NASA Astrophysics Data System (ADS)
Marquette, Ian; Quesne, Christiane
2016-05-01
The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, Alexander; Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado, Postal 70-543, 04510 Mexico, D. F.
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, A.
1996-02-01
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
NASA Astrophysics Data System (ADS)
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi-exactly solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.
Non-polynomial extensions of solvable potentials à la Abraham-Moses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odake, Satoru; Sasaki, Ryu; Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan
2013-10-15
Abraham-Moses transformations, besides Darboux transformations, are well-known procedures to generate extensions of solvable potentials in one-dimensional quantum mechanics. Here we present the explicit forms of infinitely many seed solutions for adding eigenstates at arbitrary real energy through the Abraham-Moses transformations for typical solvable potentials, e.g., the radial oscillator, the Darboux-Pöschl-Teller, and some others. These seed solutions are simple generalisations of the virtual state wavefunctions, which are obtained from the eigenfunctions by discrete symmetries of the potentials. The virtual state wavefunctions have been an essential ingredient for constructing multi-indexed Laguerre and Jacobi polynomials through multiple Darboux-Crum transformations. In contrast to themore » Darboux transformations, the virtual state wavefunctions generate non-polynomial extensions of solvable potentials through the Abraham-Moses transformations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent P{sub IV}, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed X{sub m{sub 1,m{sub 2,…,m{sub k}}}} Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite andmore » Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.« less
Consumer Search, Rationing Rules, and the Consequence for Competition
NASA Astrophysics Data System (ADS)
Ruebeck, Christopher S.
Firms' conjectures about demand are consequential in oligopoly games. Through agent-based modeling of consumers' search for products, we can study the rationing of demand between capacity-constrained firms offering homogeneous products and explore the robustness of analytically solvable models' results. After algorithmically formalizing short-run search behavior rather than assuming a long-run average, this study predicts stronger competition in a two-stage capacity-price game.
Parametric symmetries in exactly solvable real and PT symmetric complex potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rajesh Kumar, E-mail: rajeshastrophysics@gmail.com; Khare, Avinash, E-mail: khare@physics.unipune.ac.in; Bagchi, Bijan, E-mail: bbagchi123@gmail.com
In this paper, we discuss the parametric symmetries in different exactly solvable systems characterized by real or complex PT symmetric potentials. We focus our attention on the conventional potentials such as the generalized Pöschl Teller (GPT), Scarf-I, and PT symmetric Scarf-II which are invariant under certain parametric transformations. The resulting set of potentials is shown to yield a completely different behavior of the bound state solutions. Further, the supersymmetric partner potentials acquire different forms under such parametric transformations leading to new sets of exactly solvable real and PT symmetric complex potentials. These potentials are also observed to be shape invariantmore » (SI) in nature. We subsequently take up a study of the newly discovered rationally extended SI potentials, corresponding to the above mentioned conventional potentials, whose bound state solutions are associated with the exceptional orthogonal polynomials (EOPs). We discuss the transformations of the corresponding Casimir operator employing the properties of the so(2, 1) algebra.« less
Conditioned invariant subspaces, disturbance decoupling and solutions of rational matrix equations
NASA Technical Reports Server (NTRS)
Li, Z.; Sastry, S. S.
1986-01-01
Conditioned invariant subspaces are introduced both in terms of output injection and in terms of state estimation. Various properties of these subspaces are explored and the problem of disturbance decoupling by output injection (OIP) is defined. It is then shown that OIP is equivalent to the problem of disturbance decoupled estimation as introduced in Willems (1982) and Willems and Commault (1980). Both solvability conditions and a description of solutions for a class of rational matrix equations of the form X(s)M(s) = Q(s) on several ways are given in state-space form. Finally, the problem of output stabilization with respect to a disturbance is briefly addressed.
A new approach to the Schrödinger equation with rational potentials
NASA Astrophysics Data System (ADS)
Dong, Ming-de; Chu, Jue-Hui
1984-04-01
A new analytic theory is established for the Schrödinger equation with a rational potential, including a complete classification of the regular eigenfunctions into three different types, an exact method of obtaining wavefunctions, an explicit formulation of the spectral equation (3 x 3 determinant) etc. All representations are exhibited in a unifying way via function-theoretic methods and therefore given in explicit form, in contrast to the prevailing discussion appealing to perturbation or variation methods or continued-fraction techniques. The irregular eigenfunctions at infinity can be obtained analogously and will be discussed separately as another solvable case for singular potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, J. B.
2011-12-01
There is a body of conventional wisdom that holds that a solvable quantum problem, by virtue of its solvability, is pathological and thus irrelevant. It has been difficult to refute this view owing to the paucity of theoretical constructs and experimental results. Recent experiments involving equivalent ions trapped in a spatial conformation of extreme anisotropic confinement (longitudinal extension tens, hundreds or even thousands of times transverse extension) have modified the view of relevancy, and it is now possible to consider systems previously thought pathological, in particular point Bosons that repel in one dimension. It has been difficult for the experimentalistsmore » to utilize existing theory, mainly due to long-standing theoretical misunderstanding of the relevance of the permutation group, in particular the non-commutativity of translations (periodicity) and transpositions (permutation). This misunderstanding is most easily rectified in the case of repelling Bosons.« less
Integrable mappings with transcendental invariants
NASA Astrophysics Data System (ADS)
Grammaticos, B.; Ramani, A.
2007-06-01
We examine a family of integrable mappings which possess rational invariants involving polynomials of arbitrarily high degree. Next we extend these mappings to the case where their parameters are functions of the independent variable. The resulting mappings do not preserve any invariant but are solvable by linearisation. Using this result we then proceed to construct the solution of the initial autonomous mappings and use it to explicitly construct the invariant, which turns out to be transcendental in the generic case.
On the rational monodromy-free potentials with sextic growth
NASA Astrophysics Data System (ADS)
Gibbons, J.; Veselov, A. P.
2009-01-01
We study the rational potentials V(x ), with sextic growth at infinity, such that the corresponding one-dimensional Schrödinger equation has no monodromy in the complex domain for all values of the spectral parameter. We investigate in detail the subclass of such potentials which can be constructed by the Darboux transformations from the well-known class of quasiexactly solvable potentials V =x6-νx2+l(l +1)/x2. We show that, in contrast with the case of quadratic growth, there are monodromy-free potentials which have quasirational eigenfunctions, but which cannot be given by this construction. We discuss the relations between the corresponding algebraic varieties and present some elementary solutions of the Calogero-Moser problem in the external field with sextic potential.
Decoherence at constant excitation
NASA Astrophysics Data System (ADS)
Torres, J. M.; Sadurní, E.; Seligman, T. H.
2012-02-01
We present a simple exactly solvable extension of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×4 matrices.
Makarov, Dmitrii E
2013-01-07
Conformational rearrangements in biomolecules (such as protein folding or enzyme-ligand binding) are often interpreted in terms of low-dimensional models of barrier crossing such as Kramers' theory. Dimensionality reduction, however, entails memory effects; as a result, the effective frictional drag force along the reaction coordinate nontrivially depends on the time scale of the transition. Moreover, when both solvent and "internal" friction effects are important, their interplay results in a highly nonlinear dependence of the effective friction on solvent viscosity that is not captured by common phenomenological models of barrier crossing. Here, these effects are illustrated using an analytically solvable toy model of an unstructured polymer chain involved in an inter- or intramolecular transition. The transition rate is calculated using the Grote-Hynes and Langer theories, which--unlike Kramers' theory--account for memory. The resulting effective frictional force exerted by the polymer along the reaction coordinate can be rationalized in terms of the effective number of monomers engaged in the transition. Faster transitions (relative to the polymer reconfiguration time scale) involve fewer monomers and, correspondingly, lower friction forces, because the polymer chain does not have enough time to reconfigure in response to the transition.
Superintegrability of the Fock-Darwin system
NASA Astrophysics Data System (ADS)
Drigho-Filho, E.; Kuru, Ş.; Negro, J.; Nieto, L. M.
2017-08-01
The Fock-Darwin system is analyzed from the point of view of its symmetry properties in the quantum and classical frameworks. The quantum Fock-Darwin system is known to have two sets of ladder operators, a fact which guarantees its solvability. We show that for rational values of the quotient of two relevant frequencies, this system is superintegrable, the quantum symmetries being responsible for the degeneracy of the energy levels. These symmetries are of higher order and close a polynomial algebra. In the classical case, the ladder operators are replaced by ladder functions and the symmetries by constants of motion. We also prove that the rational classical system is superintegrable and its trajectories are closed. The constants of motion are also generators of symmetry transformations in the phase space that have been integrated for some special cases. These transformations connect different trajectories with the same energy. The coherent states of the quantum superintegrable system are found and they reproduce the closed trajectories of the classical one.
Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz
NASA Astrophysics Data System (ADS)
Crampé, N.; Frappat, L.; Ragoucy, E.
2013-10-01
We classify ‘all’ Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com
2016-01-15
We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.
Coherent population transfer in multi-level Allen-Eberly models
NASA Astrophysics Data System (ADS)
Li, Wei; Cen, Li-Xiang
2018-04-01
We investigate the solvability of multi-level extensions of the Allen-Eberly model and the population transfer yielded by the corresponding dynamical evolution. We demonstrate that, under a matching condition of the frequency, the driven two-level system and its multi-level extensions possess a stationary-state solution in a canonical representation associated with a unitary transformation. As a consequence, we show that the resulting protocol is able to realize complete population transfer in a nonadiabatic manner. Moreover, we explore the imperfect pulsing process with truncation and display that the nonadiabatic effect in the evolution can lead to suppression to the cutoff error of the protocol.
The quest for solvable multistate Landau-Zener models
Sinitsyn, Nikolai A.; Chernyak, Vladimir Y.
2017-05-24
Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. Additionally, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.
NASA Technical Reports Server (NTRS)
Gryphon, Coranth D.; Miller, Mark D.
1991-01-01
PCLIPS (Parallel CLIPS) is a set of extensions to the C Language Integrated Production System (CLIPS) expert system language. PCLIPS is intended to provide an environment for the development of more complex, extensive expert systems. Multiple CLIPS expert systems are now capable of running simultaneously on separate processors, or separate machines, thus dramatically increasing the scope of solvable tasks within the expert systems. As a tool for parallel processing, PCLIPS allows for an expert system to add to its fact-base information generated by other expert systems, thus allowing systems to assist each other in solving a complex problem. This allows individual expert systems to be more compact and efficient, and thus run faster or on smaller machines.
Hanaki, Nobuyuki; Jacquemet, Nicolas; Luchini, Stéphane; Zylbersztejn, Adam
2016-01-01
Dominance solvability is one of the most straightforward solution concepts in game theory. It is based on two principles: dominance (according to which players always use their dominant strategy) and iterated dominance (according to which players always act as if others apply the principle of dominance). However, existing experimental evidence questions the empirical accuracy of dominance solvability. In this study, we study the relationships between the key facets of dominance solvability and two cognitive skills, cognitive reflection, and fluid intelligence. We provide evidence that the behaviors in accordance with dominance and one-step iterated dominance are both predicted by one's fluid intelligence rather than cognitive reflection. Individual cognitive skills, however, only explain a small fraction of the observed failure of dominance solvability. The accuracy of theoretical predictions on strategic decision making thus not only depends on individual cognitive characteristics, but also, perhaps more importantly, on the decision making environment itself. PMID:27559324
An exactly solvable, spatial model of mutation accumulation in cancer
NASA Astrophysics Data System (ADS)
Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej
2016-12-01
One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.
Hypergeometric type operators and their supersymmetric partners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotfas, Nicolae; Cotfas, Liviu Adrian
2011-05-15
The generalization of the factorization method performed by Mielnik [J. Math. Phys. 25, 3387 (1984)] opened new ways to generate exactly solvable potentials in quantum mechanics. We present an application of Mielnik's method to hypergeometric type operators. It is based on some solvable Riccati equations and leads to a unitary description of the quantum systems exactly solvable in terms of orthogonal polynomials or associated special functions.
Yau, Stephen S.-T.
1983-01-01
A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401
Effective Engagement of Hostile Audiences on Climate Change
NASA Astrophysics Data System (ADS)
Denning, S.
2012-12-01
Communicating effectively about climate change can be very frustrating because hostility to climate science is rooted in deeply held beliefs rather than facts. Opposition can be more effectively countered by respecting ideological objections than by aggressive insistence on acceptance of consensus evidence. When presented with a stark choice between sacred beliefs and factual evidence, social science research shows that nearly everyone will choose the latter. Rational argument from authority is often the weakest approach in such situations. Climate change is Simple, Serious, and Solvable. Effective communication of these three key ideas can succeed when the science argument is carefully framed to avoid attack of the audience's ethical identity. Simple arguments from common sense and everyday experience are more successful than data. Serious consequences to values that resonate with the audience can be avoided by solutions that don't threaten those values.
Novel quantum phase transition from bounded to extensive entanglement
Zhang, Zhao; Ahmadain, Amr
2017-01-01
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises. PMID:28461464
Novel quantum phase transition from bounded to extensive entanglement.
Zhang, Zhao; Ahmadain, Amr; Klich, Israel
2017-05-16
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.
Disturbance accommodating control design for wind turbines using solvability conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Na; Wright, Alan D.; Balas, Mark J.
In this study, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. DAC incorporates a predetermined waveform model and uses it as part of the state-space formulation, which is known as the internal model principle to reduce or minimize the wind disturbance effects on the outputs of the wind turbine. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speedmore » regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore-Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.« less
Disturbance accommodating control design for wind turbines using solvability conditions
Wang, Na; Wright, Alan D.; Balas, Mark J.
2017-02-07
In this study, solvability conditions for disturbance accommodating control (DAC) have been discussed and applied on wind turbine controller design in above-rated wind speed to regulate rotor speed and to mitigate turbine structural loads. DAC incorporates a predetermined waveform model and uses it as part of the state-space formulation, which is known as the internal model principle to reduce or minimize the wind disturbance effects on the outputs of the wind turbine. An asymptotically stabilizing DAC controller with disturbance impact on the wind turbine being totally canceled out can be found if certain conditions are fulfilled. Designing a rotor speedmore » regulation controller without steady-state error is important for applying linear control methodology such as DAC on wind turbines. Therefore, solvability conditions of DAC without steady-state error are attractive and can be taken as examples when designing a multitask turbine controller. DAC controllers solved via Moore-Penrose Pseudoinverse and the Kronecker product are discussed, and solvability conditions of using them are given. Additionally, a new solvability condition based on inverting the feed-through D term is proposed for the sake of reducing computational burden in the Kronecker product. Applications of designing collective pitch and independent pitch controllers based on DAC are presented. Recommendations of designing a DAC-based wind turbine controller are given. A DAC controller motivated by the proposed solvability condition that utilizes the inverse of feed-through D term is developed to mitigate the blade flapwise once-per-revolution bending moment together with a standard proportional integral controller in the control loop to assist rotor speed regulation. Simulation studies verify the discussed solvability conditions of DAC and show the effectiveness of the proposed DAC control design methodology.« less
Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations
NASA Astrophysics Data System (ADS)
Collier, N.; Knepley, M.
2015-12-01
The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).
Friedrichs systems in a Hilbert space framework: Solvability and multiplicity
NASA Astrophysics Data System (ADS)
Antonić, N.; Erceg, M.; Michelangeli, A.
2017-12-01
The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.
NASA Astrophysics Data System (ADS)
Finch, Peter E.; Flohr, Michael; Frahm, Holger
2018-02-01
We study two families of quantum models which have been used previously to investigate the effect of topological symmetries in one-dimensional correlated matter. Various striking similarities are observed between certain {Z}n quantum clock models, spin chains generalizing the Ising model, and chains of non-Abelian anyons constructed from the so(n)2 fusion category for odd n, both subject to periodic boundary conditions. In spite of the differences between these two types of quantum chains, e.g. their Hilbert spaces being spanned by tensor products of local spin states or fusion paths of anyons, the symmetries of the lattice models are shown to be closely related. Furthermore, under a suitable mapping between the parameters describing the interaction between spins and anyons the respective Hamiltonians share part of their energy spectrum (although their degeneracies may differ). This spin-anyon correspondence can be extended by fine-tuning of the coupling constants leading to exactly solvable models. We show that the algebraic structures underlying the integrability of the clock models and the anyon chain are the same. For n = 3,5,7 we perform an extensive finite size study—both numerical and based on the exact solution—of these models to map out their ground state phase diagram and to identify the effective field theories describing their low energy behaviour. We observe that the continuum limit at the integrable points can be described by rational conformal field theories with extended symmetry algebras which can be related to the discrete ones of the lattice models.
Radical chiral Floquet phases in a periodically driven Kitaev model and beyond
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Fidkowski, Lukasz; Vishwanath, Ashvin; Potter, Andrew C.
2017-12-01
We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels that propagate a quantized fractional number of qubits along the sample edge during each driving period. These phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and bulk "anyon time-crystal" order characterized by dynamical transmutation of electric-charge into magnetic-flux excitations in the bulk.
The solvability of quantum k-pair network in a measurement-based way.
Li, Jing; Xu, Gang; Chen, Xiu-Bo; Qu, Zhiguo; Niu, Xin-Xin; Yang, Yi-Xian
2017-12-01
Network coding is an effective means to enhance the communication efficiency. The characterization of network solvability is one of the most important topic in this field. However, for general network, the solvability conditions are still a challenge. In this paper, we consider the solvability of general quantum k-pair network in measurement-based framework. For the first time, a detailed account of measurement-based quantum network coding(MB-QNC) is specified systematically. Differing from existing coding schemes, single qubit measurements on a pre-shared graph state are the only allowed coding operations. Since no control operations are concluded, it makes MB-QNC schemes more feasible. Further, the sufficient conditions formulating by eigenvalue equations and stabilizer matrix are presented, which build an unambiguous relation among the solvability and the general network. And this result can also analyze the feasibility of sharing k EPR pairs task in large-scale networks. Finally, in the presence of noise, we analyze the advantage of MB-QNC in contrast to gate-based way. By an instance network [Formula: see text], we show that MB-QNC allows higher error thresholds. Specially, for X error, the error threshold is about 30% higher than 10% in gate-based way. In addition, the specific expressions of fidelity subject to some constraint conditions are given.
ERIC Educational Resources Information Center
Moleski, Richard; Tosi, Donald J.
1976-01-01
The present study examined the efficacy of rational-emotive psychotherapy and systematic desensitization in the treatment of stuttering. Both therapies, making extensive use of in vivo behavioral assignments, were examined under the presence and absence of in vivo tasks. Results show that rational-emotive therapy was more effective in reducing…
Continual Lie algebras and noncommutative counterparts of exactly solvable models
NASA Astrophysics Data System (ADS)
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
A large class of solvable multistate Landau–Zener models and quantum integrability
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Sinitsyn, Nikolai A.; Sun, Chen
2018-06-01
The concept of quantum integrability has been introduced recently for quantum systems with explicitly time-dependent Hamiltonians (Sinitsyn et al 2018 Phys. Rev. Lett. 120 190402). Within the multistate Landau–Zener (MLZ) theory, however, there has been a successful alternative approach to identify and solve complex time-dependent models (Sinitsyn and Chernyak 2017 J. Phys. A: Math. Theor. 50 255203). Here we compare both methods by applying them to a new class of exactly solvable MLZ models. This class contains systems with an arbitrary number of interacting states and shows quick growth with N number of exact adiabatic energy crossing points, which appear at different moments of time. At each N, transition probabilities in these systems can be found analytically and exactly but complexity and variety of solutions in this class also grow with N quickly. We illustrate how common features of solvable MLZ systems appear from quantum integrability and develop an approach to further classification of solvable MLZ problems.
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
On the Complexity of Delaying an Adversary’s Project
2005-01-01
interdiction models for such problems and show that the resulting problem com- plexities run the gamut : polynomially solvable, weakly NP-complete, strongly...problems and show that the resulting problem complexities run the gamut : polynomially solvable, weakly NP-complete, strongly NP-complete or NP-hard. We
On a local solvability and stability of the inverse transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia; Buterin, Sergey
2017-11-01
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
An extension of the Bardeen-Cooper-Schrieffer model of superconductivity
NASA Astrophysics Data System (ADS)
Maćkowiak, J.; Tarasewicz, P.
An extension of the BCS Hamiltonian of HBCS, the form H= HBCS+ W+ V, where W=∑ kγknk+ nk-, V=-| Λ| -1∑ k, k‧ gk, k‧ bk* b- k* b- k‧ bk‧ , nkσ = akσ * akσ , bk= ak+ ak- and akσ *, akσ are fermion creation and annihilation operators, is investigated. It is shown that H represents a solvable mean-field model in the thermodynamic limit. H exhibits a 2nd-order phase transition if W is sufficiently strongly attractive and the low-temperature phase, characterized by two order parameters, contains two condensates: a condensate of BCS-type fermion pairs and a condensate of fermion quadruples with momenta and spins ( p, σ) equal {( p, σ),(- p, σ), ( p,- σ), (- p,- σ)}. If γk<0, a pseudogap is present in the excitation spectrum in the normal phase.
What Information Theory Says about Bounded Rational Best Response
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
Probability Collectives (PC) provides the information-theoretic extension of conventional full-rationality game theory to bounded rational games. Here an explicit solution to the equations giving the bounded rationality equilibrium of a game is presented. Then PC is used to investigate games in which the players use bounded rational best-response strategies. Next it is shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. It is then shown that for team (shared-payoff) games, this variant of replicator dynamics is identical to Newton-Raphson iterative optimization of the shared utility function.
Intuition and deliberation: two systems for strategizing in the brain.
Kuo, Wen-Jui; Sjöström, Tomas; Chen, Yu-Ping; Wang, Yen-Hsiang; Huang, Chen-Ying
2009-04-24
Dual-process theories distinguish between intuition (fast and emotional) and reasoning (slow and controlled) as a basis for human decision-making. We contrast dominance-solvable games, which can be solved by step-by-step deliberative reasoning, with pure coordination games, which must be solved intuitively. Using functional magnetic resonance imaging, we found that the middle frontal gyrus, the inferior parietal lobule, and the precuneus were more active in dominance-solvable games than in coordination games. The insula and anterior cingulate cortex showed the opposite pattern. Moreover, precuneus activity correlates positively with how "effortful" a dominance-solvable game is, whereas insula activity correlates positively with how "effortless" a coordination game is.
On the stabilizability of multivariable systems by minimum order compensation
NASA Technical Reports Server (NTRS)
Byrnes, C. I.; Anderson, B. D. O.
1983-01-01
In this paper, a derivation is provided of the necessary condition, mp equal to or greater than n, for stabilizability by constant gain feedback of the generic degree n, p x m system. This follows from another of the main results, which asserts that generic stabilizability is equivalent to generic solvability of a deadbeat control problem, provided mp equal to or less than n. Taken together, these conclusions make it possible to make some sharp statements concerning minimum order stabilization. The techniques are primarily drawn from decision algebra and classical algebraic geometry and have additional consequences for problems of stabilizability and pole-assignability. Among these are the decidability (by a Sturm test) of the equivalence of generic pole-assignability and generic stabilizability, the semi-algebraic nature of the minimum order, q, of a stabilizing compensator, and the nonexistence of formulae involving rational operations and extraction of square roots for pole-assigning gains when they exist, answering in the negative a question raised by Anderson, Bose, and Jury (1975).
Segmentation in cohesive systems constrained by elastic environments
NASA Astrophysics Data System (ADS)
Novak, I.; Truskinovsky, L.
2017-04-01
The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass-spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
Propagation and attenuation of Rayleigh waves in generalized thermoelastic media
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2014-01-01
This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.
Topolinski, Sascha; Bakhtiari, Giti; Erle, Thorsten M
2016-01-01
When assessing a problem, many cues can be used to predict solvability and solving effort. Some of these cues, however, can be misleading. The present approach shows that a feature of a problem that is actually related to solving difficulty is used as a cue for solving ease when assessing the problem in the first place. For anagrams, it is an established effect that easy-to-pronounce anagrams (e.g., NOGAL) take more time to being solved than hard-to-pronounce anagrams (e.g., HNWEI). However, when assessing an anagram in the first place, individuals use the feature of pronounceability to predict solving ease, because pronounceability is an instantiation of the general mechanism of processing fluency. Participants (total N=536) received short and long anagrams and nonanagrams and judged solvability and solving ease intuitively without actually solving the items. Easy-to-pronounce letter strings were more frequently judged as being solvable than hard-to-pronounce letters strings (Experiment 1), and were estimated to require less effort (Experiments 2, 4-7) and time to be solved (Experiment 3). This effect was robust for short and long items, anagrams and nonanagrams, and presentation timings from 4 down to 0.5s, and affected novices and experts alike. Spontaneous solutions did not mediate this effect. Participants were sensitive to actual solvability even for long anagrams (6-11 letters long) presented only for 500 ms. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems
NASA Astrophysics Data System (ADS)
Sadurní, E.; Torres, J. M.; Seligman, T. H.
2010-07-01
The Dirac oscillator coupled to an external two-component field can retain its solvability, if couplings are appropriately chosen. This provides a new class of integrable systems. A simplified way of a solution is given by recasting the known solution of the Dirac oscillator into matrix form; there one notes that a block-diagonal form arises in a Hamiltonian formulation. The blocks are two dimensional. Choosing couplings that do not affect the block structure, these blow up the 2 × 2 matrices to 4 × 4 matrices, thus conserving solvability. The result can be cast again in covariant form. By way of an example we apply this exact solution to calculate the evolution of entanglement.
Viswanathan, T M; Viswanathan, G M
2011-01-28
Strong global solvability is difficult to prove for high-dimensional hydrodynamic systems because of the complex interplay between nonlinearity and scale invariance. We define the Ladyzhenskaya-Lions exponent α(L)(n)=(2+n)/4 for Navier-Stokes equations with dissipation -(-Δ)(α) in R(n), for all n≥2. We review the proof of strong global solvability when α≥α(L)(n), given smooth initial data. If the corresponding Euler equations for n>2 were to allow uncontrolled growth of the enstrophy (1/2)∥∇u∥(L²)(2), then no globally controlled coercive quantity is currently known to exist that can regularize solutions of the Navier-Stokes equations for α<α(L)(n). The energy is critical under scale transformations only for α=α(L)(n).
NASA Astrophysics Data System (ADS)
Popov, Nikolay S.
2017-11-01
Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.
Algorithmics - Is There Hope for a Unified Theory?
NASA Astrophysics Data System (ADS)
Hromkovič, Juraj
Computer science was born with the formal definition of the notion of an algorithm. This definition provides clear limits of automatization, separating problems into algorithmically solvable problems and algorithmically unsolvable ones. The second big bang of computer science was the development of the concept of computational complexity. People recognized that problems that do not admit efficient algorithms are not solvable in practice. The search for a reasonable, clear and robust definition of the class of practically solvable algorithmic tasks started with the notion of the class {P} and of {NP}-completeness. In spite of the fact that this robust concept is still fundamental for judging the hardness of computational problems, a variety of approaches was developed for solving instances of {NP}-hard problems in many applications. Our 40-years short attempt to fix the fuzzy border between the practically solvable problems and the practically unsolvable ones partially reminds of the never-ending search for the definition of "life" in biology or for the definitions of matter and energy in physics. Can the search for the formal notion of "practical solvability" also become a never-ending story or is there hope for getting a well-accepted, robust definition of it? Hopefully, it is not surprising that we are not able to answer this question in this invited talk. But to deal with this question is of crucial importance, because only due to enormous effort scientists get a better and better feeling of what the fundamental notions of science like life and energy mean. In the flow of numerous technical results, we must not forget the fact that most of the essential revolutionary contributions to science were done by defining new concepts and notions.
Agricultural Extension Services and the Issue of Equity in Agricultural Development.
ERIC Educational Resources Information Center
Monu, Erasmus D.
1981-01-01
Reviews experiments in Kenya and Nigeria attempting to modify the progressive-farmer strategy. Success requires that extension services recognize small farmers' ability to make their own rational decisions and involve farmers in planning and implementing extension programs. Available from: Rural Sociological Society, 325 Morgan Hall, University of…
Plagiarism within Extension: Origin and Current Effects
ERIC Educational Resources Information Center
Rollins, Dora
2011-01-01
Extension publication editors from around the United States are finding cases of plagiarism within manuscripts that Extension educators submit as new public education materials. When editors confront such educators with the problem, some don't understand it as such, rationalizing that reproducing published information for a new purpose qualifies…
Exactly solvable random graph ensemble with extensively many short cycles
NASA Astrophysics Data System (ADS)
Aguirre López, Fabián; Barucca, Paolo; Fekom, Mathilde; Coolen, Anthony C. C.
2018-02-01
We introduce and analyse ensembles of 2-regular random graphs with a tuneable distribution of short cycles. The phenomenology of these graphs depends critically on the scaling of the ensembles’ control parameters relative to the number of nodes. A phase diagram is presented, showing a second order phase transition from a connected to a disconnected phase. We study both the canonical formulation, where the size is large but fixed, and the grand canonical formulation, where the size is sampled from a discrete distribution, and show their equivalence in the thermodynamical limit. We also compute analytically the spectral density, which consists of a discrete set of isolated eigenvalues, representing short cycles, and a continuous part, representing cycles of diverging size.
Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2006-01-01
The Rational Sequence computer program described elsewhere includes a subprogram that utilizes the capability for aspect-oriented programming when that capability is present. This subprogram is denoted the Rational Sequence (AspectJ) component because it uses AspectJ, which is an extension of the Java programming language that introduces aspect-oriented programming techniques into the language
ERIC Educational Resources Information Center
Smith, Carol L.; Solomon, Gregg E. A.; Carey, Susan
2005-01-01
Clinical interviews administered to third- to sixth-graders explored children's conceptualizations of rational number and of certain extensive physical quantities. We found within child consistency in reasoning about diverse aspects of rational number. Children's spontaneous acknowledgement of the existence of numbers between 0 and 1 was strongly…
Segmentation in cohesive systems constrained by elastic environments
Novak, I.
2017-01-01
The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass–spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373383
Gradient structure and transport coefficients for strong particles
NASA Astrophysics Data System (ADS)
Gabrielli, Davide; Krapivsky, P. L.
2018-04-01
We introduce and study a simple and natural class of solvable stochastic lattice gases. This is the class of strong particles. The name is due to the fact that when they try to jump to an occupied site they succeed in pushing away a pile of particles. For this class of models we explicitly compute the transport coefficients. We also discuss some generalizations and the relations with other classes of solvable models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; García-Ravelo, Jesús; Pacheco-García, Christian
We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed inmore » closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.« less
On the exact solvability of the anisotropic central spin model: An operator approach
NASA Astrophysics Data System (ADS)
Wu, Ning
2018-07-01
Using an operator approach based on a commutator scheme that has been previously applied to Richardson's reduced BCS model and the inhomogeneous Dicke model, we obtain general exact solvability requirements for an anisotropic central spin model with XXZ-type hyperfine coupling between the central spin and the spin bath, without any prior knowledge of integrability of the model. We outline basic steps of the usage of the operators approach, and pedagogically summarize them into two Lemmas and two Constraints. Through a step-by-step construction of the eigen-problem, we show that the condition gj‧2 - gj2 = c naturally arises for the model to be exactly solvable, where c is a constant independent of the bath-spin index j, and {gj } and { gj‧ } are the longitudinal and transverse hyperfine interactions, respectively. The obtained conditions and the resulting Bethe ansatz equations are consistent with that in previous literature.
Timing variation in an analytically solvable chaotic system
NASA Astrophysics Data System (ADS)
Blakely, J. N.; Milosavljevic, M. S.; Corron, N. J.
2017-02-01
We present analytic solutions for a chaotic dynamical system that do not have the regular timing characteristic of recently reported solvable chaotic systems. The dynamical system can be viewed as a first order filter with binary feedback. The feedback state may be switched only at instants defined by an external clock signal. Generalizing from a period one clock, we show analytic solutions for period two and higher period clocks. We show that even when the clock 'ticks' randomly the chaotic system has an analytic solution. These solutions can be visualized in a stroboscopic map whose complexity increases with the complexity of the clock. We provide both analytic results as well as experimental data from an electronic circuit implementation of the system. Our findings bridge the gap between the irregular timing of well known chaotic systems such as Lorenz and Rossler and the well regulated oscillations of recently reported solvable chaotic systems.
Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems
NASA Astrophysics Data System (ADS)
Serrano, F. A.; Gu, Xiao-Yan; Dong, Shi-Hai
2010-08-01
We propose proper quantization rule, ∫x_Ax_B k(x)dx-∫x0Ax0Bk0(x)dx=nπ, where k(x )=√2M[E -V(x)] /ℏ. The xA and xB are two turning points determined by E =V(x), and n is the number of the nodes of wave function ψ(x ). We carry out the exact solutions of solvable quantum systems by this rule and find that the energy spectra of solvable systems can be determined only from its ground state energy. The previous complicated and tedious integral calculations involved in exact quantization rule are greatly simplified. The beauty and simplicity of the rule come from its meaning—whenever the number of the nodes of ϕ(x ) or the number of the nodes of the wave function ψ(x ) increases by 1, the momentum integral ∫xAxBk(x )dx will increase by π. We apply this proper quantization rule to carry out solvable quantum systems such as the one-dimensional harmonic oscillator, the Morse potential and its generalization, the Hulthén potential, the Scarf II potential, the asymmetric trigonometric Rosen-Morse potential, the Pöschl-Teller type potentials, the Rosen-Morse potential, the Eckart potential, the harmonic oscillator in three dimensions, the hydrogen atom, and the Manning-Rosen potential in D dimensions.
Making Poor Choices? Demand Rationalities and School Choice in a Chilean Local Education Market
ERIC Educational Resources Information Center
Bonal, Xavier; Verger, Antoni; Zancajo, Adrián
2017-01-01
Although the literature on school choice rationalities is extensive, different authors interpret the processes of school choice for poor families in different ways. Positions vary between those that consider that poor families have the same capacity to choose as middle class families and those that value structural factors as constraints for…
Teachers' Stories of Change: Stress, Care and Economic Rationality
ERIC Educational Resources Information Center
Easthope, Chris; Easthope, Gary
2007-01-01
The impact of economic rationalism on teachers' working lives has been documented extensively, particularly in the UK. This article provides a case study of its impact in the early 1990s in a small Australian state, Tasmania, to illustrate that although the particular institutional forms through which it is expressed may differ its impact is…
Exactly Solvable Multidimensional Nonlinear Equations and Inverse Scattering,
1986-12-01
time dimension. Here the prototype euQation is 1 the Kadomtsev - Petviashvili (K-P) equation : .0 6u , x , x - )3,:’u ,’ which is the cop,patliil ity...AD-R193 274 EXACTLY SOLVABLE MULTIDIMENSIONAL NONLINEAR EQUATIONS L/1 AND INVERSE SCATTERING(U) CLARKSON UNIV POTSDAM MY A J MBLOUITZ DEC 86 NSOSI4...ecuations by associating thnm with appropriate compatible linear equations , -ne of which is identified as a Scattering prooD,, ne others(s) serves to
Integrable Time-Dependent Quantum Hamiltonians
NASA Astrophysics Data System (ADS)
Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen
2018-05-01
We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
Quantum glassiness in strongly correlated clean systems: an example of topological overprotection.
Chamon, Claudio
2005-02-04
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1) have no quenched disorder, (2) have solely local interactions, (3) have an exactly solvable spectrum, (4) have topologically ordered ground states, and (5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection
NASA Astrophysics Data System (ADS)
Chamon, Claudio
2005-01-01
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.
Exactly solvable relativistic model with the anomalous interaction
NASA Astrophysics Data System (ADS)
Ferraro, Elena; Messina, Antonino; Nikitin, A. G.
2010-04-01
A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.
2017-01-01
Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673
An Exactly Solvable Spin Chain Related to Hahn Polynomials
NASA Astrophysics Data System (ADS)
Stoilova, Neli I.; van der Jeugt, Joris
2011-03-01
We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β-1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model.
Characterization and solvability of quasipolynomial symplectic mappings
NASA Astrophysics Data System (ADS)
Hernández-Bermejo, Benito; Brenig, Léon
2004-02-01
Quasipolynomial (or QP) mappings constitute a wide generalization of the well-known Lotka-Volterra mappings, of importance in different fields such as population dynamics, physics, chemistry or economy. In addition, QP mappings are a natural discrete-time analogue of the continuous QP systems, which have been extensively used in different pure and applied domains. After presenting the basic definitions and properties of QP mappings in a previous paper [1], the purpose of this work is to focus on their characterization by considering the existence of symplectic QP mappings. In what follows such QP symplectic maps are completely characterized. Moreover, use of the QP formalism can be made in order to demonstrate that all QP symplectic mappings have an analytical solution that is explicitly and generally constructed. Examples are given.
Developing and Using an Applet to Enrich Students' Concept Image of Rational Polynomials
ERIC Educational Resources Information Center
Mason, John
2015-01-01
This article draws on extensive experience working with secondary and tertiary teachers and educators using an applet to display rational polynomials (up to degree 7 in numerator and denominator), as support for the challenge to deduce as much as possible about the graph from the graphs of the numerator and the denominator. Pedagogical and design…
The Lp Robin problem for Laplace equations in Lipschitz and (semi-)convex domains
NASA Astrophysics Data System (ADS)
Yang, Sibei; Yang, Dachun; Yuan, Wen
2018-01-01
Let n ≥ 3 and Ω be a bounded Lipschitz domain in Rn. Assume that p ∈ (2 , ∞) and the function b ∈L∞ (∂ Ω) is non-negative, where ∂Ω denotes the boundary of Ω. Denote by ν the outward unit normal to ∂Ω. In this article, the authors give two necessary and sufficient conditions for the unique solvability of the Robin problem for the Laplace equation Δu = 0 in Ω with boundary data ∂ u / ∂ ν + bu = f ∈Lp (∂ Ω), respectively, in terms of a weak reverse Hölder inequality with exponent p or the unique solvability of the Robin problem with boundary data in some weighted L2 (∂ Ω) space. As applications, the authors obtain the unique solvability of the Robin problem for the Laplace equation in the bounded (semi-)convex domain Ω with boundary data in (weighted) Lp (∂ Ω) for any given p ∈ (1 , ∞).
INFORMS Section on Location Analysis Dissertation Award Submission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas
This research effort can be summarized by two main thrusts, each of which has a chapter of the dissertation dedicated to it. First, I pose a novel polyhedral approach for identifying polynomially solvable in- stances of the QAP based on an application of the reformulation-linearization technique (RLT), a general procedure for constructing mixed 0-1 linear reformulations of 0-1 pro- grams. The feasible region to the continuous relaxation of the level-1 RLT form is a polytope having a highly specialized structure. Every binary solution to the QAP is associated with an extreme point of this polytope, and the objective function valuemore » is preserved at each such point. However, there exist extreme points that do not correspond to binary solutions. The key insight is a previously unnoticed and unexpected relationship between the polyhedral structure of the continuous relaxation of the level-1 RLT representation and various classes of readily solvable instances. Specifically, we show that a variety of apparently unrelated solvable cases of the QAP can all be categorized in the following sense: each such case has an objective function which ensures that an optimal solution to the continuous relaxation of the level-1 RLT form occurs at a binary extreme point. Interestingly, there exist instances that are solvable by the level-1 RLT form which do not satisfy the conditions of these cases, so that the level-1 form theoretically identifies a richer family of solvable instances. Second, I focus on instances of the QAP known in the literature as linearizable. An instance of the QAP is defined to be linearizable if and only if the problem can be equivalently written as a linear assignment problem that preserves the objective function value at all feasible solutions. I provide an entirely new polyheral-based perspective on the concept of linearizable by showing that an instance of the QAP is linearizable if and only if a relaxed version of the continuous relaxation of the level-1 RLT form is bounded. We also shows that the level-1 RLT form can identify a richer family of solvable instances than those deemed linearizable by demonstrating that the continuous relaxation of the level-1 RLT form can have an optimal binary solution for instances that are not linearizable. As a byproduct, I use this theoretical framework to explicity, in closed form, characterize the dimensions of the level-1 RLT form and various other problem relaxations.« less
A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.
1987-10-01
INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLE 12. PERSONAL AUTHOR(S) Leiserson, Charles, and Saxe, James B. 13a. TYPE OF REPORT j13b TIME...ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works
Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.; Zelnikov, A.
2001-06-15
We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.
Meglino, Bruce M; Korsgaard, M Audrey
2006-11-01
The authors respond to C. K. W. De Dreu's (2006) critique of their article (B. M. Meglino & M. A. Korsgaard, 2004) published in the special section on Theoretical Models and Conceptual Analyses of the Journal of Applied Psychology. They maintain that De Dreu misinterprets their definitions and the psychological processes they addressed and thus raises a number of issues that are not relevant to their model. Meglino and Korsgaard's model focuses on the distinction between rational self-interest and other orientation, whereas the approach taken by De Dreu focuses on the distinction between rational self-interest and collective rationality. In this response, the authors clarify this distinction, address discrepancies between these two approaches, consider the effect of goals and rationality on other orientated behavior, and suggest directions for future research. (c) 2006 APA, all rights reserved
Toward an Extension of Decision Analysis to Competitive Situations.
1985-12-01
order to deal with competition may ease the use of non- von Neumann-Morgenstern utility. This leads to our secondary goal of questioning expected...While von WInterfeldt [1980] attempted a 5 (more detailed analysis using three separate decision trees, one for each side In the dispute, he felt that...rationality generally used In game theory derives from the same roots as the calculated rationality of Decision Analysis, von Neumann and
Strategic analysis for safeguards systems: a feasibility study. Volume 2. Appendix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, A J
1984-12-01
This appendix provides detailed information regarding game theory (strategic analysis) and its potential role in safeguards to supplement the main body of this report. In particualr, it includes an extensive, though not comprehensive review of literature on game theory and on other topics that relate to the formulation of a game-theoretic model (e.g. the payoff functions). The appendix describes the basic form and components of game theory models, and the solvability of various models. It then discusses three basic issues related to the use of strategic analysis in material accounting: (1) its understandability; (2) its viability in regulatory settings; andmore » (3) difficulties in the use of mixed strategies. Each of the components of a game theoretic model are then discussed and related to the present context.« less
Interplay between cost and benefits triggers nontrivial vaccination uptake
NASA Astrophysics Data System (ADS)
Steinegger, Benjamin; Cardillo, Alessio; Rios, Paolo De Los; Gómez-Gardeñes, Jesús; Arenas, Alex
2018-03-01
The containment of epidemic spreading is a major challenge in science. Vaccination, whenever available, is the best way to prevent the spreading, because it eventually immunizes individuals. However, vaccines are not perfect, and total immunization is not guaranteed. Imperfect immunization has driven the emergence of antivaccine movements that totally alter the predictions about the epidemic incidence. Here, we propose a mathematically solvable mean-field vaccination model to mimic the spontaneous adoption of vaccines against influenzalike diseases and the expected epidemic incidence. The results are in agreement with extensive Monte Carlo simulations of the epidemics and vaccination coevolutionary processes. Interestingly, the results reveal a nonmonotonic behavior on the vaccination coverage that increases with the imperfection of the vaccine and after decreases. This apparent counterintuitive behavior is analyzed and understood from stability principles of the proposed mathematical model.
ERIC Educational Resources Information Center
Bonotto, C.
1995-01-01
Attempted to verify knowledge regarding decimal and rational numbers in children ages 10-14. Discusses how pupils can receive and assimilate extensions of the number system from natural numbers to decimals and fractions and later can integrate this extension into a single and coherent numerical structure. (Author/MKR)
Rubin, Jacob
1992-01-01
The feed forward (FF) method derives efficient operational equations for simulating transport of reacting solutes. It has been shown to be applicable in the presence of networks with any number of homogeneous and/or heterogeneous, classical reaction segments that consist of three, at most binary participants. Using a sequential (network type after network type) exploration approach and, independently, theoretical explanations, it is demonstrated for networks with classical reaction segments containing more than three, at most binary participants that if any one of such networks leads to a solvable transport problem then the FF method is applicable. Ways of helping to avoid networks that produce problem insolvability are developed and demonstrated. A previously suggested algebraic, matrix rank procedure has been adapted and augmented to serve as the main, easy-to-apply solvability test for already postulated networks. Four network conditions that often generate insolvability have been identified and studied. Their early detection during network formulation may help to avoid postulation of insolvable networks.
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
NASA Astrophysics Data System (ADS)
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
Network marketing with bounded rationality and partial information
NASA Astrophysics Data System (ADS)
Kiet, Hoang Anh Tuan; Kim, Beom Jun
2008-08-01
Network marketing has been proposed and used as a way to spread the product information to consumers through social connections. We extend the previous game model of the network marketing on a small-world tree network and propose two games: In the first model with the bounded rationality, each consumer makes purchase decision stochastically, while in the second model, consumers get only partial information due to the finite length of social connections. Via extensive numerical simulations, we find that as the rationality is enhanced not only the consumer surplus but also the firm’s profit is increased. The implication of our results is also discussed.
Weighted Lq-estimates for stationary Stokes system with partially BMO coefficients
NASA Astrophysics Data System (ADS)
Dong, Hongjie; Kim, Doyoon
2018-04-01
We prove the unique solvability of solutions in Sobolev spaces to the stationary Stokes system on a bounded Reifenberg flat domain when the coefficients are partially BMO functions, i.e., locally they are merely measurable in one direction and have small mean oscillations in the other directions. Using this result, we establish the unique solvability in Muckenhoupt type weighted Sobolev spaces for the system with partially BMO coefficients on a Reifenberg flat domain. We also present weighted a priori Lq-estimates for the system when the domain is the whole Euclidean space or a half space.
Madden, U A; Stahr, H M; Stino, F K
1999-08-01
The effects of silty clay loam soil on the performance and biochemical parameters of chicks were investigated when the soil was added to aflatoxin B1 (AFB1)-contaminated diets. One hundred 14-d-old White Leghorn chicks were fed a control ration (clean corn), a low aflatoxin-contaminated ration (120 ng AFB1/g), a high aflatoxin-contaminated ration (700 ng AFB1/g), or high aflatoxin-contaminated rations (700 ng AFB1/g) +10% or 25% soil. Body weight, feed consumption and blood samples were monitored weekly. Decreased feed consumption, body weight gain and efficiency of feed utilization, increased SGOT and LDH activities, and cholesterol and triglyceride concentrations, and decreased uric acid concentrations and ALP activity were observed in the chicks fed the high aflatoxin-contaminated ration without soil. Hepatomegaly was prominent in chicks fed the high aflatoxin-contaminated ration without soil, and some livers had extensive hepatocyte vacuolation, hepatocellular swelling, fatty change and hydropic degeneration, and stained positive for fat accumulation. Addition of soil reduced the detrimental effects of AFB1 for some parameters, although the reduction was less when 10% soil was fed compared with the 25% soil feeding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less
NASA Astrophysics Data System (ADS)
Delorme, Mathieu; Le Doussal, Pierre; Wiese, Kay Jörg
2016-05-01
The Brownian force model is a mean-field model for local velocities during avalanches in elastic interfaces of internal space dimension d , driven in a random medium. It is exactly solvable via a nonlinear differential equation. We study avalanches following a kick, i.e., a step in the driving force. We first recall the calculation of the distributions of the global size (total swept area) and of the local jump size for an arbitrary kick amplitude. We extend this calculation to the joint density of local and global sizes within a single avalanche in the limit of an infinitesimal kick. When the interface is driven by a single point, we find new exponents τ0=5 /3 and τ =7 /4 , depending on whether the force or the displacement is imposed. We show that the extension of a "single avalanche" along one internal direction (i.e., the total length in d =1 ) is finite, and we calculate its distribution following either a local or a global kick. In all cases, it exhibits a divergence P (ℓ ) ˜ℓ-3 at small ℓ . Most of our results are tested in a numerical simulation in dimension d =1 .
Non-perturbative String Theory from Water Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less
The equal load-sharing model of cascade failures in power grids
NASA Astrophysics Data System (ADS)
Scala, Antonio; De Sanctis Lucentini, Pier Giorgio
2016-11-01
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing power demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ;super-grids;.
Abruptness of Cascade Failures in Power Grids
NASA Astrophysics Data System (ADS)
Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio
2014-01-01
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ``super-grids''.
Abruptness of cascade failures in power grids.
Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio
2014-01-15
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids".
Abruptness of Cascade Failures in Power Grids
Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio
2014-01-01
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into “super-grids”. PMID:24424239
NASA Astrophysics Data System (ADS)
Cadilhe, Antonio
2018-04-01
We performed extensive simulations, using the Replica Exchange-Wang-Landau method, of the clock model for orders 3 and 4 on a square lattice, where critical behaviors are expected to belong to the Ising universality class. Though order 2 represents the Ising model, thus, being exactly solvable in two-dimensions, we still provide such results for comparison to the other two orders. Results for various energy related quantities such as the mean energy per spin, specific heat, as well as logarithm scaling of the peak of the specific heat are presented and shown to follow Ising behavior. Additionally, we also present results related to magnetic quantities, such as the magnetization, magnetic susceptibility, and corresponding scaling behavior of the peak of the magnetic susceptibility. Again, our results show scaling in conformity to Ising critical behavior.
Lungu, Radu P; Huckaby, Dale A
2008-07-21
An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.
Ruijsenaars-Schneider three-body models with N = 2 supersymmetry
NASA Astrophysics Data System (ADS)
Galajinsky, Anton
2018-04-01
The Ruijsenaars-Schneider models are conventionally regarded as relativistic generalizations of the Calogero integrable systems. Surprisingly enough, their supersymmetric generalizations escaped attention. In this work, N = 2 supersymmetric extensions of the rational and hyperbolic Ruijsenaars-Schneider three-body models are constructed within the framework of the Hamiltonian formalism. It is also known that the rational model can be described by the geodesic equations associated with a metric connection. We demonstrate that the hyperbolic systems are linked to non-metric connections.
What Information Theory Says About Best Response and About Binding Contracts
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is the information-theoretic extension of conventional full- rationality game theory to bounded rational games. Here PD theory is used to investigate games in which the players use bounded rational best-response strategies. This investigation illuminates how to determine the optimal organization chart for a corporation, or more generally how to order the sequence of moves of the players / employees so as to optimize an overall objective function. It is then shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. This variant is then investigated for team games, in which the players share the same utility function, by showing that such continuum- limit bounded rational best response is identical to Newton-Raphson iterative optimization of the shared utility function. Next PD theory is used to investigate changing the coordinate system of the game, i.e., changing the mapping from the joint move of the players to the arguments in the utility functions. Such a change couples those arguments, essentially by making each players move be an offered binding contract.
The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics
NASA Astrophysics Data System (ADS)
Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.
2010-12-01
The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.
Demonstration of Detection and Ranging Using Solvable Chaos
NASA Technical Reports Server (NTRS)
Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.
2013-01-01
Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.
Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy
NASA Technical Reports Server (NTRS)
Langer, J. S.; Hong, D. C.
1986-01-01
This paper is concerned primarily with the development of an analytic approach to the theory of steady-state velocity selection in the boundary-layer model of dendritic solidification. The two-dimensional version of this model with a fourfold crystalline anisotropy alpha in the surface tension is considered. By extending a WKB method introduced in an earlier paper, the alpha dependence of the selected growth rate is determined in the limit of small alpha; and this rate is studied for large alphas in the limit in which the dimensionless undercooling approaches unity. Portions of the paper are devoted to a reinterpretation of the mathematical structure of the solvability condition in problems of this kind.
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.
1999-01-01
In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.
Analytically solvable chaotic oscillator based on a first-order filter.
Corron, Ned J; Cooper, Roy M; Blakely, Jonathan N
2016-02-01
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.
Analytically solvable chaotic oscillator based on a first-order filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.
2016-02-15
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform formore » any stable infinite-impulse response filter is chaotic.« less
NASA Astrophysics Data System (ADS)
Minami, Kazuhiko
2017-12-01
An infinite number of spin chains are solved and it is derived that the ground-state phase transitions belong to the universality classes with central charge c = m / 2, where m is an integer. The models are diagonalized by automatically obtained transformations, many of which are different from the Jordan-Wigner transformation. The free energies, correlation functions, string order parameters, exponents, central charges, and the phase diagram are obtained. Most of the examples consist of the stabilizers of the cluster state. A unified structure of the one-dimensional XY and cluster-type spin chains is revealed, and other series of solvable models can be obtained through this formula.
CTE Solvability, Exact Solutions and Nonlocal Symmetries of the Sharma-Tasso-Olver Equation
NASA Astrophysics Data System (ADS)
Pu, Huan; Jia, Man
2015-12-01
In this letter, we prove that the STO equation is CTE solvable and obtain the exact solutions of solitons fission and fusion. We also provide the nonlocal symmetries of the STO equation related to CTE. The nonlocal symmetries are localized by prolonging the related enlarged system. Supported by National Natural Science Foundation of China under Grant Nos. 11205092, 11175092 and 11435005, Ningbo Natural Science Foundation under Grant Nos. 2015A610159 and 2012A610178 and by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzw11502. And the authors were sponsored by K. C. Wong Magna Fund in Ningbo University
Communication and implementation of change in crop protection.
Escalada, M M; Heong, K L
1993-01-01
The slow adoption of integrated pest management (IPM) has been attributed to the widespread gaps in farmers' knowledge of rational pest management. Other factors such as farmers' perception of high input use and promotion of pesticides also influence decisions to practise rational pest management. To bridge these gaps and improve farmers' pest management practices, most IPM implementation programmes rely on communication strategies. These communication approaches utilize either mass media or interpersonal channels or a combination. The choice of which communication approach to employ depends on project objectives and resources. Among extension and communication approaches used in crop protection, strategic extension campaigns, farmer field schools and farmer participatory research stand out in their ability to bring about significant changes in farmers' pest management practices. While extension campaigns have greater reach, farmer participation and experiential learning achieve more impact because learning effects are sustained. Communication media are important in raising awareness and creating a demand for IPM information but interpersonal channels and group methods such as the farmer field school and farmer participatory research are essential to accomplish the tasks of discovery and experiential learning of IPM skills.
Extending Romanovski polynomials in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesne, C.
2013-12-15
Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties ofmore » second-order differential equations of Schrödinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.« less
Wang, Lin; Tao, Wuqing; Yuan, Liyong; Liu, Zhirong; Huang, Qing; Chai, Zhifang; Gibson, John K; Shi, Weiqun
2017-11-07
Though two-dimensional early transition metal carbides and carbonitrides (MXenes) have attracted extensive interest recently, their superb abilities in various scientific applications always suffer from the very narrow interlayer space inside the multilayered structure. Here we demonstrate an unprecedented large adsorption capacity enhancement of Ti 3 C 2 T x toward radionuclide removal via a hydrated intercalation strategy. By rational control of the interlayer space, the potential for imprisoning the representative actinide U(vi) inside multilayered Ti 3 C 2 T x was also confirmed.
Intergroup conflict: individual, group, and collective interests.
Bornstein, Gary
2003-01-01
Intergroup conflicts generally involve conflicts of interests within the competing groups as well. This article outlines a taxonomy of games, called team games, which incorporates the intragroup and intergroup levels of conflict. Its aims are to provide a coherent framework for analyzing the prototypical problems of cooperation and competition that arise within and between groups, and to review an extensive research program that has used this framework to study individual and group behavior in the laboratory. Depending on the game's payoff structure, contradictions or conflicts are created among the rational choices at the individual, group, and collective levels-a generalization of the contradiction between individual and collective rationality occurring in the traditional mixed-motive games. These contradictions are studied so as to identify the theoretical and behavioral conditions that determine which level of rationality prevails.
Immune networks: multitasking capabilities near saturation
NASA Astrophysics Data System (ADS)
Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.
2013-10-01
Pattern-diluted associative networks were recently introduced as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T- and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with NT T-lymphocytes can manage a number N_B={ {O}}(N_T^\\delta ) of B-lymphocytes simultaneously, with δ < 1. Here we study this model in the extensive load regime NB = αNT, with a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivity regime, where each T-lymphocyte interacts with a finite number of B-lymphocytes as NT → ∞, the T-lymphocytes can coordinate effective immune responses to an extensive number of distinct antigen invasions in parallel. As α increases, the system eventually undergoes a second order transition to a phase with clonal cross-talk interference, where the system’s performance degrades gracefully. Mathematically, the model is equivalent to a spin system on a finitely connected graph with many short loops, so one would expect the available analytical methods, which all assume locally tree-like graphs, to fail. Yet it turns out to be solvable. Our results are supported by numerical simulations.
The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, Juan Mauricio; Sadurni, Emerson; Seligman, Thomas H.
2010-12-23
The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which canmore » be used to emulate the former.« less
Differential geometric treewidth estimation in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Quantum glassiness in clean strongly correlated systems: an example of topological overprotection
NASA Astrophysics Data System (ADS)
Chamon, Claudio
2005-03-01
Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Emery-Kivelson solution of the two-channel Kondo problem
NASA Astrophysics Data System (ADS)
Sengupta, Anirvan M.; Georges, Antoine
1994-04-01
We consider the two-channel Kondo model in the Emery-Kivelson approach, and calculate the total susceptibility enhancement due to the impurity χimp=χ-χbulk. We find that χimp exactly vanishes at the solvable point, in a completely analogous way to the singular part of the specific heat Cimp. A perturbative calculation around the solvable point yields the generic behavior χimp~log(1/T), Cimp~T logT and the known universal value of the Wilson ratio RW=8/3. From this calculation, the Kondo temperature can be identified and is found to behave as the inverse square of the perturbation parameter. The small-field, zero-temperature behavior χimp~log(1/h) is also recovered.
Extended Islands of Tractability for Parsimony Haplotyping
NASA Astrophysics Data System (ADS)
Fleischer, Rudolf; Guo, Jiong; Niedermeier, Rolf; Uhlmann, Johannes; Wang, Yihui; Weller, Mathias; Wu, Xi
Parsimony haplotyping is the problem of finding a smallest size set of haplotypes that can explain a given set of genotypes. The problem is NP-hard, and many heuristic and approximation algorithms as well as polynomial-time solvable special cases have been discovered. We propose improved fixed-parameter tractability results with respect to the parameter "size of the target haplotype set" k by presenting an O *(k 4k )-time algorithm. This also applies to the practically important constrained case, where we can only use haplotypes from a given set. Furthermore, we show that the problem becomes polynomial-time solvable if the given set of genotypes is complete, i.e., contains all possible genotypes that can be explained by the set of haplotypes.
NASA Astrophysics Data System (ADS)
Hidayat, M.; Pratama, H. Y.; Martono, E.
2018-02-01
Cacao plantation produces cacao pod husks (CPHs) by-products during the harvest period. This research aimed to make benefits the CPH, preserved with silage technology as cattle ration mixture, investigate the adequacy of nutrient for the cattle after treated with addition of CPH silage, and investigate the quota of cattle treated with CPH silage addition. The research design was conducted by giving extension and field observation that was carried out at Taluditi on July to August 2015 during the activity of Student Community Service (KKN PPM UGM Unit Gorontalo 02). The secondary data was gathered from the Department of Agriculture and Plantation Pohuwatu Regency, and also supporting references. The number of respondents in each location was about 30 - 40 people. The research results showed that the silage preservation technology can be well received by the farmers. There was improvement of cattle ration nutrient supplemented with CPH compared to that of ration nutrient which was usually be used by the farmers or standard ration nutrient. The research also resulted in fresh CPH production 2,625.741 tons/year, CPH silage production 2,140.549 tons/year and load capacity + 575 heads/day weight 250-300 kg.
Energy spectra of vibron and cluster models in molecular and nuclear systems
NASA Astrophysics Data System (ADS)
Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.
2018-03-01
The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.
Identifying a Probabilistic Boolean Threshold Network From Samples.
Melkman, Avraham A; Cheng, Xiaoqing; Ching, Wai-Ki; Akutsu, Tatsuya
2018-04-01
This paper studies the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from a given set of samples, where PBNs are probabilistic extensions of Boolean networks. Cheng et al. studied the problem while focusing on PBNs consisting of pairs of AND/OR functions. This paper considers PBNs consisting of Boolean threshold functions while focusing on those threshold functions that have unit coefficients. The treatment of Boolean threshold functions, and triplets and -tuplets of such functions, necessitates a deepening of the theoretical analyses. It is shown that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable constraints, which include: 1) PBNs in which any number of threshold functions can be assigned provided that all have the same number of input variables and 2) PBNs consisting of pairs of threshold functions with different numbers of input variables. It is also shown that the problem of deciding the equivalence of two Boolean threshold functions is solvable in pseudopolynomial time but remains co-NP complete.
Extensions of Fundamental Flow Physics to Practical MAV Aerodynamics
2016-05-01
performances aérodynamiques. En cas de génération instable de la portance, certaines structures formées par la séparation de l’écoulement, telles...que le vortex du bord d’attaque, peuvent augmenter la portance bien au-delà des espérances à l’état stable. Le présent document étudie les rotations...une accélération dans le sens de l’écoulement à incidence constante (également lissée). Nous examinons de quelle façon la vitesse du mouvement
Multicategorical Spline Model for Item Response Theory.
ERIC Educational Resources Information Center
Abrahamowicz, Michal; Ramsay, James O.
1992-01-01
A nonparametric multicategorical model for multiple-choice data is proposed as an extension of the binary spline model of J. O. Ramsay and M. Abrahamowicz (1989). Results of two Monte Carlo studies illustrate the model, which approximates probability functions by rational splines. (SLD)
Dolan Grady relations and noncommutative quasi-exactly solvable systems
NASA Astrophysics Data System (ADS)
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
Effects of methylphenidate on the persistence of ADHD boys following failure experiences.
Milich, R; Carlson, C L; Pelham, W E; Licht, B G
1991-10-01
We examined the effects of methylphenidate on the task persistence of 21 boys with attention-deficit hyperactivity disorder (ADHD), after they had been exposed to both solvable and insolvable problems. The boys attempted to solve 10 different find-a-word puzzles on each of 4 days, involving the crossing of medication (placebo vs. 0.3 mg/kg) and prior task difficulty (solvable vs. insolvable). The results revealed that medication prevented the decrement in performance following the insolvable problems that was evident with the placebo days. In addition, on medication compared with placebo, the boys were more likely to make external attributions for failure and internal attributions for success. The results are discussed in terms of the impact of medication on ADHD boys' performance as mediated by cognitive-motivational state mechanisms.
Rationality, perception, and the all-seeing eye.
Felin, Teppo; Koenderink, Jan; Krueger, Joachim I
2017-08-01
Seeing-perception and vision-is implicitly the fundamental building block of the literature on rationality and cognition. Herbert Simon and Daniel Kahneman's arguments against the omniscience of economic agents-and the concept of bounded rationality-depend critically on a particular view of the nature of perception and vision. We propose that this framework of rationality merely replaces economic omniscience with perceptual omniscience. We show how the cognitive and social sciences feature a pervasive but problematic meta-assumption that is characterized by an "all-seeing eye." We raise concerns about this assumption and discuss different ways in which the all-seeing eye manifests itself in existing research on (bounded) rationality. We first consider the centrality of vision and perception in Simon's pioneering work. We then point to Kahneman's work-particularly his article "Maps of Bounded Rationality"-to illustrate the pervasiveness of an all-seeing view of perception, as manifested in the extensive use of visual examples and illusions. Similar assumptions about perception can be found across a large literature in the cognitive sciences. The central problem is the present emphasis on inverse optics-the objective nature of objects and environments, e.g., size, contrast, and color. This framework ignores the nature of the organism and perceiver. We argue instead that reality is constructed and expressed, and we discuss the species-specificity of perception, as well as perception as a user interface. We draw on vision science as well as the arts to develop an alternative understanding of rationality in the cognitive and social sciences. We conclude with a discussion of the implications of our arguments for the rationality and decision-making literature in cognitive psychology and behavioral economics, along with suggesting some ways forward.
Orbital currents in a generalized Hubbard ladder
NASA Astrophysics Data System (ADS)
Fjaerestad, John O.
2004-03-01
We study a phase with orbital currents (d-density wave (DDW)/staggered flux phase) in a generalized Hubbard model on the two-leg ladder at zero temperature. Bosonization and perturbative renormalization-group calculations are used to identify a parameter region with long-range DDW order in the weakly interacting half-filled ladder. Finite-size density-matrix renormalization-group (DMRG) studies of ladders with up to 200 rungs, for rational hole dopings δ and intermediate-strength interactions, find that currents remain large in the doped DDW phase, with no evidence of decay.^1,2,3 Motivated by these results, we consider an effective bosonization description of the doped DDW phase in which quantum fluctuations in the total charge mode are neglected.^3 This leads to an analytically solvable Frenkel-Kontorova-like model which predicts that the staggered rung current and the rung electron density show periodic spatial oscillations with wavelengths 2/δ and 1/δ, respectively, with the density minima located at the zeros (domain walls) of the staggered rung current, in good agreement with the DMRG results. We comment on the question of the nature of the asymptotic current correlations in the doped DDW phase. ^1U. Schollwöck, S. Chakravarty, J. O. Fjaerestad, J. B. Marston, and M. Troyer, Phys. Rev. Lett. 90, 186401 (2003). ^2M. Troyer, invited talk at this meeting. ^3J. O. Fjaerestad, J. B. Marston, and U. Schollwöck, unpublished.
Dynamic pricing of network goods with boundedly rational consumers.
Radner, Roy; Radunskaya, Ami; Sundararajan, Arun
2014-01-07
We present a model of dynamic monopoly pricing for a good that displays network effects. In contrast with the standard notion of a rational-expectations equilibrium, we model consumers as boundedly rational and unable either to pay immediate attention to each price change or to make accurate forecasts of the adoption of the network good. Our analysis shows that the seller's optimal price trajectory has the following structure: The price is low when the user base is below a target level, is high when the user base is above the target, and is set to keep the user base stationary once the target level has been attained. We show that this pricing policy is robust to a number of extensions, which include the product's user base evolving over time and consumers basing their choices on a mixture of a myopic and a "stubborn" expectation of adoption. Our results differ significantly from those that would be predicted by a model based on rational-expectations equilibrium and are more consistent with the pricing of network goods observed in practice.
Dynamic pricing of network goods with boundedly rational consumers
Radner, Roy; Radunskaya, Ami; Sundararajan, Arun
2014-01-01
We present a model of dynamic monopoly pricing for a good that displays network effects. In contrast with the standard notion of a rational-expectations equilibrium, we model consumers as boundedly rational and unable either to pay immediate attention to each price change or to make accurate forecasts of the adoption of the network good. Our analysis shows that the seller’s optimal price trajectory has the following structure: The price is low when the user base is below a target level, is high when the user base is above the target, and is set to keep the user base stationary once the target level has been attained. We show that this pricing policy is robust to a number of extensions, which include the product’s user base evolving over time and consumers basing their choices on a mixture of a myopic and a “stubborn” expectation of adoption. Our results differ significantly from those that would be predicted by a model based on rational-expectations equilibrium and are more consistent with the pricing of network goods observed in practice. PMID:24367101
An Extension of the Time-Spectral Method to Overset Solvers
NASA Technical Reports Server (NTRS)
Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas
2013-01-01
Relative motion in the Cartesian or overset framework causes certain spatial nodes to move in and out of the physical domain as they are dynamically blanked by moving solid bodies. This poses a problem for the conventional Time-Spectral approach, which expands the solution at every spatial node into a Fourier series spanning the period of motion. The proposed extension to the Time-Spectral method treats unblanked nodes in the conventional manner but expands the solution at dynamically blanked nodes in a basis of barycentric rational polynomials spanning partitions of contiguously defined temporal intervals. Rational polynomials avoid Runge's phenomenon on the equidistant time samples of these sub-periodic intervals. Fourier- and rational polynomial-based differentiation operators are used in tandem to provide a consistent hybrid Time-Spectral overset scheme capable of handling relative motion. The hybrid scheme is tested with a linear model problem and implemented within NASA's OVERFLOW Reynolds-averaged Navier- Stokes (RANS) solver. The hybrid Time-Spectral solver is then applied to inviscid and turbulent RANS cases of plunging and pitching airfoils and compared to time-accurate and experimental data. A limiter was applied in the turbulent case to avoid undershoots in the undamped turbulent eddy viscosity while maintaining accuracy. The hybrid scheme matches the performance of the conventional Time-Spectral method and converges to the time-accurate results with increased temporal resolution.
Watanabe, Makoto; Murakami, Masahiko; Kato, Takashi; Onaka, Toru; Aoki, Takeshi
2013-01-01
This report clarifies the rational manipulation of standard laparoscopic instruments for single-incision laparoscopic right colectomy (SILRC) using the SILS Port. We classified the manipulations required into 4 techniques. Vertical manipulation was required for medial-to-lateral retroperitoneal dissection. Frontal manipulation was needed for extension and establishment of a retroperitoneal plane. External crossing manipulation was used for dissection or ligation of the ileocolic or right colic vessels. Internal crossing manipulation was required for mobilization from the cecum to ascending colon. We performed SILRC for a series of 30 consecutive patients. One additional port was needed in 5 of the patients (16.7%) because of severe adhesion between the ileum and abdominal wall. No intraoperative complications were encountered. Four rational manipulations of the standard laparoscopic instruments are required for SILRC using the SILS Port. However, more experience and comparative trials are needed to determine the exact role of SILRC. PMID:23971771
SIGI: An Interactive Aid to Career Decision Making.
ERIC Educational Resources Information Center
Katz, Martin R.
1980-01-01
The System of Interactive Guidance and Information (SIGI) helps students make informed and rational career decisions. Interacting with a computer, students examine values, identify and explore options, gain and interpret relevant information, master strategies for decision making, and formulate plans of action. Extensively field-tested, SIGI has…
NASA Astrophysics Data System (ADS)
Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad
2017-01-01
In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.
NASA Astrophysics Data System (ADS)
Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira
2014-06-01
Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.
A biologically consistent hierarchical framework for self-referencing survivalist computation
NASA Astrophysics Data System (ADS)
Cottam, Ron; Ranson, Willy; Vounckx, Roger
2000-05-01
Extensively scaled formally rational hardware and software are indirectly fallible, at the very least through temporal restrictions on the evaluation of their correctness. In addition, the apparent inability of formal rationality to successfully describe living systems as anything other than inanimate structures suggests that the development of self-referencing computational machines will require a different approach. There is currently a strong movement towards the adoption of semiotics as a descriptive medium in theoretical biology. We present a related computational semiosic construction (1, 2) consistent with evolutionary hierarchical emergence (3), which may serve as a framework for implementing anticipatory-oriented survivalist processing in real environments.
A Comparison Study of Second-Order Screening Designs and Their Extension
2013-12-01
H2 97 V. Nonlinear Screening Designs for Defense Testing: An Overview and Case Study 5.1 Introduction “Necessity is the Mother of Invention.” Plato is...involved concepts like design resolution, minimum aber- ration , power, the number of clear (non-confounded) effects, concepts like rotatability
A Commentary on Mill’s Logic. Book I. Of Names and Propositions.
1983-10-01
truth . [’extension and intension’ in Flew (1979)]. The presumption is that manness necessarily implies rationality, but i- only contigently...guilty and inocent ; these are contraries rather than contradictories, since there are things, such as numbers, that are neither guilty nor innocent
Abstract for 1999 Rational Software User Conference
NASA Technical Reports Server (NTRS)
Dunphy, Julia; Rouquette, Nicolas; Feather, Martin; Tung, Yu-Wen
1999-01-01
We develop spacecraft fault-protection software at NASA/JPL. Challenges exemplified by our task: 1) high-quality systems - need for extensive validation & verification; 2) multi-disciplinary context - involves experts from diverse areas; 3) embedded systems - must adapt to external practices, notations, etc.; and 4) development pressures - NASA's mandate of "better, faster, cheaper".
Training Extension Course Cost and Training Effectiveness Analysis Methodology
1986-01-01
to briefly summarize the economic theories on which it is based, which are the theory of consumer behavior and the theory of economic welfare. The...theory of consumer behavior attempts to explain the behavior of rational individuals in the context of a market. Individuals are faced with a large
Immunogenomics: a foundation for intelligent immune design.
Holt, Robert A
2015-11-19
The complexity of the immune system is now being interrogated using methodologies that generate extensive multi-dimensional data. Effective collection, integration and interpretation of these data remain difficult, but overcoming these important challenges will provide new insights into immune function and opportunities for the rational design of new immune interventions.
Censorship and the Teaching of English.
ERIC Educational Resources Information Center
Donelson, Ken, Ed.
1975-01-01
Ideas, facts, and techniques about censorship and fighting censorship are the subjects of the articles in this extensive issue. Some of the topics discussed are censorship in other states, censorship in the elementary school, rational censorship, racism and censorship, the North Dakota book-burning incident, student rights in high school…
Extending Greatest Common Divisors across the Rationals
ERIC Educational Resources Information Center
Boudreaux, Grant; Beslin, Scott
2013-01-01
The purpose of this article is to examine one possible extension of greatest common divisor (or highest common factor) from elementary number properties. The article may be of interest to teachers and students of the "Australian Curriculum: Mathematics," beginning with Years 7 and 8, as described in the content descriptions for Number…
A Unified Approach to Electron Counting in Main-Group Clusters
ERIC Educational Resources Information Center
McGrady, John E.
2004-01-01
A presentation of an extensive review of traditional approaches to teaching electron counting is given. The electron-precise clusters are usually taken as a reference point for rationalizing the structures of their electron-rich counterparts, which are characterized by valence electron counts greater than 5n.
R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz
NASA Astrophysics Data System (ADS)
Fonseca, T.; Frappat, L.; Ragoucy, E.
2015-01-01
We review some of the strategies that can be implemented to infer an R-matrix from the knowledge of its Hamiltonian. We apply them to the classification achieved in Crampé, Frappat, and Ragoucy, J. Phys. A 46, 405001 (2013), on three state U(1)-invariant Hamiltonians solvable by coordinate Bethe ansatz, focusing on models for which the S-matrix is not trivial. For the 19-vertex solutions, we recover the R-matrices of the well-known Zamolodchikov-Fateev and Izergin-Korepin models. We point out that the generalized Bariev Hamiltonian is related to both main and special branches studied by Martins in Nucl. Phys. B 874, 243 (2013), that we prove to generate the same Hamiltonian. The 19-vertex SpR model still resists to the analysis, although we are able to state some no-go theorems on its R-matrix. For 17-vertex Hamiltonians, we produce a new R-matrix.
Protecting coherence by environmental decoherence: a solvable paradigmatic model
NASA Astrophysics Data System (ADS)
Torres, Juan Mauricio; Seligman, Thomas H.
2017-11-01
We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the coupling between near and far environment. The paradigmatic example is the Jaynes-Cummings Hamiltonian, which we introduce into a Kossakowski-Lindblad master equation using alternatively the lowering operator of the oscillator or its number operator as Lindblad operators. The harmonic oscillator is regarded as the near environment of the qubit, while effects of a far environment are accounted for by the two options for the dissipative part of the master equation. The exact solution allows us to cover the entire range of coupling strength from the perturbative regime to strong coupling analytically. The coherence conserving effect of the coupling to the far environment is confirmed throughout.
Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves
NASA Astrophysics Data System (ADS)
Nemoto, Ryo; Iguchi, Tatsuo
2017-09-01
We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.
Saddles and dynamics in a solvable mean-field model
NASA Astrophysics Data System (ADS)
Angelani, L.; Ruocco, G.; Zamponi, F.
2003-05-01
We use the saddle-approach, recently introduced in the numerical investigation of simple model liquids, in the analysis of a mean-field solvable system. The investigated system is the k-trigonometric model, a k-body interaction mean field system, that generalizes the trigonometric model introduced by Madan and Keyes [J. Chem. Phys. 98, 3342 (1993)] and that has been recently introduced to investigate the relationship between thermodynamics and topology of the configuration space. We find a close relationship between the properties of saddles (stationary points of the potential energy surface) visited by the system and the dynamics. In particular the temperature dependence of saddle order follows that of the diffusivity, both having an Arrhenius behavior at low temperature and a similar shape in the whole temperature range. Our results confirm the general usefulness of the saddle-approach in the interpretation of dynamical processes taking place in interacting systems.
Solvable Family of Driven-Dissipative Many-Body Systems.
Foss-Feig, Michael; Young, Jeremy T; Albert, Victor V; Gorshkov, Alexey V; Maghrebi, Mohammad F
2017-11-10
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Solvable Family of Driven-Dissipative Many-Body Systems
NASA Astrophysics Data System (ADS)
Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-11-01
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Experimentally-induced learned helplessness in adolescents with type 1 diabetes.
McLaughlin, Elizabeth; Lefaivre, Marie-josée; Cummings, Elizabeth
2010-05-01
To determine whether adolescents with type 1 diabetes are more at risk for learned helplessness than their healthy peers. Twenty-three adolescents with diabetes and 25 controls completed a solvable or unsolvable concept formation task. All completed pre- and post-task performance and attribution ratings, and later completed an anagram-solving task to determine if perceived helplessness on the first task would negatively impact performance on the second. Participants in the unsolvable condition solved fewer anagrams; those with diabetes did not show weaker performance than controls. Participants in the solvable condition (diabetes and controls) showed an increase in internal attributions from before the concept formation task to after. In the unsolvable condition, only participants with diabetes made more external attributions for their failure. Contrary to the only other controlled study to use this paradigm in youth with chronic illness, adolescents with diabetes were not more susceptible to learned helplessness.
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2005-01-01
We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.
Optimum fiber distribution in singlewall corrugated fiberboard
Millard W. Johnson; Thomas J. Urbanik; William E. Denniston
1979-01-01
Determining optimum distribution of fiber through rational design of corrugated fiberboard could result in significant reductions in fiber required to meet end-use conditions, with subsequent reductions in price pressure and extension of the softwood timber supply. A theory of thin plates under large deformations is developed that is both kinematically and physically...
The Point of Creative Frustration and the Creative Process: A New Look at an Old Model.
ERIC Educational Resources Information Center
Sapp, D. David
1992-01-01
This paper offers an extension of Graham Wallas' model of the creative process. It identifies periods of problem solving, incubation, and growth with specific points of initial idea inception, creative frustration, and illumination. Responses to creative frustration are described including denial, rationalization, acceptance of stagnation, and new…
Decision support for sustainable forestry: enhancing the basic rational model.
H.R. Ekbia; K.M. Reynolds
2007-01-01
Decision-support systems (DSS) have been extensively used in the management of natural resources for nearly two decades. However, practical difficulties with the application of DSS in real-world situations have become increasingly apparent. Complexities of decisionmaking, encountered in the context of ecosystem management, are equally present in sustainable forestry....
Adaptive Multi-Agent Systems for Constrained Optimization
NASA Technical Reports Server (NTRS)
Macready, William; Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.
Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako
2016-11-01
To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3×10^{9} Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.
How to detect fluctuating stripes in the high-temperature superconductors
NASA Astrophysics Data System (ADS)
Kivelson, S. A.; Bindloss, I. P.; Fradkin, E.; Oganesyan, V.; Tranquada, J. M.; Kapitulnik, A.; Howald, C.
2003-10-01
This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.
N=2 supersymmetric quantum mechanics of N Lieb-Liniger-Yang bosons on a line
NASA Astrophysics Data System (ADS)
Mateos Guilarte, J.; Moreno Mosquera, A.
2017-02-01
A supersymmetric generalization of the Lieb-Liniger-Yang dynamics governing N massive bosons moving on a line with delta interactions among them at coinciding points is developed. The analysis of the delicate balance between integrability and-supersymmetry, starting from the exactly solvable non-supersymmetric LLY system, is one of the paper main concerns. Two extreme regimes of the N parameter are explored: 1) For few bosons we fall in the realm of supersymmetric quantum mechanics with a short number of degrees of freedom, e.g., the SUSY Pösch-Teller potentials if N = 1 . 2) For large N we deal with supersymmetric extensions of many-body systems in the thermodynamic limit akin, e.g., to the supersymmetric Calogero-Sutherland systems. Emphasis will be put in the investigation of the ground-state structure of these quantum mechanical systems enjoying {N}=2 extended supersymmetry without spoiling integrability. The decision about wether or not supersymmetry is spontaneously broken, a central question in SUSY quantum mechanics determined from the ground-state structure, is another goal of the paper.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Yan, Zhenya
2017-02-01
The novel generalized perturbation (n, M)-fold Darboux transformations (DTs) are reported for the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its extension by using the Taylor expansion of the Darboux matrix. The generalized perturbation (1 , N - 1) -fold DTs are used to find their higher-order rational solitons and rogue wave solutions in terms of determinants. The dynamics behaviors of these rogue waves are discussed in detail for different parameters and time, which display the interesting RW and soliton structures including the triangle, pentagon, heptagon profiles, etc. Moreover, we find that a new phenomenon that the parameter (a) can control the wave structures of the KP equation from the higher-order rogue waves (a ≠ 0) into higher-order rational solitons (a = 0) in (x, t)-space with y = const . These results may predict the corresponding dynamical phenomena in the models of fluid mechanics and other physically relevant systems.
An Integrative Theory of Psychotherapy: Research and Practice
Epstein, Seymour; Epstein, Martha L.
2016-01-01
A dual-process personality theory and supporting research are presented. The dual processes comprise an experiential system and a rational system. The experiential system is an adaptive, associative learning system that humans share with other higher-order animals. The rational system is a uniquely human, primarily verbal, reasoning system. It is assumed that when humans developed language they did not abandon their previous ways of adapting, they simply added language to their experiential system. The two systems are assumed to operate in parallel and are bi-directionally interactive. The validity of these assumptions is supported by extensive research. Of particular relevance for psychotherapy, the experiential system, which is compatible with evolutionary theory, replaces the Freudian maladaptive unconscious system that is indefensible from an evolutionary perspective, as sub-human animals would then have only a single system that is maladaptive. The aim of psychotherapy is to produce constructive changes in the experiential system. Changes in the rational system are useful only to the extent that they contribute to constructive changes in the experiential system. PMID:27672302
An Integrative Theory of Psychotherapy: Research and Practice.
Epstein, Seymour; Epstein, Martha L
2016-06-01
A dual-process personality theory and supporting research are presented. The dual processes comprise an experiential system and a rational system. The experiential system is an adaptive, associative learning system that humans share with other higher-order animals. The rational system is a uniquely human, primarily verbal, reasoning system. It is assumed that when humans developed language they did not abandon their previous ways of adapting, they simply added language to their experiential system. The two systems are assumed to operate in parallel and are bi-directionally interactive. The validity of these assumptions is supported by extensive research. Of particular relevance for psychotherapy, the experiential system, which is compatible with evolutionary theory, replaces the Freudian maladaptive unconscious system that is indefensible from an evolutionary perspective, as sub-human animals would then have only a single system that is maladaptive. The aim of psychotherapy is to produce constructive changes in the experiential system. Changes in the rational system are useful only to the extent that they contribute to constructive changes in the experiential system.
Residualization Rates of Near Infrared Dyes for the Rational Design of Molecular Imaging Agents
Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M.
2016-01-01
Purpose Near infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. Procedures In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, BODIPY, and oxazine/thiazine/carbopyronin). Results We identify residualizing (half-life > 24 hrs) and non-residualizing dyes (half-life < 24 hrs) in both the far red (~650-680 nm) and near infrared (~740-800 nm) regions. Conclusions This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design. PMID:25869081
Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents.
Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M
2015-12-01
Near-infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, boron-dipyrromethene (BODIPY), and oxazine/thiazine/carbopyronin). We identify residualizing (half-life >24 h) and non-residualizing (half-life <24 h) dyes in both the far-red (~650-680 nm) and near-infrared (~740-800 nm) regions. This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design.
Framing the inborn aging process and longevity science.
Farrelly, Colin
2010-06-01
The medical sciences are currently dominated by the "disease-model" approach to health extension, an approach that prioritizes the study of pathological mechanisms with the goal of discovering treatment modalities for specific diseases. This approach has marginalized research on the aging process itself, research that could lead to an intervention that retards aging, thus conferring health dividends that would far exceed what could be expected by eliminating any specific disease of aging. This paper offers a diagnosis of how this sub-optimal approach to health extension arose and some general prescriptions concerning how progress could be made in terms of adopting a more rational approach to health extension. Drawing on empirical findings from psychology and economics, "prospect theory" is applied to the challenges of "framing" the inborn aging process given the cognitive capacities of real (rather than rational) decision-makers under conditions of risk and uncertainty. Prospect theory reveals that preferences are in fact dependent on whether particular outcomes of a choice are regarded as "a loss" or "a gain", relative to a reference point (or "aspiration level for survival"). And this has significant consequences for the way biogerontologists ought to characterise the central aspirations of the field (i.e. to prevent disease versus extend lifespan). Furthermore, it reveals the importance of shifting the existing reference point of the medical sciences to one that is shaped by the findings of evolutionary biology and biodemography.
The Role of Proof in Comprehending and Teaching Elementary Linear Algebra.
ERIC Educational Resources Information Center
Uhlig, Frank
2002-01-01
Describes how elementary linear algebra can be taught successfully while introducing students to the concept and practice of mathematical proof. Suggests exploring the concept of solvability of linear systems first via the row echelon form (REF). (Author/KHR)
ERIC Educational Resources Information Center
Ceulemans, Eva; Van Mechelen, Iven; Leenen, Iwin
2007-01-01
Hierarchical classes models are quasi-order retaining Boolean decomposition models for N-way N-mode binary data. To fit these models to data, rationally started alternating least squares (or, equivalently, alternating least absolute deviations) algorithms have been proposed. Extensive simulation studies showed that these algorithms succeed quite…
ERIC Educational Resources Information Center
Cooper, Susan M.; Wilkerson, Trena L.; Montgomery, Mark; Mechell, Sara; Arterbury, Kristin; Moore, Sherrie
2012-01-01
In 2007, a group of mathematics educators and researchers met to examine rational numbers and why children have such an issue with them. An extensive review of the literature on fractional understanding was conducted. The ideas in that literature were then consolidated into a theoretical framework for examining fractions. Once that theoretical…
NASA Astrophysics Data System (ADS)
Alemadi, Nasser Ahmed
Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive generation capability to specific generators to allow a load flow solution to be obtained. The minimum control solvability problem can also obtain solution of the load flow without curtailing transactions that shed load and generation as recommended by VSSAD. A minimum control solvability problem will be implemented as a corrective control, that will achieve the above objectives by using minimum control changes. The control includes; (1) voltage setpoint on generator bus voltage terminals; (2) under load tap changer tap positions and switchable shunt capacitors; and (3) active generation at generator buses. The minimum control solvability problem uses the VSSAD recommendation to obtain the feasible stable starting point but completely eliminates the impossible or onerous recommendation made by VSSAD. This thesis reviews the capabilities of Voltage Stability Security Assessment and Diagnosis and how it can be used to implement a contingency selection module for the Open Access System Dispatch (OASYDIS). The OASYDIS will also use the corrective control computed by Security Constrained Dispatch. The corrective control would be computed off line and stored for each contingency that produces voltage instability. The control is triggered and implemented to correct the voltage instability in the agent experiencing voltage instability only after the equipment outage or operating changes predicted to produce voltage instability have occurred. The advantages and the requirements to implement the corrective control are also discussed.
Administration Planning for Tomorrow.
ERIC Educational Resources Information Center
Murray, Albert
After defining administrative planning and outlining deficits and gains of the past 20 years in American schooling, this address underlines the necessity for educational restructuring. Specifically, educational leaders need to: (1) gather data determining the status quo and suggest incremental improvements; (2) address new solvable challenges and…
NASA Technical Reports Server (NTRS)
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
Fox, Christopher B
2013-09-01
The Modern Vaccines/Adjuvants Formulation meeting aims to fill a critical gap in current vaccine development efforts by bringing together formulation scientists and immunologists to emphasize the importance of rational formulation design in order to optimize vaccine and adjuvant bioactivity, safety, and manufacturability. Session 6 on Vaccine and Adjuvant Formulation and Production provided three examples of this theme, with speakers emphasizing the need for extensive physicochemical characterization of adjuvant-antigen interactions, the rational formulation design of a CD8+ T cell-inducing adjuvant based on immunological principles, and the development and production of a rabies vaccine by a developing country manufacturer. Throughout the session, the practical importance of sound formulation and manufacturing design accompanied by analytical characterization was highlighted.
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
An Exactly Solvable Model for the Spread of Disease
ERIC Educational Resources Information Center
Mickens, Ronald E.
2012-01-01
We present a new SIR epidemiological model whose exact analytical solution can be calculated. In this model, unlike previous models, the infective population becomes zero at a finite time. Remarkably, these results can be derived from only an elementary knowledge of differential equations.
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
Canonical Formulation of Supermechanics
NASA Astrophysics Data System (ADS)
Matsumoto, S.
1990-07-01
The canonical formulation of a theory of dynamical systems with both Grassmann even and odd variables is investigated. The sufficient condition for the system being analytically solvable is given. The geodesic motion of a particle in the super Poincaré upper half plane is solved as an example.
Analytically Solvable Model of Spreading Dynamics with Non-Poissonian Processes
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János
2014-01-01
Non-Poissonian bursty processes are ubiquitous in natural and social phenomena, yet little is known about their effects on the large-scale spreading dynamics. In order to characterize these effects, we devise an analytically solvable model of susceptible-infected spreading dynamics in infinite systems for arbitrary inter-event time distributions and for the whole time range. Our model is stationary from the beginning, and the role of the lower bound of inter-event times is explicitly considered. The exact solution shows that for early and intermediate times, the burstiness accelerates the spreading as compared to a Poisson-like process with the same mean and same lower bound of inter-event times. Such behavior is opposite for late-time dynamics in finite systems, where the power-law distribution of inter-event times results in a slower and algebraic convergence to a fully infected state in contrast to the exponential decay of the Poisson-like process. We also provide an intuitive argument for the exponent characterizing algebraic convergence.
Reis, Matthias; Kromer, Justus A; Klipp, Edda
2018-01-20
Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.
Entanglement dynamics in a non-Markovian environment: An exactly solvable model
NASA Astrophysics Data System (ADS)
Wilson, Justin H.; Fregoso, Benjamin M.; Galitski, Victor M.
2012-05-01
We study the non-Markovian effects on the dynamics of entanglement in an exactly solvable model that involves two independent oscillators, each coupled to its own stochastic noise source. First, we develop Lie algebraic and functional integral methods to find an exact solution to the single-oscillator problem which includes an analytic expression for the density matrix and the complete statistics, i.e., the probability distribution functions for observables. For long bath time correlations, we see nonmonotonic evolution of the uncertainties in observables. Further, we extend this exact solution to the two-particle problem and find the dynamics of entanglement in a subspace. We find the phenomena of “sudden death” and “rebirth” of entanglement. Interestingly, all memory effects enter via the functional form of the energy and hence the time of death and rebirth is controlled by the amount of noisy energy added into each oscillator. If this energy increases above (decreases below) a threshold, we obtain sudden death (rebirth) of entanglement.
NASA Astrophysics Data System (ADS)
Cheng, Wen-Guang; Qiu, De-Qin; Yu, Bo
2017-06-01
This paper is concerned with the fifth-order modified Korteweg-de Vries (fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion (CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion (CTE) method, the nonlocal symmetry related to the consistent tanh expansion (CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlevé method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed. Supported by National Natural Science Foundation of China under Grant No. 11505090, and Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009
Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.; ...
2018-02-05
A problem of analytical continuation of scattering data to the negative-energy region to obtain information about bound states is discussed within an exactly solvable potential model. This work is continuation of the previous one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)]. The goal of this paper is to determine the most effective way of analytic continuation for different systems. The d + α and α + 12C systems are considered and, for comparison, an effective-range function approach and a recently suggested Δ method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev.more » C 96, 034601 (2017).] are applied. We conclude that the method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light systems with small values of the Coulomb parameter the effective-range function method might be preferable.« less
Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei
2017-11-17
The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.
Hasegawa, Hideo
2011-07-01
Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.
NASA Astrophysics Data System (ADS)
Kuznetsov, Alexander M.; Medvedev, Igor G.
2006-05-01
Effects of deviation from the Born-Oppenheimer approximation (BOA) on the non-adiabatic transition probability for the transfer of a quantum particle in condensed media are studied within an exactly solvable model. The particle and the medium are modeled by a set of harmonic oscillators. The dynamic interaction of the particle with a single local mode is treated explicitly without the use of BOA. Two particular situations (symmetric and non-symmetric systems) are considered. It is shown that the difference between the exact solution and the true BOA is negligibly small at realistic parameters of the model. However, the exact results differ considerably from those of the crude Condon approximation (CCA) which is usually considered in the literature as a reference point for BOA (Marcus-Hush-Dogonadze formula). It is shown that the exact rate constant can be smaller (symmetric system) or larger (non-symmetric one) than that obtained in CCA. The non-Condon effects are also studied.
NASA Astrophysics Data System (ADS)
Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan
2008-03-01
The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.
Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals
NASA Astrophysics Data System (ADS)
Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias
2018-05-01
We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.
A problem of analytical continuation of scattering data to the negative-energy region to obtain information about bound states is discussed within an exactly solvable potential model. This work is continuation of the previous one by the same authors [L. D. Blokhintsev et al., Phys. Rev. C 95, 044618 (2017)]. The goal of this paper is to determine the most effective way of analytic continuation for different systems. The d + α and α + 12C systems are considered and, for comparison, an effective-range function approach and a recently suggested Δ method [O. L. Ramírez Suárez and J.-M. Sparenberg, Phys. Rev.more » C 96, 034601 (2017).] are applied. We conclude that the method is more effective for heavier systems with large values of the Coulomb parameter, whereas for light systems with small values of the Coulomb parameter the effective-range function method might be preferable.« less
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.
2018-01-01
In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.
NASA Astrophysics Data System (ADS)
Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.
2018-03-01
In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.
Solvable four-state Landau-Zener model of two interacting qubits with path interference
Sinitsyn, Nikolai A.
2015-11-30
In this paper, I identify a nontrivial four-state Landau-Zener model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. The model describes an experimentally accessible system of two interacting qubits, such as a localized state in a Dirac material with both valley and spin degrees of freedom or a singly charged quantum dot (QD) molecule with spin orbit coupling. Application of the linearly time-dependent magnetic field induces a sequence of quantum level crossings with possibility of interference of different trajectories in a semiclassical picture. I argue that this system satisfies the criteria ofmore » integrability in the multistate Landau-Zener theory, which allows one to derive explicit exact analytical expressions for the transition probability matrix. Finally, I also argue that this model is likely a special case of a larger class of solvable systems, and present a six-state generalization as an example.« less
T\\overline{T} -deformations, AdS/CFT and correlation functions
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2018-02-01
A solvable irrelevant deformation of AdS3/CFT2 correspondence leading to a theory with Hagedorn spectrum at high energy has been recently proposed. It consists of a single trace deformation of the boundary theory, which is inspired by the recent work on solvable T\\overline{T} deformations of two-dimensional CFTs. Thought of as a worldsheet σ-model, the interpretation of the deformed theory from the bulk viewpoint is that of string theory on a background that interpolates between AdS3 in the IR and a linear dilaton vacuum of little string theory in the UV. The insertion of the operator that realizes the deformation in the correlation functions produces a logarithmic divergence, leading to the renormalization of the primary operators, which thus acquire an anomalous dimension. We compute this anomalous dimension explicitly, and this provides us with a direct way of determining the spectrum of the theory. We discuss this and other features of the correlation functions in presence of the deformation.
Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method
NASA Astrophysics Data System (ADS)
Alekseev, G.; Tokhtina, A.; Soboleva, O.
2017-10-01
Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.
Geometrical Characteristics of Cd-Rich Inclusion Defects in CdZnTe Materials
NASA Astrophysics Data System (ADS)
Xu, Chao; Sheng, Fengfeng; Yang, Jianrong
2017-08-01
The geometrical characteristics of Cd-rich inclusion defects in CdZnTe crystals have been investigated by infrared transmission (IRT) microscopy and chemical etching methods, revealing that they are composed of a Cd-rich inclusion core zone with high dislocation density and defect extension belts. Based on the experimental results, the orientation and shape of these belts were determined, showing that their extension directions in three-dimensional (3-D) space are along <211> crystal orientation. To explain the observed IRT images of Cd-rich inclusion defects, a 3-D model with plate-shaped structure for dislocation extension belts is proposed. Greyscale IRT images of dislocation extension belts thus depend on their absorption layer thickness. Assuming that defects can be discerned by IRT microscopy only when their absorption layer thickness is greater than twice that of the plate-shaped dislocation extension belts, this 3-D defect model can rationalize the IRT images of Cd-rich inclusion defects.
Problems for judgment and decision making.
Hastie, R
2001-01-01
This review examines recent developments during the past 5 years in the field of judgment and decision making, written in the form of a list of 16 research problems. Many of the problems involve natural extensions of traditional, originally rational, theories of decision making. Others are derived from descriptive algebraic modeling approaches or from recent developments in cognitive psychology and cognitive neuroscience.
On Legal Authority, Crisis of Legitimacy and Schooling in the Writings of Max Weber.
ERIC Educational Resources Information Center
Lenhardt, Gero
In an attempt to gain a better perspective on the relationship between education and the modern state, this paper reopens the theoretical debate on the key role of formal rationality in Max Weber's interpretation of the capitalist economy and the modern bureaucratic state. Against the background of an extensive review of the development and the…
Product Distribution Theory for Control of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Lee, Chia Fan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.
Paul, Norbert W
2009-09-01
Since decades, scientific change has been interpreted in the light of paradigm shifts and scientific revolutions. The Kuhnian interpretation of scientific change however is now more and more confronted with non-disciplinary thinking in both, science and studies on science. This paper explores how research in biomedicine and the life sciences can be characterized by different rationalities, sometimes converging, sometimes contradictory, all present at the same time with varying ways of influence, impact, and visibility. In general, the rationality of objects is generated by fitting new objects and findings into a new experimental context. The rationality of hypotheses is a move towards the construction of novel explanatory tools and models. This is often inseparable meshing with the third, the technological rationality, in which a technology-driven, self-supporting and sometimes self-referential refinement of methods and technologies comes along with an extension into other fields. During the second and the third phase, the new and emerging fields tend to expand their explanatory reach not only across disciplinary boundaries but also into the social sphere, creating what has been characterized as "exceptionalism" (e.g. genetic exceptionalism or neuro-exceptionalism). Finally, recent biomedicine and life-sciences reach a level in which experimental work becomes more and more data-driven because the technologically constructed experimental systems generate a plethora of findings (data) which at some point start to blur the original hypotheses. For the rationality of information the materiality of research practices becomes secondary and research objects are more and more getting out of sight. Finally, the credibility of science as a practice becomes more and more dependent on consensus about the applicability and relevance of its results. The rationality of interest (and accountability) has become more and more characteristic for a research process which is no longer primarily determined by the desire for knowledge but by the desire for relevance. This paper explores in which ways object-driven and hypotheses-driven experimental life-sciences transformed into domains of experimental research evolving in a technologically constructed, data-driven environment in which they are subjected to constant morphing due to the forces of different rationalities.
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Zhong; He, Na; Qin, Xuwei; Ip, W. H.; Wu, C. H.; Yung, K. L.
2018-07-01
The emergence of online group-buying provides a new consumption pattern for consumers in e-commerce era. However, many consumers realize that their own interests sometimes can't be guaranteed in the group-buying market due to the lack of being regulated. This paper aims to develop effective regulation strategies for online group-buying market. To the best of our knowledge, most existing studies assume that three parties in online group-buying market, i.e. the retailer, the group-buying platform and the consumer, are perfectly rational. To better understand the decision process, in this paper, we incorporate the concept of bounded rationality into consideration. Firstly, a three-parties evolutionary game model is established to study each player's game strategy based on bounded rationality. Secondly, the game model is simulated as a whole by adopting system dynamics to analyze its stability. Finally, theoretical analysis and extensive computational experiments are conducted to obtain the managerial insights and regulation strategies for online group-buying market. Our results clearly demonstrate that a suitable bonus-penalty measure can promote the healthy development of online group-buying market.
Promoting evidence-based practice in pharmacies.
Toklu, Hale Zerrin
2015-01-01
Evidence-based medicine aims to optimize decision-making by using evidence from well-designed and conducted research. The concept of reliable evidence is essential, since the number of electronic information resources is increasing in parallel to the increasing number and type of drugs on the market. The decision-making process is a complex and requires an extensive evaluation as well as the interpretation of the data obtained. Different sources provide different levels of evidence for decision-making. Not all the data have the same value as the evidence. Rational use of medicine requires that the patients receive "medicines appropriate to their clinical needs, in doses that meet their own individual requirements, for an adequate period of time, and at the lowest cost to them and their community." Pharmacists have a crucial role in the health system to maintain the rational use of medicine and provide pharmaceutical care to patients, because they are the drug experts who are academically trained for this purpose. The rational use of the pharmacist's workforce will improve the outcome of pharmacotherapy as well as decreasing the global health costs.
Rational F-theory GUTs without exotics
NASA Astrophysics Data System (ADS)
Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian
2014-07-01
We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.
A possible generalization of the harmonic oscillator potential
NASA Technical Reports Server (NTRS)
Levai, Geza
1995-01-01
A four-parameter potential is analyzed, which contains the three-dimensional harmonic oscillator as a special case. This potential is exactly solvable and retains several characteristics of the harmonic oscillator, and also of the Coulomb problem. The possibility of similar generalizations of other potentials is also pointed out.
The Crystalline Dynamics of Spiral-Shaped Curves
NASA Astrophysics Data System (ADS)
Dudziński, Marcin; Górka, Przemysław
2015-07-01
We study the motion of spiral-shaped polygonal curves by crystalline curvature. We describe this dynamics by the corresponding infinitely dimensional system of ordinary differential equations and show that the considered model is uniquely solvable. Banach's Contraction Mapping Theorem and the Bellman-Gronwall inequality are the main tools applied in our proof.
Arithmetic Word-Problem-Solving in Huntington's Disease
ERIC Educational Resources Information Center
Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.
2005-01-01
The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…
Laplace Boundary-Value Problem in Paraboloidal Coordinates
ERIC Educational Resources Information Center
Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…
Project on National Security Reform: Vision Working Group Report and Scenarios
2010-07-01
from radiation produced by harmless, everyday substances such as bananas , cat litter, glass, and concrete.40 The DHS began installing first...solvable. The skills are potentially there, but the incentives and then the funding to make them emerge 234 and flower across the whole of the U.S
Some Fundamental Issues of Mathematical Simulation in Biology
NASA Astrophysics Data System (ADS)
Razzhevaikin, V. N.
2018-02-01
Some directions of simulation in biology leading to original formulations of mathematical problems are overviewed. Two of them are discussed in detail: the correct solvability of first-order linear equations with unbounded coefficients and the construction of a reaction-diffusion equation with nonlinear diffusion for a model of genetic wave propagation.
CALL FOR PAPERS: Special Issue on `Singular Interactions in Quantum Mechanics: Solvable Models'
NASA Astrophysics Data System (ADS)
Dell'Antonio, G.; Exner, P.; Geyler, V.
2004-07-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Singular Interactions in Quantum Mechanics: Solvable Models'. This issue should be a repository for high quality original work. We are interested in having the topic interpreted broadly, that is, to include contributions dealing with point-interaction models, one- and many-body, quantum graphs, including graph-like structures coupling different dimensions, interactions supported by curves, manifolds, and more complicated sets, random and nonlinear couplings, etc., as well as approximations helping us to understand the meaning of singular couplings and applications of such models on different parts of quantum mechanics. We believe that when the second printing of the `bible' of the field, the book Solvable Models in Quantum Mechanics by S Albeverio, F Gesztesy, the late R Høegh-Krohn and H Holden, appears it is the right moment to review new developments in this area, with the hope of stimulating further development of these extremely useful techniques. The Editorial Board has invited G Dell'Antonio, P Exner and V Geyler to serve as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: bullet The subject of the paper should relate to singular interactions in quantum mechanics in the sense described above. bullet Contributions will be refereed and processed according to the usual procedure of the journal. bullet Papers should be original; reviews of a work published elsewhere will not be accepted. The guidelines for the preparation of contributions are as follows: bullet The DEADLINE for submission of contributions is 31 October 2004. This deadline will allow the special issue to appear in about April 2005. bullet There is a nominal page limit of 15 printed pages (approximately 9000 words) per contribution. Papers exceeding these limits may be accepted at the discretion of the Guest Editors. Further advice on publishing your work in Journal of Physics A: Mathematical and General may be found at www.iop.org/Journals/jphysa. bullet Contributions to the Special Issue should if possible be submitted electronically by web upload at {www.iop.org/Journals/jphysa or by e-mail to jphysa@iop.org, quoting `JPhysA Special Issue-Quantum Mechanics: Solvable Models'. Submissions should ideally be in standard LaTeX form; we are, however, able to accept most formats including Microsoft Word. Please see the web site for further information on electronic submissions. bullet Authors unable to submit electronically may send hard copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing the electronic code on floppy disk if available and quoting `JPhysA Special Issue-Quantum Mechanics: Solvable Models'. bullet All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal. The corresponding author of each contribution will receive a complimentary copy of the issue. G Dell'Antonio, P Exner and V Geyler Guest Editors
Evaluating the effect of ration composition on income over feed cost and milk yield.
Buza, M H; Holden, L A; White, R A; Ishler, V A
2014-05-01
Feed is generally the greatest expense for milk production. With volatility in feed and milk markets, income over feed cost (IOFC) is a more advantageous measure of profit than simply feed cost per cow. The objective of this study was to evaluate the effects of ration cost and ingredient composition on IOFC and milk yield. The Pennsylvania State Extension Dairy Team IOFC tool (http://extension.psu.edu/animals/dairy/business-management/financial-tools/income-over-feed-cost/introduction-to-iofc) was used to collect data from 95 Pennsylvania lactating dairy cow herds from 2009 to 2012 and to determine the IOFC per cow per day. The data collected included average milk yield, milk income, purchased feed cost, ration ingredients, ingredient cost per ton, and amount of each ingredient fed. Feed costs for home-raised feeds for each ration were based on market values rather than on-farm cost. Actual costs were used for purchased feed for each ration. Mean lactating herd size was 170 ± 10.5 and daily milk yield per cow was 31.7 ± 0.19 kg. The mean IOFC was $7.71 ± $1.01 cost per cow, ranging from -$0.33 in March 2009 to $16.60 in September 2011. Data were analyzed using a one-way ANOVA in SPSS (IBM Corp., Armonk, NY). Values were grouped by quartiles and analyzed with all years combined as well as by individual year. Purchased feed cost per cow per day averaged $3.16 ± $1.07 for 2009 to 2012. For 2009 to 2012 combined, milk yield and IOFC did not differ with purchased feed cost. Intermediate levels (quartiles 2 and 3) of forage cost per cow per day between $1.45 and $1.97 per cow per day resulted in the greatest average IOFC of $8.19 and the greatest average milk yield of 32.3 kg. Total feed costs in the fourth quartile ($6.27 or more per cow per day) resulted in the highest IOFC. Thus, minimizing feed cost per cow per day did not maximize IOFC. In 2010, the IOFC was highest at $8.09 for dairies that fed 1 or more commodity by-products. Results of the study indicated that intermediate levels of forage cost and higher levels of total feed cost per cow per day resulted in both higher milk yield and higher IOFC. This suggests that optimal ration formulation rather than least cost strategies may be key to increasing milk yield and IOFC, and that profit margin may be affected more by quality of the feed rather than the cost. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Optimal feeding systems for small-scale dairy herds in the North West Province, South Africa.
Manzana, N Patience; McCrindle, Cheryl M E; Sebei, P Julius; Prozesky, Leon
2014-07-09
Land redistribution was legislated in 1994; it was designed to resolve historical imbalances inland ownership in South Africa. Between 2002 and 2006, a longitudinal observational studywas conducted with 15 purposively selected small-scale dairy farmers in a land redistributionproject in Central North West Province. Four farmers left the project over the period. For thepurposes of this study, a small-scale dairy farm was defined as a farm that produces less than500 L of milk a day, irrespective of the number of cows or size of the farm. The study wasconducted in three phases. In the first phase, situational analysis using participatory ruralappraisal (PRA) and observation was used to outline the extent of the constraints and designappropriate interventions. Feeds that were used were tested and evaluated. In the secondphase, three different feeding systems were designed from the data obtained from PRA. Thesewere: (1) A semi-intensive farm-based ration using available crops, pastures and crop residueswith minimal rations purchased. (2) An intensive, zero-grazing dairy system using a totalmixed ration. (3) A traditional, extensive or dual-purpose system, where the calf drank fromthe cow until weaning and milking was done only once a day. In the third phase, adoptionwas monitored. By July 2006, all remaining farmers had changed to commercially formulatedrations or licks and the body condition score of the cows had improved. It was concluded thatveterinary extension based on PRA and a holistic systems approach was a good option forsuch complex problems. Mentoring by commercial dairy farmers, veterinary and extensionservices appeared to be viable. Further research should be done to optimise the traditionalmodel of dairy farming, as this was relatively profitable, had a lower risk and was less labourintensive.
The application of powerful promoters to enhance gene expression in industrial microorganisms.
Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen
2017-02-01
Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.
Effect of the SOS response on the mean fitness of unicellular populations: a quasispecies approach.
Kama, Amit; Tannenbaum, Emmanuel
2010-11-30
The goal of this paper is to develop a mathematical model that analyzes the selective advantage of the SOS response in unicellular organisms. To this end, this paper develops a quasispecies model that incorporates the SOS response. We consider a unicellular, asexually replicating population of organisms, whose genomes consist of a single, double-stranded DNA molecule, i.e. one chromosome. We assume that repair of post-replication mismatched base-pairs occurs with probability , and that the SOS response is triggered when the total number of mismatched base-pairs is at least . We further assume that the per-mismatch SOS elimination rate is characterized by a first-order rate constant . For a single fitness peak landscape where the master genome can sustain up to mismatches and remain viable, this model is analytically solvable in the limit of infinite sequence length. The results, which are confirmed by stochastic simulations, indicate that the SOS response does indeed confer a fitness advantage to a population, provided that it is only activated when DNA damage is so extensive that a cell will die if it does not attempt to repair its DNA.
Kroesen, Maarten; Bröer, Christian
2009-07-01
Aircraft noise annoyance is studied extensively, but often without an explicit theoretical framework. In this article, a social approach for noise annoyance is proposed. The idea that aircraft noise is meaningful to people within a socially produced discourse is assumed and tested. More particularly, it is expected that the noise policy discourse influences people's assessment of aircraft noise. To this end, Q-methodology is used, which, to the best of the authors' knowledge, has not been used for aircraft noise annoyance so far. Through factor analysis five distinct frames are revealed: "Long live aviation!," "aviation: an ecological threat," "aviation and the environment: a solvable problem," "aircraft noise: not a problem," and "aviation: a local problem." It is shown that the former three frames are clearly related to the policy discourse. Based on this observation it is argued that policy making is a possible mechanism through which the sound of aircraft is turned into annoyance. In addition, it is concluded that the experience of aircraft noise and, in particular, noise annoyance is part of coherent frames of mind, which consist of mutually reinforcing positions and include non-acoustical factors.
WPS mediation: An approach to process geospatial data on different computing backends
NASA Astrophysics Data System (ADS)
Giuliani, Gregory; Nativi, Stefano; Lehmann, Anthony; Ray, Nicolas
2012-10-01
The OGC Web Processing Service (WPS) specification allows generating information by processing distributed geospatial data made available through Spatial Data Infrastructures (SDIs). However, current SDIs have limited analytical capacities and various problems emerge when trying to use them in data and computing-intensive domains such as environmental sciences. These problems are usually not or only partially solvable using single computing resources. Therefore, the Geographic Information (GI) community is trying to benefit from the superior storage and computing capabilities offered by distributed computing (e.g., Grids, Clouds) related methods and technologies. Currently, there is no commonly agreed approach to grid-enable WPS. No implementation allows one to seamlessly execute a geoprocessing calculation following user requirements on different computing backends, ranging from a stand-alone GIS server up to computer clusters and large Grid infrastructures. Considering this issue, this paper presents a proof of concept by mediating different geospatial and Grid software packages, and by proposing an extension of WPS specification through two optional parameters. The applicability of this approach will be demonstrated using a Normalized Difference Vegetation Index (NDVI) mediated WPS process, highlighting benefits, and issues that need to be further investigated to improve performances.
Onboard shuttle on-line software requirements system: Prototype
NASA Technical Reports Server (NTRS)
Kolkhorst, Barbara; Ogletree, Barry
1989-01-01
The prototype discussed here was developed as proof of a concept for a system which could support high volumes of requirements documents with integrated text and graphics; the solution proposed here could be extended to other projects whose goal is to place paper documents in an electronic system for viewing and printing purposes. The technical problems (such as conversion of documentation between word processors, management of a variety of graphics file formats, and difficulties involved in scanning integrated text and graphics) would be very similar for other systems of this type. Indeed, technological advances in areas such as scanning hardware and software and display terminals insure that some of the problems encountered here will be solved in the near-term (less than five years). Examples of these solvable problems include automated input of integrated text and graphics, errors in the recognition process, and the loss of image information which results from the digitization process. The solution developed for the Online Software Requirements System is modular and allows hardware and software components to be upgraded or replaced as industry solutions mature. The extensive commercial software content allows the NASA customer to apply resources to solving the problem and maintaining documents.
A Cartoon in One Dimension of the Hydrogen Molecular Ion
ERIC Educational Resources Information Center
Dutta, Sourav; Ganguly, Shreemoyee; Dutta-Roy, Binayak
2008-01-01
To illustrate the basic methodology involved in the quantum mechanics of molecules, a one-dimensional caricature of the hydrogen molecular ion (H[superscript +][subscript 2]) is presented, which is exactly solvable, in the Born-Oppenheimer approximation, in terms of elementary functions. The purpose of the exercise is to elucidate in a simple…
Grand Challenges and Great Potential in Foreign Language Teaching and Learning
ERIC Educational Resources Information Center
Hlas, Anne Cummings
2018-01-01
This article argues for the field of foreign languages to begin to identify and define our Grand Challenges, which are difficult yet solvable problems facing our field. Seeking answers to these challenges can provide new opportunities for collaboration and can spur new directions and innovation within language learning and teaching. Researchable…
A Solvable Self-Similar Model of the Sausage Instability in a Resistive Z-Pinch
1989-09-20
Ithaca, NY 14853 Dr. V. Nardi Dr. John C. Riordan Stevens Institute of Technology Physics International Co. Hoboken, NJ 07803 2700 Merced Street Dr...92122 Dr. Rick B. Spielman Dr. Frank C. Young Sandia National Laboratories Naval Research Laboratory P.O. Box 5800 Code 4770.1 Albuquerque, NM 87115
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…
Some Schools of Architecture Could Use a Good Architect
ERIC Educational Resources Information Center
Fisher, Thomas
2008-01-01
Like the proverbial shoemaker's child who goes barefoot, many architecture students learn the best practices of their discipline in some of the worst buildings on their campuses. The problems with the newest architecture-school buildings, says the writer, are both similar and solvable. In a new book, teams of architecture faculty members and…
Estimation for bilinear stochastic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.; Marcus, S. I.
1974-01-01
Three techniques for the solution of bilinear estimation problems are presented. First, finite dimensional optimal nonlinear estimators are presented for certain bilinear systems evolving on solvable and nilpotent lie groups. Then the use of harmonic analysis for estimation problems evolving on spheres and other compact manifolds is investigated. Finally, an approximate estimation technique utilizing cumulants is discussed.
Helping Minority Students Graduate from College--A Comprehensive Approach. ERIC Digest.
ERIC Educational Resources Information Center
Richardson, Richard C., Jr.; de los Santos, Alfredo G., Jr.
Blacks, Hispanics, and American Indians remain less likely to graduate from college than other Americans. This persistent and serious problem is solvable if concerned institutions use a comprehensive approach, implementing 10 principles in order to successfully remove race and ethnicity as factors in college completion. The principles listed are…
Simulating Conditions of Learned Helplessness: The Effects of Interventions and Attributions.
ERIC Educational Resources Information Center
Donovan, Wilberta L.; Leavitt, Lewis A.
1985-01-01
Using a version of the "learned helplessness" paradigm, assesses mothers' performance on a solvable task following pretreatments that involved exposure to an infant cry but that differed in the mothers' ability to exert control over termination of the cry. Proposes that learned helplessness models are relevant to the study of…
NASA Astrophysics Data System (ADS)
Phillips, Philip W.; Setty, Chandan; Zhang, Shuyi
2018-05-01
Motivated by recent bounds for charge diffusion in critical matter, we investigate the following question: What sets the scale for the velocity for diffusing degrees of freedom in a scale-invariant system? To make our statements precise, we analyze the diffusion pole in an exactly solvable model for a Mott transition in the presence of a long-range interaction term. To achieve scale invariance, we limit our discussion to the flat-band regime. We find in this limit that the diffusion pole, which would normally obtain at finite energy, is pushed to zero energy, resulting in a vanishing of the diffusion constant. This occurs even in the presence of interactions in certain limits, indicating the robustness of this result to the inclusion of a scale in the problem. Consequently, scale invariance precludes any reasonable definition of the diffusion constant. Nonetheless, we do find that a scale can be defined, albeit irrelevant to diffusion, which is the product of the squared band velocity and the density of states.
NASA Astrophysics Data System (ADS)
Cheng, C. H. Arthur; Shkoller, Steve
2017-09-01
We provide a self-contained proof of the solvability and regularity of a Hodge-type elliptic system, wherein the divergence and curl of a vector field u are prescribed in an open, bounded, Sobolev-class domain {Ω \\subseteq R^n}, and either the normal component {{u} \\cdot {N}} or the tangential components of the vector field {{u} × {N}} are prescribed on the boundary {partial Ω}. For {k > n/2}, we prove that u is in the Sobolev space {H^k+1(Ω)} if {Ω} is an {H^k+1}-domain, and the divergence, curl, and either the normal or tangential trace of u has sufficient regularity. The proof is based on a regularity theory for vector elliptic equations set on Sobolev-class domains and with Sobolev-class coefficients, and with a rather general set of Dirichlet and Neumann boundary conditions. The resulting regularity theory for the vector u is fundamental in the analysis of free-boundary and moving interface problems in fluid dynamics.
Dynamically enriched topological orders in driven two-dimensional systems
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Morimoto, Takahiro
2017-04-01
Time-periodic driving of a quantum system can enable new dynamical topological phases of matter that could not exist in thermal equilibrium. We investigate two related classes of dynamical topological phenomena in 2D systems: Floquet symmetry-protected topological phases (FSPTs) and Floquet enriched topological orders (FETs). By constructing solvable lattice models for a complete set of 2D bosonic FSPT phases, we show that bosonic FSPTs can be understood as topological pumps which deposit loops of 1D SPT chains onto the boundary during each driving cycle, which protects a nontrivial edge state by dynamically tuning the edge to a self-dual point poised between the 1D SPT and trivial phases of the edge. By coupling these FSPT models to dynamical gauge fields, we construct solvable models of FET orders in which anyon excitations are dynamically transmuted into topologically distinct anyon types during each driving period. These bosonic FSPT and gauged FSPT models are classified by group cohomology methods. In addition, we also construct examples of "beyond cohomology" FET orders, which can be viewed as topological pumps of 1D topological chains formed of emergent anyonic quasiparticles.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
Defaye, Frehiwot Berhane; Desalegn, Dawit; Danis, Marion; Hurst, Samia; Berhane, Yemane; Norheim, Ole Frithjof; Miljeteig, Ingrid
2015-10-14
Resource scarcity in health care is a universal challenge. In high-income settings, bedside rationing is commonly discussed and debated as a means to addressing scarcity. However, little is known about physicians' experiences in resource-limited contexts in low- income countries. Here we describe physicians' experiences regarding scarcity of resources, bedside rationing, use of various strategies to save resources, and perceptions of the consequences of rationing in Ethiopia. A national survey was conducted amongst physicians from 49 public hospitals using stratified, multi-stage sampling in six regions. All physicians in the selected hospitals were invited to respond to a self-administered questionnaire. Data were weighted and analyzed using descriptive statistics. In total, 587 physicians responded (91% response rate). The majority had experienced system-wide shortages of various types of medical services. The services most frequently reported to be in short supply, either daily or weekly, were access to surgery, specialist and intensive care units, drug prescriptions and admission to hospital (52, 49, 46, 47 and 46% respectively). The most common rationing strategies used daily or weekly were limiting laboratory tests, hospital drugs, radiological investigations and providing second best treatment (47, 47, 47 and 39% respectively). Availability of institutional or national guidelines for whom to see and treat first was lacking. Almost all respondents had witnessed different adverse consequences of resource scarcity; 54% reported seeing patients who, in their estimation, had died due to resource scarcity. Almost 9 out of 10 physicians were so troubled by limited resources that they often regretted their choice of profession. This study provides the first glimpses of the untold story of resource shortage and bedside rationing in Ethiopia. Physicians encounter numerous dilemmas due to resource scarcity, and they report they lack adequate guidance for how to handle them. The consequences for patients and the professionals are substantial.
Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes
Junager, Nina P. L.; Kongsted, Jacob; Astakhova, Kira
2016-01-01
Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344
Menopause: developing a rational treatment plan.
Vitiello, Danielle; Naftolin, Frederick; Naftoilin, Frederick; Taylor, Hugh S
2007-12-01
In recent years, growing importance has been afforded to assisting women in coping with the menopausal transition. Menopause is a normal stage of development and a woman's attitude toward this transition embodies biological, psychological and social influences. An enlarging body of conflicting data concerning menopausal hormone therapy (MHT) demands reassessment of established paradigms of disease prevention and menopausal health. Currently, a woman's decision to participate in or abstain from menopausal HT is personal. It involves not only consideration of risk stratification of potential harm and benefit, but also involves her expectations and attitudes toward perceived physical and emotional changes associated with this change. Through the use of extensive patient history, quality-of-life questionnaires and powerful biological profiling, we may be able to develop a rational approach to menopausal HT that safely guides our patients through this transition.
Control of H2S emissions using an ozone oxidation process: Preliminary results
NASA Technical Reports Server (NTRS)
Defaveri, D.; Ferrando, B.; Ferraiolo, G.
1986-01-01
The problem of eliminating industrial emission odors does not have a simple solution, and consequently has not been researched extensively. Therefore, an experimental research program regarding oxidation of H2S through ozone was undertaken to verify the applicable limits of the procedure and, in addition, was designed to supply a useful analytical means of rationalizing the design of reactors employed in the sector.
Attending to social vulnerability when rationing pandemic resources.
Vawter, Dorothy E; Garrett, J Eline; Gervais, Karen G; Prehn, Angela Witt; DeBruin, Debra A
2011-01-01
Pandemic plans are increasingly attending to groups experiencing health disparities and other social vulnerabilities. Although some pandemic guidance is silent on the issue, guidance that attends to socially vulnerable groups ranges widely, some procedural (often calling for public engagement), and some substantive. Public engagement objectives vary from merely educational to seeking reflective input into the ethical commitments that should guide pandemic planning and response. Some plans that concern rationing during a severe pandemic recommend ways to protect socially vulnerable groups without prioritizing access to scarce resources based on social vulnerability per se. The Minnesota Pandemic Ethics Project (MPEP), a public engagement project on rationing scarce health resources during a severe influenza pandemic, agrees and recommends an integrated set of ways to attend to the needs of socially vulnerable people and avoid exacerbation of health disparities during a severe influenza pandemic. Among other things, MPEP recommends: 1. Engaging socially vulnerable populations to clarify unique needs and effective strategies; 2. Engaging socially vulnerable populations to elicit ethical values and perspectives on rationing; 3. Rejecting rationing based on race, socioeconomic class, citizenship, quality of life, length of life-extension and first-come, first-served; 4. Prioritizing those in the general population for access to resources based on combinations of risk (of death or severe complications from influenza, exposure to influenza, transmitting influenza to vulnerable groups) and the likelihood of responding well to the resource in question. 5. Protecting critical infrastructures on which vulnerable populations and the general public rely; 6. Identifying and removing access barriers during pandemic planning and response; and 7. Collecting and promptly analyzing data during the pandemic to identify groups at disproportionate risk of influenza-related mortality and serious morbidity and to optimize the distribution of resources.
McDowell, Sean A C; St Hill, Janine A S
2011-10-28
Hydrogen- and lithium-bonded complexes of A-H∕Li (A = F, Cl) with the amine analogues NF(3), NH(3), and NH(2)(CH(3)) were studied at the MP2∕6-311++G(d,p) level of theory. Bond extensions and redshifts were obtained for the H-bonded complexes, while bond extensions and blueshifts were obtained for the Li-bonded species. The variation of these and other properties with the basicity of the amines was investigated and rationalized by comparing the ab initio results with predictions from a model derived from perturbation theory.
On-Line Algorithms and Reverse Mathematics
NASA Astrophysics Data System (ADS)
Harris, Seth
In this thesis, we classify the reverse-mathematical strength of sequential problems. If we are given a problem P of the form ∀X(alpha(X) → ∃Zbeta(X,Z)) then the corresponding sequential problem, SeqP, asserts the existence of infinitely many solutions to P: ∀X(∀nalpha(Xn) → ∃Z∀nbeta(X n,Zn)). P is typically provable in RCA0 if all objects involved are finite. SeqP, however, is only guaranteed to be provable in ACA0. In this thesis we exactly characterize which sequential problems are equivalent to RCA0, WKL0, or ACA0.. We say that a problem P is solvable by an on-line algorithm if P can be solved according to a two-player game, played by Alice and Bob, in which Bob has a winning strategy. Bob wins the game if Alice's sequence of plays 〈a0, ..., ak〉 and Bob's sequence of responses 〈 b0, ..., bk〉 constitute a solution to P. Formally, an on-line algorithm A is a function that inputs an admissible sequence of plays 〈a 0, b0, ..., aj〉 and outputs a new play bj for Bob. (This differs from the typical definition of "algorithm", though quite often a concrete set of instructions can be easily deduced from A.). We show that SeqP is provable in RCA0 precisely when P is solvable by an on-line algorithm. Schmerl proved this result specifically for the graph coloring problem; we generalize Schmerl's result to any problem that is on-line solvable. To prove our separation, we introduce a principle called Predictk(r) that is equivalent to -WKL0 for standard k, r.. We show that WKL0 is sufficient to prove SeqP precisely when P has a solvable closed kernel. This means that a solution exists, and each initial segment of this solution is a solution to the corresponding initial segment of the problem. (Certain bounding conditions are necessary as well.) If no such solution exists, then SeqP is equivalent to ACA0 over RCA 0 + ISigma02; RCA0 alone suffices if only sequences of standard length are considered. We use different techniques from Schmerl to prove this separation, and in the process we improve some of Schmerl's results on Grundy colorings. In Chapter 4 we analyze a variety of applications, classifying their sequential forms by reverse-mathematical strength. This builds upon similar work by Dorais and Hirst and Mummert. We consider combinatorial applications such as matching problems and Dilworth's theorems, and we also consider classic algorithms such as the task scheduling and paging problems. Tables summarizing our findings can be found at the end of Chapter 4.
The evolving cobweb of relations among partially rational investors
DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents’ behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors. PMID:28196144
Single-Image Super-Resolution Based on Rational Fractal Interpolation.
Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming
2018-08-01
This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.
The evolving cobweb of relations among partially rational investors.
DeLellis, Pietro; DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors.
Barcode extension for analysis and reconstruction of structures
NASA Astrophysics Data System (ADS)
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L.; Gootenberg, Jonathan S.; Yin, Peng
2017-03-01
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.
Barcode extension for analysis and reconstruction of structures.
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng
2017-03-13
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.
Barcode extension for analysis and reconstruction of structures
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng
2017-01-01
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures. PMID:28287117
Changing Horses in Midstream: The Dangers of Unplanned Head Transitions
ERIC Educational Resources Information Center
Quinby, Lee
2015-01-01
Quick leadership transitions may succeed in other industries, but they don't usually work in the "business of relationships" we call school. Boards that respond to a solvable problem by firing the head may believe that action is necessary and good for the school. In truth, these abrupt changes almost always hurt schools, with devastating…
Z/sub n/ Baxter model: Critical behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, C.A.
1986-07-01
The Z/sub n/ Baxter Model is an exactly solvable lattice model in the special case of the Belavin parametrization. We calculate the critical behavior of Prob/sub n/ (q = w/sup k/) using techniques developed in number theory in the study of the congruence properties of p(m), the number of unrestricted partitions of an integer m.
A Versatile Technique for Solving Quintic Equations
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2006-01-01
In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…
Characteristics of Problem Posing of Grade 9 Students on Geometric Tasks
ERIC Educational Resources Information Center
Chua, Puay Huat; Wong, Khoon Yoong
2012-01-01
This is an exploratory study into the individual problem-posing characteristics of 480 Grade 9 Singapore students who were novice problem posers working on two geometric tasks. The students were asked to pose a problem for their friends to solve. Analyses of solvable posed problems were based on the problem type, problem information, solution type…
An Exact Solvable Model of Rocket Dynamics in Atmosphere
ERIC Educational Resources Information Center
Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.
2009-01-01
In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…
Hungry Kids: The Solvable Crisis
ERIC Educational Resources Information Center
Felling, Christy
2013-01-01
The numbers speak for themselves in terms of the crisis of hunger among kids in the United States: More than 16 million children--one in five--live in households that struggle to put food on the table. Nearly half of all food stamp recipients are children. But, argues Felling, the battle against childhood hunger can be won; the United States has…
ERIC Educational Resources Information Center
Bhattacharya, Arghya; Jackson, Paul; Jenkins, Brian C.
2018-01-01
The authors present a version of the Diamond-Mortensen-Pissarides model of unemployment that is accessible to undergraduates and preserve the dynamic structure of the original model. The model is solvable in closed form using basic algebra and admits a graphical representation useful for illustrating a variety of comparative statics. They show how…
Attention-deficit hyperactivity disorder.
Meek, D C
1990-09-01
The attention-deficit hyperactivity disorder is a common chronic disorder of childhood. No precise definition or approach to treatment is universally accepted; however, an extensive literature exists on which to base a rational approach to management. Symptomatic treatment with stimulant medication in selected patients is effective and safe, but not curative. Successful outcome depends on multimodality therapy, involving parents, teachers, and other professionals. Associated conditions, including learning disorders and emotional disturbance, must be identified and dealt with.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandati, Y.; Quesne, C.
2013-07-15
The power of the disconjugacy properties of second-order differential equations of Schrödinger type to check the regularity of rationally extended quantum potentials connected with exceptional orthogonal polynomials is illustrated by re-examining the extensions of the isotonic oscillator (or radial oscillator) potential derived in kth-order supersymmetric quantum mechanics or multistep Darboux-Bäcklund transformation method. The function arising in the potential denominator is proved to be a polynomial with a nonvanishing constant term, whose value is calculated by induction over k. The sign of this term being the same as that of the already known highest degree term, the potential denominator has themore » same sign at both extremities of the definition interval, a property that is shared by the seed eigenfunction used in the potential construction. By virtue of disconjugacy, such a property implies the nodeless character of both the eigenfunction and the resulting potential.« less
Extension of the root-locus method to a certain class of fractional-order systems.
Merrikh-Bayat, Farshad; Afshar, Mahdi; Karimi-Ghartemani, Masoud
2009-01-01
In this paper, the well-known root-locus method is developed for the special subset of linear time-invariant systems commonly known as fractional-order systems. Transfer functions of these systems are rational functions with polynomials of rational powers of the Laplace variable s. Such systems are defined on a Riemann surface because of their multi-valued nature. A set of rules for plotting the root loci on the first Riemann sheet is presented. The important features of the classical root-locus method such as asymptotes, roots condition on the real axis and breakaway points are extended to the fractional case. It is also shown that the proposed method can assess the closed-loop stability of fractional-order systems in the presence of a varying gain in the loop. Moreover, the effect of perturbation on the root loci is discussed. Three illustrative examples are presented to confirm the effectiveness of the proposed algorithm.
Rational design of capillary-driven flows for paper-based microfluidics.
Elizalde, Emanuel; Urteaga, Raúl; Berli, Claudio L A
2015-05-21
The design of paper-based assays that integrate passive pumping requires a precise programming of the fluid transport, which has to be encoded in the geometrical shape of the substrate. This requirement becomes critical in multiple-step processes, where fluid handling must be accurate and reproducible for each operation. The present work theoretically investigates the capillary imbibition in paper-like substrates to better understand fluid transport in terms of the macroscopic geometry of the flow domain. A fluid dynamic model was derived for homogeneous porous substrates with arbitrary cross-sectional shapes, which allows one to determine the cross-sectional profile required for a prescribed fluid velocity or mass transport rate. An extension of the model to slit microchannels is also demonstrated. Calculations were validated by experiments with prototypes fabricated in our lab. The proposed method constitutes a valuable tool for the rational design of paper-based assays.
Wechsler, Cindy; Meyer, Danilo; Loschonsky, Sabrina; Funk, Lisa-Marie; Neumann, Piotr; Ficner, Ralf; Brodhun, Florian; Müller, Michael; Tittmann, Kai
2015-12-01
Enantioselective bond making and breaking is a hallmark of enzyme action, yet switching the enantioselectivity of the reaction is a difficult undertaking, and typically requires extensive screening of mutant libraries and multiple mutations. Here, we demonstrate that mutational diversification of a single catalytic hot spot in the enzyme pyruvate decarboxylase gives access to both enantiomers of acyloins acetoin and phenylacetylcarbinol, important pharmaceutical precursors, in the case of acetoin even starting from the unselective wild-type protein. Protein crystallography was used to rationalize these findings and to propose a mechanistic model of how enantioselectivity is controlled. In a broader context, our studies highlight the efficiency of mechanism-inspired and structure-guided rational protein design for enhancing and switching enantioselectivity of enzymatic reactions, by systematically exploring the biocatalytic potential of a single hot spot. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rationally designed synthetic protein hydrogels with predictable mechanical properties.
Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi
2018-02-12
Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.
Structural and conformational determinants of macrocycle cell permeability.
Over, Björn; Matsson, Pär; Tyrchan, Christian; Artursson, Per; Doak, Bradley C; Foley, Michael A; Hilgendorf, Constanze; Johnston, Stephen E; Lee, Maurice D; Lewis, Richard J; McCarren, Patrick; Muncipinto, Giovanni; Norinder, Ulf; Perry, Matthew W D; Duvall, Jeremy R; Kihlberg, Jan
2016-12-01
Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.
Rational Organization of Lanthanide-Based SMM Dimers into Three-Dimensional Networks.
Yi, Xiaohui; Calvez, Guillaume; Daiguebonne, Carole; Guillou, Olivier; Bernot, Kevin
2015-06-01
Optimization of the reaction of [Ln(hfac)3]·2H2O and pyridine-N-oxide (PyNO), which is known to afford double-bridged dimers, leads to triple-bridged dimers of formula [(Ln(hfac)3)2(PyNO)3] (Ln = Gd (1), Dy (2)) from which the Dy derivative (2) behaves as a single-molecule magnet (SMM). The pseudo threefold axis symmetry of this zero-dimensional building block makes possible its extension into a tridimensional network. By changing PyNO for 4,4'-bipyridine N,N'-dioxide (4,4'BipyNO) a tridimensional compound of formula {[Ln(hfac)3]2(4,4'BipyNO)2]} (Ln = Eu (3), Gd (4), and Dy (5)) is then rationally obtained. This covalent three-dimensional (3D) network has a remarkably high cell volume (V = 24 419 A(3)) and is an arrangement of interpenetrated 3D subnetworks whose triple-bridged dimers still behave as SMMs.
What One Physicist Has to Offer
NASA Astrophysics Data System (ADS)
Ross, Marc
2004-05-01
I was a particle theorist. In the early 1970s I began to analyze energy and its use in society. My theme is: What can physicists offer on a societal issue like energy? I have four topics: 1) Traffic safety and vehicle mass. The measurements are the record of some 40,000 deaths per year, vehicle characterizations and registrations. The statistical record is good, but information is lacking on physical processes in serious crashes. Our insight: while driver behavior is critical to safety, so is vehicle quality and design. Although one cannot definitively separate the injury impacts associated with momentum transfer from those due to intrusion, mass as such is not critical to safety. 2) Prospects for improving the energy efficiency of industrial processes. Our "measurements" were planning documents and interviews enabling us to analyze which "energy projects" were undertaken and which not. Insight: capital for projects was not allocated according to textbook economics; instead it was rationed. 3) Energy use by cars. Based on dynamometer studies motivated by the 1990 Clean Air Act Amendments, we created models of energy consumption that enable evaluation of modifications such as adopting a small engine while supplementing its capability for power. Insight: Vehicles could be designed to use much less fuel; but the gain for society is offset by low interest by new-car-buyers and manufacturers. 4) The effectiveness of automotive emissions controls. In addition to laboratory studies, we had surveys in "non-attainment" areas. Insight: Controls installed by original manufacturers are more robust and effective than repairs. Of the four, this is the one success for society. Conclusions: There are fascinating and solvable analytical challenges everywhere you look. But applications are hampered by the lack of a heritage and the close coupling between theorists and experimenters we know in physics.
Formal language constrained path problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvablemore » efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.« less
Solvability of a Nonlinear Integral Equation in Dynamical String Theory
NASA Astrophysics Data System (ADS)
Khachatryan, A. Kh.; Khachatryan, Kh. A.
2018-04-01
We investigate an integral equation of the convolution type with a cubic nonlinearity on the entire real line. This equation has a direct application in open-string field theory and in p-adic string theory and describes nonlocal interactions. We prove that there exists a one-parameter family of bounded monotonic solutions and calculate the limits of solutions constructed at infinity.
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
ERIC Educational Resources Information Center
Cankoy, Osman; Özder, Hasan
2017-01-01
The aim of this study is to develop a scoring rubric to assess primary school students' problem posing skills. The rubric including five dimensions namely solvability, reasonability, mathematical structure, context and language was used. The raters scored the students' problem posing skills both with and without the scoring rubric to test the…
Regularity for Fully Nonlinear Elliptic Equations with Oblique Boundary Conditions
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Zhang, Kai
2018-06-01
In this paper, we obtain a series of regularity results for viscosity solutions of fully nonlinear elliptic equations with oblique derivative boundary conditions. In particular, we derive the pointwise C α, C 1,α and C 2,α regularity. As byproducts, we also prove the A-B-P maximum principle, Harnack inequality, uniqueness and solvability of the equations.
NASA Astrophysics Data System (ADS)
Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.
2018-04-01
We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.
Degeneracy of energy levels of pseudo-Gaussian oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iacob, Theodor-Felix; Iacob, Felix, E-mail: felix@physics.uvt.ro; Lute, Marina
2015-12-07
We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.
Quantifying uncertainty in climate change science through empirical information theory.
Majda, Andrew J; Gershgorin, Boris
2010-08-24
Quantifying the uncertainty for the present climate and the predictions of climate change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models is a central issue in climate change science. Here, a systematic approach to these issues with firm mathematical underpinning is developed through empirical information theory. An information metric to quantify AOS model errors in the climate is proposed here which incorporates both coarse-grained mean model errors as well as covariance ratios in a transformation invariant fashion. The subtle behavior of model errors with this information metric is quantified in an instructive statistically exactly solvable test model with direct relevance to climate change science including the prototype behavior of tracer gases such as CO(2). Formulas for identifying the most sensitive climate change directions using statistics of the present climate or an AOS model approximation are developed here; these formulas just involve finding the eigenvector associated with the largest eigenvalue of a quadratic form computed through suitable unperturbed climate statistics. These climate change concepts are illustrated on a statistically exactly solvable one-dimensional stochastic model with relevance for low frequency variability of the atmosphere. Viable algorithms for implementation of these concepts are discussed throughout the paper.
Solvability of a fourth-order boundary value problem with periodic boundary conditions II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Chaitan P.
1991-01-01
Lemore » t f : [ 0 , 1 ] × R 4 → R be a function satisfying Caratheodory's conditions and e ( x ) ∈ L 1 [ 0 , 1 ] . This paper is concerned with the solvability of the fourth-order fully quasilinear boundary value problem d 4 u d x 4 + f ( x , u ( x ) , u ′ ( x ) , u ″ ( x ) , u ‴ ( x ) ) = e ( x ) , 0 < x < 1 , with u ( 0 ) − u ( 1 ) = u ′ ( 0 ) − u ′ ( 1 ) = u ″ ( 0 ) - u ″ ( 1 ) = u ‴ ( 0 ) - u ‴ ( 1 ) = 0 . This problem was studied earlier by the author in the special case when f was of the form f ( x , u ( x ) ) , i.e., independent of u ′ ( x ) , u ″ ( x ) , u ‴ ( x ) . It turns out that the earlier methods do not apply in this general case. The conditions need to be related to both of the linear eigenvalue problems d 4 u d x 4 = λ 4 u and d 4 u d x 4 = − λ 2 d 2 u d x 2 with periodic boundary conditions.« less
Exactly solvable field theories of closed strings
NASA Astrophysics Data System (ADS)
Brézin, E.; Kazakov, V. A.
1990-02-01
Field theories of closed strings are shown to be exactly solvable for a central charge of matter fields c=1-6/m(m+1),m=1,2, 3, .... The two-point function χ(λ,N), in which λ is the cosmological constant and N-1 is the string coupling constant, obeys a scaling law χ(λ,N=N-(m+1/2)C((λc-λ)Nm/(m+1/2)) in the limit in which N-1 goes to zero and λ goes to a critical value λc we have determined the universal non-linear differential equation satisfied by the function C. From this equation it is found that a phase transition takes place for some finite value of the scaling parameter (λc-λ)Nm/(m+1/2); this transition is a ``condensation of handles'' on the world sheet, characterized by a divergence of the averaged genus of the world sheets. The cases m=2,3 are elaborated in more details, and the case m=1, which corresponds to the embedding of a bosonic string in -2 dimensions, is reduced to explicit quadratures. Permanent address: Cybernetics Council and Academy of Sciences, ul. Vavilova 40, SU-117 333 Moscow, USSR.
Supervisory control of (max,+) automata: extensions towards applications
NASA Astrophysics Data System (ADS)
Lahaye, Sébastien; Komenda, Jan; Boimond, Jean-Louis
2015-12-01
In this paper, supervisory control of (max,+) automata is studied. The synthesis of maximally permissive and just-in-time supervisor, as well as the synthesis of minimally permissive and just-after-time supervisor, are proposed. Results are also specialised to non-decreasing solutions, because only such supervisors can be realised in practice. The inherent issue of rationality raised recently is discussed. An illustration of concepts and results is presented through an example of a flexible manufacturing system.
Strain tensor selection and the elastic theory of incompatible thin sheets.
Oshri, Oz; Diamant, Haim
2017-05-01
The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009)JMPSA80022-509610.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.
Multimodal Logistics Network Design over Planning Horizon through a Hybrid Meta-Heuristic Approach
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki; Yamazaki, Yoshihiro; Wada, Takeshi
Logistics has been acknowledged increasingly as a key issue of supply chain management to improve business efficiency under global competition and diversified customer demands. This study aims at improving a quality of strategic decision making associated with dynamic natures in logistics network optimization. Especially, noticing an importance to concern with a multimodal logistics under multiterms, we have extended a previous approach termed hybrid tabu search (HybTS). The attempt intends to deploy a strategic planning more concretely so that the strategic plan can link to an operational decision making. The idea refers to a smart extension of the HybTS to solve a dynamic mixed integer programming problem. It is a two-level iterative method composed of a sophisticated tabu search for the location problem at the upper level and a graph algorithm for the route selection at the lower level. To keep efficiency while coping with the resulting extremely large-scale problem, we invented a systematic procedure to transform the original linear program at the lower-level into a minimum cost flow problem solvable by the graph algorithm. Through numerical experiments, we verified the proposed method outperformed the commercial software. The results indicate the proposed approach can make the conventional strategic decision much more practical and is promising for real world applications.
Strain tensor selection and the elastic theory of incompatible thin sheets
NASA Astrophysics Data System (ADS)
Oshri, Oz; Diamant, Haim
2017-05-01
The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009), 10.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.
Flow of “stress power-law” fluids between parallel rotating discs with distinct axes
Srinivasan, Shriram; Karra, Satish
2015-04-16
The problem of flow between parallel rotating discs with distinct axes corresponds to the case of flow in an orthogonal rheometer and has been studied extensively for different fluids since the instrument's inception. All the prior studies presume a constitutive prescription of the fluid stress in terms of the kinematical variables. In this paper, we approach the problem from a different perspective, i.e., a constitutive specification of the symmetric part of the velocity gradient in terms of the Cauchy stress. Such an approach ensures that the boundary conditions can be incorporated in a manner quite faithful to real world experimentsmore » with the instrument. Interestingly, the choice of the boundary condition is critical to the solvability of the problem for the case of creeping/Stokes flow. Furthermore, when the no-slip condition is enforced at the boundaries, depending on the model parameters and axes offset, the fluid response can show non-uniqueness or unsolvability, features which are absent in a conventional constitutive specification. In case of creeping/Stokes flow with prescribed values of the stress, the fluid response is indeterminate. We also record the response of a particular case of the given “stress power-law” fluid; one that cannot be attained by the conventional power-law fluids.« less
NASA Astrophysics Data System (ADS)
Pikulin, D. I.; Franz, M.
2017-07-01
A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti-de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.
Lalor, Maeve K; Casali, Nicola; Walker, Timothy M; Anderson, Laura F; Davidson, Jennifer A; Ratna, Natasha; Mullarkey, Cathy; Gent, Mike; Foster, Kirsty; Brown, Tim; Magee, John; Barrett, Anne; Crook, Derrick W; Drobniewski, Francis; Thomas, H Lucy; Abubakar, Ibrahim
2018-06-01
We used whole-genome sequencing (WGS) to delineate transmission networks and investigate the benefits of WGS during cluster investigation.We included clustered cases of multidrug-resistant (MDR) tuberculosis (TB)/extensively drug-resistant (XDR) TB linked by mycobacterial interspersed repetitive unit variable tandem repeat (MIRU-VNTR) strain typing or epidemiological information in the national cluster B1006, notified between 2007 and 2013 in the UK. We excluded from further investigation cases whose isolates differed by greater than 12 single nucleotide polymorphisms (SNPs). Data relating to patients' social networks were collected.27 cases were investigated and 22 had WGS, eight of which (36%) were excluded as their isolates differed by more than 12 SNPs to other cases. 18 cases were ruled into the transmission network based on genomic and epidemiological information. Evidence of transmission was inconclusive in seven out of 18 cases (39%) in the transmission network following WGS and epidemiological investigation.This investigation of a drug-resistant TB cluster illustrates the opportunities and limitations of WGS in understanding transmission in a setting with a high proportion of migrant cases. The use of WGS should be combined with classical epidemiological methods. However, not every cluster will be solvable, regardless of the quality of genomic data. Copyright ©ERS 2018.
Adaptive, Distributed Control of Constrained Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.
Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S
2013-10-14
Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.
Jacus, M.O.; Throm, S.L.; Turner, D.C.; Patel, Y.T.; Freeman, B.B.; Morfouace, M.; Boulos, N.; Stewart, C. F.
2014-01-01
The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to support the rational testing and usage of innovative therapies in children with CNS tumors. PMID:24269626
HIA, the next step: Defining models and roles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putters, Kim
If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways andmore » responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking.« less
Bonilauri Ferreira, Ana Paula Ribeiro; Ferreira, Rodrigo Fernando; Rajgor, Dimple; Shah, Jatin; Menezes, Andrea; Pietrobon, Ricardo
2010-04-20
Little is known about the reasoning mechanisms used by physicians in decision-making and how this compares to diagnostic clinical practice guidelines. We explored the clinical reasoning process in a real life environment. This is a qualitative study evaluating transcriptions of sixteen physicians' reasoning during appointments with patients, clinical discussions between specialists, and personal interviews with physicians affiliated to a hospital in Brazil. FOUR MAIN THEMES WERE IDENTIFIED: simple and robust heuristics, extensive use of social environment rationality, attempts to prove diagnostic and therapeutic hypothesis while refuting potential contradictions using positive test strategy, and reaching the saturation point. Physicians constantly attempted to prove their initial hypothesis while trying to refute any contradictions. While social environment rationality was the main factor in the determination of all steps of the clinical reasoning process, factors such as referral letters and number of contradictions associated with the initial hypothesis had influence on physicians' confidence and determination of the threshold to reach a final decision. Physicians rely on simple heuristics associated with environmental factors. This model allows for robustness, simplicity, and cognitive energy saving. Since this model does not fit into current diagnostic clinical practice guidelines, we make some propositions to help its integration.
Bonilauri Ferreira, Ana Paula Ribeiro; Ferreira, Rodrigo Fernando; Rajgor, Dimple; Shah, Jatin; Menezes, Andrea; Pietrobon, Ricardo
2010-01-01
Background Little is known about the reasoning mechanisms used by physicians in decision-making and how this compares to diagnostic clinical practice guidelines. We explored the clinical reasoning process in a real life environment. Method This is a qualitative study evaluating transcriptions of sixteen physicians' reasoning during appointments with patients, clinical discussions between specialists, and personal interviews with physicians affiliated to a hospital in Brazil. Results Four main themes were identified: simple and robust heuristics, extensive use of social environment rationality, attempts to prove diagnostic and therapeutic hypothesis while refuting potential contradictions using positive test strategy, and reaching the saturation point. Physicians constantly attempted to prove their initial hypothesis while trying to refute any contradictions. While social environment rationality was the main factor in the determination of all steps of the clinical reasoning process, factors such as referral letters and number of contradictions associated with the initial hypothesis had influence on physicians' confidence and determination of the threshold to reach a final decision. Discussion Physicians rely on simple heuristics associated with environmental factors. This model allows for robustness, simplicity, and cognitive energy saving. Since this model does not fit into current diagnostic clinical practice guidelines, we make some propositions to help its integration. PMID:20421920
Action Being Character: A Promising Perspective on the Solution Concept of Game Theory
Deng, Kuiying; Chu, Tianguang
2011-01-01
The inconsistency of predictions from solution concepts of conventional game theory with experimental observations is an enduring question. These solution concepts are based on the canonical rationality assumption that people are exclusively self-regarding utility maximizers. In this article, we think this assumption is problematic and, instead, assume that rational economic agents act as if they were maximizing their implicit utilities, which turns out to be a natural extension of the canonical rationality assumption. Implicit utility is defined by a player's character to reflect his personal weighting between cooperative, individualistic, and competitive social value orientations. The player who actually faces an implicit game chooses his strategy based on the common belief about the character distribution for a general player and the self-estimation of his own character, and he is not concerned about which strategies other players will choose and will never feel regret about his decision. It is shown by solving five paradigmatic games, the Dictator game, the Ultimatum game, the Prisoner's Dilemma game, the Public Goods game, and the Battle of the Sexes game, that the framework of implicit game and its corresponding solution concept, implicit equilibrium, based on this alternative assumption have potential for better explaining people's actual behaviors in social decision making situations. PMID:21573055
Action being character: a promising perspective on the solution concept of game theory.
Deng, Kuiying; Chu, Tianguang
2011-05-09
The inconsistency of predictions from solution concepts of conventional game theory with experimental observations is an enduring question. These solution concepts are based on the canonical rationality assumption that people are exclusively self-regarding utility maximizers. In this article, we think this assumption is problematic and, instead, assume that rational economic agents act as if they were maximizing their implicit utilities, which turns out to be a natural extension of the canonical rationality assumption. Implicit utility is defined by a player's character to reflect his personal weighting between cooperative, individualistic, and competitive social value orientations. The player who actually faces an implicit game chooses his strategy based on the common belief about the character distribution for a general player and the self-estimation of his own character, and he is not concerned about which strategies other players will choose and will never feel regret about his decision. It is shown by solving five paradigmatic games, the Dictator game, the Ultimatum game, the Prisoner's Dilemma game, the Public Goods game, and the Battle of the Sexes game, that the framework of implicit game and its corresponding solution concept, implicit equilibrium, based on this alternative assumption have potential for better explaining people's actual behaviors in social decision making situations.
Computer calculation of Witten's 3-manifold invariant
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Gompf, Robert E.
1991-10-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant.
ERIC Educational Resources Information Center
Shockley, Kmt G.
2011-01-01
African centered educationists view the problems that Black children are facing in schools as a part of the disenfranchisement and disorganization of the Black community at large. In that vein, they do not believe that the problems which Black children are experiencing in America's public (and many private) schools are solvable by taking them out…
The business plan: an AR perspective.
Hajny, Tom
2008-01-01
It is important to periodically reassess the environment and what we need to accomplish in the near-term (or mid- or long term). Our skills, insights, knowledge, and talents grow yearly and maybe, just maybe, problems that we thought were intractable are, indeed, solvable. Play with the idea of Mission Statement, Objectives, and Keys to Success to stir up your neurons to execute a plan of excellence.
[Vasile Tonoiu and the modern scientific spirit a romanian approach of Gaston Bachelard's work].
Buse, Ionel
2013-01-01
One of the Romanian scholars who studied extensively the work of Bachelard in Romania is Professor Vasile Tonoiu from the University of Bucharest. We analyze in this article some of his thoughts regarding the epistemology of the French philosopher. Even though he lacks a historical vision of the epistemological works of Bachelard, Tonoiu did not fail to understand the spirit of the French neo-rationalism, which he compared to the field of Anglo-American epistemology.
Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.
Montgomery, Jesse L; Wittwer, Carl T
2014-02-01
Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.
Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
Matsubu, John C.; Zhang, Shuyi; DeRita, Leo; ...
2016-09-19
The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal–support interactions can be exploited to optimize metal active-site properties are lacking. Here in this paper, we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x) on reducible oxide supports (TiO 2more » and Nb 2O 5) that induce oxygen-vacancy formation in the support and cause HCO x-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2-reduction selectivity.« less
Alicea, Ismael; Marvin, Jonathan S; Miklos, Aleksandr E; Ellington, Andrew D; Looger, Loren L; Schreiter, Eric R
2011-12-02
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
An, Gary; Bartels, John; Vodovotz, Yoram
2011-03-01
The clinical translation of promising basic biomedical findings, whether derived from reductionist studies in academic laboratories or as the product of extensive high-throughput and -content screens in the biotechnology and pharmaceutical industries, has reached a period of stagnation in which ever higher research and development costs are yielding ever fewer new drugs. Systems biology and computational modeling have been touted as potential avenues by which to break through this logjam. However, few mechanistic computational approaches are utilized in a manner that is fully cognizant of the inherent clinical realities in which the drugs developed through this ostensibly rational process will be ultimately used. In this article, we present a Translational Systems Biology approach to inflammation. This approach is based on the use of mechanistic computational modeling centered on inherent clinical applicability, namely that a unified suite of models can be applied to generate in silico clinical trials, individualized computational models as tools for personalized medicine, and rational drug and device design based on disease mechanism.
Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}.
Ruan, Lingyan; Ramezani-Dakhel, Hadi; Chiu, Chin-Yi; Zhu, Enbo; Li, Yujing; Heinz, Hendrik; Huang, Yu
2013-02-13
Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.
De Dreu, Carsten K W
2006-11-01
B. M. Meglino and M. A. Korsgaard (2004). argued that rational self-interest varies across individuals and negatively relates to other orientation (OO). OO moderates effects of job characteristics on attitudes, motivation, and helping. Viewing organizations as social dilemmas in which employees face a mixture of competitive and cooperative incentives, the author argues in this article that strength of self-interest links to self-concern (SC), which should be distinguished from OO. SC and OO are orthogonal and unipolar. Implications are that some propositions by Meglino and Korsgaard need to be rewritten in terms of SC or OO, and that SC is predicted to moderate effects of self-related variables (e.g., job characteristics), whereas OO might moderate effects of social variables (e.g., team climate) on satisfaction, motivation, and helping. This also implies that when both SC and OO are strong (weak), individual- and group-level constructs are both (in)valid predictors of satisfaction, motivation, and helping. (c) 2006 APA, all rights reserved
Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R.
2012-01-01
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into phosphonate uptake by bacteria and facilitated the rational design of high signal-to-noise phosphonate biosensors based both on coupled small molecule dyes and autocatalytic fluorescent proteins. PMID:22019591
Person perception and the bounded rationality of social judgment.
Wright, J C; Dawson, V L
1988-11-01
In this article, we develop a bounded rationality view of the relation between person perception and social behavior. Two theses of this approach are that behaviors vary in their significance to observers, and that observers pursue bounded rather than global utility in forming personality impressions. Observers are expected to be sensitive to targets' overall behavioral tendencies and to the variability of their behavior across situations, but both sensitivities are bounded, being greater for behaviors that directly affect observers' outcomes. In two investigations involving extensive hourly and 6-s observations, we examined the bounded utility of people's impressions of personality, demonstrating how impression accuracy is linked to the significance of behaviors. Observers were sensitive to the organization of aggressive behaviors, but less sensitive to the organization of withdrawn behaviors, even when the consistency of those behaviors was comparable. The results clarify the relation between people's inferential shortcomings in laboratory paradigms and the bounded utility of person perception in the natural environment.
Plastow, Michael
2010-10-01
Language has always been a means of imposing political and economic dominance. The ascendancy of the discourse of economics is examined in the context of economic rationalism. Some of the effects of this discourse, both upon our services, as well as upon different modes of conceptualizing the therapeutic relationship, will be examined in this paper. The intensification of the use of terms from economics and management can be dated from the introduction of neo-liberal policies in our Western democracies, but the economic discourse circulates with a life of its own. The use of the language of economics and management has spread generally through our society. Thus, if the economic discourse is the language utilized by some clinicians, it is also to some degree the language adopted by our patients. It is proposed that the extension of the economic discourse into the clinical field is re-shaping the therapeutic relationship with our patients.
Statistical Method to Overcome Overfitting Issue in Rational Function Models
NASA Astrophysics Data System (ADS)
Alizadeh Moghaddam, S. H.; Mokhtarzade, M.; Alizadeh Naeini, A.; Alizadeh Moghaddam, S. A.
2017-09-01
Rational function models (RFMs) are known as one of the most appealing models which are extensively applied in geometric correction of satellite images and map production. Overfitting is a common issue, in the case of terrain dependent RFMs, that degrades the accuracy of RFMs-derived geospatial products. This issue, resulting from the high number of RFMs' parameters, leads to ill-posedness of the RFMs. To tackle this problem, in this study, a fast and robust statistical approach is proposed and compared to Tikhonov regularization (TR) method, as a frequently-used solution to RFMs' overfitting. In the proposed method, a statistical test, namely, significance test is applied to search for the RFMs' parameters that are resistant against overfitting issue. The performance of the proposed method was evaluated for two real data sets of Cartosat-1 satellite images. The obtained results demonstrate the efficiency of the proposed method in term of the achievable level of accuracy. This technique, indeed, shows an improvement of 50-80% over the TR.
Spörrle, Matthias; Welpe, Isabell M; Försterling, Friedrich
2006-01-01
This study applies the theoretical concepts of Rational Emotive Behavior Therapy (REBT; Ellis, 1962, 1994) to the analysis of functional and dysfunctional behaviour and emotions in the workplace and tests central assumptions of REBT in an organizational setting. We argue that Ellis' appraisal theory of emotion sheds light on some of the cognitive and emotional antecedents of emotional intelligence and emotionally intelligent behaviour. In an extension of REBT, we posit that adaptive emotions resulting from rational cognitions reflect more emotional intelligence than maladaptive emotions which result from irrational cognitions, because the former lead to functional behaviour. We hypothesize that semantically similar emotions (e.g. annoyance and rage) lead to different behavioural reactions and have a different functionality in an organizational context. The results of scenario experiments using organizational vignettes confirm the central assumptions of Ellis' appraisal theory and support our hypotheses of a correspondence between adaptive emotions and emotionally intelligent behaviour. Additionally, we find evidence that irrational job-related attitudes result in reduced work (but not life) satisfaction.
Extending human potential in a technical learning environment
NASA Astrophysics Data System (ADS)
Fielden, Kay A.
This thesis is a report of a participatory inquiry process looking at enhancing the learning process in a technical academic field in high education by utilising tools and techniques which go beyond the rational/logical, intellectual domain in a functional, objective world. By empathising with, nurturing and sustaining the whole person, and taking account of past patterning as well as future visions including technological advances to augment human awareness, the scene is set for depth learning. Depth learning in a tertiary environment can only happen as a result of the dynamic that exists between the dominant, logical/rational, intellectual paradigm and the experiential extension of the boundaries surrounding this domain. Any experiences which suppress the full, holistic expression of our being alienate us from the fullness of the expression and hence from depth learning. Depth learning is indicated by intrinsic motivation, which is more likely to occur in a trusting and supporting environment. The research took place within a systemic intellectual framework, where emergence is the prime characteristic used to evaluate results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.
2012-09-17
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by {approx}70{sup o} between the two states. Extensive hydrogen bonding and electrostatic interactionsmore » stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.« less
Tailoring recombinant protein quality by rational media design.
Brühlmann, David; Jordan, Martin; Hemberger, Jürgen; Sauer, Markus; Stettler, Matthieu; Broly, Hervé
2015-01-01
Clinical efficacy and safety of recombinant proteins are closely associated with their structural characteristics. The major quality attributes comprise glycosylation, charge variants (oxidation, deamidation, and C- & N-terminal modifications), aggregates, low-molecular-weight species (LMW), and misincorporation of amino acids in the protein backbone. Cell culture media design has a great potential to modulate these quality attributes due to the vital role of medium in mammalian cell culture. The purpose of this review is to provide an overview of the way both classical cell culture medium components and novel supplements affect the quality attributes of recombinant therapeutic proteins expressed in mammalian hosts, allowing rational and high-throughput optimization of mammalian cell culture media. A selection of specific and/or potent inhibitors and activators of oligosaccharide processing as well as components affecting multiple quality attributes are presented. Extensive research efforts in this field show the feasibility of quality engineering through media design, allowing to significantly modulate the protein function. © 2015 American Institute of Chemical Engineers.
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Strings on complex multiplication tori and rational conformal field theory with matrix level
NASA Astrophysics Data System (ADS)
Nassar, Ali
Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.
Ocean and coastal data management
de La Beaujardière, Jeff; Beegle-Krause, C; Bermudez, Luis; Hankin, Steven C.; Hazard, Lisa; Howlett, Eoin; Le, Steven; Proctor, Roger; Signell, Richard P.; Snowden, Derrick P.; Thomas, Julie
2010-01-01
We introduce data management concepts, including what we mean by "data" and its "management," sources of data, interoperability, and data geometry. We then discuss various components of a data management system. Finally, we summarize some existing ocean and coastal data management efforts. We make specific recommendations throughout the paper. We are generally optimistic that ocean and coastal data management is an interesting and solvable challenge that will provide great benefit to society.
Unitary-matrix models as exactly solvable string theories
NASA Technical Reports Server (NTRS)
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408; Roy, Pinaki, E-mail: pinaki@isical.ac.in
We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.
Reverse engineering of integrated circuits
Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.
2003-01-01
Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.
On boundary fusion and functional relations in the Baxterized affine Hecke algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk
2014-04-15
We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.
Optimal Control of Evolution Mixed Variational Inclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Xiao, Jianyuan; Zhang, Ruili
Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.
NASA Astrophysics Data System (ADS)
Jiang, Jie; Zheng, Songmu
2012-12-01
In this paper, we study a Neumann and free boundary problem for the one-dimensional viscous radiative and reactive gas. We prove that under rather general assumptions on the heat conductivity κ, for any arbitrary large smooth initial data, the problem admits a unique global classical solution. Our global existence results improve those results by Umehara and Tani ["Global solution to the one-dimensional equations for a self-gravitating viscous radiative and reactive gas," J. Differ. Equations 234(2), 439-463 (2007), 10.1016/j.jde.2006.09.023; Umehara and Tani "Global solvability of the free-boundary problem for one-dimensional motion of a self-gravitating viscous radiative and reactive gas," Proc. Jpn. Acad., Ser. A: Math. Sci. 84(7), 123-128 (2008)], 10.3792/pjaa.84.123 and by Qin, Hu, and Wang ["Global smooth solutions for the compressible viscous and heat-conductive gas," Q. Appl. Math. 69(3), 509-528 (2011)]., 10.1090/S0033-569X-2011-01218-0 Moreover, we analyze the asymptotic behavior of the global solutions to our problem, and we prove that the global solution will converge to an equilibrium as time goes to infinity. This is the result obtained for this problem in the literature for the first time.
NASA Astrophysics Data System (ADS)
Alexandrov, Dmitri V.; Galenko, Peter K.; Toropova, Lyubov V.
2018-01-01
Motivated by important applications in materials science and geophysics, we consider the steady-state growth of anisotropic needle-like dendrites in undercooled binary mixtures with a forced convective flow. We analyse the stable mode of dendritic evolution in the case of small anisotropies of growth kinetics and surface energy for arbitrary Péclet numbers and n-fold symmetry of dendritic crystals. On the basis of solvability and stability theories, we formulate a selection criterion giving a stable combination between dendrite tip diameter and tip velocity. A set of nonlinear equations consisting of the solvability criterion and undercooling balance is solved analytically for the tip velocity V and tip diameter ρ of dendrites with n-fold symmetry in the absence of convective flow. The case of convective heat and mass transfer mechanisms in a binary mixture occurring as a result of intensive flows in the liquid phase is detailed. A selection criterion that describes such solidification conditions is derived. The theory under consideration comprises previously considered theoretical approaches and results as limiting cases. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Ángel, E-mail: angelb@ubu.es; Enciso, Alberto, E-mail: aenciso@icmat.es; Herranz, Francisco J., E-mail: fjherranz@ubu.es
In this paper we quantize the N-dimensional classical Hamiltonian system H=(|q|)/(2(η+|q|)) p{sup 2}−k/(η+|q|) , that can be regarded as a deformation of the Coulomb problem with coupling constant k, that it is smoothly recovered in the limit η→0. Moreover, the kinetic energy term in H is just the one corresponding to an N-dimensional Taub–NUT space, a fact that makes this system relevant from a geometric viewpoint. Since the Hamiltonian H is known to be maximally superintegrable, we propose a quantization prescription that preserves such superintegrability in the quantum mechanical setting. We show that, to this end, one must choose asmore » the kinetic part of the Hamiltonian the conformal Laplacian of the underlying Riemannian manifold, which combines the usual Laplace–Beltrami operator on the Taub–NUT manifold and a multiple of its scalar curvature. As a consequence, we obtain a novel exactly solvable deformation of the quantum Coulomb problem, whose spectrum is computed in closed form for positive values of η and k, and showing that the well-known maximal degeneracy of the flat system is preserved in the deformed case. Several interesting algebraic and physical features of this new exactly solvable quantum system are analyzed, and the quantization problem for negative values of η and/or k is also sketched.« less
Engineering Proteins for Thermostability with iRDP Web Server
Ghanate, Avinash; Ramasamy, Sureshkumar; Suresh, C. G.
2015-01-01
Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements. PMID:26436543
Engineering Proteins for Thermostability with iRDP Web Server.
Panigrahi, Priyabrata; Sule, Manas; Ghanate, Avinash; Ramasamy, Sureshkumar; Suresh, C G
2015-01-01
Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements.
Deployable-erectable trade study for space station truss structures
NASA Technical Reports Server (NTRS)
Mikulas, M. M., Jr.; Wright, A. S., Jr.; Bush, H. G.; Watson, J. J.; Dean, E. B.; Twigg, L. T.; Rhodes, M. D.; Cooper, P. A.; Dorsey, J. T.; Lake, M. S.
1985-01-01
The results of a trade study on truss structures for constructing the space station are presented. Although this study was conducted for the reference gravity gradient space station, the results are generally applicable to other configurations. The four truss approaches for constructing the space station considered in this paper were the 9 foot single fold deployable, the 15 foot erectable, the 10 foot double fold tetrahedral, and the 15 foot PACTRUSS. The primary rational for considering a 9 foot single-fold deployable truss (9 foot is the largest uncollapsed cross-section that will fit in the Shuttle cargo bay) is that of ease of initial on-orbit construction and preintegration of utility lines and subsystems. The primary rational for considering the 15 foot erectable truss is that the truss bay size will accommodate Shuttle size payloads and growth of the initial station in any dimension is a simple extension of the initial construction process. The primary rational for considering the double-fold 10 foot tetrahedral truss is that a relatively large amount of truss structure can be deployed from a single Shuttle flight to provide a large number of nodal attachments which present a pegboard for attaching a wide variety of payloads. The 15 foot double-fold PACTRUSS was developed to incorporate the best features of the erectable truss and the tetrahedral truss.
Full dyon excitation spectrum in extended Levin-Wen models
NASA Astrophysics Data System (ADS)
Hu, Yuting; Geer, Nathan; Wu, Yong-Shi
2018-05-01
In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two-dimensional topological phases, it is relatively easy to describe only single-fluxon excitations, but not the charge and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in (doubled) topological phases, an extension of the LW models is proposed in this paper. We first enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex to describe the internal charge degrees of freedom at the vertex. Then, we study the full dyon spectrum of the extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle excitations. The local operators associated with the dyonic excitations are shown to form the so-called tube algebra, whose representations (modules) form the quantum double (categoric center) of the input data (unitary fusion category). In physically relevant cases, the input data are from a finite or quantum group (with braiding R matrices), and we find that the elementary excitations (or dyon species), as well as any localized/isolated excited states, are characterized by three quantum numbers: charge, fluxon type, and twist. They provide a "complete basis" for many-body states in the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the electric-magnetic duality existing in the models is addressed.
Two dimensional J-matrix approach to quantum scattering
NASA Astrophysics Data System (ADS)
Olumegbon, Ismail Adewale
We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.
Two dimensional J-matrix approach to quantum scattering
NASA Astrophysics Data System (ADS)
Olumegbon, Ismail Adewale
2013-01-01
We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.
Cure Monitoring Techniques for Adhesive Bonding Techniques.
1980-11-01
l TABLE OF CONTIW Section Pase I INTRODUCTION 1. Program Overviev 1 2. Smary 2 II MONITORING SYSTEM IMPROVEMENTS 3 1. Development of a...encountered in the electronics/signal/ computer interfaces, although solvable, have slowed progress and starting a bondline monitoring program to do a...AIWAL/MLBC) as Project Engineer. The program manager is Mr. C. A. May. The principal investigator is Dr. A. Wereta, Jr., assisted by Mass. W. G. Caple, J
Representation of solution for fully nonlocal diffusion equations with deviation time variable
NASA Astrophysics Data System (ADS)
Drin, I. I.; Drin, S. S.; Drin, Ya. M.
2018-01-01
We prove the solvability of the Cauchy problem for a nonlocal heat equation which is of fractional order both in space and time. The representation formula for classical solutions for time- and space- fractional partial differential operator Dat + a2 (-Δ) γ/2 (0 <= α <= 1, γ ɛ (0, 2]) and deviation time variable is given in terms of the Fox H-function, using the step by step method.
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Integrable discrete PT symmetric model.
Ablowitz, Mark J; Musslimani, Ziad H
2014-09-01
An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.
A hierarchy of generalized Jaulent-Miodek equations and their explicit solutions
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Guan, Liang; Xue, Bo
A hierarchy of generalized Jaulent-Miodek (JM) equations related to a new spectral problem with energy-dependent potentials is proposed. Depending on the Lax matrix and elliptic variables, the generalized JM hierarchy is decomposed into two systems of solvable ordinary differential equations. Explicit theta function representations of the meromorphic function and the Baker-Akhiezer function are constructed, the solutions of the hierarchy are obtained based on the theory of algebraic curves.
Boundedness and almost Periodicity in Time of Solutions of Evolutionary Variational Inequalities
NASA Astrophysics Data System (ADS)
Pankov, A. A.
1983-04-01
In this paper existence theorems are obtained for the solutions of abstract parabolic variational inequalities, which are bounded with respect to time (in the Stepanov and L^\\infty norms). The regularity and almost periodicity properties of such solutions are studied. Theorems are also established concerning their solvability in spaces of Besicovitch almost periodic functions. The majority of the results are obtained without any compactness assumptions. Bibliography: 30 titles.
Quadratic integrand double-hybrid made spin-component-scaled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika; Sancho-García, Juan C.
2016-03-28
We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.
Physics of windblown particles
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Leach, Rodman; Marshall, John R.; White, Bruce; Iversen, James D.; Nickling, William G.; Gillette, Dale; Sorensen, Michael
1987-01-01
A laboratory facility proposed for the Space Station to investigate fundamental aspects of windblown particles is described. The experiments would take advantage of the environment afforded in earth orbit and would be an extension of research currently being conducted on the geology and physics of windblown sediments on earth, Mars, and Venus. Aeolian (wind) processes are reviewed in the planetary context, the scientific rational is given for specific experiments to be conducted, the experiment apparatus (the Carousel Wind Tunnel, or CWT) is described, and a plan presented for implementing the proposed research program.
Muiznieks, Lisa D; Keeley, Fred W
2016-10-01
Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin-like sequences as a strategy to rationally increase the strength of elastin-based materials while maintaining extensibility. We demonstrate a thermo-responsive phase separation and spontaneous colloid-like droplet formation from silk-elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross-linked materials. Silk-elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin-only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693-703, 2016. © 2016 Wiley Periodicals, Inc.
A hidden analytic structure of the Rabi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moroz, Alexander, E-mail: wavescattering@yahoo.com
2014-01-15
The Rabi model describes the simplest interaction between a cavity mode with a frequency ω{sub c} and a two-level system with a resonance frequency ω{sub 0}. It is shown here that the spectrum of the Rabi model coincides with the support of the discrete Stieltjes integral measure in the orthogonality relations of recently introduced orthogonal polynomials. The exactly solvable limit of the Rabi model corresponding to Δ=ω{sub 0}/(2ω{sub c})=0, which describes a displaced harmonic oscillator, is characterized by the discrete Charlier polynomials in normalized energy ϵ, which are orthogonal on an equidistant lattice. A non-zero value of Δ leads tomore » non-classical discrete orthogonal polynomials ϕ{sub k}(ϵ) and induces a deformation of the underlying equidistant lattice. The results provide a basis for a novel analytic method of solving the Rabi model. The number of ca. 1350 calculable energy levels per parity subspace obtained in double precision (cca 16 digits) by an elementary stepping algorithm is up to two orders of magnitude higher than is possible to obtain by Braak’s solution. Any first n eigenvalues of the Rabi model arranged in increasing order can be determined as zeros of ϕ{sub N}(ϵ) of at least the degree N=n+n{sub t}. The value of n{sub t}>0, which is slowly increasing with n, depends on the required precision. For instance, n{sub t}≃26 for n=1000 and dimensionless interaction constant κ=0.2, if double precision is required. Given that the sequence of the lth zeros x{sub nl}’s of ϕ{sub n}(ϵ)’s defines a monotonically decreasing discrete flow with increasing n, the Rabi model is indistinguishable from an algebraically solvable model in any finite precision. Although we can rigorously prove our results only for dimensionless interaction constant κ<1, numerics and exactly solvable example suggest that the main conclusions remain to be valid also for κ≥1. -- Highlights: •A significantly simplified analytic solution of the Rabi model. •The spectrum is the lattice of discrete orthogonal polynomials. •Up to 1350 levels in double precision can be obtained for a given parity. •Omission of any level can be easily detected.« less
Exact wave functions of two-electron quantum rings.
Loos, Pierre-François; Gill, Peter M W
2012-02-24
We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.
Quantum Darwinism for mixed-state environment
NASA Astrophysics Data System (ADS)
Quan, Haitao; Zwolak, Michael; Zurek, Wojciech
2009-03-01
We exam quantum darwinism when a system is in the presence of a mixed environment, and we find a general relation between the mutual information for the mixed-state environment and the change of the entropy of the fraction of the environment. We then look at a particular solvable model, and we numerically exam the time evolution of the ``mutual information" for large environment. Finally we discuss about the exact expressions for all entropies and the mutual information at special time.
NASA Technical Reports Server (NTRS)
Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.
1992-01-01
The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.
Pattern selection and tip perturbations in the Saffman-Taylor problem
NASA Technical Reports Server (NTRS)
Hong, D. C.; Langer, J. S.
1987-01-01
An analytic approach to the Saffman-Taylor problem of predicting the width of a viscous finger in a Hele-Shaw cell is presented. The first purpose is to provide a systematic description of the way in which the singular perturbation introduced by capillary forces leads to a solvability mechanism for pattern selection. It is then shown how recent experimental observations by Couder et al. (1986) may be interpreted in terms suggested by this mechanism.
Solvable model for chimera states of coupled oscillators.
Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A
2008-08-22
Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Takeo
2013-04-15
We study the supersymmetry U{sub q}(sl-caret(M+1|N+1)) analogue of the supersymmetric t-J model with a boundary. Our approach is based on the algebraic analysis method of solvable lattice models. We diagonalize the commuting transfer matrix by using the bosonizations of the vertex operators associated with the quantum affine supersymmetry U{sub q}(sl-caret(M+1|N+1)).
Sixth-Order Lie Group Integrators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forest, E.
1990-03-01
In this paper we present the coefficients of several 6th order symplectic integrator of the type developed by R. Ruth. To get these results we fully exploit the connection with Lie groups. This integrator, as well as all the explicit integrators of Ruth, may be used in any equation where some sort of Lie bracket is preserved. In fact, if the Lie operator governing the equation of motion is separable into two solvable parts, the Ruth integrators can be used.
NASA Astrophysics Data System (ADS)
Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.
2003-04-01
Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.
Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models
NASA Astrophysics Data System (ADS)
Ghosh, Pijush K.; Sinha, Debdeep
2018-01-01
A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.
A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space
NASA Astrophysics Data System (ADS)
Adkins, T.; Schekochihin, A. A.
2018-02-01
A class of simple kinetic systems is considered, described by the one-dimensional Vlasov-Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan-Batchelor model of chaotic advection. The solution of the model is found in Fourier-Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier-Hermite spectrum is derived. Its asymptotics are -3/2$ at low wavenumbers and high Hermite moments ( ) and -1/2k-2$ at low Hermite moments and high wavenumbers ( ). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.
A dynamical systems approach to the tilted Bianchi models of solvable type
NASA Astrophysics Data System (ADS)
Coley, Alan; Hervik, Sigbjørn
2005-02-01
We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.
NASA Technical Reports Server (NTRS)
Roberts, Vasel W.
1971-01-01
In the late 1968, the Space Technology Application Office at the Jet Propulsion Laboratory (JPL) initiated a pilot study to determine whether technological aids could be developed that would help secondary school administrators cope with the volatile and chaotic situations that often accompany student activism, disorders, and riots. The study was conducted in cooperation with the Sacramento City Unified School District (SCUSD) and at the John F. Kennedy Senior High School (JFK) in Sacramento, California. The problems at JFK and in the SCUSD were identified and described to the JPL team by members of the Kennedy staff and personnel at various levels and departments within the school district. The JPL team of engineers restricted their scope to problems that appeared solvable, or at least partially solvable, through the use of technological systems. Thus far, two hardware systems have been developed for use in the school. The first, a personal emergency assistance communication system, has already been tested operationally at JFK and has met the objectives established for it. The second technological aid developed was a computerized attendance accounting system. This system has been fabricated, tested, and installed at JFK. Full-scale operational testing began in April 1971. While studies and hardware tests were in progress at JFK, contacts were made with several other schools in order that, insofar as practicable, hardware designs could allow for possible adaptation to schools other than JFK.
Logics of pre-merger decision-making processes: the case of Karolinska University Hospital.
Choi, Soki; Brommels, Mats
2009-01-01
The purpose of this paper is to examine how and why a decision to merge two university hospitals in a public context might occur by using an in-depth case study of the pre-merger process of Karolinska University Hospital. Based on extensive document analysis and 35 key informant interviews the paper reconstructed the pre-merger process, searched for empirical patterns, and interpreted those by applying neo-institutional theory. Spanning nearly a decade, the pre-merger process goes from idea generation through transition to decision, and took place on two arenas, political, and scientific. Both research excellence and economic efficiency are stated merger motives. By applying a neo-institutional perspective, the paper finds that the two initial phases are driven by decision rationality, which is typical for political organizations and that the final phase demonstrated action rationality, which is typical for private firms. Critical factors behind this radical change of decision logic are means convergence, uniting key stakeholder groups, and an economic and political crisis, triggering critical incidents, which ultimately legitimized the formal decision. It is evident from the paper that merger decisions in the public sector might not necessarily result from stated and/or economic drivers only. This paper suggests that a change of decision logic from decision to action rationality might promote effective decision making on large and complex issues in a public context. This is the first systematic in-depth study of a university hospital merger employing a decision-making perspective.
Rational approximations from power series of vector-valued meromorphic functions
NASA Technical Reports Server (NTRS)
Sidi, Avram
1992-01-01
Let F(z) be a vector-valued function, F: C yields C(sup N), which is analytic at z = 0 and meromorphic in a neighborhood of z = 0, and let its Maclaurin series be given. In this work we developed vector-valued rational approximation procedures for F(z) by applying vector extrapolation methods to the sequence of partial sums of its Maclaurin series. We analyzed some of the algebraic and analytic properties of the rational approximations thus obtained, and showed that they were akin to Pade approximations. In particular, we proved a Koenig type theorem concerning their poles and a de Montessus type theorem concerning their uniform convergence. We showed how optical approximations to multiple poles and to Laurent expansions about these poles can be constructed. Extensions of the procedures above and the accompanying theoretical results to functions defined in arbitrary linear spaces was also considered. One of the most interesting and immediate applications of the results of this work is to the matrix eigenvalue problem. In a forthcoming paper we exploited the developments of the present work to devise bona fide generalizations of the classical power method that are especially suitable for very large and sparse matrices. These generalizations can be used to approximate simultaneously several of the largest distinct eigenvalues and corresponding eigenvectors and invariant subspaces of arbitrary matrices which may or may not be diagonalizable, and are very closely related with known Krylov subspace methods.
Leather quality of beefalo-Nellore cattle in different production systems.
Ítavo, Luís Carlos Vinhas; Mateus, Rodrigo Gonçalves; Ítavo, Camila Celeste Brandão Ferreira; Dias, Alexandre Menezes; Gomes, Fabio Candal; da Silva, Fabiano Ferreira; Schio, Alex Resende; Nogueira, Eriklis; Petit, Hélène Véronique
2017-05-01
The aim was to compare the effects of two production systems on performance, carcass traits and physical-mechanical characteristics of leather from Beefalo-Nellore steers and heifers and to determine if the response to the production system was similar for both genders. A total of 40 Beefalo-Nellore cattle, 20 steers and 20 heifers, were evaluated. Animals were divided into two production systems: slaughtered at 15 (intensive system) or 26 (extensive system) months of age. In the intensive system, all animals received a ration containing 600 g/kg corn silage and 400 g/kg concentrate. In the extensive system, animals were kept on a pasture predominantly based on Brachiaria sp. and supplemented with 2 kg/day concentrate. In the intensive system, there was no difference in slaughter weight (470 kg body weight) between steers and heifers but steers in the extensive system had greater slaughter weight than heifers (463 and 428 kg body weight, respectively). Leather weight was higher for animals in the intensive than extensive system but there was no difference in leather weight once excess fat was removed. Leather quality from Beefalo-Nellore cattle slaughtered at 15 or 26 months of age is similar although carcass yield is higher for cattle slaughtered at a younger age. © 2016 Japanese Society of Animal Science.
Cognitive architectures, rationality, and next-generation AI: a prolegomenon
NASA Astrophysics Data System (ADS)
Bello, Paul; Bringsjord, Selmer; Yang, Yingrui
2004-08-01
Computational models that give us insight into the behavior of individuals and the organizations to which they belong will be invaluable assets in our nation's war against terrorists, and state sponsorship of terror organizations. Reasoning and decision-making are essential ingredients in the formula for human cognition, yet the two have almost exclusively been studied in isolation from one another. While we have witnessed the emergence of strong traditions in both symbolic logic, and decision theory, we have yet to describe an acceptable interface between the two. Mathematical formulations of decision-making and reasoning have been developed extensively, but both fields make assumptions concerning human rationality that are untenable at best. True to this tradition, artificial intelligence has developed architectures for intelligent agents under these same assumptions. While these digital models of "cognition" tend to perform superbly, given their tremendous capacity for calculation, it is hardly reasonable to develop simulacra of human performance using these techniques. We will discuss some the challenges associated with the problem of developing integrated cognitive systems for use in modelling, simulation, and analysis, along with some ideas for the future.
An, Gary; Bartels, John; Vodovotz, Yoram
2011-01-01
The clinical translation of promising basic biomedical findings, whether derived from reductionist studies in academic laboratories or as the product of extensive high-throughput and –content screens in the biotechnology and pharmaceutical industries, has reached a period of stagnation in which ever higher research and development costs are yielding ever fewer new drugs. Systems biology and computational modeling have been touted as potential avenues by which to break through this logjam. However, few mechanistic computational approaches are utilized in a manner that is fully cognizant of the inherent clinical realities in which the drugs developed through this ostensibly rational process will be ultimately used. In this article, we present a Translational Systems Biology approach to inflammation. This approach is based on the use of mechanistic computational modeling centered on inherent clinical applicability, namely that a unified suite of models can be applied to generate in silico clinical trials, individualized computational models as tools for personalized medicine, and rational drug and device design based on disease mechanism. PMID:21552346
A comparison of naïve and sophisticated subject behavior with game theoretic predictions
McCabe, Kevin A.; Smith, Vernon L.
2000-01-01
We use an extensive form two-person game as the basis for two experiments designed to compare the behavior of two groups of subjects with each other and with the subgame perfect theoretical prediction in an anonymous interaction protocol. The two subject groups are undergraduates and advanced graduate students, the latter having studied economics and game theory. There is no difference in their choice behavior, and both groups depart substantially from game theoretic predictions. We also compare a subsample of the same graduate students with a typical undergraduate sample in an asset trading environment in which inexperienced undergraduates invariably produce substantial departures from the rational expectations prediction. In this way, we examine how robust are the results across two distinct anonymous interactive environments. In the constant sum trading game, the graduate students closely track the predictions of rational theory. Our interpretation is that the graduate student subjects' departure from subgame perfection to achieve cooperative outcomes in the two-person bargaining game is a consequence of a deliberate strategy and is not the result of error or inadequate learning. PMID:10725349
Rational design of small molecules as vaccine adjuvants.
Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M
2014-11-19
Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants. Copyright © 2014, American Association for the Advancement of Science.
In-vitro engineering of novel bioactivity in the natural enzymes
NASA Astrophysics Data System (ADS)
Tiwari, Vishvanath
2016-10-01
Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.
Examples of Complete Solvability of 2D Classical Superintegrable Systems
NASA Astrophysics Data System (ADS)
Chen, Yuxuan; Kalnins, Ernie G.; Li, Qiushi; Miller, Willard, Jr.
2015-11-01
Classical (maximal) superintegrable systems in n dimensions are Hamiltonian systems with 2n-1 independent constants of the motion, globally defined, the maximum number possible. They are very special because they can be solved algebraically. In this paper we show explicitly, mostly through examples of 2nd order superintegrable systems in 2 dimensions, how the trajectories can be determined in detail using rather elementary algebraic, geometric and analytic methods applied to the closed quadratic algebra of symmetries of the system, without resorting to separation of variables techniques or trying to integrate Hamilton's equations. We treat a family of 2nd order degenerate systems: oscillator analogies on Darboux, nonzero constant curvature, and flat spaces, related to one another via contractions, and obeying Kepler's laws. Then we treat two 2nd order nondegenerate systems, an analogy of a caged Coulomb problem on the 2-sphere and its contraction to a Euclidean space caged Coulomb problem. In all cases the symmetry algebra structure provides detailed information about the trajectories, some of which are rather complicated. An interesting example is the occurrence of ''metronome orbits'', trajectories confined to an arc rather than a loop, which are indicated clearly from the structure equations but might be overlooked using more traditional methods. We also treat the Post-Winternitz system, an example of a classical 4th order superintegrable system that cannot be solved using separation of variables. Finally we treat a superintegrable system, related to the addition theorem for elliptic functions, whose constants of the motion are only rational in the momenta. It is a system of special interest because its constants of the motion generate a closed polynomial algebra. This paper contains many new results but we have tried to present most of the materials in a fashion that is easily accessible to nonexperts, in order to provide entrée to superintegrablity theory.
Evolved Minimal Frustration in Multifunctional Biomolecules.
Röder, Konstantin; Wales, David J
2018-05-25
Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.
Organization of the Saudi health system.
Al-Yousuf, M; Akerele, T M; Al-Mazrou, Y Y
2002-01-01
Using existing data, we reviewed the organizational structure of the Saudi Arabian health system: its demography and history, principal health indicators, organization and management, type and distribution of facilities, financial base, and the impact on it of the Haj. We noted duplication of services, inadequate coordination between some health industry sectors, and the need for a more extensive and rational health centre network with improved information systems and data collection. We also noted scope for a greater role for the private health sector and increased cooperation between it and the public sector to improve health service delivery and population health.
2015-01-01
Identifying determinant(s) of protein thermostability is key for rational and data-driven protein engineering. By analyzing more than 130 pairs of mesophilic/(hyper)thermophilic proteins, we identified the quality (residue-wise energy) of hydrophobic interactions as a key factor for protein thermostability. This distinguishes our study from previous ones that investigated predominantly structural determinants. Considering this key factor, we successfully discriminated between pairs of mesophilic/(hyper)thermophilic proteins (discrimination accuracy: ∼80%) and searched for structural weak spots in E. coli dihydrofolate reductase (classification accuracy: 70%). PMID:24437522
Intermittency inhibited by transport: An exactly solvable model
NASA Astrophysics Data System (ADS)
Zanette, Damián H.
1994-04-01
Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.
Schematic baryon models, their tight binding description and their microwave realization
NASA Astrophysics Data System (ADS)
Sadurní, E.; Franco-Villafañe, J. A.; Kuhl, U.; Mortessagne, F.; Seligman, T. H.
2013-12-01
A schematic model for baryon excitations is presented in terms of a symmetric Dirac gyroscope, a relativistic model solvable in closed form, that reduces to a rotor in the non-relativistic limit. The model is then mapped on a nearest neighbour tight binding model. In its simplest one-dimensional form this model yields a finite equidistant spectrum. This is experimentally implemented as a chain of dielectric resonators under conditions where their coupling is evanescent and a good agreement with the prediction is achieved.
Evolutionary Oseen Model for Generalized Newtonian Fluid with Multivalued Nonmonotone Friction Law
NASA Astrophysics Data System (ADS)
Migórski, Stanisław; Dudek, Sylwia
2018-03-01
The paper deals with the non-stationary Oseen system of equations for the generalized Newtonian incompressible fluid with multivalued and nonmonotone frictional slip boundary conditions. First, we provide a result on existence of a unique solution to an abstract evolutionary inclusion involving the Clarke subdifferential term for a nonconvex function. We employ a method based on a surjectivity theorem for multivalued L-pseudomonotone operators. Then, we exploit the abstract result to prove the weak unique solvability of the Oseen system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es
We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.
Microcanonical Szilárd engines beyond the quasistatic regime
NASA Astrophysics Data System (ADS)
Acconcia, Thiago V.; Bonança, Marcus V. S.
2017-12-01
We discuss the possibility of extracting energy from a single thermal bath using microcanonical Szilárd engines operating in finite time. This extends previous works on the topic which are restricted to the quasistatic regime. The feedback protocol is implemented based on linear response predictions of the excess work. It is claimed that the underlying mechanism leading to energy extraction does not violate Liouville's theorem and preserves ergodicity throughout the cycle. We illustrate our results with several examples including an exactly solvable model.
Microcanonical Szilárd engines beyond the quasistatic regime.
Acconcia, Thiago V; Bonança, Marcus V S
2017-12-01
We discuss the possibility of extracting energy from a single thermal bath using microcanonical Szilárd engines operating in finite time. This extends previous works on the topic which are restricted to the quasistatic regime. The feedback protocol is implemented based on linear response predictions of the excess work. It is claimed that the underlying mechanism leading to energy extraction does not violate Liouville's theorem and preserves ergodicity throughout the cycle. We illustrate our results with several examples including an exactly solvable model.
On the physical Hilbert space of loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noui, Karim; Perez, Alejandro; Vandersloot, Kevin
2005-02-15
In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.
The rid-redundant procedure in C-Prolog
NASA Technical Reports Server (NTRS)
Chen, Huo-Yan; Wah, Benjamin W.
1987-01-01
C-Prolog can conveniently be used for logical inferences on knowledge bases. However, as similar to many search methods using backward chaining, a large number of redundant computation may be produced in recursive calls. To overcome this problem, the 'rid-redundant' procedure was designed to rid all redundant computations in running multi-recursive procedures. Experimental results obtained for C-Prolog on the Vax 11/780 computer show that there is an order of magnitude improvement in the running time and solvable problem size.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
An (almost) solvable model for bacterial pattern formation
NASA Astrophysics Data System (ADS)
Grammaticos, B.; Badoual, M.; Aubert, M.
2007-10-01
We present a simple model for the description of ring-like concentric structures in bacterial colonies. We model the differences between Bacillus subtilis and Proteus mirabilis colonies by using a different dependence of the duration of the consolidation phase on the concentration of agar. We compare our results to experimental data from these two bacterial species colonies and obtain a good agreement. Based on this analysis, we formulate a hypothesis on the connection of the diffusion constant that appears in the model to the experimental agar concentration.
Gambini, R; Pullin, J
2000-12-18
We consider general relativity with a cosmological constant as a perturbative expansion around a completely solvable diffeomorphism invariant field theory. This theory is the lambda --> infinity limit of general relativity. This allows an explicit perturbative computational setup in which the quantum states of the theory and the classical observables can be explicitly computed. An unexpected relationship arises at a quantum level between the discrete spectrum of the volume operator and the allowed values of the cosmological constant.
Solvable multistate model of Landau-Zener transitions in cavity QED
Sinitsyn, Nikolai; Li, Fuxiang
2016-06-29
We consider the model of a single optical cavity mode interacting with two-level systems (spins) driven by a linearly time-dependent field. When this field passes through values at which spin energy level splittings become comparable to spin coupling to the optical mode, a cascade of Landau-Zener (LZ) transitions leads to co-flips of spins in exchange for photons of the cavity. We derive exact transition probabilities between different diabatic states induced by such a sweep of the field.
Informations in Models of Evolutionary Dynamics
NASA Astrophysics Data System (ADS)
Rivoire, Olivier
2016-03-01
Biological organisms adapt to changes by processing informations from different sources, most notably from their ancestors and from their environment. We review an approach to quantify these informations by analyzing mathematical models of evolutionary dynamics and show how explicit results are obtained for a solvable subclass of these models. In several limits, the results coincide with those obtained in studies of information processing for communication, gambling or thermodynamics. In the most general case, however, information processing by biological populations shows unique features that motivate the analysis of specific models.
NASA Astrophysics Data System (ADS)
Saakian, David B.
2012-03-01
We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions. According to our results, four different statistical physics phases are possible in random walks with multifractal behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove multiscaling behavior. Different phases have different multiscaling properties.
Quantum morphogenesis: A variation on Thom's catastrophe theory
NASA Astrophysics Data System (ADS)
Aerts, Dirk; Czachor, Marek; Gabora, Liane; Kuna, Maciej; Posiewnik, Andrzej; Pykacz, Jarosław; Syty, Monika
2003-05-01
Noncommutative propositions are characteristic of both quantum and nonquantum (sociological, biological, and psychological) situations. In a Hilbert space model, states, understood as correlations between all the possible propositions, are represented by density matrices. If systems in question interact via feedback with environment, their dynamics is nonlinear. Nonlinear evolutions of density matrices lead to the phenomenon of morphogenesis that may occur in noncommutative systems. Several explicit exactly solvable models are presented, including “birth and death of an organism” and “development of complementary properties.”
Tidal disruption of viscous bodies
NASA Technical Reports Server (NTRS)
Sridhar, S.; Tremaine, S.
1992-01-01
Tidal disruptions are investigated in viscous-fluid planetesimals whose radius is small relative to the distance of closest (parabolic-orbit) approach to a planet. The planetesimal surface is in these conditions always ellipsoidal, facilitating treatment by coupled ODEs which are solvable with high accuracy. While the disrupted planetesimals evolve into needlelike ellipsoids, their density does not decrease. The validity of viscous fluid treatment holds for solid (ice or rock) planetesimals in cases where tidal stresses are greater than material strength, but integrity is maintained by self-gravity.
Convergence analysis of a monotonic penalty method for American option pricing
NASA Astrophysics Data System (ADS)
Zhang, Kai; Yang, Xiaoqi; Teo, Kok Lay
2008-12-01
This paper is devoted to study the convergence analysis of a monotonic penalty method for pricing American options. A monotonic penalty method is first proposed to solve the complementarity problem arising from the valuation of American options, which produces a nonlinear degenerated parabolic PDE with Black-Scholes operator. Based on the variational theory, the solvability and convergence properties of this penalty approach are established in a proper infinite dimensional space. Moreover, the convergence rate of the combination of two power penalty functions is obtained.
Instationary Generalized Stokes Equations in Partially Periodic Domains
NASA Astrophysics Data System (ADS)
Sauer, Jonas
2018-06-01
We consider an instationary generalized Stokes system with nonhomogeneous divergence data under a periodic condition in only some directions. The problem is set in the whole space, the half space or in (after an identification of the periodic directions with a torus) bounded domains with sufficiently regular boundary. We show unique solvability for all times in Muckenhoupt weighted Lebesgue spaces. The divergence condition is dealt with by analyzing the associated reduced Stokes system and in particular by showing maximal regularity of the partially periodic reduced Stokes operator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Todd L; Hamada, Michael S
2008-01-01
Good estimates of the reliability of a system make use of test data and expert knowledge at all available levels. Furthermore, by integrating all these information sources, one can determine how best to allocate scarce testing resources to reduce uncertainty. Both of these goals are facilitated by modern Bayesian computational methods. We apply these tools to examples that were previously solvable only through the use of ingenious approximations, and use genetic algorithms to guide resource allocation.
ORNL`s war on crime, technically speaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiques, P.
This paper describes research being carried out by the Center for Applied Science and Technology for Law Enforcement (CASTLE), at Oak Ridge National Laboratory. This program works on projects which are solvable, affordable, and outside the scope of the private sector. Examples are presented of work related to: the lifetime of childrens fingerprints compared to adults; the development of ways of providing cooler body armor; digital enhancement technology applied to security-camera images from crime scenes; victim identification by skeletal reconstruction for use by forensic anthropologists.
Spatiotemporal correlation buildup after an interaction quench in the Luttinger model
NASA Astrophysics Data System (ADS)
Abeling, Nils O.; Kehrein, Stefan
We study the evolution of density-density correlations at different times and distances in the exactly solvable Luttinger model after a sudden quench from the ground state. We discuss the difference between correlations and susceptibilities, and how these results can be interpreted from the point of view of Lieb-Robinson bounds. For the correlation functions we specifically show that pre-quench entanglement in the ground state leads to algebraically decaying long distance tails outside the light cone.
A performability solution method for degradable nonrepairable systems
NASA Technical Reports Server (NTRS)
Furchtgott, D. G.; Meyer, J. F.
1984-01-01
The present performability model-solving algorithm identifies performance with 'reward', representing the state behavior of a system S by a finite-state stochastic process and determining reward by means of reward rates that are associated with the states of the base model. A general method is obtained for determining the probability distribution function of the performance (reward) variable, and therefore the performability, of the corresponding system. This is done for bounded utilization periods, and the result is an integral expression which is either analytically or numerically solvable.
Two-Dimensional One-Component Plasma on Flamm's Paraboloid
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo; Téllez, Gabriel
2008-11-01
We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.
Aspects of the inverse problem for the Toda chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlowski, K. K., E-mail: karol.kozlowski@u-bourgogne.fr
We generalize Babelon's approach to equations in dual variables so as to be able to treat new types of operators which we build out of the sub-constituents of the model's monodromy matrix. Further, we also apply Sklyanin's recent monodromy matrix identities so as to obtain equations in dual variables for yet other operators. The schemes discussed in this paper appear to be universal and thus, in principle, applicable to many models solvable through the quantum separation of variables.
Elementary wave interactions in blood flow through artery
NASA Astrophysics Data System (ADS)
Raja Sekhar, T.; Minhajul
2017-10-01
In this paper, we consider the Riemann problem and interaction of elementary waves for the quasilinear hyperbolic system of conservation laws that arises in blood flow through arteries. We study the properties of solution involving shocks and rarefaction waves and establish the existence and uniqueness conditions. We show that the Riemann problem is solvable for arbitrary initial data under certain condition and construct the condition for no-feasible solution. Finally, we present numerical examples with different initial data and discuss all possible interactions of elementary waves.
Models in Insurance: Paradigms, Puzzles, Communications and Revolutions.
1980-06-01
80.7] G. Buoro, G. Pavesi and G. Zucchiatti, "Osservazioni sul Sistema di Calcolo del Margine di Solvabiliti," 71-80. [80.8] J. Calcanis and A...Vegas, "Un Ensayo sobre la Concepci6n Sistema aplicada a la Empresa de Seguros," 443-462. [80.41] K. H. Wolff, "Zur numerischen Berechnung der... Teoria della Credibilit&," Giornale dell’ Istituto degli Attuari, 27, 219-231 (1964). (D51 N. De Pril, "The Efficiency of a Bonus-Malus System," AB, 10
Knoch, Tobias A; Baumgärtner, Volkmar; de Zeeuw, Luc V; Grosveld, Frank G; Egger, Kurt
2009-01-01
With ever-new technologies emerging also the amount of information to be stored and processed is growing exponentially and is believed to be always at the limit. In contrast, however, huge resources are available in the IT sector alike e.g. the renewable energy sector, which are often even not at all used. This under-usage bares any rational especially in the IT sector where e.g. virtualisation and grid approaches could be fast implemented due to the great technical and fast turnover opportunities. Here, we describe this obvious paradox for the first time as the Inverse Tragedy of the Commons, in contrast to the Classical Tragedy of the Commons where resources are overexploited. From this perspective the grid IT sector attempting to share resources for better efficiency, reveals two challenges leading to the heart of the paradox: i) From a macro perspective all grid infrastructures involve not only mere technical solutions but also dominantly all of the autopoietic social sub-systems ranging from religion to policy. ii) On the micro level the individual players and their psychology and risk behaviour are of major importance for acting within the macro autopoietic framework. Thus, the challenges of grid implementation are similar to those of e.g. climate protection. This is well described by the classic Human Ecology triangle and our extension to a rectangle: invironment-individual-society-environment. Extension of this classical interdisciplinary field of basic and applied research to an e-Human Grid Ecology rational, allows the Inverse Tragedy of the Commons of the grid sector to be understood and approached better and implies obvious guidelines in the day-to-day management for grid and other (networked) resources, which is of importance for many fields with similar paradoxes as in (e-)society.
Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data
NASA Astrophysics Data System (ADS)
Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.
2017-12-01
Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).
1987-05-06
Rational . Rational Environment A_9_5_2. Rational Arthitecture (R1000 Model 200) 6. PERFORMING ORG. REPORT...validation testing performed on the Rational Environment , A_9_5_2, using Version 1.8 of the Ada0 Compiler Validation Capability (ACVC). The Rational ... Environment is hosted on a Rational Architecture (R1000 Model 200) operating under Rational Environment , Release A 95 2. Programs processed by this
An analytically solvable three-body break-up model problem in hyperspherical coordinates
NASA Astrophysics Data System (ADS)
Ancarani, L. U.; Gasaneo, G.; Mitnik, D. M.
2012-10-01
An analytically solvable S-wave model for three particles break-up processes is presented. The scattering process is represented by a non-homogeneous Coulombic Schrödinger equation where the driven term is given by a Coulomb-like interaction multiplied by the product of a continuum wave function and a bound state in the particles coordinates. The closed form solution is derived in hyperspherical coordinates leading to an analytic expression for the associated scattering transition amplitude. The proposed scattering model contains most of the difficulties encountered in real three-body scattering problem, e.g., non-separability in the electrons' spherical coordinates and Coulombic asymptotic behavior. Since the coordinates' coupling is completely different, the model provides an alternative test to that given by the Temkin-Poet model. The knowledge of the analytic solution provides an interesting benchmark to test numerical methods dealing with the double continuum, in particular in the asymptotic regions. An hyperspherical Sturmian approach recently developed for three-body collisional problems is used to reproduce to high accuracy the analytical results. In addition to this, we generalized the model generating an approximate wave function possessing the correct radial asymptotic behavior corresponding to an S-wave three-body Coulomb problem. The model allows us to explore the typical structure of the solution of a three-body driven equation, to identify three regions (the driven, the Coulombic and the asymptotic), and to analyze how far one has to go to extract the transition amplitude.
NASA Astrophysics Data System (ADS)
Klaiman, S.; Streltsov, A. I.; Alon, O. E.
2018-04-01
A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.
Development of kinks in car-following models
NASA Astrophysics Data System (ADS)
Kurtze, Douglas A.
2017-03-01
Many car-following models of traffic flow admit the possibility of absolute stability, a situation in which uniform traffic flow at any spacing is linearly stable. Near the threshold of absolute stability, these models can often be reduced to a modified Korteweg-deVries (mKdV) equation plus small corrections. The hyperbolic-tangent "kink" solutions of the mKdV equation are usually of particular interest, as they represent transition zones between regions of different traffic spacings. Solvability analysis is believed to show that only a single member of the one-parameter family of kink solutions is preserved by the correction terms, and this is interpreted as a kind of selection. We show, however, that the usual solvability calculation rests on an unstated, unjustified assumption, and that without this assumption it merely gives a first-order correction to the relation between the traffic spacings far behind and far ahead of the kink, rather than any kind of "selection" criterion for the family of kink solutions. On the other hand, we display a two-parameter family of traveling wave solutions of the mKdV equation, which describe regions of one traffic spacing embedded in traffic of a different spacing; this family includes the kink solutions as a limiting case. We carry out a multiple-time-scales calculation and find conditions under which the inclusions decay, conditions that lead to a selected inclusion, and conditions for which the inclusion evolves into a pair of kinks.
Bhattacharjee, Debottam; Dasgupta, Sandipan; Biswas, Arpita; Deheria, Jayshree; Gupta, Shreya; Nikhil Dev, N; Udell, Monique; Bhadra, Anindita
2017-07-01
Domestic dogs' (Canis lupus familiaris) socio-cognitive faculties have made them highly sensitive to human social cues. While dogs often excel at understanding human communicative gestures, they perform comparatively poorly in problem-solving and physical reasoning tasks. This difference in their behaviour could be due to the lifestyle and intense socialization, where problem solving and physical cognition are less important than social cognition. Free-ranging dogs live in human-dominated environments, not under human supervision and are less socialized. Being scavengers, they often encounter challenges where problem solving is required in order to get access to food. We tested Indian street dogs in familiar and unfamiliar independent solvable tasks and quantified their persistence and dependence on a novel human experimenter, in addition to their success in solving a task. Our results indicate that free-ranging dogs succeeded and persisted more in the familiar task as compared to the unfamiliar one. They showed negligible amount of human dependence in the familiar task, but showed prolonged gazing and considerable begging behaviour to the human experimenter in the context of the unfamiliar task. Cognitive abilities of free-ranging dogs thus play a pivotal role in determining task-associated behaviours based on familiarity. In addition to that, these dogs inherently tend to socialize with and depend on humans, even if they are strangers. Our results also illustrate free-ranging dogs' low competence at physical cognitive tasks.
Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy
Paraskar, Abhimanyu; Soni, Shivani; Roy, Bhaskar; Papa, Anne-Laure; Sengupta, Shiladitya
2012-01-01
Nanoscale drug delivery vehicles have been extensively studied as carriers for cancer chemotherapeutics. However the formulation of platinum chemotherapeutics in nanoparticles has been a challenge arising from their physicochemical properties. There are only few reports describing oxaliplatin nanoparticles. In this study, we derivatized the monomeric units of a polyisobutylene maleic acid copolymer with glucosamine, which chelates trans-1,2-diaminocyclohexane (DACH) platinum (II) through a novel monocarboxylato and O→Pt coordination linkage. At a specific polymer to platinum ratio, the complex self assembled into a nanoparticle, where the polymeric units act as the leaving group, releasing DACH-platinum in sustained pH-dependent manner. Sizing was done using dynamic light scatter and electron microscopy. The nanoparticles were evaluated for efficacy in vitro and in vivo. Biodistribution was quantified using inductive-coupled plasma-atomic absorption spectroscopy (ICP-AAS). The PIMA-GA-DACH-platinum nanoparticle was found to be more active than free oxaliplatin in vitro. In vivo, the nanoparticles resulted in greater tumor inhibition than oxaliplatin (equivalent to 5mg/kg platinum dose) with minimal nephrotoxicity or body weight loss. ICP-AAS revealed significant preferential tumor accumulation of platinum with reduced biodistribution to the kidney or liver following PIMA-GA-DACH-platinum nanoparticle administration as compared with free oxaliplatin. These results indicate that the rational engineering of a novel polymeric nanoparticle inspired by the bioactivation of oxaliplatin results in increased antitumor potency with reduced systemic toxicity compared with the parent cytotoxic. Rational design can emerge as an exciting strategy in the synthesis of nanomedicines for cancer chemotherapy. PMID:22275055
Lauridsen, S M R; Norup, M S; Rossel, P J H
2007-12-01
Rationing healthcare is a difficult task, which includes preventing patients from accessing potentially beneficial treatments. Proponents of implicit rationing argue that politicians cannot resist pressure from strong patient groups for treatments and conclude that physicians should ration without informing patients or the public. The authors subdivide this specific programme of implicit rationing, or "hidden rationing", into local hidden rationing, unsophisticated global hidden rationing and sophisticated global hidden rationing. They evaluate the appropriateness of these methods of rationing from the perspectives of individual and political autonomy and conclude that local hidden rationing and unsophisticated global hidden rationing clearly violate patients' individual autonomy, that is, their right to participate in medical decision-making. While sophisticated global hidden rationing avoids this charge, the authors point out that it nonetheless violates the political autonomy of patients, that is, their right to engage in public affairs as citizens. A defence of any of the forms of hidden rationing is therefore considered to be incompatible with a defence of autonomy.
Rationalization: A Bibliography.
ERIC Educational Resources Information Center
Pedrini, D. T.; Pedrini, Bonnie C.
Rationalization was studied by Sigmund Freud and was specifically labeled by Ernest Jones. Rationalization ought to be differentiated from rational, rationality, logical analysis, etc. On the one hand, rationalization is considered a defense mechanism, on the other hand, rationality is not. Haan has done much work with self-report inventories and…
Lavery, Hugh J; Prall, David N; Abaza, Ronney
2011-08-01
The motivation to preserve sexual function can vary widely among patients before prostatectomy. Increasing patient involvement may allow a more personalized experience and may improve satisfaction. We assessed a strategy of surgeon deference to patient choice in regard to nerve sparing to determine to what degree patients are rational actors and capable of active decision making. A total of 150 patients treated with prostatectomy participated in a standardized preoperative discussion regarding the concept of nerve sparing, extracapsular extension and the potential need for adjuvant radiation in the event of local recurrence. Each patient was given his nomogram predicted risk of extracapsular extension and then elected nerve sparing or nonnerve sparing. The corresponding procedure was performed unless grossly invasive disease was encountered. Of the 150 patients 109 chose nerve sparing (73%) and 41 chose nonnerve sparing (27%). In patients with a nomogram predicted risk of extracapsular extension less than 20%, 20% to 50% and greater than 50%, nerve sparing was elected by 88%, 41% and 25%, respectively. Patients with lower risks of extracapsular extension electing nonnerve sparing were older and had higher rates of erectile dysfunction. Empowering patients to decide on their nerve sparing status is a reasonable strategy that did not lead to a high rate of patients with a high risk of extracapsular extension electing nerve sparing. With proper counseling informed patients made reasonable decisions, and appeared to be conservative, prioritizing cancer control in the majority of instances where extracapsular extension risk was high. In addition, they may have been overly conservative in electing nonnerve sparing when the risk was low. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Functional Anatomy of the Outflow Facilities.
Pizzirani, Stefano; Gong, Haiyan
2015-11-01
In order to understand the pathophysiology, select optimal therapeutic options for patients and provide clients with honest expectations for cases of canine glaucoma, clinicians should be familiar with a rational understanding of the functional anatomy of the ocular structures involved in this group of diseases. The topographical extension and the structural and humoral complexity of the regions involved with the production and the outflow of aqueous humor undergo numerous changes with aging and disease. Therefore, the anatomy relative to the fluid dynamics of aqueous has become a pivotal yet flexible concept to interpret the different phenotypes of glaucoma. Copyright © 2015 Elsevier Inc. All rights reserved.
Artan, N; Wilderer, P; Orhon, D; Morgenroth, E; Ozgür, N
2001-01-01
The Sequencing Batch Reactor (SBR) process for carbon and nutrient removal is subject to extensive research, and it is finding a wider application in full-scale installations. Despite the growing popularity, however, a widely accepted approach to process analysis and modeling, a unified design basis, and even a common terminology are still lacking; this situation is now regarded as the major obstacle hindering broader practical application of the SBR. In this paper a rational dimensioning approach is proposed for nutrient removal SBRs based on scientific information on process stoichiometry and modelling, also emphasizing practical constraints in design and operation.
Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions
NASA Astrophysics Data System (ADS)
Valchev, T. I.
2016-02-01
We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.
Supersonic quasi-axisymmetric vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.
Organogel formation rationalized by Hansen solubility parameters: influence of gelator structure.
Bonnet, Julien; Suissa, Gad; Raynal, Matthieu; Bouteiller, Laurent
2015-03-21
Some organic compounds form gels in liquids by forming a network of anisotropic fibres. Based on extensive solubility tests of four gelators of similar structures, and on Hansen solubility parameter formalism, we have probed the quantitative effect of a structural variation of the gelator structure on its gel formation ability. Increasing the length of an alkyl group of the gelator obviously reduces its polarity, which leads to a gradual shift of its solubility sphere towards lower δp and δh values. At the same time, its gelation sphere is shifted - to a much stronger extent - towards larger δp and δh values.
NASA Astrophysics Data System (ADS)
Ciuchi, S.; Hatch, R. C.; Höchst, H.; Faber, C.; Blase, X.; Fratini, S.
2012-06-01
By comparing photoemission spectroscopy with a nonperturbative dynamical mean field theory extension to many-body ab initio calculations, we show in the prominent case of pentacene crystals that an excellent agreement with experiment for the bandwidth, dispersion, and lifetime of the hole carrier bands can be achieved in organic semiconductors, provided that one properly accounts for the coupling to molecular vibrational modes and the presence of disorder. Our findings rationalize the growing experimental evidence that even the best band structure theories based on a many-body treatment of electronic interactions cannot reproduce the experimental photoemission data in this important class of materials.
Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel
2015-01-01
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402
Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...
2015-04-22
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
Correlated motion and the effect of distal mutations in dihydrofolate reductase
Rod, Thomas H.; Radkiewicz, Jennifer L.; Brooks, Charles L.
2003-01-01
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. The catalytic rate in this system has been found to be significantly affected by mutations far from the site of chemical activity in the enzyme [Rajagopalan, P. T. R, Lutz, S., and Benkovic, S. J. (2002) Biochemistry 41, 12618–12628]. On the basis of extensive computer simulations for wild-type DHFR from Escherichia coli and four mutants (G121S, G121V, M42F, and M42F/G121S), we show that key parameters for catalysis are changed. The parameters we study are relative populations of different conformations sampled and hydrogen bonds. We find that the mutations result in long-range structural perturbations, rationalizing the effects that the mutations have on the kinetics of the enzyme. Such perturbations also provide a rationalization for the reported nonadditivity effect for double mutations. We finally examine the role a structural perturbation will have on the hydride transfer step. On the basis of our new findings, we discuss the role of coupled motions between distant regions in the enzyme, which previously was reported by Radkiewicz and Brooks. PMID:12756296
Rat injury model of docetaxel extravasation.
Zhu, Jing-Jing; Fu, Jian-Fei; Yang, Jiao; Hu, Bing; Zhang, Hui; Yu, Jian-Hua
2014-09-01
Docetaxel is a novel type of chemotherapy drug that actively treats a number of malignant tumors. The aim of the present study was to explore the severity and natural course of tissue damage induced by docetaxel extravasation and to confirm the vesicant potential of docetaxel. Rats were selected for the establishment of the ulcer model. Different volumes and concentrations were explored to induce the skin ulcer and to confirm the optimum rational injection model. The natural course of tissue injury and pathological changes produced by docetaxel extravasation were observed by comparing to vinorelbine extravasation. A 0.4 ml volume and a 6 mg/ml concentration were the optimum rational injection model for the induction of the skin ulcer. The docetaxel extravasation induced local tissue necrosis, followed by granuloma formation and hyperpigmentation or scar formation. The severity of the injury depended on the concentration of the extravasation used in the rat model. The injury occurred on the first day following extravasation and lasted 4-6 weeks. The damage from docetaxel was weaker than vinorelbine in association with the depth and extension of necrosis. In conclusion, docetaxel extravasation can induce tissue necrosis. However, the severity of necrosis was weaker than that of vinorelbine. Docetaxel has superficial vesicant properties.
Schmithausen, Alexander J; Schiefler, Inga; Trimborn, Manfred; Gerlach, Katrin; Südekum, Karl-Heinz; Pries, Martin; Büscher, Wolfgang
2018-05-16
Extensive experimentation on individual animals in respiration chambers has already been carried out to evaluate the potential of dietary changes and opportunities to mitigate CH₄ emissions from ruminants. Although it is difficult to determine the air exchange rate of open barn spaces, measurements at the herd level should provide similarly reliable and robust results. The primary objective of this study was (1) to define a validity range (data classification criteria (DCC)) for the variables of wind velocity and wind direction during long-term measurements at barn level; and (2) to apply this validity range to a feeding trial in a naturally cross-flow ventilated dairy barn. The application of the DCC permitted quantification of CH₄ and NH₃ emissions during a feeding trial consisting of four periods. Differences between the control group (no supplement) and the experimental group fed a ration supplemented with condensed Acacia mearnsii tannins (CT) became apparent. Notably, CT concentrations of 1% and 3% of ration dry matter did not reduce CH₄ emissions. In contrast, NH₃ emissions decreased 34.5% when 3% CT was supplemented. The data confirm that quantification of trace gases in a naturally ventilated barn at the herd level is possible.
Rat injury model of docetaxel extravasation
ZHU, JING-JING; FU, JIAN-FEI; YANG, JIAO; HU, BING; ZHANG, HUI; YU, JIAN-HUA
2014-01-01
Docetaxel is a novel type of chemotherapy drug that actively treats a number of malignant tumors. The aim of the present study was to explore the severity and natural course of tissue damage induced by docetaxel extravasation and to confirm the vesicant potential of docetaxel. Rats were selected for the establishment of the ulcer model. Different volumes and concentrations were explored to induce the skin ulcer and to confirm the optimum rational injection model. The natural course of tissue injury and pathological changes produced by docetaxel extravasation were observed by comparing to vinorelbine extravasation. A 0.4 ml volume and a 6 mg/ml concentration were the optimum rational injection model for the induction of the skin ulcer. The docetaxel extravasation induced local tissue necrosis, followed by granuloma formation and hyperpigmentation or scar formation. The severity of the injury depended on the concentration of the extravasation used in the rat model. The injury occurred on the first day following extravasation and lasted 4–6 weeks. The damage from docetaxel was weaker than vinorelbine in association with the depth and extension of necrosis. In conclusion, docetaxel extravasation can induce tissue necrosis. However, the severity of necrosis was weaker than that of vinorelbine. Docetaxel has superficial vesicant properties. PMID:25054005
Judy, Eva; Pagariya, Darshna; Kishore, Nand
2018-03-20
Oral bioavailability of a drug molecule requires its effective delivery to the target site. In general, majority of synthetically developed molecular entities have high hydrophobic nature as well as low bioavailability, therefore the need for suitable delivery vehicles arises. Self-assembled structures such as micelles, niosomes, and liposomes have been used as effective delivery vehicles and studied extensively. However, the information available in literature is mostly qualitative in nature. We have quantitatively investigated the partitioning of antibiotic drug streptomycin into cationic, nonionic, and a mixture of cationic and nonionic surfactant micelles and its interaction with the transport protein serum albumin upon subsequent delivery. A combination of calorimetry and spectroscopy has been used to obtain the thermodynamic signatures associated with partitioning and interaction with the protein and the resulting conformational changes in the latter. The results have been correlated with other class of drugs of different nature to understand the role of molecular features in the partitioning process. These studies are oriented toward understanding the physical chemistry of partitioning of a variety of drug molecules into suitable delivery vehicles and hence establishing structure-property-energetics relationships. Such studies provide general guidelines toward a broader goal of rational drug design.
Pancoska, Petr; Moravek, Zdenek; Moll, Ute M
2004-01-01
Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini
2018-04-01
Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.
Phase diagram and quench dynamics of the cluster-XY spin chain
NASA Astrophysics Data System (ADS)
Montes, Sebastián; Hamma, Alioscia
2012-08-01
We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.
A Class of Solvable Stopping Games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, Luis H. R.
We consider a class of Dynkin games in the case where the underlying process evolves according to a one-dimensional but otherwise general diffusion. We establish general conditions under which both the value and the saddle point equilibrium exist and under which the exercise boundaries characterizing the saddle point strategy can be explicitly characterized in terms of a pair of standard first order necessary conditions for optimality. We also analyze those cases where an extremal pair of boundaries exists and investigate the overall impact of increased volatility on the equilibrium stopping strategies and their values.
Z/sub n/ Baxter model: symmetries and the Belavin parametrization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richey, M.P.; Tracy, C.A.
1986-02-01
The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.
Resonant Perturbation Theory of Decoherence and Relaxation of Quantum Bits
Merkli, M.; Berman, G. P.; Sigal, I. M.
2010-01-01
We describe our recenmore » t results on the resonant perturbation theory of decoherence and relaxation for quantum systems with many qubits. The approach represents a rigorous analysis of the phenomenon of decoherence and relaxation for general N -level systems coupled to reservoirs of bosonic fields. We derive a representation of the reduced dynamics valid for all times t ≥ 0 and for small but fixed interaction strength. Our approach does not involve master equation approximations and applies to a wide variety of systems which are not explicitly solvable.« less
Andreev bound states. Some quasiclassical reflections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J.
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Solving Lauricella string scattering amplitudes through recurrence relations
NASA Astrophysics Data System (ADS)
Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi
2017-09-01
We show that there exist infinite number of recurrence relations valid for all energies among the open bosonic string scattering amplitudes (SSA) of three tachyons and one arbitrary string state, or the Lauricella SSA. Moreover, these infinite number of recurrence relations can be used to solve all the Lauricella SSA and express them in terms of one single four tachyon amplitude. These results extend the solvability of SSA at the high energy, fixed angle scattering limit and those at the Regge scattering limit discovered previously to all kinematic regimes.
NASA Astrophysics Data System (ADS)
Matsuyanagi, K.
1982-05-01
With an exactly solvable O(4) model of Piepenbring, Silvestre-Brac and Szymanski, we demonstrate that the attenuation factor for the B(E2) values, derived by the lowest-order approximation of the multiphonon method, takes excellent care of the kinematical anharmonicity effects, if multiphonon states are defined in the intrinsic subspace orthogonal to the pairing rotation. It is also shown that the other attenuation effect characterizing the interacting boson model is not a dominant effect in the model analysed here.
Collision problems treated with the Generalized Hyperspherical Sturmian method
NASA Astrophysics Data System (ADS)
Mitnik, D. M.; Gasaneo, G.; Ancarani, L. U.; Ambrosio, M. J.
2014-04-01
An hyperspherical Sturmian approach recently developed for three-body break-up processes is presented. To test several of its features, the method is applied to two simplified models. Excellent agreement is found when compared with the results of an analytically solvable problem. For the Temkin-Poet model of the double ionization of He by high energy electron impact, the present method is compared with the Spherical Sturmian approach, and again excellent agreement is found. Finally, a study of the channels appearing in the break-up three-body wave function is presented.
Solvable model of spiral wave chimeras.
Martens, Erik A; Laing, Carlo R; Strogatz, Steven H
2010-01-29
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.
An optimization method for the problems of thermal cloaking of material bodies
NASA Astrophysics Data System (ADS)
Alekseev, G. V.; Levin, V. A.
2016-11-01
Inverse heat-transfer problems related to constructing special thermal devices such as cloaking shells, thermal-illusion or thermal-camouflage devices, and heat-flux concentrators are studied. The heatdiffusion equation with a variable heat-conductivity coefficient is used as the initial heat-transfer model. An optimization method is used to reduce the above inverse problems to the respective control problem. The solvability of the above control problem is proved, an optimality system that describes necessary extremum conditions is derived, and a numerical algorithm for solving the control problem is proposed.
Nonlocal symmetry and explicit solutions from the CRE method of the Boussinesq equation
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2018-04-01
In this paper, we analyze the integrability of the Boussinesq equation by using the truncated Painlevé expansion and the CRE method. Based on the truncated Painlevé expansion, the nonlocal symmetry and Bäcklund transformation of this equation are obtained. A prolonged system is introduced to localize the nonlocal symmetry to the local Lie point symmetry. It is proved that the Boussinesq equation is CRE solvable. The two-solitary-wave fusion solutions, single soliton solutions and soliton-cnoidal wave solutions are presented by means of the Bäcklund transformations.
A model of the normal and null states of pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
1981-12-01
A solvable three-dimensional polar cap model of pair creation and charged particle acceleration has been derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter determining the acceleration potential difference has been obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition has been identified. The predicted necessary condition for the transition is entirely consistent with observation.
A model of the normal and null states of pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
A solvable three dimensional polar cap model of pair creation and charged particle acceleration is derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter CO determining the acceleration potential difference was obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition is identified. The predicted necessary condition for the transition is entirely consistent with observation.
NASA Astrophysics Data System (ADS)
Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz
2018-04-01
The paper is concerned with a problem of diffraction type. The study starts with equations of complex (radiative and conductive) heat transfer in a multicomponent domain with Fresnel matching conditions at the interfaces. Applying the diffusion, P1, approximation yields a pair of coupled nonlinear PDEs describing the radiation intensity and temperature for each component of the domain. Matching conditions for these PDEs, imposed at the interfaces between the domain components, are derived. The unique solvability of the obtained problem is proven, and numerical experiments are conducted.
Partial Wave Dispersion Relations: Application to Electron-Atom Scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Drachman, Richard J.
1999-01-01
In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.
Andreev bound states. Some quasiclassical reflections
NASA Astrophysics Data System (ADS)
Lin, Y.; Leggett, A. J.
2014-12-01
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for "normal" reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Renormalization of Extended QCD2
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Yamamura, Ryo
2015-10-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N_c, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region.
Solvability of the electrocardiology inverse problem for a moving dipole.
Tolkachev, V; Bershadsky, B; Nemirko, A
1993-01-01
New formulations of the direct and inverse problems for the moving dipole are offered. It has been suggested to limit the study by a small area on the chest surface. This lowers the role of the medium inhomogeneity. When formulating the direct problem, irregular components are considered. The algorithm of simultaneous determination of the dipole and regular noise parameters has been described and analytically investigated. It is shown that temporal overdetermination of the equations offers a single solution of the inverse problem for the four leads.
NASA Astrophysics Data System (ADS)
Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.
NASA Astrophysics Data System (ADS)
Li, L. L.; Jin, C. L.; Ge, X.
2018-01-01
In this paper, the output regulation problem with dissipative property for a class of switched stochastic delay systems is investigated, based on an error-dependent switching law. Under the assumption that none subsystem is solvable for the problem, a sufficient condition is derived by structuring multiple Lyapunov-Krasovskii functionals with respect to multiple supply rates, via designing error feedback regulators. The condition is also established when dissipative property reduces to passive property. Finally, two numerical examples are given to demonstrate the feasibility and efficiency of the present method.
Phase diagram and quench dynamics of the cluster-XY spin chain.
Montes, Sebastián; Hamma, Alioscia
2012-08-01
We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.
Entropic manifestations of topological order in three dimensions
NASA Astrophysics Data System (ADS)
Bullivant, Alex; Pachos, Jiannis K.
2016-03-01
We evaluate the entanglement entropy of exactly solvable Hamiltonians corresponding to general families of three-dimensional topological models. We show that the modification to the entropic area law due to three-dimensional topological properties is richer than the two-dimensional case. In addition to the reduction of the entropy caused by a nonzero vacuum expectation value of contractible loop operators, a topological invariant emerges that increases the entropy if the model consists of nontrivially braiding anyons. As a result the three-dimensional topological entanglement entropy provides only partial information about the two entropic topological invariants.
Few-Photon Model of the Optical Emission of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Richter, Marten; Carmele, Alexander; Sitek, Anna; Knorr, Andreas
2009-08-01
The Jaynes-Cummings model provides a well established theoretical framework for single electron two level systems in a radiation field. Similar exactly solvable models for semiconductor light emitters such as quantum dots dominated by many particle interactions are not known. We access these systems by a generalized cluster expansion, the photon-probability cluster expansion: a reliable approach for few-photon dynamics in many body electron systems. As a first application, we discuss vacuum Rabi oscillations and show that their amplitude determines the number of electrons in the quantum dot.
Work and information processing in a solvable model of Maxwell's demon.
Mandal, Dibyendu; Jarzynski, Christopher
2012-07-17
We describe a minimal model of an autonomous Maxwell demon, a device that delivers work by rectifying thermal fluctuations while simultaneously writing information to a memory register. We solve exactly for the steady-state behavior of our model, and we construct its phase diagram. We find that our device can also act as a "Landauer eraser", using externally supplied work to remove information from the memory register. By exposing an explicit, transparent mechanism of operation, our model offers a simple paradigm for investigating the thermodynamics of information processing by small systems.
Spectral function from Reduced Density Matrix Functional Theory
NASA Astrophysics Data System (ADS)
Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia
2015-03-01
In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.
Monte Carlo simulation of a dynamical fermion problem: The light q sup 2 q sup 2 system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grondin, G.
1991-01-01
We present results from a Guided Random Walk Monte Carlo simulation of the light q{sup 2}{bar q}{sup 2} system in a Coulomb-plus-linear quark potential model using an Intel iPSC/860 hypercube. A solvable model problem is first considered, after which we study the full q{sup 2}{bar q}{sup 2} system in (J,I) = (2,2) and (2,0) sectors. We find evidence for no bound states below the vector-vector threshold in these systems. 17 refs., 6 figs.
Patel, M; Sonesson, U; Hessle, A
2017-03-01
Efficiency in animal protein production can be defined in different ways, for example the amount of human-digestible essential amino acids (HDEAA) in the feed ration relative to the amount of HDEAA in the animal products. Cattle production systems are characterised by great diversity and a wide variety of feeds and feed ration compositions, due to ruminants' ability to digest fibrous materials inedible to humans such as roughage and by-products from the food and biofuel industries. This study examined the upgrading of protein quality through cattle by determining the quantity of HDEAA in feeds and animal products and comparing different milk and beef production systems. Four different systems for milk and beef production were designed, a reference production system for milk and beef representing typical Swedish production systems today and three alternative improved systems: (i) intensive cattle production based on maize silage, (ii) intensive systems based on food industry by-products for dairy cows and high-quality forage for beef cattle, and (iii) extensive systems based on forage with only small amounts of concentrate. In all four production systems, the quantity of HDEAA in the products (milk and meat) generally exceeded the quantity of HDEAA in the feeds. The intensive production models for beef calves generally resulted in output of the same magnitude as input for most HDEAA. However, in beef production based on calves from dairy cows, the intensive rearing systems resulted in lower output than input of HDEAA. For the extensive models, the amounts of HDEAA in meat were of the same magnitude as the amounts in the feeds. The extensive models with beef calves from suckler cows resulted in higher output in meat than input in feeds for all HDEAA. It was concluded that feeding cattle plants for production of milk and meat, instead of using the plants directly as human food, generally results in an upgrading of both the quantity and quality of protein, especially when extensive, forage-based production models are used. The results imply that the key to efficiency is the utilisation of human-inedible protein by cattle and justifies their contribution to food production, especially in regions where grasslands and/or forage production has comparative benefits over plant food production. By fine-tuning estimation of the efficiency of conversion from human-edible protein to HDEAA, comparisons of different sources of protein production may be more complete and the magnitude of amino acid upgrading in plants through cattle more obvious.
Rational Rationing: Impossible or Inevitable?
1993-04-01
AD-A276 769 1993 Executive Research Project S45 Rational Rationing : Impossible or Inevitable? Commander Albert Benjamin Long, III Medical Service...used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED Rational Rationing : Inevitable or Inpossible...dilemma requires that we--as individuals and as a Nation--consciously and rationally decide what we expect from our future health care delivery system and
Chong, Siang Yew; Tiňo, Peter; He, Jun; Yao, Xin
2017-11-20
Studying coevolutionary systems in the context of simplified models (i.e., games with pairwise interactions between coevolving solutions modeled as self plays) remains an open challenge since the rich underlying structures associated with pairwise-comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problems that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modeled as a specific type of Markov chains-random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provides the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled manner.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2018-07-01
This work deals with the exact analytical modeling of transfer phenomena in heterogeneous materials exhibiting one-dimensional continuous variations of their properties. Regarding heat transfer, it has recently been shown that by applying a Liouville transformation and multiple Darboux transformations, infinite sequences of solvable profiles of thermal effusivity can be constructed together with the associated temperature (exact) solutions, all in closed-form expressions (vs. the diffusion-time variable and with a growing number of parameters). In addition, a particular class of profiles, the so-called {sech}( {\\hat{ξ }} ) -type profiles, exhibit high agility and at the same time parsimony. In this paper we delve further into the description of these solvable profiles and their properties. Most importantly, their quadrupole formulation is provided, enabling smooth synthetic profiles of effusivity of arbitrary complexity to be built, and allowing the corresponding temperature dynamic response to be obtained very easily thereafter. Examples are given with increasing variability of the effusivity and an increasing number of elementary profiles. These highly flexible profiles are equally relevant to providing an exact analytical solution to wave propagation problems in 1D graded media (i.e., Maxwell's equations, the acoustic equation, the telegraph equation, etc.). From now on, whether it be for diffusion-like or wave-like problems, when the leading properties present (possibly piecewise-) continuously heterogeneous profiles, the classical staircase model can be advantageously replaced by a "high-level" quadrupole model consisting of one or more {sech}( {\\hat{ξ }} ) -type profiles, which makes the latter a true Swiss-Army knife for analytical modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, James; Wang, Yilin; Walter, Eric D.
The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolatedmore » Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less
Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.; ...
2016-09-01
Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.« less
Thinking about thinking: implications for patient safety.
Montgomery, Kathryn
2009-01-01
Clinical medicine, a learned, rational, science-using practice, is labelled a science even though physicians have the good sense not to practise it that way. Rather than thinking like scientists - or how we think scientists think - physicians are engaged in analogical, interpretive reasoning that resembles Aristotle's phronesis, or practical reasoning, more closely than episteme, or scientific reasoning. In medicine, phronesis is clinical judgment; and while it depends on both a fund of information and extensive experience, somehow it is not quite teachable. This practical, clinical rationality relies on case narrative for teaching and learning about illness and disease, for recording and communicating about patient care and, inevitably, for thinking about and remembering the details, as well as the overarching rules of practice. At the same time, "anecdotal" remains the most pejorative word in medicine, and the tension between the justifiable caution this disdain expresses and the pervasive narrative structure of medical knowledge is characteristic of clinical knowing generally: a tug-of-war between apparent irreconcilables that can be settled only by an appeal to the circumstances of the clinical situation. Practical rationality in the clinical encounter is characterized by a productive circulation between the particular details of the patient's presentation and general information about disease stored as a taxonomy of cases. Evidence-based medicine can improve this negotiation between general knowledge and the patient's particulars, but it cannot replace it. In a scientific era, clinical judgment remains the quintessential intellectual strength of the clinician. Why, then, do we not teach the epistemology of medicine? Understanding the mis-description of physicians' thinking - and the accompanying claim that medicine is, in itself, a science - could mitigate the misplaced perfectionism that makes mistakes in medicine personal and unthinkable.
Djulbegovic, Benjamin; Elqayam, Shira
2017-10-01
Given that more than 30% of healthcare costs are wasted on inappropriate care, suboptimal care is increasingly connected to the quality of medical decisions. It has been argued that personal decisions are the leading cause of death, and 80% of healthcare expenditures result from physicians' decisions. Therefore, improving healthcare necessitates improving medical decisions, ie, making decisions (more) rational. Drawing on writings from The Great Rationality Debate from the fields of philosophy, economics, and psychology, we identify core ingredients of rationality commonly encountered across various theoretical models. Rationality is typically classified under umbrella of normative (addressing the question how people "should" or "ought to" make their decisions) and descriptive theories of decision-making (which portray how people actually make their decisions). Normative theories of rational thought of relevance to medicine include epistemic theories that direct practice of evidence-based medicine and expected utility theory, which provides the basis for widely used clinical decision analyses. Descriptive theories of rationality of direct relevance to medical decision-making include bounded rationality, argumentative theory of reasoning, adaptive rationality, dual processing model of rationality, regret-based rationality, pragmatic/substantive rationality, and meta-rationality. For the first time, we provide a review of wide range of theories and models of rationality. We showed that what is "rational" behaviour under one rationality theory may be irrational under the other theory. We also showed that context is of paramount importance to rationality and that no one model of rationality can possibly fit all contexts. We suggest that in context-poor situations, such as policy decision-making, normative theories based on expected utility informed by best research evidence may provide the optimal approach to medical decision-making, whereas in the context-rich circumstances other types of rationality, informed by human cognitive architecture and driven by intuition and emotions such as the aim to minimize regret, may provide better solution to the problem at hand. The choice of theory under which we operate is important as it determines both policy and our individual decision-making. © 2017 The Authors Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.
Efficient volumetric estimation from plenoptic data
NASA Astrophysics Data System (ADS)
Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.
2013-03-01
The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.
Treatment of charge singularities in implicit solvent models.
Geng, Weihua; Yu, Sining; Wei, Guowei
2007-09-21
This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.
Treatment of charge singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Geng, Weihua; Yu, Sining; Wei, Guowei
2007-09-01
This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.
Many faces of rationality: Implications of the great rationality debate for clinical decision‐making
Elqayam, Shira
2017-01-01
Abstract Given that more than 30% of healthcare costs are wasted on inappropriate care, suboptimal care is increasingly connected to the quality of medical decisions. It has been argued that personal decisions are the leading cause of death, and 80% of healthcare expenditures result from physicians' decisions. Therefore, improving healthcare necessitates improving medical decisions, ie, making decisions (more) rational. Drawing on writings from The Great Rationality Debate from the fields of philosophy, economics, and psychology, we identify core ingredients of rationality commonly encountered across various theoretical models. Rationality is typically classified under umbrella of normative (addressing the question how people “should” or “ought to” make their decisions) and descriptive theories of decision‐making (which portray how people actually make their decisions). Normative theories of rational thought of relevance to medicine include epistemic theories that direct practice of evidence‐based medicine and expected utility theory, which provides the basis for widely used clinical decision analyses. Descriptive theories of rationality of direct relevance to medical decision‐making include bounded rationality, argumentative theory of reasoning, adaptive rationality, dual processing model of rationality, regret‐based rationality, pragmatic/substantive rationality, and meta‐rationality. For the first time, we provide a review of wide range of theories and models of rationality. We showed that what is “rational” behaviour under one rationality theory may be irrational under the other theory. We also showed that context is of paramount importance to rationality and that no one model of rationality can possibly fit all contexts. We suggest that in context‐poor situations, such as policy decision‐making, normative theories based on expected utility informed by best research evidence may provide the optimal approach to medical decision‐making, whereas in the context‐rich circumstances other types of rationality, informed by human cognitive architecture and driven by intuition and emotions such as the aim to minimize regret, may provide better solution to the problem at hand. The choice of theory under which we operate is important as it determines both policy and our individual decision‐making. PMID:28730671
Normative and descriptive rationality: from nature to artifice and back
NASA Astrophysics Data System (ADS)
Besold, T. R.; Uckelman, S. L.
2018-03-01
Rationality plays a key role in both the study of human reasoning and Artificial Intelligence (AI). Certain notions of rationality have been adopted in AI as guides for the development of intelligent machines and these notions have been given a normative function. The notions of rationality in AI are often taken to be closely related to conceptions of rationality in human contexts. In this paper, we argue that the normative role of rationality differs in the human and artificial contexts. While rationality in human-focused fields of study is normative, prescribing how humans ought to reason, the normative conception in AI is built on a notion of human rationality which is descriptive, not normative, in the human context, as AI aims at building agents which reason as humans do. In order to make this point, we review prominent notions of rationality used in psychology, cognitive science, and (the history of) philosophy, as well as in AI, and discuss some factors that contributed to rationality being assigned the differing normative statuses in the differing fields of study. We argue that while 'rationality' is a normative notion in both AI and in human reasoning, the normativity of the AI conception of 'rationality' is grounded in a descriptive account of human rationality.
Walsh, Kieran
2016-03-01
The purpose of this paper is to discuss the role of rationing in medical education. Medical education is expensive and there is a limit to that which governments, funders or individuals can spend on it. Rationing involves the allocation of resources that are limited. This paper discussed the pros and cons of the application of rationing to medical education and the different forms of rationing that could be applied. Even though some stakeholders in medical education might be taken aback at the prospect of rationing, the truth is that rationing has always occurred in one form or another in medical education and in healthcare more broadly. Different types of rationing exist in healthcare professional education. For example rationing may be implicit or explicit or may be based on macro-allocation or micro-allocation decisions. Funding can be distributed equally among learners, or according to the needs of individual learners, or to ensure that overall usefulness is maximised. One final option is to allow the market to operate freely and to decide in that way. These principles of rationing can apply to individual learners or to institutions or departments or learning modes. Rationing is occurring in medical education, even though it might be implicit. It is worth giving consideration to methods of rationing and to make thinking about rationing more explicit.
Optimal public rationing and price response.
Grassi, Simona; Ma, Ching-To Albert
2011-12-01
We study optimal public health care rationing and private sector price responses. Consumers differ in their wealth and illness severity (defined as treatment cost). Due to a limited budget, some consumers must be rationed. Rationed consumers may purchase from a monopolistic private market. We consider two information regimes. In the first, the public supplier rations consumers according to their wealth information (means testing). In equilibrium, the public supplier must ration both rich and poor consumers. Rationing some poor consumers implements price reduction in the private market. In the second information regime, the public supplier rations consumers according to consumers' wealth and cost information. In equilibrium, consumers are allocated the good if and only if their costs are below a threshold (cost effectiveness). Rationing based on cost results in higher equilibrium consumer surplus than rationing based on wealth. Copyright © 2011 Elsevier B.V. All rights reserved.
Laurin, Kristin
2018-04-01
People will often rationalize the status quo, reconstruing it in an exaggeratedly positive light. They will even rationalize the status quo they anticipate, emphasizing the upsides and minimizing the downsides of sociopolitical realities they expect to take effect. Drawing on recent findings on the psychological triggers of rationalization, I present results from three field studies, one of which was preregistered, testing the hypothesis that an anticipated reality becoming current triggers an observable boost in people's rationalizations. San Franciscans rationalized a ban on plastic water bottles, Ontarians rationalized a targeted smoking ban, and Americans rationalized the presidency of Donald Trump, more in the days immediately after these realities became current compared with the days immediately before. Additional findings show evidence for a mechanism underlying these behaviors and rule out alternative accounts. These findings carry implications for scholarship on rationalization, for understanding protest behavior, and for policymakers.
Lipparini, Filippo; Barone, Vincenzo
2011-11-08
We present a combined fluctuating charges-polarizable continuum model approach to describe molecules in solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively discussed, with specific reference to the fluctuating charge model, from a numerical point of view by means of several examples, and a rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions and polar molecules in water.
Investigation of Extensions to the Distorted Born Approximation in Strong Fluctuation Theory
1988-10-01
9316I * where D = 3/4[bop+b# J+ l/4b;) D = 1/4[ bpp +bo | (35)n12 b -bo( I D 13 =l/ 2 [Cppzz +C4zzI n Here -1 0~ o , bus(z,z)= (271) u I dl )acs (zl) am...that FXW = 1- 2X + 32. + 1 2(X) = 2 - 23 + + ... (-5 F (X) = 2 3 3 42 3 ’ + VX +.. D5 F3 (X) = 2/X + 3 gn X + ... Using (D-4) and (D-5) as guides for...showed that the rational approximations to Fir F2, F3 have maximum errors of .06%, .03%, and .06%, respectively. The integrals in (C-5) are completely
Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.
Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo
2012-10-18
Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.
"Fuzziness" in the celular interactome: a historical perspective.
Welch, G Rickey
2012-01-01
Some historical background is given for appreciating the impact of the empirical construct known as the cellular protein-protein interactome, which is a seemingly de novo entity that has arisen of late within the context of postgenomic systems biology. The approach here builds on a generalized principle of "fuzziness" in protein behavior, proposed by Tompa and Fuxreiter.(1) Recent controversies in the analysis and interpretation of the interactome studies are rationalized historically under the auspices of this concept. There is an extensive literature on protein-protein interactions, dating to the mid-1900s, which may help clarify the "fuzziness" in the interactome picture and, also, provide a basis for understanding the physiological importance of protein-protein interactions in vivo.
Sequence-Dependent Persistence Length of Long DNA
NASA Astrophysics Data System (ADS)
Chuang, Hui-Min; Reifenberger, Jeffrey G.; Cao, Han; Dorfman, Kevin D.
2017-12-01
Using a high-throughput genome-mapping approach, we obtained circa 50 million measurements of the extension of internal human DNA segments in a 41 nm ×41 nm nanochannel. The underlying DNA sequences, obtained by mapping to the reference human genome, are 2.5-393 kilobase pairs long and contain percent GC contents between 32.5% and 60%. Using Odijk's theory for a channel-confined wormlike chain, these data reveal that the DNA persistence length increases by almost 20% as the percent GC content increases. The increased persistence length is rationalized by a model, containing no adjustable parameters, that treats the DNA as a statistical terpolymer with a sequence-dependent intrinsic persistence length and a sequence-independent electrostatic persistence length.
An endochronic theory for transversely isotropic fibrous composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1981-01-01
A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects.
Groebner Basis Methods for Stationary Solutions of a Low-Dimensional Model for a Shear Flow
NASA Astrophysics Data System (ADS)
Pausch, Marina; Grossmann, Florian; Eckhardt, Bruno; Romanovski, Valery G.
2014-10-01
We use Groebner basis methods to extract all stationary solutions for the nine-mode shear flow model described in Moehlis et al. (New J Phys 6:56, 2004). Using rational approximations to irrational wave numbers and algebraic manipulation techniques we reduce the problem of determining all stationary states to finding roots of a polynomial of order 30. The coefficients differ by 30 powers of 10, so that algorithms for extended precision are needed to extract the roots reliably. We find that there are eight stationary solutions consisting of two distinct states, each of which appears in four symmetry-related phases. We discuss extensions of these results for other flows.
The growing and glowing toolbox of fluorescent and photoactive proteins
Rodriguez, Erik A.; Campbell, Robert E.; Lin, John Y.; Lin, Michael Z.; Miyawaki, Atsushi; Palmer, Amy E.; Shu, Xiaokun; Zhang, Jin
2016-01-01
Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we attempt to provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems. PMID:27814948
NASA Astrophysics Data System (ADS)
Jitomirskaya, S.; Marx, C. A.
2012-11-01
We show how to extend (and with what limitations) Avila's global theory of analytic SL(2,C) cocycles to families of cocycles with singularities. This allows us to develop a strategy to determine the Lyapunov exponent for the extended Harper's model, for all values of parameters and all irrational frequencies. In particular, this includes the self-dual regime for which even heuristic results did not previously exist in physics literature. The extension of Avila's global theory is also shown to imply continuous behavior of the LE on the space of analytic {M_2({C})}-cocycles. This includes rational approximation of the frequency, which so far has not been available.
Consumer preferences in social health insurance.
Kerssens, Jan J; Groenewegen, Peter P
2005-03-01
Allowing consumers greater choice of health plans is believed to be the key to high quality and low costs in social health insurance. This study investigates consumer preferences (361 persons, response rate 43%) for hypothetical health plans which differed in 12 characteristics (premium, deductibles, no-claim discount, extension of insurance and financial services, red tape involved, medical help-desk, choice of family physicians and hospitals, dental benefits, physical therapy benefits, benefits for prescription drugs and homeopathy). In 90% the health plan with the most attractive characteristics was preferred, indicating a predominantly rational kind of choice. The most decisive characteristics for preference were: complete dental benefits, followed by zero deductibles, and free choice of hospitals.
NASA Technical Reports Server (NTRS)
Woodcock, Gordon
1997-01-01
This study is an extension of a previous effort by the Principal Investigator to develop baseline data to support comparative analysis of Highly Reusable Space Transportation (HRST) concepts. The analyses presented herin develop baseline data bases for two two-stage-to-orbit (TSTO) concepts: (1) Assisted horizontal take-off all rocket (assisted HTOHL); and (2) Assisted vertical take-off rocket based combined cycle (RBCC). The study objectives were to: (1) Provide configuration definitions and illustrations for assisted HTOHL and assisted RBCC; (2) Develop a rationalization approach and compare these concepts with the HRST reference; and (3) Analyze TSTO configurations which try to maintain SSTO benefits while reducing inert weight sensitivity.
DISTRIBUTED RC NETWORKS WITH RATIONAL TRANSFER FUNCTIONS,
A distributed RC circuit analogous to a continuously tapped transmission line can be made to have a rational short-circuit transfer admittance and...one rational shortcircuit driving-point admittance. A subcircuit of the same structure has a rational open circuit transfer impedance and one rational ...open circuit driving-point impedance. Hence, rational transfer functions may be obtained while considering either generator impedance or load
First Experimental Realization of the Dirac Oscillator
NASA Astrophysics Data System (ADS)
Franco-Villafañe, J. A.; Sadurní, E.; Barkhofen, S.; Kuhl, U.; Mortessagne, F.; Seligman, T. H.
2013-10-01
We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup allows the implementation of other one-dimensional Dirac-type equations.
Critical energy flux and mass in solvable theories of 2D dilaton gravity
NASA Astrophysics Data System (ADS)
Fabbri, A.; Navarro-Salas, J.
1998-10-01
In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass mcr (eventually vanishing). In others there is neither mcr nor a critical flux.
Solution of second order supersymmetrical intertwining relations in Minkowski plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioffe, M. V., E-mail: m.ioffe@spbu.ru; Kolevatova, E. V., E-mail: e.v.kolev@yandex.ru; Nishnianidze, D. N., E-mail: cutaisi@yahoo.com
2016-08-15
Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the “metric” matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of “metric” matrices, and their properties are discussed.
NASA Astrophysics Data System (ADS)
Espejo, Elio; Winkler, Michael
2018-04-01
The interplay of chemotaxis, convection and reaction terms is studied in the particular framework of a refined model for coral broadcast spawning, consisting of three equations describing the population densities of unfertilized sperms and eggs and the concentration of a chemical released by the latter, coupled to the incompressible Navier-Stokes equations. Under mild assumptions on the initial data, global existence of classical solutions to an associated initial-boundary value problem in bounded planar domains is established. Moreover, all these solutions are shown to approach a spatially homogeneous equilibrium in the large time limit.
Classical analogous of quantum cosmological perfect fluid models
NASA Astrophysics Data System (ADS)
Batista, A. B.; Fabris, J. C.; Gonçalves, S. V. B.; Tossa, J.
2001-05-01
Quantization in the minisuperspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ= ρQ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.
Equivalences of the multi-indexed orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odake, Satoru
2014-01-15
Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types, two different index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these equivalences. Multi-indexed orthogonal polynomials with both type I and II indices are proportional to those of type I indices only (or type II indices only) with shifted parameters.
Solving fractional optimal control problems within a Chebyshev-Legendre operational technique
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.
2017-06-01
In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.
Random graph models of social networks.
Newman, M E J; Watts, D J; Strogatz, S H
2002-02-19
We describe some new exactly solvable models of the structure of social networks, based on random graphs with arbitrary degree distributions. We give models both for simple unipartite networks, such as acquaintance networks, and bipartite networks, such as affiliation networks. We compare the predictions of our models to data for a number of real-world social networks and find that in some cases, the models are in remarkable agreement with the data, whereas in others the agreement is poorer, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
Smith, J. C.; Pribram-Jones, A.; Burke, K.
2016-06-14
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J. C.; Pribram-Jones, A.; Burke, K.
Thermal density functional theory calculations often use the Mermin-Kohn-Sham scheme, but employ ground-state approximations to the exchange-correlation (XC) free energy. In the simplest solvable nontrivial model, an asymmetric Hubbard dimer, we calculate the exact many-body energies and the exact Mermin-Kohn-Sham functionals for this system and extract the exact XC free energy. For moderate temperatures and weak correlation, we find this approximation to be excellent. Here we extract various exact free-energy correlation components and the exact adiabatic connection formula.
Cole, David A; Warren, Dana E; Dallaire, Danielle H; Lagrange, Beth; Travis, Rebekah; Ciesla, Jeffrey A
2007-04-01
Learned helplessness behavior and cognitions were assessed in 95 kindergarten-age children during a series of impossible puzzle trials followed by a solvable puzzle trial. Latent growth curve analysis revealed reliable individual differences in the trajectories of children's affect, motivation, and self-cognitions over time. Parents' reports of negative life events, harsh/negative parenting, and warm/positive parenting were associated with their children's learned helplessness behavioral trajectories and outcomes over the course of the puzzle trials. Results support speculations about the developmental origins of depressive explanatory or attributional style in children.
Fields, Chris
2013-08-01
The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.
A tensor Banach algebra approach to abstract kinetic equations
NASA Astrophysics Data System (ADS)
Greenberg, W.; van der Mee, C. V. M.
The study deals with a concrete algebraic construction providing the existence theory for abstract kinetic equation boundary-value problems, when the collision operator A is an accretive finite-rank perturbation of the identity operator in a Hilbert space H. An algebraic generalization of the Bochner-Phillips theorem is utilized to study solvability of the abstract boundary-value problem without any regulatory condition. A Banach algebra in which the convolution kernel acts is obtained explicitly, and this result is used to prove a perturbation theorem for bisemigroups, which then plays a vital role in solving the initial equations.
Properties of highly frustrated magnetic molecules studied by the finite-temperature Lanczos method
NASA Astrophysics Data System (ADS)
Schnack, J.; Wendland, O.
2010-12-01
The very interesting magnetic properties of frustrated magnetic molecules are often hardly accessible due to the prohibitive size of the related Hilbert spaces. The finite-temperature Lanczos method is able to treat spin systems for Hilbert space sizes up to 109. Here we first demonstrate for exactly solvable systems that the method is indeed accurate. Then we discuss the thermal properties of one of the biggest magnetic molecules synthesized to date, the icosidodecahedron with antiferromagnetically coupled spins of s = 1/2. We show how genuine quantum features such as the magnetization plateau behave as a function of temperature.
Geometric Hitting Set for Segments of Few Orientations
Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...
2016-01-13
Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.
NASA Astrophysics Data System (ADS)
Naumenko, Mikhail; Samarin, Viacheslav
2018-02-01
Modern parallel computing algorithm has been applied to the solution of the few-body problem. The approach is based on Feynman's continual integrals method implemented in C++ programming language using NVIDIA CUDA technology. A wide range of 3-body and 4-body bound systems has been considered including nuclei described as consisting of protons and neutrons (e.g., 3,4He) and nuclei described as consisting of clusters and nucleons (e.g., 6He). The correctness of the results was checked by the comparison with the exactly solvable 4-body oscillatory system and experimental data.
The Geometric Nature of the Flaschka Transformation
NASA Astrophysics Data System (ADS)
Bloch, Anthony M.; Gay-Balmaz, François; Ratiu, Tudor S.
2017-06-01
We show that the Flaschka map, originally introduced to analyze the dynamics of the integrable Toda lattice system, is the inverse of a momentum map. We discuss the geometrical setting of the map and apply it to the generalized Toda lattice systems on semisimple Lie algebras, the rigid body system on Toda orbits, and to coadjoint orbits of semidirect products groups. In addition, we develop an infinite-dimensional generalization for the group of area preserving diffeomorphisms of the annulus and apply it to the analysis of the dispersionless Toda lattice PDE and the solvable rigid body PDE.
NASA Astrophysics Data System (ADS)
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
Simple analytical model of a thermal diode
NASA Astrophysics Data System (ADS)
Kaushik, Saurabh; Kaushik, Sachin; Marathe, Rahul
2018-05-01
Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.
Symmetry Enriched Topological Phases and Their Edge Theories
NASA Astrophysics Data System (ADS)
Heinrich, Christopher
In this thesis we investigate topological phases of matter that have a global, unbroken symmetry group--also known as symmetry enriched topological (SET) phases. We address three questions about these phases: (1) how can we build exactly solvable models that realize them? (2) how can we determine if their edge theories can be gapped without breaking the symmetry? and (3) how do we understand the phenomenon of decoupled charge and neutral modes which occurs in certain fractional quantum Hall states? More specifically, we address the first question by constructing exactly solvable models for a wide class of symmetry enriched topological (SET) phases, which we call symmetry-enriched string nets. The construction applies to 2D bosonic SET phases with finite unitary onsite symmetry group G, and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples. For the second question, we focus on the edge theories of 2D SET phases with Z2 symmetry. The central problem we seek to solve is to determine which edge theories can be gapped without breaking the symmetry. Previous attempts to answer this question in special cases relied on constructing perturbations of a particular type to gap the edge. This method proves the edge can be gapped when the appropriate perturbations can be found, but is inconclusive if they cannot be found. We build on this previous work by deriving a necessary and sufficient algebraic condition for when the edge can be gapped. Our results apply to Z2 symmetry protected topological phases as well as Abelian Z2 SET phases. Finally, in the fourth chapter, we describe solvable models that capture how impurity scattering in certain fractional quantum Hall edges can give rise to a neutral mode--i.e. an edge mode that does not carry electric charge. These models consist of two counter-propagating chiral Luttinger liquids together with a collection of discrete impurity scatterers. Our main result is an exact solution of these models in the limit of infinitely strong impurity scattering. From this solution, we explicitly derive the existence of a neutral mode and we determine all of its microscopic properties including its velocity. We also study the stability of the neutral mode and show that it survives at finite but sufficiently strong scattering. Our results are applicable to a family of Abelian fractional quantum Hall states of which the nu = 2/3 state is the most prominent example.
Intake of minerals, trace elements and vitamins in bone and raw food rations in adult dogs.
Dillitzer, Natalie; Becker, Nicola; Kienzle, Ellen
2011-10-01
The aim of the present study was to evaluate the vitamin and mineral content of bone and raw food rations fed to adult dogs in Germany. Pet owners completed a standardised feeding questionnaire. The composition of 95 rations was calculated from mean data for foodstuffs using nutrition balancing software. Typical ration ingredients were meats, fish, offal, dairy products, eggs, oil, nuts, cod liver oil and natural and commercial supplements. The supply of nutrients was compared with the recommended allowance (RA). Of the rations that were used, 10 % supplied < 25 % of the RA of Ca. In these rations, Ca:P was below 0.6:1, and vitamin D was below RA. About half of the rations supplied less iodine than the minimum requirement. Many of the rations had low Zn and Cu supply, and 25 % of the rations supplied only 70 % of RA for vitamin A or less. A total of 60 % of the rations had one or more of the above-mentioned imbalance. The remaining 40 % of rations either had minor problems like Ca excess from bones or they were balanced.
Should informed consent be based on rational beliefs?
Savulescu, J; Momeyer, R W
1997-01-01
Our aim is to expand the regulative ideal governing consent. We argue that consent should not only be informed but also based on rational beliefs. We argue that holding true beliefs promotes autonomy. Information is important insofar as it helps a person to hold the relevant true beliefs. But in order to hold the relevant true beliefs, competent people must also think rationally. Insofar as information is important, rational deliberation is important. Just as physicians should aim to provide relevant information regarding the medical procedures prior to patients consenting to have those procedures, they should also assist patients to think more rationally. We distinguish between rational choice/action and rational belief. While autonomous choice need not necessarily be rational, it should be based on rational belief. The implication for the doctrine of informed consent and the practice of medicine is that, if physicians are to respect patient autonomy and help patients to choose and act more rationally, not only must they provide information, but they should care more about the theoretical rationality of their patients. They should not abandon their patients to irrationality. They should help their patients to deliberate more effectively and to care more about thinking rationally. We illustrate these arguments in the context of Jehovah's Witnesses refusing life-saving blood transfusions. Insofar as Jehovah's Witnesses should be informed of the consequences of their actions, they should also deliberate rationally about these consequences. PMID:9358347
Should informed consent be based on rational beliefs?
Savulescu, J; Momeyer, R W
1997-10-01
Our aim is to expand the regulative ideal governing consent. We argue that consent should not only be informed but also based on rational beliefs. We argue that holding true beliefs promotes autonomy. Information is important insofar as it helps a person to hold the relevant true beliefs. But in order to hold the relevant true beliefs, competent people must also think rationally. Insofar as information is important, rational deliberation is important. Just as physicians should aim to provide relevant information regarding the medical procedures prior to patients consenting to have those procedures, they should also assist patients to think more rationally. We distinguish between rational choice/action and rational belief. While autonomous choice need not necessarily be rational, it should be based on rational belief. The implication for the doctrine of informed consent and the practice of medicine is that, if physicians are to respect patient autonomy and help patients to choose and act more rationally, not only must they provide information, but they should care more about the theoretical rationality of their patients. They should not abandon their patients to irrationality. They should help their patients to deliberate more effectively and to care more about thinking rationally. We illustrate these arguments in the context of Jehovah's Witnesses refusing life-saving blood transfusions. Insofar as Jehovah's Witnesses should be informed of the consequences of their actions, they should also deliberate rationally about these consequences.
The Construction of Moral Rationality.
ERIC Educational Resources Information Center
Moshman, D.
1995-01-01
Offers a theoretical account of moral rationality within a rational constructivist paradigm examining the nature and relationship of rationality and reasoning. Suggests progressive changes through developmental levels of moral rationality. Proposes a developmental moral epistemology that accommodates moral pluralism to a greater degree than does…
Research on Bounded Rationality of Fuzzy Choice Functions
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function. PMID:24782677
Research on bounded rationality of fuzzy choice functions.
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.
Li, Jinrang; Chen, Xi; Sun, Jianjun
2014-09-01
The grading system of the severity of obstructive sleep apnea hypopnea syndrome (OSAHS) used presently showed that the severe OSAHS had an extensive range of apnea hypopnea index (AHI) (≥ 30, even over 100). So this grading system is not rational. From Jan 1999 to June 2011, there were 2,618 patients complaining of snoring took the polysomnography. The patients were divided into 11 groups according to their AHI. Frequencies of OSAHS with hypertension in each group were tested using crosstabs. The incidence of hypertension was increased as the increasing of AHI. Crosstab analysis showed that there were four cutoff points of AHI (5, 30, 50, 100). There was a significant difference in the incidence of hypertension between the groups of AHI more than the cutoff point and AHI less than the cutoff point. So from the view of hypertension in each group, we recommend that the AHI <5 should be considered as normal or simple snorer, AHI = 5-30 as mild degree of OSAHS, AHI = 30-50 as moderate degree of OSAHS, AHI = 50-100 as severe degree of OSAHS, and AHI ≥ 100 as profound degree of OSAHS.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
Modelling grain growth in the framework of Rational Extended Thermodynamics
NASA Astrophysics Data System (ADS)
Kertsch, Lukas; Helm, Dirk
2016-05-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.
Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Long, Martin; Stahl, Mark
1987-01-01
Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.
Design and application of a CA-BDI model to determine farmers' land-use behavior.
Liang, Xiaoying; Chen, Hai; Wang, Yanni; Song, Shixiong
2016-01-01
The belief-desire-intention (BDI) model has been widely used to construct reasoning systems for complex tasks in dynamic environments. We have designed a capabilities and abilities (CA)-BDI farmer decision-making model, which is an extension of the BDI architecture and includes internal representations for farmer household Capabilities and Abilities. This model is used to explore farmer learning mechanisms and to simulate the bounded rational decisions made by farmer households. Our case study focuses on the Gaoqu Commune of Mizhi County, Shaanxi Province, China, where scallion is one of the main cash crops. After comparing the differences between actual land-use changes from 2007 to 2009 and the simulation results, we analyze the validity of the model and discuss the potential and limitations of the farmer land-use decision-making model under three scenarios. Based on the design and implementation of the model, the following conclusions can be drawn: (1) the CA-BDI framework is an appropriate model for exploring learning mechanisms and simulating bounded rational decisions; and (2) local governments should encourage scallion planting by assisting scallion farmer cooperatives and farmers to understand the market risk, standardize the rules of their cooperation, and supervise the contracts made between scallion cooperatives and farmers.
Self-Reported Rationing Behavior Among US Physicians: A National Survey.
Sheeler, Robert D; Mundell, Tim; Hurst, Samia A; Goold, Susan Dorr; Thorsteinsdottir, Bjorg; Tilburt, Jon C; Danis, Marion
2016-12-01
Rationing is a controversial topic among US physicians. Understanding their attitudes and behaviors around rationing may be essential to a more open and sensible professional discourse on this important but controversial topic. To describe rationing behavior and associated factors among US physicians. Survey mailed to US physicians in 2012 to evaluate self-reported rationing behavior and variables related to this behavior. US physicians across a full spectrum of practice settings. A total of 2541 respondents, representing 65.6 % of the original mailing list of 3872 US addresses. The study was a cross-sectional analysis of physician attitudes and self-reported behaviors, with neutral language representations of the behaviors as well as an embedded experiment to test the influence of the word "ration" on perceived responsibility. Overall percentage of respondents reporting rationing behavior in various contexts and assessment of attitudes toward rationing. In total, 1348 respondents (53.1 %) reported having personally refrained within the past 6 months from using specific clinical services that would have provided the best patient care, because of health system cost. Prescription drugs (n = 1073 [48.3 %]) and magnetic resonance imaging (n = 922 [44.5 %]) were most frequently rationed. Surgical and procedural specialists were less likely to report rationing behavior (adjusted odds ratio [OR] [95 % CI], 0.8 [0.9-0.9] and 0.5 [0.4-0.6], respectively) compared to primary care. Compared with small or solo practices, those in medical school settings reported less rationing (adjusted OR [95 % CI], 0.4 [0.2-0.7]). Physicians who self-identified as very or somewhat liberal were significantly less likely to report rationing (adjusted OR [95 % CI], 0.7 [0.6-0.9]) than those self-reporting being very or somewhat conservative. A more positive opinion about rationing tended to align with greater odds of rationing. More than one-half of respondents engaged in behavior consistent with rationing. Practicing physicians in specific subgroups were more likely to report rationing behavior.
Using Rational-Emotive Therapy to Prevent Classroom Problems.
ERIC Educational Resources Information Center
Webber, Jo; Coleman, Maggie
1988-01-01
Teachers are encouraged to utilize rational-emotive therapy to prevent and deal with classroom behavior problems. Rational-emotive therapy is defined, the ABC model of rational thinking briefly explained, types of irrational thinking identified, and suggestions for becoming a rational thinker are offered. Classroom examples are given. (DB)
The Rationality of Alcoholics Anonymous and the Spirituality of Rational Emotive Behavior Therapy.
ERIC Educational Resources Information Center
Velten, Emmett
1996-01-01
Argues that Alcoholics Anonymous (AA) and Rational Emotive Behavior Therapy (REBT) share important rational objectives and numerous cognitive-behavioral methods. Both emphasize a philosophical shift as a principal ingredient for change. Provides definitions of rationality and spirituality and explains how REBT and smart recovery are spiritual…
The Ethics and Reality of Rationing in Medicine
Scheunemann, Leslie P.
2011-01-01
Rationing is the allocation of scarce resources, which in health care necessarily entails withholding potentially beneficial treatments from some individuals. Rationing is unavoidable because need is limitless and resources are not. How rationing occurs is important because it not only affects individual lives but also expresses society’s most important values. This article discusses the following topics: (1) the inevitability of rationing of social goods, including medical care; (2) types of rationing; (3) ethical principles and procedures for fair allocation; and (4) whether rationing ICU care to those near the end of life would result in substantial cost savings. PMID:22147821
Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, Luigi; Patella, Agostino; Pica, Claudio
2010-05-01
We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. Formore » the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.« less
Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine.
Zhou, Yang; Han, Xiaoxia; Jing, Xiangxiang; Chen, Yu
2017-09-01
Ultrasound (US)-based biomedicine has been extensively explored for its applications in both diagnostic imaging and disease therapy. The fast development of theranostic nanomedicine significantly promotes the development of US-based biomedicine. This progress report summarizes and discusses the recent developments of rational design and fabrication of silica-based micro/nanoparticles for versatile US-based biomedical applications. The synthetic strategies and surface-engineering approaches of silica-based micro/nanoparticles are initially discussed, followed by detailed introduction on their US-based theranostic applications. They have been extensively explored in contrast-enhanced US imaging, US-based multi-modality imaging, synergistic high-intensity focused US (HIFU) ablation, sonosensitizer-enhanced sonodynamic therapy (SDT), as well as US-triggered chemotherapy. Their biological effects and biosafety have been briefly discussed to guarantee further clinical translation. Based on the high biocompatibility, versatile composition/structure and high performance in US-based theranostic biomedicine, these silica-based theranostic agents are expected to pave a new way for achieving efficient US-based theranostics of disease by taking the specific advantages of material science, nanotechnology and US-based biomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How clinical rationing works in practice: A case study of morbid obesity surgery.
Owen-Smith, Amanda; Donovan, Jenny; Coast, Joanna
2015-12-01
Difficulties in setting healthcare priorities are encountered throughout the world. There is no agreement on the most appropriate principles or methods for healthcare rationing although there is some consensus that it should be undertaken as systematically and accountably as possible. Although some steps towards achieving accountability have been made at the macro and meso level, at the consultation level rationing remains implicit and poorly understood. Using morbid obesity surgery as a case study, we observed a series of UK National Health Service consultations where rationing was ongoing and conducted in-depth interviews with doctors and patients (2011-2014). A longitudinal approach was taken to research and in total 22 consultations were observed and 78 interviews were undertaken. Sampling was undertaken purposively and theoretically and analyses were undertaken thematically. Clinicians needed to prioritise 55 patients from 450 eligible referrals, but disagreed over the extent to which clinical and financial factors were the driving force behind decision-making. The most prominent rationing technique observed in consultations was rationing by selection, but examples of rationing by delay, by deterrence, and by deflection were also commonplace. Although all clinicians sought to avoid rationing by denial, only six of the 22 patients recruited to the research were known to have been treated at the end of the three-year period. Most clinicians sought to manage rationing implicitly, and only one explained the link between decision-making criteria and financial constraints on care availability. Although existing frameworks for categorising NHS rationing techniques were useful in identifying implicit strategies, in practice these techniques over-lapped substantially and we have proposed a simpler framework for analysing NHS rationing decisions at the consultation level, which includes just three categories - rationing by exclusion, rationing by deterrence, and rationing by delay. Copyright © 2015. Published by Elsevier Ltd.
Prevalence and Determinants of Physician Bedside Rationing
Hurst, Samia A; Slowther, Anne-Marie; Forde, Reidun; Pegoraro, Renzo; Reiter-Theil, Stella; Perrier, Arnaud; Garrett-Mayer, Elizabeth; Danis, Marion
2006-01-01
BACKGROUND Bedside rationing by physicians is controversial. The debate, however, is clouded by lack of information regarding the extent and character of bedside rationing. DESIGN, SETTING, AND PARTICIPANTS We developed a survey instrument to examine the frequency, criteria, and strategies used for bedside rationing. Content validity was assessed through expert assessment and scales were tested for internal consistency. The questionnaire was translated and administered to General Internists in Norway, Switzerland, Italy, and the United Kingdom. Logistic regression was used to identify the variables associated with reported rationing. RESULTS Survey respondents (N =656, response rate 43%) ranged in age from 28 to 82, and averaged 25 years in practice. Most respondents (82.3%) showed some degree of agreement with rationing, and 56.3% reported that they did ration interventions. The most frequently mentioned criteria for rationing were a small expected benefit (82.3%), low chances of success (79.8%), an intervention intended to prolong life when quality of life is low (70.6%), and a patient over 85 years of age (70%). The frequency of rationing by clinicians was positively correlated with perceived scarcity of resources (odds ratio [OR]=1.11, 95% confidence interval [CI] 1.06 to 1.16), perceived pressure to ration (OR=2.14, 95% CI 1.52 to 3.01), and agreement with rationing (OR=1.13, 95% CI 1.05 to 1.23). CONCLUSION Bedside rationing is prevalent in all surveyed European countries and varies with physician attitudes and resource availability. The prevalence of physician bedside rationing, which presents physicians with difficult moral dilemmas, highlights the importance of discussions regarding how to ration care in the most ethically justifiable manner. PMID:16836629
Evaluation of the Rational Environment
1988-07-01
Computer, Inc. Rational , R1000, and Rational Environment are trademarks of Rational . Smalltalk-8C is a trademark of Xerox. Sun is a trademark of Sun...Introduction 1 1.1. Background 1 1.2. The Rational Environment as Evaluated 2 1.3. Scope of Evaluation 3 1.4. Road Map for the Reader 4 2...CMVC Implementation 26 2.3.2. Workorder Management .--,---...28 3. Capabilities of the Rational Environment i , 31 3.1.1.1..nd Namin 3.1
Rational-Emotive Therapy and the Reduction of Interpersonal Anxiety in Junior High School Students.
ERIC Educational Resources Information Center
Warren, Ricks; And Others
1984-01-01
Evaluated the effectiveness of rational-emotive therapy and rational-emotive imagery in 59 junior high school students assigned to rational-emotive therapy without imagery (RET), rational-emotive therapy with imagery (REI), relationship-oriented counseling (ROC), and control (WLC) groups. The RET and REI groups were rated on sociometric measures…
On computing closed forms for summations. [polynomials and rational functions
NASA Technical Reports Server (NTRS)
Moenck, R.
1977-01-01
The problem of finding closed forms for a summation involving polynomials and rational functions is considered. A method closely related to Hermite's method for integration of rational functions derived. The method expresses the sum of a rational function as a rational function part and a transcendental part involving derivatives of the gamma function.
If You Want to Feel Better--Try Thinking Better.
ERIC Educational Resources Information Center
Rogers, George W., Jr.
This article briefly describes Rational Emotive or Rational Behavior Therapy. Some historical data is given regarding its developer, Dr. Albert Ellis, and his beliefs. In addition the following rational concepts are examined: (1) the anatomy of an emotion; (2) the characteristics of rational thoughts; and (3) the rational self-analysis of…
Economic rationality and health and lifestyle choices for people with diabetes.
Baker, Rachel Mairi
2006-11-01
Economic rationality is traditionally represented by goal-oriented, maximising behaviour, or 'instrumental rationality'. Such a consequentialist, instrumental model of choice is often implicit in a biomedical approach to health promotion and education. The research reported here assesses the relevance of a broader conceptual framework of rationality, which includes 'procedural' and 'expressive' rationality as complements to an instrumental model of rationality, in a health context. Q methodology was used to derive 'factors' underlying health and lifestyle choices, based on a factor analysis of the results of a card sorting procedure undertaken by 27 adult respondents with type 2 diabetes in Newcastle upon Tyne, UK. These factors were then compared with the rationality framework and the appropriateness of an extended model of economic rationality as a means of better understanding health and lifestyle choices was assessed. Taking a wider rational choice perspective, choices which are rendered irrational within a narrow-biomedical or strictly instrumental model, can be understood in terms of a coherent rationale, grounded in the accounts of respondents. The implications of these findings are discussed in terms of rational choice theory and diabetes management and research.