Sample records for solution-processed bulk heterojunction

  1. Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells

    PubMed Central

    Varotto, Alessandro; Nam, Chang-Yong; Radivojevic, Ivana; Tomé, Joao; Cavaleiro, José A.S.; Black, Charles T.; Drain, Charles Michael

    2010-01-01

    A core phthalocyanine platform allows engineering the solubility properties the band gap; shifting the maximum absorption toward the red. A simple method to increase the efficiency of heterojunction solar cells uses a self-organized blend of the phthalocyanine chromophores fabricated by solution processing. PMID:20136126

  2. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting.

    PubMed

    Perez, Louis A; Chou, Kang Wei; Love, John A; van der Poll, Thomas S; Smilgies, Detlef-M; Nguyen, Thuc-Quyen; Kramer, Edward J; Amassian, Aram; Bazan, Guillermo C

    2013-11-26

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics

    NASA Astrophysics Data System (ADS)

    Morfa, Anthony J.; Rowlen, Kathy L.; Reilly, Thomas H.; Romero, Manuel J.; van de Lagemaat, Jao

    2008-01-01

    Plasmon-active silver nanoparticle layers were included in solution-processed bulk-heterojunction solar cells. Nanoparticle layers were fabricated using vapor-phase deposition on indium tin oxide electrodes. Owing to the increase in optical electrical field inside the photoactive layer, the inclusion of such particle films lead to increased optical absorption and consequently increased photoconversion at solar-conversion relevant wavelengths. The resulting solar energy conversion efficiency for a bulk heterojunction photovoltaic device of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester was found to increase from 1.3%±0.2% to 2.2%±0.1% for devices employing thin plasmon-active layers. Based on six measurements, the improvement factor of 1.7 was demonstrated to be statistically significant.

  4. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  5. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces

    PubMed Central

    Litzov, Ivan; Brabec, Christoph J.

    2013-01-01

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423

  6. Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces.

    PubMed

    Litzov, Ivan; Brabec, Christoph J

    2013-12-10

    Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.

  7. T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell

    NASA Astrophysics Data System (ADS)

    Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel

    2017-07-01

    We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).

  8. Electrospinning Nanofiber Based Organic Solar Cell

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhua; Liu, Ying; Moffa, Maria; Nam, Chang-Yong; Pisignano, Dario; Rafailovich, Miriam

    Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their potential to result in printable, inexpensive solar cells which can be processed onto flexible substrates. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the presence of unfavorable morphological features, including dead ends or isolated domains. Here we MEH-PPV:PVP:PCBM electrospun nanofiber into BHJ solar cell for the active layer morphology optimization. Larger interfacial area between donor and acceptor is abtained with electrospinning method and the high aspect ratio of the MEH-PPV:PVP:PCBM nanofibers allow them to easily form a continuous pathway. The surface morphology is investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrospun nanofibers are discussed as a favorable structure for application in bulk-heterojunction organic solar cells. Electrospinning Nanofiber Based Bulk Heterojunction Organic Solar Cell.

  9. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    DOEpatents

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  10. The photoirradiation induced p-n junction in naphthylamine-based organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Bai, Linyi; Gao, Qiang; Xia, Youyi; Ang, Chung Yen; Bose, Purnandhu; Tan, Si Yu; Zhao, Yanli

    2015-08-01

    The bulk heterojunction (BHJ) plays an indispensable role in organic photovoltaics, and thus has been investigated extensively in recent years. While a p-n heterojunction is usually fabricated using two different donor and acceptor materials such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), it is really rare that such a BHJ is constructed by a single entity. Here, we presented a photoirradiation-induced p-n heterojunction in naphthylamine-based organic photovoltaic cells, where naphthylamine as a typical p-type semiconductor could be oxidized under photoirradiation and transformed into a new semiconductor with the n-type character. The p-n heterojunction was realized using both the remaining naphthylamine and its oxidative product, giving rise to the performance improvement in organic photovoltaic devices. The experimental results show that the power conversion efficiency (PCE) of the devices could be achieved up to 1.79% and 0.43% in solution and thin film processes, respectively. Importantly, this technology using naphthylamine does not require classic P3HT and PCBM to realize the p-n heterojunction, thereby simplifying the device fabrication process. The present approach opens up a promising route for the development of novel materials applicable to the p-n heterojunction.The bulk heterojunction (BHJ) plays an indispensable role in organic photovoltaics, and thus has been investigated extensively in recent years. While a p-n heterojunction is usually fabricated using two different donor and acceptor materials such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), it is really rare that such a BHJ is constructed by a single entity. Here, we presented a photoirradiation-induced p-n heterojunction in naphthylamine-based organic photovoltaic cells, where naphthylamine as a typical p-type semiconductor could be oxidized under photoirradiation and transformed into a new semiconductor with the n-type character. The p-n heterojunction was realized using both the remaining naphthylamine and its oxidative product, giving rise to the performance improvement in organic photovoltaic devices. The experimental results show that the power conversion efficiency (PCE) of the devices could be achieved up to 1.79% and 0.43% in solution and thin film processes, respectively. Importantly, this technology using naphthylamine does not require classic P3HT and PCBM to realize the p-n heterojunction, thereby simplifying the device fabrication process. The present approach opens up a promising route for the development of novel materials applicable to the p-n heterojunction. Electronic supplementary information (ESI) available: Additional synthesis and characterization details. See DOI: 10.1039/c5nr04471e

  11. Phase aggregation and morphology effects on nanocarbon optoelectronics.

    PubMed

    Xie, Yu; Lohrman, Jessica; Ren, Shenqiang

    2014-12-05

    Controllable morphology and interfacial interactions within bulk heterojunction nanostructures show significant effects on optoelectronic device applications. In this study, a nanocarbon heterojunction, consisting of single-walled carbon nanotubes (s-SWCNTs) and fullerene derivatives, is reported by assembling/blending its structures through solution-based processes. A uniform and dense graphene oxide hole transport layer is used to facilitate the photoconversion at a near infrared (NIR) wavelength. Effective interfacial interaction between the s-SWCNTs and fullerene is suggested by the redshifted photoabsorption and nanoscale/micron-scale fluorescence, which is associated with self-assembled nanocarbon morphology.

  12. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  13. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers.

    PubMed

    Jasieniak, Jacek J; Treat, Neil D; McNeill, Christopher R; de Villers, Bertrand J Tremolet; Della Gaspera, Enrico; Chabinyc, Michael L

    2016-05-01

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sol-gel derived ZnO as an electron transport layer (ETL) for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Phukhrambam; Chandel, Tarun; Sharma, Rishi

    2017-05-01

    In this work, we present the study of the fabrication process of the sol-gel derived zinc oxide (ZnO) as an electron transport layer (ETL.). The solution processed inverted bulk heterojunction organic solar cells based on a thin film blend of poly (3-hexylthiophene 2, 5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester is prepared. ZnO thin films are annealed at different temperature to optimize the solar cell performance and their characterization for their structural and optical properties are carried out. We have observed Voc=70mV, Jsc=1.33 µA/cm2 and FF=26% from the inverted heterojunction solar cell.

  15. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.

    PubMed

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60) complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C(60)-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C(60) interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C(60) bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices.

  16. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application

    NASA Astrophysics Data System (ADS)

    Chen, Zhiliang; Yang, Guang; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Ma, Junjie; Wang, Hao; Fang, Guojia

    2017-05-01

    Perovskite solar cells have developed rapidly in recent years as the third generation solar cells. In spite of the great improvement achieved, there still exist some issues such as undesired hysteresis and indispensable high temperature process. In this work, bulk heterojunction perovskite-phenyl-C61-butyric acid methyl ester solar cells have been prepared to diminish hysteresis using a facile two step spin-coating method. Furthermore, high quality tin oxide films are fabricated using pulse laser deposition technique at room temperature without any annealing procedure. The as fabricated tin oxide film is successfully applied in bulk heterojunction perovskite solar cells as a hole blocking layer. Bulk heterojunction devices based on room temperature tin oxide exhibit almost hysteresis-free characteristics with power conversion efficiency of 17.29% and 14.0% on rigid and flexible substrates, respectively.

  17. Enhancement of the inverted polymer solar cells via ZnO doped with CTAB

    NASA Astrophysics Data System (ADS)

    Sivashnamugan, Kundan; Guo, Tzung-Fang; Hsu, Yao-Jane; Wen, Ten-Chin

    2018-02-01

    A facile approach enhancing electron extraction in zinc oxide (ZnO) electron transfer interlayer and improving performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) by adding cetyltrimethylammonium bromide (CTAB) into sol-gel ZnO precursor solution was demonstrated in this work. The power conversion efficiency (PCE) has a 24.1% increment after modification. Our results show that CTAB can dramatically influence optical, electrical and morphological properties of ZnO electron transfer layer, and work as effective additive to enhance the performance of bulk- heterojunction polymer solar cells.

  18. Efficient hybrid solar cell with P3HT:PCBM and Cu2ZnSnS4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Jang, Se-Jung; Thuy Ho, Nhu; Lee, Min Hyung; Kim, Yong Soo

    2017-06-01

    Recently, Cu2ZnSnS4 (CZTS) with band gap about 1.50 eV is predicted to become an ideal light absorption material due to the abundant component elements in the crust being nontoxic and environmentally friendly. However, CZTS solar cells made by high temperature and vacuum-processed are at a perceived cost disadvantage in compared with solution-processed systems such as organic and hybrid solar cells. In this study, we propose a hybrid solar configurations with solution-processed CZTS nanocrystals and P3HT:PCBM bulk heterojunction. The forming double heterojunction, as charge can be separated at both the P3HT:PCBM and CZTS:PCBM interface is attributed to enhance the light harvesting efficiency. As a result, organic solar cells with CZTS nanocrystals show the higher efficiency 3.32 % compare to 2.65 % of reference organic solar cells. A 25 % improvement of power conversion efficiency is obtained by the increasing in short-circuit current and fill factor.

  19. Increased short circuit current in an azafullerene-based organic solar cell.

    PubMed

    Cambarau, Werther; Fritze, Urs F; Viterisi, Aurélien; Palomares, Emilio; von Delius, Max

    2015-01-21

    We report the synthesis of a solution-processable, dodecyloxyphenyl-substituted azafullerene monoadduct (DPC59N) and its application as electron acceptor in bulk heterojunction organic solar cells (BHJ-OSCs). Due to its relatively strong absorption of visible light, DPC59N outperforms PC60BM in respect to short circuit current (JSC) and external quantum efficiency (EQE) in blends with donor P3HT.

  20. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  1. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  2. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

    PubMed

    Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J

    2013-10-21

    Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.

  3. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Predicting vertical phase segregation in polymer-fullerene bulk heterojunction solar cells by free energy analysis.

    PubMed

    Clark, Michael D; Jespersen, Michael L; Patel, Romesh J; Leever, Benjamin J

    2013-06-12

    Blends of poly(3-hexylthiophene) (P3HT) and C61-butyric acid methyl ester (PCBM) are widely used as a model system for bulk heterojunction active layers developed for solution-processable, flexible solar cells. In this work, vertical concentration profiles within the P3HT:PCBM active layer are predicted based on a thermodynamic analysis of the constituent materials and typical solvents. Surface energies of the active layer components and a common transport interlayer blend, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), are first extracted using contact angle measurements coupled with the acid-base model. From this data, intra- and interspecies interaction free energies are calculated, which reveal that the thermodynamically favored arrangement consists of a uniformly blended "bulk" structure capped with a P3HT-rich air interface and a slightly PCBM-rich buried interface. Although the "bulk" composition is solely determined by P3HT:PCBM ratio, composition near the buried interface is dependent on both the blend ratio and interaction free energy difference between solvated P3HT and PCBM deposition onto PEDOT:PSS. In contrast, the P3HT-rich overlayer is independent of processing conditions, allowing kinetic formation of a PCBM-rich sublayer during film casting due to limitations in long-range species diffusion. These thermodynamic calculations are experimentally validated by angle-resolved X-ray photoelectron spectroscopy (XPS) and low energy XPS depth profiling, which show that the actual composition profiles of the cast and annealed films closely match the predicted behavior. These experimentally derived profiles provide clear evidence that typical bulk heterojunction active layers are predominantly characterized by thermodynamically stable composition profiles. Furthermore, the predictive capabilities of the comprehensive free energy approach are demonstrated, which will enable investigation of structurally integrated devices and novel active layer systems including low band gap polymers, ternary systems, and small molecule blends.

  5. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  6. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    PubMed

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing

    2016-03-23

    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  7. Influence of Processing Additives on Charge-Transfer Time Scales and Sound Velocity in Organic Bulk Heterojunction Films.

    PubMed

    Kaake, Loren G; Welch, Gregory C; Moses, Daniel; Bazan, Guillermo C; Heeger, Alan J

    2012-05-17

    The role of processing additives in organic bulk heterojunction thin films was investigated by means of transient absorption spectroscopy. The rate of ultrafast charge transfer was found to increase when a small amount of diiodooctane was used during film formation. In addition, coherent acoustic phonons were observed, and their velocity was determined. A strong correlation between the sound velocity and the charge-transfer time scale was observed, both of which could be explained by a subtle increase in thin film density.

  8. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    PubMed

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a phosphorescent molecule, we demonstrate an increase in the exciton diffusion length of a polymer from 4 to 9 nm. If researchers can identify suitable phosphorescent dopants, this method could be employed with other materials. The carrier transport from the junction to the contacts is markedly different for a bulk heterojunction cell than for planar junction cells. Unlike for bulk heterojunction cells, the open-circuit voltage of planar-junction cells is independent of the contact work functions, as a consequence of the balance of drift and diffusion currents in these systems. This understanding helps to guide the development of new materials (particularly donor materials) that can further boost the efficiency of single-junction cells to 10%. With multijunction architectures, we expect that efficiencies of 12-16% could be attained, at which point organic photovoltaic cells could become an important renewable energy source.

  9. Bulk Heterojunction versus Diffused Bilayer: The Role of Device Geometry in Solution p-Doped Polymer-Based Solar Cells.

    PubMed

    Loiudice, Anna; Rizzo, Aurora; Biasiucci, Mariano; Gigli, Giuseppe

    2012-07-19

    We exploit the effect of molecular p-type doping of P3HT in diffused bilayer (DB) polymer solar cells. In this alternative device geometry, the p-doping is accomplished in solution by blending the F4-TCNQ with P3HT. The p-doping both increases the film conductivity and reduces the potential barrier at the interface with the electrode. This results in an excellent power conversion efficiency of 4.02%, which is an improvement of ∼48% over the p-doped standard bulk heterojunction (BHJ) device. Combined VOC-light intensity dependence measurements and Kelvin probe force microscopy reveal that the DB device configuration is particularly advantageous, if compared to the conventional BHJ, because it enables optimization of the donor and acceptor layers independently to minimize the effect of trapping and to fully exploit the improved transport properties.

  10. Efficiency of bulk-heterojunction organic solar cells

    PubMed Central

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  11. Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Zi Shuai; Sha, Wei E. I.; Choy, Wallace C. H.

    2016-12-01

    Modeling the charge-generation process is highly important to understand device physics and optimize power conversion efficiency of bulk-heterojunction organic solar cells (OSCs). Free carriers are generated by both ultrafast exciton delocalization and slow exciton diffusion and dissociation at the heterojunction interface. In this work, we developed a systematic numerical simulation to describe the charge-generation process by a modified drift-diffusion model. The transport, recombination, and collection of free carriers are incorporated to fully capture the device response. The theoretical results match well with the state-of-the-art high-performance organic solar cells. It is demonstrated that the increase of exciton delocalization ratio reduces the energy loss in the exciton diffusion-dissociation process, and thus, significantly improves the device efficiency, especially for the short-circuit current. By changing the exciton delocalization ratio, OSC performances are comprehensively investigated under the conditions of short-circuit and open-circuit. Particularly, bulk recombination dependent fill factor saturation is unveiled and understood. As a fundamental electrical analysis of the delocalization mechanism, our work is important to understand and optimize the high-performance OSCs.

  12. Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH 3NH 3PbI 3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH 3NH 3PbI 3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded averagemore » PCE of 16.3 ± 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH 3NH 3PbI 3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less

  13. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

    DOE PAGES

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; ...

    2017-05-22

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less

  14. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO 3 (BFO)–CoFe 2O 4 (CFO) bulk heterojunction epitaxially grownmore » on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less

  15. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ying; Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ; Yaacobi-Gross, Nir

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronicmore » devices.« less

  16. Formulation strategies for optimizing the morphology of polymeric bulk heterojunction organic solar cells: a brief review

    NASA Astrophysics Data System (ADS)

    Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany

    2014-01-01

    Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.

  17. Design of organic ternary blends and small-molecule bulk heterojunctions: photophysical considerations

    NASA Astrophysics Data System (ADS)

    Rajesh, Kallarakkal Ramakrishnan; Paudel, Keshab; Johnson, Brian; Hallani, Rawad; Anthony, John; Ostroverkhova, Oksana

    2015-01-01

    We explored relationships between photophysical processes and solar cell characteristics in solution-processable bulk heterojunctions (BHJs), in particular: (1) polymer donor:fullerene acceptor:small-molecule (SM) nonfullerene acceptor, (2) polymer donor:SM donor:SM nonfullerene acceptor, and (3) SM donor:SM nonfullerene or fullerene acceptor. Addition of a nonfullerene SM acceptor to "efficient" polymer:fullerene BHJs led to a reduction in power conversion efficiency (PCE), mostly due to decreased charge photogeneration efficiency and increased disorder. By contrast, addition of an SM donor to "inefficient" polymer:SM nonfullerene acceptor BHJs led to a factor of two to three improvement in the PCE, due to improved charge photogeneration efficiency and transport. In most blends, exciplex formation was observed and correlated with a reduced short-circuit current (Jsc) without negatively impacting the open-circuit voltage (Voc). A factor of ˜5 higher PCE was observed in SM donor:fullerene acceptor BHJs as compared to SMBHJs with the same SM donor but nonfullerene acceptor, due to enhanced charge carrier photogeneration in the blend with fullerene. Our study revealed that the HOMO and LUMO energies of molecules comprising a blend are not reliable parameters for predicting Voc of the blend, and an understanding of the photophysics is necessary for interpreting solar cell characteristics and improving the molecular design of BHJs.

  18. Systematic Investigation of Organic Photovoltaic Cell Charge Injection/Performance Modulation by Dipolar Organosilane Interfacial Layers

    DTIC Science & Technology

    2013-08-13

    performance in bulk- heterojunction (BHJ) organic photovoltaic (OPV) cells, the glass/tin-doped indium oxide (ITO) anodes are modified with a series of...anode in bulk- heterojunction (BHJ) organic photovoltaic cells (OPVs) plays a vital role in enhancing device performance. Appropriately tailored IFLs...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT With the goal of investigating and enhancing anode performance in bulk- heterojunction (BHJ) organic

  19. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Firdaus, Yuliar; Vandenplas, Erwin; Justo, Yolanda; Gehlhaar, Robert; Cheyns, David; Hens, Zeger; Van der Auweraer, Mark

    2014-09-01

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  20. Comparison of the Morphology Development of Polymer-Fullerene and Polymer-Polymer Solar Cells during Solution-Shearing Blade Coating

    DOE PAGES

    Gu, Xiaodan; Yan, Hongping; Kurosawa, Tadanori; ...

    2016-08-22

    Here in this work, the detailed morphology studies of polymer poly(3-hexylthiophene-2,5-diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all-polymer solar cells. The in situ X-ray scattering and optical interferometry and ex situ hard and soft X-ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the exmore » situ grazing incidence X-ray diffraction and soft X-ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.« less

  1. Recent Advances in Morphology Optimization for Organic Photovoltaics.

    PubMed

    Lee, Hansol; Park, Chaneui; Sin, Dong Hun; Park, Jong Hwan; Cho, Kilwon

    2018-06-19

    Organic photovoltaics are an important part of a next-generation energy-harvesting technology that uses a practically infinite pollutant-free energy source. They have the advantages of light weight, solution processability, cheap materials, low production cost, and deformability. However, to date, the moderate photovoltaic efficiencies and poor stabilities of organic photovoltaics impede their use as replacements for inorganic photovoltaics. Recent developments in bulk-heterojunction organic photovoltaics mean that they have almost reached the lower efficiency limit for feasible commercialization. In this review article, the recent understanding of the ideal bulk-heterojunction morphology of the photoactive layer for efficient exciton dissociation and charge transport is described, and recent attempts as well as early-stage trials to realize this ideal morphology are discussed systematically from a morphological viewpoint. The various approaches to optimizing morphologies consisting of an interpenetrating bicontinuous network with appropriate domain sizes and mixed regions are categorized, and in each category, the recent trends in the morphology control on the multilength scale are highlighted and discussed in detail. This review article concludes by identifying the remaining challenges for the control of active layer morphologies and by providing perspectives toward real application and commercialization of organic photovoltaics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tuning of the Morphology and Optoelectronic Properties of ZnO/P3HT/P3HT- b-PEO Hybrid Films via Spray Deposition Method.

    PubMed

    Wang, Kun; Bießmann, Lorenz; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter

    2018-06-20

    The self-assembly of amphiphilic diblock copolymers yields the possibility of using them as a template for tailoring the film morphologies of sol-gel chemistry-derived inorganic electron transport materials, such as mesoporous ZnO and TiO 2 . However, additional steps including etching and backfilling are required for the common bulk heterojunction fabrication process when using insulating diblock copolymers. Here, we use the conducting diblock copolymer poly(3-hexylthiophene)- block-poly(ethylene oxide) (P3HT- b-PEO) in which P3HT acts as charge carrier transport material and light absorber, whereas PEO serves as a template for ZnO synthesis. The initial solution is subsequently spray-coated to obtain the hybrid film. Scanning electron microscopy and grazing-incidence small-angle X-ray scattering measurements reveal a significant change in the morphology of the hybrid films during deposition. Optoelectronic properties illustrate the improved charge separation and charge transfer process. Both the amount of the diblock copolymer and the annealing temperature play an important role in tuning the morphology and the optoelectronic properties. Hybrid films being sprayed from a solution with the ratio of ω ZnO , ω P3HT , and ω P3HT- b-PEO of 2:1:1 and subsequent annealing at 80 °C show the most promising morphology combined with an optimal photoluminescence quenching. Thus, the presented simple, reagent- and energy-saving fabrication method provides a promising approach for a large-scale preparation of bulk heterojunction P3HT/ZnO films on flexible substrates.

  3. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Darwis, D.; Sesa, E.; Farhamza, D.; Iqbal

    2018-05-01

    Bulk heterojunction Organic photovoltaic (OPV) devices are gaining a lot of interest due to their potential for ease of processing and lower manufacturing cost sustainable energy generation. In consequence, the number of studies into the properties and characteristics of organic solar cell devices has been increased to improving their power conversion. A further advancement over past decade has shown that improved efficiency could be obtained by mixed of poly(3 - hexylthiophene) (P3HT) and [1] – phenyl - C61-butyric acid methyl ester (PCBM) as an active layer. A series of optimizations of this P3HT: PCBM blends, such as the mixture ratio variation, the annealing treatments, and solvent treatment, have been emerged to improve the efficiency of the OPV. As a result, significant improvements were achieved. Here, we report the fabrication heterojunction devices of 2.9 % efficiency. This result has been achieved using the configuration of a typical heterojunction solar cell modules consists of layered glass/ITO/PEDOT: PSS/active layer/cathode interlayer

  4. Electro-optical modeling of bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  5. The effect of confinement on the crystalline microstructure of polymer: fullerene bulk heterojunctions

    DOE PAGES

    Ashraf, A.; Dissanayake, D. M. N. M.; Eisaman, M. D.

    2015-07-01

    We investigate the effect of confinement on the coherence length and the crystalline microstructure of the polymer component of polymer: fullerene bulk heterojunction thin films using grazing incidence wide angle x-ray scattering. We find that the polymer crystallite size decreases and the alignment of the molecules along the surface normal increases, as the thin-film thickness is reduced from 920nm to < 20nm and approaches the thin-film confinement regime. Furthermore, we find that the polymer crystallite size near the surface (air interface) is lower than the crystallite size in the bulk or the bottom (substrate interface) of bulk heterojunction films thickermore » than the confinement regime. Variation in polymer crystallite size can cause changes in charge carrier mobility and recombination rates, which in turn affect the performance of bulk heterojunction thin film devices such as photovoltaics and photodetectors« less

  6. Processing of fullerene-single wall carbon nanotube complex for bulk heterojunction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Mitra, Somenath

    2007-12-01

    A fullerene-single wall carbon nanotube (C60-SWCNT) complex is used as a component of the photoactive layer in bulk heterojunction photovoltaic cells. This complex synthesized by microwave-assisted reaction takes advantage of the electron accepting feature of C60 and the high electron transport capability of SWCNTs. In this paper, quantum efficiency enhancement by increasing light absorption and by bringing about appropriate morphological rearrangements via solvent vapor treatment and thermal annealing is presented. The optimum combination of these steps led to an increase in efficiency by as much as 87.5%.

  7. Organic phototransistors with nanoscale phase-separated polymer/polymer bulk heterojunction layers

    NASA Astrophysics Data System (ADS)

    Hwang, Hyemin; Kim, Hwajeong; Nam, Sungho; Bradley, Donal D. C.; Ha, Chang-Sik; Kim, Youngkyoo

    2011-05-01

    Low-cost detectors for sensing photons at a low light intensity are of crucial importance in modern science. Phototransistors can deliver better signals of low-intensity light by electrical amplification, but conventional inorganic phototransistors have a limitation owing to their high temperature processes in vacuum. In this work, we demonstrate organic phototransistors with polymer/polymer bulk heterojunction blend films (mixtures of p-type and n-type semiconducting polymers), which can be fabricated by inexpensive solution processes at room temperature. The key idea here is to effectively exploit hole charges (from p-type polymer) as major signaling carriers by employing p-type transistor geometry, while the n-type polymer helps efficient charge separation from excitons generated by incoming photons. Results showed that the present organic transistors exhibited proper functions as p-type phototransistors with ~4.3 A W-1 responsivity at a low light intensity (1 µW cm-2), which supports their encouraging potential to replace conventional cooled charge coupled devices (CCD) for low-intensity light detection applications.Low-cost detectors for sensing photons at a low light intensity are of crucial importance in modern science. Phototransistors can deliver better signals of low-intensity light by electrical amplification, but conventional inorganic phototransistors have a limitation owing to their high temperature processes in vacuum. In this work, we demonstrate organic phototransistors with polymer/polymer bulk heterojunction blend films (mixtures of p-type and n-type semiconducting polymers), which can be fabricated by inexpensive solution processes at room temperature. The key idea here is to effectively exploit hole charges (from p-type polymer) as major signaling carriers by employing p-type transistor geometry, while the n-type polymer helps efficient charge separation from excitons generated by incoming photons. Results showed that the present organic transistors exhibited proper functions as p-type phototransistors with ~4.3 A W-1 responsivity at a low light intensity (1 µW cm-2), which supports their encouraging potential to replace conventional cooled charge coupled devices (CCD) for low-intensity light detection applications. Electronic supplementary information (ESI) available: XPS spectra of P3HT:F8BT nanolayers and pristine P3HT and F8BT films, HRTEM images of P3HT:F8BT blend film detached from the substrate, and 1D GIXD profiles of P3HT:F8BT nanolayers and PI layer coated on the ITO-glass substrates. See DOI: 10.1039/c0nr00915f

  8. Quinacridone-based molecular donors for solution processed bulk-heterojunction organic solar cells.

    PubMed

    Chen, John Jun-An; Chen, Teresa L; Kim, BongSoo; Poulsen, Daniel A; Mynar, Justin L; Fréchet, Jean M J; Ma, Biwu

    2010-09-01

    New soluble quinacridone-based molecules have been developed as electron donor materials for solution-processed organic solar cells. By functionalizing the pristine pigment core of quinacridone with solubilizing alkyl chains and light absorbing/charge transporting thiophene units, i.e., bithiophene (BT) and thienylbenzo[c][1,2,5]thiadiazolethienyl (BTD), we prepared a series of multifunctional quinacridone-based molecules. These molecular donors show intense absorption in the visible spectral region, and the absorption range and intensity are well-tuned by the interaction between the quinacridone core and the incorporated thiophene units. The thin film absorption edge extends with the expansion of molecular conjugation, i.e., 552 nm for N,N'-di(2-ethylhexyl)quinacridone (QA), 592 nm for 2,9-Bis(5'-hexyl-2,2'-bithiophene)-N,N'-di(2-ethylhexyl)quinacridone (QA-BT), and 637 nm for 4-(5-hexylthiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (QA-BTD). The change of molecular structure also influences the electrochemical properties. Observed from cyclic voltammetry measurements, the oxidation and reduction potentials (vs ferrocene) are 0.7 and -1.83 V for QA, 0.54 and -1.76 V for QA-BT, and 0.45 and -1.68 V for QA-BTD. Uniform thin films can be generated from both single component molecular solutions and blend solutions of these molecules with [6,6]-phenyl C70-butyric acid methyl ester (PC70BM). The blend films exhibit space-charge limited current (SCLC) hole mobilities on the order of 1×10(-4) cm(2) V(-1) S(-1). Bulk heterojunction (BHJ) solar cells using these soluble molecules as donors and PC70BM as the acceptor were fabricated. Power conversion efficiencies (PCEs) of up to 2.22% under AM 1.5 G simulated 1 sun solar illumination have been achieved and external quantum efficiencies (EQEs) reach as high as ∼45%.

  9. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  10. Bulk Heterojunction Solar Cell with Nitrogen-Doped Carbon Nanotubes in the Active Layer: Effect of Nanocomposite Synthesis Technique on Photovoltaic Properties

    PubMed Central

    Keru, Godfrey; Ndungu, Patrick G.; Mola, Genene T.; Nyamori, Vincent O.

    2015-01-01

    Nanocomposites of poly(3-hexylthiophene) (P3HT) and nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized by two methods; specifically, direct solution mixing and in situ polymerization. The nanocomposites were characterized by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray dispersive spectroscopy, UV-Vis spectrophotometry, photoluminescence spectrophotometry (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis, and dispersive surface energy analysis. The nanocomposites were used in the active layer of a bulk heterojunction organic solar cell with the composition ITO/PEDOT:PSS/P3HT:N-CNTS:PCBM/LiF/Al. TEM and SEM analysis showed that the polymer successfully wrapped the N-CNTs. FTIR results indicated good π-π interaction within the nanocomposite synthesized by in situ polymerization as opposed to samples made by direct solution mixing. Dispersive surface energies of the N-CNTs and nanocomposites supported the fact that polymer covered the N-CNTs well. J-V analysis show that good devices were formed from the two nanocomposites, however, the in situ polymerization nanocomposite showed better photovoltaic characteristics.

  11. Solution-based electrical doping of semiconducting polymer films over a limited depth

    NASA Astrophysics Data System (ADS)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Chou, Wen-Fang; Aizawa, Naoya; Larrain, Felipe A.; Wang, Ming; Perrotta, Alberto; Choi, Sangmoo; Graham, Samuel; Bazan, Guillermo C.; Nguyen, Thuc-Quyen; Marder, Seth R.; Kippelen, Bernard

    2017-04-01

    Solution-based electrical doping protocols may allow more versatility in the design of organic electronic devices; yet, controlling the diffusion of dopants in organic semiconductors and their stability has proven challenging. Here we present a solution-based approach for electrical p-doping of films of donor conjugated organic semiconductors and their blends with acceptors over a limited depth with a decay constant of 10-20 nm by post-process immersion into a polyoxometalate solution (phosphomolybdic acid, PMA) in nitromethane. PMA-doped films show increased electrical conductivity and work function, reduced solubility in the processing solvent, and improved photo-oxidative stability in air. This approach is applicable to a variety of organic semiconductors used in photovoltaics and field-effect transistors. PMA doping over a limited depth of bulk heterojunction polymeric films, in which amine-containing polymers were mixed in the solution used for film formation, enables single-layer organic photovoltaic devices, processed at room temperature, with power conversion efficiencies up to 5.9 +/- 0.2% and stable performance on shelf-lifetime studies at 60 °C for at least 280 h.

  12. Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector.

    PubMed

    Kim, Do Young; Ryu, Jiho; Manders, Jesse; Lee, Jaewoong; So, Franky

    2014-02-12

    Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).

  13. Probability density of tunneled carrier states near heterojunctions calculated numerically by the scattering method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Myers, Samuel M.; Modine, Normand A.

    2017-09-01

    The energy-dependent probability density of tunneled carrier states for arbitrarily specified longitudinal potential-energy profiles in planar bipolar devices is numerically computed using the scattering method. Results agree accurately with a previous treatment based on solution of the localized eigenvalue problem, where computation times are much greater. These developments enable quantitative treatment of tunneling-assisted recombination in irradiated heterojunction bipolar transistors, where band offsets may enhance the tunneling effect by orders of magnitude. The calculations also reveal the density of non-tunneled carrier states in spatially varying potentials, and thereby test the common approximation of uniform- bulk values for such densities.

  14. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.

    PubMed

    Liu, Chin-Yi; Kortshagen, Uwe R

    2012-07-07

    Solution-processed bulk heterojunction solar cells from silicon nanocrystals (Si NCs) and poly(3-hexylthiophene) (P3HT) have shown promising power conversion efficiencies. Here we report on an attempt to enhance the performance of Si NC-polymer hybrid solar cells by using poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as a hole conductor, which is expected to yield a higher open circuit voltage than P3HT due to its lower highest occupied molecular orbital (HOMO). Bulk heterojunction solar cells consisting of 3-5 nm silicon nanocrystals (Si NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) have been fabricated. The properties of the hybrid Si NC/MDMO-PPV devices were studied as a function of the Si NC/MDMO-PPV weight ratio. Cells of 58 wt% 3-5 nm Si NCs showed the best overall performance under simulated one-sun AM 1.5 global illumination (100 mW cm(-2)). Compared to composite films of Si NCs and poly(3-hexylthiophene), we indeed observed an improved open circuit voltage but a lower power conversion efficiency from the Si NC/MDMO-PPV devices. The lower efficiency of Si NC/MDMO-PPV is correlated to the lower hole mobility and narrower absorption spectrum of MDMO-PPV compared to P3HT.

  15. Supramolecular core-shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  16. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals.

    PubMed

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-25

    We present a method to synthesize CuO nanorod array/TiO 2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO 2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO 2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO 2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO 2 . In this work, a solar cell with the structure FTO/CuO nanoarray/TiO 2 /Al is successfully fabricated, which exhibits an open-circuit voltage (V oc ) of 0.20 V and short-circuit current density (J sc ) of 0.026 mA cm -2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO 2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO 2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO 2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO 2 . This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO 2 heterojunction solar cells.

  17. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  18. Structural determinants in the bulk heterojunction.

    PubMed

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  19. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    PubMed

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume

    2015-11-11

    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  20. Dynamics of Photoexcitation and Photocatalysis at Nanostructured Carbon Interfaces

    DTIC Science & Technology

    2015-07-14

    nanotubes with a sacrificial polymer and eliminating the polymer using a critical point drying process. This process creates aerogel structures that...Bindl DJ, Jacobberger RM, Wu M-Y, Singha Roy S, Arnold MS, Semiconducting Carbon Nanotube Aerogel Bulk Heterojunction Solar Cells, Small 10 (16), pp...ACS Nano 2015, 9 (1), 564-572. Ye Y, Bindl DJ, Jacobberger RM, Wu M-Y, Singha Roy S, Arnold MS, Semiconducting Carbon Nanotube Aerogel Bulk

  1. Graphene nanoplatelet doping of P3HT:PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance

    NASA Astrophysics Data System (ADS)

    Aïssa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J.; Essehli, Rachid; Mahmoud, Khaled A.

    2018-03-01

    Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date—in particular the low power conversion efficiency (PCE)—has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm-2, a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein.

  2. Graphene nanoplatelet doping of P3HT:PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance.

    PubMed

    Aïssa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J; Essehli, Rachid; Mahmoud, Khaled A

    2018-01-31

    Hybrid organic photovoltaic (OPV) cells based on conjugated polymer photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date-in particular the low power conversion efficiency (PCE)-has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells is mainly attributed to the low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material could be an excellent candidate for assisting charge transport improvement in the active layer of OPV cells, due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of the optoelectronic properties and photovoltaic performance of graphene nanoplatelet (GNP)-doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic-photovoltaic-based device, using PEDOT:PSS on an ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP content, while the photoluminescence showed clear quenching, indicating electron transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer resulted in enhanced PV performance with respect to the reference cell, and the best PV performance was obtained with 3 wt.% of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA cm -2 , a fill factor of 47.12%, and a power conversion efficiency of about 3.61%. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp 2 -bonded carbon therein.

  3. Graphene nanoplatelets doping of P3HT:PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance.

    PubMed

    Aissa, Brahim; Nedil, Mourad; Kroeger, Jens; Ali, Adnan; Isaifan, Rima J; Essehli, Rachid; Mahmoud, Khaled

    2018-01-09

    Hybrid organic photovoltaic (OPV) cells based on conjugated polymers photoactive materials are promising candidates for flexible, high-performance and low-cost energy sources owing to their inexpensive materials, cost-effective processing, and ease of fabrication by simple solution processes. However, the modest PV performance obtained to date -in particular the low power conversion efficiency (PCE)- has impeded the large scale deployment of OPV cells. The low PCE in OPV solar cells has been mainly attributed to low carrier mobility, which is closely correlated to the transport diffusion length of the charge carriers within the photoactive layers. The 2D graphene material can be an excellent candidate for assisting the charge transport improvement in the active layer of OPV cells due to its huge carrier mobility, thermal and chemical stability, and its compatibility with the solution process. In this work, we report on the improvement of optoelectronic properties and photovoltaic performance of graphene nanoplatelets (GNP) doped P3HT:PCBM photoactive blended layers, integrated into a bulk heterojunction (BHJ) organic photovoltaic based device, using PEDOT:PSS on ITO/glass substrate. First, the light absorption capacity was observed to increase with respect to the GNP contents while the photoluminescence showed a clear quenching, indicating electrons transfer between the graphene sheets and the polymeric matrix. Then, the incorporation of GNP into the BHJ active layer has resulted in enhanced PV performance with respect to a reference cell, and the best PV performances were obtained with 3 wt. % of GNP loading, with an open-circuit voltage of 1.24 V, a short-circuit current density value of 6.18 mA/cm2, a fill factor of 47.12 %, and a power conversion efficiency of about 3.61 %. We believe that the obtained results contribute to the development of organic photovoltaic devices and to the understanding of the impact of sp2-bonded carbon therein. © 2018 IOP Publishing Ltd.

  4. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  5. Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics.

    PubMed

    Poe, Ambata M; Della Pelle, Andrea M; Subrahmanyam, Ayyagari V; White, William; Wantz, Guillaume; Thayumanavan, S

    2014-03-18

    A series of acceptor-donor-acceptor molecules containing terminal BODIPY moieties conjugated through the meso position were synthesized. Deep LUMO energy levels and good visible absorption led to their use as acceptors in bulk heterojunction solar cells. Inverted devices were fabricated, reaching efficiencies as high as 1.51%.

  6. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells

    PubMed Central

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells. PMID:25386107

  7. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.

    PubMed

    Tan, Furui; Qu, Shengchun; Zhang, Weifeng; Wang, Zhanguo

    2014-01-01

    A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.

  8. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes ofmore » both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.« less

  9. Photoprecursor Approach Enables Preparation of Well-Performing Bulk-Heterojunction Layers Comprising a Highly Aggregating Molecular Semiconductor.

    PubMed

    Suzuki, Mitsuharu; Yamaguchi, Yuji; Takahashi, Kohei; Takahira, Katsuya; Koganezawa, Tomoyuki; Masuo, Sadahiro; Nakayama, Ken-ichi; Yamada, Hiroko

    2016-04-06

    Active-layer morphology critically affects the performance of organic photovoltaic cells, and thus its optimization is a key toward the achievement of high-efficiency devices. However, the optimization of active-layer morphology is sometimes challenging because of the intrinsic properties of materials such as strong self-aggregating nature or low miscibility. This study postulates that the "photoprecursor approach" can serve as an effective means to prepare well-performing bulk-heterojunction (BHJ) layers containing highly aggregating molecular semiconductors. In the photoprecursor approach, a photoreactive precursor compound is solution-deposited and then converted in situ to a semiconducting material. This study employs 2,6-di(2-thienyl)anthracene (DTA) and [6,6]-phenyl-C71-butyric acid methyl ester as p- and n-type materials, respectively, in which DTA is generated by the photoprecursor approach from the corresponding α-diketone-type derivative DTADK. When only chloroform is used as a cast solvent, the photovoltaic performance of the resulting BHJ films is severely limited because of unfavorable film morphology. The addition of a high-boiling-point cosolvent, o-dichlorobenzene (o-DCB), to the cast solution leads to significant improvement such that the resulting active layers afford up to approximately 5 times higher power conversion efficiencies. The film structure is investigated by two-dimensional grazing-incident wide-angle X-ray diffraction, atomic force microscopy, and fluorescence microspectroscopy to demonstrate that the use of o-DCB leads to improvement in film crystallinity and increase in charge-carrier generation efficiency. The change in film structure is assumed to originate from dynamic molecular motion enabled by the existence of solvent during the in situ photoreaction. The unique features of the photoprecursor approach will be beneficial in extending the material and processing scopes for the development of organic thin-film devices.

  10. Organic-inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity

    NASA Astrophysics Data System (ADS)

    Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung

    2016-03-01

    In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.

  11. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell

    PubMed Central

    Bourgeteau, Tiphaine; Tondelier, Denis; Geffroy, Bernard; Brisse, Romain; Laberty-Robert, Christel; Campidelli, Stéphane; de Bettignies, Rémi; Artero, Vincent; Palacin, Serge; Jousselme, Bruno

    2013-01-01

    An organic solar cell based on a poly-3-hexylthiophene (P3HT): phenyl-C61-butyric acid (PCBM) bulk hetero-junction was directly coupled with molybdenum sulfide resulting in the design of a new type of photocathode for the production of hydrogen. Both the light-harvesting system and the catalyst were deposited by low-cost solution-processed methods, i.e. spin coating and spray coating respectively. Spray-coated MoS3 films are catalytically active in strongly acidic aqueous solutions with the best efficiencies for thicknesses of 40 to 90 nm. The photocathodes display photocurrents higher than reference samples, without catalyst or without coupling with a solar cell. Analysis by gas chromatography confirms the light-induced hydrogen evolution. The addition of titanium dioxide in the MoS3 film enhances electron transport and collection within thick films and therefore the performance of the photocathode. PMID:24404434

  12. Novel Flexible Plastic-Based Solar Cells

    DTIC Science & Technology

    2012-10-19

    Fabrication of newly designed hybrid solar cells that are composed of a electron transport layer ( TiO2 ), a light sensitizing layer (NCs), and a hole...coating and spraying techniques, to produce broad-band light harvesting hybrid solar cells with bulk and layered heterojunction of inorganic...fabrication of hybrid bulk heterojunction photovoltaic cell using a blend film of polymer-inorganic NCs, 2) Fabrication of newly designed hybrid solar

  13. Highly efficient organic solar cells with improved vertical donor-acceptor compositional gradient via an inverted off-center spinning method

    DOE PAGES

    Huang, Jiang; Carpenter, Joshua H.; Li, Chang -Zhi; ...

    2015-12-02

    A novel, yet simple solution fabrication technique to address the trade-off between photocurrent and fill factor in thick bulk heterojunction organic solar cells is described. Lastly, the inverted off-center spinning technique promotes a vertical gradient of the donor–acceptor phase-separated morphology, enabling devices with near 100% internal quantum efficiency and a high power conversion efficiency of 10.95%.

  14. Empirically based device modeling of bulk heterojunction organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Pierre, Adrien; Lu, Shaofeng; Howard, Ian A.; Facchetti, Antonio; Arias, Ana Claudia

    2013-10-01

    An empirically based, open source, optoelectronic model is constructed to accurately simulate organic photovoltaic (OPV) devices. Bulk heterojunction OPV devices based on a new low band gap dithienothiophene- diketopyrrolopyrrole donor polymer (P(TBT-DPP)) are blended with PC70BM and processed under various conditions, with efficiencies up to 4.7%. The mobilities of electrons and holes, bimolecular recombination coefficients, exciton quenching efficiencies in donor and acceptor domains and optical constants of these devices are measured and input into the simulator to yield photocurrent with less than 7% error. The results from this model not only show carrier activity in the active layer but also elucidate new routes of device optimization by varying donor-acceptor composition as a function of position. Sets of high and low performance devices are investigated and compared side-by-side.

  15. Vapor Grown Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Abdussamad Abbas, Hisham

    Perovskite solar cells has been the fastest growing solar cell material till date with verified efficiencies of over 22%. Most groups in the world focuses their research on solution based devices that has residual solvent in the material bulk. This work focuses extensively on the fabrication and properties of vapor based perovskite devices that is devoid of solvents. The initial part of my work focuses on the detailed fabrication of high efficiency consistent sequential vapor NIP devices made using P3HT as P-type Type II heterojunction. The sequential vapor devices experiences device anomalies like voltage evolution and IV hysteresis owing to charge trapping in TiO2. Hence, sequential PIN devices were fabricated using doped Type-II heterojunctions that had no device anomalies. The sequential PIN devices has processing restriction, as organic Type-II heterojunction materials cannot withstand high processing temperature, hence limiting device efficiency. Thereby bringing the need of co-evaporation for fabricating high efficiency consistent PIN devices, the approach has no-restriction on substrates and offers stoichiometric control. A comprehensive description of the fabrication, Co-evaporator setup and how to build it is described. The results of Co-evaporated devices clearly show that grain size, stoichiometry and doped transport layers are all critical for eliminating device anomalies and in fabricating high efficiency devices. Finally, Formamidinium based perovskite were fabricated using sequential approach. A thermal degradation study was conducted on Methyl Ammonium Vs. Formamidinium based perovskite films, Formamidinium based perovskites were found to be more stable. Lastly, inorganic films such as CdS and Nickel oxide were developed in this work.

  16. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    PubMed

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer.

  17. Dithienogermole as a fused electron donor in bulk heterojunction solar cells.

    PubMed

    Amb, Chad M; Chen, Song; Graham, Kenneth R; Subbiah, Jegadesan; Small, Cephas E; So, Franky; Reynolds, John R

    2011-07-06

    We report the synthesis and bulk heterojunction photovoltaic performance of the first dithienogermole (DTG)-containing conjugated polymer. Stille polycondensation of a distannyl-DTG derivative with 1,3-dibromo-N-octyl-thienopyrrolodione (TPD) results in an alternating copolymer which displays light absorption extending to 735 nm, and a higher HOMO level than the analogous copolymer containing the commonly utilized dithienosilole (DTS) heterocycle. When polyDTG-TPD:PC(70)BM blends are utilized in inverted bulk heterojunction solar cells, the cells display average power conversion efficiencies of 7.3%, compared to 6.6% for the DTS-containing cells prepared in parallel under identical conditions. The performance enhancement is a result of a higher short-circuit current and fill factor in the DTG-containing cells, which comes at the cost of a slightly lower open circuit voltage than for the DTS-based cells.

  18. High open-circuit voltage small-molecule p-DTS(FBTTh 2 ) 2.ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance

    DOE PAGES

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; ...

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh 2) 2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh 2) 2:PC 70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh 2) 2:PC 70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to μs) range in combination with multivariate curvemore » resolution analysis of the TA data reveals that generation of free charges is more efficient in the blend with PC 70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to μs charge carrier dynamics in p-DTS(FBTTh 2) 2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh 2) 2:PC 70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less

  19. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability, and film-forming properties. Therefore, OMs are a good choice for solution-processed reproducible OSCs toward scalable commercialized applications. Considerable efforts have been dedicated to developing new OM electron donors and electron acceptors for OSCs. So far, the highest PCEs of solution-processed OSCs based on OM donors and acceptors are 9-10% and 6-7%, respectively. OM materials have become promising alternatives to polymer and/or fullerene materials for efficient and stable OSCs. In this Account, we present a brief survey of the recent developments in solution-processable OM electron donors and acceptors and their application in OSCs. Rational design of OMs with star- and linear-shaped structures based on triphenylamine, benzodithiophene, and indacenodithiophene units and their impacts on device performance are discussed. Structure-property relationships are also proposed. Furthermore, the remaining challenges and the key research directions in the near future are also addressed. In the next years, an interdisciplinary approach involving novel OM materials, especially electron acceptor materials, accurate morphology optimization, and advanced device technologies will probably bring high-efficiency and stable OSCs to final commercialization.

  20. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    PubMed Central

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  1. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOEpatents

    Shtein, Max [Ann Arbor, MI; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2008-10-14

    A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.

  2. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  3. Recombination in polymer-fullerene bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Cowan, Sarah R.; Roy, Anshuman; Heeger, Alan J.

    2010-12-01

    Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature-dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first-order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The “missing 0.3 V” inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open-circuit voltage at room-temperature results from the temperature dependence of the quasi-Fermi levels in the polymer and fullerene domains—a conclusion based on the fundamental statistics of fermions.

  4. Shelf life and outdoor degradation studies of organic bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Gergova, R.; Sendova-Vassileva, M.; Popkirov, G.; Gancheva, V.; Grancharov, G.

    2018-03-01

    We studied the degradation of different types of bulk heterojunction devices, in which the materials comprising the active layer and/or the materials used for the back electrode are varied. The devices are deposited on ITO covered glass and have the structure PEDOT:PSS/BHJ/Me, where PEDOT:PSS is the hole transport layer, BHJ (bulk heterojunction) is the active layer comprising a polymer donor (e.g. PTB7, PCDTBT) and a fullerene derivative acceptor (e.g. PC60BM, PC70BM) deposited by spin coating, Me is the metal back contact, which is either Ag or Al deposited by magnetron sputtering or thermal evaporation. The device performance was monitored after storage in the dark at ambient conditions by following the evolution of the J-V curve over time. Results of real conditions outdoor degradation studies are also presented. The stability of the different solar cell structures studied is compared.

  5. Narrow Gap, High Mobility, and Stable Pi Conjugated Polymers

    DTIC Science & Technology

    2012-09-20

    wide-angle X-ray scattering (2D-WAXS) of P5.1 (extruded at 210oC). This trend is reflected in conventional bulk- heterojunction OPV devices as shown...Additives in Molecular Bulk Heterojunction Solar Cells Using a bithiophene capped, isoindigo core, DAD molecule as the donor phase, and PCBM as the...PCE values of 3.7% as illustrated in Figure 11. Figure 11. Combining interface control using MoOx as an electron transport material and PDMS

  6. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    NASA Astrophysics Data System (ADS)

    Tregnago, G.; Fléchon, C.; Choudhary, S.; Gozalvez, C.; Mateo-Alonso, A.; Cacialli, F.

    2014-10-01

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ˜1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ˜1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  7. Organic photovoltaic devices comprising solution-processed substituted metal-phthalocyanines and exhibiting near-IR photo-sensitivity

    DOEpatents

    McGrath, Dominic V.; Mayukh, Mayank; Placencia, Diogenes; Armstrong, Neal R.

    2016-11-29

    Organic photovoltaic (OPV) devices are disclosed. An exemplary device has first and second electrodes and an organic, photovoltaically active zone located between the first and second electrodes. The photovoltaically active zone includes an organic electron-donor material and an organic electron-acceptor material. The electron-donor material includes one or more trivalent- or tetravalent-metal phthalocyanines with alkylchalcogenide ring substituents, and is soluble in at least one organic solvent. This solubility facilitates liquid-processability of the donor material, including formation of thin-films, on an unlimited scale to form planar and bulk heterojunctions in organic OPVs. These donor materials are photovoltaically active in both visible and near-IR wavelengths of light, enabling more of the solar spectrum, for example, to be applied to producing electricity. Also disclosed are methods for producing the metalated phthalocyanines and actual devices.

  8. Thermally Stable Solution Processed Vanadium Oxide as a Hole Extraction Layer in Organic Solar Cells

    PubMed Central

    Alsulami, Abdullah; Griffin, Jonathan; Alqurashi, Rania; Yi, Hunan; Iraqi, Ahmed; Lidzey, David; Buckley, Alastair

    2016-01-01

    Low-temperature solution-processable vanadium oxide (V2Ox) thin films have been employed as hole extraction layers (HELs) in polymer bulk heterojunction solar cells. V2Ox films were fabricated in air by spin-coating vanadium(V) oxytriisopropoxide (s-V2Ox) at room temperature without the need for further thermal annealing. The deposited vanadium(V) oxytriisopropoxide film undergoes hydrolysis in air, converting to V2Ox with optical and electronic properties comparable to vacuum-deposited V2O5. When s-V2Ox thin films were annealed in air at temperatures of 100 °C and 200 °C, OPV devices showed similar results with good thermal stability and better light transparency. Annealing at 300 °C and 400 °C resulted in a power conversion efficiency (PCE) of 5% with a decrement approximately 15% lower than that of unannealed films; this is due to the relative decrease in the shunt resistance (Rsh) and an increase in the series resistance (Rs) related to changes in the oxidation state of vanadium. PMID:28773356

  9. Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells.

    PubMed

    Nazim, M; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-06-12

    A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (-CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of -5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of -3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of -CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm(2) and open circuit voltage (VOC) of ~0.79 V.

  10. Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells

    PubMed Central

    Nazim, M.; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-01-01

    A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (–CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of –5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of –3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of –CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm2 and open circuit voltage (VOC) of ~0.79 V. PMID:26066557

  11. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    PubMed Central

    Chambon, Sylvain; Derue, Lionel; Lahaye, Michel; Pavageau, Bertrand; Hirsch, Lionel; Wantz, Guillaume

    2012-01-01

    Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8%) and that increasing the thickness up to 15 nm does not change the device performance.

  12. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency.

    PubMed

    Zheng, Zhong; Awartani, Omar M; Gautam, Bhoj; Liu, Delong; Qin, Yunpeng; Li, Wanning; Bataller, Alexander; Gundogdu, Kenan; Ade, Harald; Hou, Jianhui

    2017-02-01

    Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells.

    PubMed

    Liu, Jun; Xue, Yuhua; Gao, Yunxiang; Yu, Dingshan; Durstock, Michael; Dai, Liming

    2012-05-02

    By charge neutralization of carboxylic acid groups in graphene oxide (GO) with Cs(2)CO(3) to afford Cesium-neutralized GO (GO-Cs), GO derivatives with appropriate modification are used as both hole- and electron-extraction layers for bulk heterojunction (BHJ) solar cells. The normal and inverted devices based on GO hole- and GO-Cs electron-extraction layers both outperform the corresponding standard BHJ solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Melt-processing of small molecule organic photovoltaics via bulk heterojunction compatibilization.

    PubMed

    Rahmanudin, Aiman; Yao, Liang; Jeanbourquin, Xavier A; Liu, Yongpeng; Sekar, Arvindh; Ripaud, Emilie; Sivula, Kevin

    2018-05-21

    Melt-processing of organic semiconductors (OSCs) is a promising environmentally-friendly technique that can alleviate dependence on toxic chlorinated solvents. While melt-processed single-component OSC devices ( e.g. field-effect-transistors) have been demonstrated, multi-component bulk heterojunctions (BHJs) for organic photovoltaics (OPVs) remain a challenge. Herein, we demonstrate a strategy that affords tunable BHJ phase segregation and domain sizes from a single-phase homogeneous melt by employing strongly-crystalline small-molecule OSCs together with a customized molecular compatibilizing (MCP) additive. An optimized photoactive BHJ with 50 wt% MCP achieved a device power conversion efficiency of ca. 1% after melting the active layer at 240 °C (15 min, followed by slow cooling) before deposition of the top electrode. BHJ morphology characterization using atomic force and Kelvin probe microscopy, X-ray diffraction, and photo-luminescence measurements further demonstrate the trade-off between free charge generation and transport with respect to MCP loading in the BHJ. In addition, a functional OPV was also obtained from the melt-processing of dispersed micron-sized solid BHJ particles into a smooth and homogeneous thin-film by using the MCP approach. These results demonstrate that molecular compatibilization is a key prerequisite for further developments towards true solvent-free melt-processed BHJ OPV systems.

  15. Anomalous charge storage exponents of organic bulk heterojunction solar cells.

    NASA Astrophysics Data System (ADS)

    Nair, Pradeep; Dwivedi, Raaz; Kumar, Goutam; Dept of Electrical Engineering, IIT Bombay Team

    2013-03-01

    Organic bulk heterojunction (BHJ) devices are increasingly being researched for low cost solar energy conversion. The efficiency of such solar cells is dictated by various recombination processes involved. While it is well known that the ideality factor and hence the charge storage exponents of conventional PN junction diodes are influenced by the recombination processes, the same aspects are not so well understood for organic solar cells. While dark currents of such devices typically show an ideality factor of 1 (after correcting for shunt resistance effects, if any), surprisingly, a wide range of charge storage exponents for such devices are reported in literature alluding to apparent concentration dependence for bi-molecular recombination rates. In this manuscript we critically analyze the role of bi-molecular recombination processes on charge storage exponents of organic solar cells. Our results indicate that the charge storage exponents are fundamentally influenced by the electrostatics and recombination processes and can be correlated to the dark current ideality factors. We believe that our findings are novel, and advance the state-of the art understanding on various recombination processes that dictate the performance limits of organic solar cells. The authors would like to thank the Centre of Excellence in Nanoelectronics (CEN) and the National Centre for Photovoltaic Research and Education (NCPRE), IIT Bombay for computational and financial support

  16. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation.

    PubMed

    Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C

    2009-11-17

    As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to >10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.

  17. Solution-Processable Low-Molecular Weight Extended Arylacetylenes: Versatile p-Type Semiconductors for Field-Effect Transistors and Bulk Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestri, Fabio; Marrocchi, Assunta; Seri, Mirko

    2010-04-08

    We report the synthesis and characterization of a series of five extended arylacetylenes, 9,10-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-anthracene (A-P6t, 1), 9,10-bis-[(p-{[m,p-bis(hexyloxy) phenyl]ethynyl}phenyl)ethynyl]-anthracene (PA-P6t, 2), 4,7-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazole (BTZ-P6t, 5), 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3-benzothiadiazole (TBTZ-P6t, 6), and 7,7'-({[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazol-4,4'-ethynyl)-2,5-thiophene (BTZT-P6t, 7), and two arylvinylenes, 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene (A-P6d, 3), 9,10-bis-[(E)-(p-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}phenyl)vinyl]-anthracene (PA-P6d, 4). Trends in optical absorption spectra and electrochemical redox processes are first described. Next, the thin-film microstructures and morphologies of films deposited from solution under various conditions are investigated, and organic field-effect transistors (OFETs) and bulk heterojunction photovoltaic (OPV) cells fabricated. We find that substituting acetylenic for olefinic linkers on the molecular cores significantly enhances device performance. OFET measurements reveal that allmore » seven of the semiconductors are FET-active and, depending on the backbone architecture, the arylacetylenes exhibit good p-type mobilities (μ up to ~0.1 cm 2 V -1 s -1) when optimum film microstructural order is achieved. OPV cells using [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) as the electron acceptor exhibit power conversion efficiencies (PCEs) up to 1.3% under a simulated AM 1.5 solar irradiation of 100 mW/cm 2. These results demonstrate that arylacetylenes are promising hole-transport materials for p-channel OFETs and promising donors for organic solar cells applications. A direct correlation between OFET arylacetylene hole mobility and OPV performance is identified and analyzed.« less

  18. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    PubMed

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancing the Efficiency of Bulk Heterojunction Solar Cells via Templated Self Assembly

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Li, Hongfei; Akgun, Bulent; Satijia, Sushil; Gersappe, Dilip; Zhu, Yimei; Rafailovich, Miriam

    2013-03-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. The mixture of polythiophene derivatives (donor) and fullerenes (acceptor) is spin coated on substrate as the active layer, and are phase-separated into interconnected domains. However, due to the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes and long path conduction, the power conversion efficiency (PCE) of BHJ solar cell is low. Therefore, morphology control in bulk heterojunction (BHJ) solar cell is considered to be critical for the power conversion efficiency (PCE). Here, we present a novel approach that introduces non-photoactive polymer that organizes the poly(3-hexylthiophene) (P3HT) into columnar phases decorated by [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at the interface. This structure represents a realization of an idealized morphology of an organic solar cell, in which, both exiciton dissociation and the carrier transport are optimized leading to increased power conversion efficiency.

  20. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.

    PubMed

    Cho, Jin Woo; Park, Se Jin; Kim, Jaehoon; Kim, Woong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2012-02-01

    In this study, we developed a novel inorganic thin film solar cell configuration in which bulk heterojunction was formed between indium tin oxide (ITO) nanorods and CuInS(2) (CIS). Specifically, ITO nanorods were first synthesized by the radio frequency magnetron sputtering deposition method followed by deposition of a dense TiO(2) layer and CdS buffer layer using atomic layer deposition and chemical bath deposition method, respectively. The spatial region between the nanorods was then filled with CIS nanoparticle ink, which was presynthesized using the colloidal synthetic method. We observed that complete gap filling was achieved to form bulk heterojunction between the inorganic phases. As a proof-of-concept, solar cell devices were fabricated by depositing an Au electrode on top of the CIS layer, which exhibited the best photovoltaic response with a V(oc), J(sc), FF, and efficiency of 0.287 V, 9.63 mA/cm(2), 0.364, and 1.01%, respectively.

  1. Raman study of bulk-heterojunction morphology in photoactive layers treated with solvent-vapor annealing

    NASA Astrophysics Data System (ADS)

    Onojima, Norio; Ishima, Yasuhisa; Izumi, Daisuke; Takahashi, Kazuyuki

    2018-03-01

    The effect of solvent-vapor annealing (SVA) on bulk-heterojunction morphology in photoactive layers composed of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was analyzed using Raman spectroscopy. We prepared the photoactive layers by electrostatic spray deposition (ESD) and fabricated organic photovoltaic devices with a conventional cell structure. Although postdeposition annealing can be omitted when the photoactive layer is deposited using ESD under dry condition, the surface is relatively rough owing to the existence of a number of droplet traces. The SVA treatment can eliminate such droplet traces, while excessive SVA resulted in a significant decrease in open-circuit voltage. The Raman study of the bulk-heterojunction morphology demonstrated the accumulation of P3HT molecules on the surface during SVA, which induced the recombination of photogenerated charges at the interface of the cathode/photoactive layer and thereby decreased the open-circuit voltage.

  2. Light Harvesting for Organic Photovoltaics

    PubMed Central

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  3. Influence of the morphology of organic heterojunction on the photovoltaic cell performance

    NASA Astrophysics Data System (ADS)

    Podhájecká, K.; Pfleger, J.

    2006-12-01

    We present a series of organic photovoltaic (PV) cells based on the bulk-distributed heterojunction where π -conjugated polymer poly[1-(4-trimethylsilylphenyl)-2-phenylvinylene], PSDPhV, acts as the donor upon photoexcitation and the substituted perylene based low-molecular-weight compound: N,N`-di(pent-3-yl)-perylene-3,4:9,10-bis(dicarboximide), DPe-PTCDI, as the acceptor of photogenerated electrons. According to both absorption spectra and AFM images of the thin films spin-coated from solution of DPe-PTCDI and PSDPhV in toluene, the DPe-PTCDI is molecularly dissolved in conjugated polymer matrix. Upon exposition of layers to toluene vapors, microcrystals of DPe-PTCDI are progressively formed. The influence of the morphology of DPe-PTCDI inside the polymer matrix on PV cell performance is investigated. This paper has been presented at “ECHOS06”, Paris, 28 30 juin 2006.

  4. Physical Modeling and Reliability Mechanisms in High Voltage AIGaN/GaN HFETs

    DTIC Science & Technology

    2013-02-01

    heterojunction field effect transistor speed and stability has been established. The observed dependence of the LO phonon lifetime on the bulk carrier...aggregate, the cumulative data clearly point to the benefits of operation at or near resonance of LO phonon frequency and Plasmon frequency. Heterojunction ...of the structure such as quantum wells as in the case of light emitting diodes and lasers, heterojunction bipolar transistors. The FET case is

  5. Distinguishing the importance of fullerene phase separation from polymer ordering in the performance of low band gap polymer: Bis-fullerene heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huipeng; Hsiao, Yu -Che; Chen, Jihua

    2014-09-16

    It is known, one way to improve power conversion efficiency (PCE) of polymer based bulk-heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis-adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3-hexyl thiophene) (P3HT). However, for the most promising low band-gap polymer (LBP) system, replacing PCBM with ICBA results in poor short-circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as-cast LBP/bis-fullerene BHJ photovoltaics is attempted by adding a co-solvent to the polymer/fullerene solution prior tomore » film deposition. Varying the solubility of polymer and fullerene in the co-solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as-cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co-solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co-solvent is selective to ICBA. Furthermore, the resultant morphology improves PCE by up to 246%. Finally, a quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.« less

  6. Polymer-Polymer Förster Resonance Energy Transfer Significantly Boosts the Power Conversion Efficiency of Bulk-Heterojunction Solar Cells.

    PubMed

    Gupta, Vinay; Bharti, Vishal; Kumar, Mahesh; Chand, Suresh; Heeger, Alan J

    2015-08-01

    Optically resonant donor polymers can exploit a wider range of the solar spectrum effectively without a complicated tandem design in an organic solar cell. Ultrafast Förster resonance energy transfer (FRET) in a polymer-polymer system that significantly improves the power conversion efficiency in bulk heterojunction polymer solar cells from 6.8% to 8.9% is demonstrated, thus paving the way to achieving 15% efficient solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

    PubMed

    Tsang, Sai-Wing; Chen, Song; So, Franky

    2013-05-07

    Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers.

    PubMed

    Nam, Sungho; Shin, Minjung; Park, Soohyeong; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo

    2012-11-21

    We report the improved performance of all-polymer solar cells with bulk heterojunction nanolayers of an electron-donating polymer (poly(3-hexylthiophene) (P3HT)) and an electron-accepting polymer (poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), which were both doped with 4-ethylbenzenesulfonic acid (EBSA). To choose the doping ratio of P3HT for all-polymer solar cells, various EBSA doping ratios (0, 1, 3, 5, 10, 20 wt%) were tested by employing optical absorption spectroscopy, photoluminescence spectroscopy, photoelectron yield spectroscopy, and space-charge-limited current (SCLC) mobility measurement. The doping reaction of P3HT with EBSA was followed by observing the colour change in solutions. The final doping ratio for P3HT was chosen as 1 wt% from the best hole mobility measured in the thickness direction, while that for F8BT was fixed as 10 wt% (F8BT-EBSA). The polymer:polymer solar cells with bulk heterojunction nanolayers of P3HT-EBSA (EBSA-doped P3HT) and F8BT-EBSA (EBSA-doped F8BT) showed greatly improved short circuit current density (J(SC)) and open circuit voltage (V(OC)), compared to the undoped solar cells. As a result, the power conversion efficiency (PCE) was enhanced by ca. 300% for the 6 : 4 (P3HT-EBSA : F8BT-EBSA) composition and ca. 400% for the 8 : 2 composition. The synchrotron-radiation grazing incidence angle X-ray diffraction (GIXD) measurement revealed that the crystallinity of the doped nanolayers significantly increased by EBSA doping owing to the formation of advanced phase segregation morphology, as supported by the surface morphology change measured by atomic force microscopy. Thus the improved PCE can be attributed to the enhanced charge transport by the formation of permanent charges and better charge percolation paths by EBSA doping.

  9. Double-heterojunction nanorod light-responsive LEDs for display applications.

    PubMed

    Oh, Nuri; Kim, Bong Hoon; Cho, Seong-Yong; Nam, Sooji; Rogers, Steven P; Jiang, Yiran; Flanagan, Joseph C; Zhai, You; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Cho, Youn Kyoung; Hur, Gyum; Zhang, Jieqian; Trefonas, Peter; Rogers, John A; Shim, Moonsub

    2017-02-10

    Dual-functioning displays, which can simultaneously transmit and receive information and energy through visible light, would enable enhanced user interfaces and device-to-device interactivity. We demonstrate that double heterojunctions designed into colloidal semiconductor nanorods allow both efficient photocurrent generation through a photovoltaic response and electroluminescence within a single device. These dual-functioning, all-solution-processed double-heterojunction nanorod light-responsive light-emitting diodes open feasible routes to a variety of advanced applications, from touchless interactive screens to energy harvesting and scavenging displays and massively parallel display-to-display data communication. Copyright © 2017, American Association for the Advancement of Science.

  10. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenekhe, Samson A.; Ginger, David S.; Cao, Guozhong

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigatemore » charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO 2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.« less

  11. Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs

    NASA Astrophysics Data System (ADS)

    Bano, N.; Hussain, I.; Soomro, M. Y.; EL-Naggar, A. M.; Albassam, A. A.

    2018-05-01

    Improving luminance efficiency and colour purity are the most important challenges for zinc oxide (ZnO)-organic hybrid heterojunction light emitting diodes (LEDs), affecting their large area applications. If ZnO-organic hybrid heterojunction white LEDs are fabricated by a hydrothermal method, it is difficult to obtain pure and stable blue emission from PFO due to the presence of an undesirable green emission. In this paper, we present an inverted-structure ZnO-organic hybrid heterojunction LED to avoid green emission from PFO, which mainly originates during device processing. With this configuration, each ZnO nanorod (NR) forms a discrete p-n junction; therefore, large-area white LEDs can be designed without compromising the junction area. The configuration used for this novel structure is glass/ZnO NRs/PFO/PEDOT:PSS/L-ITO, which enables the development of efficient, large-area and low-cost hybrid heterojunction LEDs. Inverted-structure ZnO-organic hybrid heterojunction white LEDs offer several improvements in terms of brightness, size, colour, external quantum efficiency and a wider applicability as compared to normal architecture LEDs.

  12. Theoretical insights into multiscale electronic processes in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei

    Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.

  13. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer.

    PubMed

    Sun, Weihai; Li, Yunlong; Ye, Senyun; Rao, Haixia; Yan, Weibo; Peng, Haitao; Li, Yu; Liu, Zhiwei; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin; Bian, Zuqiang; Huang, Chunhui

    2016-05-19

    During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid ( PSS) as the hole transport material (HTM), the hydrophilicity of the PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a facile solution-processed method was introduced into the inverted planar heterojunction perovskite solar cells. After the optimization of the devices, a champion PCE of 17.1% was obtained with an open circuit voltage (Voc) of 0.99 V, a short-circuit current (Jsc) of 23.2 mA cm(-2) and a fill factor (FF) of 74.4%. Furthermore, the unencapsulated device cooperating with the CuOx film exhibited superior performance in the stability test, compared to the device involving the PSS layer, indicating that CuOx could be a promising HTM for replacing PSS in inverted planar heterojunction perovskite solar cells.

  14. Room-temperature preparation of trisilver-copper-sulfide/polymer based heterojunction thin film for solar cell application

    NASA Astrophysics Data System (ADS)

    Lei, Yan; Yang, Xiaogang; Gu, Longyan; Jia, Huimin; Ge, Suxiang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi

    2015-04-01

    Solar cells devices based on inorganic/polymer heterojunction can be a possible solution to harvest solar energy and convert to electric energy with high efficiency through a cost-effective fabrication. The solution-process method can be easily used to produce large area devices. Moreover, due to the intrinsic different charge separation, diffusion or recombination in various semiconductors, the interfaces between each component may strongly influence the inorganic/polymer heterojunction performance. Here we prepared a n-type Ag3CuS2 (Eg = 1.25 eV) nanostructured film through a room-temperature element reaction process, which was confirmed as direct bandgap semiconductor through density function theory simulation. This Ag3CuS2 film was spin-coated with an organic semiconducting poly(3-hexythiophene) (P3HT) or polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) film, which formed an inorganic/polymer heterojunction. After constructing it to a solar cell device, the power conversion efficiencies of 0.79% and 0.31% were achieved with simulated solar illumination on Ag3CuS2/P3HT and Ag3CuS2/PTB7, respectively. A possible mechanism was discussed and we showed the charge separation at interface of inorganic and polymer semiconductors played an important role.

  15. Potential effect of CuInS2/ZnS core-shell quantum dots on P3HT/PEDOT:PSS heterostructure based solar cell

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, S. M.

    2018-07-01

    Nanostructured quantum dots (QDs) are quite promising in the solar cell application due to quantum confinement effect. QDs possess multiple exciton generation and large surface area. The environment friendly CuInS2/ZnS core-shell QDs were prepared by solvothermal method. Thus, the 3 nm average sized CuInS2/ZnS QDs were employed in the bulk heterojunction device and the active blend layer consisting of the P3HT and CuInS2/ZnS QDs was investigated. The energy level information of CuInS2/ZnS QDs as an electron acceptor was explored by ultra violet photoelectron spectroscopy. Bulk heterojunction hybrid device of ITO/PEDOT:PSS/P3HT: (CuInS2/ZnS QDs)/ZnO/Ag was designed by spin coating approach and its electrical characterization was investigated by solar simulator. Current density - voltage characteristics shows the enhancement in power conversion efficiency with increasing concentration of CuInS2/ZnS QDs in bulk heterojunction device.

  16. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOEpatents

    Shtein, Max [Princeton, NJ; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2008-09-02

    A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.

  17. Morphology Control for Fully Printable Organic-Inorganic Bulk-heterojunction Solar Cells Based on a Ti-alkoxide and Semiconducting Polymer.

    PubMed

    Kato, Takehito; Oinuma, Chihiro; Otsuka, Munechika; Hagiwara, Naoki

    2017-01-10

    The photoactive layer of a typical organic thin-film bulk-heterojunction (BHJ) solar cell commonly uses fullerene derivatives as the electron-accepting material. However, fullerene derivatives are air-sensitive; therefore, air-stable material is needed as an alternative. In the present study, we propose and describe the properties of Ti-alkoxide as an alternative electron-accepting material to fullerene derivatives to create highly air-stable BHJ solar cells. It is well-known that controlling the morphology in the photoactive layer, which is constructed with fullerene derivatives as the electron acceptor, is important for obtaining a high overall efficiency through the solvent method. The conventional solvent method is useful for high-solubility materials, such as fullerene derivatives. However, for Ti-alkoxides, the conventional solvent method is insufficient, because they only dissolve in specific solvents. Here, we demonstrate a new approach to morphology control that uses the molecular bulkiness of Ti-alkoxides without the conventional solvent method. That is, this method is one approach to obtain highly efficient, air-stable, organic-inorganic bulk-heterojunction solar cells.

  18. Synthesis of a low-band-gap small molecule based on acenaphthoquinoxaline for efficient bulk heterojunction solar cells.

    PubMed

    Mikroyannidis, J A; Kabanakis, A N; Kumar, Anil; Sharma, S S; Vijay, Y K; Sharma, G D

    2010-08-03

    A novel small molecule (SM) with a low-band-gap based on acenaphthoquinoxaline was synthesized and characterized. It was soluble in polar solvents such as N,N-dimethylformamide and dimethylacetamide. SM showed broad absorption curves in both solution and thin films with a long-wavelength maximum at 642 nm. The thin film absorption onset was located at 783 nm, which corresponds to an optical band gap of 1.59 eV. SM was blended with PCBM to study the donor-acceptor interactions in the blended film morphology and the photovoltaic response of the bulk heterojunction (BHJ) devices. The cyclic voltammetry measurements of the materials revealed that the HOMO and LUMO levels of SM are well aligned with those of PCBM, allowing efficient photoinduced charge transfer and suitable open circuit voltage, leading to overall power conversion efficiencies (PCEs) of approximately 2.21 and 3.23% for devices with the as-cast and thermally annealed blended layer, respectively. The increase in the PCE with the thermally annealed blend is mainly attributed to the improvement in incident photon to current efficiency (IPCE) and short circuit photocurrent (J(sc)). Thermal annealing leads to an increase in both the crystallinity of the blend and hole mobility, which improves the PCE.

  19. Solution-processable pyrite FeS(2) nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection.

    PubMed

    Wang, Di-Yan; Jiang, You-Ting; Lin, Chih-Cheng; Li, Shao-Sian; Wang, Yaw-Tyng; Chen, Chia-Chun; Chen, Chun-Wei

    2012-07-03

    A heterojunction photodiode with NIR photoresponse using solution processable pyrite FeS(2) nanocrystal ink is demonstrated which has the advantages of earth-abundance and non-toxicity. The device consists of a FeS(2) nanocrystal (NC) thin film sandwiched with semiconducting metal oxides with a structure of ITO/ZnO/FeS(2) NC/MoO(3) /Au, which exhibits an excellent photoresponse with a spectral response extended to NIR wavelengths of up to 1150 nm and a high photocurrent/dark current ratio of up to 8000 at -1 V under AM1.5 illumination (100 mW cm(-2) ). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    PubMed

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  1. Role of Near Substrate and Bulk Polymer Morphology on Out-of-Plane Space-Charge Limited Hole Mobility.

    PubMed

    Turner, Johnathan; Gadisa, Abay

    2016-12-07

    Charge transport is a central issue in all types of organic electronic devices. In organic films, charge transport is crucially limited by film microstructure and the nature of the substrate/organic interface interactions. In this report, we discuss the influence of active layer thickness on space-charge limited hole transport in pristine polymer and polymer/fullerene bulk heterojunction thin films (∼15-300 nm) in a diode structure. According to the results, the out-of-plane hole mobility in pristine polymers is sensitive to the degree of polymer chain aggregation. Blending the polymers with a fullerene molecule does not change the trend of hole mobility if the polymer tends to make an amorphous structure. However, employing an aggregating polymer in a bulk heterojunction blend gives rise to a marked difference in charge carrier transport behavior compared to the pristine polymer and this difference is sensitive to active layer thickness. In aggregating polymer films, the thickness-dependent interchain interaction was found to have direct impact on hole mobility. The thickness-dependent mobility trend was found to correspond well with the trend of fill factors of corresponding bulk heterojunction solar cells. This investigation has a vital implication for material design and the development of efficient organic electronic devices, including solar cells and light-emitting diodes.

  2. Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells.

    PubMed

    Chen, Hsiu-Cheng; Lin, Shu-Wei; Jiang, Jian-Ming; Su, Yu-Wei; Wei, Kung-Hwa

    2015-03-25

    In this study, we employed polyethylenimine-doped sol-gel-processed zinc oxide composites (ZnO:PEI) as efficient electron transport layers (ETL) for facilitating electron extraction in inverted polymer solar cells. Using ultraviolet photoelectron spectroscopy, synchrotron grazing-incidence small-angle X-ray scattering and transmission electron microscopy, we observed that ZnO:PEI composite films' energy bands could be tuned considerably by varying the content of PEI up to 7 wt %-the conduction band ranged from 4.32 to 4.0 eV-and the structural order of ZnO in the ZnO:PEI thin films would be enhanced to align perpendicular to the ITO electrode, particularly at 7 wt % PEI, facilitating electron transport vertically. We then prepared two types of bulk heterojunction systems-based on poly(3-hexylthiophene) (P3HT):phenyl-C61-butryric acid methyl ester (PC61BM) and benzo[1,2-b:4,5-b́]dithiophene-thiophene-2,1,3-benzooxadiazole (PBDTTBO):phenyl-C71-butryric acid methyl ester (PC71BM)-that incorporated the ZnO:PEI composite layers. When using a composite of ZnO:PEI (93:7, w/w) as the ETL, the power conversion efficiency (PCE) of the P3HT:PC61BM (1:1, w/w) device improved to 4.6% from a value of 3.7% for the corresponding device that incorporated pristine ZnO as the ETL-a relative increase of 24%. For the PBDTTBO:PC71BM (1:2, w/w) device featuring the same amount of PEI blended in the ETL, the PCE improved to 8.7% from a value of 7.3% for the corresponding device that featured pure ZnO as its ETL-a relative increase of 20%. Accordingly, ZnO:PEI composites can be effective ETLs within organic photovoltaics.

  3. Visible Light Communication System Using an Organic Bulk Heterojunction Photodetector

    PubMed Central

    Arredondo, Belén; Romero, Beatriz; Pena, José Manuel Sánchez; Fernández-Pacheco, Agustín; Alonso, Eduardo; Vergaz, Ricardo; de Dios, Cristina

    2013-01-01

    A visible light communication (VLC) system using an organic bulk heterojunction photodetector (OPD) is presented. The system has been successfully proven indoors with an audio signal. The emitter consists of three commercial high-power white LEDs connected in parallel. The receiver is based on an organic photodetector having as active layer a blend of poly(3-hexylthiophene) (P3HT) and phenyl C61-butyric acid methyl ester (PCBM). The OPD is opto-electrically characterized, showing a responsivity of 0.18 A/W and a modulation response of 790 kHz at −6 V. PMID:24036584

  4. The role of the hole-extraction layer in determining the operational stability of a polycarbazole:fullerene bulk-heterojunction photovoltaic device

    NASA Astrophysics Data System (ADS)

    Bovill, E.; Scarratt, N.; Griffin, J.; Yi, H.; Iraqi, A.; Buckley, A. R.; Kingsley, J. W.; Lidzey, D. G.

    2015-02-01

    We have made a comparative study of the relative operational stability of bulk-heterojunction organic photovoltaic (OPV) devices utilising different hole transport layers (HTLs). OPV devices were fabricated based on a blend of the polymer PCDTBT with the fullerene PC70BM, and incorporated the different HTL materials PEDOT:PSS, MoOx and V2O5. Following 620 h of irradiation by light from a solar simulator, we find that devices using the PEDOT:PSS HTL retained the highest efficiency, having a projected T80 lifetime of 14 500 h.

  5. Measuring the complete cross-cell carrier mobility distributions in bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Seifter, Jason; Sun, Yanming; Choi, Hyosung; Lee, Byoung Hoon; Heeger, Alan

    2015-03-01

    Carbon nanotube-enabled, vertical, organic field effect transistors (CN-VFETs) based on the small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) have demonstrated high current, low-power operation suitable for driving active matix organic light emitting diode (AMOLED) displays. This performance is achieved without the need for costly high-resolution patterning, despite the low mobility of the organic semiconductor, by employing sub-micron channel widths, defined in the vertical devices by the thickness of the semiconducting layer. Replacing the thermally evaporated small molecule semiconductor with a solution-processed polymer would possibly further simplify the fabrication process and reduce manufacturing cost. Here we investigate several polymer systems as wide bandgap semiconducting channel layers for potentially air stable and transparent CN-VFETs. The field effect mobility and optical transparency of the polymer layers are determined, and the performance and air stability of CN-VFET devices are measured. A. S. gratefully acknowledges support from the National Science Foundation under DMR-1156737.

  6. Photoprecursor approach as an effective means for preparing multilayer organic semiconducting thin films by solution processes

    PubMed Central

    Yamaguchi, Yuji; Suzuki, Mitsuharu; Motoyama, Takao; Sugii, Shuhei; Katagiri, Chiho; Takahira, Katsuya; Ikeda, Shinya; Yamada, Hiroko; Nakayama, Ken-ichi

    2014-01-01

    The vertical composition profile of active layer has a major effect on the performance of organic photovoltaic devices (OPVs). While stepwise deposition of different materials is a conceptually straightforward method for controlled preparation of multi-component active layers, it is practically challenging for solution processes because of dissolution of the lower layer. Herein, we overcome this difficulty by employing the photoprecursor approach, in which a soluble photoprecursor is solution-deposited then photoconverted in situ to a poorly soluble organic semiconductor. This approach enables solution-processing of the p-i-n triple-layer architecture that has been suggested to be effective in obtaining efficient OPVs. We show that, when 2,6-dithienylanthracene and a fullerene derivative PC71BM are used as donor and acceptor, respectively, the best p-i-n OPV affords a higher photovoltaic efficiency than the corresponding p-n device by 24% and bulk-heterojunction device by 67%. The photoprecursor approach is also applied to preparation of three-component p-i-n films containing another donor 2,6-bis(5′-(2-ethylhexyl)-(2,2′-bithiophen)-5-yl)anthracene in the i-layer to provide a nearly doubled efficiency as compared to the original two-component p-i-n system. These results indicate that the present approach can serve as an effective means for controlled preparation of well-performing multi-component active layers in OPVs and related organic electronic devices. PMID:25413952

  7. Organic photosensitive devices

    DOEpatents

    Peumans, Peter; Forrest, Stephen R.

    2013-01-22

    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  8. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltagemore » but also enhanced the short-circuit current density owing to an improved electron transport.« less

  9. Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells.

    PubMed

    Huh, Yoon Ho; Bae, In-Gon; Jeon, Hong Goo; Park, Byoungchoo

    2016-10-31

    We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

  10. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    NASA Astrophysics Data System (ADS)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  11. Vertical nanowire heterojunction devices based on a clean Si/Ge interface.

    PubMed

    Chen, Lin; Fung, Wayne Y; Lu, Wei

    2013-01-01

    Different vertical nanowire heterojunction devices were fabricated and tested based on vertical Ge nanowires grown epitaxially at low temperatures on (111) Si substrates with a sharp and clean Si/Ge interface. The nearly ideal Si/Ge heterojuctions with controlled and abrupt doping profiles were verified through material analysis and electrical characterizations. In the nSi/pGe heterojunction diode, an ideality factor of 1.16, subpicoampere reverse saturation current, and rectifying ratio of 10(6) were obtained, while the n+Si/p+Ge structure leads to Esaki tunnel diodes with a high peak tunneling current of 4.57 kA/cm(2) and negative differential resistance at room temperature. The large valence band discontinuity between the Ge and Si in the nanowire heterojunctions was further verified in the p+Si/pGe structure, which shows a rectifying behavior instead of an Ohmic contact and raises an important issue in making Ohmic contacts to heterogeneously integrated materials. A raised Si/Ge structure was further developed using a self-aligned etch process, allowing greater freedom in device design for applications such as the tunneling field-effect transistor (TFET). All measurement data can be well-explained and fitted with theoretical models with known bulk properties, suggesting that the Si/Ge nanowire system offers a very clean heterojunction interface with low defect density, and holds great potential as a platform for future high-density and high-performance electronics.

  12. 3D reconstruction modeling of bulk heterojunction organic photovoltaic cells: Effect of the complexity of the boundary on the morphology

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Jin; Jeong, Daun; Kim, SeongMin; Choi, Yeong Suk; Ihn, Soo-Ghang; Yun, Sungyoung; Lim, Younhee; Lee, Eunha; Park, Gyeong-Su

    2016-02-01

    Although the morphology of the active layer in bulk heterojunction organic photovoltaic (BHJ-OPV) cells is critical for determining the quantum efficiency (QE), predicting the real QE for a 3-dimensional (3D) morphology has long been difficult because structural information on the composition complexity of donor (D): acceptor (A) blends with small domain size is limited to 2D observations via various image-processing techniques. To overcome this, we reconstruct the 3D morphology by using an isotropic statistical approach based on 2D energy-filtered transmission electron microscopy (EF-TEM) images. This new reconstruction method is validated to obtain the internal QE by using a dynamic Monte Carlo simulation in the BHJ-OPV system with different additives such as 4 vol% 1-chloronaphthalene (CN) and 4 vol% 1,8-diiodooctane (DIO) (compared to the case of no additive); the resulting trend is compared with the experimental QE. Therefore, our developed method can be used to predict the real charge transport performance in the OPV system accurately.

  13. Thin film solar cells grown by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  14. The prominent photoinduced voltage effect of as-prepared macroscopically long Ag core/Ni shell nanoheterojunctions.

    PubMed

    Sun, Jia-Lin; Zhao, Xingchen; Zhu, Jia-Lin

    2008-02-27

    Macroscopically long Ag core/Ni shell nanoheterojunctions have been well prepared by a dynamic growth approach. The structure characterized in detail by scanning electron microscopy reveals that the Ag nanowire bundles are wrapped in Ni nanoshields and form multicore coaxial cable frames. Notable photoinduced voltage with a fine repeatability, for irradiation with a laser, is exhibited compared with the case for bulk Ag pole/Ni shell heterojunctions and Ag nanowire bundle/bulk Ni heterojunctions. The prominent photoinduced voltage and the substantial metal nanoscale Ohmic interconnects provided by this kind of nanoheterojunction may have a wide range of applications in the future.

  15. Planar versus bulk heterojunction perovskite microstructures: Impact of morphology on photovoltaic properties and recombination dynamics

    NASA Astrophysics Data System (ADS)

    Singh, Ranbir; Shukla, Vivek Kumar

    2018-05-01

    In this work, we compare the planar and bulk heterojunction (BHJ) perovskite thin films for their morphologies, photovoltaic properties, and recombination dynamics. The BHJ perovskite thin films were prepared with the addition of fullerene derivative [6, 6]-Phenyl-C60 butyric acid methyl ester (PC60BM). The addition of PC60BM in perovskite provides a pinhole free film with high absorption coefficient and better charge transfer. The solar cells fabricated with BHJ perovskite exhibits power conversion efficiency (PCE) of 13.5%, with remarkably increased short-circuit current density (JSC) of 20.1 mAcm-2 and reduced recombination rate.

  16. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzia, Vivi; Institute of Microengineering and Nanoelectronics; Umar, Akrajas Ali

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured bymore » current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.« less

  17. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction

    NASA Astrophysics Data System (ADS)

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-01

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  18. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  19. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    PubMed

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor-acceptor bulk heterojunction.

    PubMed

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-11

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate-adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2':5',2″:5″,2″'-quaterthiophene (4T), a 4T:TAT donor-acceptor bulk heterojunction with a considerable HOMO-level offset at the donor-acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  1. Three-Phase Morphology Evolution in Sequentially Solution-Processed Polymer Photodetector: Toward Low Dark Current and High Photodetectivity.

    PubMed

    Wang, Hanyu; Xing, Shen; Zheng, Yifan; Kong, Jaemin; Yu, Junsheng; Taylor, André D

    2018-01-31

    Sequentially solution-processed polymer photodetectors (SSP PPDs) based on poly(3-hexylthiophene-2,5-diyl) (P3HT)/[6,6]-phenyl C 71 -butyric acid methyl ester (PC 71 BM) are fabricated by depositing the top layers of PC 71 BM from an appropriate cosolvent of 2-chlorophenol (2-CP)/o-dichlorobenzene (ODCB) onto the predeposited bottom layers of P3HT. By adjusting the ratio of 2-CP/ODCB in the top PC 71 BM layers, the resulting SSP PPD shows a decreased dark current and an increased photocurrent, leading to a maximum detectivity of 1.23 × 10 12 Jones at a wavelength of 550 nm. This value is 5.3-fold higher than that of the conventional bulk heterojunction PPD. Morphology studies reveal that the PC 71 BM partially penetrates the predeposited P3HT layer during the spin-coating process, resulting in an optimal three-phase morphology with one well-mixed interdiffusion P3HT/PC 71 BM phase in the middle of the bulk and two pure phases of P3HT and PC 71 BM at the two electrode sides. We show that the pure phases form high Schottky barriers (>2.0 eV) at the active layer/electrodes interface and efficiently block unfavorable reverse charge carrier injection by significantly decreasing the dark current. The interdiffussion phase enlarges the donor-acceptor interfacial area leading to a large photocurrent. We also reveal that the improved performance of SSP PPDs is also due to the enhanced optical absorption, improved P3HT crystallinity, increased charge carrier mobilities, and suppressed bimolecular recombination.

  2. Fast Printing and In-Situ Morphology Observation of Organic Photovoltaics using Slot-Die Coating

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Ferdous, Sunzida; Wang, Cheng; Hexamer, Alexander; Russell, Thomas; Cheng Wang Collaboration; Thomas Russell Team

    2014-03-01

    The solvent-processibility of polymer semiconductors is a key advantage for the fabrication of large area, organic bulk-heterojunction (BHJ) photovoltaic devices. Most reported power conversion efficiencies (PCE) are based on small active areas, fabricated by spin-coating technique. In general, this does not reflect device fabrication in an industrial setting. To realize commercial viability, devices need to be fabricated in a roll-to-roll fashion. The evolution of the morphology associated with different processing parameters, like solvent choice, concentration and temperature, needs to be understood and controlled. We developed a mini slot-die coater, to fabricate BHJ devices using various low band gap polymers mixed with phenyl-C71-butyric acid methyl ester (PCBM). Solvent choice, processing additives, coating rate and coating temperatures were used to control the final morphology. Efficiencies comparable to lab-setting spin-coated devices are obtained. The evolution of the morphology was monitored by in situ scattering measurements, detecting the onset of the polymer chain packing in solution that led to the formation of a fibrillar network in the film.

  3. Interfacial and Electrode Modifications in P3HT:PC61BM based Organic Solar Cells: Devices, Processing and Characterization

    NASA Astrophysics Data System (ADS)

    Das, Sayantan

    The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious attention owing to the use of inexpensive light-weight materials, exhibiting high mechanical flexibility and compatibility with low temperature roll-to-roll manufacturing techniques on flexible substrates. The most widely studied material to date is the blend of regioregular P3HT and PC61BM used as donor and acceptor materials. The object of this study was to investigate and improve the performance/stability of the organic solar cells by use of inexpensive materials. In an attempt to enhance the efficiency of organic solar cells, we have demonstrated the use of hexamethyldisilazane (HMDS) modified indium tin oxide (ITO) electrode in bulk heterojunction solar cell structure The device studies showed a significant enhancement in the short-circuit current as well as in the shunt resistance on use of the hexamethyldisilazane (HMDS) layer. In another approach a p-type CuI hole-transport layer was utilized that could possibly replace the acidic PEDOT:PSS layer in the fabrication of high-efficiency solar cells. The device optimization was done by varying the concentration of CuI in the precursor solution which played an important role in the efficiency of the solar cell devices. Recently a substantial amount of research has been focused on identifying suitable interfacial layers in organic solar cells which has efficient charge transport properties. It was illustrated that a thin layer of silver oxide interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The optoelectronic properties and morphological features of indium-free ZnO/Ag/MoOx electrodes was also studied. Organic solar cells on these composite electrodes revealed good optical and electrical properties, making them a promising alternative indium free and PEDOT:PSS-free organic solar cells. Lastly, inverted solar cells utilizing zinc oxide and yttrium doped zinc oxide electron transport was also created and their device properties revealed that optimum annealing conditions and yttrium doping was essential to obtain high efficiency solar cells.

  4. Hydrogen effects on the electroluminescence of n-ZnO nanorod/p-GaN film heterojunction light-emitting diodes.

    PubMed

    Fang, Fang; Zhao, Dongxu; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2010-07-07

    Through a facile low-temperature solution process, vertically n-type ZnO nanorod arrays were grown on a GaN film to form a n-ZnO nanorod/p-GaN film heterojunction. A study of the electroluminescence (EL) characteristics of the heterojunction in air and in air with 2000 ppm hydrogen revealed the sensitivity of such a device to the surrounding atmosphere. The additional hydrogen shallow donors increased the effective electron concentration in ZnO nanorods and the EL recombination zone changed from the ZnO nanorods to the GaN film, which can be identified visually from the color change.

  5. Overcoming the efficiency limitations of SnS2 nanoparticle-based bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Tam Nguyen Truong, Nguyen; Kieu Trinh, Thanh; Thanh Hau Pham, Viet; Smith, Ryan P.; Park, Chinho

    2018-04-01

    This study examined the effects of heat treatment, the electron transport layer, and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) incorporation on the performance of hybrid bulk heterojunction (BHJ) solar cells composed of tin disulfide (SnS2) nanoparticles (NPs) and low band gap energy polymers poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b3,4-b‧]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PBT7). Inserting an electron transport layer (ETL) (i.e., ZnO) on the top of the photoactive layer improved the surface morphology of the photoactive layer, which led to an improvement in charge transport. Moreover, adding a suitable amount of PCBM to the SnS2/polymer active layer enhanced the device performance, such as short circuit current density (J sc) and power conversion efficiency (PCE). In particular, adding 0.5 mg of PCBM to the composite solution led to a 25% and 1.5% improvement in the J sc value and PCE, respectively. The enhanced performance was due mainly to the improvements in the surface morphology of the photoactive layer, charge carrier mobility within the donor-acceptor interface, and carrier collection efficiency at the cathode.

  6. Spatially resolved multicolor CsPbX 3 nanowire heterojunctions via anion exchange

    DOE PAGES

    Dou, Letian; Lai, Minliang; Kley, Christopher S.; ...

    2017-06-26

    Halide perovskites are promising semiconductor materials for solution-processed optoelectronic devices. Their strong ionic bonding nature results in highly dynamic crystal lattices, inherently allowing rapid ion exchange at the solid–vapor and solid–liquid interface. In this paper, we show that the anion-exchange chemistry can be precisely controlled in single-crystalline halide perovskite nanomaterials when combined with nanofabrication techniques. We demonstrate spatially resolved multicolor CsPbX 3 (X = Cl, Br, I, or alloy of two halides) nanowire heterojunctions with a pixel size down to 500 nm with the photoluminescence tunable over the entire visible spectrum. In addition, the heterojunctions show distinct electronic states acrossmore » the interface, as revealed by Kelvin probe force microscopy. Finally, these perovskite heterojunctions represent key building blocks for high-resolution multicolor displays beyond current state-of-the-art technology as well as high-density diode/transistor arrays.« less

  7. Dynamic characteristics of organic bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Babenko, S. D.; Balakai, A. A.; Moskvin, Yu. L.; Simbirtseva, G. V.; Troshin, P. A.

    2010-12-01

    Transient characteristics of organic bulk-heterojunction solar cells have been studied using pulsed laser probing. An analysis of the photoresponse waveforms of a typical solar cell measured by varying load resistance within broad range at different values of the bias voltage provided detailed information on the photocell parameters that characterize electron-transport properties of active layers. It is established that the charge carrier mobility is sufficient to ensure high values of the fill factor (˜0.6) in the obtained photocells. On approaching the no-load voltage, the differential capacitance of the photocell exhibits a sixfold increase as compared to the geometric capacitance. A possible mechanism of recombination losses in the active medium is proposed.

  8. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in POLY(3-HEXYLTHIOPHENE)-BLOCK-OLIGO(ANTHRACENE-9,10-DIYL)

    NASA Astrophysics Data System (ADS)

    Strain, Jacob; Rathnayake, Hemali; Liu, Jinjun

    2017-06-01

    Semiconducting polymer nanostructures featuring bulk heterojunction (BHJ) architecture are promising light harvesters in photovoltaic (PV) devices because they allow control of individual domain sizes, internal structure and ordering, as well as well-defined contact between the electron donor and acceptor. Power conversion efficiency (PCE) of PV devices strongly depends on photoinduced dynamics. Understanding and optimizing photoinduced charge transfer processes in BHJ's hence help improve the performance of PV devices and increase their PCE in particular. We have investigated the photoinduced dynamics of a block polymer containing moieties of poly-3-hexylthiophene (P3HT) and polyanthracene (PANT) in solution and in solid state with femtosecond transient absorption (TA) spectroscopy. The dynamics of the polymer PANT alone are also studied as a control. The TA spectra of PANT includes a strong excited state absorption centered at 610 (nm) along with a stimulated emission signal stretching past the detection limit into the UV region which is absent in the monomer's spectra in the detection window. The block polymer's TA spectra strongly resembles that of P3HT but a noticeable positive pull on P3HT's stimulated emission signal residing at 575-620 (nm) is indicative of the excited state absorption of PANT in the adjacent spectral region. The doubling of the lifetime exciton delocalization on the block polymer versus P3HT alone have alluded that the lifetime of P3HT is extended by the covalent addition of PANT. The current spectroscopic investigation represents an interesting example of photoinduced processes in systems with complex energy level structure. Studies of dependence of change generation and separation on composition, dimension, and morphology of the heterojunctions are in process.

  9. Flow-enhanced solution printing of all-polymer solar cells

    DOE PAGES

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less

  10. Flow-enhanced solution printing of all-polymer solar cells

    PubMed Central

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528

  11. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    PubMed

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.

    PubMed

    Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander

    2016-03-28

    The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.

  13. Performances and impedance spectroscopy of Small-molecule bulk heterojunction solar cells based on PtOEP: PCBM

    NASA Astrophysics Data System (ADS)

    Abuelwafa, A. A.; Dongol, M.; El-Nahass, M. M.; Soga, T.

    2018-03-01

    Small-molecule bulk heterojunction (SBHJ) solar cells based on platinum octaethylporphyrin (PtOEP) as donor material and phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor were fabricated using spin coating techniques with weight ratios from 1:0.1 to 1:9. The formation of charge transfer complex CTC in the PtOEP: PCBM blend was specified from the redshift of the PtOEP absorption peak after blending with PCBM. The photovoltaic performance for PtOEP: PCBM blends were investigated using the external quantum efficiency (EQE) besides the current density-voltage (J-V) characteristics under illumination100 mW/cm2 (AM1.5G). The BHJ solar cell with PtOEP: PCBM ratio of 1:9 exhibited the best performance. The impedance spectroscopy (IS) was examined in the frequency range from 25 Hz to 1 MHz. The equivalent circuit model was evaluated in details to evaluate the impedance spectroscopy parameters. Dielectric constant {ɛ ^' }, dielectric loss {ɛ ^' ' }} and dielectric modulus were included and discussed in terms of dielectric polarization processes. Dielectric modulus displays the non-Debye relaxation in PtOEP: PCBM BHJ solar cells.

  14. Role of Crystallization in the Morphology of Polymer: Non-fullerene Acceptor Bulk Heterojunctions

    DOE PAGES

    O’Hara, Kathryn A.; Ostrowski, David P.; Koldemir, Unsal; ...

    2017-05-22

    Many high efficiency organic photovoltaics use fullerene-based acceptors despite their high production cost, weak optical absorption in the visible range, and limited synthetic variability of electronic and optical properties. To circumvent this deficiency, non-fullerene small-molecule acceptors have been developed that have good synthetic flexibility, allowing for precise tuning of optoelectronic properties, leading to enhanced absorption of the solar spectrum and increased open-circuit voltages ( V OC). We examined the detailed morphology of bulk heterojunctions of poly(3-hexylthiophene) and the small-molecule acceptor HPI-BT to reveal structural changes that lead to improvements in the fill factor of solar cells upon thermal annealing. Themore » kinetics of the phase transformation process of HPI-BT during thermal annealing were investigated through in situ grazing incidence wide-angle X-ray scattering studies, atomic force microscopy, and transmission electron microscopy. The HPI-BT acceptor crystallizes during film formation to form micron-sized domains embedded within the film center and a donor rich capping layer at the cathode interface reducing efficient charge extraction. Thermal annealing changes the surface composition and improves charge extraction. In conclusion, this study reveals the need for complementary methods to investigate the morphology of BHJs.« less

  15. Role of Crystallization in the Morphology of Polymer: Non-fullerene Acceptor Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Kathryn A.; Ostrowski, David P.; Koldemir, Unsal

    Many high efficiency organic photovoltaics use fullerene-based acceptors despite their high production cost, weak optical absorption in the visible range, and limited synthetic variability of electronic and optical properties. To circumvent this deficiency, non-fullerene small-molecule acceptors have been developed that have good synthetic flexibility, allowing for precise tuning of optoelectronic properties, leading to enhanced absorption of the solar spectrum and increased open-circuit voltages ( V OC). We examined the detailed morphology of bulk heterojunctions of poly(3-hexylthiophene) and the small-molecule acceptor HPI-BT to reveal structural changes that lead to improvements in the fill factor of solar cells upon thermal annealing. Themore » kinetics of the phase transformation process of HPI-BT during thermal annealing were investigated through in situ grazing incidence wide-angle X-ray scattering studies, atomic force microscopy, and transmission electron microscopy. The HPI-BT acceptor crystallizes during film formation to form micron-sized domains embedded within the film center and a donor rich capping layer at the cathode interface reducing efficient charge extraction. Thermal annealing changes the surface composition and improves charge extraction. In conclusion, this study reveals the need for complementary methods to investigate the morphology of BHJs.« less

  16. Organic photovoltaic devices with a single layer geometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Aizawa, Naoya; Larrain, Felipe A.; Chou, Wen-Fang; Perrotta, Alberto; Graham, Samuel; Kippelen, Bernard

    2016-09-01

    Organic photovoltaics (OPV) can lead to a low cost and short energy payback time alternative to existing photovoltaic technologies. However, to fulfill this promise, power conversion efficiencies must be improved and simultaneously the architecture of the devices and their processing steps need to be further simplified. In the most efficient devices to date, the functions of photocurrent generation, and hole/electron collection are achieved in different layers adding complexity to the device fabrication. In this talk, we present a novel approach that yields devices in which all these functions are combined in a single layer. Specifically, we report on bulk heterojunction devices in which amine-containing polymers are first mixed in the solution together with the donor and acceptor materials that form the active layer. A single-layer coating yields a self-forming bottom electron-collection layer comprised of the amine-containing polymer (e.g. PEIE). Hole-collection is achieved by subsequent immersion of this single layer in a solution of a polyoxometalate (e.g. phosphomolybdic acid (PMA)) leading to an electrically p-doped region formed by the diffusion of the dopant molecules into the bulk. The depth of this doped region can be controlled with values up to tens of nm by varying the immersion time. Devices with a single 500 nm-thick active layer of P3HT:ICBA processed using this method yield power conversion efficiency (PCE) values of 4.8 ± 0.3% at 1 sun and demonstrate a performance level superior to that of benchmark three-layer devices with separate layers of PEIE/P3HT:ICBA/MoOx (4.1 ± 0.4%). Devices remain stable after shelf lifetime experiments carried-out at 60 °C over 280 h.

  17. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.

    PubMed

    Kang, Hongkyu; Kim, Geunjin; Kim, Junghwan; Kwon, Sooncheol; Kim, Heejoo; Lee, Kwanghee

    2016-09-01

    The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficient inverted bulk-heterojunction polymer solar cells with self-assembled monolayer modified zinc oxide.

    PubMed

    Kim, Wook Hyun; Lyu, Hong-Kun; Han, Yoon Soo; Woo, Sungho

    2013-10-01

    The performance of poly(3-hexylthiophen) (P3HT) and [6, 6]phenyl C61 butyric acid methyl ester ([60]PCBM)-based inverted bulk-heterojunction (BHJ) polymer solar cells (PSCs) is enhanced by the modification of zinc oxide (ZnO)/BHJ interface with carboxylic-acid-functionalized self-assembled monolayers (SAMs). Under simulated solar illumination of AM 1.5 (100 mW/cm2), the inverted devices fabricated with SAM-modified ZnO achieved an enhanced power conversion efficiency (PCE) of 3.34% due to the increased fill factor and photocurrent density as compared to unmodified cells with PCE of 2.60%. This result provides an efficient method for interface engineering in inverted BHJ PSCs.

  19. Efficient Bulk Heterojunction CH3NH3PbI3-TiO2 Solar Cells with TiO2 Nanoparticles at Grain Boundaries of Perovskite by Multi-Cycle-Coating Strategy.

    PubMed

    Shao, Jun; Yang, Songwang; Liu, Yan

    2017-05-17

    A novel bulk heterojunction (BHJ) perovskite solar cell (PSC), where the perovskite grains act as donor and the TiO 2 nanoparticles act as acceptor, is reported. This efficient BHJ PSC was simply solution processed from a mixed precursor of CH 3 NH 3 PbI 3 (MAPbI 3 ) and TiO 2 nanoparticles. With dissolution and recrystallization by multi-cycle-coating, a unique composite structure ranging from a MAPbI 3 -TiO 2 -dominated layer on the substrate side to a pure perovskite layer on the top side is formed, which is beneficial for the blocking of possible contact between TiO 2 and the hole transport material at the interface. Scanning electron microscopy clearly shows that TiO 2 nanoparticles accumulate along the grain boundaries (GBs) of perovskite. The TiO 2 nanoparticles at the GBs quickly extract and reserve photogenerated electrons before they transport into the perovskite phase, as described in the multitrapping model, retarding the electron-hole recombination and reducing the energy loss, resulting in increased V OC and fill factor. Moreover, the pinning effect of the TiO 2 nanoparticles at the GBs from the strong bindings between TiO 2 and MAPbI 3 suppresses massive ion migration along the GBs, leading to improved operational stability and diminished hysteresis. Photoluminescence (PL) quenching and PL decay confirm the efficient exciton dissociation on the heterointerface. Electrochemical impedance spectroscopy and open-circuit photovoltage decay measurements show the reduced recombination loss and improved carrier lifetime of the BHJ PSCs. This novel strategy of device design effectively combines the benefits of both planar and mesostructured architectures whilst avoiding their shortcomings, eventually leading to a high PCE of 17.42% under 1 Sun illumination. The newly proposed approach also provides a new way to fabricate a TiO 2 -containing perovskite active layer at a low temperature.

  20. Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation.

    PubMed

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S; Lu, Xinhui; Zhao, Ni

    2014-06-09

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain.

  1. The Importance of End Groups for Solution-Processed Small-Molecule Bulk-Heterojunction Photovoltaic Cells.

    PubMed

    Duan, Ruomeng; Cui, Yong; Zhao, Yanfei; Li, Chen; Chen, Long; Hou, Jianhui; Wagner, Manfred; Baumgarten, Martin; He, Chang; Müllen, Klaus

    2016-05-10

    End groups in small-molecule photovoltaic materials are important owing to their strong influence on molecular stability, solubility, energy levels, and aggregation behaviors. In this work, a series of donor-acceptor pentads (D2 -A-D1 -A-D2 ) were designed and synthesized, aiming to investigate the effect of the end groups on the materials properties and photovoltaic device performance. These molecules share identical central A-D1 -A triads (with benzodithiophene as D1 and 6-carbonyl-thieno[3,4-b]thiophene as A), but with various D2 end groups composed of alkyl-substituted thiophene (T), thieno[3,2-b]thiophene (TT), and 2,2'-bithiophene (BT). The results indicate a relationship between conjugated segment/alkyl chain length of the end groups and the photovoltaic performance, which contributes to the evolving molecular design principles for high efficiency organic solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ternary solution-processed organic solar cells incorporating 2D materials

    NASA Astrophysics Data System (ADS)

    Stylianakis, Minas M.; Konios, Dimitrios; Petridis, Constantinos; Kakavelakis, George; Stratakis, Emmanuel; Kymakis, Emmanuel

    2017-12-01

    Recently, the study of ternary organic solar cells (OSCs) has attracted the efforts of the scientific community, leading to significantly higher performance due to the enhanced harvesting of incoming irradiation. Here, for the first time, and in order to promote this OSC architecture, we review the progress implemented by the application of two-dimensional (2D) materials in the field of blend bulk heterojunction ternary OSCs. Power conversion efficiency (PCE) improvements of the order of 40% compared to the reference binary devices, and PCEs in excess of 8% have been reported by incorporating graphene-based or other 2D materials as a third element inside the active layer. These OSCs combine the synergetic advantages of ternary devices and the superb properties of the 2D material family. In conclusion, the incorporation of the unique properties of graphene and other 2D materials inside the active layer opens up a very promising pathway in the design and construction of high-performance, simply fabricated and low- cost photovoltaic devices.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain

    The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 ± 0.37% with no PDMS to 2.16 ± 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC 61BM) as the electron acceptor. PDMS is shown to havemore » a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm 2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.« less

  4. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Zongyuan; Yu, Lingmin; Guo, Fen; Liu, Sheng; Qi, Lijun; Shan, Minyu; Fan, Xinhui

    2017-11-01

    A highly sensitive NO2 gas sensor based on ZnO nanowalls decorated rGO nanosheets was fabricated using a thermal reduction and soft solution process. The highly developed interconnected microporous networks of ZnO nanowalls were anchored homogeneously on the surface of reduced graphene oxide (rGO). Sensors fabricated with heterojunction structures achieved a higher response (S = 9.61) and shorter response-recovery (25 s, 15 s) behavior at room temperature to 50 ppm level NO2 effectively in contrast to those sensors based on net ZnO nanowalls or rGO layers. The stability and selectivity of ZnO/rGO heterojunction were carried out. Meanwhile, the effects of humidity on ZnO/rGO heterojunction gas sensor were investigated. The more preferable sensing performance of ZnO/rGO heterojunction to NO2 was discussed. It can be surmised that this NO2 gas sensor has potential for use as a portable room temperature gas sensor.

  5. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society

  6. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    NASA Astrophysics Data System (ADS)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  7. Growth dynamics of SiGe nanowires by the vapour-liquid-solid method and its impact on SiGe/Si axial heterojunction abruptness.

    PubMed

    Pura, J L; Periwal, P; Baron, T; Jiménez, J

    2018-08-31

    The vapour-liquid-solid (VLS) method is by far the most extended procedure for bottom-up nanowire growth. This method also allows for the manufacture of nanowire axial heterojunctions in a straightforward way. To do this, during the growth process, precursor gases are switched on/off to obtain the desired change in the nanowire composition. Using this technique, axially heterostructured nanowires can be grown, which are crucial for the fabrication of electronic and optoelectronic devices. SiGe/Si nanowires are compatible with complementary metal oxide semiconductor (CMOS) technology, which improves their versatility and the possibility of integration with current electronic technologies. Abrupt heterointerfaces are fundamental for the development and correct operation of electronic and optoelectronic devices. Unfortunately, the VLS growth of SiGe/Si heterojunctions does not provide abrupt transitions because of the high solubility of group IV semiconductors in Au, with the corresponding reservoir effect that precludes the growth of sharp interfaces. In this work, we studied the growth dynamics of SiGe/Si heterojunctions based on already developed models for VLS growth. A composition map of the Si-Ge-Au liquid alloy is proposed to better understand the impact of the growing conditions on the nanowire growth process and the heterojunction formation. The solution of our model provides heterojunction profiles that are in good agreement with the experimental measurements. Finally, an in-depth study of the composition map provides a practical approach to the drastic reduction of heterojunction abruptness by reducing the Si and Ge concentrations in the catalyst droplet. This converges with previous approaches, which use catalysts aiming to reduce the solubility of the atomic species. This analysis opens new paths to the reduction of heterojunction abruptness using Au catalysts, but the model can be naturally extended to other catalysts and semiconductors.

  8. Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives

    DOE PAGES

    Mok, Jorge W.; Kipp, Dylan; Hasbun, Luis R.; ...

    2016-08-23

    We demonstrated that the addition of block copolymers to binary donor–acceptor blends represents an effective approach to target equilibrium, co-continuous morphologies of interpenetrating donors and acceptors in our recent study. We report a study of the impact of all-conjugated poly(thieno[3,4-b]-thiophene-co-benzodithiophene)-b-polynaphthalene diimide (PTB7-b-PNDI) block copolymer additives on the electronic properties and photovoltaic performance of bulk heterojunction organic photovoltaic active layers comprised of a PTB7 donor and a phenyl-C61-butyric acid methyl ester (PCBM61) acceptor. We find that small amounts of BCP additives lead to improved performance due to a large increase in the device open-circuit voltage (VOC), and the VOC is pinnedmore » to this higher value for higher BCP additive loadings. Such results contrast prior studies of ternary blend OPVs where either a continuous change in VOC or a value of VOC pinned to the lowest value is observed. We hypothesize and provide evidence in the form of device and morphology analyses that the impact of VOC is likely due to the formation of a parallel bulk heterojunction made up of isolated PCBM and PNDI acceptor domains separated by intermediate PTB7 donor domains. Our work demonstrates that all-conjugated block copolymers can be utilized as additives to both dictate morphology and modulate the electronic properties of the active layer.« less

  9. X-Ray Nanoscopy of a Bulk Heterojunction

    NASA Astrophysics Data System (ADS)

    Patil, Nilesh; Torbjørn, Eirik; Skjønsfjell, Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner

    2016-07-01

    Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.

  10. X-Ray Nanoscopy of a Bulk Heterojunction.

    PubMed

    Patil, Nilesh; Skjønsfjell, Eirik Torbjørn Bakken; Van den Brande, Niko; Chavez Panduro, Elvia Anabela; Claessens, Raf; Guizar-Sicairos, Manuel; Van Mele, Bruno; Breiby, Dag Werner

    2016-01-01

    Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution. Moreover, using a fast-scanning calorimetry chip setup, the nano-morphological changes caused by repeated thermal annealing applied to the same sample could be monitored. X-ray ptychography resolves to better than 100 nm the phase-segregated domains of electron donor and electron acceptor materials over a large field of view within the active layers. The quantitative phase contrast images further allow us to estimate the local volume fraction of PCBM across the photovoltaically active layers. The volume fraction gradient for different regions provides insight on the PCBM diffusion across the depletion zone surrounding PCBM aggregates. Phase contrast X-ray microscopy is under rapid development, and the results presented here are promising for future studies of organic-organic blends, also under in situ conditions, e.g., for monitoring the structural stability during UV-Vis irradiation.

  11. Parallel bulk heterojunction photovoltaics based on all-conjugated block copolymer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok, Jorge W.; Kipp, Dylan; Hasbun, Luis R.

    We demonstrated that the addition of block copolymers to binary donor–acceptor blends represents an effective approach to target equilibrium, co-continuous morphologies of interpenetrating donors and acceptors in our recent study. We report a study of the impact of all-conjugated poly(thieno[3,4-b]-thiophene-co-benzodithiophene)-b-polynaphthalene diimide (PTB7-b-PNDI) block copolymer additives on the electronic properties and photovoltaic performance of bulk heterojunction organic photovoltaic active layers comprised of a PTB7 donor and a phenyl-C61-butyric acid methyl ester (PCBM61) acceptor. We find that small amounts of BCP additives lead to improved performance due to a large increase in the device open-circuit voltage (VOC), and the VOC is pinnedmore » to this higher value for higher BCP additive loadings. Such results contrast prior studies of ternary blend OPVs where either a continuous change in VOC or a value of VOC pinned to the lowest value is observed. We hypothesize and provide evidence in the form of device and morphology analyses that the impact of VOC is likely due to the formation of a parallel bulk heterojunction made up of isolated PCBM and PNDI acceptor domains separated by intermediate PTB7 donor domains. Our work demonstrates that all-conjugated block copolymers can be utilized as additives to both dictate morphology and modulate the electronic properties of the active layer.« less

  12. Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices

    DTIC Science & Technology

    2010-01-01

    lem, particularly in the bulk heterojunction photovol- taic devices. As the building blocks for CNTs and other carbon nanomaterials , the two...known carbon nanomaterials .25 Compared with CNTs, the one-atom thickness and 2-D carbon net- work of graphene lead to a much higher specific sur- face...Nanotube Hybrid Films for Supercapacitors . J. Phys. Chem. Lett. 2010, 1, 467–470. 28. Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai., L. Biocompatible Graphene

  13. Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby

    DOEpatents

    Devaney, Walter E.

    1987-08-04

    Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

  14. Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells

    PubMed Central

    2012-01-01

    With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight into the complex defect landscape in ZnO, and it also shows how the different defect types can be manipulated. We have determined the emission wavelengths for the two main defects which make up the visible band, the oxygen vacancy emission wavelength at approximately 530 nm and the zinc vacancy emission wavelength at approximately 630 nm. The precise nature of the defect landscape in the bulk of the nanorods is found to be unimportant to photovoltaic cell performance although the surface structure is more critical. Annealing of the nanorods is optimum at 300°C as this is a sufficiently high temperature to decompose Zn(OH)2 formed at the surface of the nanorods during electrodeposition and sufficiently low to prevent ITO degradation. PMID:23186280

  15. A way for studying the impact of PEDOT:PSS interface layer on carrier transport in PCDTBT:PC71BM bulk hetero junction solar cells by electric field induced optical second harmonic generation measurement

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Abdullah, Shahino Mah; Taguchi, Dai; Sulaiman, Khaulah; Iwamoto, Mitsumasa

    2015-04-01

    Electric-field-induced optical second-harmonic generation (EFISHG) measurement was employed to study the impact of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) interface layer on the carrier transport mechanism of the PCDTBT:PC71BM bulk heterojunction (BHJ) organic solar cells (OSCs). We revealed that the electric fields in the PCDTBT and PC71BM were allowed to be measured individually by choosing fundamental laser wavelengths of 1000 nm and 1060 nm, respectively, in dark and under illumination. The results showed that the direction of the internal electric fields in the PCDTBT:PC71BM BHJ layer is reversed by introducing the PEDOT:PSS layer, and this results in longer electron transport time in the BHJ layer. We conclude that TR-EFISHG can be used as a novel way for studying the impact of interfacial layer on the transport of electrons and holes in the bulk-heterojunction OSCs.

  16. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou

    2017-08-01

    Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.

  17. Method to analyze the ability of bulk heterojunctions of organic and hybrid solar cells to dissociate photogenerated excitons and collect free carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basta, M.; Dusza, M.; Palewicz, M.

    2014-05-07

    We have developed a model to predict and analyze the photocurrent generation and resulting charge carrier Dissociation and Collection Efficiency (DCE) through reflectivity and quantum efficiency spectra. The DCE is regarded as a function of the morphology and exciton transport properties of the bulk heterojunction and is therefore a way to investigate the final properties of photoactive layer in a solar cell. Method proposed allows determination of the efficiency at which photogenerated excitons are dissociated in a working device with respect to the position in the cell at which the generation occurs. The method is tested on our results asmore » well as on a number of results already present in the literature.« less

  18. Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells

    DOE PAGES

    Wen, Jianguo; Miller, Dean J.; Chen, Wei; ...

    2014-06-20

    Here, traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/ PC 61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC 61BM polymeric solar cells at multiple length scales and expands ourmore » understanding of optimal device performance providing insight for the design of even higher performance cells.« less

  19. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    PubMed

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  20. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer.

    PubMed

    Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y

    2015-01-27

    An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fused dithienogermolodithiophene low band gap polymers for high-performance organic solar cells without processing additives.

    PubMed

    Zhong, Hongliang; Li, Zhe; Deledalle, Florent; Fregoso, Elisa Collado; Shahid, Munazza; Fei, Zhuping; Nielsen, Christian B; Yaacobi-Gross, Nir; Rossbauer, Stephan; Anthopoulos, Thomas D; Durrant, James R; Heeney, Martin

    2013-02-13

    We report the synthesis of a novel ladder-type fused ring donor, dithienogermolodithiophene, in which two thieno[3,2-b]thiophene units are held coplanar by a bridging dialkyl germanium. Polymerization of this extended monomer with N-octylthienopyrrolodione by Stille polycondensation afforded a polymer, pDTTG-TPD, with an optical band gap of 1.75 eV combined with a high ionization potential. Bulk heterojunction solar cells based upon pDTTG-TPD:PC(71)BM blends afforded efficiencies up to 7.2% without the need for thermal annealing or processing additives.

  2. Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Hu, Liming; Chai, Bo; Yan, Juntao; Li, Jianfen

    2018-02-01

    Electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalysts with different TiO2 content have been synthesized via a facile electrospinning and subsequent in situ evaporation and calcination process for the first time, which are examined in terms of morphology, component content, optical properties, PL spectra, photocurrent response, EIS measurement, photocatalytic activity and mechanism. SEM images exhibit TiO2/g-C3N4-4 heterojunction photocatalyst possesses the excellent 1D structure. HRTEM and element mapping images confirm the formation of heterojunction structure. DRS tests identify that TiO2/g-C3N4-4 heterojunction exhibits the intensitive absorption in both UV and visible light region. The photoelectrochemical tests prove that the recombination between electrons and holes are effectively inhibited. Based on TG analysis and photodegradation experiments, TiO2/g-C3N4-4 heterojunction photocatalyst with TiO2 content of 29.30 wt% possesses the best photocatalytic degradation efficiency for the RhB among the g-C3N4, TiO2 and their mixture under simulated sunlight irradiation. Moreover, 1D morphology of TiO2/g-C3N4-4 heterojunction photocatalyst is in favor of separating from solution for reuse and transferring the electrons, and maintains a very high photocatalytic degradation efficiency of 96% even after four recycles experiments, which is beneficial for practical application.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Letian; Lai, Minliang; Kley, Christopher S.

    Halide perovskites are promising semiconductor materials for solution-processed optoelectronic devices. Their strong ionic bonding nature results in highly dynamic crystal lattices, inherently allowing rapid ion exchange at the solid–vapor and solid–liquid interface. In this paper, we show that the anion-exchange chemistry can be precisely controlled in single-crystalline halide perovskite nanomaterials when combined with nanofabrication techniques. We demonstrate spatially resolved multicolor CsPbX 3 (X = Cl, Br, I, or alloy of two halides) nanowire heterojunctions with a pixel size down to 500 nm with the photoluminescence tunable over the entire visible spectrum. In addition, the heterojunctions show distinct electronic states acrossmore » the interface, as revealed by Kelvin probe force microscopy. Finally, these perovskite heterojunctions represent key building blocks for high-resolution multicolor displays beyond current state-of-the-art technology as well as high-density diode/transistor arrays.« less

  4. Roll-to-Roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; Kurosawa, Tadanori; Yan, Hongping; Wang, Cheng; Toney, Micheal; Bao, Zhenan

    The challenge of continuous printing in high efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution coated all-polymer bulk heterojunction (BHJ) solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, our results showed that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. We were able to continuously roll-to-roll slot die print large area all-polymer solar cells with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R coated active layer organic materials on flexible substrate. DOE BRIDGE sunshot program. Office of Naval Research.

  5. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin

    The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less

  6. Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend

    DOE PAGES

    Gu, Xiaodan; Zhou, Yan; Gu, Kevin; ...

    2017-03-07

    The challenge of continuous printing in high-efficiency large-area organic solar cells is a key limiting factor for their widespread adoption. We present a materials design concept for achieving large-area, solution-coated all-polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers.more » This particular methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small-scale solution shearing coater to a large-scale continuous roll-to-roll (R2R) printer. Large-area all-polymer solar cells are continuously roll-to-roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm 2. This is among the highest efficiencies realized with R2R-coated active layer organic materials on flexible substrate.« less

  7. High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing.

    PubMed

    Li, Lisheng; Xiao, Liangang; Qin, Hongmei; Gao, Ke; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Peng, Xiaobin

    2015-09-30

    Solvent additive processing is important in optimizing an active layer's morphology and thus improving the performance of organic solar cells (OSCs). In this study, we find that how 1,8-diiodooctane (DIO) additive is removed plays a critical role in determining the film morphology of the bulk heterojunction OSCs in inverted structure based on a porphyrin small molecule. Different from the cases reported for polymer-based OSCs in conventional structures, the inverted OSCs upon the quick removal of the additive either by quick vacuuming or methanol washing exhibit poorer performance. In contrast, the devices after keeping the active layers in ambient pressure with additive dwelling for about 1 h (namely, additive annealing) show an enhanced power conversion efficiency up to 7.78% with a large short circuit current of 19.25 mA/cm(2), which are among the best in small molecule-based solar cells. The detailed morphology analyses using UV-vis absorption spectroscopy, grazing incidence X-ray diffraction, resonant soft X-ray scattering, and atomic force microscopy demonstrate that the active layer shows smaller-sized phase separation but improved structure order upon additive annealing. On the contrary, the quick removal of the additive either by quick vacuuming or methanol washing keeps the active layers in an earlier stage of large scaled phase separation.

  8. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface.

    PubMed

    Bi, Peng-Qing; Wu, Bo; Zheng, Fei; Xu, Wei-Long; Yang, Xiao-Yu; Feng, Lin; Zhu, Furong; Hao, Xiao-Tao

    2016-09-07

    A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs.

  10. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  11. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  12. Ternary bulk heterojunction for wide spectral range organic photodetectors

    NASA Astrophysics Data System (ADS)

    Shin, Hojung; Kim, Jaehoon; Lee, Changhee

    2017-08-01

    Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.

  13. Fabrication, characterization and annealing of polymer-fullerene bulk heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, Trupti; Singhal, R.; Vishnoi, R.; Biswas, S. K.

    2017-05-01

    The structural and optical properties of bulk heterojunction (BHJ) organic solar cell devices have been studied before and after heat treatment. The BHJ structure is fabricated by making the blend of Poly [3-hexylthiophene] (P3HT) and Phenyl C61 butyric acid methyl ester (PCBM) for active layer. After the heat treatment at 140 °C temperature, the device is characterized by X-ray diffraction (XRD) measurement, Raman spectroscopy and UV-visible absorption spectroscopy. The reduced intensity of XRD peak corresponding to (100) plane and decreased crystallite size was observed after annealing. The Raman peak intensity corresponding to C=C stretching mode and optical absorption peak intensity is also found to be reduced after the heat treatment to the device. The diminished intensitiesafter annealing may be due to diffusion of Al into active layer.

  14. Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell

    NASA Astrophysics Data System (ADS)

    Mohan, Minu; Ramkumar, S.; Namboothiry, Manoj A. G.

    2017-08-01

    P3HT:PCBM is one of the most studied polymer-fullerene system. However the reported power conversion efficiency (PCE) values falls within the range of 4% to 5%. The thin film architecture in OPVs exhibits low PCE compared to inorganic photovoltaic cells. This is mainly due to the low exciton diffusion length that limits the active layer thickness which in turn reduces the absorption of incident light. Several strategies are adapted in order to increase the absorption in the active layer without increasing the film thickness. Inclusion of metal nanoparticles into the polymer layer of bulk heterojunction (BHJ) solar cells is one of the promising methods. Incorporation of metal nanostructures increases the absorption of organic materials due to the high electromagnetic field strength in the vicinity of the excited surface plasmons. In this work, we used 60 nm Au plasmonic structures to improve the efficiency of organic solar cell. The prepared metal nano structures were characterized through scanning electron microscopy (SEM), and UV-Visible spectroscopy techniques. These prepared metallic nanoparticles can be incorporated either into the electron transport layer (ETL) or into the active P3HT:PC71BM layer. The effect of incorporation of plasmonic gold (Au) nanoparticle in the inverted bulk heterojunction organic photovoltaic cells (OPVs) of P3HT:PC71BM fabricated in ambient air condition is in progress. Initial studies shows an 8.5% enhancement in the PCE with the incorporation of Au nanoparticles under AM1.5G light of intensity 1 Sun.

  15. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.

    PubMed

    Li, Changli; Cao, Qi; Wang, Faze; Xiao, Yequan; Li, Yanbo; Delaunay, Jean-Jacques; Zhu, Hongwei

    2018-05-08

    Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

  16. Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Camacho-Mojica, Dulce C.; López-Urías, Florentino

    2016-04-01

    BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation effect due to a lattice mismatch. It was found that zigzag heterojunctions are more energetically favored than armchair heterojunctions. Furthermore, the formation energy presents a maximum at the point where the heterojunction becomes a planar structure. Electronic charge density results yielded a more ionic behavior in Alsbnd N bonds than the Bsbnd As bonds in accordance with monolayer results. It was observed that the conduction band minimum for both heterojunctions exhibit confined states located mainly at the entire AlN strips whereas the valence band maximum exhibits confined states located mainly at BAs strips. We expect that the present investigation will motivate more experimental and theoretical studies on new layered materials made of III-V semiconductors.

  17. Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing

    2017-07-01

    We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.

  18. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.

    PubMed

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2017-03-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  19. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    PubMed Central

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.

    2017-01-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications. PMID:28435867

  20. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells

    DOE PAGES

    Kim, Jong H.; Chueh, Chu-Chen; Williams, Spencer T.; ...

    2015-09-24

    Here in this work, we describe a room-temperature, solution-processable organic electron extraction layer (EEL) for high-performance planar heterojunction perovskite solar cells (PHJ PVSCs). This EEL is composed of a bilayered fulleropyrrolidinium iodide (FPI)-polyethyleneimine (PEIE) and PC 61BM, which yields a promising power conversion efficiency (PCE) of 15.7% with insignificant hysteresis. We reveal that PC 61BM can serve as a surface modifier of FPI-PEIE to simultaneously facilitate the crystallization of perovskite and the charge extraction at FPI-PEIE/CH 3NH 3PbI 3 interface. Furthermore, the FPI-PEIE can also tune the work function of ITO and dope PC 61BM to promote the efficient electronmore » transport between ITO and PC 61BM. Based on the advantages of room-temperature processability and decent electrical property of FPI-PEIE/PC 61BM EEL, a high-performance flexible PVSC with a PCE ~10% is eventually demonstrated. Lastly, this study shows the potential of low-temperature processed organic EEL to replace transition metal oxide-based interlayers for highly printing compatible PVSCs with high-performance.« less

  1. Optical properties of thin merocyanine dye layers for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Dikova, J.; Kitova, S.; Stoyanova, D.; Vasilev, A.; Deligeorgiev, T.; Angelova, S.

    2014-05-01

    The potentiality was studied of our newly synthesized push-pull type merocyanine dye, labeled A1, for use as an electron donating component in solution-processed bulk heterojunction (BHJ) organic solar cells. For the purpose, a soluble n-type fullerene, (6,6)-phenyl C61 butyric acid methyl ester (PCBM), which is currently and in the ear future without an alternative, was chosen as an acceptor. The optical constants (n and k) of thin films obtained by spin coating from solutions in chlorobenzene of A1 and of an A1/PCBM blend were determined by spectrophotometric measurements. Further, an optical simulation of a standard BHJ cell with an active layer of an A1dye/PCMB blend was performed using a transfer-matrix formalism. Thus, the optimum thickness of the active layer was calculated to be about 80 nm, which provides overlapping of the total absorption with the solar spectrum in the broad range 400 nm - 800 nm. Finally, the maximum current density, Jsc, was determined to be 13 mA cm2 assuming that the internal quantum efficiency, IQE, is unity. Comparing the calculated Jsc with data on some advanced small-molecule BHJ devices, the prospects for practical applications of the new merocyanine dye are discussed.

  2. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    PubMed

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Top-down approach for nanophase reconstruction in bulk heterojunction solar cells.

    PubMed

    Kong, Jaemin; Hwang, In-Wook; Lee, Kwanghee

    2014-09-01

    "Top-Down" nanophase reconstruction via a post-additive soaking process is first presented with various BHJ binary composites. By simply rinsing as-cast BHJ films with a solvent mixture containing a few traces of a nanophase-control reagent such as 1,8-diiodooctane, oversized fullerene-rich clusters (>100 nm in dia-meter) in the BHJ film are instataneously disassembled and entirely reorganized into finely intermixed donor/acceptor nanophases (ca. 10 nm) with a 3D compositional homogeneity, without surface segregation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Data related to the PC71BM loading and it's impact on nanostructuring for blend of PBDTTT-EFT:PC71BM bulk heterojunction solar cell.

    PubMed

    Komilian, Soheil; Oklobia, Ochai; Sadat-Shafai, Torfeh

    2018-02-01

    The data included in this article is based on additional supporting information presented in our recent publication Komilian et al. [1]. The role of acceptor material (PC 71 BM) in restructuring copolymer PBDTTT-EFT from its relaxed pristine structure to interfaces suitable for exciton dissociation is discussed. The analysis of data indicates that the impact of acceptor material on nanostructuring initiates concurrent processes some of which supports and some impedes charge extractions. Therefore, this manuscript is designed to identify these processes and give and account of their impact on power conversion efficiency.

  5. Electrically Active Defects In Solar Cells Based On Amorphous Silicon/Crystalline Silicon Heterojunction After Irradiation By Heavy Xe Ions

    NASA Astrophysics Data System (ADS)

    Harmatha, Ladislav; Mikolášek, Miroslav; Stuchlíková, L'ubica; Kósa, Arpád; Žiška, Milan; Hrubčín, Ladislav; Skuratov, Vladimir A.

    2015-11-01

    The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm-2 to 5 × 1010 cm-2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.

  6. Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Scully, Shawn Ryan

    Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of the primary losses that puts stringent requirements on the charge carrier mobilities in these cells is the recombination losses due to space charge build up at the heterojunction. Because electrons are confined to the acceptor and holes to the donor, net charge density always exists even when mobilities are matched, in contrast to bulk heterojunctions wherein matched mobilities lead to zero net charge. This net charge creates an electric field which opposes the built-in field and limits the current that can be carried away from this heterojunction. Using simulations we show that for relevant current densities charge carrier mobilities must be higher than 10-4 cm2/V.s to avoid significant losses due to space charge formation. In the last part of this work, we will focus on the second class of architectures in which exciton harvesting is efficient. We will present a systematic analysis of one of the leading polymer:fullerene bulk heterojunction cells to show that losses in this architecture are due to charge recombination. Using optical measurements and simulations, exciton harvesting measurements, and device characteristics we will show that the dominant loss is likely due to field-dependent geminate recombination of the electron and hole pair created immediately following exciton dissociation. No losses in this system are seen due to bimolecular recombination or space charge which provides information on charge-carrier mobility targets necessary for the future design of high efficiency organic photovoltaics.

  7. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    PubMed

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Photovoltaic Devices Prepared through a Trihydroxy Substitution Strategy on an Unsymmetrical Squaraine Dye.

    PubMed

    Wu, Jianglin; Si, Changfeng; Chen, Yao; Yang, Lin; Hu, Bin; Chen, Guo; Lu, Zhiyun; Huang, Yan

    2018-03-02

    A series of unsymmetrical arene-1,3-squaraine (USQ) derivatives with two, three, or four hydroxy (-OH) substituents, namely, USQ-2-OH, USQ-3-OH, or USQ-4-OH, respectively, were designed and synthesized, and the effect of the number of hydroxy groups on the optoelectronic properties of USQs were investigated. Despite the three compounds having similar UV/Vis absorption and HOMO energy levels, solution-processed bulk-heterojunction (BHJ) small-molecule organic solar cells with USQ-3-OH as electron-donor materials exhibit the highest power conversion efficiency of 6.07 %, which could be mainly attributed to the higher hole mobility and smaller phase separation. It is also noteworthy that the short-circuit current (J sc ) of the USQ-3-OH-based device is as high as 14.95 mA cm -2 , which is the highest J sc values reported for squaraine-based BHJ solar cells to date. The results also indicate that more -OH substituents on squaraine dyes do not necessarily lead to better photovoltaic performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Density Functional Theory Investigations of D-A-D' Structural Molecules as Donor Materials in Organic Solar Cell.

    PubMed

    Chen, Junxian; Liu, Qingyu; Li, Hao; Zhao, Zhigang; Lu, Zhiyun; Huang, Yan; Xu, Dingguo

    2018-01-01

    Squaraine core based small molecules in bulk heterojunction organic solar cells have received extensive attentions due to their distinguished photochemical properties in far red and infrared domain. In this paper, combining theoretical simulations and experimental syntheses and characterizations, three major factors (fill factor, short circuit and open-cirvuit voltage) have been carried out together to achieve improvement of power conversion efficiencies of solar cells. As model material systems with D-A-D' framework, two asymmetric squaraines (CNSQ and CCSQ-Tol) as donor materials in bulk heterojunction organic solar cell were synthesized and characterized. Intensive density functional theory computations were applied to identify some direct connections between three factors and corresponding molecular structural properties. It then helps us to predict one new molecule of CCSQ'-Ox that matches all the requirements to improve the power conversion efficiency.

  10. Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique

    NASA Astrophysics Data System (ADS)

    Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D.; Österbacka, R.; Westerling, M.; Juška, G.

    2005-03-01

    Charge carrier mobility and recombination in a bulk heterojunction solar cell based on the mixture of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-C61 (PCBM) has been studied using the novel technique of photoinduced charge carrier extraction in a linearly increasing voltage (Photo-CELIV). In this technique, charge carriers are photogenerated by a short laser flash, and extracted under a reverse bias voltage ramp after an adjustable delay time (tdel). The Photo-CELIV mobility at room temperature is found to be μ =2×10-4cm2V-1s-1, which is almost independent on charge carrier density, but slightly dependent on tdel. Furthermore, determination of charge carrier lifetime and demonstration of an electric field dependent mobility is presented.

  11. Temperature-Dependent Detectivity of Near-Infrared Organic Bulk Heterojunction Photodiodes.

    PubMed

    Wu, Zhenghui; Yao, Weichuan; London, Alexander E; Azoulay, Jason D; Ng, Tse Nga

    2017-01-18

    Bulk heterojunction photodiodes are fabricated using a new donor-acceptor polymer with a near-infrared absorption edge at 1.2 μm, achieving a detectivity up to 10 12 Jones at a wavelength of 1 μm and an excellent linear dynamic range of 86 dB. The photodiode detectivity is maximized by operating at zero bias to suppress dark current, while a thin 175 nm active layer is used to facilitate charge collection without reverse bias. Analysis of the temperature dependence of the dark current and spectral response demonstrates a 2.8-fold increase in detectivity as the temperature was lowered from 44 to -12 °C, a relatively small change when compared to that of inorganic-based devices. The near-infrared photodiode shows a switching speed reaching up to 120 μs without an external bias. An application using our NIR photodiode to detect arterial pulses of a fingertip is demonstrated.

  12. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOEpatents

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  13. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOEpatents

    Forrest, Stephen R.; Yang, Fan

    2013-04-09

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  14. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-06-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  15. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%

    NASA Astrophysics Data System (ADS)

    Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh

    2016-09-01

    In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.

  16. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-04-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  17. Substrate-oriented nanorod scaffolds in polymer-fullerene bulk heterojunction solar cells.

    PubMed

    Ogawa, Yuta; White, Matthew S; Sun, Lina; Scharber, Markus C; Sariciftci, Niyazi Serdar; Yoshida, Tsukasa

    2014-04-14

    The use of a p-type inorganic semiconductor to form a nanorod scaffold within a polymer-fullerene bulk heterojunction solar cell is reported. The performance of this cell is compared to those made of the commonly used n-type scaffold of ZnO, which has been reported many times in the literature. The scaffold is designed to improve charge-carrier collection by increased mobility in thicker samples. Observations show that generally the device performance shows a negative correlation to nanorod length. By using CuSCN as a p-type inorganic scaffold, a very similar trend is observed. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  18. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.

    PubMed

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-12-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  19. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  20. Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction

    PubMed Central

    2014-01-01

    Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor–acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene–porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions. PMID:25412210

  1. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  2. Hybrid phototransistors based on bulk heterojunction films of poly(3-hexylthiophene) and zinc oxide nanoparticle.

    PubMed

    Nam, Sungho; Seo, Jooyeok; Park, Soohyeong; Lee, Sooyong; Jeong, Jaehoon; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2013-02-01

    Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system. The incident light intensity (P(IN)) was varied up to 43.6 μW/cm², whereas three major wavelengths (525 nm, 555 nm, 605 nm) corresponded to the optical absorption of P3HT were applied. Results showed that the present HPTRs showed typical p-type transistor performance even though the n-type ZnO(NP) content increased up to 50 wt %. The highest transistor performance was obtained at 50 wt %, whereas the lowest performance was measured at 23 wt % because of the immature bulk heterojunction morphology. The drain current (I(D)) was proportionally increased with P(IN) due to the photocurrent generation in addition to the field-effect current. The highest apparent and corrected responsivities (R(A) = 4.7 A/W and R(C) = 2.07 A/W) were achieved for the HPTR with the P3HT:ZnO(NP) film (50 wt % ZnO(NP)) at P(IN) = 0.27 μW/cm² (555 nm).

  3. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    PubMed

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  4. Effect of spin traps on charge transport in low-bandgap copolymer:fullerene composites

    NASA Astrophysics Data System (ADS)

    Krinichnyi, Victor I.; Yudanova, Evgeniya I.; Bogatyrenko, Victor R.

    2017-12-01

    Light-Induced EPR study of magnetic, relaxation and dynamic parameters of spin charge carriers background photoinduced in bulk heterojunctions of composites formed by poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) and poly[N-9‧-heptadecanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole)] (PCDTBT) with methanofullerene [6,6]-phenyl-C61-butyric acid methyl ester is described. A part of polarons is captured by deep spin traps whose number and energy depth are governed by the structure, morphology of a copolymer matrix and also by the photon energy. Both the composites exhibit photo-response within photon energy/wavelength 1.32-3.14 eV/940-395 nm region which is wider than that of other polymer composites. Magnetic, relaxation and dynamics parameters of spin charge carriers were shown to be governed by their exchange interaction and photon energy. Specific morphology of the composites causes selectivity of these parameters to the photon energy. It was shown that the anisotropy of spin mobility through bulk heterojunctions reflects the system dimensionality and is governed by the photon properties. The replacement of the PFO-DBT backbone by the PCDTBT matrix leads increases the ordering of a copolymer, decreases the number of spin traps and changes a mechanism of charge recombination. The decay of free charge carriers was interpreted in terms of the trapping-detrapping spin diffusion in bulk heterojunctions.

  5. Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films

    DOE PAGES

    Stoltzfus, Dani M.; Larson, Bryon W.; Zarrabi, Nasim; ...

    2018-01-31

    Non-fullerene acceptors are now capable of being used in high efficiency bulk heterojunction (BHJ) donor-acceptor organic solar cells. Acceptors comprising single or multiple linked chromophores have been used. We have developed a new non-fullerene molecular acceptor as well as two non-polymeric macromolecular materials that contain four equivalents of a similar chromophore, but can adopt different spatial arrangements of the chromophores. We compare the effect of having single and multiple chromophores within a macromolecule on the charge generation processes in P3HT:non-fullerene acceptor BHJ films using Transient Absorption Spectroscopy (TAS) and Time Resolved Microwave Conductivity (TRMC) measurements. It was found from themore » TAS measurements that at low weight percent (5 wt%) the single chromophore formed more polarons than the acceptors in which chromophores were linked, due to it having a more even distribution within the film. At higher concentrations (50 wt%) the trend was reversed due to the single chromophore forming crystalline domains, which reduced the interface area with the P3HT donor. The TRMC measurements showed that more mobile carriers were formed in the macromolecular acceptors when used at low concentrations in the blend and, independent of concentration, mobile carriers had a longer lifetime when compared to films containing the molecular material, which we ascribe to the charges being able to sample more than one chromophore and thus reduce recombination events.« less

  6. Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-Type and Visible Light-Sensing p-Type Polymers

    PubMed Central

    Han, Hyemi; Nam, Sungho; Seo, Jooyeok; Lee, Chulyeon; Kim, Hwajeong; Bradley, Donal D. C.; Ha, Chang-Sik; Kim, Youngkyoo

    2015-01-01

    We report ‘broadband light-sensing’ all-polymer phototransistors with the nanostructured bulk heterojunction (BHJ) layers of visible (VIS) light-sensing electron-donating (p-type) polymer and near infrared (NIR) light-sensing electron-accepting (n-type) polymer. Poly[{2,5-bis-(2-ethylhexyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)]-5,5′-diyl}] (PEHTPPD-BT), which is synthesized via Suzuki coupling and employed as the n-type polymer, shows strong optical absorption in the NIR region (up to 1100 nm) in the presence of weak absorption in the VIS range (400 ~ 600 nm). To strengthen the VIS absorption, poly(3-hexylthiophene) (P3HT) is introduced as the p-type polymer. All-polymer phototransistors with the BHJ (P3HT:PEHTPPD-BT) layers, featuring a peculiar nano-domain morphology, exhibit typical p-type transistor characteristics and efficiently detect broadband (VIS ~ NIR) lights. The maximum corrected responsivity (without contribution of dark current) reaches up to 85 ~ 88% (VIS) and 26 ~ 40% (NIR) of theoretical responsivity. The charge separation process between P3HT and PEHTPPD-BT components in the highest occupied molecular orbital is proposed as a major working mechanism for the effective NIR sensing. PMID:26563576

  7. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  8. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuit Voltage Based on Sb-doped TiO₂ Electron Acceptor Materials.

    PubMed

    Li, Miaozi; Liu, Xinyan; Wen, Shiya; Liu, Songwei; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Wu, Hongbin; Xu, Wei; Huang, Wenbo

    2017-05-03

    We propose Sb-doped TiO₂ as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO₂/CdTe/Au based on CdTe NC and TiO₂ precursor are fabricated by rational ambient solution process. By introducing TiO₂ with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest V oc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows J sc , V oc , FF, and PCE of 14.65 mA/cm², 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high V oc .

  9. CdTe Nanocrystal Hetero-Junction Solar Cells with High Open Circuit Voltage Based on Sb-doped TiO2 Electron Acceptor Materials

    PubMed Central

    Li, Miaozi; Liu, Xinyan; Wen, Shiya; Liu, Songwei; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Wu, Hongbin; Xu, Wei; Huang, Wenbo

    2017-01-01

    We propose Sb-doped TiO2 as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO2/CdTe/Au based on CdTe NC and TiO2 precursor are fabricated by rational ambient solution process. By introducing TiO2 with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest Voc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows Jsc, Voc, FF, and PCE of 14.65 mA/cm2, 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high Voc. PMID:28467347

  10. Topological insulator nanowires and nanowire hetero-junctions

    NASA Astrophysics Data System (ADS)

    Deng, Haiming; Zhao, Lukas; Wade, Travis; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2014-03-01

    The existing topological insulator materials (TIs) continue to present a number of challenges to complete understanding of the physics of topological spin-helical Dirac surface conduction channels, owing to a relatively large charge conduction in the bulk. One way to reduce the bulk contribution and to increase surface-to-volume ratio is by nanostructuring. Here we report on the synthesis and characterization of Sb2Te3, Bi2Te3 nanowires and nanotubes and Sb2Te3/Bi2Te3 heterojunctions electrochemically grown in porous anodic aluminum oxide (AAO) membranes with varied (from 50 to 150 nm) pore diameters. Stoichiometric rigid polycrystalline nanowires with controllable cross-sections were obtained using cell voltages in the 30 - 150 mV range. Transport measurements in up to 14 T magnetic fields applied along the nanowires show Aharonov-Bohm (A-B) quantum oscillations with periods corresponding to the nanowire diameters. All nanowires were found to exhibit sharp weak anti-localization (WAL) cusps, a characteristic signature of TIs. In addition to A-B oscillations, new quantization plateaus in magnetoresistance (MR) at low fields (< 0 . 7T) were observed. The analysis of MR as well as I - V characteristics of heterojunctions will be presented. Supported in part by NSF-DMR-1122594, NSF-DMR-1312483-MWN, and DOD-W911NF-13-1-0159.

  11. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells

    DOE PAGES

    Wang, Qi; Bi, Cheng; Huang, Jinsong

    2015-05-06

    We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduced device series resistance by three-folds, increasing the device fill factor to 74%, open circuit voltage to 1.09 V without sacrificing the short circuit current. As a result, this study reveals that the high resistivity of currently broadly applied polymer hole transport layer limits the device efficiency, and points a new direction to improve the device efficiency.

  12. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer

    NASA Astrophysics Data System (ADS)

    Shen, Yalong; Yu, Dejian; Wang, Xiong; Huo, Chengxue; Wu, Ye; Zhu, Zhengfeng; Zeng, Haibo

    2018-02-01

    Inorganic halide perovskites exhibited promising potentials for high-performance wide-band photodetectors (PDs) due to their high light absorption coefficients, long carrier diffusion length and wide light absorption ranges. Here, we report two-dimensional (2D) CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible PDs, whose performances can be greatly boosted by the charge transfer through the energy-aligned interface. The 2D CsPbBr3 nanosheets with high crystallinity were fabricated via a simple solution-process at room temperature, and then assembled into flexible heterojunctions films with polymerphenyl-C61-butyric acid methyl ester (PCBM). Significantly, the efficient and fast charge transfer at the heterojunctions interface was evidenced by the obvious photoluminescence quenching and variation of recombination dynamics. Subsequently, such heterojunctions PD exhibited an enhanced responsivity of 10.85 A W-1 and an ultrahigh detectivity of 3.06 × 1013 Jones. In addition, the PD shows a broad linear dynamic range of 73 dB, a fast response speed with rise time of 44 μs and decay time of 390 μs, respectively. Moreover, the PD lying on polyethylene terephthalate substrates exhibited an outstanding mechanical flexibility and a robust electrical stability. These results could provide a new avenue for integration of 2D perovskites and organic functional materials and for high-performance flexible PDs.

  13. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-04-01

    We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  14. Structural and chemical evolution of the CdS:O window layer during individual CdTe solar cell processing steps

    DOE PAGES

    Abbas, A.; Meysing, D. M.; Reese, M. O.; ...

    2017-12-01

    Oxygenated cadmium sulfide (CdS:O) is often used as the n-type window layer in high-performance CdTe heterojunction solar cells. The as-deposited layer prepared by reactive sputtering is XRD amorphous, with a bulk composition of CdS0.8O1.2. Recently it was shown that this layer undergoes significant transformation during device fabrication, but the roles of the individual high temperature processing steps was unclear. In this work high resolution transmission electron microscopy coupled to elemental analysis was used to understand the evolution of the heterojunction region through the individual high temperature fabrication steps of CdTe deposition, CdCl2 activation, and back contact activation. It is foundmore » that during CdTe deposition by close spaced sublimation at 600 degrees C the CdS:O film undergoes recrystallization, accompanied by a significant (~30%) reduction in thickness. It is observed that oxygen segregates during this step, forming a bi-layer morphology consisting of nanocrystalline CdS adjacent to the tin oxide contact and an oxygen-rich layer adjacent to the CdTe absorber. This bilayer structure is then lost during the 400 degrees C CdCl2 treatment where the film transforms into a heterogeneous structure with cadmium sulfate clusters distributed randomly throughout the window layer. The thickness of window layer remains essentially unchanged after CdCl2 treatment, but a ~25 nm graded interfacial layer between CdTe and the window region is formed. Finally, the rapid thermal processing step used to activate the back contact was found to have a negligible impact on the structure or composition of the heterojunction region.« less

  15. Structural and chemical evolution of the CdS:O window layer during individual CdTe solar cell processing steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, A.; Meysing, D. M.; Reese, M. O.

    Oxygenated cadmium sulfide (CdS:O) is often used as the n-type window layer in high-performance CdTe heterojunction solar cells. The as-deposited layer prepared by reactive sputtering is XRD amorphous, with a bulk composition of CdS0.8O1.2. Recently it was shown that this layer undergoes significant transformation during device fabrication, but the roles of the individual high temperature processing steps was unclear. In this work high resolution transmission electron microscopy coupled to elemental analysis was used to understand the evolution of the heterojunction region through the individual high temperature fabrication steps of CdTe deposition, CdCl2 activation, and back contact activation. It is foundmore » that during CdTe deposition by close spaced sublimation at 600 degrees C the CdS:O film undergoes recrystallization, accompanied by a significant (~30%) reduction in thickness. It is observed that oxygen segregates during this step, forming a bi-layer morphology consisting of nanocrystalline CdS adjacent to the tin oxide contact and an oxygen-rich layer adjacent to the CdTe absorber. This bilayer structure is then lost during the 400 degrees C CdCl2 treatment where the film transforms into a heterogeneous structure with cadmium sulfate clusters distributed randomly throughout the window layer. The thickness of window layer remains essentially unchanged after CdCl2 treatment, but a ~25 nm graded interfacial layer between CdTe and the window region is formed. Finally, the rapid thermal processing step used to activate the back contact was found to have a negligible impact on the structure or composition of the heterojunction region.« less

  16. Photonic crystal geometry for organic solar cells.

    PubMed

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.

  17. Impact of helical organization on the photovoltaic properties of oligothiophene supramolecular polymers† †Electronic supplementary information (ESI) available: Synthesis and characterization of 3 and 4, UV-vis spectra, solar cell device properties and AFM images. See DOI: 10.1039/c7sc05093c

    PubMed Central

    Ouchi, Hayato; Kizaki, Takahiro; Yamato, Masaki; Lin, Xu; Hoshi, Nagahiro; Silly, Fabien; Kajitani, Takashi; Fukushima, Takanori

    2018-01-01

    Helical self-assembly of functional π-conjugated molecules offers unique photochemical and electronic properties in the spectroscopic level, but there are only a few examples that demonstrate their positive impact on the optoelectronic device level. Here, we demonstrate that hydrogen-bonded tapelike supramolecular polymers of a barbiturated oligo(alkylthiophene) show notable improvement in their photovoltaic properties upon organizing into helical nanofibers. A tapelike hydrogen-bonded supramolecular array of barbiturated oligo(butylthiophene) molecules was directly visualized by STM at a liquid–solid interface. TEM, AFM and XRD revealed that the tapelike supramolecular polymers further organize into helical nanofibers in solution and bulk states. Bulk heterojunction solar cells of the helical nanofibers and soluble fullerene showed a power conversion efficiency of 4.5%, which is markedly high compared to that of the regioisomer of butyl chains organizing into 3D lamellar agglomerates. PMID:29780493

  18. Investigation of transport properties of ZnO/PbS heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Yang; Whitaker, Michael D. C.; Whiteside, Vincent R.; Bumm, Lloyd A.; Sellers, Ian R.

    Lead sulfide (PbS) and lead selenide (PbSe) colloidal quantum dots (CQDs) are considered as a potential candidate material for solar cell applications due to their large band gap tunability range (0.5 to 1.7 eV) and cost-effective solution based processing. A series of Glass/ITO/ZnO/PbS/MoO3/Au heterojunction solar cells were processed and analyzed. A stable (reproducible) 2% conversion efficiency under 1-sun is achieved based on the result of J - V measurements. Absorbance and external quantum efficiency (EQE) measurements clearly show photo-generated carrier extraction from PbS active layers in the solar cell. However, a non-ideal J - V behavior is observed in current-voltage measurements. This behavior may be attributed to a high density of trap states at the QD surface or defect states at the PbS/ZnO or ITO/ZnO interfaces. C-V and Impedance spectroscopy measurements are used to study this unusual behavior. These techniques could also help probe the transport properties and limitation of these heterojunction solar cells. This research is funded through NASA EPSCoR program Award # NNX13AN101A.

  19. PCDTBT based solar cells: one year of operation under real-world conditions

    PubMed Central

    Zhang, Yiwei; Bovill, Edward; Kingsley, James; Buckley, Alastair R.; Yi, Hunan; Iraqi, Ahmed; Wang, Tao; Lidzey, David G.

    2016-01-01

    We present measurements of the outdoor stability of PCDTBT:PC71BM based bulk heterojunction organic solar cells for over the course of a year. We find that the devices undergo a burn-in process lasting 450 hours followed by a TS80 lifetime of up to 6200 hours. We conclude that in the most stable devices, the observed TS80 lifetime is limited by thermally-induced stress between the device layers, as well as materials degradation as a result of edge-ingress of water or moisture through the encapsulation. PMID:26857950

  20. Mapping the nanoscale energetic landscape in conductive polymer films with spatially super-resolved exciton dynamics

    NASA Astrophysics Data System (ADS)

    Ginsberg, Naomi

    2015-03-01

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.

  1. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    DOE PAGES

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; ...

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser powermore » densities from 2.5 × 10 3 to 2.5 × 10 5 W cm –2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 10 5 Wcm –2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.« less

  2. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Gao, Shiyong; Zhang, Jiejing; Li, Wenqiang; Jiao, Shujie; Nie, Yanguang; Fan, Huaiyun; Zeng, Zhi; Yu, Qingjiang; Wang, Jinzhong; Zhang, Xitian

    2018-01-01

    Large-area ZnO/Cu2O heterojunction have been successfully synthesized on Cu foil through a simple two-step solution method at near room temperature. The field emission scanning electron microscopy characterization indicates that the morphology of as-prepared Cu2O film grown on Cu foil is octahedral structure with diameter of ∼450 nm and ZnO is nanorod arrays structure with diameter of ∼150 nm. The current-voltage measurement of ZnO/Cu2O heterojunction shows a typical rectifying characteristics. Moreover, the photocatalytic test indicates that ZnO/Cu2O heterojunction exhibits high photocatalytic efficient for degradation of congo red dyes. The possible photocatalytic mechanism of ZnO/Cu2O heterojunction is also presented.

  3. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.

    PubMed

    Gärtner, Stefan; Clulow, Andrew J; Howard, Ian A; Gilbert, Elliot P; Burn, Paul L; Gentle, Ian R; Colsmann, Alexander

    2017-12-13

    Nanoparticle dispersions open up an ecofriendly route toward printable organic solar cells. They can be formed from a variety of organic semiconductors by using miniemulsions that employ surfactants to stabilize the nanoparticles in dispersion and to prevent aggregation. However, whenever surfactant-based nanoparticle dispersions have been used to fabricate solar cells, the reported performances remain moderate. In contrast, solar cells from nanoparticle dispersions formed by precipitation (without surfactants) can exhibit power conversion efficiencies close to those of state-of-the-art solar cells processed from blend solutions using chlorinated solvents. In this work, we use small-angle neutron scattering measurements and transient absorption spectroscopy to investigate why surfactant-free nanoparticles give rise to efficient organic solar cells. We show that surfactant-free nanoparticles comprise a uniform distribution of small semiconductor domains, similar to that of bulk-heterojunction films formed using traditional solvent processing. This observation differs from surfactant-based miniemulsion nanoparticles that typically exhibit core-shell structures. Hence, the surfactant-free nanoparticles already possess the optimum morphology for efficient energy conversion before they are assembled into the photoactive layer of a solar cell. This structural property underpins the superior performance of the solar cells containing surfactant-free nanoparticles and is an important design criterion for future nanoparticle inks.

  4. Orientation independence of heterojunction-band offsets at GaAs-AlAs heterointerfaces characterized by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirakawa, K.; Hashimoto, Y.; Ikoma, T.

    1990-12-01

    We systematically studied the orientation and the growth sequence dependence of the valence-band offset ΔEv at the lattice-matched common anion GaAs-AlAs interfaces. High quality GaAs-AlAs heterojunctions were carefully grown on GaAs substrates with three major orientations, namely, (100), (110), and (111)B. The core level energy distance ΔECL between Ga 3d and Al 2p levels was measured by in situ x-ray photoemission spectroscopy. ΔECL is found to be independent of the substrate orientation and the growth sequence, which clearly indicates the face independence of ΔEv. This result suggests that the band lineup at lattice-matched isovalent semiconductor heterojunctions is determined by the bulk properties of the constituent materials. ΔEv is determined to be 0.44 ± 0.05 eV.

  5. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    DOE PAGES

    Wang, Kai; Yi, Chao; Liu, Chang; ...

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less

  6. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Friedrich; Herzig, Melanie; Knupfer, Martin

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that ofmore » the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.« less

  7. Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells

    PubMed Central

    Gupta, Vinay; Kyaw, Aung Ko Ko; Wang, Dong Hwan; Chand, Suresh; Bazan, Guillermo C.; Heeger, Alan J.

    2013-01-01

    We report Barium (Ba) cathode layer for bulk-heterojunction solar cells which enhanced the fill factor (FF) of p-DTS(FBTTh2)2/PC71BM BHJ solar cell up to 75.1%, one of the highest value reported for an organic solar cell. The external quantum efficiency exceeds 80%. Analysis of recombination mechanisms using the current-voltage (J–V) characteristics at various light intensities in the BHJ solar cell layer reveals that Ba prevents trap assisted Shockley-Read-Hall (SRH) recombination at the interface and with different thicknesses of the Ba, the recombination shifts towards bimolecular from monomolecular. Moreover, Ba increases shunt resistance and decreases the series resistance significantly. This results in an increase in the charge collection probability leading to high FF. This work identifies a new cathode interlayer which outclasses the all the reported interlayers in increasing FF leading to high power conversion efficiency and have significant implications in improving the performance of BHJ solar cells. PMID:23752562

  8. Correlation between CdSe QD Synthesis, Post-Synthetic Treatment, and BHJ Hybrid Solar Cell Performance

    PubMed Central

    Eck, Michael; Krueger, Michael

    2016-01-01

    In this publication we show that the procedure to synthesize nanocrystals and the post-synthetic nanocrystal ligand sphere treatment have a great influence not only on the immediate performance of hybrid bulk heterojunction solar cells, but also on their thermal, long-term, and air stability. We herein demonstrate this for the particular case of spherical CdSe nanocrystals, post-synthetically treated with a hexanoic acid based treatment. We observe an influence from the duration of this post-synthetic treatment on the nanocrystal ligand sphere size, and also on the solar cell performance. By tuning the post-synthetic treatment to a certain degree, optimal device performance can be achieved. Moreover, we show how to effectively adapt the post-synthetic nanocrystal treatment protocol to different nanocrystal synthesis batches, hence increasing the reproducibility of hybrid nanocrystal:polymer bulk-heterojunction solar cells, which usually suffers due to the fluctuations in nanocrystal quality of different synthesis batches and synthesis procedures. PMID:28335243

  9. Polymer solar cells with enhanced open-circuit voltage and efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  10. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells

    PubMed Central

    Irwin, Michael D.; Buchholz, D. Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J.

    2008-01-01

    To minimize interfacial power losses, thin (5–80 nm) layers of NiO, a p-type oxide semiconductor, are inserted between the active organic layer, poly(3-hexylthiophene) (P3HT) + [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), and the ITO (tin-doped indium oxide) anode of bulk-heterojunction ITO/P3HT:PCBM/LiF/Al solar cells. The interfacial NiO layer is deposited by pulsed laser deposition directly onto cleaned ITO, and the active layer is subsequently deposited by spin-coating. Insertion of the NiO layer affords cell power conversion efficiencies as high as 5.2% and enhances the fill factor to 69% and the open-circuit voltage (Voc) to 638 mV versus an ITO/P3HT:PCBM/LiF/Al control device. The value of such hole-transporting/electron-blocking interfacial layers is clearly demonstrated and should be applicable to other organic photovoltaics.

  11. Spin-enhanced organic bulk heterojunction photovoltaic solar cells.

    PubMed

    Zhang, Ye; Basel, Tek P; Gautam, Bhoj R; Yang, Xiaomei; Mascaro, Debra J; Liu, Feng; Vardeny, Z Valy

    2012-01-01

    Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.

  12. The effect of PbS nanocrystal additives on the charge transfer state recombination in a bulk heterojunction blend

    NASA Astrophysics Data System (ADS)

    Abdu-Aguye, Mustapha; Protesescu, Loredana; Dirin, Dmitry N.; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2018-05-01

    A persistent limitation of organic semiconductors is their low dielectric constant єr, which limits the performance of bulk heterojunction (BHJ) solar cells. One way to increase єr is to employ high-єr additives, such as PbS nanocrystals (QDs) to BHJ blends. In this work, we use the recombination of the interfacial charge transfer (CT) state as a means to study the effects of PbS nanocrystals on blends of a narrow bandgap copolymer: poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1- b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), and phenyl-C61-butyric acid methyl ester (PCBM). We show that at low dilution levels (0.25% - 0.75% by weight), there is a decrease in the relative weight of the CT recombination lifetime (longer decay component); suggesting that there is an increase in the local єr of the ternary blend.

  13. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity ofmore » an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.« less

  14. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions

    NASA Astrophysics Data System (ADS)

    Nam, Minwoo; Cha, Minjeong; Lee, Hyun Hwi; Hur, Kahyun; Lee, Kyu-Tae; Yoo, Jaehong; Han, Il Ki; Kwon, S. Joon; Ko, Doo-Hyun

    2017-01-01

    A major impediment to the commercialization of organic photovoltaics (OPVs) is attaining long-term morphological stability of the bulk heterojunction (BHJ) layer. To secure the stability while pursuing optimized performance, multi-component BHJ-based OPVs have been strategically explored. Here we demonstrate the use of quaternary BHJs (q-BHJs) composed of two conjugated polymer donors and two fullerene acceptors as a novel platform to produce high-efficiency and long-term durable OPVs. A q-BHJ OPV (q-OPV) with an experimentally optimized composition exhibits an enhanced efficiency and extended operational lifetime than does the binary reference OPV. The q-OPV would retain more than 72% of its initial efficiency (for example, 8.42-6.06%) after a 1-year operation at an elevated temperature of 65 °C. This is superior to those of the state-of-the-art BHJ-based OPVs. We attribute the enhanced stability to the significant suppression of domain growth and phase separation between the components via kinetic trapping effect.

  15. Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends

    NASA Astrophysics Data System (ADS)

    Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen

    2017-11-01

    The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.

  16. Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized solar cells.

    PubMed

    Singh, Surya Prakash; Sharma, G D

    2014-06-01

    Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya

    2016-04-19

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO{sub 2} NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO{sub 2} as an electrode. Synthesis of TiO{sub 2} nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO{sub 3}){sub 2}.4H{sub 2}O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperaturemore » s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO{sup 2} NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10{sup −3}, 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO{sup 2} NR-P3HT’s concentration was 10 mg/mL.« less

  18. Gate- and Light-Tunable pn Heterojunction Microwire Arrays Fabricated via Evaporative Assembly.

    PubMed

    Park, Jae Hoon; Kim, Jong Su; Choi, Young Jin; Lee, Wi Hyoung; Lee, Dong Yun; Cho, Jeong Ho

    2017-02-01

    One-dimensional (1D) nano/microwires have attracted considerable attention as versatile building blocks for use in diverse electronic, optoelectronic, and magnetic device applications. The large-area assembly of nano/microwires at desired positions presents a significant challenge for developing high-density electronic devices. Here, we demonstrated the fabrication of cross-stacked pn heterojunction diode arrays by integrating well-aligned inorganic and organic microwires fabricated via evaporative assembly. We utilized solution-processed n-type inorganic indium-gallium-zinc-oxide (IGZO) microwires and p-type organic 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) microwires. The formation of organic TIPS-PEN semiconductor microwire and their electrical properties were optimized by controlling both the amounts of added insulating polymer and the widths of the microwires. The resulting cross-stacked IGZO/TIPS-PEN microwire pn heterojunction devices exhibited rectifying behavior with a forward-to-reverse bias current ratio exceeding 10 2 . The ultrathin nature of the underlying n-type IGZO microwires yielded gate tunability in the charge transport behaviors, ranging from insulating to rectifying. The rectifying behaviors of the heterojunction devices could be modulated by controlling the optical power of the irradiated light. The fabrication of semiconducting microwires through evaporative assembly provides a facile and reliable approach to patterning or positioning 1D microwires for the fabrication of future flexible large-area electronics.

  19. Small molecule organic semiconductors on the move: promises for future solar energy technology.

    PubMed

    Mishra, Amaresh; Bäuerle, Peter

    2012-02-27

    This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Diphenylphenoxy-Thiophene-PDI Dimers as Acceptors for OPV Applications with Open Circuit Voltage Approaching 1 Volt.

    PubMed

    Stenta, Caterina; Molina, Desiré; Viterisi, Aurélien; Montero-Rama, María Pilar; Pla, Sara; Cambarau, Werther; Fernández-Lázaro, Fernando; Palomares, Emilio; Marsal, Lluis F; Sastre-Santos, Ángela

    2018-03-30

    Two new perylenediimides (PDIs) have been developed for use as electron acceptors in solution-processed bulk heterojunction solar cells. The compounds were designed to exhibit maximal solubility in organic solvents, and reduced aggregation in the solid state. In order to achieve this, diphenylphenoxy groups were used to functionalize a monomeric PDI core, and two PDI dimers were bridged with either one or two thiophene units. In photovoltaic devices prepared using PDI dimers and a monomer in conjunction with PTB7, it was found that the formation of crystalline domains in either the acceptor or donor was completely suppressed. Atomic force microscopy, X-ray diffraction, charge carrier mobility measurements and recombination kinetics studies all suggest that the lack of crystallinity in the active layer induces a significant drop in electron mobility. Significant surface recombination losses associated with a lack of segregation in the material were also identified as a significant loss mechanism. Finally, the monomeric PDI was found to have sub-optimum LUMO energy matching the cathode contact, thus limiting charge carrier extraction. Despite these setbacks, all PDIs produced high open circuit voltages, reaching almost 1 V in one particular case.

  1. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    NASA Astrophysics Data System (ADS)

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Murali, Banavoth; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre M.; Sargent, Edward H.; Amassian, Aram

    2017-05-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  2. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  3. Morphological control in polymer solar cells using low-boiling-point solvent additives

    NASA Astrophysics Data System (ADS)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  4. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Liu, Yuanxu; Wang, Zhonglei; Huang, Weixin

    2016-12-01

    CuOx/TiO2 photocatalysts employing TiO2 with different phase structures as well as P25 as supports were prepared, and their structures and activity for photocatalytic H2 production in methanol/water solution under simulated solar light were comparatively studied. Structural characterization results demonstrated that the TiO2 phase structure strongly affects the CuOx-TiO2 interaction and copper species in various CuOx/TiO2 photocatalysts. The Cu2O-rutile TiO2 interaction is much stronger than the Cu2O-anatase TiO2 interaction, facilitates the interfacial charge transfer process within the Cu2O-rutile TiO2 heterojunction but disables supported Cu2O to catalyze the hole-participated methanol oxidation. The Cu2O-anatase TiO2 heterojunction with the appropriate Cu2O-anatase TiO2 interaction and thus the balancing efficiencies between the interfacial charge transfer process and hole-participated methanol oxidation is most photocatalytic active, and CuOx/P25 with the largest population of Cu2O-anatase TiO2 heterojunction exhibits the highest photocatalytic H2 production. These results provide novel insights in the applied surface science of CuOx/TiO2 photocatalysts.

  5. Tunneling-assisted transport of carriers through heterojunctions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Myers, Samuel M.; Modine, Normand A.

    The formulation of carrier transport through heterojunctions by tunneling and thermionic emission is derived from first principles. The treatment of tunneling is discussed at three levels of approximation: numerical solution of the one-band envelope equation for an arbitrarily specified potential profile; the WKB approximation for an arbitrary potential; and, an analytic formulation assuming constant internal field. The effects of spatially varying carrier chemical potentials over tunneling distances are included. Illustrative computational results are presented. The described approach is used in exploratory physics models of irradiated heterojunction bipolar transistors within Sandia's QASPR program.

  6. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization.

    PubMed

    Kabra, Vinay; Aamir, Lubna; Malik, M M

    2014-01-01

    A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si) diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The effect of UV illumination on the I-V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V) under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  7. 3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions.

    PubMed

    Li, Bo; Shi, Gang; Lei, Sidong; He, Yongmin; Gao, Weilu; Gong, Yongji; Ye, Gonglan; Zhou, Wu; Keyshar, Kunttal; Hao, Ji; Dong, Pei; Ge, Liehui; Lou, Jun; Kono, Junichiro; Vajtai, Robert; Ajayan, Pulickel M

    2015-09-09

    The emergence of a rich variety of two-dimensional (2D) layered semiconductor materials has enabled the creation of atomically thin heterojunction devices. Junctions between atomically thin 2D layers and 3D bulk semiconductors can lead to junctions that are fundamentally electronically different from the covalently bonded conventional semiconductor junctions. Here we propose a new 3D band diagram for the heterojunction formed between n-type monolayer MoS2 and p-type Si, in which the conduction and valence band-edges of the MoS2 monolayer are drawn for both stacked and in-plane directions. This new band diagram helps visualize the flow of charge carriers inside the device in a 3D manner. Our detailed wavelength-dependent photocurrent measurements fully support the diagrams and unambiguously show that the band alignment is type I for this 2D-3D heterojunction. Photogenerated electron-hole pairs in the atomically thin monolayer are separated and driven by an external bias and control the "on/off" states of the junction photodetector device. Two photoresponse regimes with fast and slow relaxation are also revealed in time-resolved photocurrent measurements, suggesting the important role played by charge trap states.

  8. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  9. Inverted bulk-heterojunction organic solar cells with the transfer-printed anodes and low-temperature-processed ultrathin buffer layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi

    2018-03-01

    We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.

  10. Temperature dependences of the time of electron-electron interactions in two-dimensional heterojunction

    NASA Astrophysics Data System (ADS)

    Bukhenskyy, K. V.; Dubois, A. B.; Kucheryavyy, S. I.; Mashnina, S. N.; Safoshkin, A. S.; Baukov, A. A.; Shchigorev, E. Yu

    2017-12-01

    The article discusses the joint solution of the Schrödinger and Poisson equations for two-dimensional semiconductor heterojunction. The application of a triangular potential of well approximation for the calculation of the electron-electron interaction is offered in the paper. The influence of the parameters of the selected approximation was analyzed.

  11. A Co2 P/WC Nano-Heterojunction Covered with N-Doped Carbon as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Gao, Ya; Lang, Zhongling; Yu, Feiyang; Tan, Huaqiao; Yan, Gang; Wang, Yonghui; Ma, Yuanyuan; Li, Yangguang

    2018-03-22

    The hydrogen evolution reaction (HER) produces clean hydrogen through an electrochemical process. However, new nonprecious-metal electrocatalysts for the HER are required to reduce the consumption of energy. Herein, we report a new Co 2 P/WC nano-heterojunction that consists of Co 2 P and WC composite phases coated with a few-layer N-doped graphitic carbon shells (Co 2 P/WC@NC). The composite was prepared by a one-step annealing of the polyoxometalate Na 9 (NH 4 ) 5 [{(B-α-PW 9 O 34 )Co 3 (OH)(H 2 O) 2 (Ale)} 2 Co]⋅35 H 2 O (Co 7 P 6 W 18 ) and dicyandiamide (DCA). The preparation method consisted of the simultaneous phosphorization of Co and carbonization of W in a confined space to isolate a Co 2 P/WC nano-heterojunction phase for the first time. Co 2 P/WC@NC facilitated the generation of hydrogen in the electrolysis process, which had an overpotential of only 91 mV at a current density of 10 mA cm -2 in the acid solution; an excellent HER performance (2 H + +2 e - →H 2 ) and Tafel slope (40 mV dec -1 ) as well as durability over a period of 50 h were achieved. Theoretical calculations showed that the Co 2 P, WC, and N pyridinic C dopants in the material synergistically promoted the HER activity rather than the individual constituents. Furthermore, Co 2 P/WC@NC nano-heterojunctions showed good HER performance in the whole pH range of electrolytes and considerable durability in acidic media containing transition metal ions, which may attract more attention for the exploration and optimization of nano-heterojunction catalysts for the HER. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions.

    PubMed

    Li, Junjie; Yin, Deqiang; Li, Qiang; Chen, Chunlin; Huang, Sumei; Wang, Zhongchang

    2015-12-21

    Heterostructured nanoparticles have received considerable attention for their various applications due to their unique and tunable functionalities with respect to their individual bulk constituents. However, the current wet chemical synthesis of multicomponent heterostructured nanoparticles is rather complicated. Here, we report a simple and quick method to fabricate Co-Au dumbbell arrays by dewetting Co/Au heterojunctions on a Si substrate and demonstrate that the Co-Au dumbbells vary in size from 2 to 28 nm. We further show by chemical mapping that Co bells are covered by a pseudomorphic Au wetting layer of ∼4 Å, preventing the bells from oxidation. By controlling the thickness of metal heterojunctions and the annealing time, the morphology of the Co-Au nanoparticle is found to be transformed from the dumbbell to the core shell. This facile route is demonstrated to be useful for fabricating other metal-metal and metal-oxide heterostructures and hence holds technological promise for functional applications.

  13. Tessellated gold nanostructures from Au144(SCH2CH2Ph)60 molecular precursors and their use in organic solar cell enhancement

    NASA Astrophysics Data System (ADS)

    Bauld, Reg; Hesari, Mahdi; Workentin, Mark S.; Fanchini, Giovanni

    2014-06-01

    We report for the first time the fabrication of nanocomposite hole-blocking layers consisting of poly-3,4-ethylene-dioxythiophene:poly-styrene-sulfonate (PEDOT:PSS) thin films incorporating networks of gold nanoparticles assembled from Au144(SCH2CH2Ph)60, a molecular gold precursor. These thin films can be prepared reproducibly on indium tin oxide by spinning on it Au144(SCH2CH2Ph)60 solutions in chlorobenzene, annealing the resulting thin film at 400 °C, and subsequently spinning PEDOT:PSS on top. The use of our nanocomposite hole-blocking layers for enhancing the photoconversion efficiency of bulk heterojunction organic solar cells is demonstrated. By varying the concentration of Au144(SCH2CH2Ph)60 in the starting solution and the annealing time, different gold nanostructures were obtained ranging from individual gold nanoparticles (AuNPs) to tessellated networks of gold nanostructures (Tess-AuNPs). Improvement in organic solar cell efficiencies up to 10% relative to a reference cell is demonstrated with Tess-AuNPs embedded in PEDOT:PSS.

  14. Vincenzo LaSalvia | NREL

    Science.gov Websites

    ;Utilization of Tabula Rasa to stabilize bulk lifetimes in n-Cz silicon for high-performance solar cell /SiOx/pc-Si passivated contacts to n-type Si solar cells." Presented at the 40th IEEE Photovoltaic , and P. Stradins. "Heterojunction rear passivated contact for high efficiency n-Cz Si solar cells

  15. Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells

    DTIC Science & Technology

    2012-01-01

    Yuhua Xue , Yunxiang Gao , Dingshan Yu , Michael Durstock , and Liming Dai * Hole and Electron Extraction Layers Based on Graphene Oxide...H. Wu , L. Chen , S. Su , Y. Cao , Adv. Mater. 2011 , 23 , 4636 . [ 29 ] T.-Y. Chu , S.-W. Tsang , J. Zhou , P. G. Verly , J

  16. Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer

    NASA Astrophysics Data System (ADS)

    Zang, Shuaipu; Wang, Yinglin; Li, Meiying; Su, Wei; An, Meiqi; Zhang, Xintong; Liu, Yichun

    2018-01-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 91233204, 51372036, and 51602047), the Key Project of Chinese Ministry of Education (Grant No. 113020A), and the 111 Project, China (Grant No. B13013).

  17. Controlling Morphology and Molecular Packing of Alkane Substituted Phthalocyanine Blend Bulk Heterojunction Solar Cells†

    PubMed Central

    Jurow, Matthew J.; Hageman, Brian A.; Nam, Chang-Yong; Pabon, Cesar; Black, Charles T.

    2013-01-01

    Systematic changes in the exocyclic substiution of core phthalocyanine platform tune the absorption properties to yield commercially viable dyes that function as the primary light absorbers in organic bulk heterojunction solar cells. Blends of these complementary phthalocyanines absorb a broader portion of the solar spectrum compared to a single dye, thereby increasing solar cell performance. We correlate grazing incidence small angle x-ray scattering structural data with solar cell performance to elucidate the role of nanomorphology of active layers composed of blends of phthalocyanines and a fullerene derivative. A highly reproducible device architecture is used to assure accuracy and is relevant to films for solar windows in urban settings. We demonstrate that the number and structure of the exocyclic motifs dictate phase formation, hierarchical organization, and nanostructure, thus can be employed to tailor active layer morphology to enhance exciton dissociation and charge collection efficiencies in the photovoltaic devices. These studies reveal that disordered films make better solar cells, short alkanes increase the optical density of the active layer, and branched alkanes inhibit unproductive homogeneous molecular alignment. PMID:23589766

  18. Effect of organic salt doping on the performance of single layer bulk heterojunction organic solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, C.C.; Yahaya, M.; Salleh, M.M.

    2011-01-15

    The effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF{sub 6}) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure was investigated where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. In contrast to the undoped device, the electric field-treated device doped with TBAPF{sub 6} exhibited better solar cell performance under illumination with a halogen projector lamp at 100 mW/cm{sup 2}. The short circuit current density and the open circuit voltage of the doped device increased from 0.54 {mu}A/cm{supmore » 2} to 6.41 {mu}A/cm{sup 2} and from 0.24 V to 0.50 V, respectively as compared to those of the undoped device. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the active layer/electrode interfaces. (author)« less

  19. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states

    DOE PAGES

    Jiang, Zilong; Chang, Cui -Zu; Masir, Massoud Ramezani; ...

    2016-05-04

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (Bi xSb 1–x) 2Te 3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (Bi xSbmore » 1–x) 2Te 3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. Lastly, the enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.« less

  20. Synthesis of diketopyrrolopyrrole containing copolymers: a study of their optical and photovoltaic properties.

    PubMed

    Kanimozhi, Catherine; Balraju, P; Sharma, G D; Patil, Satish

    2010-03-11

    The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as a donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620-800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPP-BBT:PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm(2)). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act as excellent electron donors for bulk heterojunction devices.

  1. Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer: Fullerene Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Darling, Seth

    2012-02-01

    In the last fifteen years, research efforts have led to organic photovoltaic (OPV) devices with power conversion efficiencies (PCEs) up to ˜8%, but these values are still insufficient for the devices to become widely marketable. To further improve solar cell performance a thorough understanding of the complex structure-property relationships in the OPV devices is required. In this work, we demonstrated that the OPV active layer of PTB7:fullerene bulk heterojunction (BHJ) solar cells, which set a historic record of PCE (7.4%), involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies with optimum crystallinity and intermixing of PTB7 with fullerenes are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, leading to the superior performance of PTB7:fullerene BHJ solar cells. New insights of performance-related structures afforded by the current study should aid in the rational design of even higher performance polymeric solar cells.

  2. High current density 2D/3D MoS2/GaN Esaki tunnel diodes

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Lee, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-10-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  3. Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry.

    PubMed

    Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2015-01-14

    Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.

  4. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    PubMed

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-02-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Visualizing excitations at buried heterojunctions in organic semiconductor blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  7. Visualizing excitations at buried heterojunctions in organic semiconductor blends

    NASA Astrophysics Data System (ADS)

    Jakowetz, Andreas C.; Böhm, Marcus L.; Sadhanala, Aditya; Huettner, Sven; Rao, Akshay; Friend, Richard H.

    2017-05-01

    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.

  8. Study of a ternary blend system for bulk heterojunction thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.

    2016-08-01

    In this research, we report a bulk heterojunction (BHJ) solar cell consisting of a ternary blend system. Poly(3-hexylthiophene) P3HT is used as a donor and [6,6]-phenyl C61-butyric acid methylester (PCBM) plays the role of acceptor whereas vanadyl 2,9,16,23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO) is selected as an ambipolar transport material. The materials are selected and assembled in such a fashion that the generated charge carriers could efficiently be transported rightwards within the blend. The organic BHJ solar cells consist of ITO/PEDOT:PSS/ternary BHJ blend/Al structure. The power conversion efficiencies of the ITO/ PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/ P3HT:PCBM:VOPcPhO/Al solar cells are found to be 2.3% and 3.4%, respectively. This publication was made possible by PDRA (Grant No. PDRA1-0117-14109) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

  9. Bulk heterojunction morphology of polymer:fullerene blends revealed by ultrafast spectroscopy

    PubMed Central

    Serbenta, Almis; Kozlov, Oleg V.; Portale, Giuseppe; van Loosdrecht, Paul H. M.; Pshenichnikov, Maxim S.

    2016-01-01

    Morphology of organic photovoltaic bulk heterojunctions (BHJs) – a nanoscale texture of the donor and acceptor phases – is one of the key factors influencing efficiency of organic solar cells. Detailed knowledge of the morphology is hampered by the fact that it is notoriously difficult to investigate by microscopic methods. Here we all-optically track the exciton harvesting dynamics in the fullerene acceptor phase from which subdivision of the fullerene domain sizes into the mixed phase (2–15 nm) and large (>50 nm) domains is readily obtained via the Monte-Carlo simulations. These results were independently confirmed by a combination of X-ray scattering, electron and atomic-force microscopies, and time-resolved photoluminescence spectroscopy. In the large domains, the excitons are lost due to the high energy disorder while in the ordered materials the excitons are harvested with high efficiency even from the domains as large as 100 nm due to the absence of low-energy traps. Therefore, optimizing of blend nanomorphology together with increasing the material order are deemed as winning strategies in the exciton harvesting optimization. PMID:27824085

  10. Ferrocenyl Phthalocyanine as Donor in Non-Poly(3-hexylthiophen-2,5-diyl) Bulk Heterojunction Solar Cell.

    PubMed

    Nar, Ilgın; Atsay, Armağan; Altındal, Ahmet; Hamuryudan, Esin; Koçak, Makbule B; Gül, Ahmet

    2018-05-11

    Bulk heterojunction (BHJ) solar cells might one day play a vital role in realizing low-cost and environmentally benign photovoltaic devices. In this work, a BHJ solar cell was designed, based on a hexadeca-substituted phthalocyanine (FcPc) with ferrocenyl linked to the phthalocyanine ring. Next, we sought to obtain more quantitative information about the usability of this newly synthesized compound as a donor material in BHJ solar cells. Thus, BHJs with the structure of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/FcPc:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend/LiF/Al were fabricated and characterized. The effect of blend ratio (0.5-2.0) on the BHJ solar cell parameters was also investigated. Interesting results were obtained in FcPc and the PCBM blend-based BHJ solar cell under optimized conditions. Our results presented here demonstrate that BHJ devices employing FcPc as a donor has great potential for the development of highly efficient non-poly(3-hexylthiophen-2,5-diyl) photovoltaic devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exploitation of inimitable properties of CuInS2 quantum dots for energy conversion in bulk heterojunction hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, Sushama M.

    2017-11-01

    Quantum dots (QDs) are the suitable material for solar cell devices owing to its distinctive optical, electrical and electronic properties. Currently, the most efficient devices have employed the toxic QDs which cause destructive impact on environment. In the present article, we have used environment benign CuInS2 QDs as an acceptor material in bulk heterojunction device of P3HT and QDs. The energy level positions corroborated from UPS spectra substantiates the acceptor property of CuInS2. We scrutinized the hybrid solar cell by tailoring the acceptor content in active layer. The increased acceptor content intensifies the performance of device. The enhancement in photovoltaic parameters is mainly due to the fast dissociation and extraction of photogenerated excitons which occurs with the larger wt% of acceptor QDs. Current density-voltage characteristics describes the greater V oc and I sc in the 60 wt% CuInS2 QDs based solar cell as compared to the low wt% of QDs in the active layer.

  12. Magnetic field effects of photocarrier generation in bulk heterojunctions at low temperature.

    PubMed

    Tajima, H; Nishioka, Y; Sato, S; Suzuki, T; Kimata, M

    2016-11-14

    We report an experimental investigation of the magnetic field effect (MFE) in polymer bulk heterojunction devices at temperatures below 10 K using photocarrier extraction by linearly increasing voltages. The examined devices were composed of an active layer of poly(3-hexylthiophene) and [6,6]-phenyl-C 61 -butyric acid methyl ester. In the experiments, the delay time (t d ) dependence of the MFE was investigated in detail. For t d < 80 μs, a positive MFE was observed in the field region B < 0.1 T and a negative MFE was observed for B > 0.2 T. For t d > 8 ms, only a positive MFE proportional to B 2 was observed. For the photocurrent pulse detected immediately after light irradiation, the MFE was negligibly small. In a high magnetic field of 15 T, a significant MFE exceeding 80% was observed at 1.8 K for t d = 800 ms. We discuss the results based on a model of triplet-singlet (or singlet-triplet) conversion in the magnetic field and estimate the exchange integral for the charge-transfer exciton in this photovoltaic cell.

  13. An organic water-gated ambipolar transistor with a bulk heterojunction active layer for stable and tunable photodetection

    NASA Astrophysics Data System (ADS)

    Xu, Haihua; Zhu, Qingqing; Wu, Tongyuan; Chen, Wenwen; Zhou, Guodong; Li, Jun; Zhang, Huisheng; Zhao, Ni

    2016-11-01

    Organic water-gated transistors (OWGTs) have emerged as promising sensing architectures for biomedical applications and environmental monitoring due to their ability of in-situ detection of biological substances with high sensitivity and low operation voltage, as well as compatibility with various read-out circuits. Tremendous progress has been made in the development of p-type OWGTs. However, achieving stable n-type operation in OWGTs due to the presence of solvated oxygen in water is still challenging. Here, we report an ambipolar OWGT based on a bulk heterojunction active layer, which exhibits a stable hole and electron transport when exposed to aqueous environment. The device can be used as a photodetector both in the hole and electron accumulation regions to yield a maximum responsivity of 0.87 A W-1. More importantly, the device exhibited stable static and dynamic photodetection even when operated in the n-type mode. These findings bring possibilities for the device to be adopted for future biosensing platforms, which are fully compatible with low-cost and low-power organic complementary circuits.

  14. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    PubMed

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  15. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.

    PubMed

    Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang

    2018-05-22

    High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.

  16. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  17. Electronic Properties and Photovoltaic Performances of a Series of Oligothiophene Copolymers Incorporating Both Thieno[3,2-b]thiophene and 2,1,3-Benzothiadiazole Moieties.

    PubMed

    Biniek, Laure; Chochos, Christos L; Hadziioannou, Georges; Leclerc, Nicolas; Lévêque, Patrick; Heiser, Thomas

    2010-04-06

    A series of donor-acceptor alternated conjugated copolymers, composed of thiophene, bithiophene, thieno[3,2-b]thiophene, and 2,1,3-benzothiadiazole units and differing from each other by the nature and the number of 3-alkylthiophene in the backbone, have been synthesized by Stille cross-coupling polymerization. The material's optical and electrochemical properties, in solution and in thin films, have been investigated using UV-Visible absorption and cyclic voltammetry. Bulk heterojunction solar cells using blends of the newly synthesized copolymers, as electron donor, and C60-PCBM or C70-PCBM, as electron transporting material, have been elaborated. A maximum power conversion efficiency of 1.8% is achieved with a 1:4 PPBzT(2) -C12:C70-PCBM weight ratio. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Narrow-Band Organic Photodiodes for High-Resolution Imaging.

    PubMed

    Han, Moon Gyu; Park, Kyung-Bae; Bulliard, Xavier; Lee, Gae Hwang; Yun, Sungyoung; Leem, Dong-Seok; Heo, Chul-Joon; Yagi, Tadao; Sakurai, Rie; Ro, Takkyun; Lim, Seon-Jeong; Sul, Sangchul; Na, Kyoungwon; Ahn, Jungchak; Jin, Yong Wan; Lee, Sangyoon

    2016-10-05

    There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

  19. Interfacial engineering of electron transport layer using Caesium Iodide for efficient and stable organic solar cells

    NASA Astrophysics Data System (ADS)

    Upama, Mushfika Baishakhi; Elumalai, Naveen Kumar; Mahmud, Md Arafat; Wright, Matthew; Wang, Dian; Xu, Cheng; Haque, Faiazul; Chan, Kah Howe; Uddin, Ashraf

    2017-09-01

    Polymer solar cells (PSCs) have gained immense research interest in the recent years predominantly due to low-cost, solution process-ability, and facile device fabrication. However, achieving high stability without compromising the power conversion efficiency (PCE) serves to be an important trade-off for commercialization. In line with this, we demonstrate the significance of incorporating a CsI/ZnO bilayer as electron transport layer (ETL) in the bulk heterojunction PSCs employing low band gap polymer (PTB7) and fullerene (PC71BM) as the photo-active layer. The devices with CsI/ZnO interlayer exhibited substantial enhancement of 800% and 12% in PCE when compared to the devices with pristine CsI and pristine ZnO as ETL, respectively. Furthermore, the UV and UV-ozone induced degradation studies revealed that the devices incorporating CsI/ZnO bilayer possess excellent decomposition stability (∼23% higher) over the devices with pristine ZnO counterparts. The incorporation of CsI between ITO and ZnO was found to favorably modify the energy-level alignment at the interface, contributing to the charge collection efficiency as well as protecting the adjacent light absorbing polymer layers from degradation. The mechanism behind the improvement in PCE and stability is analyzed using the electrochemical impedance spectroscopy and dark I-V characteristics.

  20. Small Molecules Derived from Thieno[3,4-c]pyrrole-4,6-dione (TPD) and Their Use in Solution Processed Organic Solar Cells.

    PubMed

    Garcias-Morales, Cesar; Romero-Borja, Daniel; Maldonado, José-Luis; Roa, Arián E; Rodríguez, Mario; García-Merinos, J Pablo; Ariza-Castolo, Armando

    2017-09-30

    In this work, microwave synthesis, chemical, optical and electrochemical characterization of three small organic molecules, TPA-TPD , TPA-PT-TPD and TPA-TT-TPD with donor-acceptor structure and their use in organic photovoltaic cells are reported. For the synthesis, 5-(2-ethylhexyl)-4 H -thieno[3,4- c ]pyrrole-4,6(5 H )-dione was used as electron withdrawing fragment while the triphenylamine was used as electron donating fragment. Molecular electronic geometry and electronic distribution density were established by density functional theory (DFT) calculations and confirmed by optical and chemical characterization. These molecules were employed as electron-donors in the active layer for manufacturing bulk heterojunction organic solar cells, where [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) was used as electron-acceptor. As cathode, Field's metal (FM), an eutectic alloy (Bi/In/Sn: 32.5%, 51%, and 16.5%, respectively) with a melting point above 62 °C, was easily deposited by drop casting under vacuum-free process and at air atmosphere. Prepared devices based on TPA-TPD :PC71BM (1:4 w / w ratio) presented a large V OC = 0.97 V, with J SC = 7.9 mA/cm², a FF = 0.34, then, a power conversion efficiency (PCE) of 2.6%.

  1. Low temperature solution process-based defect-induced orange-red light emitting diode

    PubMed Central

    Biswas, Pranab; Baek, Sung-Doo; Hoon Lee, Sang; Park, Ji-Hyeon; Jeong Lee, Su; Il Lee, Tae; Myoung, Jae-Min

    2015-01-01

    We report low-temperature solution-processed p-CuO nanorods (NRs)/n-ZnO NRs heterojunction light emitting diode (LED), exploiting the native point defects of ZnO NRs. ZnO NRs were synthesized at 90 °C by using hydrothermal method while CuO NRs were synthesized at 100 °C by using microwave reaction system. The electrical properties of newly synthesized CuO NRs revealed a promising p-type nature with a hole concentration of 9.64 × 1018 cm−3. The current-voltage characteristic of the heterojunction showed a significantly high rectification ratio of 105 at 4 V with a stable current flow. A broad orange-red emission was obtained from the forward biased LED with a major peak at 610 nm which was attributed to the electron transition from interstitial zinc to interstitial oxygen point defects in ZnO. A minor shoulder peak was also observed at 710 nm, corresponding to red emission which was ascribed to the transition from conduction band of ZnO to oxygen vacancies in ZnO lattice. This study demonstrates a significant progress toward oxide materials based, defect-induced light emitting device with low-cost, low-temperature methods. PMID:26648420

  2. Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property.

    PubMed

    Wu, Kailong; Wang, Zian; Zhan, Lisi; Zhong, Cheng; Gong, Shaolong; Xie, Guohua; Yang, Chuluo

    2018-04-05

    Two new blue emitters, i.e., bis-[2-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( o-ACSO2) and bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( m-ACSO2), with reserved fine thermally activated delayed fluorescent (TADF) nature and simply tuned thermal and optoelectronic properties, were synthesized by isomer engineering. The meta-linking compound, i.e., m-ACSO2, obtains the highest photoluminescence quantum yield with a small singlet-triplet energy gap, a moderate delayed fluorescent lifetime, excellent solubility, and neat film homogeneity. Due to its unique aggregation-induced emission (AIE) character, neat film-based heterojunction-like organic light-emitting diodes (OLEDs) are achievable. By inserting an excitonic inert exciton-blocking layer, the PN heterojunction-like emission accompanied by intefacial exciplex was shifted to a homojunction-like channel mainly from the AIE emitter itself, providing a new tactic to generate efficient blue color from neat films. The solution-processed nondoped sky-blue OLED employing m-ACSO2 as emitter with homojunction-like emission achieved a maximum external quantum efficiency of 17.2%. The design strategies presented herein provide practical methods to construct efficient blue TADF dyes and realize high-performance blue TADF devices.

  3. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    PubMed

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spherical nitroguanidine process

    DOEpatents

    Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.

    1990-01-01

    A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.

  5. Enhanced photoelectrochemical response of plasmonic Au embedded BiVO4/Fe2O3 heterojunction.

    PubMed

    Verma, Anuradha; Srivastav, Anupam; Khan, Saif A; Rani Satsangi, Vibha; Shrivastav, Rohit; Kumar Avasthi, Devesh; Dass, Sahab

    2017-06-14

    The effect of embedding Au nanoparticles (NPs) in a BiVO 4 /Fe 2 O 3 heterojunction for photoelectrochemical water splitting is studied here for the first time. The present nanostructured heterojunction offers three major advantages over pristine BiVO 4 and Fe 2 O 3 : (i) the formation of a heterojunction between BiVO 4 and Fe 2 O 3 enhances the charge carrier separation and transfer, (ii) the layer of Fe 2 O 3 provides protection to BiVO 4 from photocorrosion and, (iii) the Au NPs possessing surface plasmon resonance (SPR) enhance the photoelectrochemical response by transferring energy to metal oxides by hot electron transfer (HET) and plasmon resonant energy transfer (PRET). The present study reveals that the heterojunction ITO/BiVO 4 /Fe 2 O 3 (with 32% v/v Au solution in both layers) gives the best performance and mitigates the limitations of both pristine Fe 2 O 3 and BiVO 4 . A thirteen-fold increment in applied bias photon-to-current conversion efficiency (ABPE) was observed at 1.24 V vs. RHE under the condition of 1 Sun illumination. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurements indicated that an Au embedded heterojunction is more effective in harvesting visible light in comparison to a heterojunction without Au NPs.

  6. Transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/Al-ZnO p-n heterojunction diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sunil, E-mail: skbgudha@gmail.com; Ansari, Mohd Zubair; Khare, Neeraj

    2016-05-23

    A p-type Organic inorganic tin chloride (CH{sub 3}NH{sub 3}SnCl{sub 3}) perovskite thin film has been synthesized by solution method. An n-type 1% Al doped ZnO (AZO) film has been deposited on FTO substrate by ultrasonic assisted chemical vapor deposition technique. A transparent CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction diode has been fabricated by spin coating technique. CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows 75% transparency in the visible region. I-V characteristic of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction shows rectifying behavior of the diode. The diode parameters calculated as ideality factor η=2.754 and barrier height Φ= 0.76 eV. The resultmore » demonstrates the potentiality of CH{sub 3}NH{sub 3}SnCl{sub 3}/AZO p-n heterojunction for transparent electronics.« less

  7. 3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bo; Shi, Gang; Lei, Sidong

    2015-08-17

    The emergence of a rich variety of two-dimensional (2D) layered semiconductor materials has enabled the creation of atomically thin heterojunction devices. Junctions between atomically thin 2D layers and 3D bulk semiconductors can lead to junctions that are fundamentally electronically different from the covalently bonded conventional semiconductor junctions. In this paper, we propose a new 3D band diagram for the heterojunction formed between n-type monolayer MoS 2 and p-type Si, in which the conduction and valence band-edges of the MoS 2 monolayer are drawn for both stacked and in-plane directions. This new band diagram helps visualize the flow of charge carriersmore » inside the device in a 3D manner. Our detailed wavelength-dependent photocurrent measurements fully support the diagrams and unambiguously show that the band alignment is type I for this 2D-3D heterojunction. Photogenerated electron–hole pairs in the atomically thin monolayer are separated and driven by an external bias and control the “on/off” states of the junction photodetector device. Finally, two photoresponse regimes with fast and slow relaxation are also revealed in time-resolved photocurrent measurements, suggesting the important role played by charge trap states.« less

  8. Two-dimensional numerical model for the high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Loret, Dany

    1987-11-01

    A two-dimensional numerical drift-diffusion model for the High Electron Mobility Transistor (HEMT) is presented. Special attention is paid to the modeling of the current flow over the heterojunction. A finite difference scheme is used to solve the equations, and a variable mesh spacing was implemented to cope with the strong variations of functions near the heterojunction. Simulation results are compared to experimental data for a 0.7 μm gate length device. Small-signal transconductances and cut-off frequency obtained from the 2-D model agree well with the experimental values from S-parameter measurements. It is shown that the numerical models give good insight into device behaviour, including important parasitic effects such as electron injection into the bulk GaAs.

  9. Determination of a natural valence-band offset - The case of HgTe and CdTe

    NASA Technical Reports Server (NTRS)

    Shih, C. K.; Spicer, W. E.

    1987-01-01

    A method to determine a natural valence-band offset (NVBO), i.e., the change in the valence-band maximum energy which is intrinsic to the bulk band structures of semiconductors is proposed. The HgTe-CdTe system is used as an example in which it is found that the valence-band maximum of HgTe lies 0.35 + or - 0.06 eV above that of CdTe. The NVBO of 0.35 eV is in good agreement with the X-ray photoemission spectroscopy measurement of the heterojunction offset. The procedure to determine the NVBO between semiconductors, and its implication on the heterojunction band lineup and the electronic structures of semiconductor alloys, are discussed.

  10. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    PubMed

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  11. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uren, Michael J.; Cäsar, Markus; Kuball, Martin

    2014-06-30

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band withmore » activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ∼0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.« less

  12. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    PubMed

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  13. Low Dark-Current, High Current-Gain of PVK/ZnO Nanoparticles Composite-Based UV Photodetector by PN-Heterojunction Control.

    PubMed

    Lee, Sang-Won; Cha, Seung-Hwan; Choi, Kyung-Jae; Kang, Byoung-Ho; Lee, Jae-Sung; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Gopalan, Sai-Anand; Kwon, Dae-Hyuk; Kang, Shin-Won

    2016-01-07

    We propose a solution-processable ultraviolet (UV) photodetector with a pn-heterojunction hybrid photoactive layer (HPL) that is composed of poly-n-vinylcarbazole (PVK) as a p-type polymer and ZnO nanoparticles (NPs) as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL) spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 10³ higher than that of the dark current.

  14. Low Dark-Current, High Current-Gain of PVK/ZnO Nanoparticles Composite-Based UV Photodetector by PN-Heterojunction Control

    PubMed Central

    Lee, Sang-Won; Cha, Seung-Hwan; Choi, Kyung-Jae; Kang, Byoung-Ho; Lee, Jae-Sung; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Gopalan, Sai-Anand; Kwon, Dae-Hyuk; Kang, Shin-Won

    2016-01-01

    We propose a solution-processable ultraviolet (UV) photodetector with a pn-heterojunction hybrid photoactive layer (HPL) that is composed of poly-n-vinylcarbazole (PVK) as a p-type polymer and ZnO nanoparticles (NPs) as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL) spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 103 higher than that of the dark current. PMID:26751453

  15. Charge carrier transport and injection across organic heterojunctions

    NASA Astrophysics Data System (ADS)

    Tsang, Sai Wing

    The discovery of highly efficient organic light-emitting diodes (OLEDs) in the 1980s has stimulated extensive research on organic semiconductors and devices. Underlying this breakthrough is the realization of the organic heterojunction (OH). Besides OLEDs, the implementation of the OH also significantly improves the power conversion efficiency in organic photovoltaic cells (OPVs). The continued technological advancements in organic electronic devices depend on the accumulation of knowledge of the intrinsic properties of organic materials and related interfaces. Among them, charge-carrier transport and carrier injection are two key factors that govern the performance of a device. This thesis mainly focuses on the charge carrier injection and transport at organic heterojunctions. The carrier transport properties of different organic materials used in this study are characterized by time-of-flight (TOF) and admittance spectroscopy (AS). An injection model is formulated by considering the carrier distribution at both sides of the interface. Using a steady-state simulation approach, the effect of accumulated charges on energy level alignment at OH is revealed. Instead of a constant injection barrier, it is found that the barrier varies with applied voltage. Moreover, an escape probability function in the injection model is modified by taking into account the total hopping rate and available hopping sites at the interface. The model predicts that the injection current at low temperature can be dramatically modified by an extremely small density of deep trap states. More importantly, the temperature dependence of the injection current is found to decrease with increasing barrier height. This suggests that extracting the barrier height from the J vs 1/T plot, as commonly employed in the literature, is problematic. These theoretical predictions are confirmed by a series of experiments on heterojunction devices with various barrier heights. In addition, the presence of deep trap states is also consistent with carrier mobility measurements at low temperature. From the point of view of application, an interface chemical doping method is proposed to engineer the carrier injection at an organic heterojunction. It is found that the injection current can be effectively increased or suppressed by introducing a thin (2 nm) doped organic layer at the interface. This technique is further extended to study the impact of an injection barrier at the OH, in OLEDs, on device performance. It is shown that a 0.3 eV injection barrier at the OH, that is normally negligible at metal/organic interface, can reduce the device efficiency by 25%. This is explained by the carrier distribution in the density-of-states at the OH. Furthermore, the carrier transport properties in a bulk heterojunction system are investigated. The bulk heterojunction consists of an interpenetrating network of a polymeric electron donor and a molecular electron acceptor. This material system has been studied in the last few years as an attractive power conversion efficiency (5% under AM 1.5) of OPV cells has been demonstrated. It is found that the electron mobility is greatly dependent on the thermal treatment of the film. Interfacial dipole effect at the heterojunction between the donor and the acceptor is proposed to be the determining factor that alters the carrier mobility in different nanoscale structures.

  16. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors

    DOE PAGES

    Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; ...

    2015-07-22

    The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe 2 monolayer crystals with SiO 2, and the exposed locations are selectively and totally converted to MoS 2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe 2/MoS 2 heterojunctions in predefinedmore » patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.« less

  17. Atomically thin p-n junctions with van der Waals heterointerfaces.

    PubMed

    Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M; Chen, Wenchao; Li, Yilei; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Nuckolls, Colin; Heinz, Tony F; Guo, Jing; Hone, James; Kim, Philip

    2014-09-01

    Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.

  18. Growth studies of CVD-MBE by in-situ diagnostics

    NASA Astrophysics Data System (ADS)

    Maracas, George N.; Steimle, Timothy C.

    1992-10-01

    This is the final technical report for the three year DARPA-URI program 'Growth Studies of CVD-MBE by in-situ Diagnostics'. The goals of the program were to develop non-invasive, real time epitaxial growth monitoring techniques and combine them to gain an understanding of processes that occur during MBE growth from gas sources. We have adapted these techniques to a commercially designed gas source MBE system (Vacuum Generators Inc.) to facilitate technology transfer out of the laboratory into industrial environments. The in-situ measurement techniques of spectroscopic ellipsometry (SE) and laser induced fluorescence (LIF) have been successfully implemented to monitor the optical and chemical properties of the growing epitaxial film and the gas phase reactants. The ellipsometer was jointly developed with the J. Woolam Co. and has become a commercial product. The temperature dependence of group 3 and 5 desorption from GaAs and InP has been measured as well as the incident effusion cell fluxes. The temporal evolution of the growth has also been measured both by SE and LIF to show the smoothing of heterojunction surfaces during growth interruption. Complicated microcavity optical device structures have been monitored by ellipsometry in real time to improve device quality. This data has been coupled with the structural information obtained from reflection high energy electron diffraction (RHEED) to understand the growth processes in binary and ternary bulk 3-5 semiconductors and heterojunctions.

  19. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    PubMed

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  20. Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors.

    PubMed

    Chaudhry, Mujeeb Ullah; Tetzner, Kornelius; Lin, Yen-Hung; Nam, Sungho; Pearson, Christopher; Groves, Chris; Petty, Michael C; Anthopoulos, Thomas D; Bradley, Donal D C

    2018-06-06

    We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO x gate dielectric and a hybrid multilayer channel consisting of the heterojunction In 2 O 3 /ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm 2 /(V s)) with appreciable current on/off ratios (≈10 3 ) and an external quantum efficiency of 2 × 10 -2 % at 700 cd/m 2 . The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.

  1. Size effect on the magnetic and electronic properties of the monolayer lateral hetero-junction WS2-MoS2 nanoribbon

    NASA Astrophysics Data System (ADS)

    Wen, Yan-Ni; Xia, Ming-Gang; Zhang, Sheng-Li

    2016-05-01

    By using the VASP, we studied the magnetic and electronic properties of the monolayer lateral hetero-junction WS2-MoS2-nanoribbons (WS2-MoS2-NRs). Our results show that the NRs' edge chirality and width affect significantly its magnetic and electronic properties. The monolayer lateral hetero-junction ZZ-WS2-MoS2-NRs(ZZ: zigzag) exhibitmetallic behavior and have considerable magnetic moment. Their magnetic moments decrease in the order of Nz = 2, 6 and 4 (the width of NRs). While, the magnetic moment decreases with the increased rz (the number of the Mo-S chains, rz ≠ 0 and rz ≠ Nz) at the same width Nz. The NA-AC-WS2-NR (AC: armchair) and NA-AC-WS2-MoS2-NR-1 (the number of the Mo-S chain is 1) show metallic behavior when NA = 3 (the width of NRs). The other monolayer lateral hetero-junction AC-WS2-MoS2-NRs remain the nonmagnetic and semiconductingbehavior as bulk. But they are indirect band-gap except for the NA = 3, rA = 2 (the number of the Mo-S chains) and NA = 7, rA = 0 when NA < 9. However they are direct band-gap when NA ≥ 9. Their lowest and highest band gaps are 0.150 eV and 0.581 eV, respectively. These unique magnetic and electronic properties will provide guidanceon the WS2-MoS2 hetero-junction application in nanodevice.

  2. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    PubMed

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  3. Correlation between polymer architecture, mesoscale structure and photovoltaic performance in side-chain-modified PAE-PAV:fullerene bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Rathgeber, S.; Kuehnlenz, F.; Hoppe, H.; Egbe, D. A. M.; Tuerk, S.; Perlich, J.; Gehrke, R.

    2012-02-01

    A poly(arylene-ethynylene)-alt-poly(arylene-vinylene) statistical copolymer carrying linear and branched alkoxy side chains along the conjugated backbone in a random manner, yields, compared to its regular substituted counterparts, an improved performance in polymer:fullerene bulk-heterojunction solar cells. Results obtained from GiWAXS experiments show that the improved performance of the statistical copolymer may be attributed to the following structural characteristics: 1) Well, ordered stacked domains that promote backbone planarization and thus improve the ππ-overlap. 2) Partly face-on alignment of domains relative to the electrodes for an improved active layer electrode charge transfer. Branched side chains seem to promote face-on domain orientation. Most likely they can minimize their unfavorable contact with the interface by just bringing the CH3 groups of the branches into direct contact with the surface so that favorable phenylene-substrate interaction can promote face-on orientation. 3) A more isotropic domain orientation throughout the active layer to ensure that the backbone alignment direction has components perpendicular and parallel to the electrodes in order to compromise between light absorption and efficient intra-chain charge transport.

  4. Fabrication of Inverted Bulk-Heterojunction Organic Solar Cell with Ultrathin Titanium Oxide Nanosheet as an Electron-Extracting Buffer Layer

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Maruyama, Yasutake; Fukuda, Katsutoshi

    2012-02-01

    The contributions and deposition conditions of ultrathin titania nanosheet (TN) crystallites were studied in an inverted bulk-heterojunction (BHJ) cell in indium tin oxide (ITO)/titania nanosheet/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic devices. Only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film deposited by the layer-by-layer deposition technique effectively decreased the leakage current and increased both open circuit voltage (VOC) and fill factor (FF), and power conversion efficiency (η) was increased nearly twofold by the insertion of two TN layers. The deposition of additional TN layers caused the reduction in FF, and the abnormal S-shaped curves above VOC for the devices with three and four TN layers were ascribed to the interfacial potential barrier at the ITO/TN interface and the series resistance across the multilayers of TN and PDDA. The performance of the BHJ cell with TN was markedly improved, and the S-shaped curves were eliminated following the the insertion of anatase-phase titanium dioxide between the ITO and TN layers owing to the decrease in the interfacial potential barrier.

  5. Solution-Processed Cu2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance.

    PubMed

    Forster, Jason D; Lynch, Jared J; Coates, Nelson E; Liu, Jun; Jang, Hyejin; Zaia, Edmond; Gordon, Madeleine P; Szybowski, Maxime; Sahu, Ayaskanta; Cahill, David G; Urban, Jeffrey J

    2017-06-05

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of a fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.

  6. Temperature dependent charge transport studies across thermodynamic glass transition in P3HT:PCBM bulk heterojunction: insight from J-V and impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Atri; Rahaman, Abdulla Bin; Banerjee, Debamalya

    2018-03-01

    Temperature dependent charge transport properties of P3HT:PCBM bulk heterojunction are analysed by dc and ac measurements under dark conditions across a wide temperature range of 110-473 K, which includes the thermodynamic glass transition temperature (Tg ˜320 K) of the system. A change from Ohmic conduction to space charge limited current conduction at higher (⩾1.2 V) applied bias voltages above  ⩾200 K is observed from J-V characteristics. From capacitance-voltage (C-V) measurement at room temperature, the occurrence of a peak near the built-in voltage is observed below the dielectric relaxation frequency, originating from the competition between drift and diffusion driven motions of charges. Carrier concentration (N) is calculated from C-V measurements taken at different temperatures. Room temperature mobility values at various applied bias voltages are in accordance with that obtained from transient charge extraction by linearly increasing voltage measurement. Sample impedance is measured over five decades of frequency across temperature range by using lock-in detection. This data is used to extract temperature dependence of carrier mobility (μ), and dc conductivity (σ_dc ) which is low frequency extrapolation of ac conductivity. An activation energy of  ˜126 meV for the carrier hopping process at the metal-semiconductor interface is estimated from temperature dependence of σ_dc . Above T g, μ levels off to a constant value, whereas σ_dc starts to decrease after a transition knee at T g that can be seen as a combined effect of changes in μ and N. All these observed changes across T g can be correlated to enhanced polymer motion above the glass transition.

  7. Petascale Simulations of the Morphology and the Molecular Interface of Bulk Heterojunctions

    DOE PAGES

    Carrillo, Jan-Michael Y.; Seibers, Zach; Kumar, Rajeev; ...

    2016-07-14

    Understanding how additives interact and segregate within bulk heterojunction (BHJ) thin films is critical for exercising control over structure at multiple length scales and delivering improvements in photovoltaic performance. The morphological evolution of poly(3-hexylthiophene) (P3HT) and phenyl-C 61-butyric acid methyl ester (PCBM) blends that are commensurate with the size of a BHJ thin film is examined using petascale coarse-grained molecular dynamics simulations. When comparing 2 component and 3 component systems containing short P3HT chains as additives undergoing thermal annealing we demonstrate that the short chains alter the morphol- ogy in apparently useful ways: They efficiently migrate to the P3HT/PCBM interface,more » increasing the P3HT domain size and interfacial area. Simulation results agree with depth profiles determined from neutron reflectometry measurements that reveal PCBM enrichment near substrate and air interfaces, but a decrease in that PCBM enrich- ment when a small amount of short P3HT chains are integrated into the BHJ blend. Atomistic simulations of the P3HT/PCBM blend interfaces show a non-monotonic dependence of the interfacial thickness as a function of number of repeat units in the oligomeric P3HT additive, and the thiophene rings orient parallel to the interfacial plane as they approach the PCBM domain. Using the nanoscale geometries of the P3HT oligomers, LUMO and HOMO energy levels calculated by density functional theory are found to be invariant across the donor/acceptor interface. Finally, these connections between additives, processing, and morphology at all length scales are generally useful for efforts to improve device performance.« less

  8. Eco-friendly spray coating of organic solar cells through water-based nanoparticles ink (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Stryckers, Jeroen; D'Olieslaeger, Lien; Manca, Jean; Ethirajan, Anitha; Deferme, Wim

    2015-09-01

    Ultrasonic spray coating is currently proven to be a reliable, flexible and cost efficient fabrication method for printed electronics [1-2]. Ultrasonic nozzles are by design especially well-suited to deposit nano-suspension dispersions. Due to the ultrasonic vibration of the nozzle, droplets having a median diameter of 20 μm are created in a homogeneous droplet cloud and directed towards the substrate. When one prepares an ink having the right wetting properties, thin and homogeneous layers, fully covering the surface, can be achieved. Together with conjugated polymer nanoparticles (NPs), emerging as a new class of nanomaterials, [3] it opens possibilities towards eco-friendly roll-to-roll processing of state-of-the-art organic bulk heterojunction solar cells. A ultrasonic spray coater was used to print the conjugated polymer NP layers under different conditions. A first optimization of the spray coater settings (flow rate, spray speed and temperature) and the ink formulation (water and co-solvent mixture and NP content) was performed for polystyrene particles dissolved in a water-ethanol mixture. As a next step, the low bandgap donor polymer poly[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl] (PCDTBT) [4] and the fullerene acceptor phenyl-C71-butyric acid methyl ester (PCBM[70]) were combined in a water-based blend NP dispersion which was prepared using the mini-emulsion technique. [5,6] Optical Microscopy, profilometry and Scanning Electron Microscopy (SEM) are performed to study the roughness, surface structure, thickness and coverage of the spray coated layers. Finally the printed NP layers are integrated in organic bulk heterojunction solar cells and compared to spin coated reference devices.

  9. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    PubMed

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-09

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.

  10. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.

    PubMed

    Long, Yun; Hedley, Gordon J; Ruseckas, Arvydas; Chowdhury, Mithun; Roland, Thomas; Serrano, Luis A; Cooke, Graeme; Samuel, Ifor D W

    2017-05-03

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh 2 ) 2 . Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton-exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10 -3 to 3.6 × 10 -3 cm 2 s -1 , resulting in an enhancement of the mean two-dimensional exciton diffusion length (L D = (4Dτ) 1/2 ) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions.

  11. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material

    PubMed Central

    2017-01-01

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh2)2. Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton–exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10–3 to 3.6 × 10–3 cm2 s–1, resulting in an enhancement of the mean two-dimensional exciton diffusion length (LD = (4Dτ)1/2) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions. PMID:28358189

  12. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

    PubMed

    McCarthy, Carrie L; Brutchey, Richard L

    2017-05-02

    Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

  13. Structure-Processing Relationships in Solution Processable Polymer Thin Film Transistors and Small Molecule Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Perez, Louis A.

    A regio-regular (RR) conjugated copolymer based on cyclopenta[2,1-b:3,4- b]dithiophene (CDT) and pyridal[2,1,3]thiadiazole (PT) structural units was prepared by using polymerization reactions involving reactants specifically designed to avoid random orientation of the asymmetric PT heterocycle. Compared to its regio-irregular (RI) counterpart, the RR polymer exhibits a two orders of magnitude increase in hole mobility from 0.005 to 0.6 cm2V -1s-1. To probe the reason for this difference in mobility, we examined the crystalline structure and its orientation in thin films of both copolymers as a function of depth via grazing incidence wide angle X-ray scattering (GIWAXS). In the RI film, the pi-pi stacking direction of the crystallites is mainly perpendicular to the substrate normal (edge-on orientation) while in the RR film the crystallites adopt a mixed pi-pi stacking orientation in the center of the film as well as near the interface between the polymer and the dielectric layer. These results demonstrate that control of backbone regularity is another important design criterion to consider in the synthesis and optimization of new conjugated copolymers with asymmetric structural units. Solution processed organic photovoltaic devices (OPVs) have emerged as a promising sustainable energy technology due to their ease of fabrication, potential to enable low-cost manufacturing, and ability to be incorporated onto light-weight flexible substrates. To date, the most efficacious OPV device architecture, the bulk heterojunction (BHJ), consists of a blend of a light-harvesting conjugated organic electron donating molecule and a strong electron-accepting compound (usually a soluble fullerene derivative e.g. [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). BHJ layer morphology, which has been shown to be highly dependent on processing, has a significant effect on OPV performance. It is postulated that optimal BHJ morphologies consist of discrete bicontinuous nanoscale domains of each moiety, on the order of the exciton diffusion length, which extend vertically from each electrode, thereby increasing the surface area of the domains and forming continuous conducting pathways for efficient charge extraction and transfer. An optimal morphology, however, is seldom achieved during film formation; therefore, a number of processing techniques, such as thermal and sol vent annealing, and the addition of solvent additives to the casting solution have been explored to control the morphology in order to attain the multiple structural requirements. Solvent additive processing, a technique that is used in most record performing polymer:fullerene BHJ solar cell devices, involves the addition of small volumes of a high boiling point liquid to the BHJ casting solu- tion. Solvent additive processing, with 1,8-diiodooctane (DIO) as the additive, has recently been employed in solution processable small molecule (SPSM) BHJ systems, showing similar drastic effects on several device metrics and ultimately the power conversion efficiency (PCE). A recent SPSM study delineates how the volume of solvent additive used affects device performance: when 0.4 v/v% of DIO was used, the PCE increased from 1.8 to 7%, while a deterioration in the PCE to less than 1% occurred when only 1 v/v% of DIO was used. Several structural characterization techniques, such as grazing incidence wide and small-angle X-ray scattering (GIWAXS and GISAXS), and energy filtered transmission electron microscopy (EF-TEM), were used to investigate structure-processing-property relationships in additive-treated SPSM BHJ films and were correlated to device performance. Scattering experiments showed that the use of additives had several effects on the structure of the BHJ at multiple length scales: e.g. the number and orientation of SPSM crystallites, different pi-pi stacking distances, and the nano-scale domain size. Additionally, EF-TEM further verified the effect of additives on the domain size and was complemented with tomographic reconstructions to provide a 3D representation of the BHJ morphology due to solvent additive processing. Finally, in situ GIWAXS was also performed to investigate the kinetics of crystallite formation during and shortly after spin-casting. The additive was shown to induce a complex structural evolution effect on the microstructure of SPSMs by inciting the formation of a metastable polymorph and enhanced crystalline quality of the SPSM during and shortly after casting, whereas the non-additive treated SPSM structure was static after initial crystallite formation. The results from this study have important implications for future optimization and design of solvent additive processed SPSM BHJ blends for OPV devices.

  14. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  15. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells.

    PubMed

    Singh, Eric; Kim, Ki Seok; Yeom, Geun Young; Nalwa, Hari Singh

    2017-02-01

    Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), tungsten diselenide (WSe 2 ), titanium disulfide (TiS 2 ), tantalum sulfide (TaS 2 ), and niobium selenide (NbSe 2 ) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS 2 ; and thereafter, emphasize the role of atomically thin MoS 2 layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS 2 has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS 2 /n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS 2 solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS 2 /h-BN/GaAs heterostructure solar cells. The MoS 2 -containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS 2 -based organic solar cells exceeds 8.40%. The stability of MoS 2 solar cells measured under ambient conditions and light illumination has been discussed. The MoS 2 -based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.

  16. Phenothiazine-based small-molecule organic solar cells with power conversion efficiency over 7% and open circuit voltage of about 1.0 V using solvent vapor annealing.

    PubMed

    Rout, Yogajivan; Misra, Rajneesh; Singhal, Rahul; Biswas, Subhayan; Sharma, Ganesh D

    2018-02-28

    We have used two unsymmetrical small molecules, named phenothiazine 1 and 2 with a D-A-D-π-D configuration, where phenothiazine is used as a central unit, triphenylamine is used as a terminal unit and TCBD and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD are used as an acceptor between the phenothiazine and triphenylamine units, as a small molecule donor along with PC 71 BM as an acceptor for solution processed bulk heterojunction solar cells. The variation of acceptors in the phenothiazine derivatives makes an exciting change in the photophysical and electrochemical properties, hole mobility and therefore photovoltaic performance. The optimized device based on phenothiazine 2 exhibited a high power conversion efficiency of 7.35% (J sc = 11.98 mA cm -2 , V oc = 0.99 V and FF = 0.62), while the device based on phenothiazine 1 showed a low PCE of 4.81% (J sc = 8.73 mA cm -2 , V oc = 0.95 V and FF = 0.58) after solvent vapour annealing (SVA) treatment. The higher value of power conversion efficiency of the 2 based devices irrespective of the processing conditions may be related to the broader absorption and lower band gap of 2 as compared to 1. The improvement in the SVA treated active layer may be related to the enhanced crystallinity, molecular ordering and aggregation and shorter π-π stacking distance of the small molecule donors.

  17. Solution-Processed Cu 2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, Jason D.; Lynch, Jared J.; Coates, Nelson E.

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of amore » fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.« less

  18. Solution-Processed Cu 2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance

    DOE PAGES

    Forster, Jason D.; Lynch, Jared J.; Coates, Nelson E.; ...

    2017-06-05

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of amore » fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.« less

  19. p-n Heterojunction of doped graphene films obtained by pyrolysis of biomass precursors.

    PubMed

    Latorre-Sánchez, Marcos; Primo, Ana; Atienzar, Pedro; Forneli, Amparo; García, Hermenegildo

    2015-02-25

    Nitrogen-doped graphene [(N)G] obtained by pyrolysis at 900 °C of nanometric chitosan films exhibits a Hall effect characteristic of n-type semiconductors. In contrast, boron-doped graphene [(B)G] obtained by pyrolysis of borate ester of alginate behaves as a p-type semiconductor based also on the Hall effect. A p-n heterojunction of (B)G-(N)G films is built by stepwise coating of a quartz plate using a mask. The heterojunction is created by the partial overlapping of the (B)G-(N)G films. Upon irradiation with a xenon lamp of aqueous solutions of H(2) PtCl(6) and MnCl(2) in contact with the heterojunction, preferential electron migration from (B)G to (N)G with preferential location of positive holes on (B)G is established by observation in scanning electron microscopy of the formation of Pt nanoparticles (NP) on (N)G and MnO(2) NP on (B)G. The benefits of the heterojunction with respect to the devices having one individual component as a consequence of the electron migration through the p-n heterojunction are illustrated by measuring the photocurrent in the (B)G-(N)G heterojunction (180% current enhancement with respect to the dark current) and compared it to the photocurrent of the individual (B)G (15% enhancement) and (N)G (55% enhancement) components. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pronounced Effects of a Triazine Core on Photovoltaic Performance-Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor.

    PubMed

    Duan, Yuwei; Xu, Xiaopeng; Yan, He; Wu, Wenlin; Li, Zuojia; Peng, Qiang

    2017-02-01

    A novel-small molecular acceptor with electron-deficient 1,3,5-triazine as the core and perylene diimides as the arms is developed as the acceptor material for efficient bulk heterojunction organic solar cells with an efficiency of 9.15%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optical modeling of fiber organic photovoltaic structures using a transmission line method.

    PubMed

    Moshonas, N; Stathopoulos, N A; O'Connor, B T; Bedeloglu, A Celik; Savaidis, S P; Vasiliadis, S

    2017-12-01

    An optical model has been developed and evaluated for the calculation of the external quantum efficiency of cylindrical fiber photovoltaic structures. The model is based on the transmission line theory and has been applied on single and bulk heterojunction fiber-photovoltaic cells. Using this model, optimum design characteristics have been proposed for both configurations, and comparison with experimental results has been assessed.

  2. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    DOEpatents

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  3. Polythiophene-fullerene based photodetectors: tuning of spectral response and application in photoluminescence based (bio)chemical sensors.

    PubMed

    Nalwa, Kanwar S; Cai, Yuankun; Thoeming, Aaron L; Shinar, Joseph; Shinar, Ruth; Chaudhary, Sumit

    2010-10-01

    A photoluminescence (PL)-based oxygen and glucose sensor utilizing inorganic or organic light emitting diode as the light source, and polythiophene: fullerene type bulk-heterojunction devices as photodetectors, for both intensity and decay-time based monitoring of the sensing element's PL. The sensing element is based on the oxygen-sensitive dye Pt-octaethylporphyrin embedded in a polystyrene matrix.

  4. Organic Semiconductors for Sprayable Solar Cells: Improving Stability and Efficiency

    DTIC Science & Technology

    2008-03-25

    adopt a bulk heterojunction approach (where donor and acceptor are mixed before deposition). This decision immediately removed pentacene - based...derivative (ADTz) was the first screened, and unfortunately did not yield any photovoltaic performance. The fullerene adduct of pentacene and C60 was...continue). The most encouraging acceptor was the dicyano pentacene chromophore (DC_Pn). The derivatives shown above varied in efficiency from

  5. Effects of humidity during formation of zinc oxide electron contact layers from a diethylzinc precursor solution

    DOE PAGES

    Mauger, Scott A.; Steirer, K. Xerxes; Boe, Jonas; ...

    2016-01-19

    Here, this work focuses on the role of humidity in the formation of ZnO thin films from a reactive diethylzinc precursor solution for use as the electron contact layer (ECL) in organic photovoltaic (OPV) devices. This method is well suited for flexible devices because the films are annealed at 120 °C, making the process compatible with polymer substrates. ZnO films were prepared by spin coating and annealing at different relative humidity (RH) levels. It is found that RH during coating and annealing affects the chemical and physical properties of the ZnO films. Using x-ray photoelectron spectroscopy it is found thatmore » increasing RH during the formation steps produces a more stoichiometric oxide and a higher Zn/O ratio. Spectroscopic ellipsometry data shows a small decrease in the optical band gap with increased humidity, consistent with a more stoichiometric oxide. Kelvin probe measurements show that increased RH during formation results in a larger work function (i.e. further from vacuum). Consistent with these data, but counter to what might be expected, when these ZnO films are used as ECLs in OPV devices those with ZnO ECLs processed in low RH (less stoichiometric) had higher power conversion efficiency than those with high-RH processed ZnO due to improved open-circuit voltage. The increase in open-circuit voltage with decreasing humidity was observed with two different donor polymers and fullerene acceptors, which shows the trend is due to changes in ZnO. The observed changes in open-circuit voltage follow the same trend as the ZnO work function indicating that the increase in open-circuit voltage with decreasing humidity is the result of improved energetics at the interface between the bulk-heterojunction and the ZnO layer due to a vacuum level shift.« less

  6. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  7. From GaN to ZnGa(2)O(4) through a low-temperature process: nanotube and heterostructure arrays.

    PubMed

    Lu, Ming-Yen; Zhou, Xiang; Chiu, Cheng-Yao; Crawford, Samuel; Gradečak, Silvija

    2014-01-22

    We demonstrate a method to synthesize GaN-ZnGa2O4 core-shell nanowire and ZnGa2O4 nanotube arrays by a low-temperature hydrothermal process using GaN nanowires as templates. Transmission electron microscopy and X-ray photoelectron spectroscopy results show that a ZnGa2O4 shell forms on the surface of GaN nanowires and that the shell thickness is controlled by the time of the hydrothermal process and thus the concentration of Zn ions in the solution. Furthermore, ZnGa2O4 nanotube arrays were obtained by depleting the GaN core from GaN-ZnGa2O4 core-shell nanowire arrays during the reaction and subsequent etching with HCl. The GaN-ZnGa2O4 core-shell nanowires exhibit photoluminescence peaks centered at 2.60 and 2.90 eV attributed to the ZnGa2O4 shell, as well as peaks centered at 3.35 and 3.50 eV corresponding to the GaN core. We also demonstrate the synthesis of GaN-ZnGa2O4 heterojunction nanowires by a selective formation process as a simple route toward development of heterojunction nanodevices for optoelectronic applications.

  8. Construction of High Activity Titanium Dioxide Crystal Surface Heterostructures and Characterization of Its Basic Properties

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiao; Li, DanQi; Shen, Tingting; Lu, Cheng; Sun, Jing; Wang, Xikui

    2018-01-01

    Heterogeneous photocatalytic materials, which combine the advantages of photocatalytic materials and heterojunction, have been developed rapidly in the field of environmental pollution control. In this paper, TiO2 surface heterojunction catalysts with different catalytic activity were prepared by controlling the amount of HF, and their XRD characterization was also carried out. In addition, the optimum amount of HF was determined by photocatalytic degradation of simulated dye wastewater by methylene blue solution. And the optimal amount of catalyst and the optimal pH reaction conditions for degradation experiments were used to screen the highly reactive titania surface heterojunction system and its optimum application conditions. It provides the possibility of application in the degradation of industrial wastewater and environmental treatment.

  9. On the front and back side quantum efficiency differences in semi-transparent organic solar cells and photodiodes

    NASA Astrophysics Data System (ADS)

    Bouthinon, B.; Clerc, R.; Verilhac, J. M.; Racine, B.; De Girolamo, J.; Jacob, S.; Lienhard, P.; Joimel, J.; Dhez, O.; Revaux, A.

    2018-03-01

    The External Quantum Efficiency (EQE) of semi-transparent Bulk Hetero-Junction (BHJ) organic photodiodes processed in air shows significant differences when measured from the front or back side contacts. This difference was found significantly reduced when decreasing the active layer thickness or by applying a negative bias. This work brings new elements to help understanding this effect, providing a large set of experiments featuring different applied voltages, active layers, process conditions, and electron and hole layers. By means of detailed electrical simulations, all these measurements have been found consistent with the mechanisms of irreversible photo-oxidation, modeled as deep trap states (and not as p-type doping). The EQE measurement from front and back sides is thus a simple and efficient way of monitoring the presence and amplitude of oxygen contamination in BHJ organic solar cells and photodiodes.

  10. Toward mass producible ordered bulk heterojunction organic photovoltaic devices.

    PubMed

    Kim, Taeyong; Yoon, Hyunsik; Song, Hyung-Jun; Haberkorn, Niko; Cho, Younghyun; Sung, Seung Hyun; Lee, Chang Hee; Char, Kookheon; Theato, Patrick

    2012-12-13

    A strategy to fabricate nanostructured poly(3-hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low-pressure and low- temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS-coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well-ordered anodic aluminum oxide (AAO) as a template. Also, we provide a method to fabricate reversed nanostructures by exploiting the self-replication of replica molds. The concept of the transfer method in low temperature with a flexible and reusable replica mold obtained from an AAO template will be a firm foundation for a low-cost fabrication process of ordered OPVs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. All-solution-processed PbS quantum dot solar modules

    NASA Astrophysics Data System (ADS)

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-01

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a

  12. Multifunctional organic thin films and their electronic/optical properties

    NASA Astrophysics Data System (ADS)

    Shao, Yan

    The concept of multifunctional organic thin films and their electronic/optical properties has been applied to organic functional device design, fabrication, and characterization. The organic devices involve organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPV) in this dissertation. In the research of graded junction structure of OLEDs, two kinds of naturally-formed graded junction (NFGJ) structures, sharp and shallow graded junctions, can be formed using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. OLEDs with NFGJ have been demonstrated in Chapter 3; the performance is comparable to the heterojunction OLEDs, but with better device lifetime. A novel method to prepare highly uniform mixed organic solid solutions through a high temperature and high-pressure fusion process has been demonstrated in Chapter 4. A series of fused organic solid solution (FOSS) compounds with NPD doped with different organic emitting dopants were prepared and DSC technique was utilized to determine the thermal characteristics. For the first time, the schematic phase diagram for this binary system has been obtained. High performance OLEDs of single color and white emission were fabricated and the device properties were characterized. In Chapter 5, an efficient photovoltaic heterojunction of tetracene and fullerene has been investigated and high performance organic solar cells have been demonstrated by thermal deposition and successive heat treatment. The preliminary conclusion for this enhancement is discussed and supported by atomic force microscopy images, absorption spectra and x-ray diffraction analysis. Additionally, an effective organic photovoltaic heterojunction based on the typical triplet material PtOEP was demonstrated. It is believed that introducing appropriate organic materials with long exciton lifetime is a very promising way to improve photovoltaic performance.

  13. Pressing effect in polymer solar cells with bulk heterojunction nanolayers.

    PubMed

    Park, Jiho; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2011-01-01

    We report the effect of pressing light-absorbing layers on the performance of polymer solar cells. The light-absorbing active layer was prepared on the transparent conducting oxide coated substrates from solutions that contain a mixture of regioregular poly(3-hexylthiophene) and soluble fullerene molecules. The active layers were pressed using a home-built micro-press system by controlling temperature and pressure, followed by the top electrode deposition. The surface of the active layers pressed was examined using atomic force microscope, while the photovoltaic characteristics of devices were measured under simulated solar light illumination (air mass 1.5 G, 100 mW/cm2). Results showed that the dark current of devices was noticeably increased by pressing the active layer without respect to the pressing temperature. The highest power conversion efficiency was achieved for the device with the active layer pressed under 10 kgf at 70 degrees C. The result was explained in terms of surface morphology and thermophysical effect.

  14. Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell

    NASA Astrophysics Data System (ADS)

    Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko

    2017-02-01

    We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.

  15. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung

    2016-02-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs. Electronic supplementary information (ESI) available: Fig. S1-S3 and Table S1. See DOI: 10.1039/c5nr08849f

  16. Dynamics of aqueous binary glass-formers confined in MCM-41.

    PubMed

    Elamin, Khalid; Jansson, Helén; Swenson, Jan

    2015-05-21

    Dielectric permittivity measurements were performed on water solutions of propylene glycol (PG) and propylene glycol monomethyl ether (PGME) confined in 21 Å pores of the silica matrix MCM-41 C10 in wide frequency (10(-2)-10(6) Hz) and temperature (130-250 K) ranges. The aim was to elucidate how the formation of large hydrogen bonded structural entities, found in bulk solutions of PGME, was affected by the confined geometry, and to make comparisons with the dynamic behavior of the PG-water system. For all solutions the measurements revealed four almost concentration independent relaxation processes. The intensity of the fastest process is low compared to the other relaxation processes and might be caused by both hydroxyl groups of the pore surfaces and by local motions of water and solute molecules. The second fastest process contains contributions from both the main water relaxation as well as the intrinsic β-relaxation of the solute molecules. The third fastest process is the viscosity related α-relaxation. Its concentration independency is very different compared to the findings for the corresponding bulk systems, particularly for the PGME-water system. The experimental data suggests that the surface interactions induce a micro-phase separation of the two liquids, resulting in a full molecular layer of water molecules coordinating to the hydrophilic hydroxyl groups on the surfaces of the silica pores. This, in turn, increases the geometrical confinement effect for the remaining solution even more and prevents the building up of the same type of larger structural entities in the PGME-water system as in the corresponding bulk solutions. The slowest process is mainly hidden in the high conductivity contribution at low frequencies, but its temperature dependence can be extracted for the PGME-water system. However, its origin is not fully clear, as will be discussed.

  17. Solution epitaxy of gallium-doped ZnO on p-GaN for heterojunction light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Le, H. Q.; Lim, S. K.; Goh, G. K. L.; Chua, S. J.; Ang, N. S. S.; Liu, W.

    2010-09-01

    We report white light emission from a Ga-doped ZnO/p-GaN heterojunction light-emitting diode which was fabricated by growing gallium-doped ZnO film on the p-GaN in water at 90°C. As determined from Ga-doped ZnO films grown on (111) oriented MgAl2O4 spinel single crystal substrates, thermal treatment at 600°C in nitrogen ambient leads to a carrier concentration of 3.1×1020 cm-3 (and carrier mobility of 28 cm2/Vs) which is two orders of magnitude higher than that of the undoped films. Electroluminescence emissions at wavelengths of 393 nm (3.155 eV) and 529.5 nm (2.4 eV) were observed under forward bias in the heterojunction diode and white light could be visibly observed. The high concentration of electrons supplied from the Ga-doped ZnO films helped to enhance the carrier recombination and increase the light-emitting efficiency of the heterojunction diode.

  18. Stable High-Performance Perovskite Solar Cells Based on Inorganic Electron Transporting Bi-layers.

    PubMed

    Gu, Hao; Zhao, Chen; Zhang, Yiqiang; Shao, Guosheng

    2018-06-27

    As one of the significant electron transporting materials (ETM) in efficient planar heterojunction perovskite solar cells (PSCs), SnO<sub>2</sub> can collect/transfer photo-generated carriers produced in perovskite active absorbers and suppress the carrier recombination at interfaces. In this study, we demonstrate that mild solution-processed SnO<sub>2</sub> compact layer can be an eminent ETM for planar heterojunction PSCs. Here, the device based on chemical-bath-deposited SnO<sub>2</sub> electron transporting layer (ETL) exhibits a power conversion efficiency (PCE) of 16.10% and with obvious hysteresis effect (hysteresis index=19.5%), owing to the accumulation and recombination of charge carriers at SnO<sub>2</sub>/perovskite interface. In order to improve the carrier dissociation and transport process, an ultrathin TiO<sub>2</sub> film was deposited on the top of SnO<sub>2</sub> ETL passivating nonradiative recombination center. The corresponding device based on TiO<sub>2</sub>@SnO<sub>2</sub> electron transporting bi-layer (ETBL) exhibited a high PCE (17.45%) and a negligible hysteresis effect (hysteresis index=1.5%). These findings indicate that this facile solution-processed TiO<sub>2</sub>@SnO<sub>2</sub> ETBL paves a scalable and inexpensive way for fabricating hysteresis-less and high-performance PSCs. © 2018 IOP Publishing Ltd.

  19. Complex Behavior of Aqueous α-Cyclodextrin Solutions. Interfacial Morphologies Resulting from Bulk Aggregation.

    PubMed

    Hernandez-Pascacio, Jorge; Piñeiro, Ángel; Ruso, Juan M; Hassan, Natalia; Campbell, Richard A; Campos-Terán, José; Costas, Miguel

    2016-07-05

    The spontaneous aggregation of α-cyclodextrin (α-CD) molecules in the bulk aqueous solution and the interactions of the resulting aggregates at the liquid/air interface have been studied at 283 K using a battery of techniques: transmission electron microscopy, dynamic light scattering, dynamic surface tensiometry, Brewster angle microscopy, neutron reflectometry, and ellipsometry. We show that α-CD molecules spontaneously form aggregates in the bulk that grow in size with time. These aggregates adsorb to the liquid/air interface with their size in the bulk determining the adsorption rate. The material that reaches the interface coalesces laterally to form two-dimensional domains on the micrometer scale with a layer thickness on the nanometer scale. These processes are affected by the ages of both the bulk and the interface. The interfacial layer formed is not in fast dynamic equilibrium with the subphase as the resulting morphology is locked in a kinetically trapped state. These results reveal a surprising complexity of the parallel physical processes taking place in the bulk and at the interface of what might have seemed initially like a simple system.

  20. Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations.

    PubMed

    Mandujano-Ramírez, Humberto J; González-Vázquez, José P; Oskam, Gerko; Dittrich, Thomas; Garcia-Belmonte, Germa; Mora-Seró, Iván; Bisquert, Juan; Anta, Juan A

    2014-03-07

    Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.

  1. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    PubMed

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Morphology Development During Deposition in OPV Low Band Gap Polymer:Bis-Fullerene Heterojunctions: Effect of a Second Solvent

    NASA Astrophysics Data System (ADS)

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark

    2014-03-01

    Polymer based bulk-heterojunction solar cells, based on blends of conjugated polymers and fullerenes are one potential option for low cost renewable power generation. One way to improve power conversion efficiency (PCE) of this cell is to increase the open-circuit voltage (Voc) . It has been reported that replacing PCBM with bis-adduct fullerenes (i.e. ICBA) significantly improves Voc and PCE in P3HT device. However, for the most promising low band-gap polymer (LBP) system, replacing PCBM with ICBA gives very poor short-circuit current (Jsc) and PCE although Voc is significantly improved. As Jsc and PCE strongly depend on the morphology, we therefore tried to optimize the morphology of as-cast LBP/ICBA mixture by adding a second solvent with varying solubility to LBP and ICBA to the deposition solution. The results show that there is no change of LBP ordering by adding the second solvent regardless of its solubility. The morphology of all the as-cast samples is then determined by neutron scattering. A homogenous dispersion of ICBA in LBP is found in the sample where the second solvent is selective to LBP, giving poor PCE. Aggregates of ICBA are formed in those samples where the second solvent is selective to ICBA. The resultant morphology improves PCE by up to 246%. A quantitative analysis of neutron data shows that the interfacial area between ICBA aggregates and LBP/ICBA mixed phase is improved in these samples, which appears to facilitate charge transport and reduce the recombination of free charge carriers.

  3. Unexpected optical limiting properties from MoS2 nanosheets modified by a semiconductive polymer.

    PubMed

    Zhao, Min; Chang, Meng-Jie; Wang, Qiang; Zhu, Zhen-Tong; Zhai, Xin-Ping; Zirak, Mohammad; Moshfegh, Alireza Z; Song, Ying-Lin; Zhang, Hao-Li

    2015-08-07

    Direct solvent exfoliation of bulk MoS2 with the assistance of poly(3-hexylthiophene) (P3HT) produces a novel two-dimensional organic/inorganic semiconductor hetero-junction. The obtained P3HT-MoS2 nanohybrid exhibits unexpected optical limiting properties in contrast to the saturated absorption behavior of both P3HT and MoS2, showing potential in future photoelectric applications.

  4. High Performance Vertical Organic Field Effect Transistors

    DTIC Science & Technology

    2010-05-01

    systems. In pentacene /C60 bilayer system, [4] we showed that both the disordered structure of C60 and the charge trapping effect at the C60...much less significant than that by charge trapping at the interface. We also demonstrated that blending CdTe nanoparticles into a polymer–fullerene...for space applications b. We studied the photomultiplication effect in both evaporated ( pentacene /C60 bilayer) and bulk- heterojunction donor/acceptor

  5. Photoconductivity of Low-Bandgap Polymer and Polymer: Fullerene Bulk Heterojunction Studied by Constant Photocurrent Method

    NASA Astrophysics Data System (ADS)

    Malov, V. V.; Tameev, A. R.; Novikov, S. V.; Khenkin, M. V.; Kazanskii, A. G.; Vannikov, A. V.

    2015-08-01

    Optical and photoelectric properties of modern photosensitive polymers are of great interest due to their prospects for photovoltaic applications. In particular, an investigation of absorption and photoconductivity edge of these materials could provide valuable information. For these purpose we applied the constant photocurrent method which has proved its efficiency for inorganic materials. PCDTBT and PTB7 polymers were used as objects for the study as well as their blends with a fullerene derivative PC71BM. The measurements by constant photocurrent method (CPM) show that formation of bulk heterojunction (BHJ) in the blends increases photoconductivity and results in a redshift of the photocurrent edge in the doped polymers compared with that in the neat polymers. Obtained from CPM data, spectral dependences of absorption coefficient were approximated using Gaussian distribution of density-of-states within HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) bands. The approximation procedure allowed us to evaluate rather optical than electrical bandgaps for the studied materials. Moreover, spectra of polymer:PC71BM blends were fitted well by the sum of two Gaussian peaks which reveal both the transitions within the polymer and the transitions involving charge transfer states at the donor-acceptor interface in the BHJ.

  6. Modeling ultrafast exciton migration within the electron donor domains of bulk heterojunction organic photovoltaics

    DOE PAGES

    Bednarz, Mateusz; Lapin, Joel; McGillicuddy, Ryan; ...

    2017-02-21

    Recent experimental studies revealed that charge carriers harvested by bulk heterojunction organic photovoltaics can be collected on ultrafast time scales. To investigate ultrafast exciton mobility, we construct simple, nonatomistic models of a common polymeric electron donor material. We first explore the relationship between the magnitude of energetic noise in the model Hamiltonian and the spatial extent of resulting eigenstates. We then employ a quantum master equation approach to simulate migration of chromophore-localized initial excited states. Excitons initially localized on a single chromophore at the center of the model delocalize down polymer chains and across pi-stacked chromophores through a coherent, wavelikemore » mechanism during the first few tens of femtoseconds. We explore the dependence of this coherent delocalization on coupling strength and on the magnitude of energetic noise. At longer times we observe continued migration toward a uniform population distribution that proceeds through an incoherent, diffusive mechanism. A series of simulations modeling exciton harvesting in domains of varying size demonstrates that smaller domains enhance ultrafast exciton harvesting yield. Finally, our nonatomistic model falls short of quantitative accuracy but demonstrates that excitons are mobile within electron donor domains on ultrafast time scales and that coherent exciton transport can enhance ultrafast exciton harvesting.« less

  7. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials.

    PubMed

    Eastham, Nicholas D; Logsdon, Jenna L; Manley, Eric F; Aldrich, Thomas J; Leonardi, Matthew J; Wang, Gang; Powers-Riggs, Natalia E; Young, Ryan M; Chen, Lin X; Wasielewski, Michael R; Melkonyan, Ferdinand S; Chang, Robert P H; Marks, Tobin J

    2018-01-01

    Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling ultrafast exciton migration within the electron donor domains of bulk heterojunction organic photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bednarz, Mateusz; Lapin, Joel; McGillicuddy, Ryan

    Recent experimental studies revealed that charge carriers harvested by bulk heterojunction organic photovoltaics can be collected on ultrafast time scales. To investigate ultrafast exciton mobility, we construct simple, nonatomistic models of a common polymeric electron donor material. We first explore the relationship between the magnitude of energetic noise in the model Hamiltonian and the spatial extent of resulting eigenstates. We then employ a quantum master equation approach to simulate migration of chromophore-localized initial excited states. Excitons initially localized on a single chromophore at the center of the model delocalize down polymer chains and across pi-stacked chromophores through a coherent, wavelikemore » mechanism during the first few tens of femtoseconds. We explore the dependence of this coherent delocalization on coupling strength and on the magnitude of energetic noise. At longer times we observe continued migration toward a uniform population distribution that proceeds through an incoherent, diffusive mechanism. A series of simulations modeling exciton harvesting in domains of varying size demonstrates that smaller domains enhance ultrafast exciton harvesting yield. Finally, our nonatomistic model falls short of quantitative accuracy but demonstrates that excitons are mobile within electron donor domains on ultrafast time scales and that coherent exciton transport can enhance ultrafast exciton harvesting.« less

  9. Charge Photogeneration Experiments and Theory in Aggregated Squaraine Donor Materials for Improved Organic Solar Cell Efficiencies

    NASA Astrophysics Data System (ADS)

    Spencer, Susan Demetra

    Fossil fuel consumption has a deleterious effect on humans, the economy, and the environment. Renewable energy technologies must be identified and commercialized as quickly as possible so that the transition to renewables can happen at a minimum of financial and societal cost. Organic photovoltaic cells offer an inexpensive and disruptive energy technology, if the scientific challenges of understanding charge photogeneration in a bulk heterojunction material can be overcome. At RIT, there is a strong focus on creating new materials that can both offer fundamentally important scientific results relating to quantum photophysics, and simultaneously assist in the development of strong candidates for future commercialized technology. In this presentation, the results of intensive materials characterization of a series of squaraine small molecule donors will be presented, as well as a full study of the fabrication and optimization required to achieve >4% photovoltaic cell efficiency. A relationship between the molecular structure of the squaraine and its ability to form nanoscale aggregates will be explored. Squaraine aggregation will be described as a unique optoelectronic probe of the structure of the bulk heterojunction. This relationship will then be utilized to explain changes in crystallinity that impact the overall performance of the devices. Finally, a predictive summary will be given for the future of donor material research at RIT.

  10. Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices

    PubMed Central

    Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek

    2016-01-01

    Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices. PMID:26932767

  11. Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Paulsen, Bryan D.

    pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.

  12. High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface.

    PubMed

    Sit, Wai-Yu; Eisner, Flurin D; Lin, Yen-Hung; Firdaus, Yuliar; Seitkhan, Akmaral; Balawi, Ahmed H; Laquai, Frédéric; Burgess, Claire H; McLachlan, Martyn A; Volonakis, George; Giustino, Feliciano; Anthopoulos, Thomas D

    2018-04-01

    Fullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC 60 BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 70 BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC 70 BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p-n-like heterointerface between CuSCN and PC 70 BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.

  13. Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors.

    PubMed

    Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter

    2017-12-06

    Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.

  14. Fabrication of nanostructured CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Wang, Fang; Parry, James; Perera, Samanthe; Zeng, Hao

    2012-02-01

    We present the work on Cu(In,Ga)(Se,S)2 based nanostructured solar cells based on nanowire arrays. CIGS as the light absorber for thin-film solar cells has been widely studied recently, due to its high absorption coefficient, long-term stability, and low-cost of fabrication. Recently, solution phase processed CIGS thin film solar cells attracted great attention due to their extremely low fabrication cost. However, the performance is lower than vacuum based thin films possibly due to higher density of defects and lower carrier mobility. On the other hand, one dimensional ordered nanostructures such as nanowires and nanorods can be used to make redial junction solar cells, where the orthogonality between light absorption and charge carrier separation can lead to enhanced PV performance. Since the charge carriers only need to traverse a short distance in the radial direction before they are separated at the heterojunction interface, the radial junction scheme can be more defect tolerant than their planar junction scheme. In this work, a wide band gap nanowire or nanotube array such as TiO2 is used as a scaffold where CIGS is conformally coated using solution phase to obtain a radial heterojunction solar cell. Their performance is compared that of the planar thin film solar cells fabricated with the same materials.

  15. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Mrinal K.; Antonio, Mark R.

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less

  16. Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2014-03-01

    We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.

  17. Competitive adsorption in model charged protein mixtures: Equilibrium isotherms and kinetics behavior

    NASA Astrophysics Data System (ADS)

    Fang, F.; Szleifer, I.

    2003-07-01

    The competitive adsorption of proteins of different sizes and charges is studied using a molecular theory. The theory enables the study of charged systems explicitly including the size, shape, and charge distributions in all the molecular species in the mixture. Thus, this approach goes beyond the commonly used Poisson-Boltzmann approximation. The adsorption isotherms of the protein mixtures are studied for mixtures of two proteins of different size and charge. The amount of proteins adsorbed and the fraction of each protein is calculated as a function of the bulk composition of the solution and the amount of salt in the system. It is found that the total amount of proteins adsorbed is a monotonically decreasing function of the fraction of large proteins on the bulk solution and for fixed protein composition of the salt concentration. However, the composition of the adsorbed layer is a complicated function of the bulk composition and solution ionic strength. The structure of the adsorb layer depends upon the bulk composition and salt concentration. In general, there are multilayers adsorbed due to the long-range character of the electrostatic interactions. When the composition of large proteins in bulk is in very large excess it is found that the structure of the adsorb multilayer is such that the layer in contact with the surface is composed by a mixture of large and small proteins. However, the second and third layers are almost exclusively composed of large proteins. The theory is also generalized to study the time-dependent adsorption. The approach is based on separation of time scales into fast modes for the ions from the salt and the solvent and slow for the proteins. The dynamic equations are written for the slow modes, while the fast ones are obtained from the condition of equilibrium constrained to the distribution of proteins given by the slow modes. Two different processes are presented: the adsorption from a homogeneous solution to a charged surface at low salt concentration, and large excess of the large proteins in bulk. The second process is the kinetics of structural and adsorption change by changing the salt concentration of the bulk solution from low to high. The first process shows a large overshoot of the large proteins on the surface due to their excess in solution, followed by a surface replacement by the smaller molecules. The second process shows a very fast desorption of the large proteins followed by adsorption at latter stages. This process is found to be driven by large electrostatic repulsions induced by the fast ions from the salt approaching the surface. The relevance of the theoretical predictions to experimental system and possible directions for improvements of the theory are discussed.

  18. Investigation of Solution Polymerizations in Microgravity and 1 G

    NASA Technical Reports Server (NTRS)

    Kennedy, Alvin P.

    1998-01-01

    The in-situ dielectric spectra for the solution polymerization of polydiacetylene has been successfully measured. The results show a distinct difference between the response for the bulk solution and surface polymerization. It also shows a low frequency peak in the dissipation factor which is present in both the bulk and surface polymerizations. These features may prove to be significant indicators for important polymerization processes. Future studies will investigate the mechanisms responsible for these dielectric responses. This technique will eventually be used to monitor microgravity polymerizations and provide in-situ data on how microgravity affects solution polymerization.

  19. Topological Quantum Information Processing Mediated Via Hybrid Topological Insulator Structures

    DTIC Science & Technology

    2013-11-13

    manipulation, entanglement and detection ofMajorana fermions in diamond-topological insulator - superconductor heterojunctions. Furthennore, we propose to...the formation, manipulation, entanglement and detection of Majorana fermions in diamond-topological insulator - superconductor heterojunctions...Interactions between Superconductors and Topological Insulators Recent advances have revealed a new type of information processing, topological quantum

  20. Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts.

    PubMed

    Li, Shijie; Hu, Shiwei; Xu, Kaibing; Jiang, Wei; Liu, Yu; Leng, Zhe; Liu, Jianshe

    2017-10-15

    Constructing novel and efficient p-n heterojunction photocatalysts has stimulated great interest. Herein, we report the design and synthesis of fiber-shaped Ag 2 O/Ta 3 N 5 p-n heterojunctions as a kind of efficient photocatalysts. Ta 3 N 5 nanofibers were prepared by an electrospinning-calcination-nitridation method, and then the in-situ anchoring of Ag 2 O on their surfaces was realized by a facile deposition method. The resulting Ag 2 O/Ta 3 N 5 heterojunctions were comprised of porous Ta 3 N 5 nanofibers (diameter: ∼150nm) and Ag 2 O nanoparticles (size: ∼12nm). The photocatalytic activity of these heterojunctions were studied by decomposing rhodamine B (RhB) dye and tetracycline (TC) antibiotic under visible light (λ>400nm). In all the samples, the heterojunction with Ag 2 O/Ta 3 N 5 molar ratio of 0.2/1 displays the best activity. It is found that a synergistic effect contributes to the effective suppression of charges recombination between Ta 3 N 5 and Ag 2 O, leading to an enhanced photocatalytic activity with good stability. The photogenerated holes (h + ) and superoxide radicals (O 2 - ) play dominant roles in the photocatalytic process. These p-n heterojunctions will have great potential for environmental remediation because of the facile preparation process and exceptional photocatalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Transfer printed silver nanowire transparent conductors for PbS-ZnO heterojunction quantum dot solar cells.

    PubMed

    Hjerrild, Natasha E; Neo, Darren C J; Kasdi, Assia; Assender, Hazel E; Warner, Jamie H; Watt, Andrew A R

    2015-04-01

    Transfer-printed silver nanowire transparent conducting electrodes are demonstrated in lead sulfide-zinc oxide quantum dot solar cells. Advantages of using this transparent conductor technology are increased junction surface energy, solution processing, and the potential cost reduction of low temperature processing. Joule heating, device aging, and film thickness effects are investigated to understand shunt pathways created by nanowires protruding perpendicular to the film. A V(oc) of 0.39 ± 0.07 V, J(sc) of 16.2 ± 0.2 mA/cm(2), and power conversion efficiencies of 2.8 ± 0.4% are presented.

  2. 5 MeV Proton irradiation effects on 200 GHz silicon-germanium heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Gnana Prakash, A. P.; Hegde, Vinayakprasanna N.; Pradeep, T. M.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Cressler, J. D.

    2017-12-01

    The total dose effects of 5 MeV proton and Co-60 gamma irradiation in the dose range from 1 to 100 Mrad on advanced 200 GHz Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs) are investigated. The SRIM simulation study was conducted to understand the energy loss of 5 MeV proton ions in SiGe HBT structure. Pre- and post-radiation DC figure of merits such as forward- and inverse-mode Gummel characteristics, excess base current, DC current gain and output characteristics were used to quantify the radiation tolerance of the devices. The results show that the proton creates a significant amount of damages in the surface and bulk of the transistor when compared with gamma irradiation. The SiGe HBTs shows robust ionizing radiation tolerance even up to a total dose of 100 Mrad for both radiations.

  3. Possible existence of convective currents in surfactant bulk solution in experimental pendant-bubble dynamic surface tension measurements.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2009-02-03

    Traditionally, surfactant bulk solutions in which dynamic surface tension (DST) measurements are conducted using the pendant-bubble apparatus are assumed to be quiescent. Consequently, the transport of surfactant molecules in the bulk solution is often modeled as being purely diffusive when analyzing the experimental pendant-bubble DST data. In this Article, we analyze the experimental pendant-bubble DST data of the alkyl poly (ethylene oxide) nonionic surfactants, C12E4 and C12E6, and demonstrate that both surfactants exhibit "superdiffusive" adsorption kinetics behavior with characteristics that challenge the traditional assumption of a quiescent surfactant bulk solution. In other words, the observed superdiffusive adsorption behavior points to the possible existence of convection currents in the surfactant bulk solution. The analysis presented here involves the following steps: (1) constructing an adsorption kinetics model that corresponds to the fastest rate at which surfactant molecules adsorb onto the actual pendant-bubble surface from a quiescent solution, (2) predicting the DST behaviors of C12E4 and C12E6 at several surfactant bulk solution concentrations using the model constructed in step 1, and (3) comparing the predicted DST profiles with the experimental DST profiles. This comparison reveals systematic deviations for both C12E4 and C12E6 with the following characteristics: (a) the experimental DST profiles exhibit adsorption kinetics behavior, which is faster than the predicted fastest rate of surfactant adsorption from a quiescent surfactant bulk solution at time scales greater than 100 s, and (b) the experimental DST profiles and the predicted DST behaviors approach the same equilibrium surface tension values. Characteristic (b) indicates that the cause of the observed systematic deviations may be associated with the adsorption kinetics mechanism adopted in the model used rather than with the equilibrium behavior. Characteristic (a) indicates that the actual surfactant bulk solution in which the DST measurement was conducted, most likely, cannot be considered to be quiescent at time scales greater than 100 s. Accordingly, the observed superdiffusive adsorption behavior is interpreted as resulting from convection currents present in a nonquiescent surfactant bulk solution. Convection currents accelerate the surfactant adsorption process by increasing the rate of surfactant transport in the bulk solution. The systematic nature of the deviations observed between the predicted DST profiles and the experimental DST behavior for C12E4 and C12E6 suggests that the nonquiescent nature of the surfactant bulk solution may be intrinsic to the experimental pendant-bubble DST measurement approach. To validate this possibility, we identified generic features in the experimental DST data when DST measurements are conducted in a nonquiescent surfactant bulk solution, and the DST measurements are analyzed assuming that the surfactant bulk solution is quiescent. An examination of the DST literature reveals that these identified generic features are quite general and are observed in the experimental DST data of several other surfactants (decanol, nonanol, C10E8, C14E8, C12E8, and C10E4) measured using the pendant-bubble apparatus.

  4. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  5. Interface-state density estimation of n-type nanocrystalline FeSi2/p-type Si heterojunctions fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nopparuchikun, Adison; Promros, Nathaporn; Sittimart, Phongsaphak; Onsee, Peeradon; Duangrawa, Asanlaya; Teakchaicum, Sakmongkon; Nogami, Tomohiro; Yoshitake, Tsuyoshi

    2017-09-01

    By utilizing pulsed laser deposition (PLD), heterojunctions comprised of n-type nanocrystalline (NC) FeSi2 thin films and p-type Si substrates were fabricated at room temperature in this study. Both dark and illuminated current density-voltage (J-V) curves for the heterojunctions were measured and analyzed at room temperature. The heterojunctions demonstrated a large reverse leakage current as well as a weak near-infrared light response. Based on the analysis of the dark forward J-V curves, at the V value  ⩽  0.2 V, we show that a carrier recombination process was governed at the heterojunction interface. When the V value was  >  0.2 V, the probable mechanism of carrier transportation was a space-charge limited-current process. Both the measurement and analysis for capacitance-voltage-frequency (C-V-f ) and conductance-voltage-frequency (G-V-f ) curves were performed in the applied frequency (f ) range of 50 kHz-2 MHz at room temperature. From the C-V-f and G-V-f curves, the density of interface states (N ss) for the heterojunctions was computed by using the Hill-Coleman method. The N ss values were 9.19  ×  1012 eV-1 cm-2 at 2 MHz and 3.15  ×  1014 eV-1 cm-2 at 50 kHz, which proved the existence of interface states at the heterojunction interface. These interface states are the probable cause of the degraded electrical performance in the heterojunctions. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  6. Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction.

    PubMed

    Lou, Shuai; Liu, Yin; Yang, Fuyi; Lin, Shuren; Zhang, Ruopeng; Deng, Yang; Wang, Michael; Tom, Kyle B; Zhou, Fei; Ding, Hong; Bustillo, Karen C; Wang, Xi; Yan, Shancheng; Scott, Mary; Minor, Andrew; Yao, Jie

    2018-03-14

    Engineering the structure of materials endows them with novel physical properties across a wide range of length scales. With high in-plane stiffness and strength, but low flexural rigidity, two-dimensional (2D) materials are excellent building blocks for nanostructure engineering. They can be easily bent and folded to build three-dimensional (3D) architectures. Taking advantage of the large lattice mismatch between the constituents, we demonstrate a 3D heterogeneous architecture combining a basal Bi 2 Se 3 nanoplate and wavelike Bi 2 Te 3 edges buckling up and down forming periodic ripples. Unlike 2D heterostructures directly grown on substrates, the solution-based synthesis allows the heterostructures to be free from substrate influence during the formation process. The balance between bending and in-plane strain energies gives rise to controllable rippling of the material. Our experimental results show clear evidence that the wavelengths and amplitudes of the ripples are dependent on both the widths and thicknesses of the rippled material, matching well with continuum mechanics analysis. The rippled Bi 2 Se 3 /Bi 2 Te 3 heterojunction broadens the horizon for the application of 2D materials heterojunction and the design and fabrication of 3D architectures based on them, which could provide a platform to enable nanoscale structure generation and associated photonic/electronic properties manipulation for optoelectronic and electromechanic applications.

  7. High performance ultraviolet photodetectors based on ZnO nanoflakes/PVK heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yuhua; Xiang, Jinzhong, E-mail: jzhxiang@ynu.edu.cn; Tang, Libin, E-mail: scitang@163.com

    2016-08-15

    A high performance ultraviolet (UV) photodetector is receiving increasing attention due to its significant applications in fire warning, environmental monitoring, scientific research, astronomical observation, etc. The enhancement in performance of the UV photodetector has been impeded by lacking of a high-efficiency heterojunction in which UV photons can efficiently convert into charges. In this work, the high performance UV photodetectors have been realized by utilizing organic/inorganic heterojunctions based on a ZnO nanoflakes/poly (N-vinylcarbazole) hybrid. A transparent conducting polymer poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)-coated quartz substrate is employed as the anode in replacement of the commonly ITO-coated glass in order to harvest shorter UV light. Themore » devices show a lower dark current density, with a high responsivity (R) of 7.27 × 10{sup 3 }A/W and a specific detectivity (D*) of 6.20 × 10{sup 13} cm Hz{sup 1/2}/W{sup −1} at 2 V bias voltage in ambient environment (1.30 mW/cm{sup 2} at λ = 365 nm), resulting in the enhancements in R and D* by 49% and one order of magnitude, respectively. The study sheds light on developing high-performance, large scale-array, flexible UV detectors using the solution processable method.« less

  8. Advances in the characterization of InAs/GaSb superlattice infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Wörl, A.; Daumer, V.; Hugger, T.; Kohn, N.; Luppold, W.; Müller, R.; Niemasz, J.; Rehm, R.; Rutz, F.; Schmidt, J.; Schmitz, J.; Stadelmann, T.; Wauro, M.

    2016-10-01

    This paper reports on advances in the electro-optical characterization of InAs/GaSb short-period superlattice infrared photodetectors with cut-off wavelengths in the mid-wavelength and long-wavelength infrared ranges. To facilitate in-line monitoring of the electro-optical device performance at different processing stages we have integrated a semi-automated cryogenic wafer prober in our process line. The prober is configured for measuring current-voltage characteristics of individual photodiodes at 77 K. We employ it to compile a spatial map of the dark current density of a superlattice sample with a cut-off wavelength around 5 μm patterned into a regular array of 1760 quadratic mesa diodes with a pitch of 370 μm and side lengths varying from 60 to 350 μm. The different perimeter-to-area ratios make it possible to separate bulk current from sidewall current contributions. We find a sidewall contribution to the dark current of 1.2×10-11 A/cm and a corrected bulk dark current density of 1.1×10-7 A/cm2, both at 200 mV reverse bias voltage. An automated data analysis framework can extract bulk and sidewall current contributions for various subsets of the test device grid. With a suitable periodic arrangement of test diode sizes, the spatial distribution of the individual contributions can thus be investigated. We found a relatively homogeneous distribution of both bulk dark current density and sidewall current contribution across the sample. With the help of an improved capacitance-voltage measurement setup developed to complement this technique a residual carrier concentration of 1.3×1015 cm-3 is obtained. The work is motivated by research into high performance superlattice array sensors with demanding processing requirements. A novel long-wavelength infrared imager based on a heterojunction concept is presented as an example for this work. It achieves a noise equivalent temperature difference below 30 mK for realistic operating conditions.

  9. Carbon nanostructures for solar energy conversion schemes.

    PubMed

    Guldi, Dirk M; Sgobba, Vito

    2011-01-14

    Developing environmentally friendly, renewable energy is one of the challenges to society in the 21st century. One of the renewable energy technologies is solar energy conversion--a technology that directly converts daylight into electricity. This highlight surveys recent breakthroughs in the field of implementing carbon nanostructures--fullerenes (0D), carbon nanotubes (1D), carbon nanohorns, and graphene (2D)--into solar energy conversion schemes, that is, bulk heterojunction and dye-sensitized solar cells.

  10. Fabrication of High-Performance Polymer Bulk-Heterojunction Solar Cells by Interfacial Modifications II

    DTIC Science & Technology

    2010-08-25

    coulombically bound electron-hole (e-h) pairs, commonly having a short range of the separation distance. [27, 31-34] Those excitons may undergo a...reactions causes a simultaneous reduction in the Isc and accounts for a negative MC response. The exciton-charge reaction is essentially Coulombic ...effect indicate that the excitons can interact with trapped charge carriers to de -trap the charge carriers. [46, 57, 58] Alternatively, the triplet

  11. Fabrication of High-Performance Polymer Bulk-Heterojunction Solar Cells by the Interfacial Modifications III

    DTIC Science & Technology

    2011-04-30

    University of Tennessee) 3. "An ambipolar to n-type transformation in pentacene -based organic field-effect transistors" Org. Electron. 12, 509 (2011...OFETs). An ambipolar to n-type transformation in pentacene -based organic field-effect transistors (OFETs) of Al source-drain electrodes had been...correlated with the interfacial interactions between Al electrodes and pentacene , as characterized by analyzing Near-edge X-ray absorption fine structure

  12. Development of N- and P- Types of Semiconducting Polymers

    DTIC Science & Technology

    2015-03-05

    Luyao Lu, Tao Xu, Ju Min Lee, Zhiqiang Luo, Feng He, Hyung Il Park, In Hwan Jung, Sang Ouk Kim, Luping Yu, “The Role of N- Doped Multi-wall Carbon...Luping Yu, Di-Jia Liu, Improving Hydrogen Adsorption Enthalpy Through Coordinatively 23 Unsaturated Cobalt in Porous Polymers, Macromolecular...Sang Ouk Kim, Luping Yu, “The Role of N- Doped Multi-wall Carbon Nanotubes in Achieving Highly Efficient Polymer Bulk Heterojunction Solar Cells

  13. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  14. Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells.

    PubMed

    Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan

    2015-02-11

    Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology.

  15. Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2017-01-01

    Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.

  16. All-solution-processed PbS quantum dot solar modules.

    PubMed

    Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee

    2015-05-21

    A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.

  17. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling themore » CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.« less

  18. Microwave assisted synthesis of porous ZnO/SnS heterojunction and its application in visible light degradation of ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Makama, A. B.; Salmiaton, A.; Saion, E. B.; Choong, T. S. Y.; Abdullah, N.

    2016-07-01

    Porous ZnO/SnS heterojunctions were successfully synthesized via microwave-assisted heating of aqueous solutions containing different amounts of SnS precursors (SnCl2 and Na2S) in the presence of fixed amount of ZnCO3 nanoparticles. The experimental results revealed that the heterojunctions exhibited much higher visible light-driven photocatalytic activity for the degradation of the ciprofloxacin than pure SnS nanocrystals. The photocatalytic degradation efficiency (1-Ct/C0) of the pollutant for the most active heterogeneous nanostructure is about four times more efficient than pure SnS. The enhanced photocatalytic efficiency is ascribed to the synergic effect of high photon absorption and reduction in the recombination of electrons and holes because of efficient separation and electron transfer from the SnS to ZnO nanoparticles.

  19. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors

    PubMed Central

    Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R.; Lee, Jaekwang; Basile, Leonardo; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Ivanov, Ilia N.; Xiao, Kai; Yoon, Mina; Geohegan, David B.

    2015-01-01

    The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices. PMID:26198727

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Yingjie, E-mail: xingyj@pku.edu.cn; Li, Shuai; Wang, Guiwei

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction.more » Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.« less

  1. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    PubMed

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  2. Performance of mid-wave T2SL detectors with heterojunction barriers

    NASA Astrophysics Data System (ADS)

    Asplund, Carl; Marcks von Würtemberg, Rickard; Lantz, Dan; Malm, Hedda; Martijn, Henk; Plis, Elena; Gautam, Nutan; Krishna, Sanjay

    2013-07-01

    A heterojunction T2SL barrier detector which effectively blocks majority carrier leakage over the pn-junction was designed and fabricated for the mid-wave infrared (MWIR) atmospheric transmission window. The layers in the barrier region comprised AlSb, GaSb and InAs, and the thicknesses were selected by using k · P-based energy band modeling to achieve maximum valence band offset, while maintaining close to zero conduction band discontinuity in a way similar to the work of Abdollahi Pour et al. [1] The barrier-structure has a 50% cutoff at 4.75 μm and 40% quantum efficiency and shows a dark current density of 6 × 10-6 A/cm2 at -0.05 V bias and 120 K. This is one order of magnitude lower than for comparable T2SL-structures without the barrier. Further improvement of the (non-surface related) bulk dark current can be expected with optimized doping of the absorber and barrier, and by fine tuning of the barrier layer design. We discuss the effect of barrier doping on dark current based on simulations. A T2SL focal plane array with 320 × 256 pixels, 30 μm pitch and 90% fill factor was processed in house using a conventional homojunction p-i-n photodiode architecture and the ISC9705 readout circuit. High-quality imaging up to 110 K was demonstrated with the substrate fully removed.

  3. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

    PubMed

    Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C

    2017-01-11

    van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.

  4. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

    PubMed Central

    Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C.; Kim, Jin Young; Heeger, Alan J.

    2015-01-01

    Organic–inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT:PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells. PMID:26081865

  5. Gd Ba Cu O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.

    2006-06-01

    Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).

  6. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    PubMed

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  7. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  8. Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells

    DTIC Science & Technology

    2011-04-01

    glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels, interface passivation, p...NiO films grown on glass /ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels...carrier transport characteristics. II. EXPERIMENTAL SECTION Substrate Preparation. ITO-coated glass (11 Ω/0) was pur- chased from Delta Technologies

  9. Fabrication and characterization of P3HT:PCBM-based thin film organic solar cells with zinc phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruhashi, Haruto, E-mail: oku@mat.usp.ac.jp; Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi, E-mail: oku@mat.usp.ac.jp

    2015-02-27

    [6,6]–phenyl C{sub 61}–butyric acid methyl ester and poly(3–hexylthiophene) bulk heterojunction solar cells added with zinc–tetra–tertiary–butyl–phthalocyanine (ZnPc) were fabricated and characterized. The photovoltaic properties of the solar cells with an inverted structure were improved by the ZnPc addition, which were investigated on the bases of current density–voltage characteristics, incident photon to current conversion efficiency.

  10. Unique cohesive nature of the β1-isomer of [70]PCBM fullerene on structures and photovoltaic performances of bulk heterojunction films with PffBT4T-2OD polymers.

    PubMed

    Umeyama, Tomokazu; Igarashi, Kensho; Sakamaki, Daisuke; Seki, Shu; Imahori, Hiroshi

    2018-01-04

    The effects of regioisomer and diastereomer separations of [70]PCBM on structures and photovoltaic properties of PffBT4T-2OD:[70]PCBM blend films have systematically been investigated for the first time. Decreasing the amount of a diastereomer of β-[70]PCBM with high aggregation tendency (β 1 -[70]PCBM) improved the photovoltaic performances.

  11. Nanofiber-Based Bulk-Heterojunction Organic Solar Cells Using Coaxial Electrospinning

    DTIC Science & Technology

    2012-01-01

    chains are likely oriented with the [010] direction, perpendicular to the substrate, in the fi lm device. Glancing incidence X - ray diffraction (GIXD...Electron and X - ray diffraction measurements were per- formed in order to study the structural order in annealed fi bers and devices. For reference... angle X - ray scattering (SAXS/WAXS) beamline 7.3.3 of the Advanced Light Source at Lawrence Berkeley National Laboratory at 10 keV (1.24 Å) from a bend

  12. Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices

    DTIC Science & Technology

    2011-04-22

    in recent years. Owing to its unique electrical, thermal, and mechanical properties, graphene and its derivatives (e.g., gra- phene oxide, GO ) have...produced through reduction of GO (Figure 1a) in pure hydrazine accord- ing to the previously reported method.27 The success of the chemical reduction of GO ...through Lithiation Reaction with n-Butyllithium Figure 1. (a) AFM image of the as-prepared GO sheets. (b) high- resolution C1s XPS spectrum of graphene

  13. Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM₇₀ bulk-heterojunction layers.

    PubMed

    Huh, Yoon Ho; Park, Byoungchoo

    2013-01-14

    We herein report on the improved photovoltaic (PV) effects of using a polymer bulk-heterojunction (BHJ) layer that consists of a low-band gap electron donor polymer of poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)) (PCDTBT) and an acceptor of [6,6]-phenyl C₇₁ butyric acid methyl ester (PCBM₇₀), doped with an interface-engineering surfactant additive of poly(oxyethylene tridecyl ether) (PTE). The presence of an interface-engineering additive in the PV layer results in excellent performance; the addition of PTE to a PCDTBT:PCBM₇₀ system produces a power conversion efficiency (PCE) of 6.0%, which is much higher than that of a reference device without the additive (4.9%). We attribute this improvement to an increased charge carrier lifetime, which is likely to be the result of the presence of PTE molecules oriented at the interfaces between the BHJ PV layer and the anode and cathode, as well as at the interfaces between the phase-separated BHJ domains. Our results suggest that the incorporation of the PTE interface-engineering additive in the PCDTBT:PCBM₇₀ PV layer results in a functional composite system that shows considerable promise for use in efficient polymer BHJ PV cells.

  14. Significant Stability Enhancement in High-Efficiency Polymer:Fullerene Bulk Heterojunction Solar Cells by Blocking Ultraviolet Photons from Solar Light.

    PubMed

    Jeong, Jaehoon; Seo, Jooyeok; Nam, Sungho; Han, Hyemi; Kim, Hwajeong; Anthopoulos, Thomas D; Bradley, Donal D C; Kim, Youngkyoo

    2016-04-01

    Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PC 71 BM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF. The poor device stability without UCF is ascribed to the oxidative degradation of constituent materials in the BHJ layers, which give rise to the formation of PC 71 BM aggregates, as measured with high resolution and scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The device stability cannot be improved by simply inserting poly(ethylene imine) (PEI) interfacial layer without UCF, whereas the lifetime of the PEI-inserted PTB7-Th:PC 71 BM solar cells is significantly enhanced when UCF is attached.

  15. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    PubMed Central

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability. PMID:28084304

  16. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer.

    PubMed

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-13

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  17. Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Yeboah, Douglas; Singh, Jai

    2017-11-01

    Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.

  18. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    NASA Astrophysics Data System (ADS)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  19. Electrical and optical modeling of poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester P3HT-PCBM bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Brioua, Fathi; Remram, Mohamed; Nechache, Riad; Bourouina, Hicham

    2017-11-01

    In this work, we investigate a two-dimensional theoretical model for the photon conversion through an integration of the optical and electrical part of multilayer system in a bulk heterojunction solar cell based on poly(3-hexylthiophene) (P3HT)/6,6-phenyl C61-butyric acid methyl ester (PCBM) blend. The optical properties of the studied structure ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al, such as the exciton generation rate and the electrical field distribution, are predicted at vicinity of the active layer and have been used to solve Poisson and continuity, drift-diffusion equations of the electrical model which characterize the electrical behavior of semiconductor device using finite element method (FEM). The electrical parameters such as power conversion efficiency (PCE), open voltage circuit ( V oc), short-circuit current density ( J sc) and fill factor (FF) are extracted from the current-voltage (J-V) characteristics under illumination and in dark conditions. Highest external quantum efficiency (IPCE), up to 60%, is obtained around 520 nm, while a power conversion efficiency (PCE) value of 3.62% is found to be in good agreement with the literature results. Integration of such theoretical approach into technological applications dealing with optoelectrical material performance will rapidly provide to the user accurate data outputs required for efficient validation of proof-of-concepts.

  20. Formation and Photodynamic Behavior of Transition Metal Dichalcogenide Nanosheet-Fullerene Inorganic/Organic Nanohybrids on Semiconducting Electrodes.

    PubMed

    Baek, Jinseok; Umeyama, Tomokazu; Choi, Wookjin; Tsutsui, Yusuke; Yamada, Hiroki; Seki, Shu; Imahori, Hiroshi

    2018-02-01

    Composite films that consisted of C 60 and well-exfoliated nanosheets of transition metal dichalcogenides (TMDs), such as MoS 2 or WS 2 , with a bulk heterojunction structure were easily fabricated onto a semiconducting SnO 2 electrode via a two-step methodology: self-assembly into their composite aggregates by injection of a poor solvent into a good solvent with the dispersion, and subsequent electrophoretic deposition. Upon photoexcitation, the composites on SnO 2 exhibited enhanced transient conductivity in comparison with single components of TMDs or C 60 , which demonstrates that the bulk heterojunction nanostructure of TMD and C 60 promoted the charge separation (CS). In addition, the decoration of the TMD nanosheets with C 60 hindered the undesirable charge recombination (CR) between an electron in SnO 2 and a hole in the TMD nanosheets. Owing to the accelerated CS and suppressed CR, photoelectrochemical devices based on the MoS 2 -C 60 and WS 2 -C 60 composites achieved remarkably improved incident photon-to-current efficiencies (IPCEs) as compared with the single-component films. Despite more suppressed CR in WS 2 -C 60 than MoS 2 -C 60 , the IPCE value of the device with WS 2 -C 60 was smaller than that with MoS 2 -C 60 owing to its inhomogeneous film structure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of ambient temperature on the efficiency of the PCPDTBT: PC71BM BHJ solar cells

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Touati, Farid; Muhammad, Fahmi F.; Najeeb, Mansoor Ani; Shakoor, R. A.

    2017-07-01

    In this research article, the influence of environment temperature on the performance of the organic bulk heterojunction organic solar cells has been investigated. We describe the effect of ambient temperature on the efficiency of poly-[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and [6, 6]-phenylC71-butyric-acid-methyl-ester (PC71BM)-based bulk heterojunction (BHJ) organic solar cells. The current-voltage characteristics of the ITO/PEDOT:PSS/PCPDTBT:PC71BM/Al solar cells are recorded in the temperature range of 25-60 °C under 100 mW/cm2 solar irradiation. The short-circuit current ( J sc) of the solar cells increased from 4.28 to 9.23 mAcm-2 when the temperature elevated from 25 to 55 °C. However, the open-circuit voltage ( V oc) and fill factor (FF) of the cells almost remained unchanged over the whole investigated temperature range. The values of V oc and FF are found to be 0.58 ± 01 and 0.60 ± 0.12 V, respectively. The results clearly indicate that the maximum efficiency of the ITO/PEDOT:PSS/PCPDTBT:PC71BM/Al solar cells can be achieved in the range of 52-58 °C.

  2. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

    PubMed Central

    Kumar, Ashish; Schuerings, Christian; Kumar, Suneel; Kumar, Ajay

    2018-01-01

    A novel graphitic carbon nitride (g-C3N4)–CaTiO3 (CTCN) organic–inorganic heterojunction photocatalyst was synthesized by a facile mixing method, resulting in the deposition of CaTiO3 (CT) nanoflakes onto the surface of g-C3N4 nanosheets. The photocatalytic activity of the as-synthesized heterojunction (along with the controls) was evaluated by studying the degradation of an aqueous solution of rhodamine B (RhB) under UV, visible and natural sunlight irradiation. The CTCN heterojunction with 1:1 ratio of g-C3N4/CT showed the highest photocatalytic activity under sunlight irradiation and was also demonstrated to be effective for the degradation of a colorless, non-photosensitizing pollutant, bisphenol A (BPA). The superior photocatalytic performance of the CTCN heterojunction could be attributed to the appropriate band positions, close interfacial contact between the constituents and extended light absorption (both UV and visible region), all of which greatly facilitate the transfer of photogenerated charges across the heterojunction and inhibit their fast recombination. In addition, the two-dimensional (2D) morphology of g-C3N4nanosheets and CT nanoflakes provides enough reaction sites due to their larger surface area and enhances the overall photocatalytic activity. Furthermore, the active species trapping experiments validate the major role played by superoxide radicals (O2 −•) in the degradation of pollutants. Based on scavenger studies and theoretically calculated band positions, a plausible mechanism for the photocatalytic degradation of pollutants has been proposed and discussed. PMID:29527441

  3. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    NASA Astrophysics Data System (ADS)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  4. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor.

    PubMed

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-27

    Few-layer MoS 2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS 2 /Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS 2 /SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS 2 -based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ∼50% RH), with good repeatability and selectivity of the MoS 2 /SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS 2 /SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  5. Negative differential resistance in low Al-composition p-GaN/Mg-doped Al0.15Ga0.85N/n+-GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liang, Hongwei; Shen, Rensheng; Wang, Dongsheng; Tao, Pengcheng; Liu, Yang; Xia, Xiaochuan; Luo, Yingmin; Du, Guotong

    2014-02-01

    Negative differential resistance (NDR) behavior was observed in low Al-composition p-GaN/Mg-doped-Al0.15Ga0.85N/n+-GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate. The energy band and free carrier concentration of hetero-junction were studied by the model of the self-consistent solution of Schrödinger-Poisson equations combined with polarization engineering theory. At the forward bias of 0.95 V, the NDR effect has a high peak-to-valley current ratio of ˜9 with a peak current of 22.4 mA (˜current density of 11.4 A/cm2). An interesting phenomenon of NDR disappearance after consecutive scans and recurrence after electrical treatment was observed, which was associated with Poole-Frenkel effect.

  6. Using resonant x-ray scattering to determine how structure controls the charge generation process in PCPDTBT:PC70BM solar cells

    NASA Astrophysics Data System (ADS)

    Pope, Michael; Waldrip, Matthew; Ferron, Thomas; Collins, Brian

    Increased solar power conversion efficiencies to 12% in bulk heterojunction organic photovoltaics (OPVs) continue to brighten their prospects as an economically viable source of solar energy. It is known that OPV performance can be enhanced through processing additives that change the nanostructure. We track these critical structure-property relationships in the OPV system PCPDTBT:PC70BM while varying the amount of DIO additive. Resonant Soft X-ray Scattering reveals domain purity, domain size, and molecular orientation to highlight the system's complex dependence on DIO concentration. We will show the effect the resulting structure has on charge generation and recombination via in-situ transient and steady state optoelectronic measurements. By measuring structure, excited state dynamics and device performance all on the same sample enables direct relationships to be measured. We show that the appropriate balance of crystallinity, domain size and domain purity are important for optimized excited state dynamics and device performance.

  7. Quaternary organic solar cells enhanced by cocrystalline squaraines with power conversion efficiencies >10%

    DOE PAGES

    Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; ...

    2016-08-11

    The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, itmore » is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.« less

  8. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites

    PubMed Central

    Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Masi, Sofia; Rizzo, Aurora; Colella, Silvia; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni

    2017-01-01

    Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions. PMID:28317883

  9. Fullerene derivatives as electron donor for organic photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Taojun; Wang, Xiao-Feng, E-mail: xf-wang@yz.yamagata-u.ac.jp, E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi

    2013-11-11

    We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantummore » efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.« less

  10. Ternary blend polymer solar cells with self-assembled structure for enhancing power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhua; Li, Hongfei; Nam, Chang-Yong; Kisslinger, Kim; Satija, Sushil; Rafailovich, Miriam

    Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their advantages such as mechanical flexibility. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes. Here we report a self-assembled columnar structure formed by phase separation between (PCDTBT) and polystyrene (PS) for the active layer morphology optimization. The BHJ solar cell device based on this structure is promising for exhibiting higher performance due to the shorter carrier transportation pathway and larger interfacial area between donor and acceptor. The surface morphology is investigated with atomic force microscopy (AFM) and the columnar structure is studied by investigation of cross-section of the blend thin film of PCDTBT and PS under the transmission electron microscopy (TEM). The different morphological structures formed via phase segregation are correlated with the performance of the BHJ solar cells.

  11. Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

    PubMed Central

    2017-01-01

    Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs. PMID:28316756

  12. A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time.

    PubMed

    Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego

    2016-07-01

    Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation.

  13. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells.

    PubMed

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C; Rouleau, Christopher M; Duscher, Gerd; Geohegan, David B; Xiao, Kai

    2015-12-01

    A two-step solution processing approach has been established to grow void-free perovskite films for low-cost high-performance planar heterojunction photovoltaic devices. A high-temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer-by-layer spin-coating method was used to grow "bilayer" CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well-oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6%, which is comparable to values reported for thermally annealed perovskite films. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solvothermal synthesis of Bi2O3/BiVO4 heterojunction with enhanced visible-light photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Ying, Wu; Jing, Wang; Yunfang, Huang; Yuelin, Wei; Zhixian, Sun; Xuanqing, Zheng; Chengkun, Zhang; Ningling, Zhou; Leqing, Fan; Jihuai, Wu

    2016-08-01

    Novel, three-dimensional, flower-like Bi2O3/BiVO4 heterojunction photocatalysts have been prepared by the combination of homogeneous precipitation and two-step solvothermal method followed by thermal solution of NaOH etching process. The as-obtained samples were fully characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Brunauer-Emmett-Teller surface area, and UV—vis diffuse-reflectance spectroscopy in detail. The crystallinity, microstructure, specific surface area, optical property and photocatalytic activity of samples greatly changed depending on solvothermal reaction time. The photocatalytic activities of samples were evaluated on the degradation of methyl orange (MO) under visible-light irradiation. The Bi2O3/BiVO4 exhibited much higher photocatalytic activities than pure BiVO4 and conventional TiO2 (P25). The result revealed that the three-dimensional heterojunction played a critical role in the separation of the electron and hole pairs and enhancement of the interfacial charge transfer efficiency, which was responsible for the enhanced photocatalytic activity. Project supported by the National Natural Science Foundation of China (Nos. 61306077, 21301060), the Fundamental Research Funds for the Central Universities (Nos. JB-ZR1109, JB-ZR1212), the National Science Foundation of Quanzhou City (No. 2014Z108), the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University (No. ZQN-PY207), Discipline Innovation Team Project of Huaqiao University (No. 201320), and the Instrumental Analysis Center Huaqiao University.

  15. A Solar-Blind UV Detector Based on Graphene-Microcrystalline Diamond Heterojunctions.

    PubMed

    Wei, Minsong; Yao, Kaiyuan; Liu, Yumeng; Yang, Chen; Zang, Xining; Lin, Liwei

    2017-09-01

    An ultraviolet detector is demonstrated through a whole-wafer, thin diamond film transfer process to realize the heterojunction between graphene and microcrystalline diamond (MCD). Conventional direct transfer processes fail to deposit graphene onto the top surface of the MCD film. However, it is found that the 2 µm thick MCD diamond film can be easily peeled off from the growth silicon substrate to expose its smooth backside for the graphene transfer process for high-quality graphene/MCD heterojunctions. A vertical graphene/MCD/metal structure is constructed as the photodiode device using graphene as the transparent top electrode for solar-blind ultraviolet sensing with high responsivity and gain factor. As such, this material system and device architecture could serve as the platform for next-generation optoelectronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Photoinduced electron transfer (PET) versus excimer formation in supramolecular p/n-heterojunctions of perylene bisimide dyes and implications for organic photovoltaics.

    PubMed

    Nowak-Król, Agnieszka; Fimmel, Benjamin; Son, Minjung; Kim, Dongho; Würthner, Frank

    2015-01-01

    Foldamer systems comprised of two perylene bisimide (PBI) dyes attached to the conjugated backbones of 1,2-bis(phenylethynyl)benzene and phenylethynyl-bis(phenylene)indane, respectively, were synthesized and investigated with regard to their solvent-dependent properties. UV/Vis absorption and steady-state fluorescence spectra show that both foldamers exist predominantly in a folded H-aggregated state consisting of π-π-stacked PBIs in THF and in more random conformations with weaker excitonic coupling between the PBIs in chloroform. Time-resolved fluorescence spectroscopy and transient absorption spectroscopy reveal entirely different relaxation pathways for the photoexcited molecules in the given solvents, i.e. photoinduced electron transfer leading to charge separated states for the open conformations (in chloroform) and relaxation into excimer states with red-shifted emission for the stacked conformations (in THF). Supported by redox data from cyclic voltammetry and Rehm-Weller analysis we could relate the processes occurring in these solution-phase model systems to the elementary processes in organic solar cells. Accordingly, only if relaxation pathways such as excimer formation are strictly avoided in molecular semiconductor materials, excitons may diffuse over larger distances to the heterojunction interface and produce photocurrent via the formation of electron/hole pairs by photoinduced electron transfer.

  17. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH 3NH 3I precursor molecules into the compact PbI 2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI 2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH 3NH 3I/PbI 2 films, and then drive the interdiffusion between PbI 2 andmore » CH 3NH 3I layers by a simple room-temperature-air-exposure for making well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.« less

  18. Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation

    NASA Astrophysics Data System (ADS)

    Sahatiya, Parikshit; Jones, S. Solomon; Thanga Gomathi, P.; Badhulika, Sushmee

    2017-06-01

    Strain modulation is considered to be an effective way to modulate the electronic structure and carrier behavior in flexible semiconductors heterojunctions. In this work, 2D Graphene (Gr)/ZnO junction was successfully fabricated on flexible eraser substrate using simple, low-cost solution processed hydrothermal method and has been utilized for broadband photodetection in the UV to visible range at room temperature. Optimization in terms of process parameters were done to obtain 2D ZnO over 2D graphene which shows decrease in bandgap and broad absorption range from UV to visible. Under compressive strain piezopotential induced by the atoms displacements in 2D ZnO, 87% enhanced photosensing for UV light was observed under 30% strain. This excellent performance improvement can be attributed to piezopotential induced under compressive strain in 2D ZnO which results in lowering of conduction band energy and raising the schottky barrier height thereby facilitating electron-hole pair separation in 2D Gr/ZnO junction. Detailed mechanism studies in terms of density of surface states and energy band diagram is presented to understand the proposed phenomena. Results provide an excellent approach for improving the optoelectronic performance of 2D Gr/ZnO interface which can also be applied to similar semiconductor heterojunctions.

  19. MoS2-InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity.

    PubMed

    Yang, Jaehyun; Kwak, Hyena; Lee, Youngbin; Kang, Yu-Seon; Cho, Mann-Ho; Cho, Jeong Ho; Kim, Yong-Hoon; Jeong, Seong-Jun; Park, Seongjun; Lee, Hoo-Jeong; Kim, Hyoungsub

    2016-04-06

    We introduce an amorphous indium-gallium-zinc-oxide (a-IGZO) heterostructure phototransistor consisting of solution-based synthetic molybdenum disulfide (few-layered MoS2, with a band gap of ∼1.7 eV) and sputter-deposited a-IGZO (with a band gap of ∼3.0 eV) films as a novel sensing element with a broad spectral responsivity. The MoS2 and a-IGZO films serve as a visible light-absorbing layer and a high mobility channel layer, respectively. Spectroscopic measurements reveal that appropriate band alignment at the heterojunction provides effective transfer of the visible light-induced electrons generated in the few-layered MoS2 film to the underlying a-IGZO channel layer with a high carrier mobility. The photoresponse characteristics of the a-IGZO transistor are extended to cover most of the visible range by forming a heterojunction phototransistor that harnesses a visible light responding MoS2 film with a small band gap prepared through a large-area synthetic route. The MoS2-IGZO heterojunction phototransistors exhibit a photoresponsivity of approximately 1.7 A/W at a wavelength of 520 nm (an optical power of 1 μW) with excellent time-dependent photoresponse dynamics.

  20. Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

    DTIC Science & Technology

    2011-01-14

    thieno[3,4-c] pyrrole -4,6-dione (TPD)–based donor–acceptor polymer, PBTTPD, that exhibits high crystallinity and a low-lying highest occupied molecular...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bithiophene/thieno[3,4-c] pyrrole -4,6-dione (TPD)?based donor?acceptor polymer...nearby fullerene acceptors. The electron-deficient thieno[3,4-c] pyrrole -4,6-dione (TPD) moiety exhibits a symmetric, rigidly fused, coplanar

  1. Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V.

    PubMed

    Liu, Wenqing; Li, Shuixing; Huang, Jiang; Yang, Shida; Chen, Jiehuan; Zuo, Lijian; Shi, Minmin; Zhan, Xiaowei; Li, Chang-Zhi; Chen, Hongzheng

    2016-11-01

    Small-molecule nonfullerene-based tandem organic solar cells (OSCs) are fabricated for the first time by utilizing P3HT:SF(DPPB) 4 and PTB7-Th:IEIC bulk heterojunctions as the front and back subcells, respectively. A power conversion efficiency of 8.48% is achieved with an ultrahigh open-circuit voltage of 1.97 V, which is the highest voltage value reported to date among efficient tandem OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2014-01-24

    Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park Y. S.; Kale, T.; Wu, Q.

    A series of diketopyrrolopyrrole(DPP)-based small molecules have been synthesized by palladium-catalyzed coupling reactions. Electron-donating moieties (benzothiophene, benzoselenophene, and benzotellurophene) are bridged by an electron-withdrawing DPP unit to generate donor-acceptor-donor (D-A-D) type molecules. We observe red-shifts in absorption spectra of these compounds by varying heteroatoms from sulfur to tellurium. In bulk heterojunction solar cells with [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor, we obtain power conversion efficiencies of 2.4% (benzothiophene), 4.1% (benzoselenophene), and 3.0% (benzotellurophene), respectively.

  4. ONR Far East Scientific Information Bulletin. Volume 13. Number 3, July to September 1988

    DTIC Science & Technology

    1988-09-01

    dimensional circulate in the film plane much as in the films as the temperature is reduced. The bulk, and H is not greatly affected . But cause of...T) is not affecte ’ X by dimensional change (Ref 32). On the 20 - x other hand, at lower temperatures, when cc PM. is sm aller than d c, but exceeds d...implications for parameters affect composition and back- heterojunction-based device structures. ground acceptor concentration); low T is Misfit

  5. Excitonic processes at organic heterojunctions

    NASA Astrophysics Data System (ADS)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  6. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  7. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells.

    PubMed

    Zhang, Wei; Saliba, Michael; Moore, David T; Pathak, Sandeep K; Hörantner, Maximilian T; Stergiopoulos, Thomas; Stranks, Samuel D; Eperon, Giles E; Alexander-Webber, Jack A; Abate, Antonio; Sadhanala, Aditya; Yao, Shuhua; Chen, Yulin; Friend, Richard H; Estroff, Lara A; Wiesner, Ulrich; Snaith, Henry J

    2015-01-30

    To date, there have been a plethora of reports on different means to fabricate organic-inorganic metal halide perovskite thin films; however, the inorganic starting materials have been limited to halide-based anions. Here we study the role of the anions in the perovskite solution and their influence upon perovskite crystal growth, film formation and device performance. We find that by using a non-halide lead source (lead acetate) instead of lead chloride or iodide, the perovskite crystal growth is much faster, which allows us to obtain ultrasmooth and almost pinhole-free perovskite films by a simple one-step solution coating with only a few minutes annealing. This synthesis leads to improved device performance in planar heterojunction architectures and answers a critical question as to the role of the anion and excess organic component during crystallization. Our work paves the way to tune the crystal growth kinetics by simple chemistry.

  8. Electrical properties of solid-solution SrZrxTi1-xO3 grown epitaxially on Ge by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Ahmadi, Kamyar; Xiao, Z.-Y.; Hong, Xia; Ngai, Joseph

    The epitaxial growth of crystalline oxides on semiconductors enables new functionalities to be introduced to semiconductor devices. In particular, dielectric and ferroelectric oxides grown epitaxially on semiconductors provide a pathway to realize ultra-low power logic and memory devices. Here we present electrical characterization of solid-solution SrZrxTi1-xO3 grown epitaxially on Ge through oxide molecular beam epitaxy. SrZrxTi1-xO3 is of particular interest since the band offset with respect to the semiconductor can be tuned through Zr content x. We will present current-voltage, capacitance-voltage and piezoforce microscopy characterization of SrZrxTi1-xO3 -Ge heterojunctions. In particular, we will discuss how the electrical characteristics of SrZrxTi1-xO3 -Ge heterojunctions evolve with respect to composition, annealing and film thickness.

  9. Interplay between efficiency and device architecture for small molecule organic solar cells.

    PubMed

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  10. Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tanghao; Zhou, Yuanyuan; Hu, Qin

    The fast-growing procedure (FGP) provides a simple, high-yield and lead (Pb)-release free method to prepare perovskite films. In the FGP, the ultra-dilute perovskite precursor solution is drop-cast onto a hot (~240 degrees C) substrate, where a perovskite film grows immediately accompanied by the rapid evaporation of the host solvent. In this process, all the raw materials in the precursor solution are deposited into the final perovskite film. The potential pollution caused by Pb can be significantly reduced. Properties of the FGP-processed perovskite films can be modulated by the precursor composition. While CH3NH3Cl (MACl) affects the crystallization process and leads tomore » full surface coverage, CH(NH2)2I (FAI) enhances the thermal stability of the film. Based on the optimized precursor composition of PbI2(1-x)FAI xMACl, x=0.75, FGP-processed planar heterojunction perovskite solar cells exhibit power conversion efficiencies (PCEs) exceeding 15% with suppressed hysteresis and excellent reproducibility.« less

  11. Photonic Crystal Geometry for Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Samulski, Edward; Lopez, Rene; Ko, Doo-Hyun; Tumbleston, John

    2010-03-01

    Efficient absorption of light calls for thicker PV active layers whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. We report a 2-D, photonic crystal morphology that enhances the efficiency of organic photovoltaic cells relative to conventional planar cells.[1] The morphology is developed by patterning an organic photoactive bulk heterojunction blend using PRINT a process that lends itself to large area fabrication of nanostructures.[2] The photonic crystal cell morphology increases photocurrents generally, and particularly through the excitation of resonant modes near the band edge of the organic PV material. [1] Ko, D.-H.; Tumbleston, J. R.; Zhang, L.; Williams, S.; DeSimone, J. M.; Rene, L.; Samulski, E. T. Nano Lett. 2009, 9, 2742--2746. [2] Hampton et al. Adv. Mater. 2008, 20, 2667.

  12. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells.

    PubMed

    Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei

    2011-09-01

    Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.

  13. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    DOE PAGES

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; ...

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. Asmore » a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.« less

  14. The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film.

    PubMed

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin

    2018-03-01

    Recently, lead-free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead-free double perovskite planar heterojunction solar cell with a high quality Cs 2 AgBiBr 6 film, fabricated by low-pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead-free perovskite solar cells.

  15. Characterization of a backbone cleavage product of BMS-196854 (Oncostatin M), a recombinant anti-inflammatory cytokine.

    PubMed

    Zhao, F; Stein, D J; Paborji, M; Cash, P W; Root, B J; Wei, Z; Knupp, C J

    2001-01-01

    BMS-196843 (Oncostatin M) is a therapeutic recombinant protein in development. Scale-up process changes led to unexpected instability of the bulk drug substance solution during storage. A product with an apparent higher MW than the parent protein was observed by the size-exclusion chromatography (SEC). This study was aimed to fully characterize the product and to identify a solution to stabilize the protein. SEC, SDS-PAGE, tryptic mapping, and N-terminal sequencing were performed to characterize the unknown product. The effect of pH, temperature, bulk concentration, and immobilized trypsin inhibitor on the degradation rate was studied to elucidate the mechanism and to identify stabilization strategies. Despite the apparent high MW indicated initially by SEC, the unknown was characterized to be a degradation product resulted from a backbone cleavage between residues Arg145-Gly146. The resulting fragments from the backbone cleavage were, however, still linked through an intramolecular disulfide bond. Thus, the final product had a more open structure with an increased hydrodynamic radius compared to the parent protein, which explains the initial SEC results. The site-specific backbone cleavage was suspected to be catalyzed by trypsin-like protease impurities in the bulk solution. The bulk drug substance solution was subsequently treated with immobilized soybean trypsin inhibitor, and the degradation rate was significantly reduced. Furthermore, increasing the solution pH from 5 to 8 led to an increase in the degradation rate, which was consistent with the expected pH dependency of trypsin activity. In addition, the effect of bulk concentration also supported the involvement of protease impurities rather than a spontaneous peptide bond hydrolysis reaction. Trace trypsin-like protease impurities led to an unusual site-specific backbone cleavage of BMS-196854. The proteolytic degradation can be minimized by treating the bulk solution with immobilized soybean trypsin inhibitor and/or controlling the solution pH and storage temperature.

  16. On the AlGaInP-bulk and AlGaInP/GaAs-superlattice confinement effects for heterostructure-emitter bipolar transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Jung-Hui, E-mail: jhtsai@nknucc.nknu.edu.tw

    2015-02-09

    The confinement effect and electrical characteristics of heterostructure-emitter bipolar transistors with an AlGaInP bulk-confinement layer and an AlGaInP/GaAs superlattice-confinement layer are first demonstrated and compared by experimentally results. In the two devices, the relatively large valence band discontinuity at AlGaInP/GaAs heterojunction provides excellent confinement effect for holes to enhance current gain. As to the AlGaInP/GaAs superlattice-confinement device, part of thermionic-emission electrons will be trapped in the GaAs quantum wells of the superlattice. This will result in lower collector current and current gain as compared with the bulk-confinement device. Nevertheless, the superlattice-confinement device exhibits a larger current-gain cutoff frequency, which canmore » be attributed that the tunneling behavior is included in the carrier transportation and transporting time across the emitter region could be substantially reduced.« less

  17. Changing the thickness of two layers: i-ZnO nanorods, p-Cu2O and its influence on the carriers transport mechanism of the p-Cu2O/i-ZnO nanorods/n-IGZO heterojunction.

    PubMed

    Ke, Nguyen Huu; Trinh, Le Thi Tuyet; Phung, Pham Kim; Loan, Phan Thi Kieu; Tuan, Dao Anh; Truong, Nguyen Huu; Tran, Cao Vinh; Hung, Le Vu Tuan

    2016-01-01

    In this study, two layers: i-ZnO nanorods and p-Cu2O were fabricated by electrochemical deposition. The fabricating process was the initial formation of ZnO nanorods layer on the n-IGZO thin film which was prepared by sputtering method, then a p-Cu2O layer was deposited on top of rods to form the p-Cu2O/i-ZnO nanorods/n-ZnO heterojunction. The XRD, SEM, UV-VIS, I-V characteristics methods were used to define structure, optical and electrical properties of these heterojunction layers. The fabricating conditions and thickness of the Cu2O layers significantly affected to the formation, microstructure, electrical and optical properties of the junction. The length of i-ZnO nanorods layer in the structure of the heterojunction has strongly affected to the carriers transport mechanism and performance of this heterojunction.

  18. An efficient p-n heterojunction photocatalyst constructed from a coordination polymer nanoplate and a partically reduced graphene oxide for visible-light hydrogen production.

    PubMed

    Xu, Xinxin; Lu, Tingting; Liu, Xiaoxia; Wang, Xiuli

    2015-10-05

    A new p-n heterojunction photocatalyst has been synthesized successfully through chemical-bond-mediated combination of coordination polymer nanoplates (CPNPs) and partially reduced graphene oxide (PRGO) with a simple colloidal blending process. Photocatalytic H2 production by the p-n heterojunction photocatalyst PRGO/CPNP was investigated under visible-light irradiation, which illustrates that PRGO/CPNP exhibits a much higher photocatalytic H2 production rate than neat the CPNPs. The improvement of this photocatalytic property can be attributed to the inner electrical field formed in the p-n heterojunction, which impedes recombination of photogenerated electrons and holes. In PRGO/CPNP, the existence of the p-n heterojunction has been confirmed by electrochemical methods clearly. For PRGO/CPNP, the reductive degree of the PRGO has a great influence on the H2 production rate and an ideal condition to get a PRGO/CPNP photocatalyst with higher performance has been obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode.

    PubMed

    Spechler, Joshua A; Nagamatsu, Ken A; Sturm, James C; Arnold, Craig B

    2015-05-20

    In this Research Article, we demonstrate pulsed laser processing of a silver nanowire network transparent conductor on top of an otherwise complete solar cell. The macroscopic pulsed laser irradiation serves to sinter nanowire-nanowire junctions on the nanoscale, leading to a much more conductive electrode. We fabricate hybrid silicon/organic heterojunction photovoltaic devices, which have ITO-free, solution processed, and laser processed transparent electrodes. Furthermore, devices which have high resistive losses show up to a 35% increase in power conversion efficiency after laser processing. We perform this study over a range of laser fluences, and a range of nanowire area coverage to investigate the sintering mechanism of nanowires inside of a device stack. The increase in device performance is modeled using a simple photovoltaic diode approach and compares favorably to the experimental data.

  20. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    DOE PAGES

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; ...

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymersmore » that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.« less

  1. Strong room temperature electroluminescence from lateral p-SiGe/i-Ge/n-SiGe heterojunction diodes on silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming

    2016-10-01

    A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.

  2. Molecular bulk heterojunctions: an emerging approach to organic solar cells.

    PubMed

    Roncali, Jean

    2009-11-17

    The predicted exhaustion of fossil energy resources and the pressure of environmental constraints are stimulating an intensification of research on renewable energy sources, in particular, on the photovoltaic conversion of solar energy. In this context, organic solar cells are attracting increasing interest that is motivated by the possibility of fabricating large-area, lightweight, and flexible devices using simple techniques with low environmental impact. Organic solar cells are based on a heterojunction resulting from the contact of a donor (D) and an acceptor (A) material. Absorption of solar photons creates excitons, Coulombically bound electron-hole pairs, which diffuse to the D/A interface, where they are dissociated into free holes and electrons by the electric field. D/A heterojunctions can be created with two types of architectures, namely, bilayer heterojunction and bulk heterojunction (BHJ) solar cells. BHJ cells combine the advantages of easier fabrication and higher conversion efficiency due to the considerably extended D/A interface. Until now, the development of BHJ solar cells has been essentially based on the use of soluble pi-conjugated polymers as donor material. Intensive interdisciplinary research carried out in the past 10 years has led to an increase in the conversion efficiency of BHJ cells from 0.10 to more than 5.0%. These investigations have progressively established regioregular poly(3-hexylthiophene) (P3HT) as the standard donor material for BHJ solar cells, owing to a useful combination of optical and charge-transport properties. However, besides the limit imposed to the maximum conversion efficiency by its intrinsic electronic properties, P3HT and more generally polymers pose several problems related to the control of their structure, molecular weight, polydispersity, and purification. In this context, recent years have seen the emergence of an alternative approach based on the replacement of polydisperse polymers by soluble, conjugated single molecules as donor materials in BHJ cells. In fact, molecular donors present specific advantages in terms of structural definition, synthesis, and purification. In this Account, we present a brief survey of recent work in this nascent field of new single-molecule donors in organic solar cells. Various series of three-dimensional donors built by the attachment of different kinds of conjugated branches on a central node, including silicon, twisted bithiophene, triphenylamine, and borondipyrromethene (BODIPY), are discussed in relation to the performances of the resulting solar cells. Furthermore, it is shown that the concept of a molecular donor with internal charge transfer leads at the same time to improved light-harvesting properties, red-shifted photoresponse, and a higher open-circuit voltage, resulting in a considerable increase of conversion efficiency, up to values now approaching 3%. These results show that soluble molecular donors can lead to BHJ cells that combine high conversion efficiency with the distinct advantages of working with single molecules, including structural definition, synthesis, purification, and reproducibility.

  3. Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO3(La,Cr)-decorated WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Jiang, Junzhe; Jia, Yushuai; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu

    2017-08-01

    The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO3(La,Cr)/WO3 with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO3(La,Cr) nanoparticles are uniformly decorated on the WO3 nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO3 and SrTiO3(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z-scheme heterojunction, SrTiO3(La,Cr)/WO3 exhibits excellent adsorption-photocatalytic performance and stability on MB removal, which could be potentially used for practical wastewater treatment.

  4. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles.

    PubMed

    Musante, Craig; White, Jason C

    2012-09-01

    The phytotoxicity of bulk and nanoparticle Cu and Ag was directly compared. NP Ag reduced biomass and transpiration by 66-84% when compared with bulk Ag. The Ag ion concentration was 4.4-10-times greater in NP than bulk particle solutions. The Cu ion concentration was 1.4-4.4-times greater in bulk than NP amended solutions. Humic acid (50 mg/L) decreased the ion content of bulk Cu solution by 38-42% but increased ion Cu content of NP solutions by 1.4-2.9 times. Bulk and NP Cu were highly phytotoxic; growth and transpiration were reduced by 60-70% relative to untreated controls. NP Cu phytotoxicity was unaffected by solution type, but humic acid (50 mg/L) completely alleviated phytotoxicity caused by bulk Cu. The data demonstrate differential toxicity of Ag NP relative to bulk Ag. The finding that humic acid and solution chemistry differentially impact bulk and NP behavior highlights the importance of evaluating nanoparticles under environmentally relevant conditions. Copyright © 2010 Wiley Periodicals, Inc.

  5. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi

    2016-04-01

    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  6. Enhancing the photovoltaic performance of bulk heterojunction polymer solar cells by adding Rhodamine B laser dye as co-sensitizer.

    PubMed

    Kazemifard, Sholeh; Naji, Leila; Afshar Taromi, Faramarz

    2018-04-01

    Ternary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied. To gain insight into the influences of RhB on the photovoltaic performance of PSCs, physicochemical and optical properties of TBs were compared with those of BHJ binary blend as a standard. RhB broadened the light absorption properties of the active layer and played a bridging role between P3HT and PC 61 BM. The PCE and short-circuit current density (Jsc) of the optimized TB-based PSCs comprising of 0.5 wt% RhB reached 5% and 12.12 mA/cm 2 , respectively. Compared to BHJ standard cell, the PCE and the generated current was improved by two orders of magnitude due to higher photon harvest of the active layer, cascade energy level structure of TB components and a considerable decrease in the charge carrier recombination. The results suggest that RhB can be considered as an effective material for application in PSCs to attain high photovoltaic performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase

    DOE PAGES

    Li, Hongfei; Yang, Zhenhua; Pan, Cheng; ...

    2017-07-14

    Here, we report that the addition of a non-photoactive tertiary polymer phase in the binary bulk heterojunction (BHJ) polymer solar cell leads to a self-assembled columnar nanostructure, enhancing the charge mobilities and photovoltaic efficiency with surprisingly increased optimal active blend thicknesses over 300 nm, 3–4 times larger than that of the binary counterpart. Using the prototypical poly(3-hexylthiophene) (P3HT):fullerene blend as a model BHJ system, we discover that the inert poly(methyl methacrylate) (PMMA) added in the binary BHJ blend self-assembles into vertical columns, which not only template the phase segregation of electron acceptor fullerenes but also induce the out-of-plane rotation ofmore » the edge-on-orientated crystalline P3HT phase. Using complementary interrogation methods including neutron reflectivity, X-ray scattering, atomic force microscopy, transmission electron microscopy, and molecular dynamics simulations, we show that the enhanced charge transport originates from the more randomized molecular stacking of the P3HT phase and the spontaneous segregation of fullerenes at the P3HT/PMMA interface, driven by the high surface tension between the two polymeric components. The results demonstrate a potential method for increasing the thicknesses of high-performance polymer BHJ solar cells with improved photovoltaic efficiency, alleviating the burden of stringently controlling the ultrathin blend thickness during the roll-to-roll-type large-area manufacturing environment.« less

  8. Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman

    2018-02-01

    Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.

  9. Liquid crystalline perylene diimide outperforming nonliquid crystalline counterpart: higher power conversion efficiencies (PCEs) in bulk heterojunction (BHJ) cells and higher electron mobility in space charge limited current (SCLC) devices.

    PubMed

    Zhang, Youdi; Wang, Helin; Xiao, Yi; Wang, Ligang; Shi, Dequan; Cheng, Chuanhui

    2013-11-13

    In this work, we propose the application of liquid crystalline acceptors as a potential means to improve the performances of bulk heterojunction (BHJ) organic solar cells. LC-1, a structurally-simple perylene diimide (PDI), has been adopted as a model for thorough investigation. It exhibits a broad temperature range of liquid crystalline (LC) phase from 41 °C to 158 °C, and its LC properties have been characterized by differental scanning calorimetry (DSC), polarization optical microscopy (POM), and X-ray diffraction (XRD). The BHJ devices, using P3HT:LC-1 (1:2) as an organic photovoltaic active layer undergoing thermal annealing at 120 °C, shows an optimized efficiency of 0.94 %. By contrast, the devices based on PDI-1, a nonliquid crystalline PDI counterpart, only obtain a much lower efficiency of 0.22%. Atomic force microscopy (AFM) images confirm that the active layers composed of P3HT:LC-1 have smooth and ordered morphology. In space charge limited current (SCLC) devices fabricated via a spin-coating technique, LC-1 shows the intrinsic electron mobility of 2.85 × 10(-4) cm(2)/(V s) (at 0.3 MV/cm) which is almost 5 times that of PDI-1 (5.83 × 10(-5) cm(2)/(V s)) under the same conditions for thermal annealing at 120 °C.

  10. Effectiveness of External Electric Field Treatment of Conjugated Polymers in Bulk-Heterojunction Solar Cells.

    PubMed

    Solanki, Ankur; Bagui, Anirban; Long, Guankui; Wu, Bo; Salim, Teddy; Chen, Yongsheng; Lam, Yeng Ming; Sum, Tze Chien

    2016-11-30

    External electric field treatment (EFT) on P3HT:PCBM bulk heterojunction (BHJ) devices was recently found to be a viable approach for improving the power conversion efficiencies (PCEs) through modulating the blend nanomorphology. However, its effectiveness over the broad family of polymer-fullerene blends remains unclear. Herein, we investigate the effects of external EFT on various polymer-fullerene blends with distinct morphologies stemming from the difference in molecular structure of the polymers (i.e., semicrystalline vs amorphous) in a bid to establish a clear morphology-function-charge dynamics relationship to the photovoltaic performance. Our findings reveal that EFT promotes self-organization of the semicrystalline thiophene-based conjugated polymers (i.e., P3HT and P3BT) while it was ineffective for the amorphous polymers (i.e., PTB7 and PCPDTBT) even at the maximum applied E-field of 8 kV cm -1 . Transient absorption spectroscopy shows an improvement in the initial charge-carrier and polaron formation from delocalized excitons in the E-field treated semicrystalline blends compared to their untreated reference samples. Interfacial trap-assisted monomolecular and trap-free bimolecular recombination at nanosecond-microsecond time scale in the E-field treated P3BT:PC60BM devices are significantly suppressed. Importantly, our findings shed new light and provide guidelines on the effectiveness of utilizing external EFT to enhance the PCEs of a larger family of conjugated polymer-based BHJ OSCs.

  11. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally, we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  12. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetratingmore » network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit are the following: • Photo-excitation of the donor (or the acceptor). • Charge transfer with holes in the donor domain and electrons in the acceptor domain. • Sweep-out to electrodes prior to recombination by the internal electric field. • Energy delivered to the external circuit. Each of these four steps was studied in detail using a wide variety of organic semiconductors with different molecular structures. This UC Santa Barbara group was the first to clarify the origin and the mechanism involved in the ultrafast charge transfer process. The ultrafast charge transfer (time scale approximately 100 times faster than the first step in the photo-synthesis of green plants) is the fundamental reason for the potential for high power conversion efficiency of sunlight to electricity from plastic solar cells. The UCSB group was the first to emphasize, clarify and demonstrate the need for sweep-out to electrodes prior to recombination by the internal electric field. The UCSB group was the first to synthesize small molecule organic semiconductors capable of high power conversion efficiencies. The results of this research were published in high impact peer-reviewed journals. Our published papers (40 in number) provide answers to fundamental questions that have been heavily discussed and debated in the field of Bulk Heterojunction Solar Cells; scientific questions that must be resolved before this technology can be ready for commercialization in large scale for production of renewable energy. Of the forty publications listed, nineteen were co-authored by two or more of the PIs, consistent with the multi-investigator approach described in the original proposal. The specific advantages of this “plastic” solar cell technology are the following: a. Manufacturing by low-cost printing technology using soluble organic semiconductors; this approach can be implemented in large scale by roll-to-roll printing on plastic substrates. b. Low energy cost in manufacturing; all steps carried out at room temperature (approx. a factor of ten less than the use of Silicon which requires high temperature processing). c. Low carbon footprint d. Lightweight, flexible and rugged Because of the resolution of many scientific issues, a significant fraction of which were addressed in the research results of DE-FG02-08ER46535, the power conversion efficiencies are improving at an ever increasing rate. During the funding period of DE-FG02-08ER46535, the power conversion efficiencies of plastic solar cells improved from just a few per cent to values greater than 11% with contributions from our group and from researchers all over the world.« less

  13. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.

    PubMed

    Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K

    2016-04-07

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.

  14. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-10-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron-hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  15. Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics.

    PubMed

    Hu, Huawei; Chow, Philip C Y; Zhang, Guangye; Ma, Tingxuan; Liu, Jing; Yang, Guofang; Yan, He

    2017-10-17

    Bulk heterojunction (BHJ) organic solar cells (OSCs) have attracted intensive research attention over the past two decades owing to their unique advantages including mechanical flexibility, light weight, large area, and low-cost fabrications. To date, OSC devices have achieved power conversion efficiencies (PCEs) exceeding 12%. Much of the progress was enabled by the development of high-performance donor polymers with favorable morphological, electronic, and optical properties. A key problem in morphology control of OSCs is the trade-off between achieving small domain size and high polymer crystallinity, which is especially important for the realization of efficient thick-film devices with high fill factors. For example, the thickness of OSC blends containing state-of-the-art PTB7 family donor polymers are restricted to ∼100 nm due to their relatively low hole mobility and impure polymer domains. To further improve the device performance and promote commercialization of OSCs, there is a strong demand for the design of new donor polymers that can achieve an optimal blend morphology containing highly crystalline yet reasonably small domains. In this Account, we highlight recent progress on a new family of conjugated polymers with strong temperature-dependent aggregation (TDA) property. These polymers are mostly disaggregated and can be easily dissolved in solution at high temperatures, yet they can strongly aggregate when the solution is cooled to room temperature. This unique aggregation property allows us to control the disorder-order transition of the polymer during solution processing. By preheating the solution to high temperature (∼100 °C), the polymer chains are mostly disaggregated before spin coating; as the temperature of the solution drops during the spin coating process, the polymer can strongly aggregate and form crystalline domains yet that are not excessivelylarge. The overall blend morphology can be optimized by various processing conditions (e.g., temperature, spin-rates, concentration, etc.). This well-controlled and near-optimal BHJ morphology produced over a dozen cases of efficient OSCs with an active layer nearly 300 nm thick that can still achieve high FFs (70-77%) and efficiencies (10-11.7%). By studying the structure-property relationships of the donor polymers, we show that the second position branched alkyl chains and the fluorination on the polymer backbone are two key structural features that enable the strong TDA property. Our comparative studies also show that the TDA polymer family can be used to match with non-fullerene acceptors yielding OSCs with low voltage losses. The key difference between the empirical matching rules for fullerene and non-fullerene OSCs is that TDA polymers with slightly reduced crystallinity appear to match better with small molecular acceptors and yield higher OSC performances.

  16. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    PubMed Central

    Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S.; Friend, Richard H.; Snaith, Henry J.

    2015-01-01

    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I−, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead. PMID:26615763

  17. Two dimensional Z-scheme AgCl/Ag/CaTiO3 nano-heterojunctions for photocatalytic hydrogen production enhancement

    NASA Astrophysics Data System (ADS)

    Jiang, Ziyuan; Pan, Jiaqi; Wang, Beibei; Li, Chaorong

    2018-04-01

    The two dimensional(2D) Z-scheme AgCl/Ag/Ca/TiO3 nano-heterojunction is synthesized via simple preparation of hydrothermal-chemical co-deposition method. The results of SEM, EDS, elemental mapping, XRD, TEM, XPS and Raman shift imply that the AgCl/Ag nanoparticles have deposited on the surfaces of CaTiO3 nanosheets successfully. Compared with the unmodified samples, the photocatalytic activity of the as-prepared 2D AgCl/Ag/CaTiO3 nano-heterojunction exhibits a remarkable enhancement by the hydrogen production. Further, the photocatalytic process has been studied and the mechanism of the photocatalytic hydrogen production enhancement has been provided, which could be ascribed to the Z-scheme heterojunction and 2D lamellar structure of the CaTiO3.

  18. Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate

    NASA Astrophysics Data System (ADS)

    Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa

    2018-01-01

    P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.

  19. Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Natalie P.; Marks, Melissa; Kumar, Pankaj

    2015-11-26

    In this paper, we report the application of a conjugated copolymer based on thiophene and quinoxaline units, namely poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), to nanoparticle organic photovoltaics (NP-OPVs). TQ1 exhibits more desirable material properties for NP-OPV fabrication and operation, particularly a high glass transition temperature (T g) and amorphous nature, compared to the commonly applied semicrystalline polymer poly(3-hexylthiophene) (P3HT). This study reports the optimisation of TQ1:PC 71BM (phenyl C 71 butyric acid methyl ester) NP-OPV device performance by the application of mild thermal annealing treatments in the range of the T g (sub-T g and post-T g), both in the active layer dryingmore » stage and post-cathode deposition annealing stage of device fabrication, and an in-depth study of the effect of these treatments on nanoparticle film morphology. Finally and in addition, we report a type of morphological evolution in nanoparticle films for OPV active layers that has not previously been observed, that of PC 71BM nano-pathway formation between dispersed PC 71BM-rich nanoparticle cores, which have the benefit of making the bulk film more conducive to charge percolation and extraction.« less

  20. Influence of Indium Tin Oxide Surface Treatment on Spatially Localized Photocurrent Variations in Bulk Heterojunction Organic Photovoltaic Devices

    DTIC Science & Technology

    2011-01-01

    efforts have focused on identifying alternative interfacial layers, such as p-type NiO,28,29 the polymer blend TPDSi2:TFB, 30 and V2O5 . 31 Although...METHODS Device Preparation. ITO-coated glass (∼10 Ω/sq) was pur- chased from Delta Technologies and cut to 12 mm 25 mm substrates. The substrates...devices were illuminated through the glass side of the substrate by a Newport Oriel 96000 solar light simulator equipped with an AM 1.5G filter and a

  1. Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells

    DOE PAGES

    Gill, Hardeep Singh; Li, Lian; Ren, Haizhou; ...

    2018-01-01

    The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.

  2. Significantly improved efficiency of organic solar cells incorporating Co3O4 NPs in the active layer

    NASA Astrophysics Data System (ADS)

    Yousaf, S. Amber; Ikram, M.; Ali, S.

    2018-03-01

    Effect of various concentrations of fabricated cobalt oxide (Co3O4) nanoparticles (NPs) in the active layer of different donors and acceptors based hybrid organic bulk heterojunction-BHJ devices were investigated using inverted architecture. The organic active layer comprising different donors P3HT (poly(3-hexylthiophene-2,5-diyl) and PTB7 (Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl

  3. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.

    PubMed

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang

    2013-08-07

    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Hardeep Singh; Li, Lian; Ren, Haizhou

    The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.

  5. Effects of heteroatom substitution in conjugated heterocyclic compounds on photovoltaic performance: from sulfur to tellurium.

    PubMed

    Park, Y S; Kale, T S; Nam, C-Y; Choi, D; Grubbs, R B

    2014-07-28

    We report a general strategy for fine-tuning the bandgap of donor-acceptor-donor based organic molecules by modulating the electron-donating ability of the donor moiety by changing the benzochalcogenophene donor groups from benzothiophenes to benzoselenophenes to benzotellurophenes. These molecules show red-shifts in absorption and external quantum efficiency maxima from sulfur to selenium to tellurium. In bulk heterojunction solar cell devices, the benzoselenophene derivative shows a power conversion efficiency as high as 5.8% with PC61BM as the electron acceptor.

  6. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation

    NASA Astrophysics Data System (ADS)

    He, Kelin; Xie, Jun; Li, Mingli; Li, Xin

    2018-02-01

    Constructing high-quality earth-abundant semionconductor/cocatalyst heterojunction remains a grand challenge in the promising fields of photocatalytic solar fuel H2 production. Herein, an intimate g-C3N4 nanosheet/NiS cocatalyst heterojunction is fabricated by in situ one-step calcination of urea, thiourea and nickel acetate. Interestingly, thiourea could act as both the precursor of g-C3N4 and the sulfur source of NiS. The H2-evolution activity of as-obtained photocatalysts was tested in a triethanolamine (TEOA) scavenger solution under visible light irradiation. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) mapping analysis clearly demonstrated that the NiS catalyst nanoparticles could be in situ fabricated and homogeneously distributed on the surface of g-C3N4 nanosheets without an obvious aggregation. The maximum H2-production rate of 29.68 μmol h-1 could be achieved, which is nearly comparable to that of 0.5 wt% Pt loaded sample. It is believed that the intimate heterojunction interfaces between NiS nanoparticles and g-C3N4 nanosheets could be in situ constructed by high temperature calcination, which achieved the improved charge separation, the enhanced oxidation ability of TEOA and the accelerated the sluggish H2-evolution kinetics, thus resulting in the remarkably enhanced hydrogen evolution. Therefore, our study provides insights into constructing high-quality robust g-C3N4-based heterojunction material for photocatalytic applications by using a simple one-step in-situ calcination technique.

  7. Process for disposal of aqueous solutions containing radioactive isotopes

    DOEpatents

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  8. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite

    NASA Astrophysics Data System (ADS)

    Wang, Tianyue; Chen, Jiewei; Wu, Gaoxiang; Song, Dandan; Li, Meicheng

    2017-01-01

    Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures: sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells. Project supported by the National High-Tech R&D Program of China (No. 2015AA034601), the National Natural Science Foundation of China (Nos. 91333122, 61204064, 51202067, 51372082, 51402106, 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Nos. 20120036120006, 20130036110012), the Par-Eu Scholars Program, and the Fundamental Research Funds for the Central Universities.

  9. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    PubMed Central

    Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398

  10. Electrical Investigation of Nanostructured Fe2O3/p-Si Heterojunction Diode Fabricated Using the Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Mansour, Shehab A.; Ibrahim, Mervat M.

    2017-11-01

    Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.

  11. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics.

    PubMed

    Carey, Tian; Cacovich, Stefania; Divitini, Giorgio; Ren, Jiesheng; Mansouri, Aida; Kim, Jong M; Wang, Chaoxia; Ducati, Caterina; Sordan, Roman; Torrisi, Felice

    2017-10-31

    Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm 2  V -1  s -1 , at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.

  12. Band alignment in atomically precise graphene nanoribbon junctions

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Liang, Liangbo; Hong, Kunlun; Li, An-Ping; Xiao, Zhongcan; Lu, Wenchang; Bernholc, Jerry

    Building atomically precise graphene nanoribbon (GNR) heterojunctions down to molecular level opens a new realm to functional graphene-based devices. By employing a surface-assisted self-assembly process, we have synthesized heterojunctions of armchair GNRs (aGNR) with widths of seven, fourteen and twenty-one carbon atoms, denoted 7, 14 and 21-aGNR respectively. A combined study with scanning tunneling microscopy (STM) and density functional theory (DFT) allows the visualization of electronic band structures and energy level alignments at the heterojunctions with varying widths. A wide bandgap ( 2.6 eV) has been identified on semiconducting 7-aGNR, while the 14-aGNR appears nearly metallic and the 21-aGNR possesses a narrow bandgap. The spatially modulations of the energy bands are strongly confined at the heterojunctions within a width of about 2 nm. Clear band bending of about 0.4 eV and 0.1 eV are observed at the 7-14 and 14-21 aGNR heterojunctions, respectively. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  13. The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film

    PubMed Central

    Wu, Cuncun; Zhang, Qiaohui; Liu, Yang; Luo, Wei; Guo, Xuan; Huang, Ziru; Ting, Hungkit; Sun, Weihai; Zhong, Xinrui; Wei, Shiyuan

    2017-01-01

    Abstract Recently, lead‐free double perovskites have emerged as a promising environmentally friendly photovoltaic material for their intrinsic thermodynamic stability, appropriate bandgaps, small carrier effective masses, and low exciton binding energies. However, currently no solar cell based on these double perovskites has been reported, due to the challenge in film processing. Herein, a first lead‐free double perovskite planar heterojunction solar cell with a high quality Cs2AgBiBr6 film, fabricated by low‐pressure assisted solution processing under ambient conditions, is reported. The device presents a best power conversion efficiency of 1.44%. The preliminary efficiency and the high stability under ambient condition without encapsulation, together with the high film quality with simple processing, demonstrate promise for lead‐free perovskite solar cells. PMID:29593974

  14. Numerical simulation and characterization of trapping noise in InGaP-GaAs heterojunctions devices at high injection

    NASA Astrophysics Data System (ADS)

    Nallatamby, Jean-Christophe; Abdelhadi, Khaled; Jacquet, Jean-Claude; Prigent, Michel; Floriot, Didier; Delage, Sylvain; Obregon, Juan

    2013-03-01

    Commercially available simulators present considerable advantages in performing accurate DC, AC and transient simulations of semiconductor devices, including many fundamental and parasitic effects which are not generally taken into account in house-made simulators. Nevertheless, while the TCAD simulators of the public domain we have tested give accurate results for the simulation of diffusion noise, none of the tested simulators perform trap-assisted GR noise accurately. In order to overcome the aforementioned problem we propose a robust solution to accurately simulate GR noise due to traps. It is based on numerical processing of the output data of one of the simulators available in the public-domain, namely SENTAURUS (from Synopsys). We have linked together, through a dedicated Data Access Component (DAC), the deterministic output data available from SENTAURUS and a powerful, customizable post-processing tool developed on the mathematical SCILAB software package. Thus, robust simulations of GR noise in semiconductor devices can be performed by using GR Langevin sources associated to the scalar Green functions responses of the device. Our method takes advantage of the accuracy of the deterministic simulations of electronic devices obtained with SENTAURUS. A Comparison between 2-D simulations and measurements of low frequency noise on InGaP-GaAs heterojunctions, at low as well as high injection levels, demonstrates the validity of the proposed simulation tool.

  15. Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) - Applications to the design of 3D-printed architectured materials

    NASA Astrophysics Data System (ADS)

    Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro

    2018-01-01

    Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.

  16. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu

    2015-09-04

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  17. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu

    2015-09-01

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  18. An electron-deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics.

    PubMed

    McAfee, Seth M; Topple, Jessica M; Payne, Abby-Jo; Sun, Jon-Paul; Hill, Ian G; Welch, Gregory C

    2015-04-27

    An electron-deficient small molecule accessible from sustainable isoindigo and phthalimide building blocks was synthesized via optimized synthetic procedures that incorporate microwave-assisted synthesis and a heterogeneous catalyst for Suzuki coupling, and direct heteroarylation carbon-carbon bond forming reactions. The material was designed as a non-fullerene acceptor with the help of DFT calculations and characterized by optical, electronic, and thermal analysis. Further investigation of the material revealed a differing solid-state morphology with the use of three well-known processing conditions: thermal annealing, solvent vapor annealing and small volume fractions of 1,8-diiodooctane (DIO) additive. These unique morphologies persist in the active layer blends and have demonstrated a distinct influence on device performance. Organic photovoltaic-bulk heterojunction (OPV-BHJ) devices show an inherently high open circuit voltage (Voc ) with the best power conversion efficiency (PCE) cells reaching 1.0 V with 0.4 v/v % DIO as a processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ab initio modeling of excitonic and charge-transfer states in organic semiconductors: the PTB1/PCBM low band gap system.

    PubMed

    Borges, Itamar; Aquino, Adélia J A; Köhn, Andreas; Nieman, Reed; Hase, William L; Chen, Lin X; Lischka, Hans

    2013-12-11

    A detailed quantum chemical simulation of the excitonic and charge-transfer (CT) states of a bulk heterojunction model containing poly(thieno[3,4-b]thiophene benzodithiophene) (PTB1)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is reported. The largest molecular model contains two stacked PTB1 trimer chains interacting with C60 positioned on top of and lateral to the (PTB1)3 stack. The calculations were performed using the algebraic diagrammatic construction method to second order (ADC(2)). One main result of the calculations is that the CT states are located below the bright inter-chain excitonic state, directly accessible via internal conversion processes. The other important aspects of the calculations are the formation of discrete bands of CT states originating from the lateral C60's and the importance of inter-chain charge delocalization for the stability of the CT states. A simple model for the charge separation step is also given, revealing the energetic feasibility of the overall photovoltaic process.

  20. Optoelectronic Properties of Conjugated Block Copolymer with Flexible Linking Group

    NASA Astrophysics Data System (ADS)

    Hu, Zhiqi; Verduzco, Rafael

    State-of-the-art organic photovoltaics (OPVs) are prepared by depositing a disordered, co-continuous donor and acceptor blend. While optimization of material processing has produced significant improvements in performance, a fundamental understanding of charge separation and recombination at the donor/acceptor interface is lacking. Block copolymers with donor and acceptor polymer blocks provide an opportunity for controlling the donor-accepter interfacial structure and understanding its relationship to charge separation and photovoltaic performance. Here, we report the synthesis and characterization of donor-linker-acceptor block copolymers for use in OPVs. A series of poly(3-hexylthiophene)-block- poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-linkerPFTBT) are synthesized with flexible oligo-ethylene glycol (PEG) linkers. Photoluminescence measurements demonstrate that the insertion of a non-conjugated linker has a significant impact on energy transfer between the two blocks, and the block copolymers are used as additives for bulk heterojunction OPVs. This work provides insight into the charge separation process and demonstrates a technique for tailoring the donor-accepter interface in OPVs.

Top