The impact of finite-area inhomogeneities on resistive and Hall measurement
NASA Astrophysics Data System (ADS)
Koon, Daniel
2013-03-01
I derive an iterative expression for the electric potential in an otherwise homogeneous thin specimen as the result of a finite-area inhomogeneity in either the direct conductance, the Hall conductance, or both. This expression extends to the finite-area regime the calculation of the effect of such inhomogeneities on the measurement error in the sheet resistance and Hall sheet resistance. I then test these results on the exactly-solvable case of a circular inhomogeneity equally distant from the four electrodes of either a square four-point-probe array on an infinitely large conducting specimen or a circular van der Pauw specimen with symmetrically-placed electrodes.
Topological Sachdev-Ye-Kitaev model
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zhai, Hui
2018-05-01
In this Rapid Communication, we construct a large-N exactly solvable model to study the interplay between interaction and topology, by connecting the Sachdev-Ye-Kitaev (SYK) model with constant hopping. The hopping forms a band structure that can exhibit both topologically trivial and nontrivial phases. Starting from a topologically trivial insulator with zero Hall conductance, we show that the interaction can drive a phase transition to a topologically nontrivial insulator with quantized nonzero Hall conductance, and a single gapless Dirac fermion emerges when the interaction is fine tuned to the critical point. The finite temperature effect is also considered, and we show that the topological phase with a stronger interaction is less stable against temperature. Our model provides a concrete example to illustrate the interacting topological phases and phase transitions, and can shed light on similar problems in physical systems.
Radical chiral Floquet phases in a periodically driven Kitaev model and beyond
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Fidkowski, Lukasz; Vishwanath, Ashvin; Potter, Andrew C.
2017-12-01
We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels that propagate a quantized fractional number of qubits along the sample edge during each driving period. These phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and bulk "anyon time-crystal" order characterized by dynamical transmutation of electric-charge into magnetic-flux excitations in the bulk.
Symmetry Enriched Topological Phases and Their Edge Theories
NASA Astrophysics Data System (ADS)
Heinrich, Christopher
In this thesis we investigate topological phases of matter that have a global, unbroken symmetry group--also known as symmetry enriched topological (SET) phases. We address three questions about these phases: (1) how can we build exactly solvable models that realize them? (2) how can we determine if their edge theories can be gapped without breaking the symmetry? and (3) how do we understand the phenomenon of decoupled charge and neutral modes which occurs in certain fractional quantum Hall states? More specifically, we address the first question by constructing exactly solvable models for a wide class of symmetry enriched topological (SET) phases, which we call symmetry-enriched string nets. The construction applies to 2D bosonic SET phases with finite unitary onsite symmetry group G, and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples. For the second question, we focus on the edge theories of 2D SET phases with Z2 symmetry. The central problem we seek to solve is to determine which edge theories can be gapped without breaking the symmetry. Previous attempts to answer this question in special cases relied on constructing perturbations of a particular type to gap the edge. This method proves the edge can be gapped when the appropriate perturbations can be found, but is inconclusive if they cannot be found. We build on this previous work by deriving a necessary and sufficient algebraic condition for when the edge can be gapped. Our results apply to Z2 symmetry protected topological phases as well as Abelian Z2 SET phases. Finally, in the fourth chapter, we describe solvable models that capture how impurity scattering in certain fractional quantum Hall edges can give rise to a neutral mode--i.e. an edge mode that does not carry electric charge. These models consist of two counter-propagating chiral Luttinger liquids together with a collection of discrete impurity scatterers. Our main result is an exact solution of these models in the limit of infinitely strong impurity scattering. From this solution, we explicitly derive the existence of a neutral mode and we determine all of its microscopic properties including its velocity. We also study the stability of the neutral mode and show that it survives at finite but sufficiently strong scattering. Our results are applicable to a family of Abelian fractional quantum Hall states of which the nu = 2/3 state is the most prominent example.
SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike
2017-03-01
A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
Book Analysis: Challenger: A Major Malfunction.
1988-04-01
REPORT NUMBER 88-113S TITLE BOOK ANALYSIS: CHALLENGER : A MAJOR MALFUNCTION AUTHOR(S) MAJOR THOMAS M. HALL, USAF FACULTY ADVISOR LT COL JOhN R. GRELLMAN... CHALLENGER : A MAJOR MALFUNCTION 12. PERSONAL AUTHOR(S) Hall, Thomas M., Major, USAF 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month...identify by block number) FIELD GROUP SUB-GROUP 19. ABSTRACT Continue on reverse if necessary and identify by block number) This report analyzes Challenger
Patterns of Change in User-Generated Social Media Behavior among Service Members Who Die by Suicide
2016-05-01
communications about physiological indicators of autonomic arousal (e.g., pain, insomnia) occur independent of internal psychological states. Finally, in the...privacy settings to determine if observed change patterns are generalizable to the larger community of social media users, as opposed to the subgroup who...suicidal intent in the time leading up to their deaths (Busch, Fawcett, & Jacobs, 2003; Coombs et al., 1992; Hall, Platt, & Hall, 1999; Kovacs, Beck
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, Alexander; Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado, Postal 70-543, 04510 Mexico, D. F.
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
Singularity resolution in string theory and new quantum condensed matter phases
NASA Astrophysics Data System (ADS)
Fidkowski, Lukasz
2007-12-01
In the first part of this thesis (chapters 1 through 4) we study singularity resolution in string theory. We employ an array of techniques, including the AdS-CFT correspondence, exact solvability of low dimensional models, and supersymmetry. We are able to detect a signature of the black hole singularity by analytically continuing certain AdS-CFT correlators. Also in AdS-CFT, we are able to study a D-brane snapping transition on both sides of the correspondence. In the second part (chapters 5 through 7) we study topological phases in condensed matter systems. We investigate theoretical lattice models realizing such phases, use these to derive nontrivial mathematical physics results, and study an idealized quantum interferometer designed to detect such a phase in quantum Hall systems.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, A.
1996-02-01
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com
2016-01-15
We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.
Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru
2014-01-01
This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.
The quest for solvable multistate Landau-Zener models
Sinitsyn, Nikolai A.; Chernyak, Vladimir Y.
2017-05-24
Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. Additionally, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.
Hanaki, Nobuyuki; Jacquemet, Nicolas; Luchini, Stéphane; Zylbersztejn, Adam
2016-01-01
Dominance solvability is one of the most straightforward solution concepts in game theory. It is based on two principles: dominance (according to which players always use their dominant strategy) and iterated dominance (according to which players always act as if others apply the principle of dominance). However, existing experimental evidence questions the empirical accuracy of dominance solvability. In this study, we study the relationships between the key facets of dominance solvability and two cognitive skills, cognitive reflection, and fluid intelligence. We provide evidence that the behaviors in accordance with dominance and one-step iterated dominance are both predicted by one's fluid intelligence rather than cognitive reflection. Individual cognitive skills, however, only explain a small fraction of the observed failure of dominance solvability. The accuracy of theoretical predictions on strategic decision making thus not only depends on individual cognitive characteristics, but also, perhaps more importantly, on the decision making environment itself. PMID:27559324
Synthetic electromagnetic knot in a three-dimensional skyrmion
Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.
2018-01-01
Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735
Hypergeometric type operators and their supersymmetric partners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotfas, Nicolae; Cotfas, Liviu Adrian
2011-05-15
The generalization of the factorization method performed by Mielnik [J. Math. Phys. 25, 3387 (1984)] opened new ways to generate exactly solvable potentials in quantum mechanics. We present an application of Mielnik's method to hypergeometric type operators. It is based on some solvable Riccati equations and leads to a unitary description of the quantum systems exactly solvable in terms of orthogonal polynomials or associated special functions.
Yau, Stephen S.-T.
1983-01-01
A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401
Disturbance accommodating control design for wind turbines using solvability conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Na; Wright, Alan D.; Balas, Mark J.
In this study, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. DAC incorporates a predetermined waveform model and uses it as part of the state-space formulation, which is known as the internal model principle to reduce or minimize the wind disturbance effects on the outputs of the wind turbine. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speedmore » regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore-Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.« less
Disturbance accommodating control design for wind turbines using solvability conditions
Wang, Na; Wright, Alan D.; Balas, Mark J.
2017-02-07
In this study, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. DAC incorporates a predetermined waveform model and uses it as part of the state-space formulation, which is known as the internal model principle to reduce or minimize the wind disturbance effects on the outputs of the wind turbine. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speedmore » regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore-Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.« less
Non-polynomial extensions of solvable potentials à la Abraham-Moses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odake, Satoru; Sasaki, Ryu; Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan
2013-10-15
Abraham-Moses transformations, besides Darboux transformations, are well-known procedures to generate extensions of solvable potentials in one-dimensional quantum mechanics. Here we present the explicit forms of infinitely many seed solutions for adding eigenstates at arbitrary real energy through the Abraham-Moses transformations for typical solvable potentials, e.g., the radial oscillator, the Darboux-Pöschl-Teller, and some others. These seed solutions are simple generalisations of the virtual state wavefunctions, which are obtained from the eigenfunctions by discrete symmetries of the potentials. The virtual state wavefunctions have been an essential ingredient for constructing multi-indexed Laguerre and Jacobi polynomials through multiple Darboux-Crum transformations. In contrast to themore » Darboux transformations, the virtual state wavefunctions generate non-polynomial extensions of solvable potentials through the Abraham-Moses transformations.« less
Analytically solvable model of an electronic Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Ngo Dinh, Stéphane; Bagrets, Dmitry A.; Mirlin, Alexander D.
2013-05-01
We consider a class of models of nonequilibrium electronic Mach-Zehnder interferometers built on integer quantum Hall edges states. The models are characterized by the electron-electron interaction being restricted to the inner part of the interferometer and transmission coefficients of the quantum quantum point contacts, defining the interferometer, which may take arbitrary values from zero to one. We establish an exact solution of these models in terms of single-particle quantities, determinants and resolvents of Fredholm integral operators. In the general situation, the results can be obtained numerically. In the case of strong charging interaction, the operators acquire the block Toeplitz form. Analyzing the corresponding Riemann-Hilbert problem, we reduce the result to certain singular single-channel determinants (which are a generalization of Toeplitz determinants with Fisher-Hartwig singularities) and obtain an analytic result for the interference current (and, in particular, for the visibility of Aharonov-Bohm oscillations). Our results, which are in good agreement with experimental observations, show an intimate connection between the observed “lobe” structure in the visibility of Aharonov-Bohm oscillations and multiple branches in the asymptotics of singular integral determinants.
Experimentally probing topological order and its breakdown through modular matrices
NASA Astrophysics Data System (ADS)
Luo, Zhihuang; Li, Jun; Li, Zhaokai; Hung, Ling-Yan; Wan, Yidun; Peng, Xinhua; Du, Jiangfeng
2018-02-01
The modern concept of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the following question: in principle, how much detail of the physics of topological orders can be observed using state of the art technologies? We find that using surprisingly little data, namely the toric code Hamiltonian in the presence of generic disorders and detuning from its exactly solvable point, the modular matrices--characterizing anyonic statistics that are some of the most fundamental fingerprints of topological orders--can be reconstructed with very good accuracy solely by experimental means. This is an experimental realization of these fundamental signatures of a topological order, a test of their robustness against perturbations, and a proof of principle--that current technologies have attained the precision to identify phases of matter and, as such, probe an extended region of phase space around the soluble point before its breakdown. Given the special role of anyonic statistics in quantum computation, our work promises myriad applications both in probing and realistically harnessing these exotic phases of matter.
Two-species-coagulation approach to consensus by group level interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Carlos; Macia, Fabricio; Velazquez, Juan J. L.
2010-07-15
We explore the self-organization dynamics of a set of entities by considering the interactions that affect the different subgroups conforming the whole. To this end, we employ the widespread example of coagulation kinetics, and characterize which interaction types lead to consensus formation and which do not, as well as the corresponding different macroscopic patterns. The crucial technical point is extending the usual one species coagulation dynamics to the two species one. This is achieved by means of introducing explicitly solvable kernels which have a clear physical meaning. The corresponding solutions are calculated in the long time limit, in which consensusmore » may or may not be reached. The lack of consensus is characterized by means of scaling limits of the solutions. The possible applications of our results to some topics in which consensus reaching is fundamental, such as collective animal motion and opinion spreading dynamics, are also outlined.« less
Two-species-coagulation approach to consensus by group level interactions
NASA Astrophysics Data System (ADS)
Escudero, Carlos; Macià, Fabricio; Velázquez, Juan J. L.
2010-07-01
We explore the self-organization dynamics of a set of entities by considering the interactions that affect the different subgroups conforming the whole. To this end, we employ the widespread example of coagulation kinetics, and characterize which interaction types lead to consensus formation and which do not, as well as the corresponding different macroscopic patterns. The crucial technical point is extending the usual one species coagulation dynamics to the two species one. This is achieved by means of introducing explicitly solvable kernels which have a clear physical meaning. The corresponding solutions are calculated in the long time limit, in which consensus may or may not be reached. The lack of consensus is characterized by means of scaling limits of the solutions. The possible applications of our results to some topics in which consensus reaching is fundamental, such as collective animal motion and opinion spreading dynamics, are also outlined.
Topological model of composite fermions in the cyclotron band generator picture: New insights
NASA Astrophysics Data System (ADS)
Staśkiewicz, Beata
2018-03-01
A combinatorial group theory in the braid groups is correlated with the unusual "anyon" statistic of particles in 2D Hall system in the fractional quantum regime well. On this background has been derived cyclotron band generator as a modification and generalization band generator, first established to solve the word and conjugacy problems in the braid group terms. Topological commensurability condition has been embraced by canonical factors - like, based on the concept of parallel descending cycles. Owing to this we can mathematically capture the general hierarchy of correlated states in the lowest Landau level, describing the fractional quantum Hall effect hierarchy, in terms of cyclotron band generators, especially for those being beyond conventional composite fermions model. It has been also shown that cyclotron braid subgroups, developed for interpretation of Laughlin correlations, are a special case of the right-angled Artin groups.
The solvability of quantum k-pair network in a measurement-based way.
Li, Jing; Xu, Gang; Chen, Xiu-Bo; Qu, Zhiguo; Niu, Xin-Xin; Yang, Yi-Xian
2017-12-01
Network coding is an effective means to enhance the communication efficiency. The characterization of network solvability is one of the most important topic in this field. However, for general network, the solvability conditions are still a challenge. In this paper, we consider the solvability of general quantum k-pair network in measurement-based framework. For the first time, a detailed account of measurement-based quantum network coding(MB-QNC) is specified systematically. Differing from existing coding schemes, single qubit measurements on a pre-shared graph state are the only allowed coding operations. Since no control operations are concluded, it makes MB-QNC schemes more feasible. Further, the sufficient conditions formulating by eigenvalue equations and stabilizer matrix are presented, which build an unambiguous relation among the solvability and the general network. And this result can also analyze the feasibility of sharing k EPR pairs task in large-scale networks. Finally, in the presence of noise, we analyze the advantage of MB-QNC in contrast to gate-based way. By an instance network [Formula: see text], we show that MB-QNC allows higher error thresholds. Specially, for X error, the error threshold is about 30% higher than 10% in gate-based way. In addition, the specific expressions of fidelity subject to some constraint conditions are given.
Continual Lie algebras and noncommutative counterparts of exactly solvable models
NASA Astrophysics Data System (ADS)
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
A large class of solvable multistate Landau–Zener models and quantum integrability
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Sinitsyn, Nikolai A.; Sun, Chen
2018-06-01
The concept of quantum integrability has been introduced recently for quantum systems with explicitly time-dependent Hamiltonians (Sinitsyn et al 2018 Phys. Rev. Lett. 120 190402). Within the multistate Landau–Zener (MLZ) theory, however, there has been a successful alternative approach to identify and solve complex time-dependent models (Sinitsyn and Chernyak 2017 J. Phys. A: Math. Theor. 50 255203). Here we compare both methods by applying them to a new class of exactly solvable MLZ models. This class contains systems with an arbitrary number of interacting states and shows quick growth with N number of exact adiabatic energy crossing points, which appear at different moments of time. At each N, transition probabilities in these systems can be found analytically and exactly but complexity and variety of solutions in this class also grow with N quickly. We illustrate how common features of solvable MLZ systems appear from quantum integrability and develop an approach to further classification of solvable MLZ problems.
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
On the Complexity of Delaying an Adversary’s Project
2005-01-01
interdiction models for such problems and show that the resulting problem com- plexities run the gamut : polynomially solvable, weakly NP-complete, strongly...problems and show that the resulting problem complexities run the gamut : polynomially solvable, weakly NP-complete, strongly NP-complete or NP-hard. We
On a local solvability and stability of the inverse transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia; Buterin, Sergey
2017-11-01
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
Intuition and deliberation: two systems for strategizing in the brain.
Kuo, Wen-Jui; Sjöström, Tomas; Chen, Yu-Ping; Wang, Yen-Hsiang; Huang, Chen-Ying
2009-04-24
Dual-process theories distinguish between intuition (fast and emotional) and reasoning (slow and controlled) as a basis for human decision-making. We contrast dominance-solvable games, which can be solved by step-by-step deliberative reasoning, with pure coordination games, which must be solved intuitively. Using functional magnetic resonance imaging, we found that the middle frontal gyrus, the inferior parietal lobule, and the precuneus were more active in dominance-solvable games than in coordination games. The insula and anterior cingulate cortex showed the opposite pattern. Moreover, precuneus activity correlates positively with how "effortful" a dominance-solvable game is, whereas insula activity correlates positively with how "effortless" a coordination game is.
Topolinski, Sascha; Bakhtiari, Giti; Erle, Thorsten M
2016-01-01
When assessing a problem, many cues can be used to predict solvability and solving effort. Some of these cues, however, can be misleading. The present approach shows that a feature of a problem that is actually related to solving difficulty is used as a cue for solving ease when assessing the problem in the first place. For anagrams, it is an established effect that easy-to-pronounce anagrams (e.g., NOGAL) take more time to being solved than hard-to-pronounce anagrams (e.g., HNWEI). However, when assessing an anagram in the first place, individuals use the feature of pronounceability to predict solving ease, because pronounceability is an instantiation of the general mechanism of processing fluency. Participants (total N=536) received short and long anagrams and nonanagrams and judged solvability and solving ease intuitively without actually solving the items. Easy-to-pronounce letter strings were more frequently judged as being solvable than hard-to-pronounce letters strings (Experiment 1), and were estimated to require less effort (Experiments 2, 4-7) and time to be solved (Experiment 3). This effect was robust for short and long items, anagrams and nonanagrams, and presentation timings from 4 down to 0.5s, and affected novices and experts alike. Spontaneous solutions did not mediate this effect. Participants were sensitive to actual solvability even for long anagrams (6-11 letters long) presented only for 500 ms. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems
NASA Astrophysics Data System (ADS)
Sadurní, E.; Torres, J. M.; Seligman, T. H.
2010-07-01
The Dirac oscillator coupled to an external two-component field can retain its solvability, if couplings are appropriately chosen. This provides a new class of integrable systems. A simplified way of a solution is given by recasting the known solution of the Dirac oscillator into matrix form; there one notes that a block-diagonal form arises in a Hamiltonian formulation. The blocks are two dimensional. Choosing couplings that do not affect the block structure, these blow up the 2 × 2 matrices to 4 × 4 matrices, thus conserving solvability. The result can be cast again in covariant form. By way of an example we apply this exact solution to calculate the evolution of entanglement.
Viswanathan, T M; Viswanathan, G M
2011-01-28
Strong global solvability is difficult to prove for high-dimensional hydrodynamic systems because of the complex interplay between nonlinearity and scale invariance. We define the Ladyzhenskaya-Lions exponent α(L)(n)=(2+n)/4 for Navier-Stokes equations with dissipation -(-Δ)(α) in R(n), for all n≥2. We review the proof of strong global solvability when α≥α(L)(n), given smooth initial data. If the corresponding Euler equations for n>2 were to allow uncontrolled growth of the enstrophy (1/2)∥∇u∥(L²)(2), then no globally controlled coercive quantity is currently known to exist that can regularize solutions of the Navier-Stokes equations for α<α(L)(n). The energy is critical under scale transformations only for α=α(L)(n).
NASA Astrophysics Data System (ADS)
Popov, Nikolay S.
2017-11-01
Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.
Algorithmics - Is There Hope for a Unified Theory?
NASA Astrophysics Data System (ADS)
Hromkovič, Juraj
Computer science was born with the formal definition of the notion of an algorithm. This definition provides clear limits of automatization, separating problems into algorithmically solvable problems and algorithmically unsolvable ones. The second big bang of computer science was the development of the concept of computational complexity. People recognized that problems that do not admit efficient algorithms are not solvable in practice. The search for a reasonable, clear and robust definition of the class of practically solvable algorithmic tasks started with the notion of the class {P} and of {NP}-completeness. In spite of the fact that this robust concept is still fundamental for judging the hardness of computational problems, a variety of approaches was developed for solving instances of {NP}-hard problems in many applications. Our 40-years short attempt to fix the fuzzy border between the practically solvable problems and the practically unsolvable ones partially reminds of the never-ending search for the definition of "life" in biology or for the definitions of matter and energy in physics. Can the search for the formal notion of "practical solvability" also become a never-ending story or is there hope for getting a well-accepted, robust definition of it? Hopefully, it is not surprising that we are not able to answer this question in this invited talk. But to deal with this question is of crucial importance, because only due to enormous effort scientists get a better and better feeling of what the fundamental notions of science like life and energy mean. In the flow of numerous technical results, we must not forget the fact that most of the essential revolutionary contributions to science were done by defining new concepts and notions.
Gradient structure and transport coefficients for strong particles
NASA Astrophysics Data System (ADS)
Gabrielli, Davide; Krapivsky, P. L.
2018-04-01
We introduce and study a simple and natural class of solvable stochastic lattice gases. This is the class of strong particles. The name is due to the fact that when they try to jump to an occupied site they succeed in pushing away a pile of particles. For this class of models we explicitly compute the transport coefficients. We also discuss some generalizations and the relations with other classes of solvable models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; García-Ravelo, Jesús; Pacheco-García, Christian
We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed inmore » closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.« less
On the exact solvability of the anisotropic central spin model: An operator approach
NASA Astrophysics Data System (ADS)
Wu, Ning
2018-07-01
Using an operator approach based on a commutator scheme that has been previously applied to Richardson's reduced BCS model and the inhomogeneous Dicke model, we obtain general exact solvability requirements for an anisotropic central spin model with XXZ-type hyperfine coupling between the central spin and the spin bath, without any prior knowledge of integrability of the model. We outline basic steps of the usage of the operators approach, and pedagogically summarize them into two Lemmas and two Constraints. Through a step-by-step construction of the eigen-problem, we show that the condition gj‧2 - gj2 = c naturally arises for the model to be exactly solvable, where c is a constant independent of the bath-spin index j, and {gj } and { gj‧ } are the longitudinal and transverse hyperfine interactions, respectively. The obtained conditions and the resulting Bethe ansatz equations are consistent with that in previous literature.
Timing variation in an analytically solvable chaotic system
NASA Astrophysics Data System (ADS)
Blakely, J. N.; Milosavljevic, M. S.; Corron, N. J.
2017-02-01
We present analytic solutions for a chaotic dynamical system that do not have the regular timing characteristic of recently reported solvable chaotic systems. The dynamical system can be viewed as a first order filter with binary feedback. The feedback state may be switched only at instants defined by an external clock signal. Generalizing from a period one clock, we show analytic solutions for period two and higher period clocks. We show that even when the clock 'ticks' randomly the chaotic system has an analytic solution. These solutions can be visualized in a stroboscopic map whose complexity increases with the complexity of the clock. We provide both analytic results as well as experimental data from an electronic circuit implementation of the system. Our findings bridge the gap between the irregular timing of well known chaotic systems such as Lorenz and Rossler and the well regulated oscillations of recently reported solvable chaotic systems.
Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems
NASA Astrophysics Data System (ADS)
Serrano, F. A.; Gu, Xiao-Yan; Dong, Shi-Hai
2010-08-01
We propose proper quantization rule, ∫x_Ax_B k(x)dx-∫x0Ax0Bk0(x)dx=nπ, where k(x )=√2M[E -V(x)] /ℏ. The xA and xB are two turning points determined by E =V(x), and n is the number of the nodes of wave function ψ(x ). We carry out the exact solutions of solvable quantum systems by this rule and find that the energy spectra of solvable systems can be determined only from its ground state energy. The previous complicated and tedious integral calculations involved in exact quantization rule are greatly simplified. The beauty and simplicity of the rule come from its meaning—whenever the number of the nodes of ϕ(x ) or the number of the nodes of the wave function ψ(x ) increases by 1, the momentum integral ∫xAxBk(x )dx will increase by π. We apply this proper quantization rule to carry out solvable quantum systems such as the one-dimensional harmonic oscillator, the Morse potential and its generalization, the Hulthén potential, the Scarf II potential, the asymmetric trigonometric Rosen-Morse potential, the Pöschl-Teller type potentials, the Rosen-Morse potential, the Eckart potential, the harmonic oscillator in three dimensions, the hydrogen atom, and the Manning-Rosen potential in D dimensions.
Exactly Solvable Multidimensional Nonlinear Equations and Inverse Scattering,
1986-12-01
time dimension. Here the prototype euQation is 1 the Kadomtsev - Petviashvili (K-P) equation : .0 6u , x , x - )3,:’u ,’ which is the cop,patliil ity...AD-R193 274 EXACTLY SOLVABLE MULTIDIMENSIONAL NONLINEAR EQUATIONS L/1 AND INVERSE SCATTERING(U) CLARKSON UNIV POTSDAM MY A J MBLOUITZ DEC 86 NSOSI4...ecuations by associating thnm with appropriate compatible linear equations , -ne of which is identified as a Scattering prooD,, ne others(s) serves to
Integrable Time-Dependent Quantum Hamiltonians
NASA Astrophysics Data System (ADS)
Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen
2018-05-01
We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
Quantum glassiness in strongly correlated clean systems: an example of topological overprotection.
Chamon, Claudio
2005-02-04
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1) have no quenched disorder, (2) have solely local interactions, (3) have an exactly solvable spectrum, (4) have topologically ordered ground states, and (5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection
NASA Astrophysics Data System (ADS)
Chamon, Claudio
2005-01-01
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.
Exactly solvable relativistic model with the anomalous interaction
NASA Astrophysics Data System (ADS)
Ferraro, Elena; Messina, Antonino; Nikitin, A. G.
2010-04-01
A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.
Parametric symmetries in exactly solvable real and PT symmetric complex potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rajesh Kumar, E-mail: rajeshastrophysics@gmail.com; Khare, Avinash, E-mail: khare@physics.unipune.ac.in; Bagchi, Bijan, E-mail: bbagchi123@gmail.com
In this paper, we discuss the parametric symmetries in different exactly solvable systems characterized by real or complex PT symmetric potentials. We focus our attention on the conventional potentials such as the generalized Pöschl Teller (GPT), Scarf-I, and PT symmetric Scarf-II which are invariant under certain parametric transformations. The resulting set of potentials is shown to yield a completely different behavior of the bound state solutions. Further, the supersymmetric partner potentials acquire different forms under such parametric transformations leading to new sets of exactly solvable real and PT symmetric complex potentials. These potentials are also observed to be shape invariantmore » (SI) in nature. We subsequently take up a study of the newly discovered rationally extended SI potentials, corresponding to the above mentioned conventional potentials, whose bound state solutions are associated with the exceptional orthogonal polynomials (EOPs). We discuss the transformations of the corresponding Casimir operator employing the properties of the so(2, 1) algebra.« less
The Lp Robin problem for Laplace equations in Lipschitz and (semi-)convex domains
NASA Astrophysics Data System (ADS)
Yang, Sibei; Yang, Dachun; Yuan, Wen
2018-01-01
Let n ≥ 3 and Ω be a bounded Lipschitz domain in Rn. Assume that p ∈ (2 , ∞) and the function b ∈L∞ (∂ Ω) is non-negative, where ∂Ω denotes the boundary of Ω. Denote by ν the outward unit normal to ∂Ω. In this article, the authors give two necessary and sufficient conditions for the unique solvability of the Robin problem for the Laplace equation Δu = 0 in Ω with boundary data ∂ u / ∂ ν + bu = f ∈Lp (∂ Ω), respectively, in terms of a weak reverse Hölder inequality with exponent p or the unique solvability of the Robin problem with boundary data in some weighted L2 (∂ Ω) space. As applications, the authors obtain the unique solvability of the Robin problem for the Laplace equation in the bounded (semi-)convex domain Ω with boundary data in (weighted) Lp (∂ Ω) for any given p ∈ (1 , ∞).
INFORMS Section on Location Analysis Dissertation Award Submission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas
This research effort can be summarized by two main thrusts, each of which has a chapter of the dissertation dedicated to it. First, I pose a novel polyhedral approach for identifying polynomially solvable in- stances of the QAP based on an application of the reformulation-linearization technique (RLT), a general procedure for constructing mixed 0-1 linear reformulations of 0-1 pro- grams. The feasible region to the continuous relaxation of the level-1 RLT form is a polytope having a highly specialized structure. Every binary solution to the QAP is associated with an extreme point of this polytope, and the objective function valuemore » is preserved at each such point. However, there exist extreme points that do not correspond to binary solutions. The key insight is a previously unnoticed and unexpected relationship between the polyhedral structure of the continuous relaxation of the level-1 RLT representation and various classes of readily solvable instances. Specifically, we show that a variety of apparently unrelated solvable cases of the QAP can all be categorized in the following sense: each such case has an objective function which ensures that an optimal solution to the continuous relaxation of the level-1 RLT form occurs at a binary extreme point. Interestingly, there exist instances that are solvable by the level-1 RLT form which do not satisfy the conditions of these cases, so that the level-1 form theoretically identifies a richer family of solvable instances. Second, I focus on instances of the QAP known in the literature as linearizable. An instance of the QAP is defined to be linearizable if and only if the problem can be equivalently written as a linear assignment problem that preserves the objective function value at all feasible solutions. I provide an entirely new polyheral-based perspective on the concept of linearizable by showing that an instance of the QAP is linearizable if and only if a relaxed version of the continuous relaxation of the level-1 RLT form is bounded. We also shows that the level-1 RLT form can identify a richer family of solvable instances than those deemed linearizable by demonstrating that the continuous relaxation of the level-1 RLT form can have an optimal binary solution for instances that are not linearizable. As a byproduct, I use this theoretical framework to explicity, in closed form, characterize the dimensions of the level-1 RLT form and various other problem relaxations.« less
A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.
1987-10-01
INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLE 12. PERSONAL AUTHOR(S) Leiserson, Charles, and Saxe, James B. 13a. TYPE OF REPORT j13b TIME...ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works
Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.; Zelnikov, A.
2001-06-15
We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
NASA Astrophysics Data System (ADS)
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi-exactly solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.
Rubin, Jacob
1992-01-01
The feed forward (FF) method derives efficient operational equations for simulating transport of reacting solutes. It has been shown to be applicable in the presence of networks with any number of homogeneous and/or heterogeneous, classical reaction segments that consist of three, at most binary participants. Using a sequential (network type after network type) exploration approach and, independently, theoretical explanations, it is demonstrated for networks with classical reaction segments containing more than three, at most binary participants that if any one of such networks leads to a solvable transport problem then the FF method is applicable. Ways of helping to avoid networks that produce problem insolvability are developed and demonstrated. A previously suggested algebraic, matrix rank procedure has been adapted and augmented to serve as the main, easy-to-apply solvability test for already postulated networks. Four network conditions that often generate insolvability have been identified and studied. Their early detection during network formulation may help to avoid postulation of insolvable networks.
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
NASA Astrophysics Data System (ADS)
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
Weighted Lq-estimates for stationary Stokes system with partially BMO coefficients
NASA Astrophysics Data System (ADS)
Dong, Hongjie; Kim, Doyoon
2018-04-01
We prove the unique solvability of solutions in Sobolev spaces to the stationary Stokes system on a bounded Reifenberg flat domain when the coefficients are partially BMO functions, i.e., locally they are merely measurable in one direction and have small mean oscillations in the other directions. Using this result, we establish the unique solvability in Muckenhoupt type weighted Sobolev spaces for the system with partially BMO coefficients on a Reifenberg flat domain. We also present weighted a priori Lq-estimates for the system when the domain is the whole Euclidean space or a half space.
Lungu, Radu P; Huckaby, Dale A
2008-07-21
An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.
The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics
NASA Astrophysics Data System (ADS)
Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.
2010-12-01
The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.
Demonstration of Detection and Ranging Using Solvable Chaos
NASA Technical Reports Server (NTRS)
Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.
2013-01-01
Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.
Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy
NASA Technical Reports Server (NTRS)
Langer, J. S.; Hong, D. C.
1986-01-01
This paper is concerned primarily with the development of an analytic approach to the theory of steady-state velocity selection in the boundary-layer model of dendritic solidification. The two-dimensional version of this model with a fourfold crystalline anisotropy alpha in the surface tension is considered. By extending a WKB method introduced in an earlier paper, the alpha dependence of the selected growth rate is determined in the limit of small alpha; and this rate is studied for large alphas in the limit in which the dimensionless undercooling approaches unity. Portions of the paper are devoted to a reinterpretation of the mathematical structure of the solvability condition in problems of this kind.
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.
1999-01-01
In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.
Analytically solvable chaotic oscillator based on a first-order filter.
Corron, Ned J; Cooper, Roy M; Blakely, Jonathan N
2016-02-01
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.
Analytically solvable chaotic oscillator based on a first-order filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.
2016-02-15
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform formore » any stable infinite-impulse response filter is chaotic.« less
NASA Astrophysics Data System (ADS)
Minami, Kazuhiko
2017-12-01
An infinite number of spin chains are solved and it is derived that the ground-state phase transitions belong to the universality classes with central charge c = m / 2, where m is an integer. The models are diagonalized by automatically obtained transformations, many of which are different from the Jordan-Wigner transformation. The free energies, correlation functions, string order parameters, exponents, central charges, and the phase diagram are obtained. Most of the examples consist of the stabilizers of the cluster state. A unified structure of the one-dimensional XY and cluster-type spin chains is revealed, and other series of solvable models can be obtained through this formula.
CTE Solvability, Exact Solutions and Nonlocal Symmetries of the Sharma-Tasso-Olver Equation
NASA Astrophysics Data System (ADS)
Pu, Huan; Jia, Man
2015-12-01
In this letter, we prove that the STO equation is CTE solvable and obtain the exact solutions of solitons fission and fusion. We also provide the nonlocal symmetries of the STO equation related to CTE. The nonlocal symmetries are localized by prolonging the related enlarged system. Supported by National Natural Science Foundation of China under Grant Nos. 11205092, 11175092 and 11435005, Ningbo Natural Science Foundation under Grant Nos. 2015A610159 and 2012A610178 and by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzw11502. And the authors were sponsored by K. C. Wong Magna Fund in Ningbo University
Higgs mechanism in higher-rank symmetric U(1) gauge theories
NASA Astrophysics Data System (ADS)
Bulmash, Daniel; Barkeshli, Maissam
2018-06-01
We use the Higgs mechanism to investigate connections between higher-rank symmetric U(1 ) gauge theories and gapped fracton phases. We define two classes of rank-2 symmetric U(1 ) gauge theories: the (m ,n ) scalar and vector charge theories, for integer m and n , which respect the symmetry of the square (cubic) lattice in two (three) spatial dimensions. We further provide local lattice rotor models whose low-energy dynamics are described by these theories. We then describe in detail the Higgs phases obtained when the U(1 ) gauge symmetry is spontaneously broken to a discrete subgroup. A subset of the scalar charge theories indeed have X-cube fracton order as their Higgs phase, although we find that this can only occur if the continuum higher-rank gauge theory breaks continuous spatial rotational symmetry. However, not all higher-rank gauge theories have fractonic Higgs phases; other Higgs phases possess conventional topological order. Nevertheless, they yield interesting novel exactly solvable models of conventional topological order, somewhat reminiscent of the color code models in both two and three spatial dimensions. We also investigate phase transitions in these models and find a possible direct phase transition between four copies of Z2 gauge theory in three spatial dimensions and X-cube fracton order.
The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, Juan Mauricio; Sadurni, Emerson; Seligman, Thomas H.
2010-12-23
The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which canmore » be used to emulate the former.« less
Differential geometric treewidth estimation in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Quantum glassiness in clean strongly correlated systems: an example of topological overprotection
NASA Astrophysics Data System (ADS)
Chamon, Claudio
2005-03-01
Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Emery-Kivelson solution of the two-channel Kondo problem
NASA Astrophysics Data System (ADS)
Sengupta, Anirvan M.; Georges, Antoine
1994-04-01
We consider the two-channel Kondo model in the Emery-Kivelson approach, and calculate the total susceptibility enhancement due to the impurity χimp=χ-χbulk. We find that χimp exactly vanishes at the solvable point, in a completely analogous way to the singular part of the specific heat Cimp. A perturbative calculation around the solvable point yields the generic behavior χimp~log(1/T), Cimp~T logT and the known universal value of the Wilson ratio RW=8/3. From this calculation, the Kondo temperature can be identified and is found to behave as the inverse square of the perturbation parameter. The small-field, zero-temperature behavior χimp~log(1/h) is also recovered.
Extended Islands of Tractability for Parsimony Haplotyping
NASA Astrophysics Data System (ADS)
Fleischer, Rudolf; Guo, Jiong; Niedermeier, Rolf; Uhlmann, Johannes; Wang, Yihui; Weller, Mathias; Wu, Xi
Parsimony haplotyping is the problem of finding a smallest size set of haplotypes that can explain a given set of genotypes. The problem is NP-hard, and many heuristic and approximation algorithms as well as polynomial-time solvable special cases have been discovered. We propose improved fixed-parameter tractability results with respect to the parameter "size of the target haplotype set" k by presenting an O *(k 4k )-time algorithm. This also applies to the practically important constrained case, where we can only use haplotypes from a given set. Furthermore, we show that the problem becomes polynomial-time solvable if the given set of genotypes is complete, i.e., contains all possible genotypes that can be explained by the set of haplotypes.
Symmetric Topological Phases and Tensor Network States
NASA Astrophysics Data System (ADS)
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
Dolan Grady relations and noncommutative quasi-exactly solvable systems
NASA Astrophysics Data System (ADS)
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
Effects of methylphenidate on the persistence of ADHD boys following failure experiences.
Milich, R; Carlson, C L; Pelham, W E; Licht, B G
1991-10-01
We examined the effects of methylphenidate on the task persistence of 21 boys with attention-deficit hyperactivity disorder (ADHD), after they had been exposed to both solvable and insolvable problems. The boys attempted to solve 10 different find-a-word puzzles on each of 4 days, involving the crossing of medication (placebo vs. 0.3 mg/kg) and prior task difficulty (solvable vs. insolvable). The results revealed that medication prevented the decrement in performance following the insolvable problems that was evident with the placebo days. In addition, on medication compared with placebo, the boys were more likely to make external attributions for failure and internal attributions for success. The results are discussed in terms of the impact of medication on ADHD boys' performance as mediated by cognitive-motivational state mechanisms.
Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yang; Feng, Xiao; Ou, Yunbo
We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to amore » quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, J. B.
2011-12-01
There is a body of conventional wisdom that holds that a solvable quantum problem, by virtue of its solvability, is pathological and thus irrelevant. It has been difficult to refute this view owing to the paucity of theoretical constructs and experimental results. Recent experiments involving equivalent ions trapped in a spatial conformation of extreme anisotropic confinement (longitudinal extension tens, hundreds or even thousands of times transverse extension) have modified the view of relevancy, and it is now possible to consider systems previously thought pathological, in particular point Bosons that repel in one dimension. It has been difficult for the experimentalistsmore » to utilize existing theory, mainly due to long-standing theoretical misunderstanding of the relevance of the permutation group, in particular the non-commutativity of translations (periodicity) and transpositions (permutation). This misunderstanding is most easily rectified in the case of repelling Bosons.« less
NASA Astrophysics Data System (ADS)
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
NASA Astrophysics Data System (ADS)
Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira
2014-06-01
Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.
Charge carrier coherence and Hall effect in organic semiconductors.
Yi, H T; Gartstein, Y N; Podzorov, V
2016-03-30
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.
5. View of Community Hall, first floor interior, entrance hall ...
5. View of Community Hall, first floor interior, entrance hall on east side of building, facing southeast. Ticket booth center foreground, stairway to auditorium right foreground. - Community Hall, Rainier Avenue & View Drive, Port Gamble, Kitsap County, WA
Bekker, Marthinus J; Cumming, Tania D; Osborne, Nikola K.P; Bruining, Angela M; McClean, Julia I; Leland, Louis S
2010-01-01
This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the intervention hall, but energy usage did not change appreciably in the control hall. In the intervention hall, mean daytime and nighttime savings were 16.2% and 10.7%, respectively, compared to savings of 3.8% (day) and 6.5% (night) in the control hall. PMID:21119909
Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz
NASA Astrophysics Data System (ADS)
Crampé, N.; Frappat, L.; Ragoucy, E.
2013-10-01
We classify ‘all’ Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.
R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz
NASA Astrophysics Data System (ADS)
Fonseca, T.; Frappat, L.; Ragoucy, E.
2015-01-01
We review some of the strategies that can be implemented to infer an R-matrix from the knowledge of its Hamiltonian. We apply them to the classification achieved in Crampé, Frappat, and Ragoucy, J. Phys. A 46, 405001 (2013), on three state U(1)-invariant Hamiltonians solvable by coordinate Bethe ansatz, focusing on models for which the S-matrix is not trivial. For the 19-vertex solutions, we recover the R-matrices of the well-known Zamolodchikov-Fateev and Izergin-Korepin models. We point out that the generalized Bariev Hamiltonian is related to both main and special branches studied by Martins in Nucl. Phys. B 874, 243 (2013), that we prove to generate the same Hamiltonian. The 19-vertex SpR model still resists to the analysis, although we are able to state some no-go theorems on its R-matrix. For 17-vertex Hamiltonians, we produce a new R-matrix.
Protecting coherence by environmental decoherence: a solvable paradigmatic model
NASA Astrophysics Data System (ADS)
Torres, Juan Mauricio; Seligman, Thomas H.
2017-11-01
We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the coupling between near and far environment. The paradigmatic example is the Jaynes-Cummings Hamiltonian, which we introduce into a Kossakowski-Lindblad master equation using alternatively the lowering operator of the oscillator or its number operator as Lindblad operators. The harmonic oscillator is regarded as the near environment of the qubit, while effects of a far environment are accounted for by the two options for the dissipative part of the master equation. The exact solution allows us to cover the entire range of coupling strength from the perturbative regime to strong coupling analytically. The coherence conserving effect of the coupling to the far environment is confirmed throughout.
Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves
NASA Astrophysics Data System (ADS)
Nemoto, Ryo; Iguchi, Tatsuo
2017-09-01
We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.
Saddles and dynamics in a solvable mean-field model
NASA Astrophysics Data System (ADS)
Angelani, L.; Ruocco, G.; Zamponi, F.
2003-05-01
We use the saddle-approach, recently introduced in the numerical investigation of simple model liquids, in the analysis of a mean-field solvable system. The investigated system is the k-trigonometric model, a k-body interaction mean field system, that generalizes the trigonometric model introduced by Madan and Keyes [J. Chem. Phys. 98, 3342 (1993)] and that has been recently introduced to investigate the relationship between thermodynamics and topology of the configuration space. We find a close relationship between the properties of saddles (stationary points of the potential energy surface) visited by the system and the dynamics. In particular the temperature dependence of saddle order follows that of the diffusivity, both having an Arrhenius behavior at low temperature and a similar shape in the whole temperature range. Our results confirm the general usefulness of the saddle-approach in the interpretation of dynamical processes taking place in interacting systems.
Solvable Family of Driven-Dissipative Many-Body Systems.
Foss-Feig, Michael; Young, Jeremy T; Albert, Victor V; Gorshkov, Alexey V; Maghrebi, Mohammad F
2017-11-10
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Solvable Family of Driven-Dissipative Many-Body Systems
NASA Astrophysics Data System (ADS)
Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-11-01
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Experimentally-induced learned helplessness in adolescents with type 1 diabetes.
McLaughlin, Elizabeth; Lefaivre, Marie-josée; Cummings, Elizabeth
2010-05-01
To determine whether adolescents with type 1 diabetes are more at risk for learned helplessness than their healthy peers. Twenty-three adolescents with diabetes and 25 controls completed a solvable or unsolvable concept formation task. All completed pre- and post-task performance and attribution ratings, and later completed an anagram-solving task to determine if perceived helplessness on the first task would negatively impact performance on the second. Participants in the unsolvable condition solved fewer anagrams; those with diabetes did not show weaker performance than controls. Participants in the solvable condition (diabetes and controls) showed an increase in internal attributions from before the concept formation task to after. In the unsolvable condition, only participants with diabetes made more external attributions for their failure. Contrary to the only other controlled study to use this paradigm in youth with chronic illness, adolescents with diabetes were not more susceptible to learned helplessness.
Abraham, William T; Kuck, Karl-Heinz; Goldsmith, Rochelle L; Lindenfeld, JoAnn; Reddy, Vivek Y; Carson, Peter E; Mann, Douglas L; Saville, Benjamin; Parise, Helen; Chan, Rodrigo; Wiegn, Phi; Hastings, Jeffrey L; Kaplan, Andrew J; Edelmann, Frank; Luthje, Lars; Kahwash, Rami; Tomassoni, Gery F; Gutterman, David D; Stagg, Angela; Burkhoff, Daniel; Hasenfuß, Gerd
2018-05-05
The authors sought to confirm a subgroup analysis of the prior FIX-HF-5 (Evaluate Safety and Efficacy of the OPTIMIZER System in Subjects With Moderate-to-Severe Heart Failure) study showing that cardiac contractility modulation (CCM) improved exercise tolerance (ET) and quality of life in patients with ejection fractions between 25% and 45%. CCM therapy for New York Heart Association (NYHA) functional class III and IV heart failure (HF) patients consists of nonexcitatory electrical signals delivered to the heart during the absolute refractory period. A total of 160 patients with NYHA functional class III or IV symptoms, QRS duration <130 ms, and ejection fraction ≥25% and ≤45% were randomized to continued medical therapy (control, n = 86) or CCM (treatment, n = 74, unblinded) for 24 weeks. Peak VO 2 (primary endpoint), Minnesota Living With Heart Failure questionnaire, NYHA functional class, and 6-min hall walk were measured at baseline and at 12 and 24 weeks. Bayesian repeated measures linear modeling was used for the primary endpoint analysis with 30% borrowing from the FIX-HF-5 subgroup. Safety was assessed by the percentage of patients free of device-related adverse events with a pre-specified lower bound of 70%. The difference in peak VO 2 between groups was 0.84 (95% Bayesian credible interval: 0.123 to 1.552) ml O 2 /kg/min, satisfying the primary endpoint. Minnesota Living With Heart Failure questionnaire (p < 0.001), NYHA functional class (p < 0.001), and 6-min hall walk (p = 0.02) were all better in the treatment versus control group. There were 7 device-related events, yielding a lower bound of 80% of patients free of events, satisfying the primary safety endpoint. The composite of cardiovascular death and HF hospitalizations was reduced from 10.8% to 2.9% (p = 0.048). CCM is safe, improves exercise tolerance and quality of life in the specified group of HF patients, and leads to fewer HF hospitalizations. (Evaluate Safety and Efficacy of the OPTIMIZER System in Subjects With Moderate-to-Severe Heart Failure; NCT01381172). Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A new spin on electron liquids: Phenomena in systems with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei
Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-03-30
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-01-01
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354
Preliminary Study of Arcjet Neutralization of Hall Thruster Clusters (Postprint)
2007-01-18
Clustered Hall thrusters have emerged as a favored choice for extending Hall thruster options to very high powers (50 kW - 150 kW). This paper...examines the possible use of an arcjet to neutralize clustered Hall thrusters, as the hybrid arcjet- Hall thruster concept can fill a performance niche...and helium, and then demonstrate the first successful operation of a low power Hall thruster -arcjet neutralizer package. In the surrogate anode studies
Development Status of the Helicon Hall Thruster
2009-09-15
Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low
Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses
NASA Astrophysics Data System (ADS)
BARRON, M.
2000-04-01
In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.
Decoherence at constant excitation
NASA Astrophysics Data System (ADS)
Torres, J. M.; Sadurní, E.; Seligman, T. H.
2012-02-01
We present a simple exactly solvable extension of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×4 matrices.
The Role of Proof in Comprehending and Teaching Elementary Linear Algebra.
ERIC Educational Resources Information Center
Uhlig, Frank
2002-01-01
Describes how elementary linear algebra can be taught successfully while introducing students to the concept and practice of mathematical proof. Suggests exploring the concept of solvability of linear systems first via the row echelon form (REF). (Author/KHR)
Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system
Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.
2017-01-01
Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133
5. ROOFTOPS, ISHERWOOD HALL (BUILDING NO. 104), GRIFFIN (BUILDING NO. ...
5. ROOFTOPS, ISHERWOOD HALL (BUILDING NO. 104), GRIFFIN (BUILDING NO. 110), MELVILLE HALL (BUILDING NO. 116) LOOKING WEST FROM CLOCK TOWER OF MAHAN HALL - U.S. Naval Academy, Annapolis, Anne Arundel County, MD
ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS
2017-06-30
17394 4 / 13 HALL EFFECT THRUSTERS Hall Effect Thrusters (HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid...HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ...Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ Electron ExB Drift Unmagnetized Ions Results in Hall Current
NASA's 2004 Hall Thruster Program
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.
2004-01-01
An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.
NASA Astrophysics Data System (ADS)
Alemadi, Nasser Ahmed
Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive generation capability to specific generators to allow a load flow solution to be obtained. The minimum control solvability problem can also obtain solution of the load flow without curtailing transactions that shed load and generation as recommended by VSSAD. A minimum control solvability problem will be implemented as a corrective control, that will achieve the above objectives by using minimum control changes. The control includes; (1) voltage setpoint on generator bus voltage terminals; (2) under load tap changer tap positions and switchable shunt capacitors; and (3) active generation at generator buses. The minimum control solvability problem uses the VSSAD recommendation to obtain the feasible stable starting point but completely eliminates the impossible or onerous recommendation made by VSSAD. This thesis reviews the capabilities of Voltage Stability Security Assessment and Diagnosis and how it can be used to implement a contingency selection module for the Open Access System Dispatch (OASYDIS). The OASYDIS will also use the corrective control computed by Security Constrained Dispatch. The corrective control would be computed off line and stored for each contingency that produces voltage instability. The control is triggered and implemented to correct the voltage instability in the agent experiencing voltage instability only after the equipment outage or operating changes predicted to produce voltage instability have occurred. The advantages and the requirements to implement the corrective control are also discussed.
A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics
Huang, Haiyun; Wang, Dejun; Xu, Yue
2015-01-01
This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW. PMID:26516864
A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.
Huang, Haiyun; Wang, Dejun; Xu, Yue
2015-10-27
This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.
Hall effect of copper nitride thin films
NASA Astrophysics Data System (ADS)
Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.
2005-08-01
The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.
Administration Planning for Tomorrow.
ERIC Educational Resources Information Center
Murray, Albert
After defining administrative planning and outlining deficits and gains of the past 20 years in American schooling, this address underlines the necessity for educational restructuring. Specifically, educational leaders need to: (1) gather data determining the status quo and suggest incremental improvements; (2) address new solvable challenges and…
NASA Technical Reports Server (NTRS)
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
27. FIRST FLOOR CENTRAL HALL, EAST WALL, DETAIL OF ENTABLATURE ...
27. FIRST FLOOR CENTRAL HALL, EAST WALL, DETAIL OF ENTABLATURE SHOWING EGG AND DART OVOLO AND GUTTAE OF THE THIRD MUTULE FROM THE SOUTHEAST CORNER - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA
Nondestructive hall coefficient measurements using ACPD techniques
NASA Astrophysics Data System (ADS)
Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled
2018-04-01
Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a strong enough Hall electric field that produces measurable potential differences between points lying on the path followed by the Hall current even when it is not intercepted by either the edge of the specimen or the edge of the magnetic field. The induced Hall voltage increases proportionally to the square root of frequency as the current is squeezed into a shallow electromagnetic skin of decreasing depth. This approach could be exploited to measure the Hall coefficient near the surface at high frequencies without cutting the specimen.
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima
2016-08-01
Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.
Hole mobilities and the effective Hall factor in p-type GaAs
NASA Astrophysics Data System (ADS)
Wenzel, M.; Irmer, G.; Monecke, J.; Siegel, W.
1997-06-01
We prove the effective Hall factor in p-GaAs to be larger than values discussed in the literature up to now. The scattering rates for the relevant scattering mechanisms in p-GaAs have been recalculated after critical testing the existing models. These calculations allow to deduce theoretical drift and theoretical Hall mobilities as functions of temperature which can be compared with measured data. Theoretical Hall factors in the heavy and light hole bands and an effective Hall factor result. The calculated room temperature values of the drift mobility and of the effective Hall factor are 118 cm2/V s and 3.6, respectively. The fitted acoustic deformation potential E1=7.9 eV and the fitted optical coupling constant DK=1.24×1011 eV/m are close to values published before. It is shown that the measured strong dependence of the Hall mobility on the Hall concentration is not mainly caused by scattering by ionized impurities but by the dependence of the effective Hall factor on the hole concentration.
The first vineyard concert hall in North America
NASA Astrophysics Data System (ADS)
Jaffe, Christopher; Rivera, Carlos
2002-11-01
The first vineyard or surround concert hall designed and built in the Western Hemisphere is the Sala Nezahualcoyotl in Mexico City. The Hall was completed in 1976 and is part of the Cultural Center at the Universidad Nacional Autonoma de Mexico. The hall was named after a Toltec poet, architect, and musician who lived in the 15th century and was the Renaissance man of his day. In order to provide the familiar traditional sound of the rectangular (shoebox) European Hall, the acoustic designers set the criteria for reverberation times through the frequency spectrum and the Initial Time Delay Gap at every seat in the house to match the measurements taken at the Grosser Musik vereinssaal in Vienna and Boston Symphony Hall. In this paper we discuss the techniques used to create the traditional sound in a vineyard hall and the reaction of musicians and audiences to the completed facility. The Sala was the model for Suntory Hall in Japan which in turn spawned a number of vineyard halls in Japan. Most recently, the vineyard style seems to be appealing to more and more symphonic organizations in Europe and North America.
Enhanced spin Hall ratios by Al and Hf impurities in Pt thin films
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Hai; Zhao, Mengnan; Ralph, Daniel C.; Buhrman, Robert A.
The spin Hall effect (SHE) in Pt has been reported to be strong and hence promising for spintronic applications. In the intrinsic SHE mechanism, which has been shown to be dominant in Pt, the spin Hall conductivity σSH is constant, dependent only on the band structure of the spin Hall material. The spin Hall ratio θSH =σSH . ρ , on the other hand, should be proportional to the electrical resistivity ρ of the spin Hall layer. This suggests the possibility of enhancing the spin Hall ratio by introducing additional diffusive scattering to increase the electrical resistivity of the spin Hall layer. Our previous work has shown that this could be done by increasing the surface scattering by growing thinner Pt films in contact with higher resistivity materials such as Ta. In this talk, we discuss another approach: to introduce impurities of metals with negligible spin orbit torque into the Pt film. Our PtAl and PtHf alloy samples exhibit strong enhancement of the spin Hall torque efficiency with impurity concentration due to increased electrical resistivity. Supported in part by Samsung Electronics.
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg
2015-02-14
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
Nonlinearity in the effect of an inhomogeneous Hall angle
NASA Astrophysics Data System (ADS)
Koon, Daniel W.
2007-03-01
The differential equation for the electric potential in a conducting material with an inhomogeneous Hall angle is extended to the large-field limit. This equation is solved for a square specimen, using a successive over-relaxation [SOR] technique for matrices of up to 101x101 size, and the Hall weighting function -- the effect of local pointlike perturbations on the measured Hall angle -- is calculated as both the unperturbed Hall angle, θH, and the perturbation, δθH, exceed the linear, small angle limit. Preliminary results show that the Hall angle varies by no more than 5% if both | θH |<1 and | δθH |<1. Thus, previously calculated results for the Hall weighting function can be used for most materials in all but the most extreme magnetic fields.
Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM
NASA Astrophysics Data System (ADS)
Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin
2013-07-01
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
An Exactly Solvable Model for the Spread of Disease
ERIC Educational Resources Information Center
Mickens, Ronald E.
2012-01-01
We present a new SIR epidemiological model whose exact analytical solution can be calculated. In this model, unlike previous models, the infective population becomes zero at a finite time. Remarkably, these results can be derived from only an elementary knowledge of differential equations.
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
Canonical Formulation of Supermechanics
NASA Astrophysics Data System (ADS)
Matsumoto, S.
1990-07-01
The canonical formulation of a theory of dynamical systems with both Grassmann even and odd variables is investigated. The sufficient condition for the system being analytically solvable is given. The geodesic motion of a particle in the super Poincaré upper half plane is solved as an example.
Analytically Solvable Model of Spreading Dynamics with Non-Poissonian Processes
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János
2014-01-01
Non-Poissonian bursty processes are ubiquitous in natural and social phenomena, yet little is known about their effects on the large-scale spreading dynamics. In order to characterize these effects, we devise an analytically solvable model of susceptible-infected spreading dynamics in infinite systems for arbitrary inter-event time distributions and for the whole time range. Our model is stationary from the beginning, and the role of the lower bound of inter-event times is explicitly considered. The exact solution shows that for early and intermediate times, the burstiness accelerates the spreading as compared to a Poisson-like process with the same mean and same lower bound of inter-event times. Such behavior is opposite for late-time dynamics in finite systems, where the power-law distribution of inter-event times results in a slower and algebraic convergence to a fully infected state in contrast to the exponential decay of the Poisson-like process. We also provide an intuitive argument for the exponent characterizing algebraic convergence.
Reis, Matthias; Kromer, Justus A; Klipp, Edda
2018-01-20
Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.
Entanglement dynamics in a non-Markovian environment: An exactly solvable model
NASA Astrophysics Data System (ADS)
Wilson, Justin H.; Fregoso, Benjamin M.; Galitski, Victor M.
2012-05-01
We study the non-Markovian effects on the dynamics of entanglement in an exactly solvable model that involves two independent oscillators, each coupled to its own stochastic noise source. First, we develop Lie algebraic and functional integral methods to find an exact solution to the single-oscillator problem which includes an analytic expression for the density matrix and the complete statistics, i.e., the probability distribution functions for observables. For long bath time correlations, we see nonmonotonic evolution of the uncertainties in observables. Further, we extend this exact solution to the two-particle problem and find the dynamics of entanglement in a subspace. We find the phenomena of “sudden death” and “rebirth” of entanglement. Interestingly, all memory effects enter via the functional form of the energy and hence the time of death and rebirth is controlled by the amount of noisy energy added into each oscillator. If this energy increases above (decreases below) a threshold, we obtain sudden death (rebirth) of entanglement.
NASA Astrophysics Data System (ADS)
Cheng, Wen-Guang; Qiu, De-Qin; Yu, Bo
2017-06-01
This paper is concerned with the fifth-order modified Korteweg-de Vries (fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion (CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion (CTE) method, the nonlocal symmetry related to the consistent tanh expansion (CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlevé method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed. Supported by National Natural Science Foundation of China under Grant No. 11505090, and Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009
Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.; ...
2018-02-05
A problem of analytical continuation of scattering data to the negative-energy region to obtain information about bound states is discussed within an exactly solvable potential model. This work is continuation of the previous one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)]. The goal of this paper is to determine the most effective way of analytic continuation for different systems. The d + α and α + 12C systems are considered and, for comparison, an effective-range function approach and a recently suggested Δ method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev.more » C 96, 034601 (2017).] are applied. We conclude that the method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light systems with small values of the Coulomb parameter the effective-range function method might be preferable.« less
Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei
2017-11-17
The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.
Hasegawa, Hideo
2011-07-01
Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.
NASA Astrophysics Data System (ADS)
Kuznetsov, Alexander M.; Medvedev, Igor G.
2006-05-01
Effects of deviation from the Born-Oppenheimer approximation (BOA) on the non-adiabatic transition probability for the transfer of a quantum particle in condensed media are studied within an exactly solvable model. The particle and the medium are modeled by a set of harmonic oscillators. The dynamic interaction of the particle with a single local mode is treated explicitly without the use of BOA. Two particular situations (symmetric and non-symmetric systems) are considered. It is shown that the difference between the exact solution and the true BOA is negligibly small at realistic parameters of the model. However, the exact results differ considerably from those of the crude Condon approximation (CCA) which is usually considered in the literature as a reference point for BOA (Marcus-Hush-Dogonadze formula). It is shown that the exact rate constant can be smaller (symmetric system) or larger (non-symmetric one) than that obtained in CCA. The non-Condon effects are also studied.
NASA Astrophysics Data System (ADS)
Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan
2008-03-01
The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.
Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals
NASA Astrophysics Data System (ADS)
Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias
2018-05-01
We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.
A problem of analytical continuation of scattering data to the negative-energy region to obtain information about bound states is discussed within an exactly solvable potential model. This work is continuation of the previous one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)]. The goal of this paper is to determine the most effective way of analytic continuation for different systems. The d + α and α + 12C systems are considered and, for comparison, an effective-range function approach and a recently suggested Δ method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev.more » C 96, 034601 (2017).] are applied. We conclude that the method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light systems with small values of the Coulomb parameter the effective-range function method might be preferable.« less
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.
2018-01-01
In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.
NASA Astrophysics Data System (ADS)
Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.
2018-03-01
In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.
Solvable four-state Landau-Zener model of two interacting qubits with path interference
Sinitsyn, Nikolai A.
2015-11-30
In this paper, I identify a nontrivial four-state Landau-Zener model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. The model describes an experimentally accessible system of two interacting qubits, such as a localized state in a Dirac material with both valley and spin degrees of freedom or a singly charged quantum dot (QD) molecule with spin orbit coupling. Application of the linearly time-dependent magnetic field induces a sequence of quantum level crossings with possibility of interference of different trajectories in a semiclassical picture. I argue that this system satisfies the criteria ofmore » integrability in the multistate Landau-Zener theory, which allows one to derive explicit exact analytical expressions for the transition probability matrix. Finally, I also argue that this model is likely a special case of a larger class of solvable systems, and present a six-state generalization as an example.« less
T\\overline{T} -deformations, AdS/CFT and correlation functions
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2018-02-01
A solvable irrelevant deformation of AdS3/CFT2 correspondence leading to a theory with Hagedorn spectrum at high energy has been recently proposed. It consists of a single trace deformation of the boundary theory, which is inspired by the recent work on solvable T\\overline{T} deformations of two-dimensional CFTs. Thought of as a worldsheet σ-model, the interpretation of the deformed theory from the bulk viewpoint is that of string theory on a background that interpolates between AdS3 in the IR and a linear dilaton vacuum of little string theory in the UV. The insertion of the operator that realizes the deformation in the correlation functions produces a logarithmic divergence, leading to the renormalization of the primary operators, which thus acquire an anomalous dimension. We compute this anomalous dimension explicitly, and this provides us with a direct way of determining the spectrum of the theory. We discuss this and other features of the correlation functions in presence of the deformation.
Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method
NASA Astrophysics Data System (ADS)
Alekseev, G.; Tokhtina, A.; Soboleva, O.
2017-10-01
Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.
NASA Astrophysics Data System (ADS)
Qamar, Afzaal; Dao, Dzung Viet; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Phan, Hoang-Phuong; Hold, Leonie; Dimitrijev, Sima
2017-04-01
This article reports the results on the piezo-Hall effect in single crystal n-type 3C-SiC(100) having a low carrier concentration. The effect of the crystallographic orientation on the piezo-Hall effect has been investigated by applying stress to the Hall devices fabricated in different crystallographic directions. Single crystal n-type 3C-SiC(100) and 3C-SiC(111) were grown by low pressure chemical vapor deposition at 1250 °C. Fundamental piezo-Hall coefficients were obtained using the piezo-Hall effect measurements as P11 = (-29 ± 1.3) × 10-11 Pa-1, P12 = (11.06 ± 0.5)× 10-11 Pa-1, and P44 = (-3.4 ± 0.7) × 10-11 Pa-1. It has been observed that the piezo-Hall coefficients of n-type 3C-SiC(100) show a completely different behavior as compared to that of p-type 3C-SiC.
Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; ...
2015-04-08
We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 10 10 cm -2 to 2.7 × 10 11 cm -2 were achieved, yielding a maximal combined Hall mobility (μ Hall ) of 7.7 × 10 5 cm 2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to n Hall > 3.3 × 10 10 cm -2,more » consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantum Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.« less
Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium
NASA Astrophysics Data System (ADS)
Baily, Scott Alan
The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in La1-xCaxCoO3 near T C, but the material presents many additional complexities, including a unique low temperature magnetoresistance. At low temperature, the Hall effect may be best explained by spin-polarized carriers scattering off of orbital disorder in spin-ordered clusters.
Valley-chiral quantum Hall state in graphene superlattice structure
NASA Astrophysics Data System (ADS)
Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.
2016-05-01
We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.
Topological Hall Effect in Skyrmions: A Nonequilibrium Coherent Transport Approach
NASA Astrophysics Data System (ADS)
Yin, Gen; Zang, Jiadong; Lake, Roger
2014-03-01
Skyrmion is a topological spin texture recently observed in many materials with broken inversion symmetry. In experiments, one effective method to detect the skyrmion crystal phase is the topological Hall measurement. At adiabatic approximation, previous theoretical studies show that the Hall signal is provided by an emergent magnetic field, which explains the topological Hall effect in the classical level. Motivated by the potential device application of skyrmions as digital bits, it is important to understand the topological Hall effect in the mesoscopic level, where the electron coherence should be considered. In this talk, we will discuss the quantum aspects of the topological Hall effect on a tight binding setup solved by nonequilibrium Green's function (NEGF). The charge distribution, Hall potential distribution, thermal broadening effect and the Hall resistivity are investigated in detail. The relation between the Hall resistance and the DM interaction is investigated. Driven by the spin transferred torque (SST), Skyrmion dynamics is previously studied within the adiabatic approximation. At the quantum transport level, this talk will also discuss the non-adiabatic effect in the skyrmion motion with the presence of the topological Hall effect. This material is based upon work supported by the National Science Foundation under Grant Nos. NSF 1128304 and NSF 1124733. It was also supported in part by FAME, one of six centers of STARnet, an SRC program sponsored by MARCO and DARPA.
NASA Astrophysics Data System (ADS)
Schroeder, Manfred
2004-05-01
I will review some work at Bell Laboratories on artificial reverberation and concert hall acoustics including Philharmonic Hall (Lincoln Center for the Performing Arts, New York). I will also touch on sound diffusion by number-theoretic surfaces and the measurement of reverberation time using the music as played in the hall as a ``test'' signal.
A Behavioral Weight Control Program for Residence Hall Students.
ERIC Educational Resources Information Center
Domke, Jane A.; And Others
1981-01-01
Compared a weight control treatment specifically tailored to the needs of residence hall students with a standardized behavioral procedure. Although posttreatment results indicated a very slight and nonsignificant advantage for the residence hall condition, this was not true at follow-up. Suggests the residence hall procedure may be overly…
78 FR 58338 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
.../preliminaryfloodhazarddata preliminaryfloodhazarddata City of Crystal River City Hall, 123 NW U.S. Highway 19, Crystal River.../preliminaryfloodhazarddata preliminaryfloodhazarddata City of Carbon Hill City Hall, 170 NW 2nd Avenue, Carbon Hill, AL 35549. City of Cordova City Hall, 74 Main Street, Cordova, AL 35550. City of Dora City Hall, 1485 Sharon...
75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...
Facility Focus: Residence Halls.
ERIC Educational Resources Information Center
College Planning & Management, 2002
2002-01-01
Describes residence halls seeking to meet needs beyond traditional mass housing for the 18- to 22-year-old students: Whittemore Hall at the Tuck School of Business at Dartmouth College (for older students); Small Group Housing at Washington University (grouping students with common interests); and the renovation of the residence hall at Boston's…
Anti-commutative Gröbner-Shirshov basis of a free Lie algebra
NASA Astrophysics Data System (ADS)
Bokut, L. A.; Chen, Yuqun; Li, Yu
2009-03-01
One of the natural ways to prove that the Hall words (Philip Hall, 1933) consist of a basis of a free Lie algebra is a direct construction: to start with a linear space spanned by Hall words, to define the Lie product of Hall words, and then to check that the product yields the Lie identities (Marshall Hall, 1950). Here we suggest another way using the Composition-Diamond lemma for free anti-commutative (non-associative) algebras (A.I. Shirshov, 1962).
Anomalous Hall resistance in bilayer quantum Hall systems
NASA Astrophysics Data System (ADS)
Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.
2007-07-01
We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .
Reduced Spin Hall Effects from Magnetic Proximity.
Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...
2015-03-26
We investigate temperature-dependent spin pumping and inverse spin Hall effects in thin Pt and Pd in contact with Permalloy. Our experiments show a decrease of the spin Hall effect with decreasing temperature, which is attributed to a temperature-dependent proximity effect. The spin Hall angle decreases from 0.086 at room temperature to 0.042 at 10 K for Pt and is nearly negligible at 10 K for Pd. By first-principle calculations, we show that the spin Hall conductivity indeed reduces by increasing the proximity-induced spin magnetic moments for both Pt and Pd. This work highlights the important role of proximity-induced magnetic orderingmore » to spin Hall phenomena in Pt and Pd.« less
Tunneling Anomalous and Spin Hall Effects.
Matos-Abiague, A; Fabian, J
2015-07-31
We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.
Experimental test of 200 W Hall thruster with titanium wall
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren
2017-05-01
We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.
Spontaneous Hall effects in the electron system at the SmTiO3/EuTiO3 interface
NASA Astrophysics Data System (ADS)
Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne
2018-05-01
Magnetotransport and magnetism of epitaxial SmTiO3/EuTiO3 heterostructures grown by molecular beam epitaxy are investigated. It is shown that the polar discontinuity at the interface introduces ˜3.9 × 1014 cm-2 carriers into the EuTiO3. The itinerant carriers exhibit two distinct contributions to the spontaneous Hall effect. The anomalous Hall effect appears despite a very small magnetization, indicating a non-collinear spin structure, and the second contribution resembles a topological Hall effect. Qualitative differences exist in the temperature dependence of both Hall effects when compared to uniformly doped EuTiO3. In particular, the topological Hall effect contribution appears at higher temperatures and the anomalous Hall effect shows a sign change with temperature. The results suggest that interfaces can be used to tune topological phenomena in itinerant magnetic systems.
Thermally driven anomalous Hall effect transitions in FeRh
NASA Astrophysics Data System (ADS)
Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.
2018-04-01
Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
... Determinations: ``Hall of Ancient Egypt'' AGENCY: Department of State. ACTION: Notice, correction. SUMMARY: On... determinations made by the Department of State pertaining to the exhibition ``Hall of Ancient Egypt.'' The... additional objects to be included in the exhibition ``Hall of Ancient Egypt,'' imported from abroad for...
2002-02-01
ionized xenon in the plume and interior portions of the acceleration channel of a Hall thruster plasma discharge operating at powers ranging from 250...performed in the interior of the Hall thruster with resonance fluorescence collection. Optical access to the interior of the Hall thruster is
A New Definition in Atlanta: Q&A with Beverly Hall
ERIC Educational Resources Information Center
Crow, Tracy
2010-01-01
Beverly Hall has been superintendent of Atlanta Public Schools since 1999. Before coming to Atlanta, Hall was state district superintendent of Newark Public Schools, deputy chancellor for instruction of New York City Public Schools, superintendent of Community School District 27 in New York City, and a principal in Brooklyn. Hall chairs Harvard…
77 FR 21791 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... Town Hall, 2 Renshaw Road, Darien, CT 06820. Town of Fairfield John J. Sullivan Independence Hall, 725 Old Post Road, Fairfield, CT 06824. Town of Greenwich Town Hall, 101 Field Point Road, Greenwich, CT... at: http://www.rampp-team.com/md.htm Town of Accident Town Hall, 104 South North Street, Accident, MD...
Destruction of the Fractional Quantum Hall Effect by Disorder
DOE R&D Accomplishments Database
Laughlin, R. B.
1985-07-01
It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.
NASA Technical Reports Server (NTRS)
Dankanich, John W.; DeHoyos, Amado
2007-01-01
With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.
The Edge States of the BF System and the London Equations
NASA Astrophysics Data System (ADS)
Balachandran, A. P.; Teotonio-Sobrinho, P.
It is known that the 3D Chern-Simons interaction describes the scaling limit of a quantum Hall system and predicts edge currents in a sample with boundary, the currents generating a chiral U(1) Kac-Moody algebra. It is no doubt also recognized that, in a somewhat similar way, the 4D BF interaction (with B a two-form, dB the dual *j of the electromagnetic current, and F the electromagnetic field form) describes the scaling limit of a superconductor. We show in this paper that there are edge excitations in this model as well for manifolds with boundaries. They are the modes of a scalar field with invariance under the group of diffeomorphisms (diffeos) of the bounding spatial two-manifold. Not all diffeos of this group seem implementable by operators in quantum theory, the implementable group being a subgroup of volume-preserving diffeos. The BF system in this manner can lead to the w1+∞ algebra and its variants. Lagrangians for fields on the bounding manifold which account for the edge observables on quantization are also presented. They are the analogs of the (1+1)-dimensional massless scalar field Lagrangian describing the edge modes of an Abelian Chern-Simons theory with a disk as the spatial manifold. We argue that the addition of “Maxwell” terms constructed from F∧*F and dB∧*dB does not affect the edge states, and that the augmented Lagrangian has an infinite number of conserved charges—the aforementioned scalar field modes—localized at the edges. This Lagrangian is known to describe London equations and a massive vector field. A (3+1)-dimensional generalization of the Hall effect involving vortices coupled to B is also proposed.
NASA Astrophysics Data System (ADS)
Nakamizo, A.; Yoshikawa, A.; Tanaka, T.
2017-12-01
We investigate how the M-I coupling and boundary conditions affects the results of global simulations of the magnetosphere. More specifically, we examine the effects of ionospheric Hall polarization on magnetospheric convection and dynamics by using an MHD code developed by Tanaka et al. [2010]. This study is motivated by the recently proposed idea that the ionospheric convection is modified by the ionospheric polarization [Yoshikawa et al., 2013]. We perform simulations for the following pairs of Hall conductance and IMF-By; Hall conductance set by αH = 2, 3.5, 5, and uniform distribution (1.0 [S] everywhere), where RH is the ratio of Hall to Pedersen conductance, and IMF-By of positive, negative, and zero. The results are summarized as follows. (a) Large-scale structure: In the cases of uniform Hall conductance, the magnetosphere is completely symmetric under the zero IMF-By. In the cases of non-uniform Hall conductance, the magnetosphere shows asymmetries globally even under the zero IMF-By. Asymmetries become severe for larger αH. The results indicate that ionospheric Hall polarization is one of the important factors to determine the global structure. (b) Formation of NENL: The location becomes closer to the earth and timing becomes earlier for larger RH. The difference is considered to be related to the combined effects of field lines twisting due to ionospheric Hall polarization and M-I energy/current closures. (c) Near-earth convection: In the cases of non-uniform Hall conductance, an inflection structure is formed around premidnight sector on equatorial plane inside 10 RE. Considering that the region 2 FAC is not sufficiently generated in MHD models, the structure corresponds to a convection reversal often shown in the RCM. Previous studies regard the structure as the Harang Reversal in the magnetosphere. In the cases of uniform Hall conductance, by contrast, such structure is not formed, indicating that the Harang Reversal may not be formed without the effect of ionospheric Hall polarization. The above initial research strongly suggests that the ionospheric Hall polarization plays a significant role in the M-I system.
A possible generalization of the harmonic oscillator potential
NASA Technical Reports Server (NTRS)
Levai, Geza
1995-01-01
A four-parameter potential is analyzed, which contains the three-dimensional harmonic oscillator as a special case. This potential is exactly solvable and retains several characteristics of the harmonic oscillator, and also of the Coulomb problem. The possibility of similar generalizations of other potentials is also pointed out.
The Crystalline Dynamics of Spiral-Shaped Curves
NASA Astrophysics Data System (ADS)
Dudziński, Marcin; Górka, Przemysław
2015-07-01
We study the motion of spiral-shaped polygonal curves by crystalline curvature. We describe this dynamics by the corresponding infinitely dimensional system of ordinary differential equations and show that the considered model is uniquely solvable. Banach's Contraction Mapping Theorem and the Bellman-Gronwall inequality are the main tools applied in our proof.
Arithmetic Word-Problem-Solving in Huntington's Disease
ERIC Educational Resources Information Center
Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.
2005-01-01
The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…
Laplace Boundary-Value Problem in Paraboloidal Coordinates
ERIC Educational Resources Information Center
Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…
Project on National Security Reform: Vision Working Group Report and Scenarios
2010-07-01
from radiation produced by harmless, everyday substances such as bananas , cat litter, glass, and concrete.40 The DHS began installing first...solvable. The skills are potentially there, but the incentives and then the funding to make them emerge 234 and flower across the whole of the U.S
Some Fundamental Issues of Mathematical Simulation in Biology
NASA Astrophysics Data System (ADS)
Razzhevaikin, V. N.
2018-02-01
Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.
CALL FOR PAPERS: Special Issue on `Singular Interactions in Quantum Mechanics: Solvable Models'
NASA Astrophysics Data System (ADS)
Dell'Antonio, G.; Exner, P.; Geyler, V.
2004-07-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Singular Interactions in Quantum Mechanics: Solvable Models'. This issue should be a repository for high quality original work. We are interested in having the topic interpreted broadly, that is, to include contributions dealing with point-interaction models, one- and many-body, quantum graphs, including graph-like structures coupling different dimensions, interactions supported by curves, manifolds, and more complicated sets, random and nonlinear couplings, etc., as well as approximations helping us to understand the meaning of singular couplings and applications of such models on different parts of quantum mechanics. We believe that when the second printing of the `bible' of the field, the book Solvable Models in Quantum Mechanics by S Albeverio, F Gesztesy, the late R Høegh-Krohn and H Holden, appears it is the right moment to review new developments in this area, with the hope of stimulating further development of these extremely useful techniques. The Editorial Board has invited G Dell'Antonio, P Exner and V Geyler to serve as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: bullet The subject of the paper should relate to singular interactions in quantum mechanics in the sense described above. bullet Contributions will be refereed and processed according to the usual procedure of the journal. bullet Papers should be original; reviews of a work published elsewhere will not be accepted. The guidelines for the preparation of contributions are as follows: bullet The DEADLINE for submission of contributions is 31 October 2004. This deadline will allow the special issue to appear in about April 2005. bullet There is a nominal page limit of 15 printed pages (approximately 9000 words) per contribution. Papers exceeding these limits may be accepted at the discretion of the Guest Editors. Further advice on publishing your work in Journal of Physics A: Mathematical and General may be found at www.iop.org/Journals/jphysa. bullet Contributions to the Special Issue should if possible be submitted electronically by web upload at {www.iop.org/Journals/jphysa or by e-mail to jphysa@iop.org, quoting `JPhysA Special Issue-Quantum Mechanics: Solvable Models'. Submissions should ideally be in standard LaTeX form; we are, however, able to accept most formats including Microsoft Word. Please see the web site for further information on electronic submissions. bullet Authors unable to submit electronically may send hard copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing the electronic code on floppy disk if available and quoting `JPhysA Special Issue-Quantum Mechanics: Solvable Models'. bullet All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal. The corresponding author of each contribution will receive a complimentary copy of the issue. G Dell'Antonio, P Exner and V Geyler Guest Editors
... Accessed February 20, 2017. Hall JE. Body temperature regulation and fever. In: Hall JE, ed. Guyton and Hall Textbook of Medical Physiology . 13th ed. Philadelphia, PA: Elsevier; 2016:chap 74. ...
Faster Hall-Effect Current-Measuring Circuit
NASA Technical Reports Server (NTRS)
Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.
1993-01-01
Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.
The Other Hall Effect: College Board Physics
ERIC Educational Resources Information Center
Sheppard, Keith; Gunning, Amanda M.
2013-01-01
Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…
A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)
2007-08-24
Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and
Plume Characteristics of the BHT-HD-600 Hall Thruster (Preprint)
2006-07-01
Hall thruster on spacecraft, a number of plume properties have been measured. These include current density using a Faraday probe, ion energy distribution using a retarding potential analyzer, and ion species fractions using an E x B probe. The BHT-HD-600 Hall thruster is a nominally 600 W xenon Hall thruster developed by Busek Co. Inc. for the U.S. Air Force Research Laboratory. Plume characterization of Hall thrusters is required to fully understand the impacts of thruster operation on spacecraft. Much of these plume data are
Comment on "Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitses, Y.; Smirnov A.; Fisch, N.J.
It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al.
NASA's Hall Thruster Program 2002
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.
2002-01-01
The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.
Universal DC Hall conductivity of Jain's state ν = N/2N +/- 1
NASA Astrophysics Data System (ADS)
Nguyen, Dung; Son, Dam
We present the Fermi-liquid theory of the fractional quantum Hall effect to describe Jain's states with filling fraction ν =N/2 N +/- 1 , that are near half filling. We derive the DC Hall conductivity σH (t) in closed form within the validity of our model. The results show that, without long range interaction, DC Hall conductivity has the universal form which doesn't depend on the detail of short range Landau's parameters Fn. When long range interaction is included, DC Hall conductivity depends on both long range interaction and Landau's parameters. We also analyze the relation between DC Hall conductivity and static structure factor. This work was supported by the Chicago MRSEC, which is funded by NSF through Grant DMR-1420709.
NASA Astrophysics Data System (ADS)
Noguchi, Munetaka; Iwamatsu, Toshiaki; Amishiro, Hiroyuki; Watanabe, Hiroshi; Kita, Koji; Yamakawa, Satoshi
2018-04-01
The Hall effect mobility (μHall) of the Si-face 4H-SiC metal–oxide–semiconductor field effect transistor (MOSFET) with a nitrogen (N)-implanted channel region was investigated by increasing the N dose. The μHall in the channel region was systematically examined regarding channel structures, that is, the surface and buried channels. It was experimentally demonstrated that increasing the N dose results in an improvement in μHall in the channel region due to the formation of the buried channel. However, further increase in N dose was found to decrease the μHall in the channel region, owing to the decrease in the electron mobility in the N-implanted bulk region.
Hall viscosity and electromagnetic response of electrons in graphene
NASA Astrophysics Data System (ADS)
Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni
The Hall viscosity is a dissipationless component of the viscosity tensor of an electron liquid with broken time- reversal symmetry, such as a two-dimensional electron gas (2DEG) in the quantum Hall state. Similar to the Hall conductivity, the Hall viscosity is an anomalous transport coefficient; however, while the former is connected with the current response, the latter stems from the stress response to a geometric deformation. For a Galilean-invariant system such as 2DEG, the current density is indeed the generator of the geometric deformation: therefore a connection between the Hall connectivity and viscosity is expected and by now well established. In the case of graphene, a non-Galilean-invariant system, the existence of such a connection is far from obvious, as the current operator is essentially different from the momentum operator. In this talk, I will first present our results of the geometric Hall viscosity of electrons in single-layer graphene. Then, from the expansion of the nonlocal Hall conductivity for small wave vectors, I demonstrate that, in spite of the lack of Galilean invariance, an effective mass can be defined such that the relationship between the Hall conductivity and the viscosity retains the form it has in Galilean-invariant systems, not only for a large number of occupied Landau levels, but also, with very high accuracy, for the undoped system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
...] Medicare Program; Town Hall Meeting on the Physician Compare Web Site, October 27, 2010 AGENCY: Centers for... establish a Physician Compare Web site by January 1, 2011. This notice announces a Town Hall meeting to discuss the Physician Compare Web site. The purpose of this Town Hall meeting is to solicit input from...
ERIC Educational Resources Information Center
MacWilliams, Bryon
2009-01-01
In this article, the author describes Reading Hall No. 1 of the Russian State Library. He was placed in the first reading hall in the mid-1990s, when the Russian government still honored Soviet traditions of granting certain privileges to certain foreigners. In the first hall, the rules are different. He can request as many books as he wants. He…
ERIC Educational Resources Information Center
Bekker, Marthinus J.; Cumming, Tania D.; Osborne, Nikola K. P.; Bruining, Angela M.; McClean, Julia I.; Leland, Louis S., Jr.
2010-01-01
This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the…
ERIC Educational Resources Information Center
Schroeder, Charles C.; Mable, Phyllis
This book addresses the need for integrating students' formal academic experiences with their informal out-of-class life in their residence halls. Organized in three parts, Part 1 focuses on the role of residence halls in educating students. Part 2 describes a variety of initiatives for promoting student learning in college residence halls. Part 3…
NASA Astrophysics Data System (ADS)
Ermann, Michael; Johnson, Marty
2005-06-01
How does sound decay when one room is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact sound fields in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study a coupled-volume shoebox concert hall is conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound absorption levels are established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) architectural composition, as defined by the aperture size exposing the chamber and (2) materiality, as defined by the sound absorptance in the coupled volume. The theoretical, mathematical predictions are compared with coupled-volume concert hall field measurements and guidelines are suggested for future designs of coupled-volume concert halls.
Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals
NASA Astrophysics Data System (ADS)
Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai
2016-09-01
Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.
Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P
2016-04-01
It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.
Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru
2016-06-07
Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.
2018-04-21
Thomas D. Jones, Ph.D., in the center, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. At left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Jones into the Hall of Fame Class of 2018. At right is Hall of Famer Storey Musgrave, who spoke on Jones behalf during the ceremony. Also inducted was retired astronaut Scott D. Altman. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.
Magnetic field deformation due to electron drift in a Hall thruster
NASA Astrophysics Data System (ADS)
Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu
2017-01-01
The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.
Not your grandfather's concert hall
NASA Astrophysics Data System (ADS)
Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven
2004-05-01
The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.
Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials
NASA Astrophysics Data System (ADS)
Song, Justin C. W.; Kats, Mikhail A.
2016-12-01
Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.
Turbulence Measurements in a Tropical Zoo Hall
NASA Astrophysics Data System (ADS)
Eugster, Werner; Denzler, Basil; Bogdal, Christian
2017-04-01
The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.
Roles of nonlocal conductivity on spin Hall angle measurement
NASA Astrophysics Data System (ADS)
Chen, Kai; Zhang, Shufeng
2017-10-01
Spin Hall angle characterizes the rate of spin-charge current conversion and it has become one of the most important material parameters for spintronics physics and device application. A long-standing controversy is that the spin Hall angles for a given material measured by spin pumping and by spin Hall torque experiments are inconsistent and they could differ by as much as an order of magnitude. By using the linear response spin transport theory, we explicitly formulate the relation between the spin Hall angle and measured variables in different experiments. We find that the nonlocal conductivity inherited in the layered structure plays a key role to resolve conflicting values of the spin Hall angle. We provide a generalized scheme for extracting spin transport coefficients from experimental data.
Hall Thruster Technology for NASA Science Missions
NASA Technical Reports Server (NTRS)
Manzella, David; Oh, David; Aadland, Randall
2005-01-01
The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.
Interior detail of dispatch boards in main hall, facing west ...
Interior detail of dispatch boards in main hall, facing west - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA
View of north front and west sides of hall, facing ...
View of north front and west sides of hall, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA
ERIC Educational Resources Information Center
Henry, Annette
2015-01-01
Much has been written about Stuart Hall's intellectual and theoretical contributions especially after the mid-1960s. This interpretive and social biography places Stuart Hall's life from 1932 to 1959 in a socio-historical context, beginning with his childhood in Jamaica and his early years in England. I draw on Hall's own biographical reflections…
Military Space Doctrine: the Great Frontier.
1981-04-03
Hall 0745 Conference Registration Fairchild Hall H-1 (Continental breakfast served in conference area included in registration fee 0810 Movie : (optional...roundtable sign-ups 1200 Cadet Lunch Formation Review Eagle and Fledglings 1220 Lunch with Cadet Wing Mitchell Hall (cost collected at registration...Continental breakfast at conference area (included in the registration fee) 0755 Movie : (optional) Space - The New Ocean Fairchild Hall H-i 0800 Opening
ERIC Educational Resources Information Center
Morris, Rheo Joelyn Avorice
2009-01-01
The purpose of this study was to ascertain which leadership style correlates most with RA satisfaction in residence halls at three public universities in Mississippi. When satisfied, RAs will be more efficient in their roles and this will transfer to students residing in the halls. As a result more students in the residence halls will become more…
2017 Astronaut Hall of Fame Induction Ceremony
2017-05-19
In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Michael Foale with his hall of fame medal. Former NASA Administrator Charlie Bolden, right, a Hall of Fame member, presented Foale for induction. During this year's ceremonies, space shuttle astronaut Ellen Ochoa also was enshrined.
2017 Astronaut Hall of Fame Induction Ceremony
2017-05-19
In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Ellen Ochoa with her hall of fame medal. Former Johnson Space Center Director Mike Coats, right, a Hall of Fame member, presented Ochoa for induction. During this year's ceremonies, space shuttle astronaut Michael Foale also was enshrined.
122. HISTORIC AMERICAN BUILDINGS SURVEY TEAM MEASURING EXTERIOR OF INDEPENDENCE ...
122. HISTORIC AMERICAN BUILDINGS SURVEY TEAM MEASURING EXTERIOR OF INDEPENDENCE HALL (LEE NELSON ON CORNER LEANING OVER) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Li, Kai; Liu, Jun; Liu, Weiqiang
2017-01-01
Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.
A Cartoon in One Dimension of the Hydrogen Molecular Ion
ERIC Educational Resources Information Center
Dutta, Sourav; Ganguly, Shreemoyee; Dutta-Roy, Binayak
2008-01-01
To illustrate the basic methodology involved in the quantum mechanics of molecules, a one-dimensional caricature of the hydrogen molecular ion (H[superscript +][subscript 2]) is presented, which is exactly solvable, in the Born-Oppenheimer approximation, in terms of elementary functions. The purpose of the exercise is to elucidate in a simple…
Grand Challenges and Great Potential in Foreign Language Teaching and Learning
ERIC Educational Resources Information Center
Hlas, Anne Cummings
2018-01-01
This article argues for the field of foreign languages to begin to identify and define our Grand Challenges, which are difficult yet solvable problems facing our field. Seeking answers to these challenges can provide new opportunities for collaboration and can spur new directions and innovation within language learning and teaching. Researchable…
A Solvable Self-Similar Model of the Sausage Instability in a Resistive Z-Pinch
1989-09-20
Ithaca, NY 14853 Dr. V. Nardi Dr. John C. Riordan Stevens Institute of Technology Physics International Co. Hoboken, NJ 07803 2700 Merced Street Dr...92122 Dr. Rick B. Spielman Dr. Frank C. Young Sandia National Laboratories Naval Research Laboratory P.O. Box 5800 Code 4770.1 Albuquerque, NM 87115
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…
Some Schools of Architecture Could Use a Good Architect
ERIC Educational Resources Information Center
Fisher, Thomas
2008-01-01
Like the proverbial shoemaker's child who goes barefoot, many architecture students learn the best practices of their discipline in some of the worst buildings on their campuses. The problems with the newest architecture-school buildings, says the writer, are both similar and solvable. In a new book, teams of architecture faculty members and…
Estimation for bilinear stochastic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.; Marcus, S. I.
1974-01-01
Three techniques for the solution of bilinear estimation problems are presented. First, finite dimensional optimal nonlinear estimators are presented for certain bilinear systems evolving on solvable and nilpotent lie groups. Then the use of harmonic analysis for estimation problems evolving on spheres and other compact manifolds is investigated. Finally, an approximate estimation technique utilizing cumulants is discussed.
Helping Minority Students Graduate from College--A Comprehensive Approach. ERIC Digest.
ERIC Educational Resources Information Center
Richardson, Richard C., Jr.; de los Santos, Alfredo G., Jr.
Blacks, Hispanics, and American Indians remain less likely to graduate from college than other Americans. This persistent and serious problem is solvable if concerned institutions use a comprehensive approach, implementing 10 principles in order to successfully remove race and ethnicity as factors in college completion. The principles listed are…
Simulating Conditions of Learned Helplessness: The Effects of Interventions and Attributions.
ERIC Educational Resources Information Center
Donovan, Wilberta L.; Leavitt, Lewis A.
1985-01-01
Using a version of the "learned helplessness" paradigm, assesses mothers' performance on a solvable task following pretreatments that involved exposure to an infant cry but that differed in the mothers' ability to exert control over termination of the cry. Proposes that learned helplessness models are relevant to the study of…
An exactly solvable, spatial model of mutation accumulation in cancer
NASA Astrophysics Data System (ADS)
Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej
2016-12-01
One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.
NASA Astrophysics Data System (ADS)
Phillips, Philip W.; Setty, Chandan; Zhang, Shuyi
2018-05-01
Motivated by recent bounds for charge diffusion in critical matter, we investigate the following question: What sets the scale for the velocity for diffusing degrees of freedom in a scale-invariant system? To make our statements precise, we analyze the diffusion pole in an exactly solvable model for a Mott transition in the presence of a long-range interaction term. To achieve scale invariance, we limit our discussion to the flat-band regime. We find in this limit that the diffusion pole, which would normally obtain at finite energy, is pushed to zero energy, resulting in a vanishing of the diffusion constant. This occurs even in the presence of interactions in certain limits, indicating the robustness of this result to the inclusion of a scale in the problem. Consequently, scale invariance precludes any reasonable definition of the diffusion constant. Nonetheless, we do find that a scale can be defined, albeit irrelevant to diffusion, which is the product of the squared band velocity and the density of states.
NASA Astrophysics Data System (ADS)
Cheng, C. H. Arthur; Shkoller, Steve
2017-09-01
We provide a self-contained proof of the solvability and regularity of a Hodge-type elliptic system, wherein the divergence and curl of a vector field u are prescribed in an open, bounded, Sobolev-class domain {Ω \\subseteq R^n}, and either the normal component {{u} \\cdot {N}} or the tangential components of the vector field {{u} × {N}} are prescribed on the boundary {partial Ω}. For {k > n/2}, we prove that u is in the Sobolev space {H^k+1(Ω)} if {Ω} is an {H^k+1}-domain, and the divergence, curl, and either the normal or tangential trace of u has sufficient regularity. The proof is based on a regularity theory for vector elliptic equations set on Sobolev-class domains and with Sobolev-class coefficients, and with a rather general set of Dirichlet and Neumann boundary conditions. The resulting regularity theory for the vector u is fundamental in the analysis of free-boundary and moving interface problems in fluid dynamics.
Dynamically enriched topological orders in driven two-dimensional systems
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Morimoto, Takahiro
2017-04-01
Time-periodic driving of a quantum system can enable new dynamical topological phases of matter that could not exist in thermal equilibrium. We investigate two related classes of dynamical topological phenomena in 2D systems: Floquet symmetry-protected topological phases (FSPTs) and Floquet enriched topological orders (FETs). By constructing solvable lattice models for a complete set of 2D bosonic FSPT phases, we show that bosonic FSPTs can be understood as topological pumps which deposit loops of 1D SPT chains onto the boundary during each driving cycle, which protects a nontrivial edge state by dynamically tuning the edge to a self-dual point poised between the 1D SPT and trivial phases of the edge. By coupling these FSPT models to dynamical gauge fields, we construct solvable models of FET orders in which anyon excitations are dynamically transmuted into topologically distinct anyon types during each driving period. These bosonic FSPT and gauged FSPT models are classified by group cohomology methods. In addition, we also construct examples of "beyond cohomology" FET orders, which can be viewed as topological pumps of 1D topological chains formed of emergent anyonic quasiparticles.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. ...
Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. Interior, kitchen and dining area, viewing north. - Timber Creek Bunkhouse & Mess Hall, Trail Ridge Road, Grand Lake, Grand County, CO
4. MESS HALL, FRONT DETAIL OVER DOOR, LOOKING EAST. ...
4. MESS HALL, FRONT DETAIL OVER DOOR, LOOKING EAST. - NIKE Missile Base C-84, Mess Hall, North of Launch Area Entrance Drive, east of Officers' Quarters & Administration Building, Barrington, Cook County, IL
3. MESS HALL, REAR SIDE, LOOKING NORTH. NIKE Missile ...
3. MESS HALL, REAR SIDE, LOOKING NORTH. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL
2. MESS HALL, RIGHT SIDE, LOOKING EAST. NIKE Missile ...
2. MESS HALL, RIGHT SIDE, LOOKING EAST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL
Detail of main hall porch on east elevation; camera facing ...
Detail of main hall porch on east elevation; camera facing west. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA
Interior detail of platform in main hall, with desk, flag, ...
Interior detail of platform in main hall, with desk, flag, and banners, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA
2013-04-20
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Kennedy Space Center Director and Hall of Famer Robert Cabana speaks during the U.S. Astronaut Hall of Fame 2013 induction ceremony. Curt Brown, Eileen Collins and Bonnie Dunbar were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett
Formulation of the relativistic quantum Hall effect and parity anomaly
NASA Astrophysics Data System (ADS)
Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu
2016-06-01
We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.
Remote Diagnostic Measurements of Hall Thruster Plumes
2009-08-14
This paper describes measurements of Hall thruster plumes that characterize ion energy distributions and charge state fractions using remotely...charge state. Next, energy and charge state measurements are described from testing of a 200 W Hall thruster at AFIT. Measurements showed variation in...position. Finally, ExB probe charge state measurements are presented from a 6-kW laboratory Hall thruster operated at low discharge voltage levels at AFRL
Performance Characteristics of a 5 kW Laboratory Hall Thruster
1996-07-01
Characteristics of a 5 kW Laboratory Hall Thruster James M. Haas’, Frank S. Gulczinski III%, and Alec D. Gallimoret Plasmadynamics and Electric Propulsion...the information learned from the study of this thruster applicable to the understanding of its commercial counterparts. INTRODUCTION Hall thrusters are...few in number at this time; and those that do exist are intended primarily Current generation Hall thruster research has for flight qualification
Quantum Hall effect in ac driven graphene: From the half-integer to the integer case
NASA Astrophysics Data System (ADS)
Ding, Kai-He; Lim, Lih-King; Su, Gang; Weng, Zheng-Yu
2018-01-01
We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at σxy=±(n +1 /2 ) 4 e2/h (n is an integer) gets qualitatively changed with the addition of new integer Hall plateaus at σxy=±n (4 e2/h ) starting from the edges of the band center regime towards the band center with an increasing ac field. Beyond a critical field strength, a Hall plateau with σxy=0 can be realized at the band center, hence fully restoring a conventional integer QHE with particle-hole symmetry. Within a low-energy Hamiltonian for Dirac cones merging, we show a very good agreement with the tight-binding calculations for the Hall plateau transitions. We also obtain the band structure for driven graphene ribbons to provide a further understanding on the appearance of the new Hall plateaus, showing a trivial insulator behavior for the σxy=0 state. In the presence of disorder, we numerically study the disorder-induced destruction of the quantum Hall states in a finite driven sample and find that qualitative features known in the undriven disordered case are maintained.
Spontaneous Hall effect in a chiral p-wave superconductor
NASA Astrophysics Data System (ADS)
Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred
2001-08-01
In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.
The shear-Hall instability in newborn neutron stars
NASA Astrophysics Data System (ADS)
Kondić, T.; Rüdiger, G.; Hollerbach, R.
2011-11-01
Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.
Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
We show that the bulk Dresselhauss (k{sup 3}) spin-orbit coupling term leads to an intrinsic spin-Hall effect in n-doped bulk GaAs, but without the appearance of uniform magnetization. The spin-Hall effect in strained and unstrained bulk GaAs has been recently observed experimentally by Kato et. al. [1]. We show that the experimental result is quantitatively consistent with the intrinsic spin-Hall effect due to the Dresselhauss term, when lifetime broadening is taken into account. On the other hand, extrinsic contribution to the spin-Hall effect is several orders of magnitude smaller than the observed effect.
Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be; Ramezani Masir, M., E-mail: mrmphys@gmail.com
2014-09-22
The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.
Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2
NASA Astrophysics Data System (ADS)
Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin
2017-10-01
Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitses, Y.; Smirnov, A.; Fisch, N. J.
It is argued that the key difference in the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of [Tang et al., J. Appl. Phys. 102, 123305 (2007)].
3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, ...
3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, Photo from 'West Shore' VILLIARD HALL, 1886, DEADY HALL, 1876. - University of Oregon, Deady Hall, University of Oregon Campus, Eugene, Lane County, OR
77 FR 18837 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... of Roswell City Hall, 38 Hill Street, Suite 235, Roswell, GA 30075. City of Sandy Springs City Hall, 7840 Roswell Road, Building 500, Sandy Springs, GA 30350. City of Union City City Hall, 5047 Union...
5. MESS HALL, RIGHT AND REAR SIDES, LOOKING NORTHEAST. ...
5. MESS HALL, RIGHT AND REAR SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL
6. PHOTOCOPY, PLAN AND SCHEDULE DRAWING OF MESS HALL. ...
6. PHOTOCOPY, PLAN AND SCHEDULE DRAWING OF MESS HALL. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL
Interior of Mess Hall, showing original columns and quarry tile ...
Interior of Mess Hall, showing original columns and quarry tile floor - U.S. Naval Base, Pearl Harbor, Barracks & Mess Hall, Hornet Avenue between Liscome Bay & Enterprise Streets, Pearl City, Honolulu County, HI
7. PHOTOCOPY, ELEVATION AND SECTION DRAWING OF MESS HALL. ...
7. PHOTOCOPY, ELEVATION AND SECTION DRAWING OF MESS HALL. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL
4. MESS HALL, FRONT AND LEFT SIDES, LOOKING SOUTHWEST. ...
4. MESS HALL, FRONT AND LEFT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL
Contextual view of ILWU Hall, facing northwest with commercial port ...
Contextual view of ILWU Hall, facing northwest with commercial port buildings visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA
Contextual view of ILWU Hall, facing southsouthwest, with ocean bank ...
Contextual view of ILWU Hall, facing south-southwest, with ocean bank visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA
Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinsman, Colin; Li, Gang; Asaba, Tomoya
2016-06-27
The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO{sub 3}). SrTiO{sub 3}more » approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.« less
2018-04-21
Scott D. Altman, second from left, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA's Kennedy Space Center Visitor Complex in Florida. At far left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Altman into the Hall of Fame Class of 2018. At right is Hall of Famer John Grunsfeld, who spoke on Altman's behalf during the ceremony. At far right is Thomas D. Jones, Ph.D., who also was inducted into the AHOF Class of 2018. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.
Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units
NASA Astrophysics Data System (ADS)
Bard, C.; Dorelli, J.
2017-12-01
The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...
2015-06-11
Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less
Magnetometry of micro-magnets with electrostatically defined Hall bars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent
2015-11-30
Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large currentmore » density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.« less
78 FR 29762 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
..., Palmetto, GA 30268. City of Roswell City Hall, 38 Hill Street, Suite 235, Roswell, GA 30075. City of Sandy Springs City Hall, 7840 Roswell Road, Building 500, Sandy Springs, GA 30350. City of Union City City Hall...
71. FIRST FLOOR, ROOM 101, ENTRANCE HALL (SIDE WITH FIRE ...
71. FIRST FLOOR, ROOM 101, ENTRANCE HALL (SIDE WITH FIRE DETECTOR), ARCHWAY TO STAIR HALL 100, LOOKING UP, DETAIL OF ARCHWAY SOFFIT. - Octagon House, 1799 (1741) New York Avenue, Northwest, Washington, District of Columbia, DC
Contextual view of ILWU Hall, facing east, with the city ...
Contextual view of ILWU Hall, facing east, with the city of Port Hueneme visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA
DIVA (Data Intensive Architecture)
2004-06-01
Itanium-based workstation as a test bench for the larger system concepts. 44 10. Publications [Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz ...White, Dr. Pedro Diniz . Mr. Pablo Moissett • Caltech: Dr. Thomas Sterling, Mr. Daniel Savarese • University of Notre Dame: Dr. Peter Kogge, Dr. Jay...IEEE Computer, April 1995, pp. 23-31. [Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz , J. Chame, J. Draper, J. LaCoss, J. Granacki, J. Brockman
Performance of an 8 kW Hall Thruster
2000-01-12
For the purpose of either orbit raising and/or repositioning the Hall thruster must be capable of delivering sufficient thrust to minimize transfer...time. This coupled with the increasing on-board electric power capacity of military and commercial satellites, requires a high power Hall thruster that...development of a novel, high power Hall thruster , capable of efficient operation over a broad range of Isp and thrust. We call such a thruster the bi
2010-02-24
A nested Faraday probe was designed and fabricated to assess facility effects in a systematic study of ion migration in a Hall thruster plume...Current density distributions were studied at 8, 12, 16, and 20 thruster diameters downstream of the Hall thruster exit plane with four probe configurations...measurements are a significant improvement for comparisons with numerical simulations and investigations of Hall thruster performance.
Performance Potential of Plasma Thrusters: Arcjet and Hall Thruster Modeling
1993-09-17
FUNDING NUMBERS Performance Potential of Plasma Thrusters: \\ Arcjet and Hall Thruster Modeling FQ 8671-9300908 S ,,G-AFOSR-91-0256 6. AUTHOR(S) Manuel...models for the internal physics and the performance of hydrogen arcjets and Hall thrusters , respectively. These are thought to represent the state of...work. 93-24268 14. SUBJECT TERMS IS. NUMBER OF PAGES Electric Propulsion, Arcjets, Hall Thrusters 15 16. PRICE COOE 17. SECURITY CLASSIFICATION I18
2007-06-05
From - To) 05-06-2007 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements (Preprint) Taylor S. Matlock∗ Jackson...dimensional estimate of the plume electron temperature using a published xenon collisional radiative model. I. Introduction The Hall thruster is a high
Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties
2014-03-06
Near-Field Hall Thruster Plasma Properties 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Resolved Near-Field Hall Thruster Plasma Properties Ashley E. Gonzales, Justin W. Koo, and William A. Hargus, Jr. Abstract— Breathing mode oscillations... thruster , HPHall, plume emission. I. INTRODUCTION HALL thrusters are a plasma propulsion technologywidely used due to their low thrust, high specific impulse
Final analysis of proton form factor ratio data at Q 2 = 4.0, 4.8, and 5.6 GeV 2
Puckett, A. J. R.; Brash, E. J.; Gayou, O.; ...
2012-04-11
Recently published measurements of the proton electromagnetic form factor ratio R = μ p G E p/G M p at momentum transfers Q 2 up to 8.5 GeV 2 in Jefferson Lab Hall C deviate from the linear trend of previous measurements in Jefferson Lab Hall A, favoring a slower rate of decrease of R with Q 2. While statistically compatible in the region of overlap with Hall A, the Hall C data hint at a systematic difference between the two experiments. This possibility was investigated in a reanalysis of the Hall A data. We find that the original analysismore » underestimated the background in the selection of elastic events. The application of an additional cut to further suppress the background increases the results for R, improving the consistency between Halls A and C.« less
A highly sensitive CMOS digital Hall sensor for low magnetic field applications.
Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li
2012-01-01
Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.
Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures
NASA Astrophysics Data System (ADS)
Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team
We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
G. Stanley Hall and The Journal of Genetic Psychology: A Note.
Hogan, John D
2016-01-01
The Journal of Genetic Psychology (originally called The Pedagogical Seminary) has a complicated history. Known primarily as a journal of development psychology, it was originally intended to be a journal of higher education. In addition, G. Stanley Hall created it, at least in part, to curry favor with Jonas Clark, the benefactor of Clark University. The journal had a cumbersome start, with irregular issues for most of its first decade. Hall was a hands-on editor, often contributing articles and reviews as well as the texts of many of his speeches. A substantial number of additional articles were written by Clark University faculty and fellows where Hall was president. After Hall.s death, the editor became Carl Murchison who eventually left Clark University with the journal and continued to publish it privately until his death. Through the years, the journal has been the source for many classic articles in developmental psychology.
Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene
NASA Astrophysics Data System (ADS)
Ferreira, Aires; Milletari, Mirco
Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).
On-Line Algorithms and Reverse Mathematics
NASA Astrophysics Data System (ADS)
Harris, Seth
In this thesis, we classify the reverse-mathematical strength of sequential problems. If we are given a problem P of the form ∀X(alpha(X) → ∃Zbeta(X,Z)) then the corresponding sequential problem, SeqP, asserts the existence of infinitely many solutions to P: ∀X(∀nalpha(Xn) → ∃Z∀nbeta(X n,Zn)). P is typically provable in RCA0 if all objects involved are finite. SeqP, however, is only guaranteed to be provable in ACA0. In this thesis we exactly characterize which sequential problems are equivalent to RCA0, WKL0, or ACA0.. We say that a problem P is solvable by an on-line algorithm if P can be solved according to a two-player game, played by Alice and Bob, in which Bob has a winning strategy. Bob wins the game if Alice's sequence of plays 〈a0, ..., ak〉 and Bob's sequence of responses 〈 b0, ..., bk〉 constitute a solution to P. Formally, an on-line algorithm A is a function that inputs an admissible sequence of plays 〈a 0, b0, ..., aj〉 and outputs a new play bj for Bob. (This differs from the typical definition of "algorithm", though quite often a concrete set of instructions can be easily deduced from A.). We show that SeqP is provable in RCA0 precisely when P is solvable by an on-line algorithm. Schmerl proved this result specifically for the graph coloring problem; we generalize Schmerl's result to any problem that is on-line solvable. To prove our separation, we introduce a principle called Predictk(r) that is equivalent to -WKL0 for standard k, r.. We show that WKL0 is sufficient to prove SeqP precisely when P has a solvable closed kernel. This means that a solution exists, and each initial segment of this solution is a solution to the corresponding initial segment of the problem. (Certain bounding conditions are necessary as well.) If no such solution exists, then SeqP is equivalent to ACA0 over RCA 0 + ISigma02; RCA0 alone suffices if only sequences of standard length are considered. We use different techniques from Schmerl to prove this separation, and in the process we improve some of Schmerl's results on Grundy colorings. In Chapter 4 we analyze a variety of applications, classifying their sequential forms by reverse-mathematical strength. This builds upon similar work by Dorais and Hirst and Mummert. We consider combinatorial applications such as matching problems and Dilworth's theorems, and we also consider classic algorithms such as the task scheduling and paging problems. Tables summarizing our findings can be found at the end of Chapter 4.
68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO ...
68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO TURBINE HALL AT UNITS 3, 5, AND 2) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
Interior view, groundfloor dining hall extending across the rotunda extension ...
Interior view, ground-floor dining hall extending across the rotunda extension from it's northern exterior wall to its southern exterior wall, from the north. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA
Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Benavides, Gabriel; Haag, Thomas; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry;
2016-01-01
NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek BHT-200-I, 200 W and the continued development of the BHT-600-I Hall thruster propulsion systems. This presentation presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.
Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G
2018-05-18
We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.
Coherence length saturation at the low temperature limit in two-dimensional hole gas
NASA Astrophysics Data System (ADS)
Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi
2018-05-01
The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.
2007-07-01
Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements... Hall thruster is a high specific impulse electric thruster that produces a highly ionized plasma inside an annular chamber through the use of high
First Firing of a 100-kW Nested-Channel Hall Thruster
2013-09-01
Technical Paper 3. DATES COVERED (From - To) September 2013- December 2013 4. TITLE AND SUBTITLE First Firing of a 100-kW Nested-Channel Hall Thruster 5a...STATEMENT A: Approved for public release; distribution unlimited. 1 First Firing of a 100-kW Nested-channel Hall Thruster IEPC-2013-394...converting electrical power to directed kinetic power I. Introduction ESTING the channels of Hall thrusters has proven to be a viable method to increase
Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.
Islam, S K Firoz
2018-07-11
The polymorph of 8-Pmmn borophene is an anisotropic Dirac material with tilted Dirac cones at two valleys. The tilting of the Dirac cones at two valleys are in opposite directions, which manifests itself via the valley dependent Landau levels in presence of an in-plane electric field (Hall field). The valley dependent Landau levels cause valley polarized magnetotransport properties in presence of the Hall field, which is in contrast to the monolayer graphene with isotropic non-tilted Dirac cones. The longitudinal conductivity and Hall conductivity are evaluated by using linear response theory in low temperature regime. An analytical approximate form of the longitudinal conductivity is also obtained. It is observed that the tilting of the Dirac cones amplifies the frequency of the longitudinal conductivity oscillation (Shubnikov-de Haas). On the other hand, the Hall conductivity exhibits graphene-like plateaus except the appearance of valley dependent steps which are purely attributed to the Hall field induced lifting of the valley degeneracy in the Landau levels. Finally we look into the different cases when the Hall field is applied to the strained borophene and find that valley dependency is fully dominated by strain rather than Hall field. Another noticeable point is that if the real magnetic field is replaced by the strain induced pseudo magnetic field then the electric field looses its ability to cause valley polarized transport.
Changing Horses in Midstream: The Dangers of Unplanned Head Transitions
ERIC Educational Resources Information Center
Quinby, Lee
2015-01-01
Quick leadership transitions may succeed in other industries, but they don't usually work in the "business of relationships" we call school. Boards that respond to a solvable problem by firing the head may believe that action is necessary and good for the school. In truth, these abrupt changes almost always hurt schools, with devastating…
Z/sub n/ Baxter model: Critical behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, C.A.
1986-07-01
The Z/sub n/ Baxter Model is an exactly solvable lattice model in the special case of the Belavin parametrization. We calculate the critical behavior of Prob/sub n/ (q = w/sup k/) using techniques developed in number theory in the study of the congruence properties of p(m), the number of unrestricted partitions of an integer m.
A Versatile Technique for Solving Quintic Equations
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2006-01-01
In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…
Characteristics of Problem Posing of Grade 9 Students on Geometric Tasks
ERIC Educational Resources Information Center
Chua, Puay Huat; Wong, Khoon Yoong
2012-01-01
This is an exploratory study into the individual problem-posing characteristics of 480 Grade 9 Singapore students who were novice problem posers working on two geometric tasks. The students were asked to pose a problem for their friends to solve. Analyses of solvable posed problems were based on the problem type, problem information, solution type…
An Exact Solvable Model of Rocket Dynamics in Atmosphere
ERIC Educational Resources Information Center
Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.
2009-01-01
In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…
Hungry Kids: The Solvable Crisis
ERIC Educational Resources Information Center
Felling, Christy
2013-01-01
The numbers speak for themselves in terms of the crisis of hunger among kids in the United States: More than 16 million children--one in five--live in households that struggle to put food on the table. Nearly half of all food stamp recipients are children. But, argues Felling, the battle against childhood hunger can be won; the United States has…
ERIC Educational Resources Information Center
Bhattacharya, Arghya; Jackson, Paul; Jenkins, Brian C.
2018-01-01
The authors present a version of the Diamond-Mortensen-Pissarides model of unemployment that is accessible to undergraduates and preserve the dynamic structure of the original model. The model is solvable in closed form using basic algebra and admits a graphical representation useful for illustrating a variety of comparative statics. They show how…
NASA Astrophysics Data System (ADS)
Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki
2018-03-01
We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.
NASA Astrophysics Data System (ADS)
Lau, Yong-Chang; Hayashi, Masamitsu
2017-08-01
We investigate the efficiency of current-induced torque, i.e., the spin torque efficiency, in in-plane magnetized heavy metal/CoFeB/MgO heterostructures (heavy metals = Pt, W, and Ta) using the harmonic Hall technique and the spin Hall magnetoresistance. We find that the amplitude of the external magnetic field has a strong influence on the spin torque efficiency evaluation by the harmonic Hall measurements. This can be corrected by measuring the corresponding Hall resistance susceptibility. The sign and magnitude of the resulting Slonczewski-like spin torque efficiencies are in agreement with previous reports and the measurements utilizing the spin Hall magnetoresistance, except for the Pt underlayer films. The origin of the discrepancy for the Pt underlayer films is unclear. The field like torque efficiencies, upon subtracting the Oersted field contribution, are quite low or negligible. This is in significant contrast to what has been found for the field like torque in heterostructures with perpendicular magnetization. These results suggest that a more advanced model is required in order to describe accurately spin transport and momentum transfer at metallic interfaces.
The role of the men's hall in the development of the Anglo-Saxon superego.
Earl, J W
1983-05-01
This paper is a historical study of ritual space--a bit of psychoanalytic anthropology applied to a particular case, the evolution of the men's hall among the early Anglo-Saxons. I focus particularly on the ritual functions of poetry in the hall, the same poetry which is our major evidence regarding the hall, especially the epic Beowulf. I define the hall as a cultural institution, and redefine the native poetic tradition in relation to the hall's varied ritual life, with which the poetry is so occupied. Though my argument is focused on the hall, it includes a framework of theoretical concerns. Early Anglo-Saxon culture is of anthropological interest chiefly because of its rapid and dramatic emergence from Germanic tribal prehistory into a leading role in the civilization of Christian Europe. The conquest of Britain by the Anglo-Saxons in the fifth and sixth centuries, and their conversion soon afterward, is a case history of the transformations of a tribal society suddenly introduced to the special forces of civilization and the higher religions that control them. The Anglo-Saxons are fascinating in this regard because of the fortuitous developments that prepared for this transformation and made it so successful.
Star Formation and the Hall Effect
NASA Astrophysics Data System (ADS)
Braiding, Catherine
2011-10-01
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.
Concert halls with strong and lateral sound increase the emotional impact of orchestra music.
Pätynen, Jukka; Lokki, Tapio
2016-03-01
An audience's auditory experience during a thrilling and emotive live symphony concert is an intertwined combination of the music and the acoustic response of the concert hall. Music in itself is known to elicit emotional pleasure, and at best, listening to music may evoke concrete psychophysiological responses. Certain concert halls have gained a reputation for superior acoustics, but despite the continuous research by a multitude of objective and subjective studies on room acoustics, the fundamental reason for the appreciation of some concert halls remains elusive. This study demonstrates that room acoustic effects contribute to the overall emotional experience of a musical performance. In two listening tests, the subjects listen to identical orchestra performances rendered in the acoustics of several concert halls. The emotional excitation during listening is measured in the first experiment, and in the second test, the subjects assess the experienced subjective impact by paired comparisons. The results showed that the sound of some traditional rectangular halls provides greater psychophysiological responses and subjective impact. These findings provide a quintessential explanation for these halls' success and reveal the overall significance of room acoustics for emotional experience in music performance.
A holographic model for the fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Lippert, Matthew; Meyer, René; Taliotis, Anastasios
2015-01-01
Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.
NASA Astrophysics Data System (ADS)
Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji
2018-01-01
The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).
Observation of a superfluid Hall effect
Jiménez-García, Karina; Williams, Ross A.; Beeler, Matthew C.; Perry, Abigail R.; Phillips, William D.; Spielman, Ian B.
2012-01-01
Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)—internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect’s sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose–Einstein condensate’s transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system’s global irrotationality influences this superfluid Hall signal. PMID:22699494
12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ...
12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ENTRY, LOOKING NORTH, WITH HALL LEADING TO GARAGE TO RIGHT OF STAIRWAY. - Oakland Naval Supply Center, Commanding Officers Residences, Between E & F Streets, West of Fourth Street, Oakland, Alameda County, CA
76 FR 53021 - Public Hearing and Commission Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to conditions of the... Baltimore. Project Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md... Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to...
24. BEDROOM #1 INTERIOR SHOWING OPEN DOOR TO HALL WITH ...
24. BEDROOM #1 INTERIOR SHOWING OPEN DOOR TO HALL WITH HALL LINEN CLOSETS VISIBLE IN BACKGROUND, AND PARTIALLY OPEN DOOR TO CLOSET. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA
2003-07-22
KENNEDY SPACE CENTER, FLA. The Astronaut Hall of Fame is dedicated to telling the stories of America’s astronauts. It features the world’s largest collection of personal astronaut mementos plus historic spacecrafts and training simulators. The Hall of Fame is part of the KSC Visitor Complex.
Comparisons and Evaluation of Hall Thruster Models
2002-03-20
COVERED (FROM - TO) 20-04-2001 to 20-04-2002 4. TITLE AND SUBTITLE comparisons and Evaluation of Hall Thruster Models Unclassified 5a. CONTRACT NUMBER...TITLE AND SUBTITLE Comparisons and Evaluation of Hall Thruster Models 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S...evaluation of Hall thruster models G. J. M. Hagelaar, J. Bareilles, L. Garrigues, and J.-P. Boeuf CPAT, Bâtiment 3R2, Université Paul Sabatier 118 Route
Observations of Hall Reconnection Physics Far Downstream of the X Line.
Mistry, R; Eastwood, J P; Haggerty, C C; Shay, M A; Phan, T D; Hietala, H; Cassak, P A
2016-10-28
Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent agreement with observations. The Hall fields are observed thousands of ion inertial lengths downstream from the reconnection X line, indicating that narrow regions of kinetic dynamics can persist extremely far downstream.
Magnet/Hall-Effect Random-Access Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1991-01-01
In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.
The Hall effect in star formation
NASA Astrophysics Data System (ADS)
Braiding, C. R.; Wardle, M.
2012-05-01
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.
Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.
Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P
2010-10-01
We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.
Redistributing Chern numbers and quantum Hall transitions in multi-band lattices
NASA Astrophysics Data System (ADS)
Yu, H. L.; Zhai, Z. Y.; Jiang, C.
2018-07-01
We numerically study the integer quantum Hall effect (IQHE) on m-band lattices. With continuous modulating the next-nearest-neighbor hopping integral t' , it is found that the full band is divided into 2 m - 1 regions. There are m - 1 critical regions with pseudogaps induced by the merging between the two adjacent subbands, where both Chern numbers of the correlating Landau subbands and the corresponding Hall plateau are not well-defined. The other m regions with different well-defined Chern numbers are separated by the above m - 1 critical regions. Due to the redistributing Chern numbers of system induced by the merging of subbands, the Hall conductance exhibits a peculiar phase transition, which is characterized by the direct change of Hall plateau state.
Effect of azimuthal diversion rail on an ATON-type Hall thruster
NASA Astrophysics Data System (ADS)
Xu, Zhang; Liqiu, Wei; Liang, Han; Yongjie, Ding; Daren, Yu
2017-03-01
A newly designed azimuthal diversion rail (ADR) is studied and used to enhance the ionization process in an ATON-type Hall thruster. The diversion rail efficiently reduces the neutral flow axial velocity, and hence, increases the resistance time of atoms in the discharge channel of the Hall thruster. Thrust performances, in terms of thrust, anode efficiency and ion beam divergence, are found to be improved because of the application of the diversion rail, especially at low mass flow rate conditions. Experiment results reveal that the ADR increases the mass utilization under insufficient mass flow rate operating conditions. The design of the ADR broadens the efficient operating range of Hall thrusters and has significant contribution to multi-mode Hall thruster development.
What do you measure when you measure the Hall effect?
NASA Astrophysics Data System (ADS)
Koon, D. W.; Knickerbocker, C. J.
1993-02-01
A formalism for calculating the sensitivity of Hall measurements to local inhomogeneities of the sample material or the magnetic field is developed. This Hall weighting function g(x,y) is calculated for various placements of current and voltage probes on square and circular laminar samples. Unlike the resistivity weighting function, it is nonnegative throughout the entire sample, provided all probes lie at the edge of the sample. Singularities arise in the Hall weighting function near the current and voltage probes except in the case where these probes are located at the corners of a square. Implications of the results for cross, clover, and bridge samples, and the implications of our results for metal-insulator transition and quantum Hall studies are discussed.
Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Benavides, Gabriel; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry;
2016-01-01
NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the 200 W Busek BHT-200-I and the continued development of the 600 W BHT-600-I Hall thruster propulsion systems. This paper presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.
Lokki, Tapio; Pätynen, Jukka; Kuusinen, Antti; Tervo, Sakari
2016-07-01
Some studies of concert hall acoustics consider the acoustics in a hall as a single entity. Here, it is shown that the acoustics vary between different seats, and the choice of music also influences the perceived acoustics. The presented study compared the acoustics of six unoccupied concert halls with extensive listening tests, applying two different music excerpts on three different seats. Twenty eight assessors rated the halls according to the subjective preference of the assesors and individual attributes with a paired comparison method. Results show that assessors can be classified into two preference groups, which prioritize different perceptual factors. In addition, the individual attributes elicited by assessors were clustered into three latent classes.
Residence Hall Seating That Works.
ERIC Educational Resources Information Center
Wiens, Janet
2003-01-01
Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)
Non-Intrusive, Time-Resolved Hall Thruster Near-Field Electron Temperature Measurements
2011-08-01
With the growing interest in Hall thruster technology, comes the need to fully characterize the plasma dynamics that determine performance. Of...instabilities characteristic of Hall thruster behavior, time resolved techniques must be developed. This study presents a non-intrusive method of
Fundamental Studies of the Electrode Regions in Arcjet Thrusters
1998-03-01
Hall thruster . This contributed to a comprehensive study of the near exit region of our Hall discharge device. To compliment the LIF diagnostics on our Hall thrusters, we have made extensive measurements of the transient and time average plasma properties using conventional electrostatic
2018-04-21
Inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida, two space explorers, Scott D. Altman, second from left, and Thomas D. Jones, Ph.D., far right, are inducted into the U.S. Astronaut Hall of Fame Class of 2018. At far left is Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation, who inducted Altman and Jones into the AHOF. Second from right is Hall of Famer John Grunsfeld, who spoke on behalf of Altman during the ceremony. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.
Air temperature gradient in large industrial hall
NASA Astrophysics Data System (ADS)
Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia
2017-11-01
In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.
Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure
NASA Astrophysics Data System (ADS)
Tang, Chi; Cheng, Bin; Aldosary, Mohammed; Wang, Zhiyong; Jiang, Zilong; Watanabe, K.; Taniguchi, T.; Bockrath, Marc; Shi, Jing
2018-02-01
Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches ¼ of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems.
Remnant Geometric Hall Response in a Quantum Quench.
Wilson, Justin H; Song, Justin C W; Refael, Gil
2016-12-02
Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.
View looks northeast (44°) across concrete foundation for Second Street ...
View looks northeast (44°) across concrete foundation for Second Street Mess Hall. See HAER photo CA-170-Q-3 for view of Mess Hall building - Edwards Air Force Base, North Base, Second Street Mess Hall T-10, Second Street, Boron, Kern County, CA
78 FR 20341 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... sciences established to review conflicting scientific and technical data and provide recommendations for... of Bolton Town Hall, 663 Main Street, Bolton, MA 01740. Town of Boxborough Town Hall, 29 Middle Road... South School Street, Mayville, WI 53050. City of Watertown City Hall, 106 Jones Street, Watertown, WI...
Contextual view of the Hall of Transportation from Yerba Buena ...
Contextual view of the Hall of Transportation from Yerba Buena Island, showing Palace of Fine and Decorative Arts (Building 3) at far right, camera facing northwest - Golden Gate International Exposition, Hall of Transportation, 440 California Avenue, Treasure Island, San Francisco, San Francisco County, CA
Plasma Properties in the Plume of a Hall Thruster Cluster
2003-06-04
The Hall thruster cluster is an attractive propulsion approach for spacecraft requiring very high-power electric propulsion systems. This article...probes in the plume of a low-power, four-engine Hall thruster cluster. Simple analytical formulas are introduced that allow these quantities to be
20th Annual Residence Hall Construction Report
ERIC Educational Resources Information Center
Agron, Joe
2009-01-01
Even in difficult economic times, colleges and universities continue to invest in residence hall construction projects as a way to attract new students and keep existing ones on campus. According to data from "American School & University"'s 20th annual Residence Hall Construction Report, the median new project completed in 2008 was…
Adaptive Reuse: Reusing Buildings for Future Generations while Maintaining Connections to the Past.
ERIC Educational Resources Information Center
Rossi, John M.
2003-01-01
Describes adaptive reuse of college buildings, which involves reconfiguring existing buildings for entirely new functions, including its benefits. Examples include Bartlett Hall at the University of Chicago, Annenberg Hall and Locker Chambers at Harvard University, Goodrich Hall at Williams College, and Sarratt Student Center at Vanderbilt…
A Network Design Architecture for Distribution of Generic Scene Graphs
1999-09-01
with UML. Addison Wesley. Deitel, H. and Deitel, P. 1994. C++ How to Program . Prentice Hall. Deitel, H. and Deitel, P. 1998. JAVA How ... to . Program . Prentice.Hall. Eckel, B. 1998. Thinking in JAVA. Prentice Hall. 141 Edwards, J. 1997. 3-Tier Client/Server At Work. John
Implementing Proactive Network Management Solutions in the Residence Halls
ERIC Educational Resources Information Center
Bedi, Param
2005-01-01
This paper discusses how to implement networking solutions in residence halls at Arcadia University in Philadelphia. Sections of the paper include: (1) About Arcadia University; (2) Residence Halls Network; (3) How Campus Manager Helped Arcadia University; (4) What Is Campus Manager; (5) How Campus Manager Works; (6) Campus Manager Remediation…
Chapin Hall Center for Children.
ERIC Educational Resources Information Center
Chicago Univ., IL. Chapin Hall Center for Children.
This document consists of two separate publications: (1) "The Power of Knowing", a brief 12-page description of the Chapin Hall Center for Children, and (2) "Projects and Publications", a 67-page list of the center's projects and publications as of Autumn 1997. "The Power of Knowing" describes the Chapin Hall Center…
Study of Energy Loss Mechanisms in the BPT-4000 Hall Thruster
2003-06-30
Aerojet has developed a high performance multi-mode flightweight Hall thruster for orbit raising and stationkeeping on geo-synchronous satellites. In...order to further understand and improve upon the performance of this state of the art Hall thruster and other next generation thrusters being planned
Very-Near-Field Plume Model of a Hall Thruster
2003-07-20
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014988 TITLE: Very-Near-Field Plume Model of a Hall Thruster DISTRIBUTION...numbers comprise the compilation report: ADP014936 thru ADP015049 UNCLASSIFIED am 46 Very-Near-Field Plume Model of a Hall Thruster F. Taccogna’, S. LongoŖ
Modeling a Hall Thruster from Anode to Plume Far Field
2008-12-31
Two dimensional ax symmetric simulations of xenon plasma plume flow fields from a D55 Anode layer Hall thruster is performed. A hybrid particle-fluid...method is used for the Simulations. The magnetic field surrounding the Hall thruster exit is included in the Calculation. The plasma properties
High Life: 17th Annual Residence Hall Construction Report
ERIC Educational Resources Information Center
Agron, Joe
2006-01-01
Residence hall construction continues to be a priority for colleges and universities. With enrollments on the upswing, higher-education institutions are spending more and building larger facilities to entice students to live on campus. This article presents the findings of "American School & University's" 17th annual Residence Hall Construction…
Hall devices improve electric motor efficiency
NASA Technical Reports Server (NTRS)
Haeussermann, W.
1979-01-01
Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.
Acoustic Requirements for a Multi-Purpose Hall.
ERIC Educational Resources Information Center
Schulte, W. Allen
2002-01-01
This case study examines the proposed design of a new lecture/recital hall in Centennial Hall at Lynchburg College that will be used for lectures, public events, a film studies course, and musical recitals. It explores the audio-visual challenges presented by the differing acoustical requirements for the building. (EV)
Coping Behaviors of Residence Hall Directors
ERIC Educational Resources Information Center
Wilkes, Ben
2017-01-01
This mixed-methods study examined tertiary-level residence-hall directors' reported coping behaviors for three systems of stress: environmental, personal, and work. It surveyed a convenience sample of 128 respondents using the Brief COPE scale (Carver, 1997). Reported length of service, genders, and hall populations were matched with 28 types of…
1984-07-20
Hall 16.00 -17.30 Tea, Hugh Stewart Hall 19.00 Buffet/Reception, Hugh Stewart Hall 19.00- 24.00 Cash bar in Hugh Stewart Hall Accesion For STATEMENT ...transfer involving highly vibrationally excited molecules J. R. Barker (SRI), T. C. Brown and K. D. King (Adelaide) 10.45-11.15 Coffee SESSION IV...D. King (Adelaide) and R. G. Gilbert (Sydney) 15.15-15.35 J4 Quantitative intermolecular energy transfer efficiencies from thermal studies C. D. Eley
2012-05-05
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke speaks during the U.S. Astronaut Hall of Fame induction ceremony. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann
2012-05-05
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Kevin Chilton into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann
2012-05-05
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Charlie Precourt into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Kevin Chilton also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann
Jefferson Lab Experimental Hall C
NASA Astrophysics Data System (ADS)
Carlini, Roger D.
1996-10-01
Jefferson Lab's Hall C went into initial operation in November 1995. The hall has a short orbit spectrometer (SOS) for short-lived particles such as pions and kaons and a high-momentum spectrometer (HMS) usually used for electrons. The SOS can also be used for protons. The HMS can range to 7 GeV/c. Both the SOS and HMS have typical resolutions of (10-3). Experiments for this hall range from measuring the neutron electric form factor, to color transparency, to creating strange nuclei. This paper will present the optical capabilities of the spectrometers, the parameters of the detection systems, and the overall beam line characteristics of the hall as determined from the results from the recent physics experiments along with the upcoming experimental schedule. Additional information is available at URL http://www.cebaf.gov/hallc.html.
Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Parijat; Bellotti, Enrico
2016-05-23
We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less
NASA Astrophysics Data System (ADS)
Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.
2018-03-01
Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.
Batch-fabricated high-performance graphene Hall elements
Xu, Huilong; Zhang, Zhiyong; Shi, Runbo; Liu, Honggang; Wang, Zhenxing; Wang, Sheng; Peng, Lian-Mao
2013-01-01
Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability. PMID:23383375
Semiclassical theory of Hall viscosity
NASA Astrophysics Data System (ADS)
Biswas, Rudro
2014-03-01
Hall viscosity is an intriguing stress response in quantum Hall systems and is predicted to be observable via the conductivity in an inhomogeneous electric field. This has been studied extensively using a range of techniques, such as adiabatic transport, effective field theories, and Kubo formulae. All of these are, however, agnostic as to the distinction between strongly correlated quantum Hall states and non-interacting ones, where the effect arises due to the fundamental non-commuting nature of velocities and orbit positions in a magnetic field. In this talk I shall develop the semiclassical theory of quantized cyclotron orbits drifting in an applied inhomogeneous electric field and use it to provide a clear physical picture of how single particle properties in a magnetic field contribute to the Hall viscosity-dependence of the conductivity.
Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line
NASA Astrophysics Data System (ADS)
Spies, Günther O.; Faghihi, Mustafa
1987-06-01
To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.
Magnetic Reconnection and Modification of the Hall Physics Due to Cold Ions at the Magnetopause
NASA Technical Reports Server (NTRS)
Andre, M.; Li, W.; Toldeo-Redondo, S.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.; Burch, J.; Lindqvist, P.-A.; Marklund, G.;
2016-01-01
Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohms law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the v x B drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
The rotation of discs around neutron stars: dependence on the Hall diffusion
NASA Astrophysics Data System (ADS)
Faghei, Kazem; Salehi, Fatemeh
2018-01-01
In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.
3D Quantum Hall Effect of Fermi Arc in Topological Semimetals
NASA Astrophysics Data System (ADS)
Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.
2017-09-01
The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.
NASA Astrophysics Data System (ADS)
Halls, H. C.
2004-05-01
Several Proterozoic dyke swarms, all with precise U-Pb ages, (Matachewan, Senneterre, Biscotasing, Marathon and Fort Frances) occur over an area of the southern Superior Province covering more than 300,000 square kilometres. Cutting across this region is the Kapuskasing Zone, a 500 km-long fault zone along which dextral transpression at about 1.9 to 2.0 Ga has produced crustal uplift locally in excess of 20 km and lateral fault displacements of up to 70 km (Percival and West, 1994). The 2446-2473 Ma Matachewan swarm has been a subject for study throughout the last 40 years of Canadian paleomagnetism. However only in the last 20 years has the true size of the swarm been realised (Ernst and Halls, 1984; Halls et al., 1994), and the discovery made that regional variations in the direction of primary magnetization in the dykes are intimately related to the Kapuskasing Zone (KZ). The swarm is now known to span a single reversal of the Earth's magnetic field. The younger N polarity epoch, although barely recorded in the dying stages of the intrusive episode, is well preserved in dykes within uplifted crust inside the KZ. Here fine-grained magnetite, exsolved from dyke feldspars due to slow cooling of the swarm at depth, acquired a remanence of probable thermo-chemical origin prior to or during crustal uplift (Halls and Palmer, 1990; Halls et al., 1994; Halls and Zhang, 2003). The inference is that dykes intruded during the older R polarity epoch carry a near surface primary R magnetization but have been remagnetized to N at depth. Paleomagnetic data from that part of the swarm outside the KZ are therefore dominated by the older R polarity magnetization. They show that the western half of the shield has rotated counter-clockwise about 10 to 20 degrees relative to the eastern half across the KZ (Bates and Halls, 1991; Halls and Stott, 2003). This rotation is also seen in paleomagnetic data from the 2170 Ma Biscotasing swarm, which is now known to occur on both sides of the KZ (Halls and Davis, 2004). Lateral variations in clouding intensity and hydrous alteration levels in dyke feldspars reveal that the shield has been gently tilted towards the south, and that superimposed on this tilting is a series of fault-bounded, mostly uplifted, crustal blocks that constitute the KZ. In summary, results from more than 400 paleomagnetic sites in Ontario dykes show that the Superior province, despite being generally regarded as the epitome of a stable craton, has been regionally deformed, perhaps in several stages centred around 2.0 ± 0.2 Ga. If rotation across the KZ accompanied rifting beneath Hudson Bay, it may explain the overall butterfly - shaped outline of the Superior Province. References: Bates, M. and Halls, H. 1991, CJES 28: 1780; Ernst, R. and Halls, H. 1984, CJES 21:1499; Halls, H. and Palmer, H. 1990, CJES 27: 87; Halls, H., Palmer, H.,Bates, M. and Phinney, W. 1994, CJES 31:1182; Halls, H. and Zhang, B. 2003, Tectonophysics 362:123; Halls, H. and Stott, G. 2003, OGS Open File Rept. No. 6120, 7p; Halls, H. and Davis, D. CJES 41,(in press); Percival, J. and West, G. 1994, CJES 31:1256.
Solvability of a Nonlinear Integral Equation in Dynamical String Theory
NASA Astrophysics Data System (ADS)
Khachatryan, A. Kh.; Khachatryan, Kh. A.
2018-04-01
We investigate an integral equation of the convolution type with a cubic nonlinearity on the entire real line. This equation has a direct application in open-string field theory and in p-adic string theory and describes nonlocal interactions. We prove that there exists a one-parameter family of bounded monotonic solutions and calculate the limits of solutions constructed at infinity.
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
ERIC Educational Resources Information Center
Cankoy, Osman; Özder, Hasan
2017-01-01
The aim of this study is to develop a scoring rubric to assess primary school students' problem posing skills. The rubric including five dimensions namely solvability, reasonability, mathematical structure, context and language was used. The raters scored the students' problem posing skills both with and without the scoring rubric to test the…
Regularity for Fully Nonlinear Elliptic Equations with Oblique Boundary Conditions
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Zhang, Kai
2018-06-01
In this paper, we obtain a series of regularity results for viscosity solutions of fully nonlinear elliptic equations with oblique derivative boundary conditions. In particular, we derive the pointwise C α, C 1,α and C 2,α regularity. As byproducts, we also prove the A-B-P maximum principle, Harnack inequality, uniqueness and solvability of the equations.
NASA Astrophysics Data System (ADS)
Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.
2018-04-01
We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.
Degeneracy of energy levels of pseudo-Gaussian oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iacob, Theodor-Felix; Iacob, Felix, E-mail: felix@physics.uvt.ro; Lute, Marina
2015-12-07
We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.
Makarov, Dmitrii E
2013-01-07
Conformational rearrangements in biomolecules (such as protein folding or enzyme-ligand binding) are often interpreted in terms of low-dimensional models of barrier crossing such as Kramers' theory. Dimensionality reduction, however, entails memory effects; as a result, the effective frictional drag force along the reaction coordinate nontrivially depends on the time scale of the transition. Moreover, when both solvent and "internal" friction effects are important, their interplay results in a highly nonlinear dependence of the effective friction on solvent viscosity that is not captured by common phenomenological models of barrier crossing. Here, these effects are illustrated using an analytically solvable toy model of an unstructured polymer chain involved in an inter- or intramolecular transition. The transition rate is calculated using the Grote-Hynes and Langer theories, which--unlike Kramers' theory--account for memory. The resulting effective frictional force exerted by the polymer along the reaction coordinate can be rationalized in terms of the effective number of monomers engaged in the transition. Faster transitions (relative to the polymer reconfiguration time scale) involve fewer monomers and, correspondingly, lower friction forces, because the polymer chain does not have enough time to reconfigure in response to the transition.
Quantifying uncertainty in climate change science through empirical information theory.
Majda, Andrew J; Gershgorin, Boris
2010-08-24
Quantifying the uncertainty for the present climate and the predictions of climate change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models is a central issue in climate change science. Here, a systematic approach to these issues with firm mathematical underpinning is developed through empirical information theory. An information metric to quantify AOS model errors in the climate is proposed here which incorporates both coarse-grained mean model errors as well as covariance ratios in a transformation invariant fashion. The subtle behavior of model errors with this information metric is quantified in an instructive statistically exactly solvable test model with direct relevance to climate change science including the prototype behavior of tracer gases such as CO(2). Formulas for identifying the most sensitive climate change directions using statistics of the present climate or an AOS model approximation are developed here; these formulas just involve finding the eigenvector associated with the largest eigenvalue of a quadratic form computed through suitable unperturbed climate statistics. These climate change concepts are illustrated on a statistically exactly solvable one-dimensional stochastic model with relevance for low frequency variability of the atmosphere. Viable algorithms for implementation of these concepts are discussed throughout the paper.
Solvability of a fourth-order boundary value problem with periodic boundary conditions II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Chaitan P.
1991-01-01
Lemore » t f : [ 0 , 1 ] × R 4 → R be a function satisfying Caratheodory's conditions and e ( x ) ∈ L 1 [ 0 , 1 ] . This paper is concerned with the solvability of the fourth-order fully quasilinear boundary value problem d 4 u d x 4 + f ( x , u ( x ) , u ′ ( x ) , u ″ ( x ) , u ‴ ( x ) ) = e ( x ) , 0 < x < 1 , with u ( 0 ) − u ( 1 ) = u ′ ( 0 ) − u ′ ( 1 ) = u ″ ( 0 ) - u ″ ( 1 ) = u ‴ ( 0 ) - u ‴ ( 1 ) = 0 . This problem was studied earlier by the author in the special case when f was of the form f ( x , u ( x ) ) , i.e., independent of u ′ ( x ) , u ″ ( x ) , u ‴ ( x ) . It turns out that the earlier methods do not apply in this general case. The conditions need to be related to both of the linear eigenvalue problems d 4 u d x 4 = λ 4 u and d 4 u d x 4 = − λ 2 d 2 u d x 2 with periodic boundary conditions.« less
Exactly solvable field theories of closed strings
NASA Astrophysics Data System (ADS)
Brézin, E.; Kazakov, V. A.
1990-02-01
Field theories of closed strings are shown to be exactly solvable for a central charge of matter fields c=1-6/m(m+1),m=1,2, 3, .... The two-point function χ(λ,N), in which λ is the cosmological constant and N-1 is the string coupling constant, obeys a scaling law χ(λ,N=N-(m+1/2)C((λc-λ)Nm/(m+1/2)) in the limit in which N-1 goes to zero and λ goes to a critical value λc we have determined the universal non-linear differential equation satisfied by the function C. From this equation it is found that a phase transition takes place for some finite value of the scaling parameter (λc-λ)Nm/(m+1/2); this transition is a ``condensation of handles'' on the world sheet, characterized by a divergence of the averaged genus of the world sheets. The cases m=2,3 are elaborated in more details, and the case m=1, which corresponds to the embedding of a bosonic string in -2 dimensions, is reduced to explicit quadratures. Permanent address: Cybernetics Council and Academy of Sciences, ul. Vavilova 40, SU-117 333 Moscow, USSR.
A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.
Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah
2011-01-01
This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.
A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging
Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah
2011-01-01
This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653
Dean, A A; Bark, J E; Sherriff, A; Macpherson, L M D; Cairns, A
2011-06-01
To assess the current awareness, usage and opinion of the Hall technique as a restorative option for primary molars in Scottish general dental practice; and to identify preferences for methods of further training, if desired, for those not currently using the technique. A postal questionnaire was sent to a random sample of Scottish general dental practitioners (GDPs) (n= 1207). Half of all GDPs within each health board were mailed. All analyses have been carried out in Minitab (version 15). The study is primarily descriptive and uses frequency distributions and cross-tabulations. Percentages are reported with p5% confidence intervals. Characteristics of the whole sample were reported. However when reporting the use of the Hall technique, only those GDP's reporting to treat children, at least sometimes are considered. Following two mail-shots, the overall response rate was 59% (715/1207). Eighty-six percent (616/715) of respondents were aware of the Hall technique as a method of restoring primary molars and 48 % (n=318) were currently using the Hall technique. Of those GDPs who never used the Hall technique (51% of total respondents; n=340), 46% (n=157) indicated they were either 'very interested' or 'interested' in adopting the Hall technique into their clinical practice. The preferred source for further training was via a section 63 continuing professional development (CPD) course, incorporating a practical element. Of those GDPs in Scotland who responded to the questionnaire, an unexpectedly high number were already using the Hall technique in their practice, and among those not currently using it, there is a demand for training.
Prentice Hall Literature© (1989-2005). What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2017
2017-01-01
"Prentice Hall Literature©" (1989-2005) is an English language arts curriculum designed for students in grades 6-12 that focuses on building reading, writing, listening, viewing, speaking, and language skills. Multiple editions of this curriculum were released between 1989 and 2005, including "Prentice Hall Literature©" (1989)…
Residence Hall Discipline as a Function of Personality Type.
ERIC Educational Resources Information Center
Williams, W. C.; Nelson, Susan Innmon
1986-01-01
Administered personality measures to residence hall personnel (N=48) to test assertive, nonassertive, or hostile responses to describe residence hall disciplinary situations. Found that not all personnel were well suited to college student disciplining and that the personality tests could be used to identify individuals who may be best suited for…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... Proposed Wheatgrass Ridge Wind Project, Fort Hall Indian Reservation, Idaho AGENCY: Bureau of Indian... proposed Wheatgrass Ridge Wind Project on the Fort Hall Indian Reservation, Idaho. FOR FURTHER INFORMATION... INFORMATION: The BIA is canceling work on this EIS because the proponent of the Wheatgrass Ridge Wind Project...
"Are You as Hard as 50 Cent?" Negotiating Race and Masculinity in the Residence Halls
ERIC Educational Resources Information Center
Jaggers, Dametraus; Iverson, Susan V.
2012-01-01
In a qualitative study of Black undergraduate men at a predominantly White university in the Midwest, participants shared their experiences in residence halls, including roommate conflicts, interracial tensions, and disagreements with residence hall staff. This article focuses on Black male undergraduates' negotiation of racialized conceptions of…
"Are You as Hard as 50 Cent? Negotiating Race and Masculinity in the Residence Halls
ERIC Educational Resources Information Center
Jaggers, Dametraus; Iverson, Susan V.
2012-01-01
In a qualitative study of Black undergraduate men at a predominantly White university in the Midwest, participants shared their experiences in residence halls, including roommate conflicts, interracial tensions, and disagreements with residence hall staff. This article focuses on Black male undergraduates' negotiation of racialized conceptions of…
Mary E. Hall: Dawn of the Professional School Librarian
ERIC Educational Resources Information Center
Alto, Teresa
2012-01-01
A century ago, a woman named Mary E. Hall convinced school leaders of the need for the professional school librarian--a librarian who cultivated a love of reading, academic achievement, and independent learning skills. After graduating from New York City's Pratt Institute Library School in 1895, Hall developed her vision for the high school…
An End-to-End Model of a Hall Thruster
2000-09-01
and deposition of sputtered material, simulation of the operator of a Hall Thruster in a vacuum tank and the extension to the near-plume of a...sophisticated Hall thruster transient hybrid PlC model which had been previously used only to describe the internal flow. The first two items have been
Making and Moving Publics: Stuart Hall's Projects, Maximal Selves and Education
ERIC Educational Resources Information Center
Roman, Leslie G.
2015-01-01
An extraordinary educator and public intellectual, Stuart Hall's career as a scholar, activist, teacher and mentor has touched almost every field in the social sciences and humanities. Paradoxically, education rarely claims him as an educator. Stuart Hall's refusal to see publics as given, fixed or settled matters with clear or final demarcations…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, John D.; Anderson, David E.; Bechtol, D.
The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.
G. Stanley Hall, Child Study, and the Teaching of Geography
ERIC Educational Resources Information Center
Koelsch, William A.
2002-01-01
G. Stanley Hall (1844-1924), founding president of Clark University, was a leader in the child study movement and a significant figure in psychology and education in the late nineteenth and early twentieth centuries. Hall had pronounced opinions on many educational subjects, including the teaching of geography. His criticisms and program for the…
Understanding and Interrupting Hegemonic Projects in Education: Learning from Stuart Hall
ERIC Educational Resources Information Center
Apple, Michael W.
2015-01-01
Stuart Hall had a significant impact on critical analyses of rightist mobilizations in education. This is very visible in my own work, for example, in such volumes as "Official Knowledge" (2014) and "Educating the 'Right' Way" (2006). After describing an important series of lectures that Stuart Hall gave at the Havens Center…
NASA HERMeS Hall Thruster Electrical Configuration Characterization
NASA Technical Reports Server (NTRS)
Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard
2015-01-01
The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.
G. Stanley Hall, Child Study, and the American Public.
Young, Jacy L
2016-01-01
In the final decades of the 19th century psychologist Granville Stanley Hall was among the most prominent pedagogical experts in the nation. The author explores Hall's carefully crafted persona as an educational expert, and his engagements with the American public, from 1880 to 1900, arguably the height of his influence. Drawing from accounts of Hall's lecture circuit in the popular press, a map of his talks across the nation is constructed to assess the geographic scope of his influence. These talks to educators on the psychology underlying childhood and pedagogy, and his views and research on child life more generally, were regularly discussed in newspapers and popular periodicals. The venues in which Hall's ideas were disseminated, discussed, and in some cases, dismissed are described. His efforts to mobilize popular support for, and assistance with, his research endeavors in child study are also discussed. Such efforts were controversial both within the burgeoning field of psychology and among the public. Through his various involvements in pedagogy, and concerted efforts to engage with the American public, Hall helped establish psychology's relevance to parenting and educational practices.
Spin-hall-active platinum thin films grown via atomic layer deposition
NASA Astrophysics Data System (ADS)
Schlitz, Richard; Amusan, Akinwumi Abimbola; Lammel, Michaela; Schlicht, Stefanie; Tynell, Tommi; Bachmann, Julien; Woltersdorf, Georg; Nielsch, Kornelius; Goennenwein, Sebastian T. B.; Thomas, Andy
2018-06-01
We study the magnetoresistance of yttrium iron garnet/Pt heterostructures in which the Pt layer was grown via atomic layer deposition (ALD). Magnetotransport experiments in three orthogonal rotation planes reveal the hallmark features of spin Hall magnetoresistance. To estimate the spin transport parameters, we compare the magnitude of the magnetoresistance in samples with different Pt thicknesses. We check the spin Hall angle and the spin diffusion length of the ALD Pt layers against the values reported for high-quality sputter-deposited Pt films. The spin diffusion length of 1.5 nm agrees well with that of platinum thin films reported in the literature, whereas the spin Hall magnetoresistance Δ ρ / ρ = 2.2 × 10 - 5 is approximately a factor of 20 smaller compared to that of our sputter-deposited films. Our results demonstrate that ALD allows fabricating spin-Hall-active Pt films of suitable quality for use in spin transport structures. This work provides the basis to establish conformal ALD coatings for arbitrary surface geometries with spin-Hall-active metals and could lead to 3D spintronic devices in the future.
Sodemann, Inti; Fu, Liang
2015-11-20
It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.
Nonlinear excitation of long-wavelength modes in Hall plasmas
NASA Astrophysics Data System (ADS)
Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.
2016-10-01
Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.
1000 Hours of Testing Completed on 10-kW Hall Thruster
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2001-01-01
Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.
Tunable-φ Josephson junction with a quantum anomalous Hall insulator
NASA Astrophysics Data System (ADS)
Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro
2017-12-01
We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.
Quantum Hall effect in graphene with interface-induced spin-orbit coupling
NASA Astrophysics Data System (ADS)
Cysne, Tarik P.; Garcia, Jose H.; Rocha, Alexandre R.; Rappoport, Tatiana G.
2018-02-01
We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analyzing the spin splitting of the quantum Hall states as a function of magnetic field and gate voltage, we obtain different scaling laws that can be used to characterize the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadzow, Janet; Messier, Dave
Gwichyaa Zhee Gwich’in Tribal Government (GZGTG) applied for funding in 2014 under the U.S. Department of Energy Office of Indian Energy Deployment of Clean Energy on Tribal Lands funding opportunity. They were awarded 50% of the project costs for the construction of an 18kW, grid-tied solar PV array on the fort Yukon Tribal Hall, the construction of a 3kW solar PV array on the tribally owned greenhouse, the replacement of inefficient florescent lighting fixtures in the tribal hall to higher efficiency LED lights and the addition of blow in cellulose insulation to the attic of the tribal hall to assistmore » with heat retention. Total DOE Funding for the project was $124,735. Total GZGTG funding for the project was $133,321 for a total project cost of $258,056. The Project was completed with 100% local labor on the tribal hall solar PV installation, the LED lighting retrofit and the insulation on the tribal hall. Based on the results at the tribal hall/office, the tribe also used their own tribal funding to retrofit the lighting in the community hall from florescent to LED lights. The resulting project was completed by the end of Sept 2016 and results have shown a decrease in fuel used at the tribal hall/office of 35% and a decrease in electric costs at the tribal hall of 68%. The total energy costs before the project were approximately $28,000 a year and the energy equivalent of 385 MMBTU/yr. After the project the total energy costs decreased to $11,200/yr. and an energy equivalent of only 242 MMBTU. This represents an overall decrease in energy use of 38%. All in all the tribe and the community regard this project as a huge success!« less
Evidence for phonon skew scattering in the spin Hall effect of platinum
NASA Astrophysics Data System (ADS)
Karnad, G. V.; Gorini, C.; Lee, K.; Schulz, T.; Lo Conte, R.; Wells, A. W. J.; Han, D.-S.; Shahbazi, K.; Kim, J.-S.; Moore, T. A.; Swagten, H. J. M.; Eckern, U.; Raimondi, R.; Kläui, M.
2018-03-01
We measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of Pt |Co | AlOx . An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.
Desalination of brick masonry and stone carvings in Capitullum hall of Riga Dome Cathedral
NASA Astrophysics Data System (ADS)
Grave, J.; Krage, L.; Lusis, R.; Vitina, I.
2011-12-01
The construction of Riga Dome Cathedral and its Capithullum hall were initiated in 1211. Through centuries they were damaged a lot due to migration of soluble salts and moisture. During the last restoration (1888-1891) a lot of mistakes were conceded and subsequently some of probable solutions for restoration were unsuccessful. In 2009 the new restoration stage in Capithullum hall was started. Two types of desalination methods were used in hall - desalination with lime-sand plaster and poultice of lignin. Both quantitative and semiquantitative chemical analyses were performed in order to appreciate the desalination process.
2012-05-05
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Franklin Chang Diaz into the U.S. Astronaut Hall of Fame Class of 2012. At the podium to the left, is CNN correspondent and Master of Ceremonies John Zarrella. Also inducted into the Hall of Fame were shuttle astronauts Kevin Chilton and Charlie Precourt. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann
2012-05-05
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke spoke during the U.S. Astronaut Hall of Fame induction ceremony and recognized former shuttle launch director Bob Sieck. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann
2012-05-05
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz at right shares a humorous moment with Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann
Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster
2006-01-01
Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating
Response of two-band systems to a single-mode quantized field
NASA Astrophysics Data System (ADS)
Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.
2016-03-01
The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.
Exploring 4D quantum Hall physics with a 2D topological charge pump
NASA Astrophysics Data System (ADS)
Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel
2018-01-01
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Exploring 4D quantum Hall physics with a 2D topological charge pump.
Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel
2018-01-03
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
The spin-Hall effect and spin-orbit torques in epitaxial Co2FeAl/platinum bilayers
NASA Astrophysics Data System (ADS)
Peterson, T. A.; Liu, C.; McFadden, T.; Palmstrøm, C. J.; Crowell, P. A.
We have performed magnetoresistance measurements on epitaxially grown Co2FeAl/platinum (CFA/Pt) ultrathin ferromagnet/heavy metal bilayers to study the spin-Hall effect in Pt and the accompanying spin-orbit torque (SOT) exerted on the magnetic CFA layer. Specifically, we measure the spin-Hall magnetoresistance in the Pt layer by changing the orientation of the CFA magnetization with respect to the spin current orientation created in the Pt, and we determine the SOT efficiency using a second-harmonic detection technique. Because the latter of the two measurements is proportional to the spin-Hall ratio θSHE while the former is proportional to θSHE2, we are able to extract the bare Pt spin-Hall ratio with no assumptions about the CFA/Pt interface spin mixing conductance. Furthermore, by varying the Pt thickness we show that the results are consistent with resistivity-independent spin-Hall conductivity. Finally, the two measurements in combination allow us to infer a spin-mixing conductance at the CFA/Pt interface of 2 +/- 1 ×1015Ω-1m-2 . The combination of spin-Hall magnetoresistance and SOT measurements allows for a determination of the spin-mixing conductance using only low-frequency transport techniques. This work was supported by STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... Installation Designated for Disposal: Ernest Veuve Hall USARC/AMSA 75, T-25, Fort Missoula, Montana AGENCY... of surplus property at the Ernest Veuve Hall USARC/AMSA 75, T-25, Fort Missoula, Montana. This notice..., T-25, Fort Missoula. Authority: This action is authorized by the Defense Base Closure and...
A Residential Paradox?: Residence Hall Attributes and College Student Outcomes
ERIC Educational Resources Information Center
Bronkema, Ryan; Bowman, Nicholas A.
2017-01-01
The researchers of this brief observed that few environments have the potential to shape the outcomes of college students as much as residence halls. As a result, residence halls have the capacity to foster a strong sense of community as well as other important outcomes such as college satisfaction and academic achievement. However, given the high…
ERIC Educational Resources Information Center
Hall, Gene E.
2015-01-01
Based on his career-long experiences with Jere Brophy, Gene Hall uses this article to not only point out Brophy's pioneering contributions to research on teaching and learning, but also offers a few personal reflections about what it was like to work with Jere. In addition, Hall shares a story about how Brophy's works had a direct impact on Hall's…
Improving the Acoustic Environment in Open Hall Schools. Educational Building Digest 1.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.
In the countries of the Asian region there is a long tradition of teaching and learning in large undivided halls. Articulation tests were carried out in schools in India, Sri Lanka, Malaysia, and Singapore to explore the acoustic environment of hall-type schools in which teaching groups were separated by storage or chalkboard partitions. This…
ERIC Educational Resources Information Center
Wisecup, Allison K.; Grady, Dennis; Roth, Richard A.; Stephens, Julio
2017-01-01
Purpose: The purpose of this study was to determine whether, and how, electricity consumption by students in university residence halls were impacted through three intervention strategies. Design/methodology/approach: The current investigation uses a quasi-experimental design by exposing freshman students in four matched residence halls and the…
30. VIEW OF DRILL HALL FROM SECOND FLOOR EAST BALCONY ...
30. VIEW OF DRILL HALL FROM SECOND FLOOR EAST BALCONY FACING WEST. SHOWS ALTERNATE BAY X BRACING OF ROOF TRUSSES. ALSO SHOWS TRUSSES, WINDOWS IN THE MONITOR, STAIRWAY AT THE SOUTHWEST CORNER OF THE DRILL HALL AND THE THREE LEVELS OF BENCHES ON THE BALCONY. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA
75 FR 44142 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing its determination that the Fort Hall PM-10... Standard for particulate matter with an aerodynamic diameter of less than or equal to 10 microns (PM-10...
Video-Out Projection and Lecture Hall Set-Up. Microcomputing Working Paper Series.
ERIC Educational Resources Information Center
Gibson, Chris
This paper details the considerations involved in determining suitable video projection systems for displaying the Apple Macintosh's screen to large groups of people, both in classrooms with approximately 25 people, and in lecture halls with approximately 250. To project the Mac screen to groups in lecture halls, the Electrohome EDP-57 video…
Spacecraft Interactions Studies with a 1 Kw Class Closed-Drift Hall Thruster
1998-01-31
Closed Drift Hall thruster plume with spacecraft surfaces and systems. Two basic interaction modes were investigated: (1) the influence of the plume...Spectrometer (MBMS) capable of discerning both the mass and energy of Hall thruster plume species, and the ion acoustic wave probe to measure the drift velocity of the plume plasma.
Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber
2002-10-18
try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison
ERIC Educational Resources Information Center
Training, 2012
2012-01-01
Microsoft Corporation and SCC Soft Computer are the newest inductees into the Training Top 10 Hall of Fame, joining the ranks of the 11 companies named to the hall since its inception in 2008 (Wyeth Pharmaceuticals subsequently was acquired by Pfizer Inc. in 2009). These 11 companies held Top 10 spots in the Training Top 50, Top 100, and now Top…
ERIC Educational Resources Information Center
Hall, Valerie; Gronn, Peter; Jenkin, Mazda; Power, Sally; Reynolds, Cecilia
1999-01-01
Hall and four colleagues review "Dancing on the Ceiling: A Study of Women Managers in Education" (Paul Chapman, 1996). Reviewers agree that Hall's profiles of six British elementary and secondary women headteachers should improve readers' understanding of female managers' development and their preference for "soft,"…
The Role of Social Influence on How Residence Hall Inhabitants Respond to Fire Alarms
ERIC Educational Resources Information Center
Leytem, Michael; Stark, Emily
2016-01-01
College resident halls pose a threat for a catastrophic event in the case of fire, but little research has examined potential influences on students' responses to fire alarms, particularly the role of social influence in affecting their behaviors. In the current study, residence hall inhabitants reported their knowledge about fire safety, their…
Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China.
Hu, Tafeng; Lee, Shuncheng; Cao, Junji; Chow, Judith C; Watson, John G; Ho, Kinfai; Ho, Wingkei; Rong, Bo; An, Zhisheng
2009-10-01
Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 microg m(-3) and 95.3-285.4 microg m(-3) with maximum diameters of 17.5 microm and 26.0 microm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 microm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.
NASA Astrophysics Data System (ADS)
Spencer, Charles S.; Gayles, Jacob; Porter, Nicholas A.; Sugimoto, Satoshi; Aslam, Zabeada; Kinane, Christian J.; Charlton, Timothy R.; Freimuth, Frank; Chadov, Stanislav; Langridge, Sean; Sinova, Jairo; Felser, Claudia; Blügel, Stefan; Mokrousov, Yuriy; Marrows, Christopher H.
2018-06-01
Epitaxial films of the B20-structure compound Fe1 -yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y ˜0.45 . This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall resistivity of our films as a function of magnetic field, temperature, and Co content y . The Hall resistivity is expected to contain contributions from the ordinary, anomalous, and topological Hall effects. Both the anomalous and topological Hall resistivities show peaks around y ˜0.5 . Our first-principles calculations show a peak in the topological Hall constant at this value of y , related to the strong spin polarization predicted for intermediate values of y . Our calculations predict half-metallicity for y =0.6 , consistent with the experimentally observed linear magnetoresistance at this composition, and potentially related to the other unusual transport properties for intermediate value of y . While it is possible to reconcile theory with experiment for the various Hall effects for FeGe, the large topological Hall resistivities for y ˜0.5 are much larger than expected when the very small emergent fields associated with the divergence in the DMI are taken into account.
Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?
NASA Astrophysics Data System (ADS)
Pandey, B. P.
2018-05-01
In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.
Direct observation of the skyrmion Hall effect
Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang; ...
2016-09-19
The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less
Plasmon Geometric Phase and Plasmon Hall Shift
NASA Astrophysics Data System (ADS)
Shi, Li-kun; Song, Justin C. W.
2018-04-01
The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.
Spin-Hall effect in the scattering of structured light from plasmonic nanowire.
Sharma, Deepak K; Kumar, Vijay; Vasista, Adarsh B; Chaubey, Shailendra K; Kumar, G V Pavan
2018-06-01
Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.
Spin-Hall effect in the scattering of structured light from plasmonic nanowire
NASA Astrophysics Data System (ADS)
Sharma, Deepak K.; Kumar, Vijay; Vasista, Adarsh B.; Chaubey, Shailendra K.; Kumar, G. V. Pavan
2018-06-01
Spin-orbit interactions are subwavelength phenomena which can potentially lead to numerous device related applications in nanophotonics. Here, we report Spin-Hall effect in the forward scattering of Hermite-Gaussian and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the Spin-Hall effect for Hermite-Gaussian beam as compared to Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition to it, nodal line of HG beam acts as the marker for the Spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the Spin flow component of Poynting vector associated with the circular polarization is responsible for the Spin-Hall effect and its enhancement.
Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode
NASA Technical Reports Server (NTRS)
Martinez, Rafael A. (Inventor); Moritz, Jr., Joel A. (Inventor); Williams, John D. (Inventor); Farnell, Casey C. (Inventor)
2018-01-01
A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.
2018-04-21
Kelvin Manning, associate director of NASA's Kennedy Space Center in Florida, welcomes guests to the 2018 U.S. Astronaut Hall of Fame (AHOF) Induction inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex (KSCVC). Two veteran space explorers were inducted into the Hall of Fame Class of 2018. They are Scott D. Altman and Thomas D. Jones, Ph.D. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.
Spin Hall Effects in Metallic Antiferromagnets
Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...
2014-11-04
In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less
von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo
2018-04-01
A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.
NASA Astrophysics Data System (ADS)
Kuskowska, Karolina; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja
2018-01-01
The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.
Measuring the Hall weighting function for square and cloverleaf geometries
NASA Astrophysics Data System (ADS)
Scherschligt, Julia K.; Koon, Daniel W.
2000-02-01
We have directly measured the Hall weighting function—the sensitivity of a four-wire Hall measurement to the position of macroscopic inhomogeneities in Hall angle—for both a square shaped and a cloverleaf specimen. Comparison with the measured resistivity weighting function for a square geometry [D. W. Koon and W. K. Chan, Rev. Sci. Instrum. 69, 12 (1998)] proves that the two measurements sample the same specimen differently. For Hall measurements on both a square and a cloverleaf, the function is nonnegative with its maximum in the center and its minimum of zero at the edges of the square. Converting a square into a cloverleaf is shown to dramatically focus the measurement process onto a much smaller portion of the specimen. While our results agree qualitatively with theory, details are washed out, owing to the finite size of the magnetic probe used.
Direct observation of the skyrmion Hall effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang
The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less
Quantum Hall Ferroelectrics and Nematics in Multivalley Systems
NASA Astrophysics Data System (ADS)
Sodemann, Inti; Zhu, Zheng; Fu, Liang
2017-10-01
We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.
Role of chiral quantum Hall edge states in nuclear spin polarization.
Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu
2017-04-20
Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.
Computer calculation of Witten's 3-manifold invariant
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Gompf, Robert E.
1991-10-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.
ERIC Educational Resources Information Center
Shockley, Kmt G.
2011-01-01
African centered educationists view the problems that Black children are facing in schools as a part of the disenfranchisement and disorganization of the Black community at large. In that vein, they do not believe that the problems which Black children are experiencing in America's public (and many private) schools are solvable by taking them out…
The business plan: an AR perspective.
Hajny, Tom
2008-01-01
It is important to periodically reassess the environment and what we need to accomplish in the near-term (or mid- or long term). Our skills, insights, knowledge, and talents grow yearly and maybe, just maybe, problems that we thought were intractable are, indeed, solvable. Play with the idea of Mission Statement, Objectives, and Keys to Success to stir up your neurons to execute a plan of excellence.
ERIC Educational Resources Information Center
Goodchild, Lester F.
2012-01-01
This article explores the influence of evolutionary ideas, especially Social Darwinism, on G. Stanley Hall's (1844-1924) educational ideas and major writings on gender and race. Hall formed these progressive ideas as he developed an American Social Darwinist pedagogy, embedded in his efforts to create the discipline of psychology, the science of…
A Gathering of Symbols. Texas History in the Hall of State.
ERIC Educational Resources Information Center
Younger, Jessamine, Ed.
Designed for history teachers of students in grades 4-7 and for museum educators, this teacher's manual interprets art and objects in the Hall of State (Dallas) within the context of the Texas history curriculum. Although the guide focuses specifically on Texas history and the Hall of State, it can be used as a model for museum and school…
ERIC Educational Resources Information Center
Engstrom, Cathy McHugh; Sedlacek, William E.
The study was conducted to assess residence hall student attitudes toward student-athletes at a predominantly white, eastern public institution. A total of 180 students living in traditional residence halls, suites, and apartments were sent the Situational Attitude Scale--Student-Athlete of whom 115 returned usable responses. Results showed that…
is limited. Check the calendar for dates and registration. Visitors meet in the Wilson Hall atrium and making your way to the 1st floor of Wilson Hall in time for the tour. Fermilab is a busy lab so Fermilab's exhibit and viewing areas on the 15th floor of Wilson Hall are open Monday-Friday from 8 a.m. to 4
The Development of a Tutor Programme in a University Hall of Residence--A Case Study.
ERIC Educational Resources Information Center
Beasley, V. J.
The tutor system within a university hall of residence at Flinders University of South Australia and a method of inquiry used to study the system are examined. Interviews with residence hall tutors revealed four concerns: the need for guidelines, the nature of academic tutoring, pastoral care and its implications, and communication channels within…
Sharpless Outlines His Plans for NCI During Spring Town Hall | Poster
At the National Cancer Institute (NCI) Spring Town Hall, new director Norman E. “Ned” Sharpless, M.D., summarized his goals for NCI’s role in cancer research. The event, which was held at NCI Shady Grove and livestreamed to eight other major NCI locations, was Sharpless’ first town hall since his six-month “listening and learning tour” concluded.
2004-07-01
The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the
Science 101: How Do Acoustics Dictate the Design of a Concert Hall?
ERIC Educational Resources Information Center
Robertson, Bill
2015-01-01
This column provides background science information for elementary teachers. When the author was young he used to think that the ideal design for a concert hall would contain walls that were composed of sound-absorbing material, like foam or egg cartons or such. He noticed, though, that this was not the case. Most concert halls contain curtains…
A study of cylindrical Hall thruster for low power space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Raitses; N.J. Fisch; K.M. Ertmer
2000-07-27
A 9 cm cylindrical thruster with a ceramic channel exhibited performance comparable to the state-of-the-art Hall thrusters at low and moderate power levels. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations. Preliminary experiments on a 2 cm cylindrical thruster suggest the possibility of a high performance micro Hall thruster.
Useful Pedagogical Applications of the Classical Hall Effect
ERIC Educational Resources Information Center
Houari, Ahmed
2007-01-01
One of the most known phenomena in physics is the Hall effect. This is mainly due to its simplicity and to the wide range of its theoretical and practical applications. To complete the pedagogical utility of the Hall effect in physics teaching, I will apply it here to determine the Faraday constant as a fundamental physical number and the number…
Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows.
Gómez, Daniel O; Bejarano, Cecilia; Mininni, Pablo D
2014-05-01
We study the stability of shear flows in a fully ionized plasma. Kelvin-Helmholtz is a well-known macroscopic and ideal shear-driven instability. In sufficiently low-density plasmas, also the microscopic Hall magnetoshear instability can take place. We performed three-dimensional simulations of the Hall-magnetohydrodynamic equations where these two instabilities are present, and carried out a comparative study. We find that when the shear flow is so intense that its vorticity surpasses the ion-cyclotron frequency of the plasma, the Hall magnetoshear instability is not only non-negligible, but it actually displays growth rates larger than those of the Kelvin-Helmholtz instability.
The quantum Hall effects: Philosophical approach
NASA Astrophysics Data System (ADS)
Lederer, P.
2015-05-01
The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.
Optimum Design Rules for CMOS Hall Sensors
Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico
2017-01-01
This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes. PMID:28375191
Optimum Design Rules for CMOS Hall Sensors.
Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico
2017-04-04
This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes.
Determination of intrinsic spin Hall angle in Pt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Deorani, Praveen; Qiu, Xuepeng
2014-10-13
The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.
Piezo Voltage Controlled Planar Hall Effect Devices
Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You
2016-01-01
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068
Piezo Voltage Controlled Planar Hall Effect Devices.
Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You
2016-06-22
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.
Robust emergence of a topological Hall effect in MnGa/heavy metal bilayers
NASA Astrophysics Data System (ADS)
Meng, K. K.; Zhao, X. P.; Liu, P. F.; Liu, Q.; Wu, Y.; Li, Z. P.; Chen, J. K.; Miao, J.; Xu, X. G.; Zhao, J. H.; Jiang, Y.
2018-02-01
We have investigated the topological Hall effect (THE) in MnGa/Pt and MnGa/Ta bilayers induced by the inter- facial Dzyaloshinskii-Moriya interaction (DMI). By varying the growth parameters, we can modulate the domain wall energy, and the largest THE signals are found when the domain wall energy is the smallest. The large topological portion of the Hall signal from the total Hall signal has been extracted in the whole temperature range from 5 to 300 K. These results open up the exploration of the DMI induced magnetic behavior based on the bulk perpendicular magnetic anisotropy materials for fundamental physics and magnetic storage technologies.
Leary, David E
2009-01-01
This article focuses on the 20-year gap between Charles S. Peirce's classic proposal of pragmatism in 1877-1878 and William James's equally classic call for pragmatism in 1898. It fills the gap by reviewing relevant developments in the work of Peirce and James and by introducing G. Stanley Hall, for the first time, as a figure in the history of pragmatism. In treating Hall and pragmatism, the article reveals a previously unnoted relation between the early history of pragmatism and the early history of the "new psychology" that Hall helped to pioneer. (c) 2009 Wiley Periodicals, Inc.
Performance of a Low-Power Cylindrical Hall Thruster
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Raitses, Yevgeny; Smirnov, Artem; Fisch, Nathaniel J.
2007-01-01
Recent mission studies have shown that a Hall thruster which operates at relatively constant thrust efficiency (45-55%) over a broad power range (300W - 3kW) is enabling for deep space science missions when compared with slate-of-the-art ion thrusters. While conventional (annular) Hall thrusters can operate at high thrust efficiency at kW power levels, it is difficult to construct one that operates over a broad power envelope down to 0 (100 W) while maintaining relatively high efficiency. In this note we report the measured performance (I(sub sp), thrust and efficiency) of a cylindrical Hall thruster operating at 0 (100 W) input power.
NASA Astrophysics Data System (ADS)
Thomas, C.; Crauste, O.; Haas, B.; Jouneau, P.-H.; Bäuerle, C.; Lévy, L. P.; Orignac, E.; Carpentier, D.; Ballet, P.; Meunier, T.
2017-12-01
We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of relativistic Landau levels specific to coupled Dirac surface states. This study provides insights in the quantum Hall effect of topological insulator (TI) slabs, in the crossover regime between two- and three-dimensional TIs, and in the relevance of thin TI films to explore circuit functionalities in spintronics and quantum nanoelectronics.
Suitable reverberation times for halls for rock and pop music.
Adelman-Larsen, Niels Werner; Thompson, Eric R; Gade, Anders C
2010-01-01
The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers as expert listeners. Correlations between the measurements show that clarity, including bass frequencies down to 63 Hz, is important for the general impression of the acoustics of the hall. The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m(3). The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands.
Effect of capping layer on spin-orbit torques
NASA Astrophysics Data System (ADS)
Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.
2018-04-01
In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.
Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect
NASA Astrophysics Data System (ADS)
Wang, Te-Chun; Gou, Yih-Shun
1997-08-01
A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.
Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Smirnov; Y. Raitses; N.J. Fisch
2004-06-24
Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explainmore » the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.« less
Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature
NASA Astrophysics Data System (ADS)
Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru
Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.
Coupling intensity between discharge and magnetic circuit in Hall thrusters
NASA Astrophysics Data System (ADS)
Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai
2017-03-01
Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.
Reed, Kathlyn L
2005-01-01
Herbert James Hall, MD (1870-1923), was a pioneer in the systematic and organized study of occupation as therapy for persons with nervous and mental disorders that he called the "work cure." He began his work in 1904 during the early years of the Arts and Crafts Movement in the United States. His primary interest was the disorder neurasthenia, a condition with many symptoms including chronic fatigue, stress, and inability to work or perform everyday tasks. The prevailing treatment of the day was absolute bed rest known as the "rest cure." Hall believed that neurasthenia was not caused by overwork but by faulty living habits that could be corrected through an ordered life schedule and selected occupations. He identified several principles of therapy that are still used today including graded activity and energy conservation. Dr. Adolph Meyer credits Hall for organizing the ideas on the therapeutic use of occupation (Meyer, 1922). Hall also provided the name American Occupational Therapy Association for the professional organization and served as the fourth president. For his many contributions to the profession Hall deserves to be recognized as a major contributor to the development and organization of occupational therapy.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.
2001-01-01
NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.
Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers
NASA Astrophysics Data System (ADS)
Tong, Wen-Yi; Duan, Chun-Gang
2017-08-01
In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.
Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy
NASA Astrophysics Data System (ADS)
Hasebe, Kazuki
2017-07-01
We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...
2016-07-01
Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi 2Te 3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi 2Te 3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor.more » The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi 2Te 3 with the previously studied Mn-doped Bi 2Te 3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less
Perception of music dynamics in concert hall acoustics.
Pätynen, Jukka; Lokki, Tapio
2016-11-01
Dynamics is one of the principal means of expressivity in Western classical music. Still, preceding research on room acoustics has mostly neglected the contribution of music dynamics to the acoustic perception. This study investigates how the different concert hall acoustics influence the perception of varying music dynamics. An anechoic orchestra signal, containing a step in music dynamics, was rendered in the measured acoustics of six concert halls at three seats in each. Spatial sound was reproduced through a loudspeaker array. By paired comparison, naive subjects selected the stimuli that they considered to change more during the music. Furthermore, the subjects described their foremost perceptual criteria for each selection. The most distinct perceptual factors differentiating the rendering of music dynamics between halls include the dynamic range, and varying width of sound and reverberance. The results confirm the hypothesis that the concert halls render the performed music dynamics differently, and with various perceptual aspects. The analysis against objective room acoustic parameters suggests that the perceived dynamic contrasts are pronounced by acoustics that provide stronger sound and more binaural incoherence by a lateral sound field. Concert halls that enhance the dynamics have been found earlier to elicit high subjective preference.
A fully implicit Hall MHD algorithm based on the ion Ohm's law
NASA Astrophysics Data System (ADS)
Chacón, Luis
2010-11-01
Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.
Tunnelling anomalous and planar Hall effects (Conference Presentation)
NASA Astrophysics Data System (ADS)
Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor
2016-10-01
We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).
Peterson, Sharon; Duncan, Diana Poovey; Null, Dawn Bloyd; Roth, Sara Long; Gill, Lynn
2010-01-01
Determine the effects of a short-term, multi-faceted, point-of-selection intervention on college students' perceptions and selection of 10 targeted healthful foods in a university dining hall and changes in their self-reported overall eating behaviors. 104 college students, (age 18-23) completed pre-I and post-I surveys. Pre-survey collected at dining hall in April 2007, followed by 3-week intervention then post-survey collected via email. Healthy choice indicators, large signs, table tents, flyers and colorful photographs with "benefit-based messages" promoted targeted foods. Response rate to both surveys was 38%. Significantly more participants reported that healthful choices were clearly identified in the dining hall after the intervention. Over 20% of participants reported becoming more aware of healthful food choices in the dining hall after the intervention. Significant increases in self-reported intake were reported for cottage cheese and low-fat salad dressing, with a trend toward increased consumption of fresh fruit. Seven of the 14 assessed eating behaviors had significant changes in the desired direction. Increased awareness of healthful foods was the top reason for self-reported changes in overall eating behaviors. Short-term, multi-faceted, point-of-selection marketing of healthful foods in university dining halls may be beneficial for improving college students' perceptions and selections of targeted healthful foods in the dining hall and may improve overall eating behaviors of college students.
Hall-effect Thruster Channel Surface Properties Investigation (PREPRINT)
2011-03-03
Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hall-effect Thruster Channel Surface Properties Investigation 5b...13. SUPPLEMENTARY NOTES For publication in the AIAA Journal of Propulsion and Power. 14. ABSTRACT Surface properties of Hall-effect thruster...incorporated into thruster simulations, and these models must account for evolution of channel surface properties due to thruster operation. Results from
The Baseball Hall of Fame Is Not the Kiss of Death
ERIC Educational Resources Information Center
Smith, Gary
2011-01-01
E. Abel and M. Kruger (2005) reported that the median life expectancy of Major League Baseball players after election to the Baseball Hall of Fame is 5 years shorter than that of players of the same age who are not elected to the Hall of Fame. This conclusion is surprising because there is no compelling explanation for such a dramatic reduction in…
Establishment of a Hall Thruster Cluster
2004-02-01
DURIP funds were used to develop a Hall thruster cluster test facility centered around the University of Michigan Large Vacuum Test Facility and a 2x2 cluster of BUSEK 600 W BHT-600 Hall thrusters. This capability will facilitate our three-year program to address the issue of high-power CDT operation and to provide insight on how chamber effects influence CDT engine/cluster characteristics.
The Effects of Insulator Wall Material on Hall Thruster Discharges: A Numerical Study
2001-01-03
An investigation was undertaken to determine how the choice of insulator wall material inside a Hall thruster discharge channel might affect thruster operation. In order to study this, an evolved hybrid particle-in-cell (PIC) numerical Hall thruster model, HPHall, was used. HPHall solves a set of quasi-one-dimensional fluid equations for electrons and tracks heavy particles using a PIC method.
2004-09-02
path for developing high-power EP systems is somewhat certain given NASA’s recent success with its 70+ kW NASA-457M Hall thruster , it is clear that...current density distribution, and summarize findings from cold- and hot-flow pressure map data of our vacuum chamber for a number of Hall thruster mass flow rates.
ERIC Educational Resources Information Center
Spencer, Stephanie
2013-01-01
In 1927 the British Federation of University Women (BFUW) established Crosby Hall in London as a hall of residence for women graduates from overseas. The Federation aimed to foster international understanding and peace at a time of social and political turmoil. Accessions to the library at the Hall were on a somewhat ad hoc basis and provide an…
The Hall Effect in Hydrided Rare Earth Films
NASA Astrophysics Data System (ADS)
Koon, D. W.; Azofeifa, D. E.; Clark, N.
We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.
Stuart Hall on Racism and the Importance of Diasporic Thinking
ERIC Educational Resources Information Center
Rizvi, Fazal
2015-01-01
In this article, I want to show how my initial encounter with the work of Stuart Hall was grounded in my reading of the later philosophy of Ludwig Wittgenstein, and was shaped by my interest in understanding the nature of racism across the three countries in which I had lived. Over the years, Hall's various writings have helped me to make sense of…
Pair spectrometer hodoscope for Hall D at Jefferson Lab
Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; ...
2015-09-21
We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.
Pair spectrometer hodoscope for Hall D at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre
We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.
Production of Charmonium at Threshold in Hall A and C at Jefferson Lab
Hafidi, K.; Joosten, S.; Meziani, Z. -E.; ...
2017-05-27
Here, we describe in this paper two approved experiments in Hall A and Hall C at Jefferson Lab that will investigate the pure gluonic component of the strong interaction of Quantum ChromoDynamics by measuring the elastic J/ψ electro and photo-production cross section in the threshold region as well as explore the nature of the recently discovered LHCb charmed pentaquarks.
Mixed-state Hall effect of high-T(c) superconductors
NASA Astrophysics Data System (ADS)
Kang, Byeongwon
In this dissertation, we presented the study on the mixed-state Hall effect of high-Tc superconductors (HTSs). In order to understand the mechanisms of the puzzling phenomena in the mixed-state Hall effect of HTSs, the Hall sign anomaly and scaling behavior, Hall measurements are conducted in several HTS thin films. We investigate the mechanism of the sign reversal of the Hall resistivity in Tl-2201 films when the electronic band structure is varied through the underdoped, optimally doped, and overdoped regions. It is found that the Hall sign reversals are an intrinsic property of HTSs and determined by electronic band structure. Although pinning is not found to be the mechanism behind sign reversals, pinning can suppress the appearance of the Hall sign reversal. Therefore, it is concluded that two (or more) sign reversals are a generic behavior of HTSs. From a systematic study of the vortex phase diagram, we discover several new features of the vortex liquid. In the presence of pinning, the vortex-liquid phase can be divided into two regions, a glassy liquid (GL) where vortices remain correlated as manifested in non-Ohmic resistivity, and a regular liquid (RL) where resistivity becomes Ohmic as vortices become uncorrelated. The field dependence of the Hall angle is found to be linear in the RL and nonlinear in the GL. Generally the decoupling line (Hk- T), which is defined as a boundary between the GL and the RL, is lower than the depinning line (Hd-T). As pinning increases the Hk-T may approach the Hd-T, thus vortices are decoupled and depinned nearly simultaneously. For a weak pinning system, on the other hand, the Hk-T and the Hd-T are well separated so that single vortices remain pinned in the region Hk ≤ H ≥ Hd. The behavior of s xy is also investigated in the GL and the RL. In the GL s xy is observed to strongly depend on pinning due to the inter-vortex correlation whereas in the RL s xy is independent of pinning since the pinning effect is scaled out.
Fractional quantum Hall effect at Landau level filling ν = 4/11
Pan, W.; Baldwin, K. W.; West, K. W.; ...
2015-01-09
In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance R xx and a quantized Hall resistance R xy, within 1% of the expected value of h/(4/11)e 2, were observed. The temperature dependence of the R xx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν =more » 3/8 and 5/13.« less
Framing anomaly in the effective theory of the fractional quantum Hall effect.
Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo
2015-01-09
We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.
MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect
NASA Astrophysics Data System (ADS)
Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.
2018-06-01
We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David
1999-01-01
The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.
Hall viscosity of a chiral two-orbital superconductor at finite temperatures
NASA Astrophysics Data System (ADS)
Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali
2018-06-01
The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.
Ocean and coastal data management
de La Beaujardière, Jeff; Beegle-Krause, C; Bermudez, Luis; Hankin, Steven C.; Hazard, Lisa; Howlett, Eoin; Le, Steven; Proctor, Roger; Signell, Richard P.; Snowden, Derrick P.; Thomas, Julie
2010-01-01
We introduce data management concepts, including what we mean by "data" and its "management," sources of data, interoperability, and data geometry. We then discuss various components of a data management system. Finally, we summarize some existing ocean and coastal data management efforts. We make specific recommendations throughout the paper. We are generally optimistic that ocean and coastal data management is an interesting and solvable challenge that will provide great benefit to society.
Consumer Search, Rationing Rules, and the Consequence for Competition
NASA Astrophysics Data System (ADS)
Ruebeck, Christopher S.
Firms' conjectures about demand are consequential in oligopoly games. Through agent-based modeling of consumers' search for products, we can study the rationing of demand between capacity-constrained firms offering homogeneous products and explore the robustness of analytically solvable models' results. After algorithmically formalizing short-run search behavior rather than assuming a long-run average, this study predicts stronger competition in a two-stage capacity-price game.
Unitary-matrix models as exactly solvable string theories
NASA Technical Reports Server (NTRS)
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408; Roy, Pinaki, E-mail: pinaki@isical.ac.in
We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.
Reverse engineering of integrated circuits
Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.
2003-01-01
Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.
On boundary fusion and functional relations in the Baxterized affine Hecke algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk
2014-04-15
We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.
Optimal Control of Evolution Mixed Variational Inclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Xiao, Jianyuan; Zhang, Ruili
Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.
NASA Astrophysics Data System (ADS)
Jiang, Jie; Zheng, Songmu
2012-12-01
In this paper, we study a Neumann and free boundary problem for the one-dimensional viscous radiative and reactive gas. We prove that under rather general assumptions on the heat conductivity κ, for any arbitrary large smooth initial data, the problem admits a unique global classical solution. Our global existence results improve those results by Umehara and Tani ["Global solution to the one-dimensional equations for a self-gravitating viscous radiative and reactive gas," J. Differ. Equations 234(2), 439-463 (2007), 10.1016/j.jde.2006.09.023; Umehara and Tani "Global solvability of the free-boundary problem for one-dimensional motion of a self-gravitating viscous radiative and reactive gas," Proc. Jpn. Acad., Ser. A: Math. Sci. 84(7), 123-128 (2008)], 10.3792/pjaa.84.123 and by Qin, Hu, and Wang ["Global smooth solutions for the compressible viscous and heat-conductive gas," Q. Appl. Math. 69(3), 509-528 (2011)]., 10.1090/S0033-569X-2011-01218-0 Moreover, we analyze the asymptotic behavior of the global solutions to our problem, and we prove that the global solution will converge to an equilibrium as time goes to infinity. This is the result obtained for this problem in the literature for the first time.
NASA Astrophysics Data System (ADS)
Alexandrov, Dmitri V.; Galenko, Peter K.; Toropova, Lyubov V.
2018-01-01
Motivated by important applications in materials science and geophysics, we consider the steady-state growth of anisotropic needle-like dendrites in undercooled binary mixtures with a forced convective flow. We analyse the stable mode of dendritic evolution in the case of small anisotropies of growth kinetics and surface energy for arbitrary Péclet numbers and n-fold symmetry of dendritic crystals. On the basis of solvability and stability theories, we formulate a selection criterion giving a stable combination between dendrite tip diameter and tip velocity. A set of nonlinear equations consisting of the solvability criterion and undercooling balance is solved analytically for the tip velocity V and tip diameter ρ of dendrites with n-fold symmetry in the absence of convective flow. The case of convective heat and mass transfer mechanisms in a binary mixture occurring as a result of intensive flows in the liquid phase is detailed. A selection criterion that describes such solidification conditions is derived. The theory under consideration comprises previously considered theoretical approaches and results as limiting cases. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Ángel, E-mail: angelb@ubu.es; Enciso, Alberto, E-mail: aenciso@icmat.es; Herranz, Francisco J., E-mail: fjherranz@ubu.es
In this paper we quantize the N-dimensional classical Hamiltonian system H=(|q|)/(2(η+|q|)) p{sup 2}−k/(η+|q|) , that can be regarded as a deformation of the Coulomb problem with coupling constant k, that it is smoothly recovered in the limit η→0. Moreover, the kinetic energy term in H is just the one corresponding to an N-dimensional Taub–NUT space, a fact that makes this system relevant from a geometric viewpoint. Since the Hamiltonian H is known to be maximally superintegrable, we propose a quantization prescription that preserves such superintegrability in the quantum mechanical setting. We show that, to this end, one must choose asmore » the kinetic part of the Hamiltonian the conformal Laplacian of the underlying Riemannian manifold, which combines the usual Laplace–Beltrami operator on the Taub–NUT manifold and a multiple of its scalar curvature. As a consequence, we obtain a novel exactly solvable deformation of the quantum Coulomb problem, whose spectrum is computed in closed form for positive values of η and k, and showing that the well-known maximal degeneracy of the flat system is preserved in the deformed case. Several interesting algebraic and physical features of this new exactly solvable quantum system are analyzed, and the quantization problem for negative values of η and/or k is also sketched.« less
Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston
NASA Astrophysics Data System (ADS)
Upadhyaya, Pramey; Tserkovnyak, Yaroslav
2016-07-01
We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.
Hall effect on a Merging Formation Process of a Field-Reversed Configuration
NASA Astrophysics Data System (ADS)
Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku
2015-11-01
Counter-helicity spheromak merging is one of the formation methods of a Field-Reversed Configuration (FRC). In counter-helicity spheromak merging, two spheromaks with opposing toroidal fields merge together, through magnetic reconnection events and relax into a FRC, which has no or little toroidal field. This process contains magnetic reconnection and a relaxation phenomena, and the Hall effect has some essential effects on these process because the X-point in the magnetic reconnection or the O-point of the FRC has no or little magnetic field. However, the Hall effect as both global and local effect on counter-helicity spheromak merging has not been elucidated. In this poster, we conducted 2D/3D Hall-MHD simulations and experiments of counter-helicity spheromak merging. We find that the Hall effect enhances the reconnection rate, and reduces the generation of toroidal sheared-flow. The suppression of the ``slingshot effect'' affects the relaxation process. We will discuss details in the poster.
Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.
Hultin, Olof; Otnes, Gaute; Samuelson, Lars; Storm, Kristian
2017-02-08
Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires.
Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry
NASA Astrophysics Data System (ADS)
Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred
2017-01-01
Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .
Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Johnson, Lee K.; Goebel, Dan M.; Fitzgerald, Dennis J.
2006-01-01
The effects of cathode position on the plume properties of an 8 kW BHT-8000 Busek Hall thruster are discussed. Experiments were conducted at the Jet Propulsion Laboratory (JPL) in a vacuum chamber suitable for the development and qualification of high-power Hall thrusters. Multi-mode Hall thruster operation was demonstrated at operating conditions ranging from 200-500 V discharge voltage, 10-40 A discharge current, and 2-8 kW discharge power. Reductions in plume divergence and increased near-field plume symmetries were found to result from the use of an internally-mounted cathode instead of the traditional externally-mounted configuration. High-current hollow cathodes developed at JPL utilizing lanthanum hexaboride (LaB6) emitters were also demonstrated. Discharge currents up to 100 A were achieved with the cathode operating alone and up to 40 A during operation with the Hall thruster. LaB6 cathodes were investigated because of their potential to reduce overall system cost and risk due to less stringent xenon purity and handling requirements.
Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators
NASA Astrophysics Data System (ADS)
Chang, Cui-Zu; Li, Mingda
2016-03-01
The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.
2018-04-21
Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.
2018-04-21
Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in the Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.
Bending strain engineering in quantum spin hall system for controlling spin currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
Bending strain engineering in quantum spin hall system for controlling spin currents
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...
2017-06-16
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
The necessity of HVAC system for the registered architectural cultural heritage building
NASA Astrophysics Data System (ADS)
Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian
2018-02-01
This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.
NASA Astrophysics Data System (ADS)
Amber, Khuram Pervez; Aslam, Muhammad Waqar
2018-03-01
Student residence halls occupy 26% of the total area of a typical university campus in the UK and are directly responsible for 24% of university's annual CO2 emissions. Based on five years measured data, this paper aims to investigate the energy-related environmental and economic performance of electrically heated residence halls in which space heating is provided by two different types of electric heaters, that is, panel heater (PHT) and storage heater (SHT). Secondly, using statistical and machine learning methods, the paper attempts to investigate the relationship between daily electricity consumption and five factors (ambient temperature, solar radiation, relative humidity, wind speed and type of day). Data analysis revealed that electricity consumption of both halls is mainly driven by ambient temperature only, whereas SHT residence has 39% higher annual electricity bill and emits 70% higher CO2 emissions on a per square metre basis compared to the PHT residence hall.
Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin
2017-04-13
Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.
Nonlinear dynamics induced anomalous Hall effect in topological insulators
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-01
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223
Nonlinear dynamics induced anomalous Hall effect in topological insulators.
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2016-01-28
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.
Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing
2016-10-01
We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.
NASA Astrophysics Data System (ADS)
Repellin, Cécile; Cook, Ashley M.; Neupert, Titus; Regnault, Nicolas
2018-03-01
Fractional quantum Hall-superconductor heterostructures may provide a platform towards non-abelian topological modes beyond Majoranas. However their quantitative theoretical study remains extremely challenging. We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. The fully gapped edges carry a topological degree of freedom that can encode quantum information protected against local perturbations. We simulate such a system numerically using exact diagonalization by restricting the calculation to the quasihole-subspace of a (time-reversal symmetric) bilayer fractional quantum Hall system of Laughlin ν = 1/3 states. We show that the edge ground states are permuted by spin-dependent flux insertion and demonstrate their fractional 6π Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The versatility and efficiency of our setup make it a well suited method to tackle wider questions of edge phases and phase transitions in fractional quantum Hall systems.
Sign reversal of Hall signals in Tm3Fe5O12 /Pt with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Liu, Yawen; Tang, Chi; Xu, Yadong; Shi, Zhong; Shi, Jing
Robust interface strain-induced perpendicular magnetic anisotropy is produced in atomically flat ferromagnetic insulator Tm3Fe5O12 (TIG) films grown with pulsed laser deposition on both substituted-Gd3Ga5O12 and Nd3Ga5O12 (NGG). In TIG/Pt bilayers, we observe large hysteresis loops over a wide range of Pt thicknesses and temperatures. Both the ordinary Hall effect and anomalous Hall effect undergo a sign reversal as the temperature is lowered. The temperature dependence of the Hall signals in bilayers with different thickness of Pt indicates the existence of exchange interaction at the interface. Our results provide a clue to further understand the origin of the anomalous Hall effect in ferromagnetic insulator/normal metal bilayer systems. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, BES under Award No. SC0012670.
Quasi-one-dimensional Hall physics in the Harper–Hofstadter–Mott model
NASA Astrophysics Data System (ADS)
Kozarski, Filip; Hügel, Dario; Pollet, Lode
2018-04-01
We study the ground-state phase diagram of the strongly interacting Harper–Hofstadter–Mott model at quarter flux on a quasi-one-dimensional lattice consisting of a single magnetic flux quantum in y-direction. In addition to superfluid phases with various density patterns, the ground-state phase diagram features quasi-one-dimensional analogs of fractional quantum Hall phases at fillings ν = 1/2 and 3/2, where the latter is only found thanks to the hopping anisotropy and the quasi-one-dimensional geometry. At integer fillings—where in the full two-dimensional system the ground-state is expected to be gapless—we observe gapped non-degenerate ground-states: at ν = 1 it shows an odd ‘fermionic’ Hall conductance, while the Hall response at ν = 2 consists of the transverse transport of a single particle–hole pair, resulting in a net zero Hall conductance. The results are obtained by exact diagonalization and in the reciprocal mean-field approximation.
ERIC Educational Resources Information Center
McCarty, Shane M.; Mullins, Taris G.; Geller, E. Scott; Shushok, Frank, Jr.
2013-01-01
A professor and a group of student leaders initiated the Actively Caring for People (AC4P) Movement to establish a more civil, compassionate, and inclusive culture by inspiring intentional acts of kindness. This article explores the AC4P Movement in a first-year residence hall at Virginia Tech and a second-year residence hall at University of…
Magnon Spin Nernst Effect in Antiferromagnets.
Zyuzin, Vladimir A; Kovalev, Alexey A
2016-11-18
We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.
Low-Cost, High-Performance Hall Thruster Support System
NASA Technical Reports Server (NTRS)
Hesterman, Bryce
2015-01-01
Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.