewei; Wang, Qihua; Wang, Tingmei

    2011-07-18

    In this work, one-dimensional and layered parallel folding of cobalt oxalate nanostructures have been selectively prepared by a one-step, template-free, water-controlled precipitation approach by simply altering the solvents used at ambient temperature and pressure. Encouragingly, the feeding order of solutions played an extraordinary role in the synthesis of nanorods and nanowires. After calcination in air, the as-prepared cobalt oxalate nanostructures were converted to mesoporous Co(3)O(4) nanostructures while their original frame structures were well maintained. The phase composition, morphology, and structure of the as-obtained products were studied in detail. Electrochemical properties of the Co(3)O(4) electrodes were carried out using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements by a three-electrode system. The electrochemical experiments revealed that the layered parallel folding structure of mesoporous Co(3)O(4) exhibited higher capacitance compared to that of the nanorods and nanowires. A maximum specific capacitance of 202.5 F g (-1) has been obtained in 2 M KOH aqueous electrolyte at a current density of 1 A g(-1) with a voltage window from 0 to 0.40 V. Furthermore, the specific capacitance decay after 1000 continuous charge-discharge cycles was negligible, revealing the excellent stability of the electrode. These characteristics indicate that the mesoporous Co(3)O(4) nanostructures are promising electrode materials for supercapacitors.

  5. The application of the large particles method of numerical modeling of the process of carbonic nanostructures synthesis in plasma

    NASA Astrophysics Data System (ADS)

    Abramov, G. V.; Gavrilov, A. N.

    2018-03-01

    The article deals with the numerical solution of the mathematical model of the particles motion and interaction in multicomponent plasma by the example of electric arc synthesis of carbon nanostructures. The high order of the particles and the number of their interactions requires a significant input of machine resources and time for calculations. Application of the large particles method makes it possible to reduce the amount of computation and the requirements for hardware resources without affecting the accuracy of numerical calculations. The use of technology of GPGPU parallel computing using the Nvidia CUDA technology allows organizing all General purpose computation on the basis of the graphical processor graphics card. The comparative analysis of different approaches to parallelization of computations to speed up calculations with the choice of the algorithm in which to calculate the accuracy of the solution shared memory is used. Numerical study of the influence of particles density in the macro particle on the motion parameters and the total number of particle collisions in the plasma for different modes of synthesis has been carried out. The rational range of the coherence coefficient of particle in the macro particle is computed.

  6. New Bandwidth Efficient Parallel Concatenated Coding Schemes

    NASA Technical Reports Server (NTRS)

    Denedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1996-01-01

    We propose a new solution to parallel concatenation of trellis codes with multilevel amplitude/phase modulations and a suitable iterative decoding structure. Examples are given for throughputs 2 bits/sec/Hz with 8PSK and 16QAM signal constellations.

  7. Easy parallel screening of reagent stability, quality control, and metrology in solid phase peptide synthesis (SPPS) and peptide couplings for microarrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achyuthan, Komandoor E.; Wheeler, David R.

    Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less

  8. Easy parallel screening of reagent stability, quality control, and metrology in solid phase peptide synthesis (SPPS) and peptide couplings for microarrays

    DOE PAGES

    Achyuthan, Komandoor E.; Wheeler, David R.

    2015-08-27

    Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of themore » YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ~23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.« less

  9. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin.

    PubMed

    Gatos, D; Tzavara, C

    2001-02-01

    Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Zhenwei; Yang, Weihong, E-mail: whyang@ustc.edu.cn

    By using analytical method, the exact solutions of the incompressible dissipative Hall magnetohydrodynamics (MHD) equations are derived. It is found that a phase difference may occur between the velocity and magnetic field fluctuations when the kinetic and magnetic Reynolds numbers are both very large. Since velocity and magnetic field fluctuations are both circular polarized, the phase difference makes them no longer parallel or anti-parallel like that in the incompressible ideal Hall MHD.

  11. Automated synthesis of a 96 product-sized library of triazole derivatives using a solid phase supported copper catalyst.

    PubMed

    Jlalia, Ibtissem; Beauvineau, Claire; Beauvière, Sophie; Onen, Esra; Aufort, Marie; Beauvineau, Aymeric; Khaba, Eihab; Herscovici, Jean; Meganem, Faouzi; Girard, Christian

    2010-04-28

    This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed. The synthesis of the triazole library and the very good results obtained will finally be discussed.

  12. Synthesis of Superabsorbent Polymer via Inverse Suspension Method: Effect of Carbon Filler

    NASA Astrophysics Data System (ADS)

    Zakaria, Munirah Ezzah Tuan; Shima Jamari, Saidatul; Ling, Yeong Yi; Ghazali, Suriati

    2017-05-01

    This paper studies on the effect of the addition of carbon filler towards the performance of superabsorbent polymer composite (SAPc). In this work, the SAPc was synthesized using inverse suspension polymerization method. The process involved two different solutions; dispersed phase which contains partially neutralized acrylic acid, acrylamide, APS and NN-Methylenebisacrylamide, and continuous phase which contains cyclohexane, span-80 and carbon filler (at different weight percent). The optimum SAPs and filler ratio was measured in terms of water retention in soil and characterized by Mastersizer, FTIR and SEM. Biodegradability of the polymer was determined by soil burial test and SAPc with 0.02% carbon has highest biodegradability rate. SAPc with 0.04wt% carbon showed the optimal water retention percentage among all the samples. The synthesized SAPc producing spherical shapes with parallel alignment due to the addition of carbon fiber. It can be concluded that the addition of carbon fiber able to enhance the performance of the SAP composite (SAPc).

  13. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates.

    PubMed

    Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2010-12-03

    Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.

  14. Technology development for iron Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Brien, R.J.; Raje, A.; Keogh, R.A.

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alphamore » iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.« less

  15. Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications

    PubMed Central

    Han, Guang; Zhang, Ruizhi; Popuri, Srinivas R.; Greer, Heather F.; Reece, Michael J.; Bos, Jan-Willem G.; Zhou, Wuzong; Knox, Andrew R.; Gregory, Duncan H.

    2017-01-01

    A facile one-pot aqueous solution method has been developed for the fast and straightforward synthesis of SnTe nanoparticles in more than ten gram quantities per batch. The synthesis involves boiling an alkaline Na2SnO2 solution and a NaHTe solution for short time scales, in which the NaOH concentration and reaction duration play vital roles in controlling the phase purity and particle size, respectively. Spark plasma sintering of the SnTe nanoparticles produces nanostructured compacts that have a comparable thermoelectric performance to bulk counterparts synthesised by more time- and energy-intensive methods. This approach, combining an energy-efficient, surfactant-free solution synthesis with spark plasma sintering, provides a simple, rapid, and inexpensive route to p-type SnTe nanostructured materials. PMID:28772593

  16. Effects of synthesis techniques on chemical composition, microstructure and dielectric properties of Mg-doped calcium titanate

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai; Sato, Nicha

    2018-04-01

    Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.

  17. Solution based synthesis of mixed-phase materials in the Li2TiO3-Li4SiO4 system

    NASA Astrophysics Data System (ADS)

    Hanaor, Dorian A. H.; Kolb, Matthias H. H.; Gan, Yixiang; Kamlah, Marc; Knitter, Regina

    2015-01-01

    As candidate tritium breeder materials for use in the ITER helium cooled pebble bed, ceramic multiphasic compounds lying in the region of the quasi-binary lithium metatitanate-lithium orthosilicate system may exhibit mechanical and physical advantages relative to single phase materials. Here we present an organometallic solution-based synthesis procedure for the low-temperature fabrication of compounds in the Li2TiO3-Li4SiO4 region and investigate phase stability and transformations through temperature varied X-ray diffraction and scanning calorimetry. Results demonstrate that the metatitanate and metasilicate phases Li2TiO3 and Li2SiO3 readily crystallise in nanocrystalline form at temperatures below 180 °C. Lithium deficiency in the region of 5% results from Li sublimation from Li4SiO4 and/or from excess Li incorporation in the metatitanate phase and brings about a stoichiometry shift, with product compounds exhibiting mixed lithium orthosilicate/metasilicate content towards the Si rich region and predominantly Li2TiO3 content towards the Ti rich region. Above 1150 °C the transformation of monoclinic to cubic γ-Li2TiO3 disordered solid-solution occurs while the melting of silicate phases indicates a likely monotectic type system with a solidus line in the region 1050-1100 °C. Synthesis procedures involving a lithium chloride precursor are not likely to be a viable option for breeder pebble synthesis as this route was found to yield materials with a more significant Li-deficiency exhibiting the crystallisation of the Li2TiSiO5 phase at intermediate compositions.

  18. Soft Chemistry, Coloring and Polytypism in Filled Tetrahedral Semiconductors: Toward Enhanced Thermoelectric and Battery Materials.

    PubMed

    White, Miles A; Medina-Gonzalez, Alan M; Vela, Javier

    2018-03-12

    Filled tetrahedral semiconductors are a rich family of compounds with tunable electronic structure, making them ideal for applications in thermoelectrics, photovoltaics, and battery anodes. Furthermore, these materials crystallize in a plethora of related structures that are very close in energy, giving rise to polytypism through the manipulation of synthetic parameters. This Minireview highlights recent advances in the solution-phase synthesis and nanostructuring of these materials. These methods enable the synthesis of metastable phases and polytypes that were previously unobtainable. Additionally, samples synthesized in solution phase have enhanced thermoelectric performance due to their decreased grain size. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient bounding schemes for the two-center hybrid flow shop scheduling problem with removal times.

    PubMed

    Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.

  20. Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times

    PubMed Central

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911

  1. Nucleation of metastable aragonite CaCO3 in seawater.

    PubMed

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A; Ceder, Gerbrand

    2015-03-17

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"--the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite--which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg:Ca [corrected] ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.

  2. Nucleation of metastable aragonite CaCO 3 in seawater

    DOE PAGES

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; ...

    2015-03-04

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters ofmore » surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. The ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters ofmore » surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. The ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.« less

  4. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  5. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    NASA Astrophysics Data System (ADS)

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  6. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Yu, Chao; Long, Hai

    2015-05-08

    Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.

  7. Electrochemical synthesis of a surface-porous Mg70.5Al29.5 eutectic alloy in a neutral aqueous NaCl solution

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng

    2018-03-01

    A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.

  8. Persistent dopants and phase segregation in organolead mixed-halide perovskites

    DOE PAGES

    Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...

    2016-07-25

    Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less

  9. Persistent dopants and phase segregation in organolead mixed-halide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosales, Bryan A.; Men, Long; Cady, Sarah D.

    Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less

  10. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S.

    2007-02-20

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  11. Method and apparatus for combinatorial chemistry

    DOEpatents

    Foote, Robert S [Oak Ridge, TN

    2012-06-05

    A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.

  12. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  13. Parallel Computing for Probabilistic Response Analysis of High Temperature Composites

    NASA Technical Reports Server (NTRS)

    Sues, R. H.; Lua, Y. J.; Smith, M. D.

    1994-01-01

    The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.

  14. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  15. FOURTH SEMINAR TO THE MEMORY OF D.N. KLYSHKO: Algebraic solution of the synthesis problem for coded sequences

    NASA Astrophysics Data System (ADS)

    Leukhin, Anatolii N.

    2005-08-01

    The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups.

  16. Structure and Membrane Interactions of the Antibiotic Peptide Dermadistinctin K by Multidimensional Solution and Oriented 15N and 31P Solid-State NMR Spectroscopy

    PubMed Central

    Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard

    2009-01-01

    DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046

  17. Some VTOL head-up display drive-law problems and solutions

    NASA Technical Reports Server (NTRS)

    Merrick, Vernon K.

    1993-01-01

    A piloted simulation test was conducted on the Ames Research Center's vertical motion simulator (VMS) in support of the Phase 2A flight test of NASA's V/STOL systems research aircraft (VSRA). During the simulation several problems were found with the head-up display (HUD) symbol drive laws and the flightpath synthesis. These problems and the solutions devised to solve them are described. Most of the resulting HUD drive-law changes were implemented during the simulation and their effectiveness was verified. Subsequently both the HUD symbol drive-law and flightpath-synthesis changes were implemented in the VSRA and tested successfully in the Phase 2A flight tests.

  18. Parallel Solid-Phase Synthesis Using a New Diethylsilylacetylenic Linker and Leading to Mestranol Derivatives with Potent Antiproliferative Activities on Multiple Cancer Cell Lines.

    PubMed

    Dutour, Raphael; Maltais, Rene; Perreault, Martin; Roy, Jenny; Poirier, Donald

    2018-03-07

    RM-133 belongs to a new family of aminosteroid derivatives demonstrating interesting anticancer properties, as confirmed in vivo in four mouse cancer xenograft models. However, the metabolic stability of RM-133 needs to be improved. After investigation, the replacement of its androstane scaffold by a more stable estrane scaffold led to the development of the mestranol derivative RM-581. Using solid-phase strategy involving five steps, we quickly synthesized a series of RM-581 analogs using the recently-developed diethylsilyl acetylenic linker. To establish structure-activity relationships, we then investigated their antiproliferative potency on a panel of cancer cell lines from various cancers (breast, prostate, ovarian and pancreatic). Some of the mestranol derivatives have shown in vitro anticancer activities that are close to, or better than those observed for RM-581. Compound 23, a mestranol derivative having a ((3,5-dimethylbenzoyl)-L-prolyl)piperazine side chain at position C2, was found to be active as an antiproliferative agent (IC50 = 0.38 ± 0.34 to 3.17 ± 0.10 µM) and to be twice as active as RM-581 on LNCaP, PC-3, MCF-7, PANC-1 and OVCAR-3 cancer cells (IC50 = 0.56 ± 0.30, 0.89 ± 0.63, 1.36 ± 0.31, 2.47 ± 0.91 and 3.17 ± 0.10 µM, respectively). Easily synthesized in good yields by both solid-phase organic synthesis and classic solution-phase chemistry, this promising candidate could be used as an antiproliferative agent on a variety of cancers, notably pancreatic and ovarian cancers, both having very bad prognoses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  20. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion.

    PubMed

    Hilpert, Kai; Winkler, Dirk F H; Hancock, Robert E W

    2007-01-01

    Peptide synthesis on cellulose using SPOT technology allows the parallel synthesis of large numbers of addressable peptides in small amounts. In addition, the cost per peptide is less than 1% of peptides synthesized conventionally on resin. The SPOT method follows standard fluorenyl-methoxy-carbonyl chemistry on conventional cellulose sheets, and can utilize more than 600 different building blocks. The procedure involves three phases: preparation of the cellulose membrane, stepwise coupling of the amino acids and cleavage of the side-chain protection groups. If necessary, peptides can be cleaved from the membrane for assays performed using soluble peptides. These features make this method an excellent tool for screening large numbers of peptides for many different purposes. Potential applications range from simple binding assays, to more sophisticated enzyme assays and studies with living microbes or cells. The time required to complete the protocol depends on the number and length of the peptides. For example, 400 9-mer peptides can be synthesized within 6 days.

  1. Method and device for electroextraction of heavy metals from technological solutions and wastewater

    DOEpatents

    Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae

    2005-05-03

    The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.

  2. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach.

    PubMed

    Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto

    2013-11-14

    The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.

  3. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    PubMed

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  5. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    DOEpatents

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  6. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  7. Tailor Made Synthesis of T-Shaped and π-STACKED Dimers in the Gas Phase: Concept for Efficient Drug Design and Material Synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Das, Aloke

    2013-06-01

    Non-covalent interactions play a key role in governing the specific functional structures of biomolecules as well as materials. Thus molecular level understanding of these intermolecular interactions can help in efficient drug design and material synthesis. It has been found from X-ray crystallography that pure hydrocarbon solids (i.e. benzene, hexaflurobenzene) have mostly slanted T-shaped (herringbone) packing arrangement whereas mixed solid hydrocarbon crystals (i.e. solid formed from mixtures of benzene and hexafluorobenzene) exhibit preferentially parallel displaced (PD) π-stacked arrangement. Gas phase spectroscopy of the dimeric complexes of the building blocks of solid pure benzene and mixed benzene-hexafluorobenzene adducts exhibit similar structural motifs observed in the corresponding crystal strcutures. In this talk, I will discuss about the jet-cooled dimeric complexes of indole with hexafluorobenzene and p-xylene in the gas phase using Resonant two photon ionzation and IR-UV double resonance spectroscopy combined with quantum chemistry calculations. In stead of studying benzene...p-xylene and benzene...hexafluorobenzene dimers, we have studied corresponding indole complexes because N-H group is much more sensitive IR probe compared to C-H group. We have observed that indole...hexafluorobenzene dimer has parallel displaced (PD) π-stacked structure whereas indole...p-xylene has slanted T-shaped structure. We have shown here selective switching of dimeric structure from T-shaped to π-stacked by changing the substituent from electron donating (-CH3) to electron withdrawing group (fluorine) in one of the complexing partners. Thus, our results demonstrate that efficient engineering of the non-covalent interactions can lead to efficient drug design and material synthesis.

  8. Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.

    PubMed

    Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A

    2015-12-01

    Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.

  9. Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields

    NASA Astrophysics Data System (ADS)

    Forsythe, Victoriya V.; Makarevich, Roman A.

    2016-11-01

    An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.

  10. Static inverter with synchronous output waveform synthesized by time-optimal-response feedback

    NASA Technical Reports Server (NTRS)

    Kernick, A.; Stechschulte, D. L.; Shireman, D. W.

    1976-01-01

    Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.

  11. Type synthesis for 4-DOF parallel press mechanism using GF set theory

    NASA Astrophysics Data System (ADS)

    He, Jun; Gao, Feng; Meng, Xiangdun; Guo, Weizhong

    2015-07-01

    Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity( GCC), kinematic pair complexity( KPC), and type complexity( TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.

  12. A Model for Displacements Between Parallel Plates That Shows Change of Type from Hyperbolic to Elliptic

    NASA Astrophysics Data System (ADS)

    Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.

  13. Solution-phase synthesis of nanomaterials at low temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Yongchun; Qian, Yitai

    2009-01-01

    This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

  14. Synthesis of TiO{sub 2} by electrochemical method from TiCl{sub 4} solution as anode material for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nur, Adrian, E-mail: adriannur@staff.uns.ac.id; Purwanto, Agus; Jumari, Arif

    Metal oxide combined with graphite becomes interesting composition. TiO{sub 2} is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO{sub 2} gravimetric capacity varied within a fairly wide range. TiO{sub 2} crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO{sub 2} powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis onmore » the formation of TiO{sub 2} have been investigated. The combination of graphite and TiO{sub 2} particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO{sub 2} powders was TiCl{sub 4} in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO{sub 2} particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase.« less

  15. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Walton, E.; Aebker, E.; Mata, F.; Reilly, C.

    1991-01-01

    The final phase of a satellite synthesis project is described. Several methods for generating satellite positionings with improved aggregate carrier to interference characteristics were studied. Two general methods for modifying required separation values are presented. Also, two methods for improving aggregate carrier to interference (C/I) performance of given satellite synthesis solutions are presented. A perturbation of the World Administrative Radio Conference (WARC) synthesis is presented.

  16. Parallel Computer System for 3D Visualization Stereo on GPU

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Zori, Sergii A.

    2018-03-01

    This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.

  17. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    PubMed

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  18. Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials

    NASA Astrophysics Data System (ADS)

    Xu, Huiwen

    Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.

  19. Anion binding by bambus[6]uril probed in the gas phase and in solution.

    PubMed

    Révész, Agnes; Schröder, Detlef; Svec, Jan; Wimmerová, Michaela; Sindelar, Vladimir

    2011-10-20

    Electrospray ionization mass spectrometry (ESI-MS) is used to probe the binding of small anions to the macrocycle of bambus[6]uril. For the halide ions, the experimental patterns suggest F(-) < Cl(-) < Br(-) < I(-), which is consistent with the order of anion binding found in the condensed phase. Parallel equilibrium studies in the condensed phase establish the association constants of halide anions and bambus[6]uril in mixed solvents. A detailed analysis of the mass spectrometric data is used to shed light on the correlations between the binding constants in the condensed phase and the ion abundances observed using ESI-MS. From the analysis it becomes apparent that ESI-MS can indeed represent the situation in solution to some extent, but the sampling in the gas-phase experiment is not 1:1 compared to that in solution.

  20. Synthesis of Ge-nanoparticles in organic solution

    NASA Astrophysics Data System (ADS)

    Pugsley, Andrew James

    Much interest is focused on the synthesis of semiconductor particles from organic solution, in order to provide luminescent tracers for biological assays. However, group IV semiconductors have been largely neglected be cause of the lack of suitable nanoparticle formation reactions by solution-phase chemistries. A potentially useful new route to solution-based synthesis of nanocrystalline-Si,Ge involves the reaction between Zintl phases (NaSi, Mg 2Ge) that formally contain anionic semiconducting group species (Si-, Ge4-) and liquid phase SiCU, GeCU, etc. Luminescent nanoparticles formed by these reactions in organic solvents (e.g. diglyme) have been decribed in work from the Kauzlarich group at UC Davis (California, USA). The aim of this project has been to characterise the structural chemistry and luminescent properties of the products of the reaction, as well as following the course of the reaction in situ via synchrotron measurements. The product of the reaction has been characterised by TEM and x-ray absorption spectroscopy as well as other techniques. In order to analyse the x-ray absorption spectroscopy data, a number of model compounds have been studied, including the precursor material which was previously uncharacterised by this technique. An in situ reaction cell has been designed and built and used at a number of synchrotron beamlines to follow the course of the reaction. It has been found that the presence of even low concentrations of water can greatly affect the formation reaction, this is described herein.

  1. Efficient parallel implementations of QM/MM-REMD (quantum mechanical/molecular mechanics-replica-exchange MD) and umbrella sampling: isomerization of H2O2 in aqueous solution.

    PubMed

    Fedorov, Dmitri G; Sugita, Yuji; Choi, Cheol Ho

    2013-07-03

    An efficient parallel implementation of QM/MM-based replica-exchange molecular dynamics (REMD) as well as umbrella samplings techniques was proposed by adopting the generalized distributed data interface (GDDI). Parallelization speed-up of 40.5 on 48 cores was achieved, making our QM/MM-MD engine a robust tool for studying complex chemical dynamics in solution. They were comparatively used to study the torsional isomerization of hydrogen peroxide in aqueous solution. All results by QM/MM-REMD and QM/MM umbrella sampling techniques yielded nearly identical potentials of mean force (PMFs) regardless of the particular QM theories for solute, showing that the overall dynamics are mainly determined by solvation. Although the entropic penalty of solvent rearrangements exists in cisoid conformers, it was found that both strong intermolecular hydrogen bonding and dipole-dipole interactions preferentially stabilize them in solution, reducing the torsional free-energy barrier at 0° by about 3 kcal/mol as compared to that in gas phase.

  2. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.

  3. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    PubMed Central

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973

  4. Synthesis and binding studies of Alzheimer ligands on solid support.

    PubMed

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  5. A comparative study of the properties of five-layered Aurivillius oxides A2Bi4Ti5O18 (A = Ba, Pb, and Sr) synthesized by different wet chemical routes

    NASA Astrophysics Data System (ADS)

    Dubey, Shivangi; Subohi, Oroosa; Kurchania, Rajnish

    2018-07-01

    This paper reports the detailed study of the effect of different wet chemical synthesis routes (solution combustion, co-precipitation, and sol-gel route) on the microstructure, phase formation, dielectric, electrical, and ferroelectric properties of five-layered Aurivillius oxides: A2Bi4Ti5O18 (A = Ba, Pb, and Sr). Different synthesis parameters like the precursors used, synthesis temperature, and reaction time affects the morphology of the ceramics. Microstructure in turn influences the dielectric and ferroelectric properties. It was observed that the sol-gel-synthesized ceramics possess higher dielectric constant and remanent polarization, low dielectric loss due to lower conductivity in these samples as a result of higher density in these compounds as compared to those synthesized by other wet chemical synthesis routes such as solution combustion route and co-precipitation technique. The XRD data are used for phase analysis and surface morphology is studied using SEM images. Dielectric and electrical properties are investigated as a function of frequency and temperature.

  6. Development of structural schemes of parallel structure manipulators using screw calculus

    NASA Astrophysics Data System (ADS)

    Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV

    2018-03-01

    The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.

  7. An Adaptive Memory Interface Controller for Improving Bandwidth Utilization of Hybrid and Reconfigurable Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio

    Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less

  8. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    PubMed

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  9. EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2004-01-01

    EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.

  10. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  11. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    PubMed

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  12. Multirate sampled-data yaw-damper and modal suppression system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1990-01-01

    A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project.

  13. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  14. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

    1999-06-01

    A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

  15. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.

    1999-01-01

    A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.

  16. Piezoelectric Ceramics of the (1 − x)Bi0.50Na0.50TiO3–xBa0.90Ca0.10TiO3 Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06

    PubMed Central

    Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M.; Bucio, Lauro; Villafuerte-Castrejón, María-Elena

    2017-01-01

    Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate–titanate for actuators is that of Bi0.50Na0.50TiO3 (BNT) based solid solutions. The pseudo-binary (1 − x)Bi0.50Na0.50TiO3–xBa1 − yCayTiO3 system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route. PMID:28773096

  17. Piezoelectric Ceramics of the (1 - x)Bi0.50Na0.50TiO₃-xBa0.90Ca0.10TiO₃ Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06.

    PubMed

    Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M; Bucio, Lauro; Villafuerte-Castrejón, María-Elena

    2017-07-01

    Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate-titanate for actuators is that of Bi 0.50 Na 0.50 TiO₃ (BNT) based solid solutions. The pseudo-binary (1 - x )Bi 0.50 Na 0.50 TiO₃- x Ba 1 - y Ca y TiO₃ system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route.

  18. Synthesis and characterization of LTA nanozeolite using barley husk silica: Mercury removal from standard and real solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizi, Seyed Naser, E-mail: azizi@umz.ac.ir; Dehnavi, Ahmad Roozbehani, E-mail: Roozbehanisulfur@yahoo.com; Joorabdoozha, Amir

    2013-05-15

    Highlights: ► Silica extraction from barley husk with high purity for the synthesis of A nanozeolite. ► Free template A nanozeolite synthesized via new source of silica at low temperature. ► Optimization of SiO{sub 2}/Al{sub 2}O{sub 3}, Na{sub 2}O/SiO{sub 2} ratios, temperature and time of the synthesis. ► Utilizing of synthesized A nanozeolite for mercury removal from aqueous solutions. ► Mercury removal at optimized pH, contact time and adsorbent dose from real solution. - Abstract: In this study, synthesized Lined Type A (LTA) nanozeolite from barley husk silica (BHS) was used for mercury removal from standard and real aqueous solutions.more » The BHS in amorphous phase with 80% purity was extracted from barley husk ash (BHA), and used effectively as a new source of silica for the synthesis of NaA nanozeolite. The NaA nanocrystal in pure phase has been synthesized at low temperature, without adding any organic additives. The effects of heating time, reaction temperature, SiO{sub 2}/Al{sub 2}O{sub 3}, and Na{sub 2}O/SiO{sub 2} mole ratios on the crystallization of NaA nanozeolite were studied. The adsorption capacity of mercury (II) was studied as a function of pH, contact time, and amount of adsorbent. The crystallization of NaA nanozeolite from BHS was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET), and FTIR techniques. Moreover, concentration of Hg{sup 2+} ions in the aqueous solutions was analyzed by hydride generation atomic absorption spectroscopy method (HG-AAS). The standard and real samples analysis showed that NaA nanozeolite is capable of Hg{sup 2+} ions removal from the aqueous solutions. Efficiency of mercury (II) adsorption from real solutions onto the nano-sized NaA zeolite was 98%.« less

  19. Highly Non-Linear Optical (NLO) organic crystals

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.

  20. Encoding methods for B1+ mapping in parallel transmit systems at ultra high field

    NASA Astrophysics Data System (ADS)

    Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.

    2014-08-01

    Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.

  1. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  2. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle.

    PubMed

    Yamashita, Tomoko; Nishimura, Kazuhiro; Saiki, Ryotaro; Okudaira, Hiroyuki; Tome, Mayuko; Higashi, Kyohei; Nakamura, Mizuho; Terui, Yusuke; Fujiwara, Kunio; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-06-01

    The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.

    PubMed

    Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying

    2013-08-01

    Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.

  4. Nanoporous films: From conventional to the conformal

    DOE PAGES

    Allendorf, Mark D.; Stavila, Vitalie

    2015-12-14

    Here, thin and continuous films of porous metal-organic frameworks can now be conformally deposited on various substrates using a vapor-phase synthesis approach that departs from conventional solution-based routes.

  5. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.

    PubMed

    Mende, Franziska; Beisswenger, Michael; Seitz, Oliver

    2010-08-18

    Peptide thioesters are important building blocks in the total synthesis of proteins and protein domains via fragment ligation. However, synthetic access of peptide thioesters still is a bottleneck of this powerful ligation chemistry. The commonly used methods for the Fmoc-based synthesis of peptide thioesters involve nonautomated solution steps that have to be performed after the solid-phase assembly of the peptide. Usually, HPLC purification is required. Herein, a method that enables crude peptides to be used in divergent native chemical ligations reactions is described. We present an Fmoc-based solid-phase synthesis of peptide thioesters with self-purification which facilitates access to these important building blocks, since the often cumbersome HPLC purification can be avoided. Fmoc-protected amino acids are coupled on a safety catch sulfonamide resin. The self-purifying effect is achieved through the combination of (a) N-terminal coupling of a cleavable cyclization linker and subsequent backbone-to-side chain cyclization, (b) activation of the sulfonamide linkage by alkylation, (c) thiolysis for the selective detachment of truncation products, and (d) TFA cleavage for the liberation of the desired peptide thioester in unprotected form. We have previously shown a method wherein cyclization was performed after carboxymethylation of the sulfonamide. However, the automation of this method was difficult and side reactions at methionine residues hampered the general applicability. The new design involves peptide synthesis on a modified carboxy-functionalized sulfonamide linker, a substantially milder activation of the sulfonamide bond and the use of monomethoxytrityl as well as 2-phenyl-isopropyl protecting groups. This approach solved the problems with methionine containing peptides and enabled the complete automation of the self-purifying synthesis of peptide thioesters. The study also addressed problems in the synthesis of difficult peptides. Aggregated truncation products can resist extraction and contaminate full-length thioesters obtained after TFA cleavage. It is shown that significant enhancements of the purity were achieved when mild acidic extractions were included in the wash protocols after thiolysis. The potential of the method was demonstrated in the parallel synthesis of 20-40 amino acid long peptide thioesters, which were obtained in excellent purities. The thioesters and cysteinyl peptides were used without purification in the assembly of immobilized SH3 protein domains of SHO1 in yeast. A cysteine scan by native chemical ligation suggested single amino acid to cysteine substitutions that (a) confer useful ligation yields, (b) support correct folding, and (c) sustain the function of the folded protein domain. The chemical synthesis of the SH3-domain of SHO1 succeeded in highest yields when cysteine placements at positions S23, F24, and E36 were avoided. The synthetic SH3 mutants were examined in a binding assay, which indicated that N27C, L30C, and D34C mutations provide functional SH3-domain.

  6. A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Zhan, Hongbin

    2018-06-01

    The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.

  7. Solution-phase parallel syntheses of herbicidal 1-phenyl-2,4,5- imidazolidinetriones and 2-thioxo-4,5-imidazolidinediones.

    PubMed

    Li, Bin; Man, Ying; Bai, Li-Ping; Ji, Hai-Ying; Shi, Xue-Geng; Cui, Dong-Liang

    2013-01-01

    In order to find new herbicidally active compounds, a fifteen-member library, focusing on the variation of 3- position substituents of 2,4,5-imidazolidine-trione or 2-thioxo-4,5-imidazolidinedione, was designed and prepared in parallel by the reaction of various ureas or thioureas with oxalyl chloride using solution-phase technology. An interesting and, to the best of our knowledge, unprecedented finding is that a by-product of 1-phenyl-3-propylcarbodiimide was formed during the addition of oxalyl chloride into the solution of 1-phenyl-3-propylthiourea in the presence of triethylamine in dichloromethane. It has been shown that the herbicidal activity of 2,4,5-imidazolidinetriones is about the same as that of their analogous 2-thioxo-4,5-imidazolidinediones. Compound with propyl or isopropyl group at the 3- position of 2,4,5-imidazolidinetrione ring demonstrated good herbicidal activity. The most active compound, 1-(2-fluoro- 4-chloro-5-propargyloxy)-phenyl-3-propyl-2-thioxo-4,5-imidazolidinedione, gave 95% control of the growth of velvetleaf at 200 g/ha in the post-emergence test.

  8. Fault Tolerant Parallel Implementations of Iterative Algorithms for Optimal Control Problems

    DTIC Science & Technology

    1988-01-21

    p/.V)] steps, but did not discuss any specific parallel implementation. Gajski [51 improved upon this result by performing the SIMD computation in...N = p2. our approach reduces to that of [51, except that Gajski presents the coefficient computation and partial solution phases as a single...8217>. the SIMD algo- rithm presented by Gajski [5] can be most efficiently mapped to a unidirec- tional ring network with broadcasting capability. Based

  9. Solution Combustion Synthesis of Ni/NiO/ZnO Nanocomposites for Photodegradation of Methylene Blue Under Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Biglari, Z.; Masoudpanah, S. M.; Alamolhoda, S.

    2018-02-01

    In this work, Ni/NiO/ZnO nanocomposites were synthesized by the one-pot solution combustion synthesis method. Phase evolution investigated by the x-ray diffraction method showed that the ZnO and NiO contents can be tuned by addition of a zinc precursor. The microstructure characterized by electron microscopy exhibited granular morphology with a particle size of 1.1 μm decreasing to 90 nm as a function of the amounts of ZnO and NiO phases. Specific surface area determined by N2 adsorption-desorption isotherms increased from 1.4 m2/g to 25.6 m2/g with the increase of oxide phases. However, the saturation magnetization decreased from 51.3 emu/g to 25.9 emu/g in the presence of antiferromagnetic NiO and nonmagnetic ZnO phases. Photodegradation of methylene blue under ultraviolet light exhibited the maximum efficiency in the sample containing 16.25 wt.% of ZnO and 21.25 wt.% of NiO, and may be due to the synergic effect between ZnO and NiO.

  10. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  11. Coaxial microreactor for particle synthesis

    DOEpatents

    Bartsch, Michael; Kanouff, Michael P; Ferko, Scott M; Crocker, Robert W; Wally, Karl

    2013-10-22

    A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.

  12. Serial multiplier arrays for parallel computation

    NASA Technical Reports Server (NTRS)

    Winters, Kel

    1990-01-01

    Arrays of systolic serial-parallel multiplier elements are proposed as an alternative to conventional SIMD mesh serial adder arrays for applications that are multiplication intensive and require few stored operands. The design and operation of a number of multiplier and array configurations featuring locality of connection, modularity, and regularity of structure are discussed. A design methodology combining top-down and bottom-up techniques is described to facilitate development of custom high-performance CMOS multiplier element arrays as well as rapid synthesis of simulation models and semicustom prototype CMOS components. Finally, a differential version of NORA dynamic circuits requiring a single-phase uncomplemented clock signal introduced for this application.

  13. Scalable hydrothermal synthesis of free-standing VO₂ nanowires in the M1 phase.

    PubMed

    Horrocks, Gregory A; Singh, Sujay; Likely, Maliek F; Sambandamurthy, G; Banerjee, Sarbajit

    2014-09-24

    VO2 nanostructures derived from solution-phase methods are often plagued by broadened and relatively diminished metal-insulator transitions and adventitious doping due to imperfect control of stoichiometry. Here, we demonstrate a stepwise scalable hydrothermal and annealing route for obtaining VO2 nanowires exhibiting almost 4 orders of magnitude abrupt (within 1 °C) metal-insulator transitions. The prepared nanowires have been characterized across their structural and electronic phase transitions using single-nanowire Raman microprobe analysis, ensemble differential scanning calorimetry, and single-nanowire electrical transport measurements. The electrical band gap is determined to be 600 meV and is consistent with the optical band gap of VO2, and the narrowness of differential scanning calorimetry profiles indicates homogeneity of stoichiometry. The preparation of high-quality free-standing nanowires exhibiting pronounced metal-insulator transitions by a solution-phase process allows for scalability, further solution-phase processing, incorporation within nanocomposites, and integration onto arbitrary substrates.

  14. An improved synthesis of haloaceteamidine-based inactivators of protein arginine deiminase 4 (PAD4).

    PubMed

    Causey, Corey P; Thompson, Paul R

    2008-07-07

    Protein arginine deiminase 4 (PAD4) is an enzyme that hydrolyzes peptidyl arginine residues to form citrulline and ammonia. This enzyme has been implicated in several disease states, e.g. rheumatoid arthritis, and therefore represents a unique target for the development of a novel therapeutic. A solution-phase synthesis of Cl-amidine, the most potent PAD4 inactivator described to date, has been developed. This synthesis proceeds in 80% yield over 4 steps at a significantly (12-fold) lower cost.

  15. Automated electrochemical assembly of the protected potential TMG-chitotriomycin precursor based on rational optimization of the carbohydrate building block.

    PubMed

    Nokami, Toshiki; Isoda, Yuta; Sasaki, Norihiko; Takaiso, Aki; Hayase, Shuichi; Itoh, Toshiyuki; Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-ichi

    2015-03-20

    The anomeric arylthio group and the hydroxyl-protecting groups of thioglycosides were optimized to construct carbohydrate building blocks for automated electrochemical solution-phase synthesis of oligoglucosamines having 1,4-β-glycosidic linkages. The optimization study included density functional theory calculations, measurements of the oxidation potentials, and the trial synthesis of the chitotriose trisaccharide. The automated synthesis of the protected potential N,N,N-trimethyl-d-glucosaminylchitotriomycin precursor was accomplished by using the optimized building block.

  16. Hyper-Parallel Tempering Monte Carlo Method and It's Applications

    NASA Astrophysics Data System (ADS)

    Yan, Qiliang; de Pablo, Juan

    2000-03-01

    A new generalized hyper-parallel tempering Monte Carlo molecular simulation method is presented for study of complex fluids. The method is particularly useful for simulation of many-molecule complex systems, where rough energy landscapes and inherently long characteristic relaxation times can pose formidable obstacles to effective sampling of relevant regions of configuration space. The method combines several key elements from expanded ensemble formalisms, parallel-tempering, open ensemble simulations, configurational bias techniques, and histogram reweighting analysis of results. It is found to accelerate significantly the diffusion of a complex system through phase-space. In this presentation, we demonstrate the effectiveness of the new method by implementing it in grand canonical ensembles for a Lennard-Jones fluid, for the restricted primitive model of electrolyte solutions (RPM), and for polymer solutions and blends. Our results indicate that the new algorithm is capable of overcoming the large free energy barriers associated with phase transitions, thereby greatly facilitating the simulation of coexistence properties. It is also shown that the method can be orders of magnitude more efficient than previously available techniques. More importantly, the method is relatively simple and can be incorporated into existing simulation codes with minor efforts.

  17. Localized Synthesis of Conductive Copper-Tetracyanoquinodimethane Nanostructures in Ultrasmall Microchambers for Nanoelectronics.

    PubMed

    Xing, Yanlong; Sun, Guoguang; Speiser, Eugen; Esser, Norbert; Dittrich, Petra S

    2017-05-24

    In this work, the microfluidic-assisted synthesis of copper-tetracyanoquinodimethane (Cu-TCNQ) nanostructures in an ambient environment is reported for the first time. A two-layer microfluidic device comprising parallel actuated microchambers was used for the synthesis and enabled excellent fluid handling for the continuous and multiple chemical reactions in confined ultrasmall chambers. Different precautions were applied to ensure the reduction state of copper (Cu) for the synthesis of Cu-TCNQ charge-transfer compounds. The localized synthesis of Cu and in situ transformation to Cu-TCNQ complexes in solution were achieved by applying different gas pressures in the control layer. Additionally, various diameters of the Cu-TCNQ nano/microstructures were obtained by adjusting the concentration of the precursors and reaction time. After the synthesis, platinum (Pt) microelectrode arrays, which were aligned at the microchambers, could enable the in situ measurements of the electronic properties of the synthesized nanostructures without further manipulation. The as-prepared Cu-TCNQ wire bundles showed good conductivity and a reversible hysteretic switching effect, which proved the possibility in using them to build advanced nanoelectronics.

  18. Theoretical Evidence for the Stronger Ability of Thymine to Disperse SWCNT than Cytosine and Adenine: self-stacking of DNA bases vs their cross-stacking with SWCNT

    PubMed Central

    Wang, Yixuan

    2008-01-01

    Self-stacking of four DNA bases, adenine (A), cytosine (C), guanine (G) and thymine (T), and their cross-stacking with (5,5) as well as (10,0) single walled carbon nanotubes (SWCNTs) were extensively investigated with a novel hybrid DFT method, MPWB1K/cc-pVDZ. The binding energies were further corrected with MP2/6-311++G(d,p) method in both gas phase and aqueous solution, where the solvent effects were included with conductor-like polarized continuum model (CPCM) model and UAHF radii. The strongest self-stacking of G and A takes displaced anti-parallel configuration, but un-displaced or “eclipsed” anti-parallel configuration is the most stable for C and T. In gas phase the self-stacking of nucleobases decreases in the sequence G>A>C>T, while because of quite different solvent effects their self-stacking in aqueous solution exhibits a distinct sequence A>G>T>C. For a given base, cross-stacking is stronger than self-stacking in both gas phase and aqueous solution. Binding energy for cross-stacking in gas phase varies as G>A>T>C for both (10,0) and (5,5) SWCNTs, and the binding of four nucleobases to (10,0) is slightly stronger than to (5,5) SWCNT by a range of 0.1–0.5 kcal/mol. The cross-stacking in aqueous solution varies differently from that gas phase: A>G>T>C for (10,0) SWCNT and G>A>T>C for (5,5) SWCNT. It is suggested that the ability of nucleobases to disperse SWCNT depends on relative strength (ΔΔEbinsol) of self-stacking and cross-stacking with SWCNT in aqueous solution. Of the four investigated nucleobases thymine (T) exhibits the highest (ΔΔEbinsol) which can well explain the experimental finding that T more efficiently functionalizes SWCNT than C and A. PMID:18946514

  19. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH2/Nanocarved Ti Self-Supported Electrocatalysts for Highly Efficient H2 Generation.

    PubMed

    Amin, Mohammed A; Fadlallah, Sahar A; Alosaimi, Ghaida S; Ahmed, Emad M; Mostafa, Nasser Y; Roussel, Pascal; Szunerits, Sabine; Boukherroub, Rabah

    2017-09-06

    Self-supported electrocatalysts are a new class of materials exhibiting high catalytic performance for various electrochemical processes and can be directly equipped in energy conversion devices. We present here, for the first time, sparse Au NPs self-supported on etched Ti (nanocarved Ti substrate self-supported with TiH 2 ) as promising catalysts for the electrochemical generation of hydrogen (H 2 ) in KOH solutions. Cleaned, as-polished Ti substrates were etched in highly concentrated sulfuric acid solutions without and with 0.1 M NH 4 F at room temperature for 15 min. These two etching processes yielded a thin layer of TiH 2 (the corrosion product of the etching process) self-supported on nanocarved Ti substrates with different morphologies. While F - -free etching process led to formation of parallel channels (average width: 200 nm), where each channel consists of an array of rounded cavities (average width: 150 nm), etching in the presence of F - yielded Ti surface carved with nanogrooves (average width: 100 nm) in parallel orientation. Au NPs were then grown in situ (self-supported) on such etched surfaces via immersion in a standard gold solution at room temperature without using stabilizers or reducing agents, producing Au NPs/TiH 2 /nanostructured Ti catalysts. These materials were characterized by scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). GIXRD confirmed the formation of Au 2 Ti phase, thus referring to strong chemical interaction between the supported Au NPs and the substrate surface (also evidenced from XPS) as well as a titanium hydride phase of chemical composition TiH 2 . Electrochemical measurements in 0.1 M KOH solution revealed outstanding hydrogen evolution reaction (HER) electrocatalytic activity for our synthesized catalysts, with Au NPs/TiH 2 /nanogrooved Ti catalyst being the best one among them. It exhibited fast kinetics for the HER with onset potentials as low as -22 mV vs. RHE, high exchange current density of 0.7 mA cm -2 , and a Tafel slope of 113 mV dec -1 . These HER electrochemical kinetic parameters are very close to those measured here for a commercial Pt/C catalyst (onset potential: -20 mV, Tafel slope: 110 mV dec -1 , and exchange current density: 0.75 mA cm -2 ). The high catalytic activity of these materials was attributed to the catalytic impacts of both TiH 2 phase and self-supported Au NPs (active sites for the catalytic reduction of water to H 2 ), in addition to their nanostructured features which provide a large-surface area for the HER.

  20. GAP Peptide Synthesis via Design of New GAP Protecting Group: An Fmoc/tBu Synthesis of Thymopentin Free from Polymers, Chromatography and Recrystallization

    PubMed Central

    Seifert, Cole W.; Paniagua, Armando; White, Gabrielle A.; Cai, Lucy

    2016-01-01

    A novel method for Fmoc/tBu solution-phase peptide synthesis and the development of a new benzyl-type GAP protecting group is reported. This new GAP protecting group is utilized in place of a polymer support, facilitating C→N Fmoc peptide synthesis without chromatography, recrystallization, or polymer supports. The GAP group can be added and removed in high yield, and was used to synthesize over 1 gram of the immunostimulant, thymopentin, in high overall yield (83%) and purity (99%). PMID:28663711

  1. The assembly and properties of protobiological structures - The beginnings of cellular peptide synthesis

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1980-01-01

    New data indicate that lysine-rich proteinoids have the ability to catalyze the synthesis of peptide bonds from a variety of amino acids and ATP. This capacity is evident in aqueous solution, in suspension of phase-separated complexes of lysine-rich proteinoid with acidic proteinoids, and in suspension of phase-separated particles composed of lysine-rich proteinoids with polynucleotides. Since the proteinoid complexes can contain other catalytic activities, including ability to catalyze internucleotide bond formation, it is inferred that the first protocells on earth already had a number of biological types of activity.

  2. Glycerol derivatives of cutin and suberin monomers: synthesis and self-assembly.

    PubMed

    Douliez, Jean-Paul; Barrault, Joël; Jerome, François; Heredia, Antonio; Navailles, Laurence; Nallet, Frédéric

    2005-01-01

    Glycerol derivatives of cutin and suberin monomers were synthesized by acid catalysis. Their dispersion in an aqueous solution was examined by phase contrast microscopy, neutron scattering, and solid state NMR. It is shown that the phase behavior strongly depends on the nature of the derivatives forming either lumps of aggregated membranes or well dispersed membranes.

  3. Solution phase synthesis of aluminum-doped silicon nanoparticles via room-temperature, solvent based chemical reduction of silicon tetrachloride

    NASA Astrophysics Data System (ADS)

    Mowbray, Andrew James

    We present a method of wet chemical synthesis of aluminum-doped silicon nanoparticles (Al-doped Si NPs), encompassing the solution-phase co-reduction of silicon tetrachloride (SiCl4) and aluminum chloride (AlCl 3) by sodium naphthalide (Na[NAP]) in 1,2-dimethoxyethane (DME). The development of this method was inspired by the work of Baldwin et al. at the University of California, Davis, and was adapted for our research through some noteworthy procedural modifications. Centrifugation and solvent-based extraction techniques were used throughout various stages of the synthesis procedure to achieve efficient and well-controlled separation of the Si NP product from the reaction media. In addition, the development of a non-aqueous, formamide-based wash solution facilitated simultaneous removal of the NaCl byproduct and Si NP surface passivation via attachment of 1-octanol to the particle surface. As synthesized, the Si NPs were typically 3-15 nm in diameter, and were mainly amorphous, as opposed to crystalline, as concluded from SAED and XRD diffraction pattern analysis. Aluminum doping at various concentrations was accomplished via the inclusion of aluminum chloride (AlCl3); which was in small quantities dissolved into the synthesis solution to be reduced alongside the SiCl4 precursor. The introduction of Al into the chemically-reduced Si NP precipitate was not found to adversely affect the formation of the Si NPs, but was found to influence aspects such as particle stability and dispersibility throughout various stages of the procedure. Analytical techniques including transmission electron microscopy (TEM), FTIR spectroscopy, and ICP-optical emission spectroscopy were used to comprehensively characterize the product NPs. These methods confirm both the presence of Al and surface-bound 1-octanol in the newly formed Si NPs.

  4. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  5. Unweighted least squares phase unwrapping by means of multigrid techniques

    NASA Astrophysics Data System (ADS)

    Pritt, Mark D.

    1995-11-01

    We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.

  6. Cr6+-containing phases in the system CaO-Al2O3-CrO42--H2O at 23 °C

    NASA Astrophysics Data System (ADS)

    Pöllmann, Herbert; Auer, Stephan

    2012-01-01

    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO·Al2O3·CaCrO4·nH2O and C3A·1/2Ca(OH)2·1/2CaCrO4·12H2O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l.

  7. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.

  8. Selecting for Function: Solution Synthesis of Magnetic Nanopropellers

    PubMed Central

    2013-01-01

    We show that we can select magnetically steerable nanopropellers from a set of carbon coated aggregates of magnetic nanoparticles using weak homogeneous rotating magnetic fields. The carbon coating can be functionalized, enabling a wide range of applications. Despite their arbitrary shape, all nanostructures propel parallel to the vector of rotation of the magnetic field. We use a simple theoretical model to find experimental conditions to select nanopropellers which are predominantly smaller than previously published ones. PMID:24127909

  9. Topology search of 3-DOF translational parallel manipulators with three identical limbs for leg mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Mingfeng; Ceccarelli, Marco

    2015-07-01

    Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.

  10. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  11. Parallel and fault-tolerant algorithms for hypercube multiprocessors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aykanat, C.

    1988-01-01

    Several techniques for increasing the performance of parallel algorithms on distributed-memory message-passing multi-processor systems are investigated. These techniques are effectively implemented for the parallelization of the Scaled Conjugate Gradient (SCG) algorithm on a hypercube connected message-passing multi-processor. Significant performance improvement is achieved by using these techniques. The SCG algorithm is used for the solution phase of an FE modeling system. Almost linear speed-up is achieved, and it is shown that hypercube topology is scalable for an FE class of problem. The SCG algorithm is also shown to be suitable for vectorization, and near supercomputer performance is achieved on a vectormore » hypercube multiprocessor by exploiting both parallelization and vectorization. Fault-tolerance issues for the parallel SCG algorithm and for the hypercube topology are also addressed.« less

  12. A Fourier analysis for a fast simulation algorithm. [for switching converters

    NASA Technical Reports Server (NTRS)

    King, Roger J.

    1988-01-01

    This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.

  13. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study

    PubMed Central

    Lim, Jong-Min; Bertrand, Nicolas; Valencia, Pedro M.; Rhee, Minsoung; Langer, Robert; Jon, Sangyong; Farokhzad, Omid C.; Karnik, Rohit

    2014-01-01

    Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13–150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. PMID:23969105

  14. Single-phase and well-dispersed Cu1.75S nanocrystals by ambient pressure diethylene glycol solution synthesis

    NASA Astrophysics Data System (ADS)

    Zheng, Xuerong; Jin, Zhengguo; Liu, Hui; Wang, Yueqiu; Wang, Xin; Du, Haiyan

    2013-02-01

    Single-phase, well-dispersed Cu1.75S nanocrystals were synthesized by an ambient pressure, hydrazine hydrate and ethylenediamine co-assisted diethylene glycol based solution chemical process using copper chloride and thioacetamide as precursors at the temperature range from 180 to 210 °C. Influence of hydrazine hydrate and ethylenediamine adding amounts, synthetic temperature on crystal growth, size distribution and optical properties of the synthesized Cu1.75S nanocrystals were investigated by XRD, TEM, HRTEM, EDX and UV-vis measurements. The synthetic reaction at above 200 °C grew flaky-shaped nanocrystals with relatively narrow size distribution. The formation of single-phase Cu1.75S nanocrystals in the diethylene glycol based solution process might be involved in the presence of intermediate [Cu(en)n]1+ and [Cu(NH3)4]2+ complexes in reaction solution, providing a stable Cu(I) and Cu(II) valent-mixed precursor.

  15. Gas-phase synthesis of singly and multiply charged polyoxovanadate anions employing electrospray ionization and collision induced dissociation.

    PubMed

    Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  16. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  17. Synthesis of oligonucleotides on a soluble support

    PubMed Central

    2017-01-01

    Oligonucleotides are usually prepared in lab scale on a solid support with the aid of a fully automated synthesizer. Scaling up of the equipment has allowed industrial synthesis up to kilogram scale. In spite of this, solution-phase synthesis has received continuous interest, on one hand as a technique that could enable synthesis of even larger amounts and, on the other hand, as a gram scale laboratory synthesis without any special equipment. The synthesis on a soluble support has been regarded as an approach that could combine the advantageous features of both the solution and solid-phase syntheses. The critical step of this approach is the separation of the support-anchored oligonucleotide chain from the monomeric building block and other small molecular reagents and byproducts after each coupling, oxidation and deprotection step. The techniques applied so far include precipitation, extraction, chromatography and nanofiltration. As regards coupling, all conventional chemistries, viz. phosphoramidite, H-phosphonate and phosphotriester strategies, have been attempted. While P(III)-based phosphoramidite and H-phosphonate chemistries are almost exclusively used on a solid support, the “outdated” P(V)-based phosphotriester chemistry still offers one major advantage for the synthesis on a soluble support; the omission of the oxidation step simplifies the coupling cycle. Several of protocols developed for the soluble-supported synthesis allow the preparation of both DNA and RNA oligomers of limited length in gram scale without any special equipment, being evidently of interest for research groups that need oligonucleotides in large amounts for research purposes. However, none of them has really tested at such a scale that the feasibility of their industrial use could be critically judged. PMID:28781703

  18. Perspective: Toward "synthesis by design": Exploring atomic correlations during inorganic materials synthesis

    NASA Astrophysics Data System (ADS)

    Soderholm, L.; Mitchell, J. F.

    2016-05-01

    Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.

  19. Perspective: Toward “synthesis by design”: Exploring atomic correlations during inorganic materials synthesis

    DOE PAGES

    Soderholm, L.; Mitchell, J. F.

    2016-05-26

    Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, andmore » ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K–Cu–S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.« less

  20. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    NASA Astrophysics Data System (ADS)

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.

  1. Synthesis of Natural Cyclopentapeptides Isolated from Dianthus chinensis.

    PubMed

    Zhang, Shengping; Amso, Zaid; De Leon Rodriguez, Luis M; Kaur, Harveen; Brimble, Margaret A

    2016-07-22

    The first syntheses of the naturally occurring cyclic peptides dianthin I (1), pseudostellarin A (2), and heterophyllin J (3) are described. The linear protected peptide precursors were prepared efficiently via Fmoc-solid-phase synthesis and subsequently cyclized in solution under dilute conditions. The structures of the synthetic cyclopentapeptides were confirmed by NMR spectroscopy and mass spectrometry and were in agreement with the literature data reported for the natural products.

  2. An improved synthesis of haloaceteamidine-based inactivators of protein arginine deiminase 4 (PAD4)

    PubMed Central

    Causey, Corey P.; Thompson, Paul R.

    2008-01-01

    Protein arginine deiminase 4 (PAD4) is an enzyme that hydrolyzes peptidyl arginine residues to form citrulline and ammonia. This enzyme has been implicated in several disease states, e.g. rheumatoid arthritis, and therefore represents a unique target for the development of a novel therapeutic. A solution-phase synthesis of Cl-amidine, the most potent PAD4 inactivator described to date, has been developed. This synthesis proceeds in 80% yield over 4 steps at a significantly (12-fold) lower cost. PMID:19587776

  3. Synthesis and Characterisation of Hollow Spherical Nano- and Microparticles with Silica and Magnetite

    NASA Astrophysics Data System (ADS)

    Gorbyk, P. P.; Dubrovin, I. V.; Demchenko, Yu. A.

    The main principles and methods of synthesis of hollow structures with inorganic nanomaterials are described. Synthesis of hollow spherical silica particles was based on hydrolysis of Si(CH3)2Cl2 and SiCl4 in nonpolar solvents at a surface of aerosol drops. To synthesise hollow magnetite nano- and microparticles with magnetite, saturated solution of iron chlorides in acetone was used. Phase and element composition, morphology and structure of samples were studied using XRD, Auger electron spectroscopy, scanning electron and atom force microscopies.

  4. First principles materials design of novel functional oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.

    2016-05-31

    We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less

  5. Synthesis of calcium vanadate minerals and related compounds

    USGS Publications Warehouse

    Marvin, Richard F.

    1956-01-01

    Synthesis of natural vanadates shows that most of them are stable in an acid environment. Phase studies of a portion of the system CaO-V2O5-H2O indicate that calcium vanadates are an indicator of environmental pH conditions. Some minerals, such as pascoute, indicate rapid evaporation of vanadite solutions; other minerals, such as hewettite, show that slow evaporation took place. Cursory examination of systems K2O-UO2-(NO3)2-V2O5 and CaO-UO2(NO3)2-V2O5, both in aqueous solution, has yielded information on the relationships among carnotite, tyuyamunite, and rauvite.

  6. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    PubMed Central

    Wang, Xiaoliang; Ahmad, Mashkoor

    2017-01-01

    Zinc oxide (ZnO) nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D) complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research. PMID:29137195

  7. Synthesis of nanocrystalline TiO 2 in toluene by a solvothermal route

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Tae Chung, Su; Son, Se-Mo

    2003-07-01

    A solvothermal synthetic method to TiO 2 nanoparticles has been investigated in toluene solutions with titanium isopropoxide (TIP) as precursor. Weight ratios of precursor to solvent prepared in the mixture are 5/100, 10/100, 20/100, 30/100 and 40/100. At the weight ratio of 10/100, 20/100 and 30/100, TiO 2 nanocrystalline particles were obtained after synthesis at 250°C for 3 h in an autoclave. X-ray diffraction and tranmission electron microscopy shows that the product has uniform anatase structure with average particle size below 20 nm. As the composition of TIP in the solution increases, the particle size of TiO 2 powder tends to increase. At 5/100 and 40/100, however, pale yellow colloidal solution is obtained after synthesis and crystalline phase of TiO 2 is not produced. The specific surface area of the TiO 2 nanocrystalline powder was also investigated using BET surface area analyzer.

  8. Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1999-01-01

    The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

  9. Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas

    NASA Astrophysics Data System (ADS)

    McKenna, J.; Patel, J.; Mitra, S.; Soin, N.; Švrček, V.; Maguire, P.; Mariotti, D.

    2011-11-01

    Two different atmospheric pressure microplasma systems are discussed and used for the synthesis and surface engineering of a range of nanomaterials. Specifically a gas-phase approach from vaporized tetramethylsilane has been used to synthesize silicon carbide nanoparticles with diameters below 10 nm. A different microplasma system that interfaces with a liquid solution has then been used for the synthesis of surfactant-free electrically stabilized gold nanoparticles with varying size. A similar microplasma-liquid system has been finally successfully used to tailor surface properties of silicon nanoparticles and to reduce graphene oxide into graphene. The synthesis and surface engineering mechanisms are also discussed.

  10. Dissolution of spent nuclear fuel in carbonate-peroxide solution

    NASA Astrophysics Data System (ADS)

    Soderquist, Chuck; Hanson, Brady

    2010-01-01

    This study shows that spent UO2 fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had.

  11. Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods.

    PubMed

    Gooding, Owen W

    2004-06-01

    The use of parallel synthesis techniques with statistical design of experiment (DoE) methods is a powerful combination for the optimization of chemical processes. Advances in parallel synthesis equipment and easy to use software for statistical DoE have fueled a growing acceptance of these techniques in the pharmaceutical industry. As drug candidate structures become more complex at the same time that development timelines are compressed, these enabling technologies promise to become more important in the future.

  12. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  13. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  14. Salt-assistant combustion synthesis of nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} (0 {<=} x {<=} 1) solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Yuping, E-mail: huabeitong@yahoo.cn; Wang Yanping

    2009-11-15

    Nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.

  15. Acyl guanidine inhibitors of β-secretase (BACE-1): optimization of a micromolar hit to a nanomolar lead via iterative solid- and solution-phase library synthesis.

    PubMed

    Gerritz, Samuel W; Zhai, Weixu; Shi, Shuhao; Zhu, Shirong; Toyn, Jeremy H; Meredith, Jere E; Iben, Lawrence G; Burton, Catherine R; Albright, Charles F; Good, Andrew C; Tebben, Andrew J; Muckelbauer, Jodi K; Camac, Daniel M; Metzler, William; Cook, Lynda S; Padmanabha, Ramesh; Lentz, Kimberley A; Sofia, Michael J; Poss, Michael A; Macor, John E; Thompson, Lorin A

    2012-11-08

    This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.

  16. Application of lean manufacturing concepts to drug discovery: rapid analogue library synthesis.

    PubMed

    Weller, Harold N; Nirschl, David S; Petrillo, Edward W; Poss, Michael A; Andres, Charles J; Cavallaro, Cullen L; Echols, Martin M; Grant-Young, Katherine A; Houston, John G; Miller, Arthur V; Swann, R Thomas

    2006-01-01

    The application of parallel synthesis to lead optimization programs in drug discovery has been an ongoing challenge since the first reports of library synthesis. A number of approaches to the application of parallel array synthesis to lead optimization have been attempted over the years, ranging from widespread deployment by (and support of) individual medicinal chemists to centralization as a service by an expert core team. This manuscript describes our experience with the latter approach, which was undertaken as part of a larger initiative to optimize drug discovery. In particular, we highlight how concepts taken from the manufacturing sector can be applied to drug discovery and parallel synthesis to improve the timeliness and thus the impact of arrays on drug discovery.

  17. Liquid-phase deposition of thin Si films by ballistic electro-reduction

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.

    2013-01-01

    It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.

  18. Parallel ICA and its hardware implementation in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Du, Hongtao; Qi, Hairong; Peterson, Gregory D.

    2004-04-01

    Advances in hyperspectral images have dramatically boosted remote sensing applications by providing abundant information using hundreds of contiguous spectral bands. However, the high volume of information also results in excessive computation burden. Since most materials have specific characteristics only at certain bands, a lot of these information is redundant. This property of hyperspectral images has motivated many researchers to study various dimensionality reduction algorithms, including Projection Pursuit (PP), Principal Component Analysis (PCA), wavelet transform, and Independent Component Analysis (ICA), where ICA is one of the most popular techniques. It searches for a linear or nonlinear transformation which minimizes the statistical dependence between spectral bands. Through this process, ICA can eliminate superfluous but retain practical information given only the observations of hyperspectral images. One hurdle of applying ICA in hyperspectral image (HSI) analysis, however, is its long computation time, especially for high volume hyperspectral data sets. Even the most efficient method, FastICA, is a very time-consuming process. In this paper, we present a parallel ICA (pICA) algorithm derived from FastICA. During the unmixing process, pICA divides the estimation of weight matrix into sub-processes which can be conducted in parallel on multiple processors. The decorrelation process is decomposed into the internal decorrelation and the external decorrelation, which perform weight vector decorrelations within individual processors and between cooperative processors, respectively. In order to further improve the performance of pICA, we seek hardware solutions in the implementation of pICA. Until now, there are very few hardware designs for ICA-related processes due to the complicated and iterant computation. This paper discusses capacity limitation of FPGA implementations for pICA in HSI analysis. A synthesis of Application-Specific Integrated Circuit (ASIC) is designed for pICA-based dimensionality reduction in HSI analysis. The pICA design is implemented using standard-height cells and aimed at TSMC 0.18 micron process. During the synthesis procedure, three ICA-related reconfigurable components are developed for the reuse and retargeting purpose. Preliminary results show that the standard-height cell based ASIC synthesis provide an effective solution for pICA and ICA-related processes in HSI analysis.

  19. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage.

    PubMed

    Frey, Natalie A; Peng, Sheng; Cheng, Kai; Sun, Shouheng

    2009-09-01

    This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe(2)O(4), Co, Fe, CoFe, FePt and SmCo(5) nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications.

  20. Monosaccharides as Scaffolds for the Synthesis of Novel Compounds

    NASA Astrophysics Data System (ADS)

    Murphy, Paul V.; Velasco-Torrijos, Trinidad

    This chapter focuses on monosaccharides and scaffolds their derivatives as scaffolds for the synthesis of primarily bioactive compounds. Such carbohydrate derivatives have been designed to modulate mainly protein-protein and peptide-protein interactions although modulators of carbohydrate-protein and carbohydrate-nucleic acid interactions have also been of interest. The multiple hydroxyl groups that are present on saccharides have made pyranose, furanose and iminosugars ideal templates or scaffolds to which recognition or pharmacophoric groups can be grafted to generate novel compounds for medicinal chemistry. The synthesis of compounds for evaluations require strategies for regioselective reactions of saccharide hydroxyl groups and use of orthogonally stable protecting groups. Syntheses have been carried out on the solid phase and in solution. Also the use of uronic acids, amino sugars and sugar amino acids has facilitated the synthesis of peptidomimetics and prospecting libraries as they enable, through presence of amino or carboxylic acid groups, chemoselective approaches to be employed in solution and on solid phase. Sugar amino acids are readily incorporated, as peptide isosteres, to generate sugar-peptide hybrids or for the synthesis of novel carbopeptoids . The synthesis of new cyclic compounds, derived in part from saccharides, and their application as scaffolds is an emerging area and recent examples include spirocyclic compounds, benzodiazepine-saccharide hybrids and macrolide-saccharide hybrids. Potent bioactive saccharide derivatives have been identified that include enzyme inhibitors , somatostatin receptor ligands, integrin ligands, anti-viral compounds, shiga toxin inhibitors and cell growth inhibitors. Some saccharide derivatives have demonstrated improved cellular permeability when compared with peptides and are in clinical trials.

  1. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  2. Chemically bonded stationary phases that use synthetic hosts containing aromatic binding clefts: HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons.

    PubMed Central

    Zimmerman, S C; Saionz, K W; Zeng, Z

    1993-01-01

    The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981

  3. Sol-gel synthesis and adsorption properties of mesoporous manganese oxide

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.

    2015-03-01

    Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.

  4. Combinatorial synthesis of phosphors using arc-imaging furnace

    PubMed Central

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-01-01

    We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432

  5. Combinatorial synthesis of phosphors using arc-imaging furnace

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  6. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    PubMed Central

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504

  7. A study of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions

    DOE PAGES

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; ...

    2015-01-26

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of Li xMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn 1.5Ni 0.5O 4 (Phase I), Li 0.5Mnmore » 1.5Ni 0.5O 4 (Phase II) and Mn 1.5Ni 0.5O 4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less

  8. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    NASA Astrophysics Data System (ADS)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  9. Synthesis and Properties of Rigid-Rod Benzobisazole Polymers Containing Benzothiazole Pendent Groups

    DTIC Science & Technology

    1990-11-16

    crystalline phase. Poly-p- benzamides containing bulky methyl, nitro or bromo groups affects intermolecular forces to such a large extent that lyotropic...phosphate/m- cresol . Initial attempts in our laboratory involved pendent phenylation via the synthesis of a series of phenylated terphenyl diacids and...range 2.5-9.3 dL/g and exhibited partial solubility (ə%) in m- cresol /strong acid mixtures. Concentrated solutions (>5-) could not be obtained in any

  10. A method for determining optimum phasing of a multiphase propulsion system for a single-stage vehicle with linearized inert weight

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1974-01-01

    A general analytical treatment is presented of a single-stage vehicle with multiple propulsion phases. A closed-form solution for the cost and for the performance and a derivation of the optimal phasing of the propulsion are included. Linearized variations in the inert weight elements are included, and the function to be minimized can be selected. The derivation of optimal phasing results in a set of nonlinear algebraic equations for optimal fuel volumes, for which a solution method is outlined. Three specific example cases are analyzed: minimum gross lift-off weight, minimum inert weight, and a minimized general function for a two-phase vehicle. The results for the two-phase vehicle are applied to the dual-fuel rocket. Comparisons with single-fuel vehicles indicate that dual-fuel vehicles can have lower inert weight either by development of a dual-fuel engine or by parallel burning of separate engines from lift-off.

  11. Molecular Mechanisms of Adaptation of the Moderately Halophilic Bacterium Halobacillis halophilus to Its Environment

    PubMed Central

    Hänelt, Inga; Müller, Volker

    2013-01-01

    The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus. PMID:25371341

  12. Preparation & characterization of high purity Cu2 ZnSn(SxSe1-x)4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Negash, Bethlehem G.

    Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, colloidal synthesis of Cu 2ZnSn(SxSe1-x)4 offers a scalable, low cost and high-throughput route for manufacturing high efficiency thin-film solar cells. Hydrazine processed Cu2ZnSn(SxSe1-x )4 devices have reached a record power conversion efficiency (PCE) of 12.6%, much higher than the 9.6% reported for physical vapor deposition (PVD) systems.6,7. Despite high efficiencies, wet synthesis of nanoparticles, however, is made more complicated in multi-element, quaternary and quinary systems such as copper zinc tin sulfoselenide (CZTSSe) and copper indium gallium diselenide (CIGSe). One major disadvantage in these systems is growth of the desired quaternary or quinary phase in competition with unwanted binary and ternary phases with low energy of formation.8,9 Moreover, various reaction parameters such as reaction time, temperature, and choice of ligand also affect, chemical as well as physical properties of resulting nanoparticles. Understanding of the formation mechanisms of the particles is necessary in order to address some of these challenges in wet synthesis of CZTSSe nanoparticles. In this study, we investigate synthesis conditions & reaction parameters which yield high purity Cu2ZnSn(SxSe1-x) 4 nanoparticles as well as attempt to understand the growth mechanism of these nanoparticles. This was achieved by manipulating anion precursor preparation routes as well order in which precursors are introduced into a reaction system. We report a new solution based sulfoselenide preparation route which has been used to synthesize high purity Cu2ZnSn(S xSe1-x)4 nanoparticles. Uniform phase Cu 2ZnSn(SxSe1-x)4 nanoparticles were successfully synthesized over a wide range of varying chalcogen ratios. It was found that anion precursor solution plays a key role in determining the morphology & phase purity of the final nanoparticles, as observed from X-ray Diffraction (XRD) and Raman spectroscopy. A uniform sulfoselenide solution is needed to produce high purity Cu2ZnSn(SxSe1-x )4 nanoparticles with narrow phase distribution. Moreover, the relative reactivity of each anion must be balanced in order to yield uniform phase nanoparticles. The findings of this study as well as the reported mixed chalcogen precursor preparation route can be applied in various industries, including photovoltaics to produce uniform phase, solution processed sulfoselenide nanoparticles.

  13. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  14. Transport of organic solutes through amorphous teflon AF films.

    PubMed

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  15. Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.

    PubMed

    Fang, Ge-Min; Seitz, Oliver

    2017-12-24

    "Label-free" fluorescent probes that avoid additional steps or building blocks for conjugation of fluorescent dyes with oligonucleotides can significantly reduce the time and cost of parallel bioanalysis of a large number of nucleic acid samples. A method for the synthesis of "label-free" bicysteine-modified PNA probes using solid-phase synthesis and procedures for sequence-specific DNA in situ fluorescent labeling is described here. The concept is based on the adjacent alignment of two bicysteine-modified peptide nucleic acids on a DNA target to form a structurally optimized bipartite tetracysteine motif, which induces a sequence-specific fluorogenic reaction with commercially available biarsenic dyes, even in complex media such as cell lysate. This unit will help researchers to quickly synthesize bipartite tetracysteine PNA probes and carry out low-cost DNA in situ fluorescent labeling experiments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis.

    PubMed

    Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C

    2014-03-26

    This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.

  17. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions.

    PubMed

    Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-09-01

    The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.

  18. Synthesis of porous Cu from Al-Cu-Co decagonal quasicrystalline alloys

    NASA Astrophysics Data System (ADS)

    Kalai Vani, V.; Kwon, O. J.; Hong, S. M.; Fleury, E.

    2011-07-01

    The formation of a porous Cu structure from cast Al-Cu-Co decagonal quasicrystalline alloys has been studied using a selective corrosion technique. Two alkaline solutions were selected based on the electrochemical properties of the constituent elements. Selective corrosion of Al and Co was achieved by chemical immersion of the cast Al-Cu-Co alloy in both 5 M NaOH and 0.5 M Na2CO3 solutions; values for BET surface-to-weight ratio of up to 30 m2/g could be reached. Microstructural analyses indicated that the architecture of the resulting porous structures was composed of a needle-type phase, remaining from the decagonal phase, in addition to Cu and Cu-Co phases.

  19. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase Transfer Catalysts. Synthesis of Catalyst Libraries and Evaluation of Catalyst Activity

    PubMed Central

    Denmark, Scott E.; Gould, Nathan D.; Wolf, Larry M.

    2011-01-01

    Despite over three decades of research into asymmetric phase transfer catalysis (APTC), a fundamental understanding of the factors that affect the rate and stereoselectivity of this important process are still obscure. This paper describes the initial stages of a long-term program aimed at elucidating the physical organic foundations of APTC employing a chemoinformatic analysis of the alkylation of a protected glycine imine with a libraries of enantiomerically enriched quaternary ammonium ions. The synthesis of the quaternary ammonium ions follows a diversity oriented approach wherein the tandem inter[4+2]/intra[3+2] cycloaddition of nitroalkenes serves as the key transformation. A two part synthetic strategy comprised of: (1) preparation of enantioenriched scaffolds and (2) development of parallel synthesis procedures is described. The strategy allows for the facile introduction of four variable groups in the vicinity of a stereogenic quaternary ammonium ion. The quaternary ammonium ions exhibited a wide range of activity and to a lesser degree enantioselectivity. Catalyst activity and selectivity are rationalized in a qualitative way based on the effective positive potential of the ammonium ion. PMID:21446721

  20. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  1. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  2. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-07-02

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less

  3. Multiscale Model for the Templated Synthesis of Mesoporous Silica: The Essential Role of Silica Oligomers

    DOE PAGES

    Perez-Sanchez, German; Chien, Szu -Chia; Gomes, Jose R. B.; ...

    2016-04-04

    A detailed theoretical understanding of the synthesis mechanism of periodic mesoporous silica has not yet been achieved. We present results of a multiscale simulation strategy that, for the first time, describes the molecular-level processes behind the formation of silica/surfactant mesophases in the synthesis of templated MCM-41 materials. The parameters of a new coarse-grained explicit-solvent model for the synthesis solution are calibrated with reference to a detailed atomistic model, which itself is based on quantum mechanical calculations. This approach allows us to reach the necessary time and length scales to explicitly simulate the spontaneous formation of mesophase structures while maintaining amore » level of realism that allows for direct comparison with experimental systems. Our model shows that silica oligomers are a necessary component in the formation of hexagonal liquid crystals from low-concentration surfactant solutions. Because they are multiply charged, silica oligomers are able to bridge adjacent micelles, thus allowing them to overcome their mutual repulsion and form aggregates. This leads the system to phase separate into a dilute solution and a silica/surfactant-rich mesophase, which leads to MCM-41 formation. Before extensive silica condensation takes place, the mesophase structure can be controlled by manipulation of the synthesis conditions. Our modeling results are in close agreement with experimental observations and strongly support a cooperative mechanism for synthesis of this class of materials. Furthermore, this work paves the way for tailored design of nanoporous materials using computational models.« less

  4. Bulk nucleation and growth of inorganic nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Shashank

    The nanometer scale materials such as nanowires and nanotubes will be of particular interest as building blocks for designing novel sensors, catalysts, electronic, optical, and optoelectronic devices. However, in order to realize these applications, bulk amounts of nanowires and nanotubes need to be synthesized with precise control over the nanostructure characteristics. In addition, the structure-property relationships for one-dimensional structures are expected to be different than their bulk when their diameters are less than a characteristic Bohr exciton radius. This fundamental curiosity also necessitates bulk synthesis of nanostructures. The current bulk nanowire synthesis methods utilize either nanometer scale porous molds or nanometer scale transition metal clusters to template one-dimensional growth. All these techniques have inherent limitations in terms of control over the nanowire diameter distribution, composition, the growth direction, and the ability to generate abrupt interfaces within individual nanowires. In this dissertation, a new concept for bulk nucleation and growth of one-dimensional nanostructures is proposed and demonstrated for a variety of inorganic material systems. In this technique, multiple nanowires nucleate and grow from pools of low-melting metal melts when exposed to an activated gas phase containing the necessary precursors. This concept, hereby termed Low Melting Metals and Activated Gas phase (LMAG) mediated method, is specifically demonstrated for the synthesis of, (a) silicon nanowires grown using molten gallium and silane precursors; (b) silicon compound nanowires using solution of molten gallium and appropriate gas phase precursors, and (c) metal-oxide nanostructures grown using direct reaction of the respective metal melts and oxygen precursors. Nanowires resulted from the same molten gallium pool at high densities (>1011/cm2) and with narrow diameter distribution. The silicon nanowires synthesized using the LMAG technique were single crystalline, defect free, and contained a non uniform, extremely thin oxide sheath (<1.5 nm). The nanowire diameter could be varied from 3 to 100 nm, with lengths up to hundreds of microns. Unique tubular and paintbrush-like morphologies were obtained in gallium oxide (Ga2O3) nanostructures. Small gallium droplets (<100 nm size) allowed Ga2O3 nanowire growth parallel to the substrate, followed by 2-dimensional nanoweb formation. These experiments using small gallium droplets resulted in the growth of crystalline Ga2O3 nanotubes with outer diameters as small as 5 nm and inner diameters as small as 2.5 nm.

  5. Parallel Synthesis and Biocatalytic Amplification of Marine-Inspired Libraries: An Integrated Approach Toward Discovering New Chemotherapeutics

    DTIC Science & Technology

    2007-09-01

    m (Cyt-m). We chose to study the oxidation of camphor to hydroxycamphor (Scheme 1) because it is the natural reaction for P450cam and there was...only one known reaction product. 10 O O HO camphor 5-exo-hydroxycamphor Scheme 1. The hydroxylation of camphor by P450cam, producing...phases, and 250 rpm. The oxidation of camphor to hydroxycamphor is 100% coupled with NADH oxidation, allowing for a direct correlation of NADH

  6. Time-Parallel Solutions to Ordinary Differential Equations on GPUs with a New Functional Optimization Approach Related to the Sobolev Gradient Method

    DTIC Science & Technology

    2012-10-01

    black and approximations in cyan and magenta. The second ODE is the pendulum equation, given by: This ODE was also implemented using Crank...The drawback of approaches like the one proposed can be observed with a very simple example. Suppose vector is found by applying 4 linear...public release; distribution unlimited Figure 2. A phase space plot of the Pendulum example. Fine solution (black) contains 32768 time steps

  7. An Old Story in the Parallel Synthesis World: An Approach to Hydantoin Libraries.

    PubMed

    Bogolubsky, Andrey V; Moroz, Yurii S; Savych, Olena; Pipko, Sergey; Konovets, Angelika; Platonov, Maxim O; Vasylchenko, Oleksandr V; Hurmach, Vasyl V; Grygorenko, Oleksandr O

    2018-01-08

    An approach to the parallel synthesis of hydantoin libraries by reaction of in situ generated 2,2,2-trifluoroethylcarbamates and α-amino esters was developed. To demonstrate utility of the method, a library of 1158 hydantoins designed according to the lead-likeness criteria (MW 200-350, cLogP 1-3) was prepared. The success rate of the method was analyzed as a function of physicochemical parameters of the products, and it was found that the method can be considered as a tool for lead-oriented synthesis. A hydantoin-bearing submicromolar primary hit acting as an Aurora kinase A inhibitor was discovered with a combination of rational design, parallel synthesis using the procedures developed, in silico and in vitro screenings.

  8. Wave Field Synthesis of moving sources with arbitrary trajectory and velocity profile.

    PubMed

    Firtha, Gergely; Fiala, Péter

    2017-08-01

    The sound field synthesis of moving sound sources is of great importance when dynamic virtual sound scenes are to be reconstructed. Previous solutions considered only virtual sources moving uniformly along a straight trajectory, synthesized employing a linear loudspeaker array. This article presents the synthesis of point sources following an arbitrary trajectory. Under high-frequency assumptions 2.5D Wave Field Synthesis driving functions are derived for arbitrary shaped secondary source contours by adapting the stationary phase approximation to the dynamic description of sources in motion. It is explained how a referencing function should be chosen in order to optimize the amplitude of synthesis on an arbitrary receiver curve. Finally, a finite difference implementation scheme is considered, making the presented approach suitable for real-time applications.

  9. Step-by-step growth of complex oxide microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.

    The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.

  10. Step-by-step growth of complex oxide microstructures

    DOE PAGES

    Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.

    2015-06-10

    The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.

  11. One-Pot Isomerization–Cross Metathesis–Reduction (ICMR) Synthesis of Lipophilic Tetrapeptides

    PubMed Central

    2015-01-01

    An efficient, versatile and rapid method toward homologue series of lipophilic tetrapeptide derivatives (herein, the opioid peptides H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal number of synthetic steps resulted from a one-pot tandem isomerization-cross metathesis-reduction sequence (ICMR), applicable both in solution and solid phase methodology. The broadly applicable synthesis proceeds with short reaction times and simple work-up, as illustrated in this work for alkylated opioid tetrapeptides. PMID:24906051

  12. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  13. Heat-enhanced peptide synthesis on Teflon-patterned paper.

    PubMed

    Deiss, Frédérique; Yang, Yang; Matochko, Wadim L; Derda, Ratmir

    2016-06-14

    In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids.

  14. Conference Proceedings: Annual Review of Progress in Applied Computational Electromagnetics (ACES󈨢) (10th) Held in Monterey, California on March 21-26, 1994. Volume 1

    DTIC Science & Technology

    1994-01-01

    inborno- geneoui medium, Communications on Pure and Applied Mathematics, XVI, (1963). 363-38]. (8) M. Born and E . Wolf, Principles of Optics...of initiated communications . The final sta• e of the parallalised partitioning technique is the solution of a coupling matrix by the use of a parallel...Frequmeny Asympofic Exposoio for Hypebllcc Equaiomes" by B. Ewupuia. E . PAmni, and S. Odwn 32 ’A New- To’hmapa for Synthesis of OffsK Dud Rtfeca Sysmm

  15. Synthesis of Perfluorinated Ethers by Solution Phase Direct Fluorination: An Adaptation of the La-Mar Technique

    DTIC Science & Technology

    1990-08-22

    Six of the 3 perfluorinated ethers prepared have been previously synthesized by other methods: perfluoro -5,5-bis(ethoxy- f methyl) -3,7-dioxanonane...from partially fluorinated starting material [34]. Third, as with perfluoroalkanes and simple perfluoroethers , Clark’s experimental results indicated 3...a highly branched perfluoroether ) by direct fluorination 3 in solution. Second, since some of these perfluorinated compounds had been previously

  16. Susan Habas | NREL

    Science.gov Websites

    chemical transformations Scalable methods for solution-phase nanomaterials synthesis Production of premium Patents "Metal Phosphide Catalysts and Methods for Making the Same and Uses Thereof," U.S . Patent No. 9,636,664 B1 (2017) "Metal Phosphide Catalysts and Methods for Making the Same and Uses

  17. Prebiotic chemistry in eutectic solutions at the water-ice matrix.

    PubMed

    Menor-Salván, César; Marín-Yaseli, Margarita R

    2012-08-21

    A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry.

  18. Synthesis of Chemiluminescent Esters: A Combinatorial Synthesis Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko

    2004-01-01

    A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.

  19. Effect of the raw material type and the reaction time on the synthesis of halloysite based Zeolite Na-P1

    NASA Astrophysics Data System (ADS)

    Meftah, Mahdi; Oueslati, Walid; Chorfi, Nejmeddine; Ben Haj Amara, Abdesslem

    Zeolites are currently one of the most important classes of inorganic materials because of their multiple applications not only as ions exchangers and molecular sieves, but also as catalysts. This works focus the synthesis and the characterization of Zeolite Na-P1 using halloysite (collected near Ain Khemouda, western Tunisia) as the starting material. Two parameters, such as the host materials type (natural or treated) and the reaction time, involved in the synthesis process are investigated. The intermediate phases and final products were characterized by X-ray diffraction, Infrared IR spectroscopy, scanning electron microscopy and high-resolution 29Si and 27Al MAS NMR. Obtained results show that the hydrothermal synthesis from natural and heated-halloysite leads to formation of homogenous Zeolite Na-P1. The difference in the crystallization/transformation time process is explained by the effect of the dissolution rate of the starting materials in sodium hydroxide solution. In the case of heated halloysite, the synthesis reaction with alkali solution occurs very readily and achieved without prior thermal activation at high temperature. The optimal conditions of Zeolite Na-P1 crystallization, from heated-halloysite, are reached at 120 °C.

  20. Enabling Chemistry Technologies and Parallel Synthesis-Accelerators of Drug Discovery Programmes.

    PubMed

    Vasudevan, A; Bogdan, A R; Koolman, H F; Wang, Y; Djuric, S W

    There is a pressing need to improve overall productivity in the pharmaceutical industry. Judicious investments in chemistry technologies can have a significant impact on cycle times, cost of goods and probability of technical success. This perspective describes some of these technologies developed and implemented at AbbVie, and their applications to the synthesis of novel scaffolds and to parallel synthesis. © 2017 Elsevier B.V. All rights reserved.

  1. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  2. High-throughput nanoparticle sizing using lensfree holographic microscopy and liquid nanolenses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McLeod, Euan

    2016-03-01

    The sizing of individual nanoparticles and the recovery of the distributions of sizes from populations of nanoparticles provide valuable information in virology, exosome analysis, air and water quality monitoring, and nanomaterials synthesis. Conventional approaches for nanoparticle sizing include those based on costly or low-throughput laboratory-scale equipment such as transmission electron microscopy or nanoparticle tracking analysis, as well as those approaches that only provide population-averaged quantities, such as dynamic light scattering. Some of these limitations can be overcome using a new family of alternative approaches based on quantitative phase imaging that combines lensfree holographic on-chip microscopy with self-assembled liquid nanolenses. In these approaches, the particles of interest are deposited onto a glass coverslip and the sample is coated with either pure liquid polyethylene glycol (PEG) or aqueous solutions of PEG. Due to surface tension, the PEG self-assembles into nano-scale lenses around the particles of interest. These nanolenses enhance the scattering signatures of the embedded particles such that individual nanoparticles as small as 40 nm are clearly visible in phase images reconstructed from captured holograms. The magnitude of the phase quantitatively corresponds to particle size with an accuracy of +/-11 nm. This family of approaches can individually size more than 10^5 particles in parallel, can handle a large dynamic range of particle sizes (40 nm - 100s of microns), and can accurately size multi-modal distributions of particles. Furthermore, the entire approach has been implemented in a compact and cost-effective device suitable for use in the field or in low-resource settings.

  3. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system

    PubMed Central

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747

  4. Current Status on the use of Parallel Computing in Turbulent Reacting Flow Computations Involving Sprays, Monte Carlo PDF and Unstructured Grids. Chapter 4

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    The state of the art in multidimensional combustor modeling as evidenced by the level of sophistication employed in terms of modeling and numerical accuracy considerations, is also dictated by the available computer memory and turnaround times afforded by present-day computers. With the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors, a solution procedure is developed that combines the novelty of the coupled CFD/spray/scalar Monte Carlo PDF (Probability Density Function) computations on unstructured grids with the ability to run on parallel architectures. In this approach, the mean gas-phase velocity and turbulence fields are determined from a standard turbulence model, the joint composition of species and enthalpy from the solution of a modeled PDF transport equation, and a Lagrangian-based dilute spray model is used for the liquid-phase representation. The gas-turbine combustor flows are often characterized by a complex interaction between various physical processes associated with the interaction between the liquid and gas phases, droplet vaporization, turbulent mixing, heat release associated with chemical kinetics, radiative heat transfer associated with highly absorbing and radiating species, among others. The rate controlling processes often interact with each other at various disparate time 1 and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and liquid phase evaporation in many practical combustion devices.

  5. Synthesis and Self-Assembly of fcc Phase FePt Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min; Pica, Timothy; Jiang, Ying-Bing

    2007-05-01

    In this paper, we report a synthesis of FePt nanorods by confining decomposition of Fe(CO) 5 and reduction of Pt(caca) 2 in surfactant reverse cylindrical micelles. The controlled nucleation and growth kinetics in confined environment allows easy control over Fe/Pt composition, nanorod uniformity, and nanorod aspect ratio. The FePt nanorods tend to self-assemble into ordered arrays along three-dimensions. Directed assembly under external magnetic field leads to two-dimensional ordered arrays, parallel to the substrate magnetic field. We expect that with optimized external magnetic fields, we should be able to assemble these nanorods into orientated one or two-dimensional arrays, providing a uniformmore » anisotropic magnetic platform for varied applications in enhanced data storage, magneto-electron transport, etc.« less

  6. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  7. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis.

    PubMed

    Li, Chun; Han, Xiaopeng; Cheng, Fangyi; Hu, Yuxiang; Chen, Chengcheng; Chen, Jun

    2015-06-04

    Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, Co(x)Mn(3-x)O4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation-precipitation and insertion-crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn-air and Li-air batteries.

  8. Vectorial finite elements for solving the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.

    2018-06-01

    The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.

  9. Synthesis and degradation of phenylalanine ammonia-lyase of Rhodosporidium toruloides.

    PubMed

    Gilbert, H J; Tully, M

    1982-05-01

    The regulation of the enzyme phenylalanine ammonia-lyase (PAL), which is of potential use in oral treatment of phenylketonuria, was investigated. Antiserum against PAL was prepared and was shown to be monospecific for the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native enzyme and two inactive mutant forms of the enzyme were purified to homogeneity by immunoaffinity chromatography, using anti-PAL immunoglobulin G-Sepharose 4B. Both mutant enzymes contained intact prosthetic groups. The formation of PAL catalytic activity after phenylalanine was added to yeast cultures was paralleled by the appearance of enzyme antigen. During induction, uptake of [3H]leucine into the enzyme was higher than uptake into total protein. Our results are consistent with de novo synthesis of an enzyme induced by phenylalanine, rather than activation of a proenzyme. The half-lives of PAL and total protein were similar in both exponential and stationary phase cultures. No metabolite tested affected the rate of enzyme degradation. Glucose repressed enzyme synthesis, whereas ammonia reduced phenylalanine uptake and pool size and so may repress enzyme synthesis through inducer exclusion. The synthesis of enzyme antigen by a mutant unable to metabolize phenylalanine indicated that this amino acid is the physiological inducer of the enzyme.

  10. Novel pyridylmethylamines as highly selective 5-HT(1A) superagonists.

    PubMed

    Bollinger, Stefan; Hübner, Harald; Heinemann, Frank W; Meyer, Karsten; Gmeiner, Peter

    2010-10-14

    To further improve the maximal serotonergic efficacy and better understand the configurational requirements for 5-HT(1A) binding and activation, we generated and biologically investigated structural variants of the lead structure befiradol. For a bioisosteric replacement of the 3-chloro-4-fluoro moiety, a focused library of 63 compounds by solution phase parallel synthesis was developed. Target binding of our compound collection was investigated, and their affinities for 5-HT(2), α(1), and α(2)-adrenergic as well as D(1)-D(4) dopamine receptors were compared. For particularly interesting test compounds, intrinsic activities at 5-HT(1A) were examined in vitro employing a GTPγS assay. The investigation guided us to highly selective 5HT(1A) superagonists. The benzothiophene-3-carboxamide 8bt revealed almost exclusive 5HT(1A) recognition with a K(i) value of 2.7 nM and a maximal efficacy of 124%. To get insights into the bioactive conformation of our compound collection, we synthesized conformationally constrained bicyclic scaffolds when SAR data indicated a chair-type geometry and an equatorially dispositioned aminomethyl substituent for the 4,4-disubstituted piperidine moiety.

  11. Numerical simulation of two-phase filtration in the near well bore zone

    NASA Astrophysics Data System (ADS)

    Maksat, Kalimoldayev; Kalipa, Kuspanova; Kulyash, Baisalbayeva; Orken, Mamyrbayev; Assel, Abdildayeva

    2018-04-01

    On the basis of the fundamental laws of energy conservation, nonstationary processes of filtration of two-phase liquids in multilayered reservoirs in the near well bore zone are considered. Number of reservoirs, fluid pressure in the given reservoirs, reservoir permeability, oil viscosity, etc. are taken into account upon that. Plane-parallel flow and axisymmetric cases have been studied. In the numerical solution, non-structured meshes are used. Closer to the well, the meshes thicken. The integration step over time is defined by the generalized Courant inequality. As a result, there are no large oscillations in the numerical solutions obtained. Oil production rates, Poisson's ratios, D-diameters of the well, filter height, filter permeability, and cumulative thickness of the filter cake and the area have been taken as the main inputs in numerical simulation of non-stationary processes of two-phase filtration.

  12. Fluid displacement between two parallel plates: a non-empirical model displaying change of type from hyperbolic to elliptic equations

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.

    2004-11-01

    We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.

  13. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  14. A High-Performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from d-Limonene

    PubMed Central

    Nash, Landon D.; Rodriguez, Jennifer N.; Lonnecker, Alexander T.; Raymond, Jeffery E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    Nanocomposite polymers have been prepared using a new sustainable materials synthesis process in which d-Limonene functions simultaneously both as a solvent for recycling polystyrene (PS) waste and as a monomer that undergoes UV-catalyzed thiol-ene polymerization reactions with polythiol co-monomers to afford polymeric products comprised of precipitated PS phases dispersed throughout elastomeric poly(thioether) networks. These blended networks exhibit mechanical properties that greatly exceed those of either polystyrene or the poly(thioether) network homopolymers alone. PMID:24249666

  15. Hydrothermal synthesis of bismuth germanium oxide

    DOEpatents

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  16. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  17. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  18. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  19. Low-temperature synthesis of homogeneous solid solutions of scheelite-structured Ca 1-xSr xWO 4 and Sr 1-xBa xWO 4 nanocrystals

    DOE PAGES

    Culver, Sean P.; Greaney, Matthew J.; Tinoco, Antonio; ...

    2015-07-24

    Here, a series of compositionally complex scheelite-structured nanocrystals of the formula A 1-xA’ xWO 4 (A = Ca, Sr, Ba) have been prepared under benign synthesis conditions using the vapor diffusion sol–gel method. Discrete nanocrystals with sub-20 nm mean diameters were obtained after kinetically controlled hydro- lysis and polycondensation at room temperature, followed by composition-dependent thermal aging at or below 60 °C. Rietveld analysis of X-ray diffraction data and Raman spectroscopy verified the synthesis of continuous and phase-pure nanocrystal solid solutions across the entire composition space for A 1-xA’ xWO 4, where 0 ≤ x ≤ 1. Elemental analysis bymore » X-ray photoelectron and inductively coupled plasma- atomic emission spectroscopies demonstrated excellent agreement between the nominal and experi- mentally determined elemental stoichiometries, while energy dispersive X-ray spectroscopy illustrated good spatial elemental homogeneity within these nanocrystals synthesized under benign conditions.« less

  20. Sol-gel synthesis of fine Gd{sub 2}CuO{sub 4} particles: Influence of synthesis variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahia, J.; Vazquez-Vazquez, C.; Basadre-Pampin, M.I.

    1996-02-01

    Fine particles of Gd{sub 2}CuO{sub 4} were prepared by a sol-gel reaction of an aqueous solution of metal nitrates in the presence of urea, which leads to high-homogeneity polycrystalline powders of Gd{sub 2}CuO{sub 4}. The authors have studied the synthesis conditions, demonstrating the existence of a relationship between the calcination temperature and the heating time needed to attain the pure phase. Gd{sub 2}CuO{sub 4} was obtained at temperatures of the order of 650 C, lower than temperatures employed in the conventional ceramic technique. The influence of the [urea]/[salts] ratio and an excess of Cu(II) in the starting solution was alsomore » studied and discussed. X-ray powder diffraction inductively coupled plasma atomic emission spectroscopy (ICPAES), photon correlation spectroscopy (PCS), and transmission electron microscopy (TEM) were used to characterize the Gd{sub 2}CuO{sub 4} samples obtained.« less

  1. Solid-phase synthesis of protein-polymers on reversible immobilization supports.

    PubMed

    Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J

    2018-02-27

    Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.

  2. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  3. Low Temperature Synthesis, Chemical and Electrochemical Characterization of LiNi(x)Co(1-x)O2 (0 less than x less than 1)

    NASA Technical Reports Server (NTRS)

    Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.

    1997-01-01

    A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.

  4. A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics.

    PubMed

    Green, Kayla N; Jeffery, Stephen P; Reibenspies, Joseph H; Darensbourg, Marcetta Y

    2006-05-17

    The molecular structure of the acetyl CoA synthase enzyme has clarified the role of individual nickel atoms in the dinickel active site which mediates C-C and C-S coupling reactions. The NiN2S2 portion of the biocatalyst (N2S2 = a cysteine-glycine-cysteine or CGC4- tripeptide ligand) serves as an S-donor ligand comparable to classical bidentate ligands operative in organometallic chemistry, ligating the second nickel which is redox and catalytically active. Inspired by this biological catalyst, the synthesis of NiN2S2 metalloligands, including the solid-phase synthesis of resin-bound Ni(CGC)2-, and sulfur-based derivatization with W(CO)5 and Rh(CO)2+ have been carried out. Through comparison to analogous well-characterized, solution-phase complexes, Attenuated Total Reflectance FTIR spectroscopy establishes the presence of unique heterobimetallic complexes, of the form [Ni(CGC)]M(CO)x, both in solution and immobilized on resin beads. This work provides the initial step toward exploitation of such an evolutionarily optimized nickel peptide as a solid support anchor for hybrid bioinorganic-organometallic catalysts.

  5. Light fluorous-tagged traceless one-pot synthesis of benzimidazoles facilitated by microwave irradiation.

    PubMed

    Tseng, Chih-Chung; Tasi, Cheng-Hsun; Sun, Chung-Ming

    2012-06-01

    A novel protocol for rapid assemble of benzimidazole framework has been demonstrated. This method incorporated with light fluorous-tag provides a convenient method for diversification of benzimidazoles and for easy purification via fluorous solid-phase extraction (F-SPE) in a parallel manner. The key transformation of this study involves in situ reduction of aromatic nitro compound, amide formation, cyclization and aromatization promoted by microwave irradiation in a one-pot fashion. The strategy is envisaged to be applied for the establishment of drug-like small molecule libraries for high throughput screening.

  6. Vectorized and multitasked solution of the few-group neutron diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zee, S.K.; Turinsky, P.J.; Shayer, Z.

    1989-03-01

    A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. Formore » the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model.« less

  7. Synthesis of MAX Phases in the Zr-Ti-Al-C System.

    PubMed

    Tunca, Bensu; Lapauw, Thomas; Karakulina, Olesia M; Batuk, Maria; Cabioc'h, Thierry; Hadermann, Joke; Delville, Rémi; Lambrinou, Konstantina; Vleugels, Jozef

    2017-03-20

    This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti) n+1 AlC n system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350-1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl 2 , ZrAl 3 , and Zr 2 Al 3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard's law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard's law around the (Zr 0.33 ,Ti 0.67 ) 3 Al 1.2 C 1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M 6 X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.

  8. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudoyono, Gatut, E-mail: gyudoyono@physics.its.ac.id; Zharvan, Vicran; Ichzan, Nur

    Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl{sub 3}) in aqueous medium, with NH{sub 4}OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO{sub 2} powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-anatase-brookite, rutile-brookite ormore » anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO{sub 2} rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.« less

  10. Chemical route for formation of intermetallic Zn 4Sb 3 phase

    NASA Astrophysics Data System (ADS)

    Denoix, A.; Solaiappan, A.; Ayral, R. M.; Rouessac, F.; Tedenac, J. C.

    2010-05-01

    Synthesis of intermetallic zinc antimonide phases via low temperature solution route was investigated. Trial experiments were carried out under inert atmosphere at 70 °C using metallic Zn, SbCl 3 and NaBH 4 as reactants and tetrahydrofuran (THF), dimethylsulfoxide (DMSO) as organic media. Powder X-ray analysis confirmed the nucleation and growth of ZnSb phases in presence of excess Zn. SEM analysis revealed the existence of core-shell structure comprising of Zn core and Sb shell. Such particles get transformed into Zn 4Sb 3 crystalline phases upon thermal treatment at 300 °C/6 h in a silica tube closed under high secondary vacuum.

  11. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  12. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  13. Fabrication of Controllable Pore and Particle Size of Mesoporous Silica Nanoparticles via a Liquid-phase Synthesis Method and Its Absorption Characteristics

    NASA Astrophysics Data System (ADS)

    Nandiyanto, Asep Bayu Dani; Iskandar, Ferry; Okuyama, Kikuo

    2011-12-01

    Monodisperse spherical mesoporous silica nanoparticles were successfully synthesized using a liquid-phase synthesis method. The result showed particles with controllable pore size from several to tens nanometers with outer diameter of several tens nanometers. The ability in the control of pore size and outer diameter was altered by adjusting the precursor solution ratios. In addition, we have conducted the adsorption ability of the prepared particles. The result showed that large organic molecules were well-absorbed to the prepared silica porous particles, in which this result was not obtained when using commercial dense silica particle and/or hollow silica particle. With this result, the prepared mesoporous silica particles may be used efficiently in various applications, such as sensors, pharmaceuticals, environmentally sensitive pursuits, etc.

  14. Custom-designed nanomaterial libraries for testing metal oxide toxicity

    PubMed Central

    Pokhrel, Suman; Nel, André E.; Mädler, Lutz

    2014-01-01

    Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152

  15. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

    PubMed Central

    Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H

    2013-01-01

    The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666

  16. FPGA-Based Filterbank Implementation for Parallel Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Berner, Stephan; DeLeon, Phillip

    1999-01-01

    One approach to parallel digital signal processing decomposes a high bandwidth signal into multiple lower bandwidth (rate) signals by an analysis bank. After processing, the subband signals are recombined into a fullband output signal by a synthesis bank. This paper describes an implementation of the analysis and synthesis banks using (Field Programmable Gate Arrays) FPGAs.

  17. Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  18. Parallel Optimization of Polynomials for Large-scale Problems in Stability and Control

    NASA Astrophysics Data System (ADS)

    Kamyar, Reza

    In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems --- in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) --- whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers --- machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers. We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.

  19. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterisation of Sol-Gel Synthesis of Phase Pure CaTiO3 Nano Powders after Drying

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Biswal, G.; Patnaik, S. C.; Senapati, S. K.

    2015-02-01

    According to a few recent studies, calcium titanate (CT) is a material that is similar to hydroxyapatite in biological properties. However, calcium titanate is not currently being used in the biomedical applications as to hydroxyapatite. The objective is to prepare nano calcium titanate powders from the equimolar solution of calcium oxide, ethanol and Titanium (IV) isopropoxide via sol-gel synthesis. The phase analysis and morphology of powder particles were studied by X-ray diffraction (XRD), while the composition and size of powder particles were determined by Transmission electron microscope (TEM) attached with energy dispersive x-ray spectrometer (EDS). As results, XRD confirm the presence of phase pure crystalline CaTiO3 after drying at 100°C for 24 hours, while TEM analysis confirms about 13 nm sizes of CaTiO3 particles and some agglomerated particle of 20-30 nm. Moreover, EDS analysis indicates that the approximately stoichiometric Ca/Ti ratio 1:1 was obtained in the CaTiO3 powders. Finally, it can be concluded that described sol-gel synthesis could be novel method for the production of nano CaTiO3 particles at lower temperature compared to any other methods of production.

  1. Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules

    NASA Astrophysics Data System (ADS)

    Nelson, Chris; Anna, Shelley

    2013-11-01

    Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.

  2. High-Throughput Synthesis and Characterization of Eu Doped Ba xSr2- xSiO4 Thin Film Phosphors.

    PubMed

    Frost, Sara; Guérin, Samuel; Hayden, Brian E; Soulié, Jean-Philippe; Vian, Chris

    2018-06-20

    High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba x Sr 2- x SiO 4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba x Sr 2- x SiO 4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10 -4 -7.6 × 10 -4 . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

  3. Polyphosphate and Orthophosphate Content of Nitrosomonas europaea as a Function of Growth

    PubMed Central

    Terry, K. R.; Hooper, A. B.

    1970-01-01

    After inoculation of a stationary-phase culture of Nitrosomonas europaea into fresh growth solution, the cell-associated orthophosphate increased rapidly to 800 μmoles/g (wet weight), whereas the acid-insoluble long-chain polyphosphate content decreased rapidly to 22 μmoles/g. As growth proceeded, the orthophosphate content decreased rapidly to a level of 15 μmoles/g and the long-chain polyphosphate content gradually increased to 60 to 90 μmoles/g. When the pH of a culture of Nitrosomonas decreased during growth below approximately 7.4, the rate of nitrite and polyphosphate synthesis increased and the ratio of change in protein to change in nitrite decreased. When the pH of the culture was maintained above 7.6 throughout growth, polyphosphate accumulation, an increased rate of nitrite and polyphosphate synthesis, and a decreased ratio of change in protein to change in nitrite were not observed. Cells of Nitrosomonas apparently accumulated polyphosphate when adenosine triphosphate generated during the oxidation of ammonia to nitrite was not efficiently used to promote an increase in cell mass. The rapid hydrolysis of polyphosphate after the transfer of stationary-phase cells into fresh growth solution was found to be triggered primarily by the higher pH of the fresh growth solution. The efflux of orthophosphate during culture growth was not associated with a decrease in the pH of the growth solution. Data on the chemical composition of Nitrosomonas are presented. PMID:5423370

  4. Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids.

    PubMed

    Dong, Yan-Yan; Deng, Fu; Zhao, Jin-Jin; He, Jing; Ma, Ming-Guo; Xu, Feng; Sun, Run-Cang

    2014-01-01

    This study aims to investigate the fabrication and property of cellulose/Ag/AgCl hybrids. In this article, preparation of cellulose/Ag/AgCl hybrids was reported using the cellulose solution, AgNO₃, AlCl₃·6H₂O with ultrasound agitation method. The cellulose solution was synthesized by the dissolution of the microcrystalline cellulose in NaOH/urea aqueous solution. Influences of the experimental parameters of ultrasound treatment time and ultrasonic intermittent on the hybrids were investigated. The phase, microstructure, thermal stability, and morphology of the hybrids were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). Results showed the successful synthesis of cellulose/Ag/AgCl hybrids with good thermal stability. Moreover, the hybrids displayed desirable antimicrobial activities. Compared with other conventional methods, the rapid, green, and environmentally friendly ultrasound agitation method opens a new window to the high value-added applications of biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biosynthesis of the Osmoprotectant Ectoine, but Not Glycine Betaine, Is Critical for Survival of Osmotically Stressed Vibrio parahaemolyticus Cells

    PubMed Central

    Ongagna-Yhombi, Serge Y.

    2013-01-01

    Vibrio parahaemolyticus is a halophile present in marine and estuarine environments, ecosystems characterized by fluctuations in salinity and temperature. One strategy to thrive in such environments is the synthesis and/or uptake of compatible solutes. The V. parahaemolyticus genome contains biosynthesis systems for both ectoine and glycine betaine, which are known to act as compatible solutes in other species. We showed that V. parahaemolyticus had a 6% NaCl tolerance when grown in M9 minimal medium with 0.4% glucose (M9G) with a >5-h lag phase. By using 1H nuclear magnetic resonance spectroscopy (1H-NMR) analysis, we determined that cells synthesized ectoine and glutamate in a NaCl-dependent manner. The most effective compatible solutes as measured by a reduction in lag-phase growth in M9G with 6% NaCl (M9G 6% NaCl) were in the order glycine betaine > choline > proline = glutamate > ectoine. However, V. parahaemolyticus could use glutamate or proline as the sole carbon source, but not ectoine or glycine betaine, which suggests that these are bona fide compatible solutes. Expression analysis showed that the ectA and betA genes were more highly expressed in log-phase cells, and expression of both genes was induced by NaCl up-shock. Under all conditions examined, the ectA gene was more highly expressed than the betA gene. Analysis of in-frame deletions in betA and ectB and in a double mutant showed that the ectB mutant was defective for growth, and this defect was rescued by the addition of glycine betaine, proline, ectoine, and glutamate, indicating that these compounds are compatible solutes for this species. The presence of both synthesis systems was the predominant distribution pattern among members of the Vibrionaceae family, suggesting this is the ancestral state. PMID:23770911

  6. Perovskite solid solutions with multiferroic morphotropic phase boundaries and property enhancement

    NASA Astrophysics Data System (ADS)

    Algueró, M.; Amorín, H.; Fernández-Posada, C. M.; Peña, O.; Ramos, P.; Vila, E.; Castro, A.

    2016-05-01

    Recently, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of phases in the BiFeO3-BiCoO3 perovskite binary system, associated with the existence of a discontinuous morphotropic phase boundary (MPB) between multiferroic polymorphs of rhombohedral and tetragonal symmetries. This might be a general property of multiferroic phase instabilities, and a novel promising approach for room temperature magnetoelectricity. We review here our current investigations on the identification and study of additional material systems, alternative to BiFeO3-BiCoO3 that has only been obtained by high pressure synthesis. Three systems, whose phase diagrams were, in principle, liable to show multiferroic MPBs have been addressed: the BiMnO3-PbTiO3 and BiFeO3-PbTiO3 binary systems, and the BiFeO3-BiMnO3-PbTiO3 ternary one. A comprehensive study of multiferroism across different solid solutions was carried out based on electrical and magnetic characterizations, complemented with mechanical and electromechanical measurements. An in-depth structural analysis was also accomplished when necessary.

  7. Synthesis of mono-dispersed nanofluids using solution plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yong Kang, E-mail: yk@rd.numse.nagoya-u.ac.jp; Bratescu, Maria Antoaneta, E-mail: maria@rd.numse.nagoya-u.ac.jp; Knowledge Hub Aichi, Yakusa-cho, Nagakute-ku, Toyota

    2014-07-14

    Small-sized and well-dispersed gold nanoparticles (NPs) for nanofluidics have been synthesized by electrical discharge in liquid environment using termed solution plasma processing (SPP). Electrons and the hydrogen radicals are reducing the gold ions to the neutral form in plasma gas phase and liquid phase, respectively. The gold NPs have the smallest diameter of 4.9 nm when the solution temperature was kept at 20 °C. Nucleation and growth theory describe the evolution of the NP diameter right after the reduction reaction in function of the system temperature, NP surface energy, dispersion energy barrier, and nucleation rate. Negative charges on the NPs surface duringmore » and after SPP generate repulsive forces among the NPs avoiding their agglomeration in solution. Increasing the average energy in the SPP determines a decrease of the zeta potential and an increase of the NPs diameter. An important enhancement of the thermal conductivity of 9.4% was measured for the synthesized nanofluids containing NPs with the smallest size.« less

  8. Designing a multiroute synthesis scheme in combinatorial chemistry.

    PubMed

    Akavia, Adi; Senderowitz, Hanoch; Lerner, Alon; Shamir, Ron

    2004-01-01

    Solid-phase mix-and-split combinatorial synthesis is often used to produce large arrays of compounds to be tested during the various stages of the drug development process. This method can be represented by a synthesis graph in which nodes correspond to grow operations and arcs to beads transferred among the different reaction vessels. In this work, we address the problem of designing such a graph which maximizes the number of produced target compounds (namely, compounds out of an input library of desired molecules), given constraints on the number of beads used for library synthesis and on the number of reaction vessels available for concurrent grow steps. We present a heuristic based on a discrete search for solving this problem, test our solution on several data sets, explore its behavior, and show that it achieves good performance.

  9. Strategies to indium nitride and gallium nitride nanoparticles: Low-temperature, solution-phase and precursor routes

    NASA Astrophysics Data System (ADS)

    Dingman, Sean Douglas

    I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and LiNH2 in a molten alkali-halide eutectic, KBr: Liar (60:40), at 400°C. The molten salt acts as an appropriate recrystallization medium for InN. Large InN platelets up to 500 nm could be synthesized. This is a significant step in finding mild reaction conditions that yield large InN crystals.

  10. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2

    NASA Astrophysics Data System (ADS)

    Chaban, M. O.; Rozhdestvenska, L. M.; Palchyk, O. V.; Dzyazko, Y. S.; Dzyazko, O. G.

    2018-04-01

    A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.

  11. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    PubMed

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  12. Automatic latency equalization in VHDL-implemented complex pipelined systems

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.

    2016-09-01

    In the pipelined data processing systems it is very important to ensure that parallel paths delay data by the same number of clock cycles. If that condition is not met, the processing blocks receive data not properly aligned in time and produce incorrect results. Manual equalization of latencies is a tedious and error-prone work. This paper presents an automatic method of latency equalization in systems described in VHDL. The proposed method uses simulation to measure latencies and verify introduced correction. The solution is portable between different simulation and synthesis tools. The method does not increase the complexity of the synthesized design comparing to the solution based on manual latency adjustment. The example implementation of the proposed methodology together with a simple design demonstrating its use is available as an open source project under BSD license.

  13. DOE SBIR Phase-1 Report on Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda Multiphase Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Dale M. Snider

    2011-02-28

    This report gives the result from the Phase-1 work on demonstrating greater than 10x speedup of the Barracuda computer program using parallel methods and GPU processors (General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative speedup, compared to a single CPU, increases with increased number of particles giving greater than 12x speedup. Phase-1 work provided a path for reformatting data structure modifications to give good parallel performance while keeping a friendlymore » environment for new physics development and code maintenance. The implementation of data structure changes will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda in Phase-2, with the caveat that implemented computer practices for parallel programming done in Phase-1 gives immediate speedup in the current Barracuda serial running code. The Phase-1 tasks were completed successfully laying the frame work for Phase-2. The detailed results of Phase-1 are within this document. In general, the speedup of one function would be expected to be higher than the speedup of the entire code because of I/O functions and communication between the algorithms. However, because one of the most difficult Barracuda algorithms was parallelized in Phase-1 and because advanced parallelization methods and proposed parallelization optimization techniques identified in Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single CPU) is expected to be greater than 10x. This means that a job which takes 30 days to complete will be done in 3 days. Tasks completed in Phase-1 are: Task 1: Profile the entire Barracuda code and select which subroutines are to be parallelized (See Section Choosing a Function to Accelerate) Task 2: Select a GPU consultant company and jointly parallelize subroutines (CPFD chose the small business EMPhotonics for the Phase-1 the technical partner. See Section Technical Objective and Approach) Task 3: Integrate parallel subroutines into Barracuda (See Section Results from Phase-1 and its subsections) Task 4: Testing, refinement, and optimization of parallel methodology (See Section Results from Phase-1 and Section Result Comparison Program) Task 5: Integrate Phase-1 parallel subroutines into Barracuda and release (See Section Results from Phase-1 and its subsections) Task 6: Roadmap of Phase-2 (See Section Plan for Phase-2) With the completion of Phase 1 we have the base understanding to completely parallelize Barracuda. An overview of the work to move Barracuda to a parallelized code is given in Plan for Phase-2.« less

  14. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  15. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.

  16. Fine tuning of size and morphology of magnetite nanoparticles synthesized by microemulsion

    NASA Astrophysics Data System (ADS)

    Singh, Pinki; Upadhyay, Chandan

    2018-05-01

    The synthesis parameters crucially affect the physical and chemical parameters of nanoparticles. Magnetite (Fe3O4) nanoparticles were synthesized using microemulsion method. This method does not require high temperature synthesis, nitrogen environment and/or pH regulation during synthesis process. We are presenting here a systematic study on role of different associated parameters of microemulsion synthesis method on the formation of Fe3O4 nanoparticles. From X-ray Diffraction and Transmission Electron Micoscopy data analysis the size of synthesized particles were observed to be <10 nm. The critical concentration of ferrous-ferric solution to obtain particles in single phase has been found to be ≤0.09 M and ≤0.184 M, respectively. The variation of molar concentration (0.01 M ≤x≤ 0.1 M) of CTAB leads to formation of Fe3O4 nano-scale particles of distinct morphologies e.g. nano-cubes, pentagons and spheres. The number of ferrous and ferric ions involved in the formation decides the size of the nanoparticles. The single crystallographic phase is obtained in reaction temperature range of 65° C

  17. Condensed, solution and gas phase behaviour of mono- and dinuclear 2,6-diacetylpyridine (dap) hydrazone copper complexes probed by X-ray, mass spectrometry and theoretical calculations.

    PubMed

    Neto, Brenno A D; Viana, Barbara F L; Rodrigues, Thyago S; Lalli, Priscila M; Eberlin, Marcos N; da Silva, Wender A; de Oliveira, Heibbe C B; Gatto, Claudia C

    2013-08-28

    We describe the synthesis of novel mononuclear and dinuclear copper complexes and an investigation of their behaviour in solution using mass spectrometry (ESI-MS and ESI-MS/MS) and in the solid state using X-ray crystallography. The complexes were synthesized from two widely used diacetylpryridine (dap) ligands, i.e. 2,6-diacetylpyridinebis(benzoic acid hydrazone) and 2,6-diacetylpyridinebis(2-aminobenzoic acid hydrazone). Theoretical calculations (DFT) were used to predict the complex geometries of these new structures, their equilibrium in solution and energies associated with the transformations.

  18. Automated three-component synthesis of a library of γ-lactams

    PubMed Central

    Fenster, Erik; Hill, David; Reiser, Oliver

    2012-01-01

    Summary A three-component method for the synthesis of γ-lactams from commercially available maleimides, aldehydes, and amines was adapted to parallel library synthesis. Improvements to the chemistry over previous efforts include the optimization of the method to a one-pot process, the management of by-products and excess reagents, the development of an automated parallel sequence, and the adaption of the method to permit the preparation of enantiomerically enriched products. These efforts culminated in the preparation of a library of 169 γ-lactams. PMID:23209515

  19. Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method

    NASA Astrophysics Data System (ADS)

    Naderi, P.; Masoudpanah, S. M.; Alamolhoda, S.

    2017-11-01

    In this research, lithium ferrite (Li0.5Fe2.5O4) powders were prepared by solution combustion synthesis using glycine and citric acid fuels at various fuel to oxidant molar ratios ( ϕ = 0.5, 1 and 1.5). Phase evolution, microstructure and magnetic properties were characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, electron microscopy and vibration sample magnetometry techniques. Single-phase lithium ferrite was formed using glycine fuel at all fuel to oxidant ratios, while some impurity α-Fe2O3 phase was appeared using citric acid fuel at ϕ ≥ 1. The phase and crystallite size mainly depended on the combustion rate through fuel type. Bulky microstructure observed for citric acid fuel was attributed to its slow combustion, while the fast exhausting of gaseous products led to spongy microstructure for glycine fuel. The highest saturation magnetization of 59.3 emu/g and coercivity of 157 Oe were achieved for the as-combusted powders using glycine fuel.

  20. Numerical Analysis of Dusty-Gas Flows

    NASA Astrophysics Data System (ADS)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  1. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-01

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  2. An efficient finite element method for simulation of droplet spreading on a topologically rough surface

    NASA Astrophysics Data System (ADS)

    Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan

    2017-11-01

    We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.

  3. Synthesis and degradation of phenylalanine ammonia-lyase of Rhodosporidium toruloides.

    PubMed Central

    Gilbert, H J; Tully, M

    1982-01-01

    The regulation of the enzyme phenylalanine ammonia-lyase (PAL), which is of potential use in oral treatment of phenylketonuria, was investigated. Antiserum against PAL was prepared and was shown to be monospecific for the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native enzyme and two inactive mutant forms of the enzyme were purified to homogeneity by immunoaffinity chromatography, using anti-PAL immunoglobulin G-Sepharose 4B. Both mutant enzymes contained intact prosthetic groups. The formation of PAL catalytic activity after phenylalanine was added to yeast cultures was paralleled by the appearance of enzyme antigen. During induction, uptake of [3H]leucine into the enzyme was higher than uptake into total protein. Our results are consistent with de novo synthesis of an enzyme induced by phenylalanine, rather than activation of a proenzyme. The half-lives of PAL and total protein were similar in both exponential and stationary phase cultures. No metabolite tested affected the rate of enzyme degradation. Glucose repressed enzyme synthesis, whereas ammonia reduced phenylalanine uptake and pool size and so may repress enzyme synthesis through inducer exclusion. The synthesis of enzyme antigen by a mutant unable to metabolize phenylalanine indicated that this amino acid is the physiological inducer of the enzyme. PMID:7068528

  4. Kinetics of the Reduction of Cadmium Sulfate by Thiourea Dioxide in an Aqueous Ammonia Solution upon the Metallization of Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Polenov, Yu. V.; Egorova, E. V.; Shestakov, G. A.

    2018-01-01

    The kinetics of the decomposition of thiourea dioxide and the reduction of cadmium cations by thiourea dioxide in an aqueous ammonia solution are studied. The kinetic parameters of these reactions are calculated using experimental data, allowing us to adjust conditions for the synthesis of cadmium coatings on carbon fiber of grade UKN-M-12K. The presence of the metal crystalline phase on the fiber is confirmed by means of X-ray diffraction, and its amount is measured via atomic absorption spectroscopy.

  5. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    PubMed Central

    Livage, Jacques

    2010-01-01

    A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325

  6. Alite-ye'elimite cement: Synthesis and mineralogical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua; Snellings, Ruben; Li, Xuerun

    2013-03-15

    Alite-ye'elimite cement is an alternative cement that combines desirable characteristics of calcium sulfoaluminate cements and Portland cement in that it shows improved strength development at early age while retaining high portlandite contents. The key problem in the clinkering process is to produce the alite-ye'elimite phase assemblage so that both phases can co-exist. In this study, a new synthesis method is proposed to achieve the coexistence of alite and ye'elimite consisting of a secondary heat treatment step at 1250 °C after regular Portland clinker firing at 1450 °C. Quantitative X-ray powder diffraction and electron microscopy were used to analyze the phasemore » composition of clinker before and after the secondary heat treatment. The results show that ye'elimite develops during secondary heat treatment of calcium sulphate enriched clinker by reaction of C{sub 3}A and sulphate phases. Additional ferrite is formed as result of rejection of Fe originally in solid solution with C{sub 3}A during ye'elimite formation.« less

  7. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system

    NASA Astrophysics Data System (ADS)

    Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu

    2017-04-01

    We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.

  8. Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library

    PubMed Central

    Moura-Letts, Gustavo; DiBlasi, Christine M.; Bauer, Renato A.; Tan, Derek S.

    2011-01-01

    Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycloaddition and cyclization reactions of enyne and diyne substrates assembled on a tert-butylsulfinamide lynchpin. We report herein the synthesis of a 190-membered library of alkaloid/terpenoid-like molecules using this synthetic approach. Translation to solid-phase synthesis was facilitated by the use of a tert-butyldiarylsilyl (TBDAS) linker that closely mimics the tert-butyldiphenysilyl protecting group used in the original solution-phase route development work. Unexpected differences in stereoselectivity and regioselectivity were observed in some reactions when carried out on solid support. Further, the sulfinamide moiety could be hydrolyzed or oxidized efficiently without compromising the TBDAS linker to provide additional amine and sulfonamide functionalities. Principal component analysis of the structural and physicochemical properties of these molecules confirmed that they access regions of chemical space that overlap with bona fide natural products and are distinct from areas addressed by conventional synthetic drugs and drug-like molecules. The influences of scaffolds and substituents were also evaluated, with both found to have significant impacts on location in chemical space and three-dimensional shape. Broad biological evaluation of this library will provide valuable insights into the abilities of natural product-based libraries to access similarly underexploited regions of biological space. PMID:21451137

  9. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation.

    PubMed

    Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe

    2017-10-27

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.

  10. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terban, Maxwell W.; Banerjee, Debasis; Ghose, Sanjit

    Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy,more » and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm) 4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.« less

  11. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

    DOE PAGES

    Terban, Maxwell W.; Banerjee, Debasis; Ghose, Sanjit; ...

    2018-02-05

    Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy,more » and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm) 4(2-MeIm=2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.« less

  12. Streamlined approach to high-quality purification and identification of compound series using high-resolution MS and NMR.

    PubMed

    Mühlebach, Anneke; Adam, Joachim; Schön, Uwe

    2011-11-01

    Automated medicinal chemistry (parallel chemistry) has become an integral part of the drug-discovery process in almost every large pharmaceutical company. Parallel array synthesis of individual organic compounds has been used extensively to generate diverse structural libraries to support different phases of the drug-discovery process, such as hit-to-lead, lead finding, or lead optimization. In order to guarantee effective project support, efficiency in the production of compound libraries has been maximized. As a consequence, also throughput in chromatographic purification and analysis has been adapted. As a recent trend, more laboratories are preparing smaller, yet more focused libraries with even increasing demands towards quality, i.e. optimal purity and unambiguous confirmation of identity. This paper presents an automated approach how to combine effective purification and structural conformation of a lead optimization library created by microwave-assisted organic synthesis. The results of complementary analytical techniques such as UHPLC-HRMS and NMR are not only regarded but even merged for fast and easy decision making, providing optimal quality of compound stock. In comparison with the previous procedures, throughput times are at least four times faster, while compound consumption could be decreased more than threefold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence

    DOE PAGES

    Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; ...

    2015-04-02

    Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology, for which they must endure high-temperature solid-state annealing reactions and subsequent complicated physical post-treatments. Herein, we report on a first direct aqueous-phase chemical synthesis route to NIR PLNPs and present their enhanced in vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biologicalmore » applications. Under biotissue-penetrable red-light excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. In conclusion, we believe that this solid-state-reaction-free chemical approach overcomes the current key roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature “luminous pearls” in photonics and biophotonics.« less

  14. Three-Component Reaction Discovery Enabled by Mass Spectrometry of Self-Assembled Monolayers

    PubMed Central

    Montavon, Timothy J.; Li, Jing; Cabrera-Pardo, Jaime R.; Mrksich, Milan; Kozmin, Sergey A.

    2011-01-01

    Multi-component reactions have been extensively employed in many areas of organic chemistry. Despite significant progress, the discovery of such enabling transformations remains challenging. Here, we present the development of a parallel, label-free reaction-discovery platform, which can be used for identification of new multi-component transformations. Our approach is based on the parallel mass spectrometric screening of interfacial chemical reactions on arrays of self-assembled monolayers. This strategy enabled the identification of a simple organic phosphine that can catalyze a previously unknown condensation of siloxy alkynes, aldehydes and amines to produce 3-hydroxy amides with high efficiency and diastereoselectivity. The reaction was further optimized using solution phase methods. PMID:22169871

  15. General phase regularized reconstruction using phase cycling.

    PubMed

    Ong, Frank; Cheng, Joseph Y; Lustig, Michael

    2018-07-01

    To develop a general phase regularized image reconstruction method, with applications to partial Fourier imaging, water-fat imaging and flow imaging. The problem of enforcing phase constraints in reconstruction was studied under a regularized inverse problem framework. A general phase regularized reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed to render the overall algorithm invariant to phase wraps. The proposed method was applied to retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction methods. Phase cycling reconstructions showed reduction of artifacts compared to reconstructions without phase cycling and achieved similar performances as state of the art results in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-free regularized flow imaging + PI + CS were demonstrated. The proposed phase cycling reconstruction provides an alternative way to perform phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the choice of initial solutions and encourages the joint reconstruction of phase imaging applications. Magn Reson Med 80:112-125, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Synthesis and photocatalytic degradation study of methylene blue dye under visible light irradiation by Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0)

    NASA Astrophysics Data System (ADS)

    Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.

    2018-05-01

    The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.

  17. Facile purification and click labeling with 2-[ 18F]fluoroethyl azide using solid phase extraction cartridges

    DOE PAGES

    Zhou, Dong; Chu, Wenhua; Peng, Xin; ...

    2014-11-04

    In this paper, a facile method was developed to purify 2-[ 18F]fluoroethyl azide ([ 18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [ 18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [ 18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield,more » and compatible with automated synthesis of 18F-labeled PET tracers.« less

  18. Nonequilibrium Diamond Growth during the High-Temperature High-Pressure Synthesis of a Composite Material Made of a Mixture of Cobalt and Fullerene Powders

    NASA Astrophysics Data System (ADS)

    Bulienkov, N. A.; Zheligovskaya, E. A.; Chernogorova, O. P.; Drozdova, E. I.; Ushakova, I. N.; Ekimov, E. A.

    2018-01-01

    A composite material (CM) reinforced by diamond particles is fabricated from a mixture of cobalt and 10 wt % C60 powders at a pressure of 8 GPa and a temperature of 1200-1300°C, which is close to the melting temperature of the metastable Co-C eutectic. The results of X-ray diffraction, Raman spectroscopy, and electron-probe microanalysis demonstrate that the CM consists of diamond and the Co3C carbide. Diamond crystals are shown to grow as plates parallel to a {100} plane according to the mechanism of nonequilibrium normal growth during liquid-phase CM synthesis. The diamond particles have a hardness of 82 GPa at an elastic recovery of 95%. The structure of the synthesized cobalt-based CM with diamond inclusions ensures its ultrahigh wear resistance and antifriction properties.

  19. Synthesis of long Prebiotic Oligomers on Mineral Surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.

    1996-01-01

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  20. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com; Rao, J. L.

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observedmore » g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.« less

  1. Synthesis, molecular docking and anticancer studies of peptides and iso-peptides.

    PubMed

    Jabeen, Farukh; Panda, Siva S; Kondratyuk, Tamara P; Park, Eun-Jung; Pezzuto, John M; Ihsan-ul-Haq; Hall, C Dennis; Katritzky, Alan R

    2015-08-01

    Chiral peptides and iso-peptides were synthesized in excellent yield by using benzotriazole mediated solution phase synthesis. Benzotriazole acted both as activating and leaving group, eliminating frequent use of protection and subsequent deprotection. The procedure was based on the hypothesis that epimerization should be suppressed in solution due to a faster coupling rate than SPPS. All the synthesized peptides complied with Lipinski's Ro5 except for the rotatable bonds. Inhibition of cell proliferation of cancer cell lines is one of the most commonly used methods to study the effectiveness of any anticancer agents. Synthesized peptides and iso-peptides were tested against three cancer cell lines (MCF-7, MDA-MB 231) to determine their anti-proliferative potential. NFkB was also determined. Molecular docking studies were also carried out to complement the experimental results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Room temperature synthesis of copper indium diselenide in non-aqueous solution using an organoindium reagent

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.

    1992-01-01

    A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.

  3. A parallel algorithm for multi-level logic synthesis using the transduction method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lim, Chieng-Fai

    1991-01-01

    The Transduction Method has been shown to be a powerful tool in the optimization of multilevel networks. Many tools such as the SYLON synthesis system (X90), (CM89), (LM90) have been developed based on this method. A parallel implementation is presented of SYLON-XTRANS (XM89) on an eight processor Encore Multimax shared memory multiprocessor. It minimizes multilevel networks consisting of simple gates through parallel pruning, gate substitution, gate merging, generalized gate substitution, and gate input reduction. This implementation, called Parallel TRANSduction (PTRANS), also uses partitioning to break large circuits up and performs inter- and intra-partition dynamic load balancing. With this, good speedups and high processor efficiencies are achievable without sacrificing the resulting circuit quality.

  4. Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium

    NASA Astrophysics Data System (ADS)

    González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César

    2018-01-01

    This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.

  5. Conformation-Based Design and Synthesis of Apratoxin A Mimetics Modified at the α,β-Unsaturated Thiazoline Moiety.

    PubMed

    Onda, Yuichi; Masuda, Yuichi; Yoshida, Masahito; Doi, Takayuki

    2017-08-10

    We have demonstrated design, synthesis, and biological evaluation of apratoxin A mimetics. In the first generation, the moCys moiety was replaced with seven simple amino acids as their 3D structures can be similar to that of apratoxin A. Apratoxins M1-M7 were synthesized using solid-phase peptide synthesis and solution-phase macrolactamization. Apratoxin M7, which contains a piperidinecarboxylic acid moiety, exhibited potent cytotoxicity against HCT-116 cells. In the second generation, substitution of each amino acid residue in the tripeptide Tyr(Me)-MeAla-MeIle moiety in apratoxin M7 led to the development of the highly potent apratoxin M16 possessing biphenylalanine (Bph) instead of Tyr(Me), which exhibited an IC 50 value of 1.1 nM against HCT-116 cells. Moreover, compared to apratoxin A, apratoxin M16 exhibited a similarly high level of growth inhibitory activity against various cancer cell lines. The results indicate that apratoxin M16 could be a potential candidate as an anticancer agent.

  6. Increasing processor utilization during parallel computation rundown

    NASA Technical Reports Server (NTRS)

    Jones, W. H.

    1986-01-01

    Some parallel processing environments provide for asynchronous execution and completion of general purpose parallel computations from a single computational phase. When all the computations from such a phase are complete, a new parallel computational phase is begun. Depending upon the granularity of the parallel computations to be performed, there may be a shortage of available work as a particular computational phase draws to a close (computational rundown). This can result in the waste of computing resources and the delay of the overall problem. In many practical instances, strict sequential ordering of phases of parallel computation is not totally required. In such cases, the beginning of one phase can be correctly computed before the end of a previous phase is completed. This allows additional work to be generated somewhat earlier to keep computing resources busy during each computational rundown. The conditions under which this can occur are identified and the frequency of occurrence of such overlapping in an actual parallel Navier-Stokes code is reported. A language construct is suggested and possible control strategies for the management of such computational phase overlapping are discussed.

  7. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  8. LSPRAY-III: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    LSPRAY-III is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray because of its importance in aerospace application. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-III, we have advanced the state-of-the-art in spray computations in several important ways.

  9. LSPRAY-II: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2004-01-01

    LSPRAY-II is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray because of its importance in aerospace application. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-II, we have advanced the state-of-the-art in spray computations in several important ways.

  10. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    PubMed

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni 2+ , as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  11. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent

    PubMed Central

    Georgakopoulos, Evangelos; Santos, Rafael M.; Chiang, Yi Wai; Manovic, Vasilije

    2017-01-01

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni2+, as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications. PMID:28287605

  12. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.

    PubMed

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Persson, Per O Å; Kooi, Bart J; Palasantzas, George

    2017-06-22

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H 2 or CH 4 as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation. We illustrate the abovementioned strategies for the case of Mg based bimetallic NPs, which are interesting as hydrogen storage materials and exhibit both nucleation and oxidation issues even under ultra-high vacuum conditions. In particular, it is shown that adding H 2 in small proportions favors the formation of a solid solution/alloy structure even in the case of immiscible Mg and Ti, where normally phase separation occurs during synthesis. In addition, we illustrate the possibility of improving the nucleation rate, and controlling the structure and size distribution of bimetallic NPs using H 2 /CH 4 as a reactive/nucleating gas. This is shown to be associated with the dimer bond energies of the various formed species and the vapor pressures of the metals, which are key factors for NP nucleation.

  13. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    PubMed

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations assumed by BPs in thin films reflect a complex interplay of surface interactions and elastic energies associated with strain of the BP lattice. The results also provide new principles and methods to control the structure and properties of BP thin films, which may find use in BP-templated material synthesis, and BP-based optical and electronic devices.

  14. Synthesis and Photoluminescence Characteristics of Eu(3+)-Doped Molybdates Nanocrystals.

    PubMed

    Li, Fuhai; Yu, Lixin; Wei, Shuilin; Sun, Jiaju; Chen, Weiqing; Sun, Wei

    2015-12-01

    In this paper, the Eu(3+)-doped molybdate (CaMoO4, ZnMoO4 and BaMoO4) phosphors have been prepared by a hydrothermal method through modulating the pH value of the precursor solution (pH = 8, 10, and 12, respectively). The crystalline phase, morphology, photoluminescent properties of the prepared samples were systematically characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. The results indicate that the photoluminescence and morphology can be affected by the precursor solution. And the growth of the ZnMoO4 crystals also can be affected by the pH value of the precursor solution.

  15. Parallel solid-phase synthesis and high-throughput 1H NMR evaluation of a 96-member 1,2,4-trisubstituted-pyrimidin-6-one-5-carboxylic acid library.

    PubMed

    Hamper, Bruce C; Kesselring, Allen S; Chott, Robert C; Yang, Shengtian

    2009-01-01

    A solid-phase organic synthesis method has been developed for the preparation of trisubstituted pyrimidin-6-one carboxylic acids 12, which allows elaboration to a 3-dimensional combinatorial library. Three substituents are introduced by initial Knoevenagel condensation of an aldehyde and malonate ester resin 7 to give resin bound 1. Cyclization of 1 with an N-substituted amidine 10, oxidation, and cleavage afforded pyrimidinone 12. The initial solid-phase reaction sequence was followed by gel-phase (19)FNMR and direct-cleavage (1)H NMR of intermediate resins to determine the optimal conditions. The scope of the method for library production was determined by investigation of a 3 x 4 pilot library of twelve compounds. Cyclocondensation of N-methylamidines and 7 followed by CAN oxidation gave mixtures of the resin bound pyrimidin-6-one 11 and the regioisomeric pyrimidin-4-one 15, which after cleavage from the resin afforded a nearly 1:1 mixture of pyrimidin-6-one and pyrimidin-4-one carboxylic acids 12 and 16, respectively. The regiochemical assignment was confirmed by ROESY1D and gHMBC NMR experiments. A library was prepared using 8 aldehydes, 3 nitriles, and 4 amines to give a full combinatorial set of 96 pyrimidinones 12. Confirmation of structural identity and purity was carried out by LCMS using coupled ELS detection and by high-throughput flow (1)H NMR.

  16. Fabrication of MTN-type zeolite by self-assembling of supramolecular compound

    NASA Astrophysics Data System (ADS)

    Huang, Aisheng; Caro, Jürgen

    2009-10-01

    MTN-type (Zeolite Socony Mobil Thirty-Nine) zeolite was prepared at 473 K by a novel method through self-assembling of a supramolecular compound called 2,4,6-tris (4-pyridyl) triazine (TPT) in DMF (N,N-dimethylformamide). The effects of fluoride, DMF and germanium on the synthesis of MTN-type zeolite were investigated. The crystallization was facilitated by adding fluoride to the synthesis solution, resulting in the formation of highly crystalline MTN samples, while some amorphous phase was observed in fluoride-free batches. DMF was required to obtain a highly crystalline MTN sample, since TPT dissolves easier in DMF than in water, thus facilitating the self-assembling of TPT into a 3D network to structure the MTN framework. The MTN structure could be synthesized at low germanium content (Ge/Si≤0.18), while AST (AlPO 4-sixteen) as a foreign phase is formed at high germanium substitution (Ge/Si≥0.5).

  17. Recent advances in racemic protein crystallography.

    PubMed

    Yan, Bingjia; Ye, Linzhi; Xu, Weiliang; Liu, Lei

    2017-09-15

    Solution of the three-dimensional structures of proteins is a critical step in deciphering the molecular mechanisms of their bioactivities. Among the many approaches for obtaining protein crystals, racemic protein crystallography has been developed as a unique method to solve the structures of an increasing number of proteins. Exploiting unnatural protein enantiomers in crystallization and resolution, racemic protein crystallography manifests two major advantages that are 1) to increase the success rate of protein crystallization, and 2) to obviate the phase problem in X-ray diffraction. The requirement of unnatural protein enantiomers in racemic protein crystallography necessitates chemical protein synthesis, which is hitherto accomplished through solid phase peptide synthesis and chemical ligation reactions. This review highlights the fundamental ideas of racemic protein crystallography and surveys the harvests in the field of racemic protein crystallography over the last five years from early 2012 to late 2016. Copyright © 2017. Published by Elsevier Ltd.

  18. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhou, Zhijun; Li, Zhiming; Zhang, Chunlei; Wang, Xiansong; Wang, Kan; Gao, Guo; Huang, Peng; Cui, Daxiang

    2013-04-01

    Biomimetic synthesis has become a promising green pathway to prepare nanomaterials. In this study, bovine serum albumin (BSA)-conjugated gold nanoclusters/nanoparticles were successfully synthesized in water at room temperature by a protein-directed, solution-phase, green synthetic method. The synthesized BSA-Au nanocomplexes have fluorescence emission (588 nm) of gold nanoclusters and surface plasmon resonance of gold nanoparticles. The BSA-Au nanocomplexes display non-cytotoxicity and excellent biocompatibility on MGC803 gastric cancer cells. After conjugation of folic acid molecules, the obtained BSA-Au nanocomplexes showed highly selective targeting for MGC803 cells and dual-modality dark-field and fluorescence imaging.

  19. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  20. SIAM Conference on Parallel Processing for Scientific Computing, 4th, Chicago, IL, Dec. 11-13, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack (Editor); Messina, Paul (Editor); Sorensen, Danny C. (Editor); Voigt, Robert G. (Editor)

    1990-01-01

    Attention is given to such topics as an evaluation of block algorithm variants in LAPACK and presents a large-grain parallel sparse system solver, a multiprocessor method for the solution of the generalized Eigenvalue problem on an interval, and a parallel QR algorithm for iterative subspace methods on the CM2. A discussion of numerical methods includes the topics of asynchronous numerical solutions of PDEs on parallel computers, parallel homotopy curve tracking on a hypercube, and solving Navier-Stokes equations on the Cedar Multi-Cluster system. A section on differential equations includes a discussion of a six-color procedure for the parallel solution of elliptic systems using the finite quadtree structure, data parallel algorithms for the finite element method, and domain decomposition methods in aerodynamics. Topics dealing with massively parallel computing include hypercube vs. 2-dimensional meshes and massively parallel computation of conservation laws. Performance and tools are also discussed.

  1. HPCO—A Phosphorus‐Containing Analogue of Isocyanic Acid

    PubMed Central

    Hinz, Alexander; Labbow, René; Rennick, Chris; Schulz, Axel

    2017-01-01

    Abstract We describe the isolation and spectroscopic characterization of the heavier phosphorus‐containing analogue of isocyanic acid (HPCO), and its isotopologue (DPCO). This fundamental small molecule, which has been postulated to exist in interstellar space, has thus far only been observed at low gas phase concentrations or in inert gas matrices. In this report we describe its synthesis, spectroscopic properties, and reactivity in solution. PMID:28252258

  2. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We describe our ongoing efforts to achieve massive parallelization on a novel hybrid GPU testbed machine currently configured with 12 Intel Westmere Xeon CPU cores (or 24 parallel computational threads) with 96 GB DDR3 system memory, 4 GPU subsystems which in aggregate contain 960 NVidia Tesla GPU cores with 16 GB dedicated DDR3 GPU memory, and a second interleved bank of 4 GPU subsystems containing in aggregate 1792 NVidia Fermi GPU cores with 12 GB dedicated DDR5 GPU memory. We are applying domain decomposition methods to a modified version of Weiss' (2001) 3D frequency domain full physics EM finite difference code, an open source GPL licensed f90 code available for download from www.OpenEM.org. This will be the core of a new hybrid 3D inversion that parallelizes frequencies across CPUs and individual forward solutions across GPUs. We describe progress made in modifying the code to use direct solvers in GPU cores dedicated to each small subdomain, iteratively improving the solution by matching adjacent subdomain boundary solutions, rather than iterative Krylov space sparse solvers as currently applied to the whole domain.

  3. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE PAGES

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan; ...

    2016-06-02

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  4. Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.

    2001-01-01

    An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.

  5. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Contopoulos, I.

    2012-01-01

    The Fermi Large Area Telescope has provided an unprecedented database for pulsar emission studies that includes gamma-ray light curves for over 100 pulsars. Modeling these light curves can reveal and constrain the geometry of the particle accelerator, as well as the pulsar magnetic field structure. We have constructed 3D magnetosphere models with finite conductivity, that bridge the extreme vacuum and force-free solutions used in previous light curves modeling. We are investigating the shapes of pulsar gamma-ray light curves using these dissipative solutions with two different approaches: (l) assuming geometric emission patterns of the slot gap and outer gap, and (2) using the parallel electric field provided by the resistive models to compute the trajectories and . emission of the radiating particles. The light curves using geometric emission patterns show a systematic increase in gamma-ray peak phase with increasing conductivity, introducing a new diagnostic of these solutions. The light curves using the model electric fields are very sensitive to the conductivity but do not resemble the observed Fermi light curves, suggesting that some screening of the parallel electric field, by pair cascades not included in the models, is necessary

  6. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  7. The effect of particle size on the toxic action of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sosenkova, L. S.; Egorova, E. M.

    2011-04-01

    Silver nanoparticles in AOT reverse micelles were obtained by means of the biochemical synthesis. Synthesis of nanoparticles was carried out with variation of the three parameters of reverse-micellar systems: concentration of silver ions, concentration of the stabilizer (AOT) and hydration extent w = [H2O]/[AOT]. The combinations of varied parameters have been found, allowing to prepare micellar solutions of spherical silver nanoparticles with average sizes 4.6 and 9.5 nm and narrow size distribution. From micellar solution the nanoparticles were transferred into the water phase; water solutions of the nanoparticles were used for testing their biological activity. Our assay is based on negative chemotaxis, a motile reaction of cells to an unfavorable chemical environment. Plasmodium of the slime mold Physarum polycephalum used as an object is a multinuclear amoeboid cell with unlimited growth and the auto-oscillatory mode of locomotion. In researches of chemotaxis on plasmodium it is learned that silver nanoparticles of smaller size exhibit a higher biological activity (behave as stronger repellent) and this correlates with the literary data obtained in studies of silver nanoparticles interaction with other biological objects.

  8. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  9. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.

  10. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  11. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  12. Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.

    PubMed

    Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei

    2013-04-07

    We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.

  13. Coupled Monte Carlo Probability Density Function/ SPRAY/CFD Code Developed for Modeling Gas-Turbine Combustor Flows

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF approach was extended in our previous work to the study of compressible reacting flows. The application of this method to several supersonic diffusion flames associated with scramjet combustor flow fields provided favorable comparisons with the available experimental data. A further extension of this approach to spray flames, three-dimensional computations, and parallel computing was reported in a recent paper. The recently developed PDF/SPRAY/computational fluid dynamics (CFD) module combines the novelty of the joint composition PDF approach with the ability to run on parallel architectures. This algorithm was implemented on the NASA Lewis Research Center's Cray T3D, a massively parallel computer with an aggregate of 64 processor elements. The calculation procedure was applied to predict the flow properties of both open and confined swirl-stabilized spray flames.

  14. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-06-08

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.

  15. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  16. Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.

    2013-11-15

    Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less

  17. A customized MILP approach to the synthesis of heat recovery networks reaching specified topology targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, M.R.; Cerda, J.

    1998-06-01

    A mathematical representation of a heat-exchanger network structure that explicitly accounts for the relative location of heat-transfer units, splitters, and mixers is presented. It is the basis of a mixed-integer linear programming sequential approach to the synthesis of heat-exchanger networks that allows the designer to specify beforehand some desired topology features as further design targets. Such structural information stands for additional problem data to be considered in the problem formulation, thus enhancing the involvement of the design engineer in the synthesis task. The topology constraints are expressed in terms of (1) the equipment items (heat exchangers, splitters, and mixers) thatmore » could be incorporated into the network, (2) the feasible neighbors for every potential unit, and (3) the heat matches, if any, with which a heat exchanger can be accomplished in parallel over any process stream. Moreover, the number and types of splitters being arranged over either a particular stream or the whole network can also be restrained. The new approach has been successfully applied to the solution of five example problems at each of which a wide variety of structural design restrictions were specified.« less

  18. LSPRAY-V: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  19. Solid phase monofunctionalization of gold nanoparticles using ionic exchange resin as polymer support.

    PubMed

    Zou, Jianhua; Dai, Qiu; Wang, Jinhai; Liu, Xiong; Huo, Qun

    2007-07-01

    A solid phase modification method using anionic exchange resin as polymer support was developed for the synthesis of monofunctional gold nanoparticles. Based on a "catch and release" mechanism to control the number of functional groups attached to the nanoparticle surface, bifunctional thiol ligands with a carboxylic acid end group were first immobilized at a controlled density on anionic exchange resin through electrostatic interactions. Gold nanoparticles were then immobilized to the anionic exchange resin by a one-to-one place exchange reaction between resin-bound thiol ligands and butanethiol-protected gold nanoparticles in solution. After cleaving off from the resin under mild conditions, gold nanoparticles with a single carboxyl group attached to the surface were obtained as the major product. Experimental conditions such as the solvents used for ligand loading and solid phase place exchange reaction, and the loading density of the ligands, were found to play a critical role towards the successful synthesis of monofunctional nanoparticles. Overall, the noncovalent bond-based ligand immobilization technique reported here greatly simplified the process of solid phase monofunctionalization of nanoparticles compared to a previously reported covalent bond-based ligand immobilization technique.

  20. Study of CP Symmetry Violation in the Charmonium-K*(892) Channel By a Complete Time Dependent Angular Analysis (BaBar Experiment) (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T'Jampens, Stephane; /Orsay

    2006-09-18

    This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007,more » |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity conservation favor the choice of the strong phases given above, leading to a positive sign for cos 2{beta}. The sign of cos 2{beta} is the one predicted by the Standard Model.« less

  1. Comparative XRPD and XAS study of the impact of the synthesis process on the electronic and structural environments of uranium–americium mixed oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieur, D., E-mail: dam.prieur@gmail.com; Lebreton, F.; Martin, P.M.

    2015-10-15

    Uranium–americium mixed oxides are potential compounds to reduce americium inventory in nuclear waste via a partitioning and transmutation strategy. A thorough assessment of the oxygen-to-metal ratio is paramount in such materials as it determines the important underlying electronic structure and phase relations, affecting both thermal conductivity of the material and its interaction with the cladding and coolant. In 2011, various XAS experiments on U{sub 1−x}Am{sub x}O{sub 2±δ} samples prepared by different synthesis methods have reported contradictory results on the charge distribution of U and Am. This work alleviates this discrepancy. The XAS results confirm that, independently of the synthesis process,more » the reductive sintering of U{sub 1−x}Am{sub x}O{sub 2±δ} leads to the formation of similar fluorite solid solution indicating the presence of Am{sup +III} and U{sup +V} in equimolar proportions. - Graphical abstract: Formation of (U{sup IV/V},Am{sup III})O{sup 2} solid solution by sol–gel and by powder metallurgy. - Highlights: • Uranium–americium mixed oxides were synthesized by sol–gel and powder metallurgy. • Fluorite solid solutions with similar local environment have been obtained. • U{sup V} and Am{sup III} are formed in equimolar proportions.« less

  2. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  3. Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes.

    PubMed

    Salas, Gorka; Podgoršek, Ajda; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Philippot, Karine; Chaudret, Bruno; Turmine, Mireille

    2011-08-14

    Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

  4. Synthesis of Pt 3Y and Other Early–Late Intermetallic Nanoparticles by Way of a Molten Reducing Agent

    DOE PAGES

    Kanady, Jacob S.; Leidinger, Peter; Haas, Andreas; ...

    2017-03-29

    Early–late intermetallic phases have garnered increased attention recently for their catalytic properties. To achieve the high surface areas needed for industrially relevant applications, these phases must be synthesized as nanoparticles in a scalable fashion. Herein, Pt 3Y—targeted as a prototypical example of an early–late intermetallic—has been synthesized as nanoparticles approximately 5–20 nm in diameter via a solution process and characterized by XRD, TEM, EDS, and XPS. The key development is the use of a molten borohydride (MEt 3BH, M = Na, K) as both the reducing agent and reaction medium. Readily available halide precursors of the two metals are used.more » Accordingly, no organic ligands are necessary, as the resulting halide salt byproduct prevents sintering, which further permits dispersion of the nanoscale intermetallic onto a support. The versatility of this approach was validated by the synthesis of other intermetallic phases such as Pt 3Sc, Pt 3Lu, Pt 2Na, and Au 2Y.« less

  5. Synthesis of Pt 3Y and Other Early–Late Intermetallic Nanoparticles by Way of a Molten Reducing Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanady, Jacob S.; Leidinger, Peter; Haas, Andreas

    Early–late intermetallic phases have garnered increased attention recently for their catalytic properties. To achieve the high surface areas needed for industrially relevant applications, these phases must be synthesized as nanoparticles in a scalable fashion. Herein, Pt 3Y—targeted as a prototypical example of an early–late intermetallic—has been synthesized as nanoparticles approximately 5–20 nm in diameter via a solution process and characterized by XRD, TEM, EDS, and XPS. The key development is the use of a molten borohydride (MEt 3BH, M = Na, K) as both the reducing agent and reaction medium. Readily available halide precursors of the two metals are used.more » Accordingly, no organic ligands are necessary, as the resulting halide salt byproduct prevents sintering, which further permits dispersion of the nanoscale intermetallic onto a support. The versatility of this approach was validated by the synthesis of other intermetallic phases such as Pt 3Sc, Pt 3Lu, Pt 2Na, and Au 2Y.« less

  6. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  7. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  8. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    PubMed Central

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  9. Effect of Synthesis Method of La1 - x Sr x MnO3 Manganite Nanoparticles on Their Properties

    NASA Astrophysics Data System (ADS)

    Shlapa, Yulia; Solopan, Sergii; Belous, Anatolii; Tovstolytkin, Alexandr

    2018-01-01

    Nanoparticles of lanthanum-strontium manganite were synthesized via different methods, namely, sol-gel method, precipitation from non-aqueous solution, and precipitation from reversal microemulsions. It was shown that the use of organic compounds and non-aqueous media allowed significantly decreasing of the crystallization temperature of nanoparticles, and the single-phased crystalline product was formed in one stage. Morphology and properties of nanoparticles depended on the method and conditions of the synthesis. The heating efficiency directly depended on the change in the magnetic parameters of nanoparticles, especially on the magnetization. Performed studies showed that each of these methods of synthesis can be used to obtain weakly agglomerated manganite nanoparticles; however, particles synthesized via sol-gel method are more promising for use as hyperthermia inducers. PACS: 61.46.Df 75.75.Cd 81.20. Fw

  10. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source,more » D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.« less

  11. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.

    PubMed

    Jeong, Heon-Ho; Yadavali, Sagar; Issadore, David; Lee, Daeyeon

    2017-07-25

    Microscale gas bubbles have demonstrated enormous utility as versatile templates for the synthesis of functional materials in medicine, ultra-lightweight materials and acoustic metamaterials. In many of these applications, high uniformity of the size of the gas bubbles is critical to achieve the desired properties and functionality. While microfluidics have been used with success to create gas bubbles that have a uniformity not achievable using conventional methods, the inherently low volumetric flow rate of microfluidics has limited its use in most applications. Parallelization of liquid droplet generators, in which many droplet generators are incorporated onto a single chip, has shown great promise for the large scale production of monodisperse liquid emulsion droplets. However, the scale-up of monodisperse gas bubbles using such an approach has remained a challenge because of possible coupling between parallel bubbles generators and feedback effects from the downstream channels. In this report, we systematically investigate the effect of factors such as viscosity of the continuous phase, capillary number, and gas pressure as well as the channel uniformity on the size distribution of gas bubbles in a parallelized microfluidic device. We show that, by optimizing the flow conditions, a device with 400 parallel flow focusing generators on a footprint of 5 × 5 cm 2 can be used to generate gas bubbles with a coefficient of variation of less than 5% at a production rate of approximately 1 L h -1 . Our results suggest that the optimization of flow conditions using a device with a small number (e.g., 8) of parallel FFGs can facilitate large-scale bubble production.

  12. Coaxial Lithography

    NASA Astrophysics Data System (ADS)

    Ozel, Tuncay

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowires that can be realized and studied in the laboratory. This thesis focuses on bridging templated electrochemical synthesis and lithography for expanding current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures for the rational design and preparation of nanowires with very complex architectures that cannot be made by any other techniques. Chapter 1 introduces plasmonics, templated electrochemical synthesis, and on-wire lithography concepts and their significances within chemistry and materials science. Chapter 2 details a powerful technique for the deposition of metals and semiconductors with nanometer resolution in segment and gap lengths using on-wire lithography, which serves as a new platform to explore plasmon-exciton interactions in the form of long-range optical nanoscale rulers. Chapter 3 highlights an approach for the electrochemical synthesis of solution dispersible core-shell polymeric and inorganic semiconductor nanowires with metallic leads. A photodetector based on a single core-shell semiconductor nanowire is presented to demonstrate the functionality of the nanowires produced using this approach. Chapter 4 describes a new materials general technique, termed coaxial lithography (COAL), bridging templated electrochemical synthesis and lithography for generating coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both axial and radial dimensions. Combinations of coaxial nanowires composed of metals, metal oxides, metal chalcogenides, conjugated polymers, and a core/shell semiconductor nanowire with an embedded plasmonic nanoring are presented to demonstrate the possibilities afforded by COAL. Chapter 5 addresses the use of COAL for the synthesis of solution dispersible metal nanorings and nanotubes with exceptional architectural tailorability of inner diameter, outer diameter, and length leading to precise spectral control over the resulting plasmonic fields ranging from visible to the near-IR. Chapter 6 is an outlook on templated electrochemical synthesis using coaxial lithography and highlights a few promising applications from nanoparticle assembly to light-matter interactions.

  13. Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders

    NASA Astrophysics Data System (ADS)

    Al-Najar, B.; Khezami, L.; Judith Vijaya, J.; Lemine, O. M.; Bououdina, M.

    2017-01-01

    In this study, MgFe2O4 nanopowders were synthesized through two different methods, sol-gel method (SG) and modified sol-gel with Ammonia (MSG-A). The influence of synthesis route was investigated in terms of phase stability, pores size and surface area, magnetic properties and uptake of Ni and Cd metals from aqueous solution. Rietveld refinements of x-ray diffraction patterns confirmed the formation of single spinel phase for SG sample, while minor impurity was detected for SGM-A sample (few amount of MgO). The crystallite size was found to be sensitive to the preparation method; it ranges from 4 nm for SG to 15 nm for MSG-A. Magnetization experiment at room temperature showed ferromagnetic behavior with a saturation magnetization ( M s) ranging from 5.39 emu/g for SG to 9.93 emu/g for MSG-A. Preliminary results showed that SG and MSG-A samples are efficient adsorbent for Ni and Cd metal ions from aqueous solution. Maximum quantity of 62.67 and 61.2 mg of Ni(II) and 36.49 and 32.84 mg of Cd(II) was adsorbed per gram of MgFe2O4 synthesized by SG and MSG-A, respectively.

  14. Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopade, Sujay A.; Anderson, Evan L.; Schmidt, Peter W.

    Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethylmore » sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.« less

  15. Modification in Synthesis of Anatase Titanium Oxide and Comparison of the Synthesis Methods

    NASA Astrophysics Data System (ADS)

    Hosseinnia, A.; Pazouki, M.; Kazemzad, M.; Keyanpour-Rad, M.

    2007-08-01

    In this research work, anatase titanium dioxide (TiO2) was prepared by precipitation route using TiCl4 in neutral pH. The dehydration of precipitate was performed by azeotropic extraction using benzene as solvent. After calcinations of product at 600 °C anatase form of titania was confirmed by XRD analysis. Precipitating TiCl4 in pH=3 gives a product of mostly rutile and anatase. The sizes of titania nanoparticles obtained was less than 30 nm as determined by transmission electron microscopy (TEM) studies. In the other method of synthesis, titanium tetra isopropoxide was used in neutral pH. After calcinations of product at 600 °C, most of the titania obtained was brookite and anatase. Increasing the pH by addition of ammonia, Ti (OH)xCl4-x will be formed first, and this increases the concentration of hydroxyl group in solution. In general when pH is higher, the amount of x in Ti(OH)xCl4-x is more. FT-IR studies before calcination revealed that even in neutral pH this composition is present. Meanwhile the amount of x in the solution is highly related to the formation of anatase and rutile phases in the product. The higher the amount of x in the composition, the higher the amount of anatase phase present in the final product. The anatase obtained in addition to having interesting antibacterial properties, has other very interesting photocatalytic properties. It degraded methylene blue and rhodamie B in day light, which is rarely reported in the literature.

  16. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE PAGES

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat pulses.« less

  17. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  18. Sol-gel synthesis of nanosized titanium dioxide at various pH of the initial solution

    NASA Astrophysics Data System (ADS)

    Dorosheva, I. B.; Valeeva, A. A.; Rempel, A. A.

    2017-09-01

    Titanium dioxide (TiO2) was synthesized by sol-gel method at different values of pH = 3, 7, 8, 9, or 10. X-ray phase analysis has shown that in an acid rout an anatase phase was crystallized, and in an alkaline rout an amorphous phase of TiO2 was achieved. After annealing for 4 hours at 350 °C, all samples was transformed in the anatase phase. The particle size in the different samples varies from 7 to 49 nm depending on the pH. The diffuse reflection spectra revealed a high value of the band gap in the range from 3.2 to 3.7 eV and its narrowing after annealing to the range from 3.2 to 3.5 eV.

  19. New polymers for low-gravity purification of cells by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1983-01-01

    A potentially powerful technique for separating different biological cell types is based on the partitioning of these cells between the immiscible aqueous phases formed by solution of certain polymers in water. This process is gravity-limited because cells sediment rather than associate with the phase most favored on the basis of cell-phase interactions. In the present contract we have been involved in the synthesis of new polymers both to aid in understanding the partitioning process and to improve the quality of separations. The prime driving force behind the design of these polymers is to produce materials which will aid in space experiments to separate important cell types and to study the partitioning process in the absence of gravity (i.e., in an equilibrium state).

  20. Microwave-assisted one-pot synthesis of ring-fused aminals under catalyst- and solvent-free conditions

    EPA Science Inventory

    Heterocyclic compounds hold a special place in drug discovery and variety of techniques such as combinatorial synthesis, parallel synthesis, and automated library production to increase the output of these entities has been developed. Although most of these techniques are rapid a...

  1. A solid phase honey-like channel method for synthesizing urea-ammonium chloride cocrystals on industrial scale

    NASA Astrophysics Data System (ADS)

    Xue, Bingchun; Mao, Meiling; Liu, Yanhong; Guo, Jinyu; Li, Jing; Liu, Erbao

    2016-05-01

    Unanticipated a new and simple urea-ammonium chloride cocrystal synthesis method on industrial scale was found during attempts to produce a kind of granulated compound fertilizer. The aggregation of fertilizer powder can make the interaction among particles from loose to close, which generate mechanical pressure and in turn act as the driving force to benefit cocrystal growth. Additionally, the honeycomb-like channels constructed by other coexisting compound make the water evaporates more moderate, which can help the formation of supersaturated solution at suitable rate, further promote the growth of cocrystal. This approach possibly opens a new route toward the developing methodologies for cocrystal synthesis.

  2. Synthesis and study of the synthetic hydroxyapatite doped with aluminum

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Smirnov, V.; Antonova, O.; Konovalov, A.; Fomina, A.; Komlev, V. S.; Barinov, S.; Rodionov, A.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Powders of synthetic hydroxyapatite doped with aluminium (Al) ions in concentrations 0 and 20 mol. % were synthesized by the precipitation method from the nitrate solutions and investigated by atomic emission spectrometry with inductively coupled plasma (AES-ICP), X-ray diffraction (XRD), scanning electron microscopy (SEM), gas absorption and conventional electron paramagnetic resonance (EPR). It is shown that for the chosen synthesis route an introduction of Al provokes formation of highly anisotropic phase, leads to the decrease in the crystallinity while no significant changes in the EPR spectra of the radiation-induced defects is observed. The results could be used for understanding the structural transformations with Al doping of the mineralized materials for geological and biomedical applications.

  3. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.

  4. Equipment damper original design and qualification results

    NASA Astrophysics Data System (ADS)

    Demerville, T.; Guay, P.

    2003-09-01

    During the launching phase, satellites are undoubtedly faced to severe mechanical environment, which appears to be one of the most critical issues to cope with. Various solutions can be investigated to protect the onboard equipments during these critical phases. Actually, theses vibratory damages can be reduced at the same time by optimising the architecture of the satellite but also by local actions aiming more on the propagation of the vibrations and thus limiting the transmission of the vibrations through the whole equipment. The latter solution also called "passive solution" is developed by SMAC under the CNES contract to protect along all six degree of freedom the small reaction wheel, chosen for the MYRIADE microsatellite family, from random vibrations and shocks. This original solution consists in uncoupling the reaction wheel from the satellite structure by an isolator system made out of a high damping viscoelastic material: the SMACTANE®. Technical trade-off and design issue, that has led to select the final flight configuration, will be discussed in parallel with the design constraints in term of: mass and size, due to the lack of space onboard MYRIADE platform, and transfer function performances, addressing low cut-off frequency and quality-factor limitation at cut-off frequency. In particular, the solution implemented in order to minimize coupling phenomenon between axis will be particularly described. Main features of the flight models and the qualification tests results will be given. Despite many advantages, it is well known that damping viscoelastic materials have some disadvantages, like their non-linear behaviour depending on the mechanical levels applied and their poor thermal and electric conductivity. So, to conclude, we try to show how new ways seem to be promising and keep all interest in using viscoelastic materials in space applications. On the one hand, the way to specify the damping performances and to characterize them will be in particular discussed. On the other hand, an alternative solution to the thermal braids here selected is currently investigated under CNES R&T funding to avoid additional parts and also parasitic stiffness in parallel of the elastomer mounts. The first tests results of a new kind of elastomeric material developed will also be addressed.

  5. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  6. Ultrafast Synthesis and Related Phase Evolution of Mg2Si and Mg2Sn Compounds

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Lu, Qiangbing; Yan, Yonggao; Su, Xianli; Tang, Xinfeng

    2017-05-01

    Both Mg2Si and Mg2Sn compounds were synthesized by an ultra-fast self-propagating high-temperature synthesis (SHS) method. The data regarding SHS were obtained via theoretical calculation combined with experiments, showing that the adiabatic temperature T ad and ignition temperature T ig of Mg2Si are a little higher than those of Mg2Sn. The mechanism of phase evolution and the concomitant microstructure evolution during the synthesis process of Mg2Si and Mg2Sn compounds were investigated by adopting SHS technique coupled with a sudden quenching treatment. Differential scanning calorimetry (DSC), field emission scanning electron microscopy (FESEM), and x-ray powder diffraction (XRD) results indicate that Mg2Si compound can be directly synthesized through the reaction of Mg and Si elements at around 850 K. Correspondingly, the formation of Mg2Sn needs to undergo melting of Sn and the subsequent feeble reaction between Mg and Sn elements before the large scale transformation at 730 K. As the groundwork, this research embodies great significance for future study on the ultrafast SHS process of the ternary Mg2Si1- x Sn x solid solutions.

  7. Synthesis of Zn-In-S Quantum Dots with Tunable Composition and Optical Properties.

    PubMed

    Wang, Xianliang; Damasco, Jossana; Shao, Wei; Ke, Yujie; Swihart, Mark T

    2016-03-03

    II-III-VI semiconductors are of interest due to their chemical stability and composition-tunable optical properties. Here, we report a methodology for the synthesis of monodisperse zinc-indium-sulfide (ZIS) alloy quantum dots (QDs, mean diameter from ∼2 to 3.5 nm) with an In content substantially below that of the stoichiometric ZnIn2 S4 compound. The effects of indium incorporation on the size, lattice constant, and optical properties of ZIS QDs are elucidated. In contrast to previous reports, we employ sulfur dissolved in oleic acid as the sulfur donor rather than thioacetamide (TAA). The size of the ZIS QDs and their crystal lattice constant increased with increasing In incorporation, but they maintained the cubic sphalerite phase of ZnS, rather than the hexagonal phase typical of ZnIn2 S4 . The QDs' absorbance onset at UV wavelengths red-shifts with increasing In content and the accompanying increase in NC size. The ZIS NCs and related materials, whose synthesis is enabled by the approach presented here, provide new opportunities to apply II-III-VI semiconductors in solution-processed UV optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanochemical synthesis of MgF2 - MF2 composite systems (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Scholz, G.; Breitfeld, S.; Krahl, T.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2015-12-01

    The capability of mechanochemical synthesis for the formation of MgF2-MF2 (M: Ca, Sr, Ba) composites, solid solutions or well-defined compounds was tested applying a fluorination of different fluorine-free metal sources with NH4F directly at milling. No evidence was found for a substitution of Mg2+ with Ca2+ (Sr2+, Ba2+) ions, or vice versa, in rutile or fluorite structure. However, an equimolar ratio of Mg2+ to the second cation allows the mechanochemical synthesis of tetrafluoromagnesates, MMgF4, which is more and more hampered the smaller the radius of the cation M2+ is. BaMgF4 is formed even phase pure from the acetates, SrMgF4 can only be observed in a mixture accompanied by the binary fluorides. In addition, 19F MAS NMR spectra along with calculations of 19F isotropic chemical shift values according to the superposition model point to the formation of a metastable phase of CaMgF4, which disappears at thermal treatment and decomposes into the binary fluorides CaF2 and MgF2.

  9. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  10. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  11. Synthesis, Characterization and Antibacterial Activity of BiVO4 Microstructure

    NASA Astrophysics Data System (ADS)

    Ekthammathat, Nuengruethai; Phuruangrat, Anukorn; Thongtem, Somchai; Thongtem, Titipun

    2018-05-01

    Hyperbranched BiVO4 microstructure were successfully synthesized by a hydrothermal method. Upon characterization the products by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, selected area electron diffraction (SAED) and photoluminescence (PL) spectroscopy, pure monoclinic hyperbranched BiVO4 with dominant vibration peak at 810 cm-1 and strong photoemission peak at 360 nm was synthesized in the solution with pH 1. In the solution with pH 2, tetragonal BiVO4 phase was also detected. In this research, antibacterial activity against S. aureus and E. coli was investigated by counting the colony forming unit (CFU). At 37°C within 24 h, the monoclinic BiVO4 phase can play the role in inhibiting S. aureus growth (350 CFU/mL remaining bacteria) better than that against E. coli (a large number of remaining bacteria).

  12. A low temperature solution phases synthesis for silicon quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bley, R.A.; Yang, Chung-Sung; Kauzlarich, S.M.

    Silicon nanoparticles are of interest because of their optoelectronic properties. This warrants finding new methods for making these clusters which are more economical and allow for greater versatility in their mechanical and chemical manipulation. We have produced silicon nanoclusters using a low temperature solution phase method. Our approach uses the Zintl salts KSi, NaSi or Mg{sub 2}Si as the source of silicon anion, This is reacted with tetrachlorosilane, the silicon cation source, in appropriate solvents. These nanoclusters have been terminated with various organic groups via reaction with alkyl-Li or alkylgrignard reagents. High resolution TEM, FTIR, and Raman spectroscopy have beenmore » used to establish the size, structure and surface composition of the particles. UV-vis and photoluminescence have been used to investigate their optical properties. The effect of termination on the photoluminescence will be discussed in detail.« less

  13. Formation of crystalline InGaO₃(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor.

    PubMed

    Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won

    2015-12-11

    One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.

  14. Computationally efficient multibody simulations

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Kumar, Manoj

    1994-01-01

    Computationally efficient approaches to the solution of the dynamics of multibody systems are presented in this work. The computational efficiency is derived from both the algorithmic and implementational standpoint. Order(n) approaches provide a new formulation of the equations of motion eliminating the assembly and numerical inversion of a system mass matrix as required by conventional algorithms. Computational efficiency is also gained in the implementation phase by the symbolic processing and parallel implementation of these equations. Comparison of this algorithm with existing multibody simulation programs illustrates the increased computational efficiency.

  15. A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes

    NASA Astrophysics Data System (ADS)

    Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.

    2005-01-01

    Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.

  16. Electrical characterization of γ-Al2O3 thin film parallel plate capacitive sensor for trace moisture detection

    NASA Astrophysics Data System (ADS)

    Kumar, Lokesh; Kumar, Shailesh; Khan, S. A.; Islam, Tariqul

    2012-10-01

    A moisture sensor was fabricated based on porous thin film of γ-Al2O3 formed between the parallel gold electrodes. The sensor works on capacitive technique. The sensing film was fabricated by dipcoating of aluminium hydroxide sol solution obtained from the sol-gel method. The porous structure of the film of γ-Al2O3 phase was obtained by sintering the film at 450 °C for 1 h. The electrical parameters of the sensor have been determined by Agilent 4294A impedance analyzer. The sensor so obtained is found to be sensitive in moisture range 100-600 ppmV. The response time of the sensor in ppmV range moisture is very low ~ 24 s and recovery time is ~ 37 s.

  17. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE PAGES

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    2018-04-27

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  18. Responsive copolymers for enhanced petroleum recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Charles; Hester, Roger

    The objectives of this work were to: synthesize responsive, amphiphilic systems; characterize molecular structure and solution behavior; measure rheological properties of the aqueous fluids including behavior in fixed geometry flow profiles and beds; and to tailor final polymer compositions for in situ rheology control under simulated reservoir conditions. This report focuses on the first phase of the research emphasizing synthesis and the development of photophysical techniques and rheological means of following segmental organization at the structural level.

  19. Combustion Synthesis Technology Applied to In-situ Resource Utilization

    DTIC Science & Technology

    2006-06-15

    or bond energies. When both the precursor salts and the fuel are water soluble, a good homogenization can be achieved in the solution. In the...metallic compounds, e.g. Ni-Al. Steel processing additives, e.g. ferro-nitrides. Electrodes for electrolysis of corrosive media, e.g. TiN, TiB2...reactants; 4. Spreading of a molten phase; 5. Gasification of volatile impurities and reactants; 6. Chemical reaction with initial product formation; 7

  20. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  1. General solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging.

    PubMed

    Nakata, Toshihiko; Ninomiya, Takanori

    2006-10-10

    A general solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging is presented. Phase-modulated heterodyne interference light generated by a linear region of periodic displacement is captured by a charge-coupled device image sensor, in which the interference light is sampled at a sampling rate lower than the Nyquist frequency. The frequencies of the components of the light, such as the sideband and carrier (which include photodisplacement and topography information, respectively), are downconverted and sampled simultaneously based on the integration and sampling effects of the sensor. A general solution of frequency and amplitude in this downconversion is derived by Fourier analysis of the sampling procedure. The optimal frequency condition for the heterodyne beat signal, modulation signal, and sensor gate pulse is derived such that undesirable components are eliminated and each information component is converted into an orthogonal function, allowing each to be discretely reproduced from the Fourier coefficients. The optimal frequency parameters that maximize the sideband-to-carrier amplitude ratio are determined, theoretically demonstrating its high selectivity over 80 dB. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a speed corresponding to an acquisition time of only 0.26 s per 256 x 256 pixel area.

  2. Coupled ridge waveguide distributed feedback quantum cascade laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang

    2015-04-06

    A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less

  3. Practical multipeptide synthesis: dedicated software for the definition of multiple, overlapping peptides covering polypeptide sequences.

    PubMed

    Heegaard, P M; Holm, A; Hagerup, M

    1993-01-01

    A personal computer program for the conversion of linear amino acid sequences to multiple, small, overlapping peptide sequences has been developed. Peptide lengths and "jumps" (the distance between two consecutive overlapping peptides) are defined by the user. To facilitate the use of the program for parallel solid-phase chemical peptide syntheses for the synchronous production of multiple peptides, amino acids at each acylation step are laid out by the program in a convenient standard multi-well setup. Also, the total number of equivalents, as well as the derived amount in milligrams (depend-ending on user-defined equivalent weights and molar surplus), of each amino acid are given. The program facilitates the implementation of multipeptide synthesis, e.g., for the elucidation of polypeptide structure-function relationships, and greatly reduces the risk of introducing mistakes at the planning step. It is written in Pascal and runs on any DOS-based personal computer. No special graphic display is needed.

  4. Synthesis of hexavalent molybdenum formo- and aceto-hydroxamates and deferoxamine via liquid-liquid metal partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breshears, Andrew T.; Brown, M. Alex; Bloom, Ira

    We report a new method of crystal growth and synthesis based on liquid-liquid partitioning that allows for isolation and in-depth characterization of molybdenyl bis(formohydroxamate), Mo-FHA, molybdenyl bis(acetohydroxamate), Mo-AHA, and molybdenyl deferoxamine, Mo-DFO, for the first time. This novel approach affords shorter crystal growth time (hourly timeframe) without sacrificing crystal size or integrity when other methods of crystallization were unsuccessful. All three Mo complexes are characterized in solution via FTIR, NMR, UV-vis, and EXAFS spectroscopy. Mo-AHA and Mo-FHA structures are resolved by single crystal X-ray diffraction. Using the molybdenyl hydroxamate structural information, the speciation of Mo in a siderophore complex (Mo-DFO)more » is determined via complimentary spectroscopic methods and confirmed by DFT calculations. ESI-MS verifies that a complex of 1:1 molybdenum to deferoxamine is present in solution. Additionally, the Mo solution speciation in the precursor organic phase, MoO2(NO3)2HEH[EHP]2 (where HEH[EHP] is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester), is characterized by FTIR and EXAFS spectroscopy as well as DFT calculations.« less

  5. Precision synthesis of colloidal inorganic nanocrystals using metal and metalloid amides

    NASA Astrophysics Data System (ADS)

    Yarema, Maksym; Caputo, Riccarda; Kovalenko, Maksym V.

    2013-08-01

    Rational selection of molecular precursors is the key consideration in the synthesis of inorganic nanocrystals and nanoparticles. This review highlights the state-of-the-art and future potential of metal amides as precursors in the solution-phase synthesis of monodisperse colloidal nanocrystals of metals and metal alloys, as well as metal oxides and chalcogenides. We exclusively focus on homoleptic metal and metalloid alkylamides M(NR2)n and silylamides M[N(SiMe3)2]n as predominant choice of element-nitrogen bonded precursors, which are often advantageous to commonly used metal-oxygen and metal-carbon bonded counterparts. In particular, these amides are highly reactive in oxidation, reduction and metathesis reactions; they are oxygen-free, easy-to-make and/or commercially available. A comprehensive literature review is complemented by our theoretical studies on the thermal stability of metal silylamides using molecular dynamics simulations.

  6. Synthesis of Mikto-Arm Star Peptide Conjugates.

    PubMed

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  7. Synthesis of non-hydrazine solution processed Cu2(ZnSn)S4 thin films for solar cells applications

    NASA Astrophysics Data System (ADS)

    Gupta, Indu; Gupta, Preeti; Mohanty, Bhaskar Chandra

    2017-05-01

    Solution processing provides a versatile and inexpensive means to prepare Cu2ZnSnS4 (CZTS) thin films for photovoltaic applications. Differently with the reported growth of CZTS films from hydrazine based toxic solutions, we demonstrate a simple non-toxic ethanol based solution approach to synthesize the films. Using the chemical bath deposition (CBD) method, the CZTS thin films were grown from metal salts (copper chloride, zinc chloride, and tin chloride) in ethanol and monoethanol amine (MEA) and thioacetamide in ethanol as sulfur source in a single dip followed by sulfurization. The structure, composition, morphology and optical properties of the CZTS film were studied by X-ray diffraction, scanning electron microscopy and UV-vis spectroscopy. The results revealed that a post-deposition sulfurization is necessary to the phase formation and among all, sulfurization at 450°C for 60 min yielded phase pure CZTS films having kesterite structure, relatively compact morphology and an optical band gap of ˜1.52 eV indicating its suitability for solar cell applications. The results clearly validate the CBD method as a potential scalable route of preparation of CZTS thin films.

  8. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)

    NASA Astrophysics Data System (ADS)

    Urbankowski, Patrick; Anasori, Babak; Makaryan, Taron; Er, Dequan; Kota, Sankalp; Walsh, Patrick L.; Zhao, Mengqiang; Shenoy, Vivek B.; Barsoum, Michel W.; Gogotsi, Yury

    2016-06-01

    We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH). Density functional theory calculations of bare, non-terminated Ti4N3 and terminated Ti4N3Tx were performed to determine the most energetically stable form of this MXene. Bare and functionalized Ti4N3 are predicted to be metallic. Bare Ti4N3 is expected to show magnetism, which is significantly reduced in the presence of functional groups.We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH). Density functional theory calculations of bare, non-terminated Ti4N3 and terminated Ti4N3Tx were performed to determine the most energetically stable form of this MXene. Bare and functionalized Ti4N3 are predicted to be metallic. Bare Ti4N3 is expected to show magnetism, which is significantly reduced in the presence of functional groups. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02253g

  9. Synthesis of Conformal Phased Antenna Arrays With A Novel Multiobjective Invasive Weed Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Wen Tao; Hei, Yong Qiang; Shi, Xiao Wei

    2018-04-01

    By virtue of the excellent aerodynamic performances, conformal phased arrays have been attracting considerable attention. However, for the synthesis of patterns with low/ultra-low sidelobes of the conventional conformal arrays, the obtained dynamic range ratios of amplitude excitations could be quite high, which results in stringent requirements on various error tolerances for practical implementation. Time-modulated array (TMA) has the advantages of low sidelobe and reduced dynamic range ratio requirement of amplitude excitations. This paper takes full advantages of conformal antenna arrays and time-modulated arrays. The active-element-pattern, including element mutual coupling and platform effects, is employed in the whole design process. To optimize the pulse durations and the switch-on instants of the time-modulated elements, multiobjective invasive weed optimization (MOIWO) algorithm based on the nondominated sorting of the solutions is proposed. A S-band 8-element cylindrical conformal array is designed and a S-band 16-element cylindrical-parabolic conformal array is constructed and tested at two different steering angles.

  10. 31P and 1H NMR Studies of the Molecular Organization of Lipids in the Parallel Artificial Membrane Permeability Assay.

    PubMed

    Assmus, Frauke; Ross, Alfred; Fischer, Holger; Seelig, Joachim; Seelig, Anna

    2017-01-03

    The parallel artificial membrane permeability assay (PAMPA) has emerged as a widely used primary in vitro screen for passive permeability of potential drug candidates. However, the molecular structure of the permeation barrier (consisting of a filter-supported dodecane-egg lecithin mixture) has never been characterized. Here, we investigated the long-range order of phospholipids in the PAMPA barrier by means of 31 P static solid-state NMR. Diffusion constants of PAMPA membrane components were derived from liquid state NMR and, in addition, drug distribution between the PAMPA lipid phase and buffer (log D PAMPA at pH 7.4) was systematically investigated. Increasing concentration of n-dodecane to the system egg lecithin-water (lamellar phase, L α ) induces formation of inverted hexagonal (H ii ) and isotropic phases. At n-dodecane concentrations matching those used in PAMPA (9%, w/v) a purely "isotropic" phase was observed corresponding to lipid aggregates with a diameter in the range 4-7 nm. Drug distribution studies indicate that these reverse micelles facilitate the binding to, and in turn the permeation across, the PAMPA dodecane barrier, in particular for amphiphilic solutes. The proposed model for the molecular architecture and function of the PAMPA barrier provides a fundamental, hitherto missing framework to evaluate the scope but also limitations of PAMPA for the prediction of in vivo membrane permeability.

  11. Smart Solution Chemistry to Sn-Containing Intermetallic Compounds through a Self-Disproportionation Process.

    PubMed

    Zhang, Yuelan; Li, Liping; Li, Qi; Fan, Jianming; Zheng, Jing; Li, Guangshe

    2016-09-26

    Developing new methods to synthesize intermetallics is one of the most critical issues for the discovery and application of multifunctional metal materials; however, the synthesis of Sn-containing intermetallics is challenging. In this work, we demonstrated for the first time that a self-disproportionation-induced in situ process produces cavernous Sn-Cu intermetallics (Cu3 Sn and Cu6 Sn5 ). The successful synthesis is realized by introducing inorganic metal salts (SnCl2 ⋅2 H2 O) to NaOH aqueous solution to form an intermediate product of reductant (Na2 SnO2 ) and by employing steam pressures that enhance the reduction ability. Distinct from the traditional in situ reduction, the current reduction process avoided the uncontrolled phase composition and excessive use of organic regents. An insight into the mechanism was revealed for the Sn-Cu case. Moreover, this method could be extended to other Sn-containing materials (Sn-Co, Sn-Ni). All these intermetallics were attempted in the catalytic effect on thermal decompositions of ammonium perchlorate. It is demonstrated that Cu3 Sn showed an outstanding catalytic performance. The superior property might be primarily originated from the intrinsic chemical compositions and cavernous morphology as well. We supposed that this smart solution reduction methodology reported here would provide a new recognition for the reduction reaction, and its modified strategy may be applied to the synthesis of other metals, intermetallics as well as some unknown materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  13. 1. Innovative Relaxor-Based PiezoCrystals: Phase Diagrams, Crystal Growth, Domain Structures and Electric Properties. 2. Piezo- and Ferroelectric Materials Based on Morphotropic Phase Boundary Synthesis, Characterization and Structure - Property Relations

    DTIC Science & Technology

    2006-03-31

    crystals by the flux method and modified Bridgman technique, the growth results were hardly reproducible, and the quality of the crystals was still a serious... growth . 2.2.1.2.2) Solution Bridgman Growth A modified Bridgman method using excess of PbO as solvent was developed for the growth of PZNT91/9 crystals ...of growth , the grown crystal can be rotated via the A120 3 rod which was driven by a motor at a speed of 0 to 30 rmp. Figure 15(b) gives the

  14. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  15. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less

  16. Moose: An Open-Source Framework to Enable Rapid Development of Collaborative, Multi-Scale, Multi-Physics Simulation Tools

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.

    2014-12-01

    The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.

  17. Solid-phase synthesis of molecularly imprinted nanoparticles.

    PubMed

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  18. [West Nile virus. II. Immunopathophysiology in humans].

    PubMed

    Lanteri, Marion C; Diamond, Michael S; Norris, Philip J; Busch, Michael P

    2011-04-01

    Since its emergence in 1999 in America, West Nile virus (WNV) has become the leading cause of arboviral encephalitis in the United States. The infection is often asymptomatic but, when clinical manifestations occur, a broad range of symptoms is observed from flu-like symptoms to more serious neurological disorders that can sometimes lead to death. No treatment or vaccine is available for humans. Ongoing studies are trying to understand the host-virus dynamics that lead to the development of severe neurological symptoms in a minority of infected subjects. The amount of knowledge that was gained from parallel studies in animals and humans, comparing asymptomatic and symptomatic individuals, and using what was known of other Flaviviruses, will eventually translate to the development of potential therapeutic and prophylactic solutions. This review presents a synthesis of the most relevant findings concerning the immune response to WNV and its impact on disease outcome and gives an overview of the most promising therapeutic and prophylactic solutions.

  19. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  20. Influence of pH on the physical and electromagnetic properties of Mg–Mn ferrite synthesized by a solution combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Nilar, E-mail: nilarlwin111@gmail.com; School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang; Othman, Radzali, E-mail: radzali@utem.edu.my

    The synthesis of nano-crystalline Mg–Mn ferrites by a solution combustion method using citric acid and ammonia was investigated by varying the pH of the precursor solution, which played an important role in controlling the morphology of the synthesized powders. The phase formation, microstructure and electromagnetic properties were studied using X-ray diffraction, scanning electron microscopy, impedance analyzer and vibrating sample magnetometer. Single phase pure spinel Mg–Mn ferrite powders were obtained for all the samples at different pH (< 1, 3, 5, 7, 9). The results showed that an increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. The averagemore » grain size of sintered samples was found to decrease from 2 μm to 0.5 μm with increasing pH values from pH < 1 to pH 9, respectively. The dielectric constant of the samples with different pH is in the range of 7–12 from frequencies of 1 MHz to 1 GHz. The highest saturation magnetization (30.04 emu/g) was obtained for the sample with pH < 1. - Highlights: • Mg–Mn ferrites were synthesized by a solution combustion method with different pH. • Auto-combustion process resulted in the formation of single phase spinel ferrite. • An increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. • pH variation has influence on phase formation and morphology of the ferrite.« less

  1. Hierarchical Parallelism in Finite Difference Analysis of Heat Conduction

    NASA Technical Reports Server (NTRS)

    Padovan, Joseph; Krishna, Lala; Gute, Douglas

    1997-01-01

    Based on the concept of hierarchical parallelism, this research effort resulted in highly efficient parallel solution strategies for very large scale heat conduction problems. Overall, the method of hierarchical parallelism involves the partitioning of thermal models into several substructured levels wherein an optimal balance into various associated bandwidths is achieved. The details are described in this report. Overall, the report is organized into two parts. Part 1 describes the parallel modelling methodology and associated multilevel direct, iterative and mixed solution schemes. Part 2 establishes both the formal and computational properties of the scheme.

  2. Quantitative phase-field lattice-Boltzmann study of lamellar eutectic growth under natural convection

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Guo, Z.; Xiong, S.-M.

    2018-05-01

    The influence of natural convection on lamellar eutectic growth was determined by a comprehensive phase-field lattice-Boltzmann study for Al-Cu and CB r4-C2C l6 eutectic alloys. The mass differences resulting from concentration differences led to the fluid flow and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency. By means of carefully designed "numerical experiments", the eutectic growth under natural convection was explored and a simple analytical model was proposed to predict the adjustment of the lamellar spacing. Furthermore, by alternating the solute expansion coefficient, initial lamellar spacing, and undercooling, the microstructure evolution was presented and compared with the classical eutectic growth theory. Results showed that both interfacial solute distribution and average curvature were affected by the natural convection, the effect of which could be further quantified by adding a constant into the growth rule proposed by Jackson and Hunt [Jackson and Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)].

  3. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    PubMed

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  4. Newton-like methods for Navier-Stokes solution

    NASA Astrophysics Data System (ADS)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  5. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    PubMed

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  6. Influence of the antiseptic agents polyhexanide and octenidine on FL cells and on healing of experimental superficial aseptic wounds in piglets. A double-blind, randomised, stratified, controlled, parallel-group study.

    PubMed

    Kramer, A; Roth, B; Müller, G; Rudolph, P; Klöcker, N

    2004-01-01

    The main target of the combination of octenidine with phenoxyethanol (Octenisept) is the antisepsis of acute wounds, whereas polyhexanide combined with polyethylene glycol in Ringer solution (Lavasept) is the agent of choice for antisepsis of chronic wounds and burns. Because comparative data for both agents on the effects on wound healing are lacking, we investigated the influence of preparations based on polyhexanide and octenidine versus placebo (Ringer solution) in experimental superficial aseptic skin wounds (n = 108) of 20 mm diameter, using a double-blind, randomised, stratified, controlled, parallel-group design in piglets. Computerised planimetry and histopathological methods were used for the assessment of wound healing. Histologically, no significant differences could be verified at any time between the 3 groups. However, in the early phase (day 9 after wounding), the octenidine-based product retarded wound contraction to a significantly greater extent than placebo and polyhexanide, whereas in the later phase (days 18 and 28), polyhexanide promoted contraction significantly more than did placebo and octenidine. The consequence is complete wound closure after 22.9 days using polyhexanide, in comparison to the placebo after 24.1 days (p < 0.05) and octenidine after 28.3 days (no statistical difference to placebo). This may be explained by the better tolerance of polyhexanide in vitro, which was demonstrated with dose and time dependence in cytotoxicity tests on human amnion cells. Copyright 2004 S. Karger AG, Basel

  7. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    NASA Astrophysics Data System (ADS)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.; Mondal, B.

    2012-07-01

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO2 nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO2 in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO2 with narrow-sized distribution. Following the hydrothermal treatment at 150°C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quite comparable to good anatase and rutile nanocrystallites.

  8. Cluster model studies of anion and molecular specificities via electrospray ionization photoelectron spectroscopy

    DOE PAGES

    Wang, Xue -Bin

    2017-01-06

    Ion specificity, a widely observed macroscopic phenomenon in condensed phases and at interfaces, is essentially a fundamental chemical physical issue. We have been investigating such effects using cluster models in an “atom-by-atom” and “molecule-by-molecule” fashion not possible with condensed-phase methods. We use electrospray ionization (ESI) to generate molecular and ionic clusters to simulate key molecular entities involved in local binding regions, and characterize them employing negative ion photoelectron spectroscopy (NIPES). Inter- and intramolecular interactions and binding configurations are directly obtained as functions of cluster size and composition, providing insightful molecular-level description and characterization over the local active sites that playmore » crucial roles in determining solution chemistry and condensed phase phenomena. Finally, the topics covered in this article are relevant to a wide scope of research fields ranging from ion specific effects in electrolyte solutions, ion selectivity/recognition in normal functioning of life, to molecular specificity in aerosol particle formation, as well as in rational material design and synthesis.« less

  9. Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.

    1999-04-12

    The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less

  10. Synthesis of ternary oxide for efficient photo catalytic conversion of CO2

    NASA Astrophysics Data System (ADS)

    Wan, Lijuan

    2018-01-01

    Zn2GeO4 Nan rods were prepared by solution phase route. The morphology and structure of the as-prepared products were characterized by scanning electron microscopy (SEM) and Bruner-Emmett-Teller (BET) surface area measurements. The results revealed that Zn2GeO4 Nan rods with higher surface area have higher photo catalytic activity in photo reduction of CO2 than Zn2GeO4 prepared through solid-state reaction.

  11. An Analysis of the U.S. Navy Enlisted Separation Questionnaire

    DTIC Science & Technology

    1981-06-01

    on the amount of variance which will give a satis- factory and acceptable solution, only a small number (less than n) of factors will be needed to...three factors rather than nine initi al categories of data classification. C. FACTOR ANALISIS OF SUBSETS OF THE DATA During this phase of the analysis...Harm.an, H. H. & Holzinger, K. J., Factnr Anali• , Synthesis of Factorial Methods, University of Chicago PFess, 1941. 27. Fruchter, B., Introduction to

  12. Incorporation of thorium in the rhabdophane structure: Synthesis and characterization of Pr1-2xCaxThxPO4·nH2O solid solutions

    NASA Astrophysics Data System (ADS)

    Qin, Danwen; Mesbah, Adel; Gausse, Clémence; Szenknect, Stéphanie; Dacheux, Nicolas; Clavier, Nicolas

    2017-08-01

    Thorium incorporation in the rhabdophane structure as Pr1-2xCaxThxPO4·nH2O solid solutions was successfully achieved and resulted in the preparation of a low temperature precursor of the monazite-cheralite type Pr1-2xCaxThxPO4. The rhabdophane compounds are considered as potential neoformed phases in case of release of actinides from the phosphate-based ceramic wasteforms envisaged to host radionuclides in the back-end of the nuclear fuel cycle. A multiparametric study was thus undertaken to specify the wet chemistry conditions (starting stoichiometry, temperature, heating time) leading to single phase Pr1-2xCaxThxPO4·nH2O powdered samples. The excess of calcium appeared to be a prevailing factor with a suggested initial Ca:Th ratio being equal to 10. Similarly, the recommended heating time should exceed 4 days while the optimal temperature of synthesis is 110 °C. Under these conditions, the stability domain of Pr1-2xCaxThxPO4·nH2O ranged from x = 0.00 to x = 0.15. After heating at 1100 °C under air during 6 h, rhabdophane-type samples were fully converted into the highly durable Pr1-2xCaxThxPO4 cheralite ceramic wasteform.

  13. Rational synthesis of low-polydispersity block copolymer vesicles in concentrated solution via polymerization-induced self-assembly.

    PubMed

    Gonzato, Carlo; Semsarilar, Mona; Jones, Elizabeth R; Li, Feng; Krooshof, Gerard J P; Wyman, Paul; Mykhaylyk, Oleksandr O; Tuinier, Remco; Armes, Steven P

    2014-08-06

    Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we report the rational synthesis of low-polydispersity diblock copolymer vesicles in concentrated solution via polymerization-induced self-assembly using reversible addition-fragmentation chain transfer (RAFT) polymerization of benzyl methacrylate. Our strategy utilizes a binary mixture of a relatively long and a relatively short poly(methacrylic acid) stabilizer block, which become preferentially expressed at the outer and inner poly(benzyl methacrylate) membrane surface, respectively. Dynamic light scattering was utilized to construct phase diagrams to identify suitable conditions for the synthesis of relatively small, low-polydispersity vesicles. Small-angle X-ray scattering (SAXS) was used to verify that this binary mixture approach produced vesicles with significantly narrower size distributions compared to conventional vesicles prepared using a single (short) stabilizer block. Calculations performed using self-consistent mean field theory (SCMFT) account for the preferred self-assembled structures of the block copolymer binary mixtures and are in reasonable agreement with experiment. Finally, both SAXS and SCMFT indicate a significant degree of solvent plasticization for the membrane-forming poly(benzyl methacrylate) chains.

  14. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process

    NASA Astrophysics Data System (ADS)

    Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender

    2017-12-01

    Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.

  15. Parallel-vector solution of large-scale structural analysis problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1989-01-01

    A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.

  16. Mimicking electrodeposition in the gas phase: a programmable concept for selected-area fabrication of multimaterial nanostructures.

    PubMed

    Cole, Jesse J; Lin, En-Chiang; Barry, Chad R; Jacobs, Heiko O

    2010-05-21

    An in situ gas-phase process that produces charged streams of Au, Si, TiO(2), ZnO, and Ge nanoparticles/clusters is reported together with a programmable concept for selected-area assembly/printing of more than one material type. The gas-phase process mimics solution electrodeposition whereby ions in the liquid phase are replaced with charged clusters in the gas phase. The pressure range in which the analogy applies is discussed and it is demonstrated that particles can be plated into pores vertically (minimum resolution 60 nm) or laterally to form low-resistivity (48 microOmega cm) interconnects. The process is applied to the formation of multimaterial nanoparticle films and sensors. The system works at atmospheric pressure and deposits material at room temperature onto electrically biased substrate regions. The combination of pumpless operation and parallel nozzle-free deposition provides a scalable tool for printable flexible electronics and the capability to mix and match materials.

  17. Equivalent Aqueous Phase Modulation of Domain Segregation in Myelin Monolayers and Bilayer Vesicles

    PubMed Central

    Oliveira, Rafael G.; Schneck, Emanuel; Funari, Sergio S.; Tanaka, Motomu; Maggio, Bruno

    2010-01-01

    Purified myelin can be spread as monomolecular films at the air/aqueous interface. These films were visualized by fluorescence and Brewster angle microscopy, showing phase coexistence at low and medium surface pressures (<20–30 mN/m). Beyond this threshold, the film becomes homogeneous or not, depending on the aqueous subphase composition. Pure water as well as sucrose, glycerol, dimethylsulfoxide, and dimethylformamide solutions (20% in water) produced monolayers that become homogeneous at high surface pressures; on the other hand, the presence of salts (NaCl, CaCl2) in Ringer's and physiological solution leads to phase domain microheterogeneity over the whole compression isotherm. These results show that surface heterogeneity is favored by the ionic milieu. The modulation of the phase-mixing behavior in monolayers is paralleled by the behavior of multilamellar vesicles as determined by small-angle and wide-angle x-ray scattering. The correspondence of the behavior of monolayers and multilayers is achieved only at high surface pressures near the equilibrium adsorption surface pressure; at lower surface pressures, the correspondence breaks down. The equilibrium surface tension on all subphases corresponds to that of the air/alkane interface (27 mN/m), independently on the surface tension of the clean subphase. PMID:20816062

  18. TH-A-9A-02: BEST IN PHYSICS (THERAPY) - 4D IMRT Planning Using Highly- Parallelizable Particle Swarm Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modiri, A; Gu, X; Sawant, A

    2014-06-15

    Purpose: We present a particle swarm optimization (PSO)-based 4D IMRT planning technique designed for dynamic MLC tracking delivery to lung tumors. The key idea is to utilize the temporal dimension as an additional degree of freedom rather than a constraint in order to achieve improved sparing of organs at risk (OARs). Methods: The target and normal structures were manually contoured on each of the ten phases of a 4DCT scan acquired from a lung SBRT patient who exhibited 1.5cm tumor motion despite the use of abdominal compression. Corresponding ten IMRT plans were generated using the Eclipse treatment planning system. Thesemore » plans served as initial guess solutions for the PSO algorithm. Fluence weights were optimized over the entire solution space i.e., 10 phases × 12 beams × 166 control points. The size of the solution space motivated our choice of PSO, which is a highly parallelizable stochastic global optimization technique that is well-suited for such large problems. A summed fluence map was created using an in-house B-spline deformable image registration. Each plan was compared with a corresponding, internal target volume (ITV)-based IMRT plan. Results: The PSO 4D IMRT plan yielded comparable PTV coverage and significantly higher dose—sparing for parallel and serial OARs compared to the ITV-based plan. The dose-sparing achieved via PSO-4DIMRT was: lung Dmean = 28%; lung V20 = 90%; spinal cord Dmax = 23%; esophagus Dmax = 31%; heart Dmax = 51%; heart Dmean = 64%. Conclusion: Truly 4D IMRT that uses the temporal dimension as an additional degree of freedom can achieve significant dose sparing of serial and parallel OARs. Given the large solution space, PSO represents an attractive, parallelizable tool to achieve globally optimal solutions for such problems. This work was supported through funding from the National Institutes of Health and Varian Medical Systems. Amit Sawant has research funding from Varian Medical Systems, VisionRT Ltd. and Elekta.« less

  19. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  20. Innovative separation and preconcentration technique of coagulating homogenous dispersive micro solid phase extraction exploiting graphene oxide nanosheets.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Rashidi, Ali Morad; Shirkhanloo, Hamid; Rahighi, Reza

    2016-01-01

    A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL(-1)), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL(-1)). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L(-1) for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24-15.6, 0.015-0.95 and 0.039-2.33 µg L(-1) for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned metal ions in river water, human urine and saliva sample with good recoveries in range of 94.2-103.0%. The accuracy of the method was underpinned by correct analysis of a standard reference material (SRM: 2668 level I, Urine). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Enabling the High Level Synthesis of Data Analytics Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino

    Conventional High Level Synthesis (HLS) tools mainly tar- get compute intensive kernels typical of digital signal pro- cessing applications. We are developing techniques and ar- chitectural templates to enable HLS of data analytics appli- cations. These applications are memory intensive, present fine-grained, unpredictable data accesses, and irregular, dy- namic task parallelism. We discuss an architectural tem- plate based around a distributed controller to efficiently ex- ploit thread level parallelism. We present a memory in- terface that supports parallel memory subsystems and en- ables implementing atomic memory operations. We intro- duce a dynamic task scheduling approach to efficiently ex- ecute heavilymore » unbalanced workload. The templates are val- idated by synthesizing queries from the Lehigh University Benchmark (LUBM), a well know SPARQL benchmark.« less

  2. Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.

    PubMed

    Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A

    2017-10-01

    To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Development and evaluation of spherical molecularly imprinted polymer beads.

    PubMed

    Kempe, Henrik; Kempe, Maria

    2006-06-01

    The majority of studies on molecularly imprinted polymers has until now been carried out on irregularly shaped particles prepared by grinding of polymer monoliths. The preparation procedures are time- and labor-consuming and produce particles of wide size distributions. To answer the need for fast and straightforward routes to spherical molecularly imprinted polymer beads, we have developed a method comprising the formation of droplets of pre-polymerization solution directly in mineral oil by vigorous mixing followed by transformation of the droplets into solid spherical beads by photoinduced free-radical polymerization. No detergents or stabilizers were required for the droplet formation. Factors influencing the bead synthesis have been investigated and are detailed here. The beads were evaluated in parallel with corresponding irregularly shaped particles prepared from polymer monoliths. Conditions for the synthesis of propranolol-imprinted poly(methacrylic acid-co-trimethylolpropane trimethacrylate) beads in the size range of 1-100 microm in almost quantitative yield are described. The beads were applied as the recognition element in a 96-well plate format radioligand assay of propranolol in human serum.

  4. Malleable architecture generator for FPGA computing

    NASA Astrophysics Data System (ADS)

    Gokhale, Maya; Kaba, James; Marks, Aaron; Kim, Jang

    1996-10-01

    The malleable architecture generator (MARGE) is a tool set that translates high-level parallel C to configuration bit streams for field-programmable logic based computing systems. MARGE creates an application-specific instruction set and generates the custom hardware components required to perform exactly those computations specified by the C program. In contrast to traditional fixed-instruction processors, MARGE's dynamic instruction set creation provides for efficient use of hardware resources. MARGE processes intermediate code in which each operation is annotated by the bit lengths of the operands. Each basic block (sequence of straight line code) is mapped into a single custom instruction which contains all the operations and logic inherent in the block. A synthesis phase maps the operations comprising the instructions into register transfer level structural components and control logic which have been optimized to exploit functional parallelism and function unit reuse. As a final stage, commercial technology-specific tools are used to generate configuration bit streams for the desired target hardware. Technology- specific pre-placed, pre-routed macro blocks are utilized to implement as much of the hardware as possible. MARGE currently supports the Xilinx-based Splash-2 reconfigurable accelerator and National Semiconductor's CLAy-based parallel accelerator, MAPA. The MARGE approach has been demonstrated on systolic applications such as DNA sequence comparison.

  5. [Chlorophyll synthesis in cotyledons after gamma ray irradiation of black pine seeds].

    PubMed

    Bogdanović, M; Jelić, G

    1992-01-01

    The radiosensitivity of the greening system of Pinus nigra Arn. cotyledons has been studied in this paper. An exponential relation exists between the effect and dose for chlorophyll synthesis in the dark. Chlorophyll synthesis in the light roughly parallels that of chlorophyll synthesis in the dark. The restoration of chlorophyll was observed both in the light and in the dark. A stimulative effect of low doses of gamma radiation on chlorophyll synthesis was noticed. The radiosensitivity of chlorophyll a and chlorophyll b synthesis varied with the experimental conditions, suggesting that chlorophyll b synthesis might occur independently of chlorophyll a synthesis.

  6. A comparative structural study of wet and dried ettringite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaudin, G.; CNRS, UMR 6002, LMI, F-63177 Aubiere; Filinchuk, Y.

    2010-03-15

    Two different techniques were used to compare structural characteristics of 'wet' ettringite (stored in the synthesis mother liquid) and 'dried' ettringite (dried to 35% relative humidity over saturated CaCl{sub 2} solution). Lattice parameters and the water content in the channel region of the structure (site occupancy factor of the water molecule not bonded to cations) as well as microstructure parameters (size and strain) were determined from a Rietveld refinement on synchrotron powder diffraction data. Local environment of sulphate anions and of the hydrogen bonding network was characterized by Raman spectroscopy. Both techniques led to the same conclusion: the 'wet' ettringitemore » sample immersed in the mother solution from the synthesis presents similar structural features as ettringite dried to 35% relative humidity. An increase of the a lattice parameter combined with a decrease of the c lattice parameter occurs on drying. The amount of structural water, the point symmetry of sulphate and the hydrogen bond network are unchanged when passing from the wet to the dried ettringite powder. Ettringite does not form a high-hydrate polymorph in equilibrium with alkaline solution, in contrast to the AFm phases that lose water molecules on drying. According to these results we conclude that ettringite precipitated in aqueous solution at the early hydration stages is of the same chemical composition as ettringite present in the hardening concrete.« less

  7. One-pot synthesis and lubricity of fluorescent carbon dots applied on PCL-PEG-PCL hydrogel.

    PubMed

    Guo, Junde; Mei, Tangjie; Li, Yue; Hafezi, Mahshid; Lu, Hailin; Li, Jianhui; Dong, Guangneng

    2018-06-12

    This work presents a method for one-pot synthesis of N-doped nanometer-size carbon dots, which can be assembled with thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) hydrogel to achieve slow-release lubricity. The typical property of this green production was studied by fourier transform infrared (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The photoluminescence of composite PCEC/CDs hydrogel and its released solutions were characterized by ultraviolet spectrum, and the rheological properties were tested by rotary rheometer. Tribological performance of the released solution from composite PCEC/CDs hydrogel was obtained to compare with PBS and pure CDs solution. The experimental results reveal that the CDs contain the chemical groups of N-H, C-OH/C-O-C and -COOH, etc. In addition, the diameter of the CDs is in the range of 6~8 nm. The phase transition behavior of PCEC/CDs hydrogel can be still kept and its viscoelasticity hydrogel is improved by approximatively 7%. Furthermore, friction coefficient of the released solution from composite PCEC/CDs hydrogel decreases by about 70% than that of PBS. Besides, the wear condition can be improved by a lubricating transfer film formed by released CDs. This novel strategy for slow-release application is valuable for drug delivery and bio-tribology.

  8. PWHATSHAP: efficient haplotyping for future generation sequencing.

    PubMed

    Bracciali, Andrea; Aldinucci, Marco; Patterson, Murray; Marschall, Tobias; Pisanti, Nadia; Merelli, Ivan; Torquati, Massimo

    2016-09-22

    Haplotype phasing is an important problem in the analysis of genomics information. Given a set of DNA fragments of an individual, it consists of determining which one of the possible alleles (alternative forms of a gene) each fragment comes from. Haplotype information is relevant to gene regulation, epigenetics, genome-wide association studies, evolutionary and population studies, and the study of mutations. Haplotyping is currently addressed as an optimisation problem aiming at solutions that minimise, for instance, error correction costs, where costs are a measure of the confidence in the accuracy of the information acquired from DNA sequencing. Solutions have typically an exponential computational complexity. WHATSHAP is a recent optimal approach which moves computational complexity from DNA fragment length to fragment overlap, i.e., coverage, and is hence of particular interest when considering sequencing technology's current trends that are producing longer fragments. Given the potential relevance of efficient haplotyping in several analysis pipelines, we have designed and engineered PWHATSHAP, a parallel, high-performance version of WHATSHAP. PWHATSHAP is embedded in a toolkit developed in Python and supports genomics datasets in standard file formats. Building on WHATSHAP, PWHATSHAP exhibits the same complexity exploring a number of possible solutions which is exponential in the coverage of the dataset. The parallel implementation on multi-core architectures allows for a relevant reduction of the execution time for haplotyping, while the provided results enjoy the same high accuracy as that provided by WHATSHAP, which increases with coverage. Due to its structure and management of the large datasets, the parallelisation of WHATSHAP posed demanding technical challenges, which have been addressed exploiting a high-level parallel programming framework. The result, PWHATSHAP, is a freely available toolkit that improves the efficiency of the analysis of genomics information.

  9. Hydrothermal Synthesis of PbTiO3 Nanocrystals with a pH-Adjusting Agent of Ammonia Solution

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Huang, Zhixiong; Zhang, Lianmeng; Guo, Dongyun

    2018-05-01

    The PbTiO3 nanocrystals were synthesized by a hydrothermal method, and ammonia solution was firstly used as a pH-adjusting agent. The effect of ammonia concentration on formation and morphologies of PbTiO3 nanocrystals was investigated. At low ammonia concentration (0-2.2 mol/L), no perovskite PbTiO3 phase was formed. When the ammonia concentration was 4.4 mol/L, the rod-like PbTiO3 nanocrystals with highly crystalline were successfully synthesized. As the ammonia concentration further increased to 13.2 mol/L, the flake-like PbTiO3 nanocrystals were formed.

  10. Phase formation of V{sub 2}O{sub 5}.xNb{sub 2}O{sub 5} compounds via gels and freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langbein, Hubert; Mayer-Uhma, Tobias

    2009-03-05

    An X-ray powder diffraction study of the phase formation in the system V{sub 2}O{sub 5}/Nb{sub 2}O{sub 5} is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V{sub 2}O{sub 5}-Nb{sub 2}O{sub 5} metastable VNbO{sub 5}, V{sub 4}Nb{sub 18}O{sub 55}, VNb{sub 9}O{sub 25} and solid solutions of V{sub 2}O{sub 5} in TT-Nb{sub 2}O{sub 5} as also thermodynamically stable VNb{sub 9}O{sub 25} exist. The thermal decomposition of freeze-driedmore » vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction.« less

  11. Efficient synthesis of gamma-lactams by a tandem reductive amination/lactamization sequence.

    PubMed

    Nöth, Julica; Frankowski, Kevin J; Neuenswander, Benjamin; Aubé, Jeffrey; Reiser, Oliver

    2008-01-01

    A three-component method for the synthesis of highly substituted gamma-lactams from readily available maleimides, aldehydes, and amines is described. A new reductive amination/intramolecular lactamization sequence provides a straightforward route to the lactam products in a single manipulation. The general utility of this method is demonstrated by the parallel synthesis of a gamma-lactam library.

  12. PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES

    PubMed Central

    Price, Winston H.

    1952-01-01

    1. The synthesis of ribonucleic acid, desoxyribomicleic acid, and protein in S. muscae has been studied: (a) during the lag phase, (b) during the early log phase, and (c) while the cells are forming an adaptive enzyme for lactose utilization. 2. During the lag phase there may be a 60 per cent increase in ribonucleic acid and protein and a 50 per cent increase in dry weight without a change in cell count, as determined microscopically, or an increase in turbidity. 3. During this period, the increase in protein closely parallels the increase in ribonucleic acid, in contrast to desoxyribonucleic acid, which begins to be synthesized about 45 minutes after the protein and ribonucleic acid have begun to increase. 4. The RNA N/protein N ratio is proportional to the growth rate of all S. muscae strains studied. 5. While the RNA content per cell during the early log phase depends upon the growth rate, the DNA content per cell is fairly constant irrespective of the growth rate of the cell. 6. Resting cells of S. muscae have approximately the same RNA content per cell irrespective of their prospective growth rate. 7. While the cells are adapting to lactose, during which time there is little or no cellular division, there is never an increase of protein without a simultaneous increase in ribonucleic acid, the RNA N/protein N ratio during these intervals being approximately 0.15. 8. Lactose-adapting cells show a loss of ribonucleic acid. The purines-pyrimidines of the ribonucleic acid can be recovered in the cold 5 per cent trichloroacetic acid fraction, but the ribose component is completely lost from the system. 9. The significance of these results is discussed in relation to the importance of ribonucleic acid for protein synthesis. PMID:14955617

  13. Aerosol Route Synthesis and Applications of Doped Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Sahu, Manoranjan

    Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working conditions of the fume hood, ventilation system, and distance from the reactors. Nanoparticle exposure varied during product recovery and handling depending on the quantity of nanomaterial handled. Most nanomaterial applications require nanomaterials to be in solution. Thus, the role of nanomaterial physio-chemical properties (size, crystal phase, dopant types and concentrations) on dispersion properties was investigated based on hydrodynamic size and surface charge. Dopant type and concentration were found to significantly affect iso-electric point (IEP)-shifting the IEP to a high or lower pH value compared to pristine TiO2 based on the oxidation state of the dopant. The microbial inactivation effectiveness of as-synthesized nanomaterials was investigated under different light irradiation conditions. Microbial inactivation was found to strongly depend on the light irradiation condition as well as on material properties such chemical composition, crystal phase, and particle size. The potential interaction mechanisms of copper-doped TiO2 nanomaterial with microbes were also explored. The studies conducted as part of this dissertation addressed issues in nanomaterial synthesis, characterization and their potential environmental applications.

  14. General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution.

    PubMed

    Pu, Zonghua; Zhang, Chengtian; Amiinu, Ibrahim Saana; Li, Wenqiang; Wu, Lin; Mu, Shichun

    2017-05-17

    Transition metal phosphides (TMPs) have been identified as promising nonprecious metal electrocatalyst for hydrogen evolution reaction (HER) and other energy conversion reactions. Herein, we reported a general strategy for synthesis of a series of TMPs (Fe 2 P, FeP, Co 2 P, CoP, Ni 2 P, and Ni 12 P 5 ) nanoparticles (NPs) with different metal phases embedded in a N-doped carbon (NC) matrix using metal salt, ammonium dihydrogen phosphate, and melamine as precursor with varying molar ratios and thermolysis temperatures. The resultant TMPs can serve as highly active and durable bifunctional electrocatalyst toward HER and oxygen evolution reaction (OER). In particular, the Ni 2 P@NC phase only requires an overpotential of ∼138 mV to derive HER in 0.5 M H 2 SO 4, and ∼320 mV for OER in 1.0 M KOH at the current density of 10 mA cm -2 . Because of the encapsulation of NC that can effectively prevent corrosion of embedded TMP NPs, Ni 2 P@NC exhibits almost unfading catalytic performance even after 10 h under both acidic and alkaline solutions. This synthesis strategy provides a new avenue to exploring TMPs as highly active and stable electrocatalyst for the HER, OER, and other electrochemical applications.

  15. A zero-voltage-switched three-phase interleaved buck converter

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Ching; Huang, Bing-Siang; Lin, Jing-Yuan; Pham, Phu Hieu; Chen, Po-Hao; Chiu, Huang-Jen

    2018-04-01

    This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.

  16. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.

  17. Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen

    2013-03-01

    Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.

  18. Possible Role of Ice in the Synthesis of Polymeric Compounds

    NASA Astrophysics Data System (ADS)

    Monnard, Pierre-Alain; Doerr, Mark; Loeffler, Philipp, M. G.

    COSPAR Session F3.6, Bremen July 18-25, 2010 Possible role of ice in the synthesis of polymeric compounds Doerr, Mark, Loeffler, Philipp M.G and Monnard, Pierre-Alain, University of Southern Den-mark, FLinT Center, Odense M, Denmark. Email: monnard@ifk.sdu.dk Cellular life relies on a collection of linear polymers (among them DNA, RNA, proteins) to perform the functions necessary to its survival. It seems likely that catalytic and informational polymers played essential roles in the emergence of the first living entities, precursors of con-temporary cells. Thus, their detection on other planetary bodies might hint at either emerging, or extant, or past life in these environments. A non-enzymatic synthesis of such polymeric materials or their precursors likely had to rely on a supply of monomers dissolved at low concentrations in an aqueous medium. An aqueous environment represents a clear hurdle to the synthesis of long polymers as it tends to inhibit polymerization due to entropic effects and favors the reverse reaction (decomposition by hy-drolysis). It was therefore proposed that polymerization could occur in a distinct micro-or nanostructured environment that would permit a local increase in the monomer concentration, reduce water activity and protect monomers and polymers from hydrolysis. Several types of micro-or nanostructured environments, among them mineral surfaces [1], lattices of organic molecules, such as amphiphile bilayer structures [2], and the eutectic phase in water-ice [3-8] have been proposed to promote RNA and peptide formation. This last environment might be of particular interest since space exploration has established that water exists on Mars, Europa, Enceladus and comets, mostly as ice. Ice deposits may also have existed on the early Earth. When an aqueous solution is cooled below its freezing point, but above the eutectic point, two aqueous phases co-exist and form the eutectic phase system: a solid (the ice crystals made of pure water) and a liquid phase containing most solutes. The role of water likely extends beyond that of a simple chemical liquid medium since the surfaces of ice crystals could act as a substrate on which other reactants can attach and/or become aligned. The emergence of a polymer-based genetic or/and catalytic system, as it for example according to the "RNA World hypothesis" states, initially requires the synthesis of monomers followed by three non-enzymatic processes: polymerization of monomers; elongation of existing polymers with monomers or short oligomers; and replication of existing polymers in a template-directed fashion. Ideally, these processes should take place efficiently, using simple metal ions as cat-alysts. However, in a dilute solution, even when using activated monomers, these chemical processes occur very slowly, if at all. We have been exploring the plausibility of chemical reactions, such as non-enzymatic nucleotide condensations forming RNA, under cold environmental conditions and found that the polymer-ization of RNA from imidazole-activated ribonucleotides can proceed efficiently in the eutectic phase in water-ice when metal ions are available as catalysts [4]. Starting from monomer mix-tures, polymers up to 30 monomeric units in length can be readily formed [5]. Longer polymers can be obtained by adding freshly activated monomers or short oligomers to a solution over several freeze-thawing cycles. Depending on their sequences, oligomers can be elongated using monomers to obtain up to a 45-mer. Furthermore, the decomposition of the longer chains remained low. By using activated short oligomers, even longer polymers can be formed [6]. Studying RNA template-directed RNA polymerization under these conditions, we established-discovered that the initial elongation rates depended on the complementarity of the monomers with the templating nucleobases. That is, the polymerization rates for all four nucleobases op-positepairing with their corresponding Watson-Crick base-pairing nucleobase were higher than in non-base-pairing systems cases where hydrogen bond based pairing is not favoured [7]-this was even the found for low H-bridging uridine monomers [7, 8]. The presence of templates fur-ther allows the synthesis of long complementary strands [9]. Thus, template-directed elongation of RNA in the eutectic phase of the water-ice system seems possible. Recently, Miller's group [10, 11] in San Diego further established that dilute solutions of ammo-nium cyanide maintained frozen at -78 C could promote the synthesis of nucleobases, although with rather low yields. The catalytic activity of a RNA-ligase ribozyme was also detected in the eutectic phase [12]. All the observations on the promotion of synthetic reactions in the eutectic phase in water-ice suggest that the cold conditions with transient thawing periods could have allowed the formation of RNA monomers on our Earth and possibly on other icy planets. [1] Ferris, J. P. Phil. Trans. R. Soc. B, 2006, 361, 1777. [2] Rajamani, S.; Vlassov, A.; Coombs, A.; F., O.; Deamer, D. W. Orig Life Evol Biosph, accepted2008, 38, 57. [3] Bada, J. L.; Bigham, C.; Miller, S. L. Proc. Nat. Acad Sci USA, 1994, 91, 1248. [4] Kanavarioti, A.; Monnard, P.-A.; Deamer, D. W. Astrobiology, 2001, 1, 271. [5] Monnard, P.-A.; Kanavarioti, A.; Deamer, D. W. J. Am. Chem. Soc., 2003, 125, 13734. [6] Dürr, M and Monnard, P.-A. in preparation. [7] Monnard, P.-A.; Szostak, J. W. J. Inorg. Biochem., 2008, 112, 1104. [8] Vogel, S. R.; Richert, C. Chem Commun (Camb), 2007, 1896. [9] Trinks, H.; Schroder, W.; Biebricher, C. K. Orig Life Evol Biosph, 2005, 35, 429. [10] Miyakawa, S.; Cleaves, H. J.; Miller, S. L. Orig. Life Evol Biosphere, 2002, 32, 195. [11] Miyakawa, S.; Cleaves, H. J.; Miller, S. L. Orig. Life Evol Biosphere, 2002, 32, 209. [12] Vlassov, A.; Johnston, B. H.; Landweber, L. F.; Kazakov, S. A. Nucl. Acids. Res., 2004, 32, 2966.

  19. Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin.

    PubMed

    Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A; Eitel, Simon H; Meier, Thomas; Schoenleber, Ralph O; Kent, Stephen B H

    2017-01-31

    We have systematically explored three approaches based on 9-fluorenylmethoxycarbonyl (Fmoc) chemistry solid phase peptide synthesis (SPPS) for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the "hybrid method", in which maximally protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[O-β-(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High-resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies could yield an efficient total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  1. Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers

    NASA Astrophysics Data System (ADS)

    Qiu, Yejun; Yu, Jie; Yin, Jing; Tan, Cuili; Zhou, Xiaosong; Bai, Xuedong; Wang, Enge

    2009-08-01

    Continuous boron nitride nanofibers (BNNFs) have been synthesized from boric oxide (B2O3) coatings deposited on stabilized electrospun polyacrylonitrile fibers (S-PANFs). The B2O3 overcoatings were prepared by impregnating the S-PANFs with B2O3 ethanol solutions. By successive heat treatments at 800 °C in NH3/O2 mixture, 1100 °C in pure NH3, and 1500 °C in N2, the S-PANFs were fully removed and the B2O3 coatings deflate to form solid fibers and transform into the BNNFs. The S-PANF template was fully removed by introducing O2 during nitridation, and thus resulted in the formation of the BNNFs. The diameter of the BNNFs can be effectively controlled by changing the mass concentration of the B2O3 solution, and diameters from 43 to 230 nm were obtained by changing the B2O3 mass concentration from 0.25% to 4.8%. The obtained BNNFs are crystallized with the (002) planes oriented in parallel to the fiber axis. This method provides a powerful tool for obtaining BNNFs with controllable diameters, especially extremely thin BNNFs.

  2. Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers.

    PubMed

    Qiu, Yejun; Yu, Jie; Yin, Jing; Tan, Cuili; Zhou, Xiaosong; Bai, Xuedong; Wang, Enge

    2009-08-26

    Continuous boron nitride nanofibers (BNNFs) have been synthesized from boric oxide (B(2)O(3)) coatings deposited on stabilized electrospun polyacrylonitrile fibers (S-PANFs). The B(2)O(3) overcoatings were prepared by impregnating the S-PANFs with B(2)O(3) ethanol solutions. By successive heat treatments at 800 degrees C in NH(3)/O(2) mixture, 1100 degrees C in pure NH(3), and 1500 degrees C in N(2), the S-PANFs were fully removed and the B(2)O(3) coatings deflate to form solid fibers and transform into the BNNFs. The S-PANF template was fully removed by introducing O(2) during nitridation, and thus resulted in the formation of the BNNFs. The diameter of the BNNFs can be effectively controlled by changing the mass concentration of the B(2)O(3) solution, and diameters from 43 to 230 nm were obtained by changing the B(2)O(3) mass concentration from 0.25% to 4.8%. The obtained BNNFs are crystallized with the (002) planes oriented in parallel to the fiber axis. This method provides a powerful tool for obtaining BNNFs with controllable diameters, especially extremely thin BNNFs.

  3. Influence of the anions on the N-cationic benzethonium salts in the solid state and solution: Chloride, bromide, hydroxide and citrate hydrates

    NASA Astrophysics Data System (ADS)

    Paradies, Henrich H.; Reichelt, Hendrik

    2016-06-01

    The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.

  4. Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method

    NASA Astrophysics Data System (ADS)

    Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar

    2017-01-01

    Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.

  5. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    PubMed Central

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  6. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long-distance distributed computing. Finally, the project is developing 2D and 3D visualization software as part of the international AIPS++ project. This research and development project is being carried out by a team of experts in radio astronomy, algorithm development for massively parallel architectures, high-speed networking, database management, and Thinking Machines Corporation personnel. The development of this complete software, distributed computing, and data archive and library solution to the radio astronomy computing problem will advance our expertise in high performance computing and communications technology and the application of these techniques to astronomical data processing.

  7. Design decisions from the history of the EUVE science payload

    NASA Technical Reports Server (NTRS)

    Marchant, W.

    1993-01-01

    Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.

  8. Design decisions from the history of the EUVE science payload

    NASA Astrophysics Data System (ADS)

    Marchant, W.

    1993-09-01

    Some of the design issues that arose during the development of the EUVE science payload and solutions to the problems involved are examined. In particular, attention is given to the use of parallel and serial busses, the selection of the the ROM approach for software storage and execution, implementation of memory error detection and correction, and the selection of command structures. The early design decisions paid off in the timely delivery of the scientific payload and in the successful completion of the survey phase of the EUVE science mission.

  9. Synthesis, structure and electrical properties of Cu 3.21Ti 1.16Nb 2.63O 12 and the CuO x-TiO 2-Nb 2O 5 pseudoternary phase diagram

    NASA Astrophysics Data System (ADS)

    Reeves-McLaren, Nik; Ferrarelli, Matthew C.; Tung, Yuan-Wei; Sinclair, Derek C.; West, Anthony R.

    2011-07-01

    Subsolidus phase relations in the CuO x-TiO 2-Nb 2O 5 system were determined at 935 °C. The phase diagram contains one new phase, Cu 3.21Ti 1.16Nb 2.63O 12 (CTNO) and one rutile-structured solid solution series, Ti 1-3 xCu xNb 2 xO 2: 0< x<0.2335 (35). The crystal structure of CTNO is similar to that of CaCu 3Ti 4O 12 (CCTO) with square planar Cu 2+ but with A site vacancies and a disordered mixture of Cu +, Ti 4+ and Nb 5+ on the octahedral sites. It is a modest semiconductor with relative permittivity ˜63 and displays non-Arrhenius conductivity behavior that is essentially temperature-independent at the lowest temperatures.

  10. Synthesis of t-Butyl (2R)-Hydroxyisovalerate, A Precursor of Aureobasidin B

    NASA Astrophysics Data System (ADS)

    Maharani, R.; Puspitasari, D.; Taufiqqurahman; Huspa, D. H. P.; Hidayat, A. T.; Sumiarsa, D.; Hidayat, I. W.

    2017-02-01

    Aureobasidins are a family of cyclodepsipeptides have antifungal properties. They were isolated from the black yeast Aureobasidium pullulans R106 and over 30 derivatives have been successfully characterized. There are few publications reporting the total synthesis of aureobasidins. The limited reports of the synthesis of the aureobasidin derivatives are due to the difficult access to the preparations of precursors. The aim of this research is to synthesise a precursor of aureobasidin B, t-butyl (2R)-hydroxyisovalerate (t-Bu-Hiv), that is prepared for the total synthesis of aureobasidin B. The synthesis of AbB is planned to be undertaken by using a solid phase method, so the ester formation between t-Bu-Hiv and the Fmoc-β-hydroxymethylvaline will be carried out in solution phase to form depsidipeptide. The t-butyl group was used as protecting agent that is due to the straightforward elimination of the protecting group from the Fmoc-depsidipeptide. The t-Bu-Hiv acid was prepared from D-valine through diazotisation to form (2R)-acetyloxyisovaleric acid in 62.7% yield. Product of the first step was then protected by t-butyl group by using Boc-anhydride in t-butanol to give t-butil (2R)-acetyloxyisovalerate in 44% yield. In the last step, the acetyloxy group was eliminated by using potassium carbonate in methanol/water to give the desired product, t-Bu-Hiv in 33.5% yield. The t-Bu-Hiv is ready to be combined with Fmoc-β-hydroxymethylvaline to result in depsidipeptide that will be attached to the resin in the total synthesis of AbB. Each stage of this synthesis was controlled by thin layer chromatography and all products were purified by open column chromatography. All the synthesized products were characterized by various spectroscopic techniques, including infrared spectrophotometer, mass spectroscopy (ESI-MS), 1H-NMR and 13C-NMR.

  11. One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities

    DTIC Science & Technology

    2010-01-01

    groups for further coupling to target molecules. Since the classic citrate reduction of aurate to prepare citrate - stabilized AuNPs was pioneered by the...reduced stability against excess salts and changes in solution pH (e.g., citrate -stabilized NPs); (2) the inability to prepare nanocrystals over a wide...size regime ( citrate reduction usually producesAuNPs smaller than 10 nm, but larger sizes require additional refluxing in the presence of sodium citrate

  12. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    NASA Astrophysics Data System (ADS)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  13. Structural and magnetic studies of nanocrystalline Y{sub 2}Ir{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Vinod Kumar, E-mail: vinodd@iitk.ac.in; Mukhopadhyay, Soumik

    2015-06-24

    In this paper, we discuss synthesis of Y{sub 2}Ir{sub 2}O{sub 7} nanoparticles via chemical solution process. Structural analysis shows single cubic phase with Fd-3m space group symmetry. The particle size and distribution were studied by Transmission Electron Microscopy experiments. The average particle size turns out to be 50nm, which is in good agreement with the XRD results. Magnetic characterization shows no evidence of long range ordering even in presence of strong correlations.

  14. Synthesis and Characterization of Liquid Crystalline Poly((N-acylethyleneimine)s.

    DTIC Science & Technology

    1986-10-01

    ethanolamine and catalytic traces of p-toluensulfonic acid were added. The solution was stirred at 150 C for 20 hrs and then the excess of ethanolamine was...HeOBiPh-6-Oxz) with that of the corresponding polymethacrylate containing also six methylene units as a spacer (2,30), (Scheme 3). This... polymethacrylate was reported by Ringsdorf et. al, and its phase *i behavior is known both for the atactic (2,30) and Isotactic (30) configura- tions. The &tactic

  15. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iribarren, A., E-mail: augusto@imre.oc.uh.cu; Hernández-Rodríguez, E.; Maqueira, L.

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due tomore » Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.« less

  16. Efficient Synthesis of Graph Methods: a Dynamically Scheduled Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino

    RDF databases naturally map to a graph representation and employ languages, such as SPARQL, that implements queries as graph pattern matching routines. Graph methods exhibit an irregular behavior: they present unpredictable, fine-grained data accesses, and are synchronization inten- sive. Graph data structures expose large amounts of dy- namic parallelism, but are difficult to partition without gen- erating load unbalance. In this paper, we present a novel ar- chitecture to improve the synthesis of graph methods. Our design addresses the issues of these algorithms with two com- ponents: a Dynamic Task Scheduler (DTS), which reduces load unbalance and maximize resource utilization,more » and a Hi- erarchical Memory Interface controller (HMI), which pro- vides support for concurrent memory operations on multi- ported/multi-banked shared memories. We evaluate our ap- proach by generating the accelerators for a set of SPARQL queries from the Lehigh University Benchmark (LUBM). We first analyze the load unbalance of these queries, showing that execution time among tasks can differ even of order of magnitudes. We then synthesize the queries and com- pare the performance of the resulting accelerators against the current state of the art. Experimental results show that our solution provides a speedup over the serial implementa- tion close to the theoretical maximum and a speedup up to 3.45 over a baseline parallel implementation. We conclude our study by exploring the design space to achieve maximum memory channels utilization. The best design used at least three of the four memory channels for more than 90% of the execution time.« less

  17. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  18. Synthesis of Efficient Structures for Concurrent Computation.

    DTIC Science & Technology

    1983-10-01

    formal presentation of these techniques, called virtualisation and aggregation, can be found n [King-83$. 113.2 Census Functions Trees perform broadcast... Functions .. .. .. .. ... .... ... ... .... ... ... ....... 6 4 User-Assisted Aggregation .. .. .. .. ... ... ... .... ... .. .......... 6 5 Parallel...6. Simple Parallel Structure for Broadcasting .. .. .. .. .. . ... .. . .. . .... 4 Figure 7. Internal Structure of a Prefix Computation Network

  19. A heuristic for suffix solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilgory, A.; Gajski, D.D.

    1986-01-01

    The suffix problem has appeared in solutions of recurrence systems for parallel and pipelined machines and more recently in the design of gate and silicon compilers. In this paper the authors present two algorithms. The first algorithm generates parallel suffix solutions with minimum cost for a given length, time delay, availability of initial values, and fanout. This algorithm generates a minimal solution for any length n and depth range log/sub 2/ N to N. The second algorithm reduces the size of the solutions generated by the first algorithm.

  20. Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics

    NASA Astrophysics Data System (ADS)

    Serivalsatit, K.; Wasanapiarnpong, T.; Kucera, C.; Ballato, J.

    2013-05-01

    Transparent rare earth-doped Lu2O3 ceramics have received much attention for use in solid-state scintillator and laser applications. The fabrication of these ceramics, however, requires ultrafine and uniform powders as precursors. Presented here is the synthesis of Er-doped Lu2O3 nanopowders by a solution precipitation method using Er-doped lutetium sulfate solution and hexamethylenetetramine as a precipitant and the fabrication of Er-doped Lu2O3 transparent ceramics from these nanopowders. The precipitated precursors were calcined at 1100 °C for 4 h in order to convert the precursors into Lu2O3 nanoparticles with an average particle size of 60 nm. Thermal decomposition and phase evolution of the precursors were studied by simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Er-doped Lu2O3 transparent ceramics were fabricated from these nanopowders using vacuum sintering followed by hot isostatic pressing at 1700 °C for 8 h. The transparent ceramics exhibit an optical transmittance of 78% at a wavelength of 1.55 μm.

  1. Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge

    PubMed Central

    Villafuerte-Castrejón, María Elena; Morán, Emilio; Reyes-Montero, Armando; Vivar-Ocampo, Rodrigo; Peña-Jiménez, Jesús-Alejandro; Rea-López, Salvador-Oliver; Pardo, Lorena

    2016-01-01

    The search for electroceramic materials with enhanced ferro-pyro-piezoelectric properties and revealing the perovskite type structure has been the objective of a significant number of manuscripts reported in the literature. This has been usually carried out by proposing the synthesis and processing of new compounds and solid solution series. In this work, several methods to obtain ferro-pyro-piezoelectric families of materials featuring the well-known ABO3 perovskite structure (or related) such as BaTiO3, Ba1–xCaxTi1–yZryO3, (Bi0.5Na0.5)TiO3, (K0.5Na0.5)NbO3 and their solid solutions with different cations either in the A or B positions, are presented. For this kind of materials, the challenge for obtaining a single phase compound with a specific grain size and morphology and, most importantly, with the adequate stoichiometry, will also be discussed. The results reviewed herein will be discussed in terms of the tendency of working with softer conditions, i.e., lower temperature and shorter reaction times, also referred to as soft-chemistry. PMID:28787822

  2. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications.

    PubMed

    Wagner, Darcy E; Eisenmann, Kathryn M; Nestor-Kalinoski, Andrea L; Bhaduri, Sarit B

    2013-09-01

    Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading

    NASA Astrophysics Data System (ADS)

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-12-01

    This paper reports the synthetic route of 3-D network shape α-Fe2O3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe2O3, particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe2O3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil.

  4. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading

    PubMed Central

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-01-01

    This paper reports the synthetic route of 3-D network shape α-Fe2O3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe2O3, particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe2O3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil. PMID:27966663

  5. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading.

    PubMed

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-12-14

    This paper reports the synthetic route of 3-D network shape α-Fe 2 O 3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe 2 O 3 , particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe 2 O 3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil.

  6. Computer architecture evaluation for structural dynamics computations: Project summary

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1989-01-01

    The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.

  7. Physicochemical characterization of microwave assisted synthesis of silver nanoparticles using Aloe Vera (Aloe barbadensis)

    NASA Astrophysics Data System (ADS)

    Kuponiyi, Abiola John

    Biosynthesis of silver nanoparticles (AgNP) using different biological extracts is gaining recognition for its numerous applications in different disciplines. Although different approaches (physical and chemical) have been used for the synthesis of AgNP, the green chemistry method is most preferable because of its high efficacy, cost effectiveness, and environmental benignity. Aloe Vera (AV) contains chemical compounds (anthraquinones) that are known to possess antibacterial, antivirus and anticancer properties and the extract is a good chemical reduction agent for AgNP. Hence, it was hypothesized that a microwave assisted synthesis will produce highly concentrated, homogeneous, stable and biologically active AgNP. Thus, the main objective of the study was to evaluate the effect of microwave assisted synthesis of AgNP, the effect of pulse laser treatment on size reduction of a microwave synthesized AgNP, and the physicochemical characterization of AgNP synthesized with Aloe Vera water and ethanol extract. The experiment was conducted in two phases. Phase 1 was first conducted to optimize the experimental variables, thus establishing the optimum variables to apply in the second phase. The experiment in Phase 1 was conducted using three-factor factorial experimental design comprised of the following factors: 1) Extraction Solvent, 2) Heating Methods, 3) pH; and their corresponding levels were water and ethanol, conventional and microwave, pH (7, 8, 10 and 12), respectively. All synthesis was conducted at constant temperature of 80°C. Phase II experimental treatments were Laser ablation (0, 5, and 10 min) and Storage time (Week 1, 2 & 3). The Phase I of the results showed that increased AgNP concentrations were significantly (p < 0.05) influenced by synthesis time, hence, (15 min) gave the highest concentration. The solvent type, heating methods and pH had a significant effect (p < 0.05) on the concentration AgNP. Hence, ethanol extract (99.2 ppm), microwave method (77 ppm), and pH 10 (125 ppm) are variables that exhibited the maximum contribution to the formation of AgNP. The phase II ANOVA results indicated that laser treatment has a significant effect (p < 0.01) on the concentration of AgNP during synthesis. The intensity of the absorption peak significantly (p < 0.01) increases with laser exposure time. While 214 ppm was observed at laser exposures time 0 min, 224 and 229 ppm at 5 and 10 min and at the following rates of formation 0.384, 0.408 and 0.4288 min -1 respectively. Particle sizes (hydrodynamic diameter) were approximately 37.84 nm with no laser treatment in contrast (p < 0.01) with laser treated samples at 5 and 10 min at week 1 were 10.1 and 8.72 nm, respectively. However, storability up to the maximum storage period of six weeks of the AgNP solutions does not significantly (p > 0.05) impact the particle size distribution. Hence, the Zeta potential of the particles has values typically ranging between +100 mV to -100 mV, hence indicative of colloidal stability matrix. Furthermore, the Polydispersity indexes of Week 1, 2, & 3 treatments were 0.312, 0.591 and 0.768 respectfully, indicating that the control is monodispersed while treatments week 2 & 3 indicating the laser ablation effect in further reduction of sizes to a different level of aggregation. Microwave synthesis showed significantly (p < 0.05) higher concentration of biological compounds such as aliphatic amines, alkenes (=C-H), alkanes (C-H), alcohol (O-H) and unsaturated esters(C-O).

  8. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  9. Study of the slope of the linear relationship between retention and mobile phase composition (Snyder-Soczewiñski model) in normal phase liquid chromatography with bonded and charge-transfer phases.

    PubMed

    Wu, Di; Lucy, Charles A

    2016-12-02

    The Snyder model and the Soczewiñski model are compared on classic NPLC bonded phases using literature data, and on the charge transfer 2, 4-dinitroanilinopropyl (DNAP) column using experimentally collected data. Overall, the Snyder model slightly better predicts the n-slope than the Soczewiñski model. However, both models give comparable uncertainty in predicting n-slope for a given compound. The number of aromatic double bonds was the most suitable descriptor for estimating the relative n-slope of PAHs, as it correlated with behavior better than the number of aromatic rings and is simpler to calculate than the solute adsorption area. On the DNAP phase, a modified Soczewiñski model is suggested to allow for the significant contribution of the aromatic rings to the n-slope. For classic NPLC bonded phases and DNAP columns, the contribution of polar group to the n-slope parallels the adsorption energy of each polar group. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of cold rolling on the microstructural evolution of new β-typed Ti–6Mo–6V–5Cr–3Sn–2.5Zr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Gwnaghyo; Lee, Kwangmin, E-mail: kmlee@jnu.a

    A Ti–6Mo–6V–5Cr–3Sn–2.5Zr (wt.%) alloy was designed as a new metastable β-Ti alloy. The effect that cold rolling had on the microstructural evolution of the material was investigated via optical microscopy (OM), X-ray diffraction (XRD), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) measurements. A single β phase formed in the alloy after solution treatment at 780 °C for 30 min followed by water quenching. The solution-treated alloy was cold rolled with thickness reductions of 10%, 30%, 50% and 70%, and the hardness values increased as the thickness of the specimen decreased. The textures of the cold rolled specimen weremore » characterized according to the 〈110〉 partial parallel to the rolling direction as the rolling reduction increased. The crystallographic orientation showed principal α-fiber textures for (111)〈110〉 and (112)〈110〉. The cold deformation led to the appearance of martensite α″ phases, particularly stress-induced martensite (SIM) α″ phases. - Highlights: • Effect of cold rolling on new β-typed Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy was studied. • A single β phase was obtained after solution treatment at 780 °C for 30 min. • α-Fiber textures became dominated with the increase in cold rolling reduction. • A stress-induced α″ martensite was caused by cold rolling.« less

  11. Fully automated SPE-based synthesis and purification of 2-[18F]fluoroethyl-choline for human use.

    PubMed

    Schmaljohann, Jörn; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen; Schirrmacher, Ralf; Guhlke, Stefan

    2011-02-01

    2-[(18)F]Fluoroethyl-choline ([(18)F]FECH) is a promising tracer for the detection of prostate cancer as well as brain tumors with positron emission tomography (PET). [(18)F]FECH is actively transported into mammalian cells, becomes phosphorylated by choline kinase and gets incorporated into the cell membrane after being metabolized to phosphatidylcholine. So far, its synthesis is a two-step procedure involving at least one HPLC purification step. To allow a wider dissemination of this tracer, finding a purification method avoiding HPLC is highly desirable and would result in easier accessibility and more reliable production of [(18)F]FECH. [(18)F]FECH was synthesized by reaction of 2-bromo-1-[(18)F]fluoroethane ([(18)F]BFE) with dimethylaminoethanol (DMAE) in DMSO. We applied a novel and very reliable work-up procedure for the synthesis of [(18)F]BFE. Based on a combination of three different solid-phase cartridges, the purification of [(18)F]BFE from its precursor 2-bromoethyl-4-nitrobenzenesulfonate (BENos) could be achieved without using HPLC. Following the subsequent reaction of the purified [(18)F]BFE with DMAE, the final product [(18)F]FECH was obtained as a sterile solution by passing the crude reaction mixture through a combination of two CM plus cartridges and a sterile filter. The fully automated synthesis was performed using as well a Raytest SynChrom module (Raytest, Germany) or a Scintomics HotboxIII module (Scintomics, Germany). The radiotracer [(18)F]FECH can be synthesized in reliable radiochemical yields (RCY) of 37±5% (Synchrom module) and 33±5% (Hotbox III unit) in less than 1 h using these two fully automated commercially available synthesis units without HPLC involvement for purification. Detailed quality control of the final injectable [(18)F]FECH solution proved the high radiochemical purity and the absence of Kryptofix2.2.2, DMAE and DMSO used in the course of synthesis. Sterility and bacterial endotoxin testing following standard procedures verified that the described production method for [(18)F]FECH is suitable for human applications. The routine production of [(18)F]FECH with sufficient RCYs was established by reliable and fast solid-phase extraction purifications of both the secondary labeling precursor [(18)F]BFE and the final product [(18)F]FECH, avoiding complex and sensitive HPLC equipment. The purity of the product was >95%, rendering the tracer suitable for human application. The newly developed purification procedure for [(18)F]BFE significantly reduces the complexity of the automated synthesis unit, hence reducing the cost for routine production in a clinical setup and allowing easy transfer to different synthesis modules. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.

    PubMed

    Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei

    2013-04-01

    The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.

  13. The revised solar array synthesis computer program

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.

  14. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.

    PubMed

    Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard

    2016-10-01

    The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Case study: technology initiative led to advanced lead optimization screening processes at Bristol-Myers Squibb, 2004-2009.

    PubMed

    Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G

    2012-07-01

    In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. LSPRAY-IV: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  17. Synthesis of TiO{sub 2} nanoparticles by hydrolysis and peptization of titanium isopropoxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahata, S.; Mahato, S. S.; Nandi, M. M.

    2012-07-23

    Here we report the synthesis and characterization of a stable suspension of modified titania nanoparticles. Phase-pure TiO{sub 2} nanocrystallites with narrow particle-size distributions were selectively prepared by hydrolysis-peptization of modified alkoxide followed by hydrothermal treatment. Autoclaving modified TiO{sub 2} in the presence of HNO3 as cooperative catalysts led to the formation of crystalline TiO{sub 2} with narrow-sized distribution. Following the hydrothermal treatment at 150 Degree-Sign C, X-ray diffraction shows the particles to be exclusively anatase. Synthesized powder is characterized by FT-IR, scanning electron microscopy (FESEM) and transmission electron microscopy (HRTEM). The photocatalytic activity in the degradation of orange-II is quitemore » comparable to good anatase and rutile nanocrystallites.« less

  18. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  19. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xifeng; Yin Hengbo; Cheng Xiaonong

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweensmore » on Cu nanoparticles was different from those arising from the individuals.« less

  20. Additive effects of plant sterols supplementation in addition to different lipid-lowering regimens.

    PubMed

    Malina, Daniela M T; Fonseca, Francisco A; Barbosa, Sílvio A; Kasmas, Soraia H; Machado, Valéria A; França, Carolina N; Borges, Ney C; Moreno, Ronilson A; Izar, Maria C

    2015-01-01

    Plant sterol (PS) supplementation has been widely used alone or combined with lipid-lowering therapies (LLTs) to reduce low-density lipoprotein (LDL) cholesterol. The effects of PS added to high-intensity LLT are less reported, especially regarding the effects on cholesterol synthesis and absorption. A prospective, randomized, open-label study, with parallel arms and blinded end points was designed to evaluate the effects of addition of PS to LLT on LDL cholesterol, markers of cholesterol synthesis, and absorption. Eighty-six patients of both genders were submitted to a 4-wk run-in period with atorvastatin 10 mg (baseline). Following, subjects received atorvastatin 40 mg, ezetimibe 10 mg, or combination of both drugs for another 4-wk period (phase I). In phase II, capsules containing 2.0 g of PSs were added to previous assigned treatments for 4 wk. Lipids, apolipoproteins, plasma campesterol, β-sitosterol, and desmosterol levels were assayed at all time points. Within and between-group analyses were performed. Compared with baseline, atorvastatin 40 mg reduced total and LDL cholesterol (3% and 22%, respectively, P < .05), increased β-sitosterol, campesterol/cholesterol, and β-sitosterol/cholesterol ratios (39%, 47%, and 32%, respectively, P < .05); ezetimibe 10 mg reduced campesterol and campesterol/cholesterol ratio (67% and 70%, respectively, P < .05), and the combined therapy decreased total and LDL cholesterol (22% and 38%, respectively, P < .05), campesterol, β-sitosterol, and campesterol/cholesterol ratio (54%, 40%, and 27%, P < .05). Addition of PS further reduced total and LDL cholesterol by ∼ 7.7 and 6.5%, respectively, in the atorvastatin therapy group and 5.0 and 4.0% in the combined therapy group (P < .05, for all), with no further effects in absorption or synthesis markers. PS added to LLT can further improve lipid profile, without additional effects on intestinal sterol absorption or synthesis. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  1. Thyrotropin-Releasing Hormone Loaded and Chitosan Engineered Polymeric Nanoparticles: Towards Effective Delivery of Neuropeptides.

    PubMed

    Kaur, Sarabjit; Bhararia, Avani; Sharma, Krishna; Mittal, Sherry; Jain, Rahul; Wangoo, Nishima; Sharma, Rohit K

    2016-05-01

    Thyrotropin-Releasing Hormone (TRH), a tripeptide amide with molecular formula L-pGlu-L-His-L- Pro-NH2, is used in the treatment of brain/spinal injury and certain central nervous system (CNS) disorders, including schizophrenia, Alzheimer's disease, epilepsy, depression, shock and ischemia due to its profound effects on the CNS. However, TRH's therapeutic activity is severely hampered because of instability and hydrophilicity owing to its peptidic nature which results into ineffective penetration into the blood brain barrier. In the present study, we report the synthesis and stability studies of novel chitosan engineered TRH encapsulated poly(lactide-co-glycolide) (PLGA) based nanoformulation. The aim of such an encapsulation is to allow effective delivery of TRH in biological systems as the peptidase degrade naked TRH. The synthesis of TRH was carried out manually in solution phase followed by its encapsulation using PLGA to form polymeric nanoparticles (NPs) via nanoprecipitation technique. Different parameters such as type of organic phase, concentration of stabilizer, ratio of organic phase and aqueous phase, rate of addition of organic phase were optimized, tested and evaluated for particle size, encapsulation efficiency, and stability of NPs. The TRH-PLGA NPs were then surface modified with chitosan to achieve positive surface charge rendering them potential membrane penetrating agents. PLGA, PLGA-TRH, Chitosan-PLGA and Chitosan-PLGA-TRH NPs were characterized and analyzed using Dynamic Light Scattering (DLS), Transmissiom Electron Microscopy (TEM) and Infra-red spectroscopic techniques.

  2. Immobilized TiO2 nanoparticles produced by flame spray for photocatalytic water remediation

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Diamanti, Maria Vittoria; Sansotera, Maurizio; Pedeferri, Maria Pia; Navarrini, Walter; Milani, Paolo

    2016-08-01

    Anatase/rutile mixed-phase titanium dioxide (TiO2) photocatalysts in the form of nanostructured powders with different primary particle size, specific surface area, and rutile content were produced from the gas-phase by flame spray pyrolysis (FSP) starting from an organic solution containing titanium (IV) isopropoxide as Ti precursor. Flame spray-produced TiO2 powders were characterized by means of X-ray diffraction, Raman spectroscopy, and BET measurements. As-prepared powders were mainly composed of anatase crystallites with size ranging from 7 to 15 nm according to the synthesis conditions. TiO2 powders were embedded in a multilayered fluoropolymeric matrix to immobilize the nanoparticles into freestanding photocatalytic membranes. The photocatalytic activity of the TiO2-embedded membranes toward the abatement of hydrosoluble organic pollutants was evaluated employing the photodegradation of rhodamine B in aqueous solution as test reaction. The photoabatement rate of best performing membranes significantly overcomes that of membranes produced by the same method and incorporating commercial P25-TiO2.

  3. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids

    NASA Astrophysics Data System (ADS)

    Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F. Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R.; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H.

    2017-02-01

    Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.

  4. Efficient optical resolution of amino acid by alanine racemaze chiral analogue supported on mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Jang, D.; Kim, K.; Park, D.; Kim, G.

    2012-09-01

    Optically pure D-amino acids are industrially important chiral building blocks for the synthesis of pharmaceuticals, food ingredients, and drug intermediates. Chemoenzymatic dynamic kinetic-resolution processes have recently been developed for deracemization of amino acids. S-ARCA would be a good candidate for the selective adsorption of D amino acid through the imine formation reaction. The organic phase containing S-ARCA adsorbent, TPPC or Ionic Liquid (as a phase transfer catalyst) in MC were coated on the surfaces of mesoporous carbon C-SBA-15(CMK). The aqueous solution of racemic D/L-amino acid and NaOH were added to the carbon support coated with ARCA. The D/L ratios on ARCA and in solution were determined with increasing reaction time. S-ARCA has a unique property for the selective adsorption of D- amino acid (up to 90% selcetivity) in the racemic mixture. The fixed bed reactor containing ARCA/carbon support was also adopted successfully for the selective separation of amino acid.

  5. Influence of fuel-nitrate ratio on the structural and magnetic properties of Fe and Cr based spinels prepared by solution self combustion method

    NASA Astrophysics Data System (ADS)

    Sijo, A. K.

    2017-11-01

    In this study, we report the synthesis of nano-sized CoCrFeO4 and NiCrFeO4 using the solution self combustion method and the variation in the magnetic and structural properties with different fuel to nitrate ratios-fuel lean, fuel rich and stoichiometric. Citric acid is used as the fuel. XRD analysis of the samples confirms the formation of pure spinel phased nanoparticles in fuel rich and stoichiometric cases. But CoCrFeO4 and NiCrFeO4 samples prepared under the fuel lean condition show the presence of a small amount of impurity phases: α-Ni in fuel lean NiCrFeO4 and α-Co in fuel lean CoCrFeO4. Fuel lean samples possess high magnetic saturation. The stoichiometric ratio results in finest nano-particles and structural and magnetic properties are very critically dependent on fuel to nitrate ratio.

  6. Microrheological Characterization of Collagen Systems: From Molecular Solutions to Fibrillar Gels

    PubMed Central

    Shayegan, Marjan; Forde, Nancy R.

    2013-01-01

    Collagen is the most abundant protein in the extracellular matrix (ECM), where its structural organization conveys mechanical information to cells. Using optical-tweezers-based microrheology, we investigated mechanical properties both of collagen molecules at a range of concentrations in acidic solution where fibrils cannot form and of gels of collagen fibrils formed at neutral pH, as well as the development of microscale mechanical heterogeneity during the self-assembly process. The frequency scaling of the complex shear modulus even at frequencies of ∼10 kHz was not able to resolve the flexibility of collagen molecules in acidic solution. In these solutions, molecular interactions cause significant transient elasticity, as we observed for 5 mg/ml solutions at frequencies above ∼200 Hz. We found the viscoelasticity of solutions of collagen molecules to be spatially homogeneous, in sharp contrast to the heterogeneity of self-assembled fibrillar collagen systems, whose elasticity varied by more than an order of magnitude and in power-law behavior at different locations within the sample. By probing changes in the complex shear modulus over 100-minute timescales as collagen self-assembled into fibrils, we conclude that microscale heterogeneity appears during early phases of fibrillar growth and continues to develop further during this growth phase. Experiments in which growing fibrils dislodge microspheres from an optical trap suggest that fibril growth is a force-generating process. These data contribute to understanding how heterogeneities develop during self-assembly, which in turn can help synthesis of new materials for cellular engineering. PMID:23936454

  7. Investigation of Processes Controlling Elution of Solutes from Nonaqueous Phase Liquid (NAPL) Pools into Groundwater

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.

    2005-12-01

    Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.

  8. Green polymer chemistry: Synthesis of poly(disulfide) polymers and networks

    NASA Astrophysics Data System (ADS)

    Rosenthal-Kim, Emily Quinn

    The disulfide group is unique in that it presents a covalent bond that is easily formed and cleaved under certain biological conditions. While the ease of disulfide bond cleavage is often harnessed as a method of biodegradation, the ease of disulfide bond formation as a synthetic strategy is often overlooked. The objective this research was to synthesize poly(disulfide) polymers and disulfide crosslinked networks from a green chemistry approach. The intent of the green chemistry approach was to take advantage of the mild conditions applicable to disulfide bond synthesis from thiols. With anticipated use as biomaterials, it was also desired that the polymer materials could be degraded under biological conditions. Here, a new method of poly(disulfide) polymer synthesis is introduced which was inspired by the reaction conditions and reagents found in Nature. Ambient temperatures and aqueous mixtures were used in the new method. Hydrogen peroxide, one of the Nature's most powerful oxidizing species was used as the oxidant in the new polymerization reaction. The dithiol monomer, 3,6-dioxa-1,8-octanedithiol was first solubilized in triethylamine, which activated the thiol groups and made the monomer water soluble. At room temperature, the organic dithiol/amine solution was then mixed with dilute aqueous hydrogen peroxide (3% by weight) to make the poly(disulfide) polymers. The presence of a two phase system (organic and aqueous phases) was critical to the polymerization reaction. As the reaction progresses, a third, polymer phase appeared. At ambient temperatures and above, this phase separated from the reaction mixture and the polymer product was easily removed from the reaction solution. These polymers reach Mn > 250,000 g/mol in under two hours. Molecular weight distributions were between 1.5 and 2.0. Reactions performed in an ice bath which remain below room temperature contain high molecular weight polymers with Mn ≈ 120,000 g/mol and have a molecular weight distribution of around 1.15. However, the majority of the product consists of low molecular weight cyclic poly(disulfide) oligomers. In reactions maintained below 18°C, the organic components were miscible in the aqueous hydrogen peroxide and a milky emulsion was produced. The polymers were degraded using the disulfide-specific reducing agent, dithiothreitol. Poly(disulfide) polymer networks were also synthesized in a two-phase system. Due to the poor solubility of the crosslinker, trimethylolpropane tris(2-mercaptopropionate, organic solvents were required to obtain consistent networks. The networks were degraded using dithiothreitol in tetrahydrofuran. The networks were stable under aqueous reducing conditions. The disulfide-bearing biochemical, alpha-lipoic acid, was investigated as monomer for the new method of poly(disulfide) polymer synthesis. It was also polymerized thermally and by a new interfacial method that proceeds at the air-water interface. Polymer products were often too large to be characterized by SEC (Mn > 1,000,000 g/mol). A poly(alpha-LA) polymer sample showed mass loss in aqueous solutions of glutathione at pH = 5.2 which was used to model cytosolic conditions. Poly(alpha-LA) was decorated with PEG (2,000 g/mol) in an esterification reaction catalyzed by Candida antarctica lipase B (CALB). The decorated polymers were imaged using AFM which revealed branch-like structures. To make new alpha-lipoic acid based monomers and macromonomers, CALB-catalyzed esterification, was used to conjugate alpha-lipoic acid to a variety of glycols including: diethylene glycol monomethyl ether, tetraethylene glycol, hexaethylene glycol, and poly(ethylene glycol). The products were verified using NMR spectroscopy and mass spectrometry.

  9. How Copper Nanowires Grow and How To Control Their Properties.

    PubMed

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    Scalable, solution-phase nanostructure synthesis has the promise to produce a wide variety of nanomaterials with novel properties at a cost that is low enough for these materials to be used to solve problems. For example, solution-synthesized metal nanowires are now being used to make low cost, flexible transparent electrodes in touch screens, organic light-emitting diodes (OLEDs), and solar cells. There has been a tremendous increase in the number of solution-phase syntheses that enable control over the assembly of atoms into nanowires in the last 15 years, but proposed mechanisms for nanowire formation are usually qualitative, and for many syntheses there is little consensus as to how nanowires form. It is often not clear what species is adding to a nanowire growing in solution or what mechanistic step limits its rate of growth. A deeper understanding of nanowire growth is important for efficiently directing the development of nanowire synthesis toward producing a wide variety of nanostructure morphologies for structure-property studies or producing precisely defined nanostructures for a specific application. This Account reviews our progress over the last five years toward understanding how copper nanowires form in solution, how to direct their growth into nanowires with dimensions ideally suited for use in transparent conducting films, and how to use copper nanowires as a template to grow core-shell nanowires. The key advance enabling a better understanding of copper nanowire growth is the first real-time visualization of nanowire growth in solution, enabling the acquisition of nanowire growth kinetics. By measuring the growth rate of individual nanowires as a function of concentration of the reactants and temperature, we show that a growing copper nanowire can be thought of as a microelectrode that is charged with electrons by hydrazine and grows through the diffusion-limited addition of Cu(OH)2(-). This deeper mechanistic understanding, coupled to an understanding of the structure-property relationship of nanowires in transparent conducting films, enabled the production of copper nanowires that can be coated from solution to make films with properties that rival the dominant transparent conductor, indium tin oxide. Finally, we show how copper nanowires can be coated with Zn, Sn, In, Ni, Co, Ag, Au, and Pt to protect them from oxidation or enable their use as transparent electrocatalysts.

  10. Synthesis of spherical calcium phosphate particles for dental and orthopedic applications

    PubMed Central

    Bohner, Marc; Tadier, Solène; van Garderen, Noémie; de Gasparo, Alex; Döbelin, Nicola; Baroud, Gamal

    2013-01-01

    Calcium phosphate materials have been used increasingly in the past 40 years as bone graft substitutes in the dental and orthopedic fields. Accordingly, numerous fabrication methods have been proposed and used. However, the controlled production of spherical calcium phosphate particles remains a challenge. Since such particles are essential for the synthesis of pastes and cements delivered into the host bone by minimally-invasive approaches, the aim of the present document is to review their synthesis and applications. For that purpose, production methods were classified according to the used reagents (solutions, slurries, pastes, powders), dispersion media (gas, liquid, solid), dispersion tools (nozzle, propeller, sieve, mold), particle diameters of the end product (from 10 nm to 10 mm), and calcium phosphate phases. Low-temperature calcium phosphates such as monetite, brushite or octacalcium phosphate, as well as high-temperature calcium phosphates, such as hydroxyapatite, β-tricalcium phosphate or tetracalcium phosphate, were considered. More than a dozen production methods and over hundred scientific publications were discussed. PMID:23719177

  11. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    PubMed

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  12. Synthesis and Magnetic Properties of Fe-Co-Ni/C Nanocomposites

    NASA Astrophysics Data System (ADS)

    Muratov, D. G.; Kozhitov, L. V.; Karpenkov, D. Yu.; Yakushko, E. V.; Korovin, E. Yu.; Vasil'ev, A. V.; Popkova, A. V.; Kazaryan, T. M.; Shadrinov, A. V.

    2018-03-01

    Nanoparticles of the Fe-Co-Ni ternary alloy, encapsulated in the carbon matrix of nanocomposites, have been synthesized, The structure, phase composition, and magnetic properties of the obtained materials have been determined with the help of diffractometry and magnetometry. It has been established that nanoparticles of the ternary alloy are formed due to solution of cobalt in the Fe-Ni alloy. The composition of the nanoparticles of the alloy depends on the mass percent ratio of the metas in the precursor. With growth of the iron content, nanoparticles of the ternary alloy with various composition are formed with FCC and BCC crystal lattice structure. As the synthesis temperature and relative iron content are increased, the magnetization of the Fe-Co-Ni/C nanocomposites increases from 26 to 157 A·m2/kg. The coercive force is determined by the synthesis temperature, the size of the nanoparticles, and the composition of the alloy, and its value varies from 330 to 43 Oe.

  13. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance

    NASA Astrophysics Data System (ADS)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-01

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  14. Mesoporous Colloidal Superparticles of Platinum-Group Nanocrystals with Surfactant-Free Surfaces and Enhanced Heterogeneous Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yongxing; Liu, Yuzi; Sun, Yugang

    2015-01-23

    Synthesis of colloidal superparticles (CSPs) of nanocrystals, a class of assembled nanocrystals in the form of colloidal particles, has been emerging as a new frontier in the field of nanotechnology because of their potential novel properties originated from coupling of individual nanocrystals in CSPs. Here, a facile approach is reported for the controlled synthesis of mesoporous CSPs made of various platinum-group nanocrystals that exhibit high colloidal stability and ligand-free surfaces to significantly benefit their applications in solution-phase heterogeneous catalysis. The synthesis relies on self-limiting growth of composite particles through coprecipitation of both Pt-group nanocrystals (or their precursor compounds) and silvermore » halides on sacrificial substrates of colloidal silver particles. The intermediate silver halides in the composite particles play the critical role in limiting the continuous growth (and/or coalescence) of individual Pt-group nanocrystals and they can be selectively dissolved to create nanoscale pores in the resulting CSPs.« less

  15. Comparison of multihardware parallel implementations for a phase unwrapping algorithm

    NASA Astrophysics Data System (ADS)

    Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo

    2018-04-01

    Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.

  16. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations

    DOE PAGES

    Chien, Szu-Chia; Pérez-Sánchez, Germán; Gomes, José R. B.; ...

    2017-02-17

    Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant–water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems—in the concentration range where pure surfactant solutions yieldmore » a liquid crystal phase—the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.« less

  17. One pot synthesis of pure micro/nano photoactive α-PbO crystals

    NASA Astrophysics Data System (ADS)

    Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit

    2018-05-01

    The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.

  18. Single step synthesis and characterization of ZnAl2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jain, Megha; Manju, Singh, Kulwinder; Kumar, Akshay; Sharma, Jeewan; Chae, K. H.; Vij, Ankush; Thakur, Anup

    2018-05-01

    Zinc aluminate (ZnAl2O4) has proved to be a potential candidate in many areas such as catalysis, display panels, pigments in paints, radiation dosimetry, luminescence etc. Here, we report the solution combustion synthesis & spectroscopic studies of ZnAl2O4 nanoparticles. Urea (fuel) and metal nitrates (oxidizer) were taken in stoichiometric ratio at 1:1. The X-ray diffraction analysis of the as-prepared and annealed samples showed all reflection planes pertaining to ZnAl2O4. However, a weak intensity peak of secondary phase was also observed at 2θ value of 34.5°, which correspond to the diffraction plane (002) of ZnO. This phase was found to disappear after annealing the sample at 1000 °C for 1 hour. Fourier transform infrared spectroscopy (FTIR) also inferred the formation of ZnAl2O4. Photoluminescence measurements carried out on samples at excitation wavelength of 345 nm showed that ZnAl2O4 is an efficient luminescent material with emission in violet region of visible spectra.

  19. Synthesis of Transparent Aqueous ZrO2 Nanodispersion with a Controllable Crystalline Phase without Modification for a High-Refractive-Index Nanocomposite Film.

    PubMed

    Xia, Yi; Zhang, Cong; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2018-05-30

    The controllable synthesis of metal oxide nanoparticles is of fundamental and technological interest. In this article, highly transparent aqueous nanodispersion of ZrO 2 with controllable crystalline phase, high concentration, and long-term stability was facilely prepared without any modification via the reaction of inexpensive inorganic zirconium salt and sodium hydroxide in water under an acid surrounding, combined with hydrothermal treatment. The as-prepared transparent nanodispersion had an average particle size of 7 nm, a high stability of 18 months, and a high solid content of 35 wt %. ZrO 2 nanocrystals could be readily dispersed in many solvents with high polarity including ethanol, dimethyl sulfoxide, acetic acid, ethylene glycol, and N, N-dimethylformamide, forming stable transparent nanodispersions. Furthermore, highly transparent polyvinyl alcohol/ZrO 2 nanocomposite films with high refractive index were successfully prepared with a simple solution mixing route. The refractive index could be tuned from 1.528 to 1.754 (@ 589 nm) by changing the mass fraction (0-80 wt %) of ZrO 2 in transparent nanocomposite films.

  20. A detailed study of Au-Ni bimetal synthesized by the phase separation mechanism for the cathode of low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Rodrigues de Almeida, Carlos Manuel; Ramasamy, Devaraj; Almeida Loureiro, Francisco José

    2014-12-01

    A facile co-reduction and annealing synthesis route of nanospheric particles of Au-Ni bimetal with adjustable composition was developed. In a typical synthesis, a direct co-reduction of HAuCl4.4H2O and NiCl2 in aqueous solution was performed with the assistance of reductive NaBH4 and an anionic surfactant sodium dodecyl sulfate (SDS) functioned as the structure-directing agent. Ultrasonic mixing was used at the same time to control the size of the particles. The morphology, microstructure and the state of the surface atoms were analyzed in detail. These nanospheres showed enhanced electrocatalytic activity towards oxygen reduction reaction than that of pure Au nanoparticles, demonstrated in the low temperature SOFC as cathode. The maximum power density generated is 810 mW cm-2 at 550 °C. This is a promising route of taking advantages the Phase Separation Mechanism to greatly reduce the use of noble metals in the ORR field without sacrificing the electrocatalytic activity.

Top