Sample records for solve classification problems

  1. Recursive heuristic classification

    NASA Technical Reports Server (NTRS)

    Wilkins, David C.

    1994-01-01

    The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.

  2. Building and Solving Odd-One-Out Classification Problems: A Systematic Approach

    ERIC Educational Resources Information Center

    Ruiz, Philippe E.

    2011-01-01

    Classification problems ("find the odd-one-out") are frequently used as tests of inductive reasoning to evaluate human or animal intelligence. This paper introduces a systematic method for building the set of all possible classification problems, followed by a simple algorithm for solving the problems of the R-ASCM, a psychometric test derived…

  3. A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving

    PubMed Central

    Crowley, Rebecca S.; Medvedeva, Olga

    2003-01-01

    We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method description Language (UPML) architecture, supporting component modularity and reuse. Based on the domain ontology, domain task ontology and case data, the abstract problem-solving methods of the expert model create a dynamic solution graph. Student interaction with the solution graph is filtered through an instructional layer, which is created by a second set of abstract problem-solving methods and pedagogic ontologies, in response to the current state of the student model. We outline the advantages and limitations of this general approach, and describe it’s implementation in SlideTutor–a developing Intelligent Tutoring System in Dermatopathology. PMID:14728159

  4. Non-Routine Problems in Primary Mathematics Workbooks from Romania

    ERIC Educational Resources Information Center

    Marchis, Iuliana

    2012-01-01

    The aim of this paper is to present a research on Hungarian 3th grade primary school textbooks from Romania. These textbooks are analyzed using two classifications. The first classification is based on how much creativity and problem solving skills pupils need to solve a given task. In this classification problems are gouped in three categories:…

  5. Identification the Relation between Active Basketball Classification Referees' Empathetic Tendencies and Their Problem Solving Abilities

    ERIC Educational Resources Information Center

    Karaçam, Aydin; Pulur, Atilla

    2016-01-01

    This study aims to determine the relation between basketball classification referees' problem solving ability and empathetic tendencies. Research model of the study is relational screening model. Sampling of the study is constituted by 124 male and 18 female basketball classification referees who made active refereeing within Turkish Basketball…

  6. About decomposition approach for solving the classification problem

    NASA Astrophysics Data System (ADS)

    Andrianova, A. A.

    2016-11-01

    This article describes the features of the application of an algorithm with using of decomposition methods for solving the binary classification problem of constructing a linear classifier based on Support Vector Machine method. Application of decomposition reduces the volume of calculations, in particular, due to the emerging possibilities to build parallel versions of the algorithm, which is a very important advantage for the solution of problems with big data. The analysis of the results of computational experiments conducted using the decomposition approach. The experiment use known data set for binary classification problem.

  7. Knowledge acquisition from natural language for expert systems based on classification problem-solving methods

    NASA Technical Reports Server (NTRS)

    Gomez, Fernando

    1989-01-01

    It is shown how certain kinds of domain independent expert systems based on classification problem-solving methods can be constructed directly from natural language descriptions by a human expert. The expert knowledge is not translated into production rules. Rather, it is mapped into conceptual structures which are integrated into long-term memory (LTM). The resulting system is one in which problem-solving, retrieval and memory organization are integrated processes. In other words, the same algorithm and knowledge representation structures are shared by these processes. As a result of this, the system can answer questions, solve problems or reorganize LTM.

  8. Mexican Hat Wavelet Kernel ELM for Multiclass Classification.

    PubMed

    Wang, Jie; Song, Yi-Fan; Ma, Tian-Lei

    2017-01-01

    Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems. To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the above problem, a new classifier, Mexican Hat wavelet KELM classifier, is proposed in this paper. The proposed classifier successfully improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the performance of the proposed classifier is significantly superior to the compared classifiers.

  9. Contributions to "k"-Means Clustering and Regression via Classification Algorithms

    ERIC Educational Resources Information Center

    Salman, Raied

    2012-01-01

    The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…

  10. New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems

    ERIC Educational Resources Information Center

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-01-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…

  11. An unbalanced spectra classification method based on entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-bao; Zhao, Wen-juan

    2017-05-01

    How to solve the problem of distinguishing the minority spectra from the majority of the spectra is quite important in astronomy. In view of this, an unbalanced spectra classification method based on entropy (USCM) is proposed in this paper to deal with the unbalanced spectra classification problem. USCM greatly improves the performances of the traditional classifiers on distinguishing the minority spectra as it takes the data distribution into consideration in the process of classification. However, its time complexity is exponential with the training size, and therefore, it can only deal with the problem of small- and medium-scale classification. How to solve the large-scale classification problem is quite important to USCM. It can be easily obtained by mathematical computation that the dual form of USCM is equivalent to the minimum enclosing ball (MEB), and core vector machine (CVM) is introduced, USCM based on CVM is proposed to deal with the large-scale classification problem. Several comparative experiments on the 4 subclasses of K-type spectra, 3 subclasses of F-type spectra and 3 subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS) verify USCM and USCM based on CVM perform better than kNN (k nearest neighbor) and SVM (support vector machine) in dealing with the problem of rare spectra mining respectively on the small- and medium-scale datasets and the large-scale datasets.

  12. KIPSE1: A Knowledge-based Interactive Problem Solving Environment for data estimation and pattern classification

    NASA Technical Reports Server (NTRS)

    Han, Chia Yung; Wan, Liqun; Wee, William G.

    1990-01-01

    A knowledge-based interactive problem solving environment called KIPSE1 is presented. The KIPSE1 is a system built on a commercial expert system shell, the KEE system. This environment gives user capability to carry out exploratory data analysis and pattern classification tasks. A good solution often consists of a sequence of steps with a set of methods used at each step. In KIPSE1, solution is represented in the form of a decision tree and each node of the solution tree represents a partial solution to the problem. Many methodologies are provided at each node to the user such that the user can interactively select the method and data sets to test and subsequently examine the results. Otherwise, users are allowed to make decisions at various stages of problem solving to subdivide the problem into smaller subproblems such that a large problem can be handled and a better solution can be found.

  13. Learning to Predict Combinatorial Structures

    NASA Astrophysics Data System (ADS)

    Vembu, Shankar

    2009-12-01

    The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.

  14. Classification Objects, Ideal Observers & Generative Models

    ERIC Educational Resources Information Center

    Olman, Cheryl; Kersten, Daniel

    2004-01-01

    A successful vision system must solve the problem of deriving geometrical information about three-dimensional objects from two-dimensional photometric input. The human visual system solves this problem with remarkable efficiency, and one challenge in vision research is to understand how neural representations of objects are formed and what visual…

  15. Development of Verbal Thinking and Problem-Solving among TshiVenda-Speaking Primary School Children

    ERIC Educational Resources Information Center

    Muthivhi, Azwihangwisi E.

    2013-01-01

    The paper presents findings of primary school children's performance on classification and generalisation tasks to demonstrate the fundamental connection between their verbal thinking processes and problem-solving, on the one hand, and the practical activities of their society and culture, on the other. The results reveal that, although children…

  16. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  17. Data Mining Algorithms for Classification of Complex Biomedical Data

    ERIC Educational Resources Information Center

    Lan, Liang

    2012-01-01

    In my dissertation, I will present my research which contributes to solve the following three open problems from biomedical informatics: (1) Multi-task approaches for microarray classification; (2) Multi-label classification of gene and protein prediction from multi-source biological data; (3) Spatial scan for movement data. In microarray…

  18. Distributed Problem Solving: Adaptive Networks with a Computer Intermediary Resource. Intelligent Executive Computer Communication

    DTIC Science & Technology

    1991-06-01

    Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent

  19. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  20. Inverse problems in the design, modeling and testing of engineering systems

    NASA Technical Reports Server (NTRS)

    Alifanov, Oleg M.

    1991-01-01

    Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.

  1. Categorization and analysis of explanatory writing in mathematics

    NASA Astrophysics Data System (ADS)

    Craig, Tracy S.

    2011-10-01

    The aim of this article is to present a scheme for coding and categorizing students' written explanations of mathematical problem-solving activities. The scheme was used successfully within a study project carried out to determine whether student problem-solving behaviour could be positively affected by writing explanatory strategies to mathematical problem-solving processes. The rationale for the study was the recognized importance of mathematical problem-solving, the widely acknowledged challenge of teaching problem-solving skills directly and the evidence in the literature that writing in mathematics provides a tool for learning. The study was carried out in a first-year mathematics course at the University of Cape Town, South Africa. Students' written submissions were categorized and analysed through use of an adaptation of a journal entry classification scheme. The scheme successfully observed positive changes over the experimental period in students' level of engagement with the mathematical material and with their stance towards knowledge.

  2. Bio-Inspired Human-Level Machine Learning

    DTIC Science & Technology

    2015-10-25

    extensions to high-level cognitive functions such as anagram solving problem. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...extensions to high-level cognitive functions such as anagram solving problem. We expect that the bio-inspired human-level machine learning combined with...numbers of 1011 neurons and 1014 synaptic connections in the human brain. In previous work, we experimentally demonstrated the feasibility of cognitive

  3. A new supervised learning algorithm for spiking neurons.

    PubMed

    Xu, Yan; Zeng, Xiaoqin; Zhong, Shuiming

    2013-06-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by the precise firing times of spikes. If only running time is considered, the supervised learning for a spiking neuron is equivalent to distinguishing the times of desired output spikes and the other time during the running process of the neuron through adjusting synaptic weights, which can be regarded as a classification problem. Based on this idea, this letter proposes a new supervised learning method for spiking neurons with temporal encoding; it first transforms the supervised learning into a classification problem and then solves the problem by using the perceptron learning rule. The experiment results show that the proposed method has higher learning accuracy and efficiency over the existing learning methods, so it is more powerful for solving complex and real-time problems.

  4. Quantum Computing: Solving Complex Problems

    ScienceCinema

    DiVincenzo, David

    2018-05-22

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  5. Heuristic Classification. Technical Report Number 12.

    ERIC Educational Resources Information Center

    Clancey, William J.

    A broad range of well-structured problems--embracing forms of diagnosis, catalog selection, and skeletal planning--are solved in expert computer systems by the method of heuristic classification. These programs have a characteristic inference structure that systematically relates data to a pre-enumerated set of solutions by abstraction, heuristic…

  6. Polarimetric SAR image classification based on discriminative dictionary learning model

    NASA Astrophysics Data System (ADS)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  7. A study of fuzzy logic ensemble system performance on face recognition problem

    NASA Astrophysics Data System (ADS)

    Polyakova, A.; Lipinskiy, L.

    2017-02-01

    Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.

  8. A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics

    NASA Astrophysics Data System (ADS)

    Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.

    2003-10-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  9. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

  10. Triz in Mems

    NASA Astrophysics Data System (ADS)

    Apte, Prakash R.

    1999-11-01

    TRIZ is a Russian abbreviation. Genrich Altshuller developed it fifty years ago in the former Soviet Union. He examined thousands of inventions made in different technological systems and formulated a 'Theory of Inventive problem solving' (TRIZ). Altshuller's research of over fifty years on Creativity and Inventive Problem Solving has led to many different classifications, methods and tools of invention. Some of these are, Contradictions table, Level of inventions, Patterns in evolution of technological systems, ARIZ-Algorithm for Inventive Problem Solving, Diagnostic problem solving and Anticipatory Failure Determination. MEMS research consists of conceptual design, process technology and including of various Mechanical, ELectrical, Thermal, Magnetic, Acoustic and other effects. MEMS system s are now rapidly growing in complexity. Each system will thus follow one or more 'patterns of evolution' as given by Altshuller. This paper attempts to indicate how various TRIZ tools can be used in MEMS research activities.

  11. Conceptual Versus Algorithmic Problem-solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    NASA Astrophysics Data System (ADS)

    Salta, Katerina; Tzougraki, Chryssa

    2011-08-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire concerning basic chemical concepts. Results of statistical factor and correlation analysis confirmed the classification of the problems used in three types: "algorithmic-type", "particulate-type", and "conceptual-type". All the students had a far better performance in "particulate-type" problems than in the others. Although students' ability in solving "algorithmic-type" problem increases as their school experience in chemistry progresses, their ability in solving "conceptual-type" problems decreases. Students' achievement in chemistry was measured by a Chemical Concepts Test (CCT) containing 57 questions of various forms. High-achievement students scored higher both on "algorithmic-type" and "particulate-type" problems than low achievers with the greatest difference observed in solving "algorithmic-type" problems. It is concluded that competence in "particulate-type" and "algorithmic-type" problem solving may be independent of competence in solving "conceptual-type" ones. Furthermore, it was found that students' misconceptions concerning chemical reactions and equivalence between mass and energy are impediments to their problem solving abilities. Finally, based on the findings, few suggestions concerning teaching practices are discussed.

  12. Task-driven dictionary learning.

    PubMed

    Mairal, Julien; Bach, Francis; Ponce, Jean

    2012-04-01

    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.

  13. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  14. Image aesthetic quality evaluation using convolution neural network embedded learning

    NASA Astrophysics Data System (ADS)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  15. Global Optimization Ensemble Model for Classification Methods

    PubMed Central

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  16. Application of Decision Making and Team Training Research to Operational Training. A Translative Technique.

    DTIC Science & Technology

    DECISION MAKING , * GROUP DYNAMICS, NAVAL TRAINING, TRANSFER OF TRAINING, SCIENTIFIC RESEARCH, CLASSIFICATION, PROBLEM SOLVING, MATHEMATICAL MODELS, SUBMARINES, SIMULATORS, PERFORMANCE(HUMAN), UNDERSEA WARFARE.

  17. Mapping online transportation service quality and multiclass classification problem solving priorities

    NASA Astrophysics Data System (ADS)

    Alamsyah, Andry; Rachmadiansyah, Imam

    2018-03-01

    Online transportation service is known for its accessibility, transparency, and tariff affordability. These points make online transportation have advantages over the existing conventional transportation service. Online transportation service is an example of disruptive technology that change the relationship between customers and companies. In Indonesia, there are high competition among online transportation provider, hence the companies must maintain and monitor their service level. To understand their position, we apply both sentiment analysis and multiclass classification to understand customer opinions. From negative sentiments, we can identify problems and establish problem-solving priorities. As a case study, we use the most popular online transportation provider in Indonesia: Gojek and Grab. Since many customers are actively give compliment and complain about company’s service level on Twitter, therefore we collect 61,721 tweets in Bahasa during one month observations. We apply Naive Bayes and Support Vector Machine methods to see which model perform best for our data. The result reveal Gojek has better service quality with 19.76% positive and 80.23% negative sentiments than Grab with 9.2% positive and 90.8% negative. The Gojek highest problem-solving priority is regarding application problems, while Grab is about unusable promos. The overall result shows general problems of both case study are related to accessibility dimension which indicate lack of capability to provide good digital access to the end users.

  18. How did you guess? Or, what do multiple-choice questions measure?

    PubMed

    Cox, K R

    1976-06-05

    Multiple-choice questions classified as requiring problem-solving skills have been interpreted as measuring problem-solving skills within students, with the implicit hypothesis that questions needing an increasingly complex intellectual process should present increasing difficulty to the student. This hypothesis was tested in a 150-question paper taken by 721 students in seven Australian medical schools. No correlation was observed between difficulty and assigned process. Consequently, the question-answering process was explored with a group of final-year students. Anecdotal recall by students gave heavy weight to knowledge rather than problem solving in answering these questions. Assignment of the 150 questions to the classification by three teachers and six students showed their congruence to be a little above random probability.

  19. Impaired memory for material related to a problem solved prior to encoding: suppression at learning or interference at recall?

    PubMed

    Kowalczyk, Marek

    2017-07-01

    Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.

  20. Applications of Support Vector Machines In Chemo And Bioinformatics

    NASA Astrophysics Data System (ADS)

    Jayaraman, V. K.; Sundararajan, V.

    2010-10-01

    Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.

  1. An evaluation of scanpath-comparison and machine-learning classification algorithms used to study the dynamics of analogy making.

    PubMed

    French, Robert M; Glady, Yannick; Thibaut, Jean-Pierre

    2017-08-01

    In recent years, eyetracking has begun to be used to study the dynamics of analogy making. Numerous scanpath-comparison algorithms and machine-learning techniques are available that can be applied to the raw eyetracking data. We show how scanpath-comparison algorithms, combined with multidimensional scaling and a classification algorithm, can be used to resolve an outstanding question in analogy making-namely, whether or not children's and adults' strategies in solving analogy problems are different. (They are.) We show which of these scanpath-comparison algorithms is best suited to the kinds of analogy problems that have formed the basis of much analogy-making research over the years. Furthermore, we use machine-learning classification algorithms to examine the item-to-item saccade vectors making up these scanpaths. We show which of these algorithms best predicts, from very early on in a trial, on the basis of the frequency of various item-to-item saccades, whether a child or an adult is doing the problem. This type of analysis can also be used to predict, on the basis of the item-to-item saccade dynamics in the first third of a trial, whether or not a problem will be solved correctly.

  2. Superiority of artificial neural networks for a genetic classification procedure.

    PubMed

    Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D

    2015-08-19

    The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions.

  3. Application of machine learning on brain cancer multiclass classification

    NASA Astrophysics Data System (ADS)

    Panca, V.; Rustam, Z.

    2017-07-01

    Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.

  4. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    PubMed Central

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  5. Hierarchical structure for audio-video based semantic classification of sports video sequences

    NASA Astrophysics Data System (ADS)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  6. Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm

    NASA Astrophysics Data System (ADS)

    Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji

    2015-12-01

    Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.

  7. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    NASA Astrophysics Data System (ADS)

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  8. Neural architecture design based on extreme learning machine.

    PubMed

    Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis

    2013-12-01

    Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Micro-bias and macro-performance.

    PubMed

    Seaver, S M D; Moreira, A A; Sales-Pardo, M; Malmgren, R D; Diermeier, D; Amaral, L A N

    2009-02-01

    We use agent-based modeling to investigate the effect of conservatism and partisanship on the efficiency with which large populations solve the density classification task - a paradigmatic problem for information aggregation and consensus building. We find that conservative agents enhance the populations' ability to efficiently solve the density classification task despite large levels of noise in the system. In contrast, we find that the presence of even a small fraction of partisans holding the minority position will result in deadlock or a consensus on an incorrect answer. Our results provide a possible explanation for the emergence of conservatism and suggest that even low levels of partisanship can lead to significant social costs.

  10. A Classification Metric for Computer Procedures in a Structured Educational Environment.

    ERIC Educational Resources Information Center

    Linton, M. J.; And Others

    Use of a computer programming language in problem-solving activities provides an opportunity to examine how young children use a restricted set of language primitives. The generation, and execution of computer instructions was used as a verification stage in the problem-solution process. The metric is intended to provide a descriptive…

  11. Combining feature extraction and classification for fNIRS BCIs by regularized least squares optimization.

    PubMed

    Heger, Dominic; Herff, Christian; Schultz, Tanja

    2014-01-01

    In this paper, we show that multiple operations of the typical pattern recognition chain of an fNIRS-based BCI, including feature extraction and classification, can be unified by solving a convex optimization problem. We formulate a regularized least squares problem that learns a single affine transformation of raw HbO(2) and HbR signals. We show that this transformation can achieve competitive results in an fNIRS BCI classification task, as it significantly improves recognition of different levels of workload over previously published results on a publicly available n-back data set. Furthermore, we visualize the learned models and analyze their spatio-temporal characteristics.

  12. Sparsity and Nullity: Paradigm for Analysis Dictionary Learning

    DTIC Science & Technology

    2016-08-09

    16. SECURITY CLASSIFICATION OF: Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and...we investigate the relation between the SNS problem and the analysis dictionary learning problem, and show that the SNS problem plays a central role...and may be utilized to solve dictionary learning problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12

  13. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Geng, Xianguo

    2017-12-01

    The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.

  14. Genetic programming and serial processing for time series classification.

    PubMed

    Alfaro-Cid, Eva; Sharman, Ken; Esparcia-Alcázar, Anna I

    2014-01-01

    This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the best of our knowledge, there are not examples in the genetic programming literature of approaches where the time series data are processed serially and the last output is considered as the classification result. The serial processing approach presented here fills a gap in the existing literature. This approach was tested in three different problems. Two of them are real world problems whose data were gathered for online or conference competitions. As there are published results of these two problems this gives us the chance to compare the performance of our approach against top performing methods. The serial processing of data in combination with genetic programming obtained competitive results in both competitions, showing its potential for solving time series classification problems. The main advantage of our serial processing approach is that it can easily handle very large datasets.

  15. Block clustering based on difference of convex functions (DC) programming and DC algorithms.

    PubMed

    Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai

    2013-10-01

    We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.

  16. The development of a culture of problem solving with secondary students through heuristic strategies

    NASA Astrophysics Data System (ADS)

    Eisenmann, Petr; Novotná, Jarmila; Přibyl, Jiří; Břehovský, Jiří

    2015-12-01

    The article reports the results of a longitudinal research study conducted in three mathematics classes in Czech schools with 62 pupils aged 12-18 years. The pupils were exposed to the use of selected heuristic strategies in mathematical problem solving for a period of 16 months. This was done through solving problems where the solution was the most efficient if heuristic strategies were used. The authors conducted a two-dimensional classification of the use of heuristic strategies based on the work of Pólya (2004) and Schoenfeld (1985). We developed a tool that allows for the description of a pupil's ability to solve problems. Named, the Culture of Problem Solving (CPS), this tool consists of four components: intelligence, text comprehension, creativity and the ability to use existing knowledge. The pupils' success rate in problem solving and the changes in some of the CPS factors pre- and post-experiment were monitored. The pupils appeared to considerably improve in the creativity component. In addition, the results indicate a positive change in the students' attitude to problem solving. As far as the teachers participating in the experiment are concerned, a significant change was in their teaching style to a more constructivist, inquiry-based approach, as well as their willingness to accept a student's non-standard approach to solving a problem. Another important outcome of the research was the identification of the heuristic strategies that can be taught via long-term guided solutions of suitable problems and those that cannot. Those that can be taught include systematic experimentation, guess-check-revise and introduction of an auxiliary element. Those that cannot be taught (or can only be taught with difficulty) include the strategies of specification and generalization and analogy.

  17. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Nonlinear programming for classification problems in machine learning

    NASA Astrophysics Data System (ADS)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  19. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Visuospatial anatomy comprehension: the role of spatial visualization ability and problem-solving strategies.

    PubMed

    Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D

    2014-01-01

    The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.

  1. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  2. Classification of weld defect based on information fusion technology for radiographic testing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less

  3. Classification of weld defect based on information fusion technology for radiographic testing system.

    PubMed

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.

  4. Distance Metric Learning via Iterated Support Vector Machines.

    PubMed

    Zuo, Wangmeng; Wang, Faqiang; Zhang, David; Lin, Liang; Huang, Yuchi; Meng, Deyu; Zhang, Lei

    2017-07-11

    Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while most existing methods are based on customized optimizers and become inefficient for large scale problems. In this paper, we formulate metric learning as a kernel classification problem with the positive semi-definite constraint, and solve it by iterated training of support vector machines (SVMs). The new formulation is easy to implement and efficient in training with the off-the-shelf SVM solvers. Two novel metric learning models, namely Positive-semidefinite Constrained Metric Learning (PCML) and Nonnegative-coefficient Constrained Metric Learning (NCML), are developed. Both PCML and NCML can guarantee the global optimality of their solutions. Experiments are conducted on general classification, face verification and person re-identification to evaluate our methods. Compared with the state-of-the-art approaches, our methods can achieve comparable classification accuracy and are efficient in training.

  5. Data Mining Technologies Inspired from Visual Principle

    NASA Astrophysics Data System (ADS)

    Xu, Zongben

    In this talk we review the recent work done by our group on data mining (DM) technologies deduced from simulating visual principle. Through viewing a DM problem as a cognition problems and treading a data set as an image with each light point located at a datum position, we developed a series of high efficient algorithms for clustering, classification and regression via mimicking visual principles. In pattern recognition, human eyes seem to possess a singular aptitude to group objects and find important structure in an efficient way. Thus, a DM algorithm simulating visual system may solve some basic problems in DM research. From this point of view, we proposed a new approach for data clustering by modeling the blurring effect of lateral retinal interconnections based on scale space theory. In this approach, as the data image blurs, smaller light blobs merge into large ones until the whole image becomes one light blob at a low enough level of resolution. By identifying each blob with a cluster, the blurring process then generates a family of clustering along the hierarchy. The proposed approach provides unique solutions to many long standing problems, such as the cluster validity and the sensitivity to initialization problems, in clustering. We extended such an approach to classification and regression problems, through combatively employing the Weber's law in physiology and the cell response classification facts. The resultant classification and regression algorithms are proven to be very efficient and solve the problems of model selection and applicability to huge size of data set in DM technologies. We finally applied the similar idea to the difficult parameter setting problem in support vector machine (SVM). Viewing the parameter setting problem as a recognition problem of choosing a visual scale at which the global and local structures of a data set can be preserved, and the difference between the two structures be maximized in the feature space, we derived a direct parameter setting formula for the Gaussian SVM. The simulations and applications show that the suggested formula significantly outperforms the known model selection methods in terms of efficiency and precision.

  6. Convex formulation of multiple instance learning from positive and unlabeled bags.

    PubMed

    Bao, Han; Sakai, Tomoya; Sato, Issei; Sugiyama, Masashi

    2018-05-24

    Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization, and medical diagnosis. Most of the previous work for MIL assume that training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU classification (positive and unlabeled classification) can address this problem. In this paper, we propose a convex PU classification method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computation costs than an existing method for PU-MIL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dictionary learning-based CT detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong

    2016-10-01

    Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.

  8. Impervious surface mapping with Quickbird imagery

    PubMed Central

    Lu, Dengsheng; Hetrick, Scott; Moran, Emilio

    2010-01-01

    This research selects two study areas with different urban developments, sizes, and spatial patterns to explore the suitable methods for mapping impervious surface distribution using Quickbird imagery. The selected methods include per-pixel based supervised classification, segmentation-based classification, and a hybrid method. A comparative analysis of the results indicates that per-pixel based supervised classification produces a large number of “salt-and-pepper” pixels, and segmentation based methods can significantly reduce this problem. However, neither method can effectively solve the spectral confusion of impervious surfaces with water/wetland and bare soils and the impacts of shadows. In order to accurately map impervious surface distribution from Quickbird images, manual editing is necessary and may be the only way to extract impervious surfaces from the confused land covers and the shadow problem. This research indicates that the hybrid method consisting of thresholding techniques, unsupervised classification and limited manual editing provides the best performance. PMID:21643434

  9. SSMILes: Investigating Various Volcanic Eruptions and Volcano Heights.

    ERIC Educational Resources Information Center

    Wagner-Pine, Linda; Keith, Donna Graham

    1994-01-01

    Presents an integrated math/science activity that shows students the differences among the three types of volcanoes using observation, classification, graphing, sorting, problem solving, measurement, averages, pattern relationships, calculators, computers, and research skills. Includes reproducible student worksheet. Lists 13 teacher resources.…

  10. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies

    PubMed Central

    López, Julio

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections. PMID:29670667

  11. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies.

    PubMed

    Bosch, Paul; Herrera, Mauricio; López, Julio; Maldonado, Sebastián

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.

  12. A simple and fast heuristic for protein structure comparison.

    PubMed

    Pelta, David A; González, Juan R; Moreno Vega, Marcos

    2008-03-25

    Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results.

  13. Decision making and problem solving with computer assistance

    NASA Technical Reports Server (NTRS)

    Kraiss, F.

    1980-01-01

    In modern guidance and control systems, the human as manager, supervisor, decision maker, problem solver and trouble shooter, often has to cope with a marginal mental workload. To improve this situation, computers should be used to reduce the operator from mental stress. This should not solely be done by increased automation, but by a reasonable sharing of tasks in a human-computer team, where the computer supports the human intelligence. Recent developments in this area are summarized. It is shown that interactive support of operator by intelligent computer is feasible during information evaluation, decision making and problem solving. The applied artificial intelligence algorithms comprehend pattern recognition and classification, adaptation and machine learning as well as dynamic and heuristic programming. Elementary examples are presented to explain basic principles.

  14. The research on medical image classification algorithm based on PLSA-BOW model.

    PubMed

    Cao, C H; Cao, H L

    2016-04-29

    With the rapid development of modern medical imaging technology, medical image classification has become more important for medical diagnosis and treatment. To solve the existence of polysemous words and synonyms problem, this study combines the word bag model with PLSA (Probabilistic Latent Semantic Analysis) and proposes the PLSA-BOW (Probabilistic Latent Semantic Analysis-Bag of Words) model. In this paper we introduce the bag of words model in text field to image field, and build the model of visual bag of words model. The method enables the word bag model-based classification method to be further improved in accuracy. The experimental results show that the PLSA-BOW model for medical image classification can lead to a more accurate classification.

  15. Swarm intelligence metaheuristics for enhanced data analysis and optimization.

    PubMed

    Hanrahan, Grady

    2011-09-21

    The swarm intelligence (SI) computing paradigm has proven itself as a comprehensive means of solving complicated analytical chemistry problems by emulating biologically-inspired processes. As global optimum search metaheuristics, associated algorithms have been widely used in training neural networks, function optimization, prediction and classification, and in a variety of process-based analytical applications. The goal of this review is to provide readers with critical insight into the utility of swarm intelligence tools as methods for solving complex chemical problems. Consideration will be given to algorithm development, ease of implementation and model performance, detailing subsequent influences on a number of application areas in the analytical, bioanalytical and detection sciences.

  16. Applications of Decision Theory to Test-Based Decision Making. Project Psychometric Aspects of Item Banking No. 23. Research Report 87-9.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    The use of Bayesian decision theory to solve problems in test-based decision making is discussed. Four basic decision problems are distinguished: (1) selection; (2) mastery; (3) placement; and (4) classification, the situation where each treatment has its own criterion. Each type of decision can be identified as a specific configuration of one or…

  17. Estimation and classification by sigmoids based on mutual information

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1994-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.

  18. An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.

    PubMed

    Shabanzadeh, Parvaneh; Yusof, Rubiyah

    2015-01-01

    Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.

  19. Adjustment of localized alveolar ridge defects by soft tissue transplantation to improve mucogingival esthetics: a proposal for clinical classification and an evaluation of procedures.

    PubMed

    Studer, S; Naef, R; Schärer, P

    1997-12-01

    Esthetically correct treatment of a localized alveolar ridge defect is a frequent prosthetic challenge. Such defects can be overcome not only by a variety of prosthetic means, but also by several periodontal surgical techniques, notably soft tissue augmentations. Preoperative classification of the localized alveolar ridge defect can be greatly useful in evaluating the prognosis and technical difficulties involved. A semiquantitative classification, dependent on the severity of vertical and horizontal dimensional loss, is proposed to supplement the recognized qualitative classification of a ridge defect. Various methods of soft tissue augmentation are evaluated, based on initial volumetric measurements. The roll flap technique is proposed when the problem is related to ridge quality (single-tooth defect with little horizontal and vertical loss). Larger defects in which a volumetric problem must be solved are corrected through the subepithelial connective tissue technique. Additional mucogingival problems (eg, insufficient gingival width, high frenum, gingival scarring, or tattoo) should not be corrected simultaneously with augmentation procedures. In these cases, the onlay transplant technique is favored.

  20. Deep Multi-Task Learning for Tree Genera Classification

    NASA Astrophysics Data System (ADS)

    Ko, C.; Kang, J.; Sohn, G.

    2018-05-01

    The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.

  1. Stock Market Index Data and indicators for Day Trading as a Binary Classification problem.

    PubMed

    Bruni, Renato

    2017-02-01

    Classification is the attribution of labels to records according to a criterion automatically learned from a training set of labeled records. This task is needed in a huge number of practical applications, and consequently it has been studied intensively and several classification algorithms are available today. In finance, a stock market index is a measurement of value of a section of the stock market. It is often used to describe the aggregate trend of a market. One basic financial issue would be forecasting this trend. Clearly, such a stochastic value is very difficult to predict. However, technical analysis is a security analysis methodology developed to forecast the direction of prices through the study of past market data. Day trading consists in buying and selling financial instruments within the same trading day. In this case, one interesting problem is the automatic individuation of favorable days for trading. We model this problem as a binary classification problem, and we provide datasets containing daily index values, the corresponding values of a selection of technical indicators, and the class label, which is 1 if the subsequent time period is favorable for day trading and 0 otherwise. These datasets can be used to test the behavior of different approaches in solving the day trading problem.

  2. Problems of systems dataware using optoelectronic measuring means of linear displacement

    NASA Astrophysics Data System (ADS)

    Bazykin, S. N.; Bazykina, N. A.; Samohina, K. S.

    2017-10-01

    Problems of the dataware of the systems with the use of optoelectronic means of the linear displacement are considered in the article. The classification of the known physical effects, realized by the means of information-measuring systems, is given. The organized analysis of information flows in technical systems from the standpoint of determination of inaccuracies of measurement and management was conducted. In spite of achieved successes in automation of machine-building and instruments-building equipment in the field of dataware of the technical systems, there are unresolved problems, concerning the qualitative aspect of the production process. It was shown that the given problem can be solved using optoelectronic lazer information-measuring systems. Such information-measuring systems are capable of not only executing the measuring functions, but also solving the problems of management and control during processing, thereby guaranteeing the quality of final products.

  3. Tensor Train Neighborhood Preserving Embedding

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin

    2018-05-01

    In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.

  4. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    PubMed

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  5. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    PubMed

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Periodic activation function and a modified learning algorithm for the multivalued neuron.

    PubMed

    Aizenberg, Igor

    2010-12-01

    In this paper, we consider a new periodic activation function for the multivalued neuron (MVN). The MVN is a neuron with complex-valued weights and inputs/output, which are located on the unit circle. Although the MVN outperforms many other neurons and MVN-based neural networks have shown their high potential, the MVN still has a limited capability of learning highly nonlinear functions. A periodic activation function, which is introduced in this paper, makes it possible to learn nonlinearly separable problems and non-threshold multiple-valued functions using a single multivalued neuron. We call this neuron a multivalued neuron with a periodic activation function (MVN-P). The MVN-Ps functionality is much higher than that of the regular MVN. The MVN-P is more efficient in solving various classification problems. A learning algorithm based on the error-correction rule for the MVN-P is also presented. It is shown that a single MVN-P can easily learn and solve those benchmark classification problems that were considered unsolvable using a single neuron. It is also shown that a universal binary neuron, which can learn nonlinearly separable Boolean functions, and a regular MVN are particular cases of the MVN-P.

  8. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  9. Autonomous power management and distribution

    NASA Technical Reports Server (NTRS)

    Dolce, Jim; Kish, Jim

    1990-01-01

    The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.

  10. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  11. A simple and fast heuristic for protein structure comparison

    PubMed Central

    Pelta, David A; González, Juan R; Moreno Vega, Marcos

    2008-01-01

    Background Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. Results We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. Conclusion We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results. Software is available for download at . PMID:18366735

  12. Aptitude-treatment interactions revisited: effect of metacognitive intervention on subtypes of written expression in elementary school students.

    PubMed

    Hooper, Stephen R; Wakely, Melissa B; de Kruif, Renee E L; Swartz, Carl W

    2006-01-01

    We examined the effectiveness of a metacognitive intervention for written language performance, based on the Hayes model of written expression, for 73 fourth-grade (n = 38) and fifth-grade (n = 35) students. The intervention consisted of twenty 45-min writing lessons designed to improve their awareness of writing as a problem-solving process. Each of the lessons addressed some aspect of planning, translating, and reflecting on written products; their self-regulation of these processes; and actual writing practice. All instruction was conducted in intact classrooms. Prior to the intervention, all students received a battery of neurocognitive tests measuring executive functions, attention, and language. In addition, preintervention writing samples were obtained and analyzed holistically and for errors in syntax, semantics, and spelling. Following the intervention, the writing tasks were readministered and cluster analysis of the neurocognitive data was conducted. Cluster analytic procedures yielded 7 reliable clusters: 4 normal variants, 1 Problem Solving weakness, 1 Problem Solving Language weaknesses, and 1 Problem Solving strength. The response to the single treatment by these various subtypes revealed positive but modest findings. Significant group differences were noted for improvement in syntax errors and spelling, with only spelling showing differential improvement for the Problem Solving Language subtype. In addition, there was a marginally significant group effect for holistic ratings. These findings provide initial evidence that Writing Aptitude (subtype) x Single Treatment interactions exist in writing, but further research is needed with other classification schemes and interventions.

  13. NOTE: Fluoroscopic gating without implanted fiducial markers for lung cancer radiotherapy based on support vector machines

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Alexander, Brian; Jiang, Steve B.

    2008-08-01

    Various problems with the current state-of-the-art techniques for gated radiotherapy have prevented this new treatment modality from being widely implemented in clinical routine. These problems are caused mainly by applying various external respiratory surrogates. There might be large uncertainties in deriving the tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using template matching methods (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007b Phys. Med. Biol. 52 741-55). In this note, our main contribution is to provide a totally different new view of the gating problem by recasting it as a classification problem. Then, we solve this classification problem by a well-studied powerful classification method called a support vector machine (SVM). Note that the goal of an automated gating tool is to decide when to turn the beam ON or OFF. We treat ON and OFF as the two classes in our classification problem. We create our labeled training data during the patient setup session by utilizing the reference gating signal, manually determined by a radiation oncologist. We then pre-process these labeled training images and build our SVM prediction model. During treatment delivery, fluoroscopic images are continuously acquired, pre-processed and sent as an input to the SVM. Finally, our SVM model will output the predicted labels as gating signals. We test the proposed technique on five sequences of fluoroscopic images from five lung cancer patients against the reference gating signal as ground truth. We compare the performance of the SVM to our previous template matching method (Cui et al 2007b Phys. Med. Biol. 52 741-55). We find that the SVM is slightly more accurate on average (1-3%) than the template matching method, when delivering the target dose. And the average duty cycle is 4-6% longer. Given the very limited patient dataset, we cannot conclude that the SVM is more accurate and efficient than the template matching method. However, our preliminary results show that the SVM is a potentially precise and efficient algorithm for generating gating signals for radiotherapy. This work demonstrates that the gating problem can be considered as a classification problem and solved accordingly.

  14. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving tasks that in people require higher-level cognitive functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Robust BMPM training based on second-order cone programming and its application in medical diagnosis.

    PubMed

    Peng, Xiang; King, Irwin

    2008-01-01

    The Biased Minimax Probability Machine (BMPM) constructs a classifier which deals with the imbalanced learning tasks. It provides a worst-case bound on the probability of misclassification of future data points based on reliable estimates of means and covariance matrices of the classes from the training data samples, and achieves promising performance. In this paper, we develop a novel yet critical extension training algorithm for BMPM that is based on Second-Order Cone Programming (SOCP). Moreover, we apply the biased classification model to medical diagnosis problems to demonstrate its usefulness. By removing some crucial assumptions in the original solution to this model, we make the new method more accurate and robust. We outline the theoretical derivatives of the biased classification model, and reformulate it into an SOCP problem which could be efficiently solved with global optima guarantee. We evaluate our proposed SOCP-based BMPM (BMPMSOCP) scheme in comparison with traditional solutions on medical diagnosis tasks where the objectives are to focus on improving the sensitivity (the accuracy of the more important class, say "ill" samples) instead of the overall accuracy of the classification. Empirical results have shown that our method is more effective and robust to handle imbalanced classification problems than traditional classification approaches, and the original Fractional Programming-based BMPM (BMPMFP).

  16. Cell dynamic morphology classification using deep convolutional neural networks.

    PubMed

    Li, Heng; Pang, Fengqian; Shi, Yonggang; Liu, Zhiwen

    2018-05-15

    Cell morphology is often used as a proxy measurement of cell status to understand cell physiology. Hence, interpretation of cell dynamic morphology is a meaningful task in biomedical research. Inspired by the recent success of deep learning, we here explore the application of convolutional neural networks (CNNs) to cell dynamic morphology classification. An innovative strategy for the implementation of CNNs is introduced in this study. Mouse lymphocytes were collected to observe the dynamic morphology, and two datasets were thus set up to investigate the performances of CNNs. Considering the installation of deep learning, the classification problem was simplified from video data to image data, and was then solved by CNNs in a self-taught manner with the generated image data. CNNs were separately performed in three installation scenarios and compared with existing methods. Experimental results demonstrated the potential of CNNs in cell dynamic morphology classification, and validated the effectiveness of the proposed strategy. CNNs were successfully applied to the classification problem, and outperformed the existing methods in the classification accuracy. For the installation of CNNs, transfer learning was proved to be a promising scheme. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  17. Maximum Margin Clustering of Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2013-09-01

    In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.

  18. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  19. A Simple Label Switching Algorithm for Semisupervised Structural SVMs.

    PubMed

    Balamurugan, P; Shevade, Shirish; Sundararajan, S

    2015-10-01

    In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.

  20. From Intuition to Science: Re-ED and Trauma-Informed Care

    ERIC Educational Resources Information Center

    Maikoetter, Michelle

    2011-01-01

    Nicholas Hobbs, a visionary in the field of psychology, believed strongly that how one defines a problem determines in large part the strategies that can be generated to solve it (Hobbs, 1982). He questioned the validity of psychiatric labels and other means of classification that pathologized children, believing that such approaches guided people…

  1. Helping Teachers Become Better Teachers.

    ERIC Educational Resources Information Center

    Dick, Robert C.

    Since speech communication is experiencing numerous changes, it is useful to examine some of the causes of inadequate teaching in the field and various ways to solve the problems. Some causes of poor teaching are (1) the small value placed on university teaching compared to other criteria for tenure and promotion; (2) the classification or…

  2. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    ERIC Educational Resources Information Center

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  3. Fast Solution in Sparse LDA for Binary Classification

    NASA Technical Reports Server (NTRS)

    Moghaddam, Baback

    2010-01-01

    An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic form along with the inherent sequential nature of greedy search itself. Together this enables the use of highly-efficient partitioned-matrix-inverse techniques that result in large speedups of computation in both the forward-selection and backward-elimination stages of greedy algorithms in general.

  4. Research on the transfer learning of the vehicle logo recognition

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    2017-08-01

    The Convolutional Neural Network of Deep Learning has been a huge success in the field of image intelligent transportation system can effectively solve the traffic safety, congestion, vehicle management and other problems of traffic in the city. Vehicle identification is a vital part of intelligent transportation, and the effective information in vehicles is of great significance to vehicle identification. With the traffic system on the vehicle identification technology requirements are getting higher and higher, the vehicle as an important type of vehicle information, because it should not be removed, difficult to change and other features for vehicle identification provides an important method. The current vehicle identification recognition (VLR) is mostly used to extract the characteristics of the method of classification, which for complex classification of its generalization ability to be some constraints, if the use of depth learning technology, you need a lot of training samples. In this paper, the method of convolution neural network based on transfer learning can solve this problem effectively, and it has important practical application value in the task of vehicle mark recognition.

  5. Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning.

    PubMed

    Wang, Shijun; McKenna, Matthew T; Nguyen, Tan B; Burns, Joseph E; Petrick, Nicholas; Sahiner, Berkman; Summers, Ronald M

    2012-05-01

    In this paper, we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3-D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods.

  6. Seeing is Believing: Video Classification for Computed Tomographic Colonography Using Multiple-Instance Learning

    PubMed Central

    Wang, Shijun; McKenna, Matthew T.; Nguyen, Tan B.; Burns, Joseph E.; Petrick, Nicholas; Sahiner, Berkman

    2012-01-01

    In this paper we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods. PMID:22552333

  7. GA(M)E-QSAR: a novel, fully automatic genetic-algorithm-(meta)-ensembles approach for binary classification in ligand-based drug design.

    PubMed

    Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann

    2012-09-24

    Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.

  8. Simultaneous Co-Clustering and Classification in Customers Insight

    NASA Astrophysics Data System (ADS)

    Anggistia, M.; Saefuddin, A.; Sartono, B.

    2017-04-01

    Building predictive model based on the heterogeneous dataset may yield many problems, such as less precise in parameter and prediction accuracy. Such problem can be solved by segmenting the data into relatively homogeneous groups and then build a predictive model for each cluster. The advantage of using this strategy usually gives result in simpler models, more interpretable, and more actionable without any loss in accuracy and reliability. This work concerns on marketing data set which recorded a customer behaviour across products. There are some variables describing customer and product as attributes. The basic idea of this approach is to combine co-clustering and classification simultaneously. The objective of this research is to analyse the customer across product characteristics, so the marketing strategy implemented precisely.

  9. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    PubMed

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  10. Simple-random-sampling-based multiclass text classification algorithm.

    PubMed

    Liu, Wuying; Wang, Lin; Yi, Mianzhu

    2014-01-01

    Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.

  11. An investigation of the effects of interventions on problem-solving strategies and abilities

    NASA Astrophysics Data System (ADS)

    Cox, Charles Terrence, Jr.

    Problem-solving has been described as being the "heart" of the chemistry classroom, and students' development of problem-solving skills is essential for their success in chemistry. Despite the importance of problem-solving, there has been little research within the chemistry domain, largely because of the lack of tools to collect data for large populations. Problem-solving was assessed using a software package known as IMMEX (for Interactive Multimedia Exercises) which has an HTML tracking feature that allows for collection of problem-solving data in the background as students work the problems. The primary goal of this research was to develop methods (known as interventions) that could promote improvements in students' problem-solving and most notably aid in their transition from the novice to competent level. Three intervention techniques that were incorporated within the chemistry curricula: collaborative grouping (face-to-face and distance), concept mapping, and peer-led team learning. The face-to-face collaborative grouping intervention was designed to probe the factors affecting the quality of the group interaction. Students' logical reasoning abilities were measured using the Group Assessment of Logical Thinking (GALT) test which classifies students as formal, transitional, or concrete. These classifications essentially provide a basis for identifying scientific aptitude. These designations were used as the basis for forming collaborative groups of two students. The six possibilities (formal-formal, formal-transitional, etc.) were formed to determine how the group composition influences the gains in student abilities observed from collaborative grouping interventions. Students were given three assignments (an individual pre-collaborative, an individual post collaborative, and a collaborative assignment) each requiring them to work an IMMEX problem set. Similar gains in performance of 10% gains were observed for each group with two exceptions. The transitional students who were paired with concrete students had a 15% gain, and the concrete students paired with other concrete students had only a marginal gain. In fact, there was no statistical difference in the pre-collaborative and post-collaborative student abilities for concrete-concrete groups. The distance collaborative intervention was completed using a new interface for the IMMEX software designed to mimic face-to-face collaboration. A stereochemistry problem set which had a solved rate of 28% prior to collaboration was chosen for incorporation into this distance collaboration study. (Abstract shortened by UMI.)

  12. Piaget's Developmental Theories Used in an Early Childhood Program for Mentally Retarded Students.

    ERIC Educational Resources Information Center

    Francis Christi, Sister

    The author describes a Piaget based curriculum involving three main themes (classification, number measurement/space, and seriation) for young mentally retarded children. Students solve problems by doing something physically and mentally to the data, shuffling the facts about in their minds, so that they will come to a logical solution. Language…

  13. Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhong-bao, Liu; Wen-ai, Song; Jing, Zhang; Wen-juan, Zhao

    2017-06-01

    Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher's Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.

  14. Object Manifold Alignment for Multi-Temporal High Resolution Remote Sensing Images Classification

    NASA Astrophysics Data System (ADS)

    Gao, G.; Zhang, M.; Gu, Y.

    2017-05-01

    Multi-temporal remote sensing images classification is very useful for monitoring the land cover changes. Traditional approaches in this field mainly face to limited labelled samples and spectral drift of image information. With spatial resolution improvement, "pepper and salt" appears and classification results will be effected when the pixelwise classification algorithms are applied to high-resolution satellite images, in which the spatial relationship among the pixels is ignored. For classifying the multi-temporal high resolution images with limited labelled samples, spectral drift and "pepper and salt" problem, an object-based manifold alignment method is proposed. Firstly, multi-temporal multispectral images are cut to superpixels by simple linear iterative clustering (SLIC) respectively. Secondly, some features obtained from superpixels are formed as vector. Thirdly, a majority voting manifold alignment method aiming at solving high resolution problem is proposed and mapping the vector data to alignment space. At last, all the data in the alignment space are classified by using KNN method. Multi-temporal images from different areas or the same area are both considered in this paper. In the experiments, 2 groups of multi-temporal HR images collected by China GF1 and GF2 satellites are used for performance evaluation. Experimental results indicate that the proposed method not only has significantly outperforms than traditional domain adaptation methods in classification accuracy, but also effectively overcome the problem of "pepper and salt".

  15. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis.

    PubMed

    Sahan, Seral; Polat, Kemal; Kodaz, Halife; Güneş, Salih

    2007-03-01

    The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. As the incidence of this disease has increased significantly in the recent years, machine learning applications to this problem have also took a great attention as well as medical consideration. This study aims at diagnosing breast cancer with a new hybrid machine learning method. By hybridizing a fuzzy-artificial immune system with k-nearest neighbour algorithm, a method was obtained to solve this diagnosis problem via classifying Wisconsin Breast Cancer Dataset (WBCD). This data set is a very commonly used data set in the literature relating the use of classification systems for breast cancer diagnosis and it was used in this study to compare the classification performance of our proposed method with regard to other studies. We obtained a classification accuracy of 99.14%, which is the highest one reached so far. The classification accuracy was obtained via 10-fold cross validation. This result is for WBCD but it states that this method can be used confidently for other breast cancer diagnosis problems, too.

  16. Hierarchical trie packet classification algorithm based on expectation-maximization clustering.

    PubMed

    Bi, Xia-An; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

  17. The inverse problem of refraction travel times, part I: Types of Geophysical Nonuniqueness through Minimization

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2005-01-01

    In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.

  18. A comparative study of machine learning models for ethnicity classification

    NASA Astrophysics Data System (ADS)

    Trivedi, Advait; Bessie Amali, D. Geraldine

    2017-11-01

    This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.

  19. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification

    PubMed Central

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826

  20. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.

    PubMed

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).

  1. Research on aviation unsafe incidents classification with improved TF-IDF algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Zhang, Zhiyuan; Huo, Weigang

    2016-05-01

    The text content of Aviation Safety Confidential Reports contains a large number of valuable information. Term frequency-inverse document frequency algorithm is commonly used in text analysis, but it does not take into account the sequential relationship of the words in the text and its role in semantic expression. According to the seven category labels of civil aviation unsafe incidents, aiming at solving the problems of TF-IDF algorithm, this paper improved TF-IDF algorithm based on co-occurrence network; established feature words extraction and words sequential relations for classified incidents. Aviation domain lexicon was used to improve the accuracy rate of classification. Feature words network model was designed for multi-documents unsafe incidents classification, and it was used in the experiment. Finally, the classification accuracy of improved algorithm was verified by the experiments.

  2. Predictive analysis and data mining among the employment of fresh graduate students in HEI

    NASA Astrophysics Data System (ADS)

    Rahman, Nor Azziaty Abdul; Tan, Kian Lam; Lim, Chen Kim

    2017-10-01

    Management of higher education have a problem in producing 100% of graduates who can meet the needs of industry while industry is also facing the problem of finding skilled graduates who suit their needs partly due to the lack of an effective method in assessing problem solving skills as well as weaknesses in the assessment of problem-solving skills. The purpose of this paper is to propose a suitable classification model that can be used in making prediction and assessment of the attributes of the student's dataset to meet the selection criteria of work demanded by the industry of the graduates in the academic field. Supervised and unsupervised Machine Learning Algorithms were used in this research where; K-Nearest Neighbor, Naïve Bayes, Decision Tree, Neural Network, Logistic Regression and Support Vector Machine. The proposed model will help the university management to make a better long-term plans for producing graduates who are skilled, knowledgeable and fulfill the industry needs as well.

  3. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    PubMed

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  4. Multistrategy Self-Organizing Map Learning for Classification Problems

    PubMed Central

    Hasan, S.; Shamsuddin, S. M.

    2011-01-01

    Multistrategy Learning of Self-Organizing Map (SOM) and Particle Swarm Optimization (PSO) is commonly implemented in clustering domain due to its capabilities in handling complex data characteristics. However, some of these multistrategy learning architectures have weaknesses such as slow convergence time always being trapped in the local minima. This paper proposes multistrategy learning of SOM lattice structure with Particle Swarm Optimisation which is called ESOMPSO for solving various classification problems. The enhancement of SOM lattice structure is implemented by introducing a new hexagon formulation for better mapping quality in data classification and labeling. The weights of the enhanced SOM are optimised using PSO to obtain better output quality. The proposed method has been tested on various standard datasets with substantial comparisons with existing SOM network and various distance measurement. The results show that our proposed method yields a promising result with better average accuracy and quantisation errors compared to the other methods as well as convincing significant test. PMID:21876686

  5. Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah

    2016-05-01

    A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.

  6. Fuzzy support vector machine for microarray imbalanced data classification

    NASA Astrophysics Data System (ADS)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  7. The Use of History of Science Texts in Teaching Science: Two Cases of an Innovative, Constructivist Approach

    ERIC Educational Resources Information Center

    Koliopoulos, Dimitris; Dossis, Sotiris; Stamoulis, Efthymios

    2007-01-01

    This study proposes an empirical classification of ways to introduce elements of the history of science into science teaching, as well as describing a special way to do so characterized by the introduction of short extracts from historical texts. The aim is to motivate students to participate in problem-solving activities and to transform their…

  8. Medical equipment classification: method and decision-making support based on paraconsistent annotated logic.

    PubMed

    Oshiyama, Natália F; Bassani, Rosana A; D'Ottaviano, Itala M L; Bassani, José W M

    2012-04-01

    As technology evolves, the role of medical equipment in the healthcare system, as well as technology management, becomes more important. Although the existence of large databases containing management information is currently common, extracting useful information from them is still difficult. A useful tool for identification of frequently failing equipment, which increases maintenance cost and downtime, would be the classification according to the corrective maintenance data. Nevertheless, establishment of classes may create inconsistencies, since an item may be close to two classes by the same extent. Paraconsistent logic might help solve this problem, as it allows the existence of inconsistent (contradictory) information without trivialization. In this paper, a methodology for medical equipment classification based on the ABC analysis of corrective maintenance data is presented, and complemented with a paraconsistent annotated logic analysis, which may enable the decision maker to take into consideration alerts created by the identification of inconsistencies and indeterminacies in the classification.

  9. A remote sensing based vegetation classification logic for global land cover analysis

    USGS Publications Warehouse

    Running, Steven W.; Loveland, Thomas R.; Pierce, Lars L.; Nemani, R.R.; Hunt, E. Raymond

    1995-01-01

    This article proposes a simple new logic for classifying global vegetation. The critical features of this classification are that 1) it is based on simple, observable, unambiguous characteristics of vegetation structure that are important to ecosystem biogeochemistry and can be measured in the field for validation, 2) the structural characteristics are remotely sensible so that repeatable and efficient global reclassifications of existing vegetation will be possible, and 3) the defined vegetation classes directly translate into the biophysical parameters of interest by global climate and biogeochemical models. A first test of this logic for the continental United States is presented based on an existing 1 km AVHRR normalized difference vegetation index database. Procedures for solving critical remote sensing problems needed to implement the classification are discussed. Also, some inferences from this classification to advanced vegetation biophysical variables such as specific leaf area and photosynthetic capacity useful to global biogeochemical modeling are suggested.

  10. Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.

    PubMed

    Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck

    2018-04-20

    Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.

  11. Multidimensional density shaping by sigmoids.

    PubMed

    Roth, Z; Baram, Y

    1996-01-01

    An estimate of the probability density function of a random vector is obtained by maximizing the output entropy of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's optimization method, applied to the estimated density, yields a recursive estimator for a random variable or a random sequence. A constrained connectivity structure yields a linear estimator, which is particularly suitable for "real time" prediction. A Gaussian nonlinearity yields a closed-form solution for the network's parameters, which may also be used for initializing the optimization algorithm when other nonlinearities are employed. A triangular connectivity between the neurons and the input, which is naturally suggested by the statistical setting, reduces the number of parameters. Applications to classification and forecasting problems are demonstrated.

  12. Case base classification on digital mammograms: improving the performance of case base classifier

    NASA Astrophysics Data System (ADS)

    Raman, Valliappan; Then, H. H.; Sumari, Putra; Venkatesa Mohan, N.

    2011-10-01

    Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. The aim of the research presented here is in twofold. First stage of research involves machine learning techniques, which segments and extracts features from the mass of digital mammograms. Second level is on problem solving approach which includes classification of mass by performance based case base classifier. In this paper we build a case-based Classifier in order to diagnose mammographic images. We explain different methods and behaviors that have been added to the classifier to improve the performance of the classifier. Currently the initial Performance base Classifier with Bagging is proposed in the paper and it's been implemented and it shows an improvement in specificity and sensitivity.

  13. Hierarchical trie packet classification algorithm based on expectation-maximization clustering

    PubMed Central

    Bi, Xia-an; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476

  14. Nanotechnology patents in the automotive industry (a quantitative & qualitative analysis).

    PubMed

    Prasad, Raghavendra; Bandyopadhyay, Tapas K

    2014-01-01

    The aim of the article is to present a trend in patent filings for application of nanotechnology to the automobile sector across the world, using the keyword-based patent search. Overviews of the patents related to nano technology in the automobile industry have been provided. The current work has started from the worldwide patent search to find the patents on nanotechnology in the automobile industry and classify the patents according to the various parts of an automobile to which they are related and the solutions which they are providing. In the next step various graphs have been produced to get an insight into various trends. In next step, analysis of patents in various classifications, have been performed. The trends shown in graphs provide the quantitative analysis whereas; the qualitative analysis has been done in another section. The classifications of patents based on the solution they provide have been performed by reading the claims, titles, abstract and full texts separately. Patentability of nano technology inventions have been discussed in a view to give an idea of requirements and statutory bars to the patentability of nanotechnology inventions. Another objective of the current work is to suggest appropriate framework for the companies regarding use of nano technology in the automobile industry and a suggestive strategy for patenting of the inventions related to the same. For example, US Patent, with patent number US2008-019426A1 discusses the invention related to Lubricant composition. This patent has been studied and classified to fall under classification of automobile parts. After studying this patent, it is deduced that, the problem of friction in engine is being solved by this patent. One classification is the "automobile part" based while other is the basis of "problem being solved". Hence, two classifications, namely reduction in friction and engine were created. Similarly, after studying all the patents, a similar matrix has been created.

  15. From Novice to Expert: Problem Solving in ICD-10-PCS Procedural Coding

    PubMed Central

    Rousse, Justin Thomas

    2013-01-01

    The benefits of converting to ICD-10-CM/PCS have been well documented in recent years. One of the greatest challenges in the conversion, however, is how to train the workforce in the code sets. The International Classification of Diseases, Tenth Revision, Procedure Coding System (ICD-10-PCS) has been described as a language requiring higher-level reasoning skills because of the system's increased granularity. Training and problem-solving strategies required for correct procedural coding are unclear. The objective of this article is to propose that the acquisition of rule-based logic will need to be augmented with self-evaluative and critical thinking. Awareness of how this process works is helpful for established coders as well as for a new generation of coders who will master the complexities of the system. PMID:23861674

  16. Improvements on ν-Twin Support Vector Machine.

    PubMed

    Khemchandani, Reshma; Saigal, Pooja; Chandra, Suresh

    2016-07-01

    In this paper, we propose two novel binary classifiers termed as "Improvements on ν-Twin Support Vector Machine: Iν-TWSVM and Iν-TWSVM (Fast)" that are motivated by ν-Twin Support Vector Machine (ν-TWSVM). Similar to ν-TWSVM, Iν-TWSVM determines two nonparallel hyperplanes such that they are closer to their respective classes and are at least ρ distance away from the other class. The significant advantage of Iν-TWSVM over ν-TWSVM is that Iν-TWSVM solves one smaller-sized Quadratic Programming Problem (QPP) and one Unconstrained Minimization Problem (UMP); as compared to solving two related QPPs in ν-TWSVM. Further, Iν-TWSVM (Fast) avoids solving a smaller sized QPP and transforms it as a unimodal function, which can be solved using line search methods and similar to Iν-TWSVM, the other problem is solved as a UMP. Due to their novel formulation, the proposed classifiers are faster than ν-TWSVM and have comparable generalization ability. Iν-TWSVM also implements structural risk minimization (SRM) principle by introducing a regularization term, along with minimizing the empirical risk. The other properties of Iν-TWSVM, related to support vectors (SVs), are similar to that of ν-TWSVM. To test the efficacy of the proposed method, experiments have been conducted on a wide range of UCI and a skewed variation of NDC datasets. We have also given the application of Iν-TWSVM as a binary classifier for pixel classification of color images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  18. SAR-based change detection using hypothesis testing and Markov random field modelling

    NASA Astrophysics Data System (ADS)

    Cao, W.; Martinis, S.

    2015-04-01

    The objective of this study is to automatically detect changed areas caused by natural disasters from bi-temporal co-registered and calibrated TerraSAR-X data. The technique in this paper consists of two steps: Firstly, an automatic coarse detection step is applied based on a statistical hypothesis test for initializing the classification. The original analytical formula as proposed in the constant false alarm rate (CFAR) edge detector is reviewed and rewritten in a compact form of the incomplete beta function, which is a builtin routine in commercial scientific software such as MATLAB and IDL. Secondly, a post-classification step is introduced to optimize the noisy classification result in the previous step. Generally, an optimization problem can be formulated as a Markov random field (MRF) on which the quality of a classification is measured by an energy function. The optimal classification based on the MRF is related to the lowest energy value. Previous studies provide methods for the optimization problem using MRFs, such as the iterated conditional modes (ICM) algorithm. Recently, a novel algorithm was presented based on graph-cut theory. This method transforms a MRF to an equivalent graph and solves the optimization problem by a max-flow/min-cut algorithm on the graph. In this study this graph-cut algorithm is applied iteratively to improve the coarse classification. At each iteration the parameters of the energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). Experiments are performed using two flood events in Germany and Australia in 2011 and a forest fire on La Palma in 2009 using pre- and post-event TerraSAR-X data. The results show convincing coarse classifications and considerable improvement by the graph-cut post-classification step.

  19. Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression

    NASA Astrophysics Data System (ADS)

    Khikmah, L.; Wijayanto, H.; Syafitri, U. D.

    2017-04-01

    The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.

  20. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  1. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    NASA Astrophysics Data System (ADS)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of mathematical use in the context physics, and (2) a detailed understanding, in terms of the proposed theoretical framework, of the errors that students make when using mathematics in the context of physics.

  2. Non parametric, self organizing, scalable modeling of spatiotemporal inputs: the sign language paradigm.

    PubMed

    Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S

    2012-12-01

    Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Open Dataset for the Automatic Recognition of Sedentary Behaviors.

    PubMed

    Possos, William; Cruz, Robinson; Cerón, Jesús D; López, Diego M; Sierra-Torres, Carlos H

    2017-01-01

    Sedentarism is associated with the development of noncommunicable diseases (NCD) such as cardiovascular diseases (CVD), type 2 diabetes, and cancer. Therefore, the identification of specific sedentary behaviors (TV viewing, sitting at work, driving, relaxing, etc.) is especially relevant for planning personalized prevention programs. To build and evaluate a public a dataset for the automatic recognition (classification) of sedentary behaviors. The dataset included data from 30 subjects, who performed 23 sedentary behaviors while wearing a commercial wearable on the wrist, a smartphone on the hip and another in the thigh. Bluetooth Low Energy (BLE) beacons were used in order to improve the automatic classification of different sedentary behaviors. The study also compared six well know data mining classification techniques in order to identify the more precise method of solving the classification problem of the 23 defined behaviors. A better classification accuracy was obtained using the Random Forest algorithm and when data were collected from the phone on the hip. Furthermore, the use of beacons as a reference for obtaining the symbolic location of the individual improved the precision of the classification.

  4. Entanglement classification with algebraic geometry

    NASA Astrophysics Data System (ADS)

    Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.

    2017-05-01

    We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.

  5. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    PubMed

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  6. An Investigation of Mental Coding Mechanisms and Heuristics Used in Electronics Troubleshooting.

    DTIC Science & Technology

    1980-04-01

    that is, the particular program to be used for the decision making or problem solving exercise at hand. The relationships between LTM, the processor...stimulus input according to previously learned classifications. Norman continued by writing that the encoded information is the material which is stored...the manipulation of algebraic or other mathematical symbols according to the rules embodied in mathematical logic. Once these essentially content free

  7. Towards a Cross-Domain MapReduce Framework

    DTIC Science & Technology

    2013-11-01

    These Big Data applications typically run as a set of MapReduce jobs to take advantage of Hadoop’s ease of service deployment and large-scale...parallelism. Yet, Hadoop has not been adapted for multilevel secure (MLS) environments where data of different security classifications co-exist. To solve...multilevel security. I. INTRODUCTION The US Department of Defense (DoD) and US Intelligence Community (IC) recognize they have a Big Data problem

  8. An ensemble learning system for a 4-way classification of Alzheimer's disease and mild cognitive impairment.

    PubMed

    Yao, Dongren; Calhoun, Vince D; Fu, Zening; Du, Yuhui; Sui, Jing

    2018-05-15

    Discriminating Alzheimer's disease (AD) from its prodromal form, mild cognitive impairment (MCI), is a significant clinical problem that may facilitate early diagnosis and intervention, in which a more challenging issue is to classify MCI subtypes, i.e., those who eventually convert to AD (cMCI) versus those who do not (MCI). To solve this difficult 4-way classification problem (AD, MCI, cMCI and healthy controls), a competition was hosted by Kaggle to invite the scientific community to apply their machine learning approaches on pre-processed sets of T1-weighted magnetic resonance images (MRI) data and the demographic information from the international Alzheimer's disease neuroimaging initiative (ADNI) database. This paper summarizes our competition results. We first proposed a hierarchical process by turning the 4-way classification into five binary classification problems. A new feature selection technology based on relative importance was also proposed, aiming to identify a more informative and concise subset from 426 sMRI morphometric and 3 demographic features, to ensure each binary classifier to achieve its highest accuracy. As a result, about 2% of the original features were selected to build a new feature space, which can achieve the final four-way classification with a 54.38% accuracy on testing data through hierarchical grouping, higher than several alternative methods in comparison. More importantly, the selected discriminative features such as hippocampal volume, parahippocampal surface area, and medial orbitofrontal thickness, etc. as well as the MMSE score, are reasonable and consistent with those reported in AD/MCI deficits. In summary, the proposed method provides a new framework for multi-way classification using hierarchical grouping and precise feature selection. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  10. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source.

    PubMed

    Wan, Shixiang; Duan, Yucong; Zou, Quan

    2017-09-01

    Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Data classification using metaheuristic Cuckoo Search technique for Levenberg Marquardt back propagation (CSLM) algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.

    2015-05-01

    A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.

  12. Support vector machines-based fault diagnosis for turbo-pump rotor

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Fa; Chu, Fu-Lei

    2006-05-01

    Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.

  13. Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification.

    PubMed

    Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai

    2015-12-01

    Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.

  14. A drone detection with aircraft classification based on a camera array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  15. IRIS COLOUR CLASSIFICATION SCALES – THEN AND NOW

    PubMed Central

    Grigore, Mariana; Avram, Alina

    2015-01-01

    Eye colour is one of the most obvious phenotypic traits of an individual. Since the first documented classification scale developed in 1843, there have been numerous attempts to classify the iris colour. In the past centuries, iris colour classification scales has had various colour categories and mostly relied on comparison of an individual’s eye with painted glass eyes. Once photography techniques were refined, standard iris photographs replaced painted eyes, but this did not solve the problem of painted/ printed colour variability in time. Early clinical scales were easy to use, but lacked objectivity and were not standardised or statistically tested for reproducibility. The era of automated iris colour classification systems came with the technological development. Spectrophotometry, digital analysis of high-resolution iris images, hyper spectral analysis of the human real iris and the dedicated iris colour analysis software, all accomplished an objective, accurate iris colour classification, but are quite expensive and limited in use to research environment. Iris colour classification systems evolved continuously due to their use in a wide range of studies, especially in the fields of anthropology, epidemiology and genetics. Despite the wide range of the existing scales, up until present there has been no generally accepted iris colour classification scale. PMID:27373112

  16. IRIS COLOUR CLASSIFICATION SCALES--THEN AND NOW.

    PubMed

    Grigore, Mariana; Avram, Alina

    2015-01-01

    Eye colour is one of the most obvious phenotypic traits of an individual. Since the first documented classification scale developed in 1843, there have been numerous attempts to classify the iris colour. In the past centuries, iris colour classification scales has had various colour categories and mostly relied on comparison of an individual's eye with painted glass eyes. Once photography techniques were refined, standard iris photographs replaced painted eyes, but this did not solve the problem of painted/ printed colour variability in time. Early clinical scales were easy to use, but lacked objectivity and were not standardised or statistically tested for reproducibility. The era of automated iris colour classification systems came with the technological development. Spectrophotometry, digital analysis of high-resolution iris images, hyper spectral analysis of the human real iris and the dedicated iris colour analysis software, all accomplished an objective, accurate iris colour classification, but are quite expensive and limited in use to research environment. Iris colour classification systems evolved continuously due to their use in a wide range of studies, especially in the fields of anthropology, epidemiology and genetics. Despite the wide range of the existing scales, up until present there has been no generally accepted iris colour classification scale.

  17. Brain tumor segmentation based on local independent projection-based classification.

    PubMed

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin

    2014-10-01

    Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.

  18. A new classification and treatment protocol for gynecomastia.

    PubMed

    Ratnam, B Venkata

    2009-01-01

    It is not uncommon to encounter patients who have undergone surgery for gynecomastia but who were not fully satisfied with the results. Although various approaches and techniques based on presurgical classification systems aimed at yielding the best possible surgical outcomes have been offered, standardized recommendation that is generally accepted by surgeons is lacking. The author reports on a new classification system and treatment protocol for the surgical treatment of gynecomastia. A system was developed that classifies patients into 3 types based on skin elasticity, presence of an inframammary fold (IMF), and mammary ptosis. Surgical excision of the breast mass was followed by a combination of destruction of the IMF, ultrasound-assisted lipoplasty (UAL) of the chest wall, ultrasound stimulation of the breast skin, and periareolar deepithelialization, depending on the gyneocomastia classification. This classification and the treatment protocol were applied to 30 patients, 13 to 60 years of age, between January 2005 and December 2007. Among these patients, 12 were classified as type 1, 6 as type 2, and 12 as type 3. Follow-up ranged from 3 to 18 months. Complications were common to all types of cases and techniques. They included 2 hematomas, 1 wound dehiscence, 5 cases of residual gynecomastia in those patients who underwent UAL alone, and 3 minor aesthetic problems near areolae. The proposed new classification and treatment protocol were found to help solve problems associated with surgical outcomes for all types of gynecomastia, although the issue of residual gynecomastia in patients undergoing UAL alone requires further study.

  19. Reduction of the dimension of neural network models in problems of pattern recognition and forecasting

    NASA Astrophysics Data System (ADS)

    Nasertdinova, A. D.; Bochkarev, V. V.

    2017-11-01

    Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.

  20. Mental illness from the perspective of theoretical neuroscience.

    PubMed

    Thagard, Paul

    2008-01-01

    Theoretical neuroscience, which characterizes neural mechanisms using mathematical and computational models, is highly relevant to central problems in the philosophy of psychiatry. These models can help to solve the explanation problem of causally connecting neural processes with the behaviors and experiences found in mental illnesses. Such explanations will also be useful for generating better classifications and treatments of psychiatric disorders. The result should help to eliminate concerns that mental illnesses such as depression and schizophrenia are not objectively real. A philosophical approach to mental illness based on neuroscience need not neglect the inherently social and historical nature of mental phenomena.

  1. Source localization in an ocean waveguide using supervised machine learning.

    PubMed

    Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter

    2017-09-01

    Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.

  2. A Comprehensive Rehabilitation Approach in a Patient With Serious Neuropsychiatric Systemic Lupus Erythematosus.

    PubMed

    Ko, Yong Jae; Lee, Yang Gyun; Park, Ji Woong; Ahn, Sung Ho; Kwak, Jin Myoung; Choi, Yoon-Hee

    2016-08-01

    Neuropsychiatric systemic lupus erythematosus (NPSLE) involves the central and peripheral nervous system in patients with systemic lupus erythematosus (SLE). It is essential to specify the problems faced by patients with NPSLE because it causes diverse disabilities and impairs quality of life. After performing a comprehensive evaluation, tailored management should be provided for the patient's specific problems. We report here the case of a 30-year-old female with SLE who experienced serious neuropsychiatric symptoms cerebral infarction followed by posterior reversible encephalopathy syndrome and peripheral polyneuropathy. We systemically assessed the patient using the International Classification of Functioning, Disability and Health model as a clinical problem-solving tool and provided comprehensive rehabilitation by focusing on her problems.

  3. Data-Rich Astronomy: Mining Sky Surveys with PhotoRApToR

    NASA Astrophysics Data System (ADS)

    Cavuoti, Stefano; Brescia, Massimo; Longo, Giuseppe

    2014-05-01

    In the last decade a new generation of telescopes and sensors has allowed the production of a very large amount of data and astronomy has become a data-rich science. New automatic methods largely based on machine learning are needed to cope with such data tsunami. We present some results in the fields of photometric redshifts and galaxy classification, obtained using the MLPQNA algorithm available in the DAMEWARE (Data Mining and Web Application Resource) for the SDSS galaxies (DR9 and DR10). We present PhotoRApToR (Photometric Research Application To Redshift): a Java based desktop application capable to solve regression and classification problems and specialized for photo-z estimation.

  4. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  5. Maturity assessment of harumanis mango using thermal camera sensor

    NASA Astrophysics Data System (ADS)

    Sa'ad, F. S. A.; Shakaff, A. Y. Md.; Zakaria, A.; Abdullah, A. H.; Ibrahim, M. F.

    2017-03-01

    The perceived quality of fruits, such as mangoes, is greatly dependent on many parameters such as ripeness, shape, size, and is influenced by other factors such as harvesting time. Unfortunately, a manual fruit grading has several drawbacks such as subjectivity, tediousness and inconsistency. By automating the procedure, as well as developing new classification technique, it may solve these problems. This paper presents the novel work on the using Infrared as a Tool in Quality Monitoring of Harumanis Mangoes. The histogram of infrared image was used to distinguish and classify the level of ripeness of the fruits based on the colour spectrum by week. The approach proposed thermal data was able to achieve 90.5% correct classification.

  6. [A accurate identification method for Chinese materia medica--systematic identification of Chinese materia medica].

    PubMed

    Wang, Xue-Yong; Liao, Cai-Li; Liu, Si-Qi; Liu, Chun-Sheng; Shao, Ai-Juan; Huang, Lu-Qi

    2013-05-01

    This paper put forward a more accurate identification method for identification of Chinese materia medica (CMM), the systematic identification of Chinese materia medica (SICMM) , which might solve difficulties in CMM identification used the ordinary traditional ways. Concepts, mechanisms and methods of SICMM were systematically introduced and possibility was proved by experiments. The establishment of SICMM will solve problems in identification of Chinese materia medica not only in phenotypic characters like the mnorphous, microstructure, chemical constituents, but also further discovery evolution and classification of species, subspecies and population in medical plants. The establishment of SICMM will improve the development of identification of CMM and create a more extensive study space.

  7. International Conference on Artificial Immune Systems (1st) ICARIS 2002, held on 9, 10, and 11 September 2002

    DTIC Science & Technology

    2002-03-07

    Michalewicz, Eds., Evolutionary Computation 1: Basic Algorithms and Operators, Institute of Physics, Bristol (UK), 2000. [3] David A. Van Veldhuizen ...2000. [4] Carlos A. Coello Coello, David A. Van Veldhuizen , and Gary B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer...Academic Publishers, 233 Spring St., New York, NY 10013, 2002. [5] David A. Van Veldhuizen , Multiobjective Evolution- ary Algorithms: Classifications

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P E

    Tips and case histories on computer use for idea and outline processing: Productivity software to solve problems of idea hierarchy, transitions, and developments is matched to solutions for communicators. One case is text that ranges from methods and procedures to histories and legal definitions of classification for the US Department of Energy. Applications of value to writers, editors, and managers are for research; calendars; creativity; prioritization; idea discovery and manipulation; file and time management; and contents, indexes, and glossaries. 6 refs., 7 figs.

  9. Gene selection for microarray data classification via subspace learning and manifold regularization.

    PubMed

    Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui

    2017-12-19

    With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.

  10. Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection.

    PubMed

    Ortega, Julio; Asensio-Cubero, Javier; Gan, John Q; Ortiz, Andrés

    2016-07-15

    Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.

  11. Visual Recognition Software for Binary Classification and Its Application to Spruce Pollen Identification

    PubMed Central

    Tcheng, David K.; Nayak, Ashwin K.; Fowlkes, Charless C.; Punyasena, Surangi W.

    2016-01-01

    Discriminating between black and white spruce (Picea mariana and Picea glauca) is a difficult palynological classification problem that, if solved, would provide valuable data for paleoclimate reconstructions. We developed an open-source visual recognition software (ARLO, Automated Recognition with Layered Optimization) capable of differentiating between these two species at an accuracy on par with human experts. The system applies pattern recognition and machine learning to the analysis of pollen images and discovers general-purpose image features, defined by simple features of lines and grids of pixels taken at different dimensions, size, spacing, and resolution. It adapts to a given problem by searching for the most effective combination of both feature representation and learning strategy. This results in a powerful and flexible framework for image classification. We worked with images acquired using an automated slide scanner. We first applied a hash-based “pollen spotting” model to segment pollen grains from the slide background. We next tested ARLO’s ability to reconstruct black to white spruce pollen ratios using artificially constructed slides of known ratios. We then developed a more scalable hash-based method of image analysis that was able to distinguish between the pollen of black and white spruce with an estimated accuracy of 83.61%, comparable to human expert performance. Our results demonstrate the capability of machine learning systems to automate challenging taxonomic classifications in pollen analysis, and our success with simple image representations suggests that our approach is generalizable to many other object recognition problems. PMID:26867017

  12. A Pruning Neural Network Model in Credit Classification Analysis

    PubMed Central

    Tang, Yajiao; Ji, Junkai; Dai, Hongwei; Yu, Yang; Todo, Yuki

    2018-01-01

    Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs) have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN) and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs) to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency. PMID:29606961

  13. The Iterated Classification Game: A New Model of the Cultural Transmission of Language

    PubMed Central

    Swarup, Samarth; Gasser, Les

    2010-01-01

    The Iterated Classification Game (ICG) combines the Classification Game with the Iterated Learning Model (ILM) to create a more realistic model of the cultural transmission of language through generations. It includes both learning from parents and learning from peers. Further, it eliminates some of the chief criticisms of the ILM: that it does not study grounded languages, that it does not include peer learning, and that it builds in a bias for compositional languages. We show that, over the span of a few generations, a stable linguistic system emerges that can be acquired very quickly by each generation, is compositional, and helps the agents to solve the classification problem with which they are faced. The ICG also leads to a different interpretation of the language acquisition process. It suggests that the role of parents is to initialize the linguistic system of the child in such a way that subsequent interaction with peers results in rapid convergence to the correct language. PMID:20190877

  14. A review on classification methods for solving fully fuzzy linear systems

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Aziz, Khairu Azlan Abd

    2015-12-01

    Fully Fuzzy Linear System (FFLS) exists when there are fuzzy numbers on both sides of the linear systems. This system is quite significant today since most of the linear systems play with uncertainties of parameters especially in mathematics, engineering and finance. Many researchers and practitioners used the FFLS to model their problem and they apply various methods to solve it. In this paper, we present the outcome of a comprehensive review that we have done on various methods used for solving the FFLS. We classify our findings based on parameters' type used for the FFLS either restricted or unrestricted. We also discuss some of the methods by illustrating numerical examples and identify the differences between the methods. Ultimately, we summarize all findings in a table. We hope this study will encourage researchers to appreciate the use of this method and with that it will be easier for them to choose the right method or to propose any new method for solving the FFLS.

  15. Introduction to bioinformatics.

    PubMed

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  16. Designing a training tool for imaging mental models

    NASA Technical Reports Server (NTRS)

    Dede, Christopher J.; Jayaram, Geetha

    1990-01-01

    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.

  17. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  18. Retargeted Least Squares Regression Algorithm.

    PubMed

    Zhang, Xu-Yao; Wang, Lingfeng; Xiang, Shiming; Liu, Cheng-Lin

    2015-09-01

    This brief presents a framework of retargeted least squares regression (ReLSR) for multicategory classification. The core idea is to directly learn the regression targets from data other than using the traditional zero-one matrix as regression targets. The learned target matrix can guarantee a large margin constraint for the requirement of correct classification for each data point. Compared with the traditional least squares regression (LSR) and a recently proposed discriminative LSR models, ReLSR is much more accurate in measuring the classification error of the regression model. Furthermore, ReLSR is a single and compact model, hence there is no need to train two-class (binary) machines that are independent of each other. The convex optimization problem of ReLSR is solved elegantly and efficiently with an alternating procedure including regression and retargeting as substeps. The experimental evaluation over a range of databases identifies the validity of our method.

  19. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  20. Matched field localization based on CS-MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng

    2016-04-01

    The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.

  1. Cascaded VLSI neural network architecture for on-line learning

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P. (Inventor); Duong, Tuan A. (Inventor); Daud, Taher (Inventor)

    1992-01-01

    High-speed, analog, fully-parallel, and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A computation intensive feature classification application was demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as an application specific coprocessor for solving real world problems at extremely high data rates.

  2. Progress and challenges in the application of artificial intelligence to computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1987-01-01

    An approach to analyzing CFD knowledge-based systems is proposed which is based, in part, on the concept of knowledge-level analysis. Consideration is given to the expert cooling fan design system, the PAN AIR knowledge system, grid adaptation, and expert zonal grid generation. These AI/CFD systems demonstrate that current AI technology can be successfully applied to well-formulated problems that are solved by means of classification or selection of preenumerated solutions.

  3. Cascaded VLSI neural network architecture for on-line learning

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Daud, Taher (Inventor); Thakoor, Anilkumar P. (Inventor)

    1995-01-01

    High-speed, analog, fully-parallel and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware-compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A comparison-intensive feature classification application has been demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as application-specific-coprocessors for solving real-world problems at extremely high data rates.

  4. A postprocessing method in the HMC framework for predicting gene function based on biological instrumental data

    NASA Astrophysics Data System (ADS)

    Feng, Shou; Fu, Ping; Zheng, Wenbin

    2018-03-01

    Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.

  5. Fair Inference on Outcomes

    PubMed Central

    Nabi, Razieh; Shpitser, Ilya

    2017-01-01

    In this paper, we consider the problem of fair statistical inference involving outcome variables. Examples include classification and regression problems, and estimating treatment effects in randomized trials or observational data. The issue of fairness arises in such problems where some covariates or treatments are “sensitive,” in the sense of having potential of creating discrimination. In this paper, we argue that the presence of discrimination can be formalized in a sensible way as the presence of an effect of a sensitive covariate on the outcome along certain causal pathways, a view which generalizes (Pearl 2009). A fair outcome model can then be learned by solving a constrained optimization problem. We discuss a number of complications that arise in classical statistical inference due to this view and provide workarounds based on recent work in causal and semi-parametric inference.

  6. A novel artificial immune clonal selection classification and rule mining with swarm learning model

    NASA Astrophysics Data System (ADS)

    Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.

    2013-06-01

    Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.

  7. A new local-global approach for classification.

    PubMed

    Peres, R T; Pedreira, C E

    2010-09-01

    In this paper, we propose a new local-global pattern classification scheme that combines supervised and unsupervised approaches, taking advantage of both, local and global environments. We understand as global methods the ones concerned with the aim of constructing a model for the whole problem space using the totality of the available observations. Local methods focus into sub regions of the space, possibly using an appropriately selected subset of the sample. In the proposed method, the sample is first divided in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde-Buzo-Gray). In a second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired by Bayes' rule. Four classification methods were implemented for comparison purposes with the proposed scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine (SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository. The proposed method has shown a quite competitive performance when compared to these classical and largely used classifiers. Our method is simple concerning understanding and implementation and is based on very intuitive concepts. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Computational intelligence techniques for biological data mining: An overview

    NASA Astrophysics Data System (ADS)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  9. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, George

    1993-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.

  10. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, Stanislav

    1992-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.

  11. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  12. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  13. Brain organization underlying superior mathematical abilities in children with autism.

    PubMed

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Supekar, Kaustubh; Lynch, Charles J; Khouzam, Amirah; Phillips, Jennifer; Uddin, Lucina Q; Menon, Vinod

    2014-02-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics. Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities. Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children. Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Multiple and Single Green Area Measurements and Classification Using Phantom Images in Comparison with Derived Experimental Law

    NASA Astrophysics Data System (ADS)

    Abu-Zaid, N. A. M.

    2017-11-01

    In many circumstances, it is difficult for humans to reach some areas, due to its topography, personal safety, or security regulations in the country. Governments and persons need to calculate those areas and classify the green parts for reclamation to benefit from it.To solve this problem, this research proposes to use a phantom air plane to capture a digital image for the targeted area, then use a segmentation algorithm to separate the green space and calculate it's area. It was necessary to deal with two problems. The first is the variable elevation at which an image was taken, which leads to a change in the physical area of each pixel. To overcome this problem a fourth degree polynomial was fit to some experimental data. The second problem was the existence of different unconnected pieces of green areas in a single image, but we might be interested only in one of them. To solve this problem, the probability of classifying the targeted area as green was increased, while the probability of other untargeted sections was decreased by the inclusion of parts of it as non-green. A practical law was also devised to measure the target area in the digital image for comparison purposes with practical measurements and the polynomial fit.

  15. Classifier utility modeling and analysis of hypersonic inlet start/unstart considering training data costs

    NASA Astrophysics Data System (ADS)

    Chang, Juntao; Hu, Qinghua; Yu, Daren; Bao, Wen

    2011-11-01

    Start/unstart detection is one of the most important issues of hypersonic inlets and is also the foundation of protection control of scramjet. The inlet start/unstart detection can be attributed to a standard pattern classification problem, and the training sample costs have to be considered for the classifier modeling as the CFD numerical simulations and wind tunnel experiments of hypersonic inlets both cost time and money. To solve this problem, the CFD simulation of inlet is studied at first step, and the simulation results could provide the training data for pattern classification of hypersonic inlet start/unstart. Then the classifier modeling technology and maximum classifier utility theories are introduced to analyze the effect of training data cost on classifier utility. In conclusion, it is useful to introduce support vector machine algorithms to acquire the classifier model of hypersonic inlet start/unstart, and the minimum total cost of hypersonic inlet start/unstart classifier can be obtained by the maximum classifier utility theories.

  16. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles.

    PubMed

    Zhang, Duona; Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong

    2018-03-20

    Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.

  17. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles

    PubMed Central

    Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong

    2018-01-01

    Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network. PMID:29558434

  18. Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks

    NASA Astrophysics Data System (ADS)

    Beck, Melanie Renee

    The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo thus solved both the visual classification problem of time efficiency and improved accuracy by producing a distribution of independent classifications for each galaxy. While crowd-sourced galaxy classifications have proven their worth, challenges remain before establishing this method as a critical and standard component of the data processing pipelines for the next generation of surveys. In particular, though innovative, crowd-sourcing techniques do not have the capacity to handle the data volume and rates expected in the next generation of surveys. These algorithms will be delegated to handle the majority of the classification tasks, freeing citizen scientists to contribute their efforts on subtler and more complex assignments. This thesis presents a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme we increase the classification rate nearly 5-fold classifying 226,124 galaxies in 92 days of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7% accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides a factor of 11.4 increase in the classification rate, classifying 210,803 galaxies in just 32 days of GZ2 project time with 93.1% accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.

  19. The evaluative imaging of mental models - Visual representations of complexity

    NASA Technical Reports Server (NTRS)

    Dede, Christopher

    1989-01-01

    The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.

  20. fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information

    DTIC Science & Technology

    2007-04-04

    machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel

  1. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    PubMed

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  2. Advancement of High Resolution Radar Polarimetry in Target Verses Clutter Detection, Discrimination, Classification: A. Basic Theory and Modeling of Polarimetric Clutter Phenomenology.

    DTIC Science & Technology

    1988-07-15

    the interim period, polarimetLic measurement data collected at other DOD/NATO/Industrial R/D/M facilities will be used. These basic studies will be...the polarization sphere and its spread can he related either to the coherency factor or the depolarization factor plus descriptive parameters of the...careful study of the concluding sections outlining the overall scenario of solved and unsolved problems. Here, we also refer to the recent report (Dec

  3. Improving oil classification quality from oil spill fingerprint beyond six sigma approach.

    PubMed

    Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin

    2017-07-15

    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving F stat >F critical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.

  4. Combining factual and heuristic knowledge in knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Gomez, Fernando; Hull, Richard; Karr, Clark; Hosken, Bruce; Verhagen, William

    1992-01-01

    A knowledge acquisition technique that combines heuristic and factual knowledge represented as two hierarchies is described. These ideas were applied to the construction of a knowledge acquisition interface to the Expert System Analyst (OPERA). The goal of OPERA is to improve the operations support of the computer network in the space shuttle launch processing system. The knowledge acquisition bottleneck lies in gathering knowledge from human experts and transferring it to OPERA. OPERA's knowledge acquisition problem is approached as a classification problem-solving task, combining this approach with the use of factual knowledge about the domain. The interface was implemented in a Symbolics workstation making heavy use of windows, pull-down menus, and other user-friendly devices.

  5. Detection and Rectification of Distorted Fingerprints.

    PubMed

    Si, Xuanbin; Feng, Jianjiang; Zhou, Jie; Luo, Yuxuan

    2015-03-01

    Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task. Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.

  6. Transfer learning for visual categorization: a survey.

    PubMed

    Shao, Ling; Zhu, Fan; Li, Xuelong

    2015-05-01

    Regular machine learning and data mining techniques study the training data for future inferences under a major assumption that the future data are within the same feature space or have the same distribution as the training data. However, due to the limited availability of human labeled training data, training data that stay in the same feature space or have the same distribution as the future data cannot be guaranteed to be sufficient enough to avoid the over-fitting problem. In real-world applications, apart from data in the target domain, related data in a different domain can also be included to expand the availability of our prior knowledge about the target future data. Transfer learning addresses such cross-domain learning problems by extracting useful information from data in a related domain and transferring them for being used in target tasks. In recent years, with transfer learning being applied to visual categorization, some typical problems, e.g., view divergence in action recognition tasks and concept drifting in image classification tasks, can be efficiently solved. In this paper, we survey state-of-the-art transfer learning algorithms in visual categorization applications, such as object recognition, image classification, and human action recognition.

  7. Systematic technology transfer from biology to engineering.

    PubMed

    Vincent, Julian F V; Mann, Darrell L

    2002-02-15

    Solutions to problems move only very slowly between different disciplines. Transfer can be greatly speeded up with suitable abstraction and classification of problems. Russian researchers working on the TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch) method for inventive problem solving have identified systematic means of transferring knowledge between different scientific and engineering disciplines. With over 1500 person years of effort behind it, TRIZ represents the biggest study of human creativity ever conducted, whose aim has been to establish a system into which all known solutions can be placed, classified in terms of function. At present, the functional classification structure covers nearly 3 000 000 of the world's successful patents and large proportions of the known physical, chemical and mathematical knowledge-base. Additional tools are the identification of factors which prevent the attainment of new technology, leading directly to a system of inventive principles which will resolve the impasse, a series of evolutionary trends of development, and to a system of methods for effecting change in a system (Su-fields). As yet, the database contains little biological knowledge despite early recognition by the instigator of TRIZ (Genrich Altshuller) that one day it should. This is illustrated by natural systems evolved for thermal stability and the maintenance of cleanliness.

  8. Support Vector Machine algorithm for regression and classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chenggang; Zavaljevski, Nela

    2001-08-01

    The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less

  9. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    PubMed

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  10. Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification.

    PubMed

    She, Qingshan; Ma, Yuliang; Meng, Ming; Luo, Zhizeng

    2015-01-01

    Motor imagery electroencephalography is widely used in the brain-computer interface systems. Due to inherent characteristics of electroencephalography signals, accurate and real-time multiclass classification is always challenging. In order to solve this problem, a multiclass posterior probability solution for twin SVM is proposed by the ranking continuous output and pairwise coupling in this paper. First, two-class posterior probability model is constructed to approximate the posterior probability by the ranking continuous output techniques and Platt's estimating method. Secondly, a solution of multiclass probabilistic outputs for twin SVM is provided by combining every pair of class probabilities according to the method of pairwise coupling. Finally, the proposed method is compared with multiclass SVM and twin SVM via voting, and multiclass posterior probability SVM using different coupling approaches. The efficacy on the classification accuracy and time complexity of the proposed method has been demonstrated by both the UCI benchmark datasets and real world EEG data from BCI Competition IV Dataset 2a, respectively.

  11. Using cluster analysis for medical resource decision making.

    PubMed

    Dilts, D; Khamalah, J; Plotkin, A

    1995-01-01

    Escalating costs of health care delivery have in the recent past often made the health care industry investigate, adapt, and apply those management techniques relating to budgeting, resource control, and forecasting that have long been used in the manufacturing sector. A strategy that has contributed much in this direction is the definition and classification of a hospital's output into "products" or groups of patients that impose similar resource or cost demands on the hospital. Existing classification schemes have frequently employed cluster analysis in generating these groupings. Unfortunately, the myriad articles and books on clustering and classification contain few formalized selection methodologies for choosing a technique for solving a particular problem, hence they often leave the novice investigator at a loss. This paper reviews the literature on clustering, particularly as it has been applied in the medical resource-utilization domain, addresses the critical choices facing an investigator in the medical field using cluster analysis, and offers suggestions (using the example of clustering low-vision patients) for how such choices can be made.

  12. Applying deep neural networks to HEP job classification

    NASA Astrophysics Data System (ADS)

    Wang, L.; Shi, J.; Yan, X.

    2015-12-01

    The cluster of IHEP computing center is a middle-sized computing system which provides 10 thousands CPU cores, 5 PB disk storage, and 40 GB/s IO throughput. Its 1000+ users come from a variety of HEP experiments. In such a system, job classification is an indispensable task. Although experienced administrator can classify a HEP job by its IO pattern, it is unpractical to classify millions of jobs manually. We present how to solve this problem with deep neural networks in a supervised learning way. Firstly, we built a training data set of 320K samples by an IO pattern collection agent and a semi-automatic process of sample labelling. Then we implemented and trained DNNs models with Torch. During the process of model training, several meta-parameters was tuned with cross-validations. Test results show that a 5- hidden-layer DNNs model achieves 96% precision on the classification task. By comparison, it outperforms a linear model by 8% precision.

  13. Optical signal processing using photonic reservoir computing

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Dehyadegari, Louiza

    2014-10-01

    As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.

  14. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  15. Classification and recognition of dynamical models: the role of phase, independent components, kernels and optimal transport.

    PubMed

    Bissacco, Alessandro; Chiuso, Alessandro; Soatto, Stefano

    2007-11-01

    We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and non-minimum phase, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum phase behavior, while taking into account higher-order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models that includes their dynamics, their initial conditions as well as input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models), and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, non-minimum phase behavior, and non-Gaussian input distributions.

  16. Crop classification and mapping based on Sentinel missions data in cloud environment

    NASA Astrophysics Data System (ADS)

    Lavreniuk, M. S.; Kussul, N.; Shelestov, A.; Vasiliev, V.

    2017-12-01

    Availability of high resolution satellite imagery (Sentinel-1/2/3, Landsat) over large territories opens new opportunities in agricultural monitoring. In particular, it becomes feasible to solve crop classification and crop mapping task at country and regional scale using time series of heterogenous satellite imagery. But in this case, we face with the problem of Big Data. Dealing with time series of high resolution (10 m) multispectral imagery we need to download huge volumes of data and then process them. The solution is to move "processing chain" closer to data itself to drastically shorten time for data transfer. One more advantage of such approach is the possibility to parallelize data processing workflow and efficiently implement machine learning algorithms. This could be done with cloud platform where Sentinel imagery are stored. In this study, we investigate usability and efficiency of two different cloud platforms Amazon and Google for crop classification and crop mapping problems. Two pilot areas were investigated - Ukraine and England. Google provides user friendly environment Google Earth Engine for Earth observation applications with a lot of data processing and machine learning tools already deployed. At the same time with Amazon one gets much more flexibility in implementation of his own workflow. Detailed analysis of pros and cons will be done in the presentation.

  17. A multi-label, semi-supervised classification approach applied to personality prediction in social media.

    PubMed

    Lima, Ana Carolina E S; de Castro, Leandro Nunes

    2014-10-01

    Social media allow web users to create and share content pertaining to different subjects, exposing their activities, opinions, feelings and thoughts. In this context, online social media has attracted the interest of data scientists seeking to understand behaviours and trends, whilst collecting statistics for social sites. One potential application for these data is personality prediction, which aims to understand a user's behaviour within social media. Traditional personality prediction relies on users' profiles, their status updates, the messages they post, etc. Here, a personality prediction system for social media data is introduced that differs from most approaches in the literature, in that it works with groups of texts, instead of single texts, and does not take users' profiles into account. Also, the proposed approach extracts meta-attributes from texts and does not work directly with the content of the messages. The set of possible personality traits is taken from the Big Five model and allows the problem to be characterised as a multi-label classification task. The problem is then transformed into a set of five binary classification problems and solved by means of a semi-supervised learning approach, due to the difficulty in annotating the massive amounts of data generated in social media. In our implementation, the proposed system was trained with three well-known machine-learning algorithms, namely a Naïve Bayes classifier, a Support Vector Machine, and a Multilayer Perceptron neural network. The system was applied to predict the personality of Tweets taken from three datasets available in the literature, and resulted in an approximately 83% accurate prediction, with some of the personality traits presenting better individual classification rates than others. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Model and Data Reduction for Control, Identification and Compressed Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Boris

    This dissertation focuses on problems in design, optimization and control of complex, large-scale dynamical systems from different viewpoints. The goal is to develop new algorithms and methods, that solve real problems more efficiently, together with providing mathematical insight into the success of those methods. There are three main contributions in this dissertation. In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equations, which arise in optimal control, filtering and model reduction. We present a projection based algorithm utilizing proper orthogonal decomposition, which is demonstrated to produce highly accurate solutions at low rank. The method is parallelizable, easy to implement for practitioners, and is a first step towards a matrix free approach to solve AREs. Numerical examples for n ≥ 106 unknowns are presented. In Chapter 4, we develop a system identification method which is motivated by tangential interpolation. This addresses the challenge of fitting linear time invariant systems to input-output responses of complex dynamics, where the number of inputs and outputs is relatively large. The method reduces the computational burden imposed by a full singular value decomposition, by carefully choosing directions on which to project the impulse response prior to assembly of the Hankel matrix. The identification and model reduction step follows from the eigensystem realization algorithm. We present three numerical examples, a mass spring damper system, a heat transfer problem, and a fluid dynamics system. We obtain error bounds and stability results for this method. Chapter 5 deals with control and observation design for parameter dependent dynamical systems. We address this by using local parametric reduced order models, which can be used online. Data available from simulations of the system at various configurations (parameters, boundary conditions) is used to extract a sparse basis to represent the dynamics (via dynamic mode decomposition). Subsequently, a new, compressed sensing based classification algorithm is developed which incorporates the extracted dynamic information into the sensing basis. We show that this augmented classification basis makes the method more robust to noise, and results in superior identification of the correct parameter. Numerical examples consist of a Navier-Stokes, as well as a Boussinesq flow application.

  19. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  20. Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing.

    PubMed

    Chica, Manuel

    2012-11-01

    A novel method for authenticating pollen grains in bright-field microscopic images is presented in this work. The usage of this new method is clear in many application fields such as bee-keeping sector, where laboratory experts need to identify fraudulent bee pollen samples against local known pollen types. Our system is based on image processing and one-class classification to reject unknown pollen grain objects. The latter classification technique allows us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types, and the impossibility of modeling all of them. Different one-class classification paradigms are compared to study the most suitable technique for solving the problem. In addition, feature selection algorithms are applied to reduce the complexity and increase the accuracy of the models. For each local pollen type, a one-class classifier is trained and aggregated into a multiclassifier model. This multiclassification scheme combines the output of all the one-class classifiers in a unique final response. The proposed method is validated by authenticating pollen grains belonging to different Spanish bee pollen types. The overall accuracy of the system on classifying fraudulent microscopic pollen grain objects is 92.3%. The system is able to rapidly reject pollen grains, which belong to nonlocal pollen types, reducing the laboratory work and effort. The number of possible applications of this authentication method in the microscopy research field is unlimited. Copyright © 2012 Wiley Periodicals, Inc.

  1. Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics

    NASA Technical Reports Server (NTRS)

    Karassiov, V. P.

    1994-01-01

    The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.

  2. Critical evaluation of biodegradable polymers used in nanodrugs

    PubMed Central

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  3. Non-invertible transformations of differential-difference equations

    NASA Astrophysics Data System (ADS)

    Garifullin, R. N.; Yamilov, R. I.; Levi, D.

    2016-09-01

    We discuss aspects of the theory of non-invertible transformations of differential-difference equations and, in particular, the notion of Miura type transformation. We introduce the concept of non-Miura type linearizable transformation and we present techniques that allow one to construct simple linearizable transformations and might help one to solve classification problems. This theory is illustrated by the example of a new integrable differential-difference equation depending on five lattice points, interesting from the viewpoint of the non-invertible transformation, which relate it to an Itoh-Narita-Bogoyavlensky equation.

  4. Towards an Effective Theory of Reformulation. Part 1; Semantics

    NASA Technical Reports Server (NTRS)

    Benjamin, D. Paul

    1992-01-01

    This paper describes an investigation into the structure of representations of sets of actions, utilizing semigroup theory. The goals of this project are twofold: to shed light on the relationship between tasks and representations, leading to a classification of tasks according to the representations they admit; and to develop techniques for automatically transforming representations so as to improve problem-solving performance. A method is demonstrated for automatically generating serial algorithms for representations whose actions form a finite group. This method is then extended to representations whose actions form a finite inverse semigroup.

  5. Towards fish-eye camera based in-home activity assessment.

    PubMed

    Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha

    2008-01-01

    Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.

  6. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  7. Classical Model of the Electromagnetic Interaction Suitable for High Speed Semiconductor Device Simulation

    DTIC Science & Technology

    2006-11-01

    color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18 . NUMBER OF PAGES 8 19a. NAME OF...Std Z39- 18 small problem domain can require millions of solution vari- ables solved repeatedly for tens of thousands of time steps. Finally, the...terms of vector and scalar potentials, A and ψ respec- tively. E = − ( ∂A ∂t +∇ψ ) = Erot + Eirr (5) Since the curl of a gradient is always zero, ∇ψ

  8. Applying local binary patterns in image clustering problems

    NASA Astrophysics Data System (ADS)

    Skorokhod, Nikolai N.; Elizarov, Alexey I.

    2017-11-01

    Due to the fact that the cloudiness plays a critical role in the Earth radiative balance, the study of the distribution of different types of clouds and their movements is relevant. The main sources of such information are artificial satellites that provide data in the form of images. The most commonly used method of solving tasks of processing and classification of images of clouds is based on the description of texture features. The use of a set of local binary patterns is proposed to describe the texture image.

  9. An auxiliary classification diagnosis software development of cervical cancer medical data based on various artificial neural networks

    NASA Astrophysics Data System (ADS)

    Qi, Yong; Lei, Kai; Zhang, Lizeqing; Xing, Ximing; Gou, Wenyue

    2018-06-01

    This paper introduced the development of a self-serving medical data assisted diagnosis software of cervical cancer on the basis of artificial neural network (SVN, FNN, KNN). The system is developed based on the idea of self-service platform, supported by the application and innovation of neural network algorithm in medical data identification. Furthermore, it combined the advanced methods in various fields to effectively solve the complicated and inaccurate problem of cervical canceration data in the traditional manual treatment.

  10. Intelligent tutoring systems as tools for investigating individual differences in learning

    NASA Technical Reports Server (NTRS)

    Shute, Valerie J.

    1987-01-01

    The ultimate goal of this research is to build an improved model-based selection and classification system for the United States Air Force. Researchers are developing innovative approaches to ability testing. The Learning Abilities Measurement Program (LAMP) examines individual differences in learning abilities, seeking answers to the questions of why some people learn more and better than others and whether there are basic cognitive processes applicable across tasks and domains that are predictive of successful performance (or whether there are more complex problem solving behaviors involved).

  11. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  12. The program LOPT for least-squares optimization of energy levels

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    2011-02-01

    The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.

  13. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  14. Aquifer Hydrogeologic Layer Zonation at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savelieva-Trofimova, Elena A.; Kanevski, Mikhail; timonin, v.

    2003-09-10

    Sedimentary aquifer layers are characterized by spatial variability of hydraulic properties. Nevertheless, zones with similar values of hydraulic parameters (parameter zones) can be distinguished. This parameter zonation approach is an alternative to the analysis of spatial variation of the continuous hydraulic parameters. The parameter zonation approach is primarily motivated by the lack of measurements that would be needed for direct spatial modeling of the hydraulic properties. The current work is devoted to the problem of zonation of the Hanford formation, the uppermost sedimentary aquifer unit (U1) included in hydrogeologic models at the Hanford site. U1 is characterized by 5 zonesmore » with different hydraulic properties. Each sampled location is ascribed to a parameter zone by an expert. This initial classification is accompanied by a measure of quality (also indicated by an expert) that addresses the level of classification confidence. In the current study, the coneptual zonation map developed by an expert geologist was used as an a priori model. The parameter zonation problem was formulated as a multiclass classification task. Different geostatistical and machine learning algorithms were adapted and applied to solve this problem, including: indicator kriging, conditional simulations, neural networks of different architectures, and support vector machines. All methods were trained using additional soft information based on expert estimates. Regularization methods were used to overcome possible overfitting. The zonation problem was complicated because there were few samples for some zones (classes) and by the spatial non-stationarity of the data. Special approaches were developed to overcome these complications. The comparison of different methods was performed using qualitative and quantitative statistical methods and image analysis. We examined the correspondence of the results with the geologically based interpretation, including the reproduction of the spatial orientation of the different classes and the spatial correlation structure of the classes. The uncertainty of the classification task was examined using both probabilistic interpretation of the estimators and by examining the results of a set of stochastic realizations. Characterization of the classification uncertainty is the main advantage of the proposed methods.« less

  15. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms

    PubMed Central

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2016-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and “neuromorphic algorithms” are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for scalability, maximum throughput, and minimum latency. Moreover, our results indicate that special attention should be paid to minimize host-device communication when designing and implementing networks for efficient neuromorphic computing. PMID:26778950

  16. GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.

    PubMed

    Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd

    2018-01-01

    In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.

  17. Rule extraction from minimal neural networks for credit card screening.

    PubMed

    Setiono, Rudy; Baesens, Bart; Mues, Christophe

    2011-08-01

    While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting.

  18. Sentiments Analysis of Reviews Based on ARCNN Model

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyu; Xu, Ming; Xu, Jian; Zheng, Ning; Yang, Tao

    2017-10-01

    The sentiments analysis of product reviews is designed to help customers understand the status of the product. The traditional method of sentiments analysis relies on the input of a fixed feature vector which is performance bottleneck of the basic codec architecture. In this paper, we propose an attention mechanism with BRNN-CNN model, referring to as ARCNN model. In order to have a good analysis of the semantic relations between words and solves the problem of dimension disaster, we use the GloVe algorithm to train the vector representations for words. Then, ARCNN model is proposed to deal with the problem of deep features training. Specifically, BRNN model is proposed to investigate non-fixed-length vectors and keep time series information perfectly and CNN can study more connection of deep semantic links. Moreover, the attention mechanism can automatically learn from the data and optimize the allocation of weights. Finally, a softmax classifier is designed to complete the sentiment classification of reviews. Experiments show that the proposed method can improve the accuracy of sentiment classification compared with benchmark methods.

  19. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  20. On the classification of normally distributed neurons: an application to human dentate nucleus.

    PubMed

    Ristanović, Dušan; Milošević, Nebojša T; Marić, Dušica L

    2011-03-01

    One of the major goals in cellular neurobiology is the meaningful cell classification. However, in cell classification there are many unresolved issues that need to be addressed. Neuronal classification usually starts with grouping cells into classes according to their main morphological features. If one tries to test quantitatively such a qualitative classification, a considerable overlap in cell types often appears. There is little published information on it. In order to remove the above-mentioned shortcoming, we undertook the present study with the aim to offer a novel method for solving the class overlapping problem. To illustrate our method, we analyzed a sample of 124 neurons from adult human dentate nucleus. Among them we qualitatively selected 55 neurons with small dendritic fields (the small neurons), and 69 asymmetrical neurons with large dendritic fields (the large neurons). We showed that these two samples are normally and independently distributed. By measuring the neuronal soma areas of both samples, we observed that the corresponding normal curves cut each other. We proved that the abscissa of the point of intersection of the curves could represent the boundary between the two adjacent overlapping neuronal classes, since the error done by such division is minimal. Statistical evaluation of the division was also performed.

  1. Discriminant WSRC for Large-Scale Plant Species Recognition.

    PubMed

    Zhang, Shanwen; Zhang, Chuanlei; Zhu, Yihai; You, Zhuhong

    2017-01-01

    In sparse representation based classification (SRC) and weighted SRC (WSRC), it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC) is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  2. Eddy-Current Sensors with Asymmetrical Point Spread Function

    PubMed Central

    Gajda, Janusz; Stencel, Marek

    2016-01-01

    This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm. PMID:27782033

  3. Eddy-Current Sensors with Asymmetrical Point Spread Function.

    PubMed

    Gajda, Janusz; Stencel, Marek

    2016-10-04

    This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm.

  4. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  5. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223

  6. Joint tumor segmentation and dense deformable registration of brain MR images.

    PubMed

    Parisot, Sarah; Duffau, Hugues; Chemouny, Stéphane; Paragios, Nikos

    2012-01-01

    In this paper we propose a novel graph-based concurrent registration and segmentation framework. Registration is modeled with a pairwise graphical model formulation that is modular with respect to the data and regularization term. Segmentation is addressed by adopting a similar graphical model, using image-based classification techniques while producing a smooth solution. The two problems are coupled via a relaxation of the registration criterion in the presence of tumors as well as a segmentation through a registration term aiming the separation between healthy and diseased tissues. Efficient linear programming is used to solve both problems simultaneously. State of the art results demonstrate the potential of our method on a large and challenging low-grade glioma data set.

  7. On the clustering of multidimensional pictorial data

    NASA Technical Reports Server (NTRS)

    Bryant, J. D. (Principal Investigator)

    1979-01-01

    Obvious approaches to reducing the cost (in computer resources) of applying current clustering techniques to the problem of remote sensing are discussed. The use of spatial information in finding fields and in classifying mixture pixels is examined, and the AMOEBA clustering program is described. Internally, a pattern recognition program, from without, AMOEBA appears to be an unsupervised clustering program. It is fast and automatic. No choices (such as arbitrary thresholds to set split/combine sequences) need be made. The problem of finding the number of clusters is solved automatically. At the conclusion of the program, all points in the scene are classified; however, a provision is included for a reject classification of some points which, within the theoretical framework, cannot rationally be assigned to any cluster.

  8. Distance Constraint Satisfaction Problems

    NASA Astrophysics Data System (ADS)

    Bodirsky, Manuel; Dalmau, Victor; Martin, Barnaby; Pinsker, Michael

    We study the complexity of constraint satisfaction problems for templates Γ that are first-order definable in ({ Z}; {suc}), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Γ is locally finite (i.e., the Gaifman graph of Γ has finite degree). We show that one of the following is true: The structure Γ is homomorphically equivalent to a structure with a certain majority polymorphism (which we call modular median) and CSP(Γ) can be solved in polynomial time, or Γ is homomorphically equivalent to a finite transitive structure, or CSP(Γ) is NP-complete.

  9. Evaluation of the performance of the cross-flow air classifier in manufactured sand processing via CFD-DEM simulations

    NASA Astrophysics Data System (ADS)

    Petit, H. A.; Irassar, E. F.; Barbosa, M. R.

    2018-01-01

    Manufactured sands are particulate materials obtained as by product of rock crushing. Particle sizes in the sand can be as high as 6 mm and as low as a few microns. The concrete industry has been increasingly using these sands as fine aggregates to replace natural sands. The main shortcoming is the excess of particles smaller than <0.075 mm (Dust). This problem has been traditionally solved by a washing process. Air classification is being studied to replace the washing process and avoid the use of water. The complex classification process can only been understood with the aid of CFD-DEM simulations. This paper evaluates the applicability of a cross-flow air classifier to reduce the amount of dust in manufactured sands. Computational fluid dynamics (CFD) and discrete element modelling (DEM) were used for the assessment. Results show that the correct classification set up improves the size distribution of the raw materials. The cross-flow air classification is found to be influenced by the particle size distribution and the turbulence inside the chamber. The classifier can be re-designed to work at low inlet velocities to produce manufactured sand for the concrete industry.

  10. An extension of the receiver operating characteristic curve and AUC-optimal classification.

    PubMed

    Takenouchi, Takashi; Komori, Osamu; Eguchi, Shinto

    2012-10-01

    While most proposed methods for solving classification problems focus on minimization of the classification error rate, we are interested in the receiver operating characteristic (ROC) curve, which provides more information about classification performance than the error rate does. The area under the ROC curve (AUC) is a natural measure for overall assessment of a classifier based on the ROC curve. We discuss a class of concave functions for AUC maximization in which a boosting-type algorithm including RankBoost is considered, and the Bayesian risk consistency and the lower bound of the optimum function are discussed. A procedure derived by maximizing a specific optimum function has high robustness, based on gross error sensitivity. Additionally, we focus on the partial AUC, which is the partial area under the ROC curve. For example, in medical screening, a high true-positive rate to the fixed lower false-positive rate is preferable and thus the partial AUC corresponding to lower false-positive rates is much more important than the remaining AUC. We extend the class of concave optimum functions for partial AUC optimality with the boosting algorithm. We investigated the validity of the proposed method through several experiments with data sets in the UCI repository.

  11. Active learning for solving the incomplete data problem in facial age classification by the furthest nearest-neighbor criterion.

    PubMed

    Wang, Jian-Gang; Sung, Eric; Yau, Wei-Yun

    2011-07-01

    Facial age classification is an approach to classify face images into one of several predefined age groups. One of the difficulties in applying learning techniques to the age classification problem is the large amount of labeled training data required. Acquiring such training data is very costly in terms of age progress, privacy, human time, and effort. Although unlabeled face images can be obtained easily, it would be expensive to manually label them on a large scale and getting the ground truth. The frugal selection of the unlabeled data for labeling to quickly reach high classification performance with minimal labeling efforts is a challenging problem. In this paper, we present an active learning approach based on an online incremental bilateral two-dimension linear discriminant analysis (IB2DLDA) which initially learns from a small pool of labeled data and then iteratively selects the most informative samples from the unlabeled set to increasingly improve the classifier. Specifically, we propose a novel data selection criterion called the furthest nearest-neighbor (FNN) that generalizes the margin-based uncertainty to the multiclass case and which is easy to compute, so that the proposed active learning algorithm can handle a large number of classes and large data sizes efficiently. Empirical experiments on FG-NET and Morph databases together with a large unlabeled data set for age categorization problems show that the proposed approach can achieve results comparable or even outperform a conventionally trained active classifier that requires much more labeling effort. Our IB2DLDA-FNN algorithm can achieve similar results much faster than random selection and with fewer samples for age categorization. It also can achieve comparable results with active SVM but is much faster than active SVM in terms of training because kernel methods are not needed. The results on the face recognition database and palmprint/palm vein database showed that our approach can handle problems with large number of classes. Our contributions in this paper are twofold. First, we proposed the IB2DLDA-FNN, the FNN being our novel idea, as a generic on-line or active learning paradigm. Second, we showed that it can be another viable tool for active learning of facial age range classification.

  12. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  13. Combinatorial Optimization Algorithms for Dynamic Multiple Fault Diagnosis in Automotive and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kodali, Anuradha

    In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.

  14. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  15. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications.

    PubMed

    Ye, Fei; Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.

  16. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications

    PubMed Central

    Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096

  17. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider. Conclusion By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition. PMID:17570145

  18. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  19. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  20. Data mining for water resource management part 2 - methods and approaches to solving contemporary problems

    USGS Publications Warehouse

    Roehl, Edwin A.; Conrads, Paul

    2010-01-01

    This is the second of two papers that describe how data mining can aid natural-resource managers with the difficult problem of controlling the interactions between hydrologic and man-made systems. Data mining is a new science that assists scientists in converting large databases into knowledge, and is uniquely able to leverage the large amounts of real-time, multivariate data now being collected for hydrologic systems. Part 1 gives a high-level overview of data mining, and describes several applications that have addressed major water resource issues in South Carolina. This Part 2 paper describes how various data mining methods are integrated to produce predictive models for controlling surface- and groundwater hydraulics and quality. The methods include: - signal processing to remove noise and decompose complex signals into simpler components; - time series clustering that optimally groups hundreds of signals into "classes" that behave similarly for data reduction and (or) divide-and-conquer problem solving; - classification which optimally matches new data to behavioral classes; - artificial neural networks which optimally fit multivariate data to create predictive models; - model response surface visualization that greatly aids in understanding data and physical processes; and, - decision support systems that integrate data, models, and graphics into a single package that is easy to use.

  1. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  2. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  3. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  4. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  5. Fine-grained parallelization of fitness functions in bioinformatics optimization problems: gene selection for cancer classification and biclustering of gene expression data.

    PubMed

    Gomez-Pulido, Juan A; Cerrada-Barrios, Jose L; Trinidad-Amado, Sebastian; Lanza-Gutierrez, Jose M; Fernandez-Diaz, Ramon A; Crawford, Broderick; Soto, Ricardo

    2016-08-31

    Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.

  6. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  7. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  8. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  9. Robust feature extraction for rapid classification of damage in composites

    NASA Astrophysics Data System (ADS)

    Coelho, Clyde K.; Reynolds, Whitney; Chattopadhyay, Aditi

    2009-03-01

    The ability to detect anomalies in signals from sensors is imperative for structural health monitoring (SHM) applications. Many of the candidate algorithms for these applications either require a lot of training examples or are very computationally inefficient for large sample sizes. The damage detection framework presented in this paper uses a combination of Linear Discriminant Analysis (LDA) along with Support Vector Machines (SVM) to obtain a computationally efficient classification scheme for rapid damage state determination. LDA was used for feature extraction of damage signals from piezoelectric sensors on a composite plate and these features were used to train the SVM algorithm in parts, reducing the computational intensity associated with the quadratic optimization problem that needs to be solved during training. SVM classifiers were organized into a binary tree structure to speed up classification, which also reduces the total training time required. This framework was validated on composite plates that were impacted at various locations. The results show that the algorithm was able to correctly predict the different impact damage cases in composite laminates using less than 21 percent of the total available training data after data reduction.

  10. Comparison of Different EHG Feature Selection Methods for the Detection of Preterm Labor

    PubMed Central

    Alamedine, D.; Khalil, M.; Marque, C.

    2013-01-01

    Numerous types of linear and nonlinear features have been extracted from the electrohysterogram (EHG) in order to classify labor and pregnancy contractions. As a result, the number of available features is now very large. The goal of this study is to reduce the number of features by selecting only the relevant ones which are useful for solving the classification problem. This paper presents three methods for feature subset selection that can be applied to choose the best subsets for classifying labor and pregnancy contractions: an algorithm using the Jeffrey divergence (JD) distance, a sequential forward selection (SFS) algorithm, and a binary particle swarm optimization (BPSO) algorithm. The two last methods are based on a classifier and were tested with three types of classifiers. These methods have allowed us to identify common features which are relevant for contraction classification. PMID:24454536

  11. Enhanced risk management by an emerging multi-agent architecture

    NASA Astrophysics Data System (ADS)

    Lin, Sin-Jin; Hsu, Ming-Fu

    2014-07-01

    Classification in imbalanced datasets has attracted much attention from researchers in the field of machine learning. Most existing techniques tend not to perform well on minority class instances when the dataset is highly skewed because they focus on minimising the forecasting error without considering the relative distribution of each class. This investigation proposes an emerging multi-agent architecture, grounded on cooperative learning, to solve the class-imbalanced classification problem. Additionally, this study deals further with the obscure nature of the multi-agent architecture and expresses comprehensive rules for auditors. The results from this study indicate that the presented model performs satisfactorily in risk management and is able to tackle a highly class-imbalanced dataset comparatively well. Furthermore, the knowledge visualised process, supported by real examples, can assist both internal and external auditors who must allocate limited detecting resources; they can take the rules as roadmaps to modify the auditing programme.

  12. Single image super-resolution based on approximated Heaviside functions and iterative refinement

    PubMed Central

    Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian

    2018-01-01

    One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298

  13. Stages as models of scene geometry.

    PubMed

    Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

    2010-09-01

    Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations.

  14. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  15. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  16. Classification Influence of Features on Given Emotions and Its Application in Feature Selection

    NASA Astrophysics Data System (ADS)

    Xing, Yin; Chen, Chuang; Liu, Li-Long

    2018-04-01

    In order to solve the problem that there is a large amount of redundant data in high-dimensional speech emotion features, we analyze deeply the extracted speech emotion features and select better features. Firstly, a given emotion is classified by each feature. Secondly, the recognition rate is ranked in descending order. Then, the optimal threshold of features is determined by rate criterion. Finally, the better features are obtained. When applied in Berlin and Chinese emotional data set, the experimental results show that the feature selection method outperforms the other traditional methods.

  17. E-book recommender system design and implementation based on data mining

    NASA Astrophysics Data System (ADS)

    Wang, Zongjiang

    2011-12-01

    In the knowledge explosion, rapid development of information age, how quickly the user or users interested in useful information for feedback to the user problem to be solved in this article. This paper based on data mining, association rules to the model and classification model a combination of electronic books on the recommendation of the user's neighboring users interested in e-books to target users. Introduced the e-book recommendation and the key technologies, system implementation algorithms, and implementation process, was proved through experiments that this system can help users quickly find the required e-books.

  18. Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening

    PubMed Central

    Pan, Rui; Wang, Hansheng; Li, Runze

    2016-01-01

    This paper is concerned with the problem of feature screening for multi-class linear discriminant analysis under ultrahigh dimensional setting. We allow the number of classes to be relatively large. As a result, the total number of relevant features is larger than usual. This makes the related classification problem much more challenging than the conventional one, where the number of classes is small (very often two). To solve the problem, we propose a novel pairwise sure independence screening method for linear discriminant analysis with an ultrahigh dimensional predictor. The proposed procedure is directly applicable to the situation with many classes. We further prove that the proposed method is screening consistent. Simulation studies are conducted to assess the finite sample performance of the new procedure. We also demonstrate the proposed methodology via an empirical analysis of a real life example on handwritten Chinese character recognition. PMID:28127109

  19. The weaker points of fish acute toxicity tests and how tests on embryos can solve some issues.

    PubMed

    Wedekind, Claus; von Siebenthal, Beat; Gingold, Ruth

    2007-07-01

    Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.

  20. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  1. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  2. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  4. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  5. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  6. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  7. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  8. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  9. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  10. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  11. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  12. Hospital Management Between The Modern Image And Aging

    NASA Astrophysics Data System (ADS)

    Dadulescu, Ana-Maria

    2015-09-01

    Hospital management has experienced significant progress with the evolution of the Romanian health system reform, it has made strides in terms of resource allocation and cost control, new systems for classification, evaluation and monitoring (DRGs, SIUI, CaPeSaRo) were implemented, some taken from other countries and adapted to local conditions, but not always integrated with the other components and sometimes incompletely implemented and developed. This material does not offer definite solutions to current problems. It only briefly addresses the main aspects of hospital activity, and points out some failures with whom hospital managers are presently faced. Once the problems are identified it creates prerequisites for solving them, it opens channels of research and development of new methodologies or correlation of the existing deficient workflows that can be corrected.

  13. Fast object detection algorithm based on HOG and CNN

    NASA Astrophysics Data System (ADS)

    Lu, Tongwei; Wang, Dandan; Zhang, Yanduo

    2018-04-01

    In the field of computer vision, object classification and object detection are widely used in many fields. The traditional object detection have two main problems:one is that sliding window of the regional selection strategy is high time complexity and have window redundancy. And the other one is that Robustness of the feature is not well. In order to solve those problems, Regional Proposal Network (RPN) is used to select candidate regions instead of selective search algorithm. Compared with traditional algorithms and selective search algorithms, RPN has higher efficiency and accuracy. We combine HOG feature and convolution neural network (CNN) to extract features. And we use SVM to classify. For TorontoNet, our algorithm's mAP is 1.6 percentage points higher. For OxfordNet, our algorithm's mAP is 1.3 percentage higher.

  14. TWSVR: Regression via Twin Support Vector Machine.

    PubMed

    Khemchandani, Reshma; Goyal, Keshav; Chandra, Suresh

    2016-02-01

    Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately constructed classification problem. To check the efficacy of our proposed TWSVR we compare its performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Two fast approximate wavelet algorithms for image processing, classification, and recognition

    NASA Astrophysics Data System (ADS)

    Wickerhauser, Mladen V.

    1994-07-01

    We use large libraries of template waveforms with remarkable orthogonality properties to recast the relatively complex principal orthogonal decomposition (POD) into an optimization problem with a fast solution algorithm. Then it becomes practical to use POD to solve two related problems: recognizing or classifying images, and inverting a complicated map from a low-dimensional configuration space to a high-dimensional measurement space. In the case where the number N of pixels or measurements is more than 1000 or so, the classical O(N3) POD algorithms becomes very costly, but it can be replaced with an approximate best-basis method that has complexity O(N2logN). A variation of POD can also be used to compute an approximate Jacobian for the complicated map.

  16. Filing Reprints: Can Office Staff Help?

    PubMed Central

    Putnam, R. W.; Gass, D. A.; Curry, Lynn

    1985-01-01

    Filing systems for reprints must be tailored to the individual's practice profile, to maximize usefulness as a resource for clinical problem solving. However, the clerical time involved often reduces the physician's ability to maintain such a filing system. The authors tested two hypotheses that using the International Classification of Health Problems in Primary Care (ICHPPC) nurses or receptionists could code, cross reference and file reprints after the physician has selected the articles. Contents pages of five primary care journals were given to two academic family physicians, two practicing physicians, a research assistant and two receptionists, one of whom had used ICHPPC to record patient encounters. All coders except the second receptionist, who was unfamiliar with ICHPPC, reached good agreement in coding. Filing reprints may therefore be done by trained staff for groups of physicians. PMID:21274020

  17. Building Extraction Based on Openstreetmap Tags and Very High Spatial Resolution Image in Urban Area

    NASA Astrophysics Data System (ADS)

    Kang, L.; Wang, Q.; Yan, H. W.

    2018-04-01

    How to derive contour of buildings from VHR images is the essential problem for automatic building extraction in urban area. To solve this problem, OSM data is introduced to offer vector contour information of buildings which is hard to get from VHR images. First, we import OSM data into database. The line string data of OSM with tags of building, amenity, office etc. are selected and combined into completed contours; Second, the accuracy of contours of buildings is confirmed by comparing with the real buildings in Google Earth; Third, maximum likelihood classification is conducted with the confirmed building contours, and the result demonstrates that the proposed approach is effective and accurate. The approach offers a new way for automatic interpretation of VHR images.

  18. Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): Application to NMR fingerprinting of wine.

    PubMed

    Monakhova, Yulia B; Godelmann, Rolf; Kuballa, Thomas; Mushtakova, Svetlana P; Rutledge, Douglas N

    2015-08-15

    Discriminant analysis (DA) methods, such as linear discriminant analysis (LDA) or factorial discriminant analysis (FDA), are well-known chemometric approaches for solving classification problems in chemistry. In most applications, principle components analysis (PCA) is used as the first step to generate orthogonal eigenvectors and the corresponding sample scores are utilized to generate discriminant features for the discrimination. Independent components analysis (ICA) based on the minimization of mutual information can be used as an alternative to PCA as a preprocessing tool for LDA and FDA classification. To illustrate the performance of this ICA/DA methodology, four representative nuclear magnetic resonance (NMR) data sets of wine samples were used. The classification was performed regarding grape variety, year of vintage and geographical origin. The average increase for ICA/DA in comparison with PCA/DA in the percentage of correct classification varied between 6±1% and 8±2%. The maximum increase in classification efficiency of 11±2% was observed for discrimination of the year of vintage (ICA/FDA) and geographical origin (ICA/LDA). The procedure to determine the number of extracted features (PCs, ICs) for the optimum DA models was discussed. The use of independent components (ICs) instead of principle components (PCs) resulted in improved classification performance of DA methods. The ICA/LDA method is preferable to ICA/FDA for recognition tasks based on NMR spectroscopic measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  20. An experience sampling study of learning, affect, and the demands control support model.

    PubMed

    Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth

    2009-07-01

    The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.

  1. What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective

    ERIC Educational Resources Information Center

    Wareham, Todd; Evans, Patricia; van Rooij, Iris

    2011-01-01

    Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…

  2. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  3. Generalization of Social Skills: Strategies and Results of a Training Program in Problem Solving Skills.

    ERIC Educational Resources Information Center

    Paraschiv, Irina; Olley, J. Gregory

    This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…

  4. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  5. Investigating Problem-Solving Perseverance Using Lesson Study

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Huhn, Craig

    2017-01-01

    Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…

  6. Health Problems Discovery from Motion-Capture Data of Elderly

    NASA Astrophysics Data System (ADS)

    Pogorelc, B.; Gams, M.

    Rapid aging of the population of the developed countries could exceed the society's capacity for taking care for them. In order to help solving this problem, we propose a system for automatic discovery of health problems from motion-capture data of gait of elderly. The gait of the user is captured with the motion capture system, which consists of tags attached to the body and sensors situated in the apartment. Position of the tags is acquired by the sensors and the resulting time series of position coordinates are analyzed with machine learning algorithms in order to identify the specific health problem. We propose novel features for training a machine learning classifier that classifies the user's gait into: i) normal, ii) with hemiplegia, iii) with Parkinson's disease, iv) with pain in the back and v) with pain in the leg. Results show that naive Bayes needs more tags and less noise to reach classification accuracy of 98 % than support vector machines for 99 %.

  7. Problem-solving deficits in Iranian people with borderline personality disorder.

    PubMed

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  8. Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.

    PubMed

    Gonzalez, Vivian M; Neander, Lucía L

    2018-03-15

    This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.

  9. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  10. The Relationship between Students' Problem Posing and Problem Solving Abilities and Beliefs: A Small-Scale Study with Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven

    2013-01-01

    The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…

  11. An Investigation of the Effects on Students' Attitudes, Beliefs, and Abilities in Problem Solving and Mathematics after One Year of a Systematic Approach to the Learning of Problem Solving.

    ERIC Educational Resources Information Center

    Higgins, Karen M.

    This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…

  12. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.

    2005-01-01

    This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.

  13. Student’s scheme in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  14. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  15. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  16. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  17. Social Problem Solving and Depressive Symptoms Over Time: A Randomized Clinical Trial of Cognitive Behavioral Analysis System of Psychotherapy, Brief Supportive Psychotherapy, and Pharmacotherapy

    PubMed Central

    Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.

    2011-01-01

    Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885

  18. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    NASA Astrophysics Data System (ADS)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  19. Robust prediction of protein subcellular localization combining PCA and WSVMs.

    PubMed

    Tian, Jiang; Gu, Hong; Liu, Wenqi; Gao, Chiyang

    2011-08-01

    Automated prediction of protein subcellular localization is an important tool for genome annotation and drug discovery, and Support Vector Machines (SVMs) can effectively solve this problem in a supervised manner. However, the datasets obtained from real experiments are likely to contain outliers or noises, which can lead to poor generalization ability and classification accuracy. To explore this problem, we adopt strategies to lower the effect of outliers. First we design a method based on Weighted SVMs, different weights are assigned to different data points, so the training algorithm will learn the decision boundary according to the relative importance of the data points. Second we analyse the influence of Principal Component Analysis (PCA) on WSVM classification, propose a hybrid classifier combining merits of both PCA and WSVM. After performing dimension reduction operations on the datasets, kernel-based possibilistic c-means algorithm can generate more suitable weights for the training, as PCA transforms the data into a new coordinate system with largest variances affected greatly by the outliers. Experiments on benchmark datasets show promising results, which confirms the effectiveness of the proposed method in terms of prediction accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Constrained Low-Rank Learning Using Least Squares-Based Regularization.

    PubMed

    Li, Ping; Yu, Jun; Wang, Meng; Zhang, Luming; Cai, Deng; Li, Xuelong

    2017-12-01

    Low-rank learning has attracted much attention recently due to its efficacy in a rich variety of real-world tasks, e.g., subspace segmentation and image categorization. Most low-rank methods are incapable of capturing low-dimensional subspace for supervised learning tasks, e.g., classification and regression. This paper aims to learn both the discriminant low-rank representation (LRR) and the robust projecting subspace in a supervised manner. To achieve this goal, we cast the problem into a constrained rank minimization framework by adopting the least squares regularization. Naturally, the data label structure tends to resemble that of the corresponding low-dimensional representation, which is derived from the robust subspace projection of clean data by low-rank learning. Moreover, the low-dimensional representation of original data can be paired with some informative structure by imposing an appropriate constraint, e.g., Laplacian regularizer. Therefore, we propose a novel constrained LRR method. The objective function is formulated as a constrained nuclear norm minimization problem, which can be solved by the inexact augmented Lagrange multiplier algorithm. Extensive experiments on image classification, human pose estimation, and robust face recovery have confirmed the superiority of our method.

  1. Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification

    NASA Astrophysics Data System (ADS)

    He, Zhi; Liu, Lin

    2016-11-01

    Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2 -norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods.

  2. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  3. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  4. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  5. The image recognition based on neural network and Bayesian decision

    NASA Astrophysics Data System (ADS)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  6. Bilevel Model-Based Discriminative Dictionary Learning for Recognition.

    PubMed

    Zhou, Pan; Zhang, Chao; Lin, Zhouchen

    2017-03-01

    Most supervised dictionary learning methods optimize the combinations of reconstruction error, sparsity prior, and discriminative terms. Thus, the learnt dictionaries may not be optimal for recognition tasks. Also, the sparse codes learning models in the training and the testing phases are inconsistent. Besides, without utilizing the intrinsic data structure, many dictionary learning methods only employ the l 0 or l 1 norm to encode each datum independently, limiting the performance of the learnt dictionaries. We present a novel bilevel model-based discriminative dictionary learning method for recognition tasks. The upper level directly minimizes the classification error, while the lower level uses the sparsity term and the Laplacian term to characterize the intrinsic data structure. The lower level is subordinate to the upper level. Therefore, our model achieves an overall optimality for recognition in that the learnt dictionary is directly tailored for recognition. Moreover, the sparse codes learning models in the training and the testing phases can be the same. We further propose a novel method to solve our bilevel optimization problem. It first replaces the lower level with its Karush-Kuhn-Tucker conditions and then applies the alternating direction method of multipliers to solve the equivalent problem. Extensive experiments demonstrate the effectiveness and robustness of our method.

  7. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  8. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  9. Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children

    ERIC Educational Resources Information Center

    Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.

    2007-01-01

    This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…

  10. Personality, problem solving, and adolescent substance use.

    PubMed

    Jaffee, William B; D'Zurilla, Thomas J

    2009-03-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.

  11. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    NASA Astrophysics Data System (ADS)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  12. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  13. Decision-Making and Problem-Solving Approaches in Pharmacy Education

    PubMed Central

    Martin, Lindsay C.; Holdford, David A.

    2016-01-01

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823

  14. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    PubMed

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  15. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  16. Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.

    ERIC Educational Resources Information Center

    Camacho, Moises; Good, Ron

    1989-01-01

    Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…

  17. Worry and problem-solving skills and beliefs in primary school children.

    PubMed

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  18. Federated learning of predictive models from federated Electronic Health Records.

    PubMed

    Brisimi, Theodora S; Chen, Ruidi; Mela, Theofanie; Olshevsky, Alex; Paschalidis, Ioannis Ch; Shi, Wei

    2018-04-01

    In an era of "big data," computationally efficient and privacy-aware solutions for large-scale machine learning problems become crucial, especially in the healthcare domain, where large amounts of data are stored in different locations and owned by different entities. Past research has been focused on centralized algorithms, which assume the existence of a central data repository (database) which stores and can process the data from all participants. Such an architecture, however, can be impractical when data are not centrally located, it does not scale well to very large datasets, and introduces single-point of failure risks which could compromise the integrity and privacy of the data. Given scores of data widely spread across hospitals/individuals, a decentralized computationally scalable methodology is very much in need. We aim at solving a binary supervised classification problem to predict hospitalizations for cardiac events using a distributed algorithm. We seek to develop a general decentralized optimization framework enabling multiple data holders to collaborate and converge to a common predictive model, without explicitly exchanging raw data. We focus on the soft-margin l 1 -regularized sparse Support Vector Machine (sSVM) classifier. We develop an iterative cluster Primal Dual Splitting (cPDS) algorithm for solving the large-scale sSVM problem in a decentralized fashion. Such a distributed learning scheme is relevant for multi-institutional collaborations or peer-to-peer applications, allowing the data holders to collaborate, while keeping every participant's data private. We test cPDS on the problem of predicting hospitalizations due to heart diseases within a calendar year based on information in the patients Electronic Health Records prior to that year. cPDS converges faster than centralized methods at the cost of some communication between agents. It also converges faster and with less communication overhead compared to an alternative distributed algorithm. In both cases, it achieves similar prediction accuracy measured by the Area Under the Receiver Operating Characteristic Curve (AUC) of the classifier. We extract important features discovered by the algorithm that are predictive of future hospitalizations, thus providing a way to interpret the classification results and inform prevention efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    NASA Astrophysics Data System (ADS)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  20. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  1. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  3. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  4. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  5. Problem-Solving Deficits in Iranian People with Borderline Personality Disorder

    PubMed Central

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169

  6. Enhancing memory and imagination improves problem solving among individuals with depression.

    PubMed

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  7. Measuring Family Problem Solving: The Family Problem Solving Diary.

    ERIC Educational Resources Information Center

    Kieren, Dianne K.

    The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…

  8. Goal specificity and knowledge acquisition in statistics problem solving: evidence for attentional focus.

    PubMed

    Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J

    2004-12-01

    Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.

  9. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes

    PubMed Central

    Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.

    2017-01-01

    Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109

  10. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    PubMed

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. New Ideas on the Design of the Web-Based Learning System Oriented to Problem Solving from the Perspective of Question Chain and Learning Community

    ERIC Educational Resources Information Center

    Zhang, Yin; Chu, Samuel K. W.

    2016-01-01

    In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…

  12. Perceived problem solving, stress, and health among college students.

    PubMed

    Largo-Wight, Erin; Peterson, P Michael; Chen, W William

    2005-01-01

    To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.

  13. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  14. Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving

    ERIC Educational Resources Information Center

    Both, Lilly; Needham, Douglas; Wood, Eileen

    2004-01-01

    The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…

  15. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS) Severity

    PubMed Central

    Bosch-Bayard, Jorge; Galán-García, Lídice; Fernandez, Thalia; Lirio, Rolando B.; Bringas-Vega, Maria L.; Roca-Stappung, Milene; Ricardo-Garcell, Josefina; Harmony, Thalía; Valdes-Sosa, Pedro A.

    2018-01-01

    In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented. PMID:29379411

  16. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS) Severity.

    PubMed

    Bosch-Bayard, Jorge; Galán-García, Lídice; Fernandez, Thalia; Lirio, Rolando B; Bringas-Vega, Maria L; Roca-Stappung, Milene; Ricardo-Garcell, Josefina; Harmony, Thalía; Valdes-Sosa, Pedro A

    2017-01-01

    In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.

  17. The profile of students’ problem-solving skill in physics across interest program in the secondary school

    NASA Astrophysics Data System (ADS)

    Jua, S. K.; Sarwanto; Sukarmin

    2018-05-01

    Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.

  18. Distributed multimodal data fusion for large scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2006-05-01

    Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.

  19. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    NASA Astrophysics Data System (ADS)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  20. A New Problem-Posing Approach Based on Problem-Solving Strategy: Analyzing Pre-Service Primary School Teachers' Performance

    ERIC Educational Resources Information Center

    Kiliç, Çigdem

    2017-01-01

    This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…

  1. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  2. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    ERIC Educational Resources Information Center

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  3. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    ERIC Educational Resources Information Center

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  4. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  5. Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding

    ERIC Educational Resources Information Center

    Domin, Daniel; Bodner, George

    2012-01-01

    The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…

  6. Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving

    ERIC Educational Resources Information Center

    Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.

    2012-01-01

    People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…

  7. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  8. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…

  9. Problem Solving with the Elementary Youngster.

    ERIC Educational Resources Information Center

    Swartz, Vicki

    This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…

  10. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  11. The needs analysis of learning Inventive Problem Solving for technical and vocational students

    NASA Astrophysics Data System (ADS)

    Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi

    2017-08-01

    Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.

  12. Automation and adaptation: Nurses' problem-solving behavior following the implementation of bar coded medication administration technology.

    PubMed

    Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion

    2013-08-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.

  13. Automation and adaptation: Nurses’ problem-solving behavior following the implementation of bar coded medication administration technology

    PubMed Central

    Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion

    2012-01-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642

  14. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    PubMed

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  15. Students' Understandings of Gravity in an Orbiting Space-Ship

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula D.; Millar, Rosemary M.; Smith, Andrew; Sefton, Ian M.

    2004-06-01

    We report on an investigation of students' ideas about gravity after a semester of instruction in physics at university. There are two aspects to the study which was concerned with students' answers to a carefully designed qualitative examination question on gravity. The first aspect is a classification of the answers and a comparative study of the ways the problem was tackled by two large groups of students who had different backgrounds in physics and were exposed to different teaching styles. The second aspect is to investigate how students link concepts to solve the problem. We used a phenomenographic analysis of student responses to extract patterns of reasoning and alternative conceptions behind the solutions. We found no differences between the classes of answers given by students in the two courses. Our analysis also identifies a hierarchy in the complexity of the hypothetical reasoning pathways, which we interpret as reflecting the ways in which students may link concepts and resolve conflicts as they solve the problem. The hypothetical reasoning pathways may help educators to develop instructional material or lecture room dialogue in order to tease out key issues. An unexpected finding is that there is a discrepancy between our conclusion that the two groups of answers are similar and the distribution of marks awarded by the examiner - which implies that the quality of the answers is different for the two groups.

  16. Three-dimensional fingerprint recognition by using convolution neural network

    NASA Astrophysics Data System (ADS)

    Tian, Qianyu; Gao, Nan; Zhang, Zonghua

    2018-01-01

    With the development of science and technology and the improvement of social information, fingerprint recognition technology has become a hot research direction and been widely applied in many actual fields because of its feasibility and reliability. The traditional two-dimensional (2D) fingerprint recognition method relies on matching feature points. This method is not only time-consuming, but also lost three-dimensional (3D) information of fingerprint, with the fingerprint rotation, scaling, damage and other issues, a serious decline in robustness. To solve these problems, 3D fingerprint has been used to recognize human being. Because it is a new research field, there are still lots of challenging problems in 3D fingerprint recognition. This paper presents a new 3D fingerprint recognition method by using a convolution neural network (CNN). By combining 2D fingerprint and fingerprint depth map into CNN, and then through another CNN feature fusion, the characteristics of the fusion complete 3D fingerprint recognition after classification. This method not only can preserve 3D information of fingerprints, but also solves the problem of CNN input. Moreover, the recognition process is simpler than traditional feature point matching algorithm. 3D fingerprint recognition rate by using CNN is compared with other fingerprint recognition algorithms. The experimental results show that the proposed 3D fingerprint recognition method has good recognition rate and robustness.

  17. Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks.

    PubMed

    Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek

    2018-03-01

    One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.

  18. Autofocusing in digital holography using deep learning

    NASA Astrophysics Data System (ADS)

    Ren, Zhenbo; Xu, Zhimin; Lam, Edmund Y.

    2018-02-01

    In digital holography, it is critical to know the distance in order to reconstruct the multi-sectional object. This autofocusing is traditionally solved by reconstructing a stack of in-focus and out-of-focus images and using some focus metric, such as entropy or variance, to calculate the sharpness of each reconstructed image. Then the distance corresponding to the sharpest image is determined as the focal position. This method is effective but computationally demanding and time-consuming. To get an accurate estimation, one has to reconstruct many images. Sometimes after a coarse search, a refinement is needed. To overcome this problem in autofocusing, we propose to use deep learning, i.e., a convolutional neural network (CNN), to solve this problem. Autofocusing is viewed as a classification problem, in which the true distance is transferred as a label. To estimate the distance is equated to labeling a hologram correctly. To train such an algorithm, totally 1000 holograms are captured under the same environment, i.e., exposure time, incident angle, object, except the distance. There are 5 labels corresponding to 5 distances. These data are randomly split into three datasets to train, validate and test a CNN network. Experimental results show that the trained network is capable of predicting the distance without reconstructing or knowing any physical parameters about the setup. The prediction time using this method is far less than traditional autofocusing methods.

  19. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  20. Tracing for the problem-solving ability in advanced calculus class based on modification of SAVI model at Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Pujiastuti, E.; Waluya, B.; Mulyono

    2018-03-01

    There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.

  1. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  2. Analogy as a strategy for supporting complex problem solving under uncertainty.

    PubMed

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.

  3. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  4. The application of mixed recommendation algorithm with user clustering in the microblog advertisements promotion

    NASA Astrophysics Data System (ADS)

    Gong, Lina; Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-03-01

    The traditional microblog recommendation algorithm has the problems of low efficiency and modest effect in the era of big data. In the aim of solving these issues, this paper proposed a mixed recommendation algorithm with user clustering. This paper first introduced the situation of microblog marketing industry. Then, this paper elaborates the user interest modeling process and detailed advertisement recommendation methods. Finally, this paper compared the mixed recommendation algorithm with the traditional classification algorithm and mixed recommendation algorithm without user clustering. The results show that the mixed recommendation algorithm with user clustering has good accuracy and recall rate in the microblog advertisements promotion.

  5. Photometric redshift estimation based on data mining with PhotoRApToR

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; De Stefano, V.; Longo, G.

    2015-03-01

    Photometric redshifts (photo-z) are crucial to the scientific exploitation of modern panchromatic digital surveys. In this paper we present PhotoRApToR (Photometric Research Application To Redshift): a Java/C ++ based desktop application capable to solve non-linear regression and multi-variate classification problems, in particular specialized for photo-z estimation. It embeds a machine learning algorithm, namely a multi-layer neural network trained by the Quasi Newton learning rule, and special tools dedicated to pre- and post-processing data. PhotoRApToR has been successfully tested on several scientific cases. The application is available for free download from the DAME Program web site.

  6. Patient-specific semi-supervised learning for postoperative brain tumor segmentation.

    PubMed

    Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2014-01-01

    In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

  7. Blur identification by multilayer neural network based on multivalued neurons.

    PubMed

    Aizenberg, Igor; Paliy, Dmitriy V; Zurada, Jacek M; Astola, Jaakko T

    2008-05-01

    A multilayer neural network based on multivalued neurons (MLMVN) is a neural network with a traditional feedforward architecture. At the same time, this network has a number of specific different features. Its backpropagation learning algorithm is derivative-free. The functionality of MLMVN is superior to that of the traditional feedforward neural networks and of a variety kernel-based networks. Its higher flexibility and faster adaptation to the target mapping enables to model complex problems using simpler networks. In this paper, the MLMVN is used to identify both type and parameters of the point spread function, whose precise identification is of crucial importance for the image deblurring. The simulation results show the high efficiency of the proposed approach. It is confirmed that the MLMVN is a powerful tool for solving classification problems, especially multiclass ones.

  8. Quantum optimization for training support vector machines.

    PubMed

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  9. Insightful problem solving and emulation in brown capuchin monkeys.

    PubMed

    Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A

    2017-05-01

    We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.

  10. Detecting math problem solving strategies: an investigation into the use of retrospective self-reports, latency and fMRI data.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2014-02-01

    This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Problem solving therapy - use and effectiveness in general practice.

    PubMed

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  12. Collection of solved problems in physics

    NASA Astrophysics Data System (ADS)

    Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

  13. Pre-service mathematics teachers’ ability in solving well-structured problem

    NASA Astrophysics Data System (ADS)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  14. An Investigation on Chinese Teachers' Realistic Problem Posing and Problem Solving Ability and Beliefs

    ERIC Educational Resources Information Center

    Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven

    2011-01-01

    In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…

  15. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness.

    PubMed

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah

    2016-06-01

    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  16. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  17. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  18. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    PubMed

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Infrared variation reduction by simultaneous background suppression and target contrast enhancement for deep convolutional neural network-based automatic target recognition

    NASA Astrophysics Data System (ADS)

    Kim, Sungho

    2017-06-01

    Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.

  20. Calculators and Strategies for Problem Solving in Grade Seven: An Implementation Program and Study. Report No. 83:3.

    ERIC Educational Resources Information Center

    Szetela, W.; Super, D.

    A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…

  1. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  2. Problem Solving: How Can We Help Students Overcome Cognitive Difficulties

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2014-01-01

    The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…

  3. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…

  4. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  5. Neural networks in chemistry

    NASA Astrophysics Data System (ADS)

    Zupan, Jure

    1995-04-01

    All problems that in some way are linked to handling of multi-variate experiments versus multi-variate responses can be approached by the group of methods that has recently became known as the artificial neural network (ANN) techniques. In this lecture, the types of the problems that can be solved by ANN techniques rather than the ANN techniques themselves will be addressed first. This issue is rather important due to the fact that the ANN techniques can be used for a very broad range of problems and choosing the wrong method can often result in either a failure to produce an effective solution or in a very time consuming and ineffective handling. Among the types of problems that can be solved by different ANN techniques the classification, mapping, look-up table, and modelling will be emphasized and discussed. Because all mentioned methods can be solved by different standard techniques, special emphasis will be paid to stress the advantages and drawbacks when employing different ANN techniques. Due to the fact that the range of possible use of ANN is so broad, even a very specific problem can be solved by many different ANN architectures or even using different learning strategies within ANN. In the second part the main learning strategies and corresponding choices of ANN architectures will be discussed. In this part the parameters and some guidelines how to select the method and the design of the ANNs will be shown on the examples of reported ANN applications in chemistry. The ANN learning strategies discussed will be back-propagation of errors, the Kohonen, and the counter propagation learning. The potential user of ANN should first, consider the problem, second, he must inspect the availability of data and the data themselves to decide for which ANN method they are best suited. In this respect, the amount of data, the dimensionality of the measurement space, the form of data (alphanumeric entries, binary, real, or even mixed forms of data) are crucial. After considering all this factors, the determination of the appropriate neural network architecture can be made. Additionally, the selection the optimal ANN involves the determination of specific internal parameters like the learning rate, the momentum term, the neighbourhood function, the time dependent decrease of corrections, etc. Even after all these decisions have been made the learning procedure itself is not a straightforward task. Here, the division of the entire ensemble of data into three data sets: training, controlling and the test set are crucial. This problem is addressed as well.

  6. Problem Solving Appraisal of Delinquent Adolescents.

    ERIC Educational Resources Information Center

    Perez, Ruperto M.; And Others

    The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…

  7. Computer Programming: A Medium for Teaching Problem Solving.

    ERIC Educational Resources Information Center

    Casey, Patrick J.

    1997-01-01

    Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…

  8. Perceived Problem Solving, Stress, and Health among College Students

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

    2005-01-01

    Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

  9. THE CURRENT STATUS OF RESEARCH AND THEORY IN HUMAN PROBLEM SOLVING.

    ERIC Educational Resources Information Center

    DAVIS, GARY A.

    PROBLEM-SOLVING THEORIES IN THREE AREAS - TRADITIONAL (STIMULUS-RESPONSE) LEARNING, COGNITIVE-GESTALT APPROACHES, AND COMPUTER AND MATHEMATICAL MODELS - WERE SUMMARIZED. RECENT EMPIRICAL STUDIES (1960-65) ON PROBLEM SOLVING WERE CATEGORIZED ACCORDING TO TYPE OF BEHAVIOR ELICITED BY PARTICULAR PROBLEM-SOLVING TASKS. ANAGRAM,…

  10. Developing Creativity through Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Albert, Lillie R.; Kim, Rina

    2013-01-01

    This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

  11. The effects of expected reward on creative problem solving.

    PubMed

    Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan

    2018-06-12

    Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

  12. Find the Dimensions: Students Solving a Tiling Problem

    ERIC Educational Resources Information Center

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  13. Performance of subjects with and without severe mental illness on a clinical test of problem solving.

    PubMed

    Marshall, R C; McGurk, S R; Karow, C M; Kairy, T J; Flashman, L A

    2006-06-01

    Severe mental illness is associated with impairments in executive functions, such as conceptual reasoning, planning, and strategic thinking all of which impact problem solving. The present study examined the utility of a novel assessment tool for problem solving, the Rapid Assessment of Problem Solving Test (RAPS) in persons with severe mental illness. Subjects were 47 outpatients with severe mental illness and an equal number healthy controls matched for age and gender. Results confirmed all hypotheses with respect to how subjects with severe mental illness would perform on the RAPS. Specifically, the severely mentally ill subjects (1) solved fewer problems on the RAPS, (2) when they did solve problems on the test, they did so far less efficiently than their healthy counterparts, and (3) the two groups differed markedly in the types of questions asked on the RAPS. The healthy control subjects tended to take a systematic, organized, but not always optimal approach to solving problems on the RAPS. The subjects with severe mental illness used some of the problem solving strategies of the healthy controls, but their performance was less consistent and tended to deteriorate when the complexity of the problem solving task increased. This was reflected by a high degree of guessing in lieu of asking constraint questions, particularly if a category-limited question was insufficient to continue the problem solving effort.

  14. Effects of performance feedback and coaching on the problem-solving process: Improving the integrity of implementation and enhancing student outcomes

    NASA Astrophysics Data System (ADS)

    Lundahl, Allison A.

    Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.

  15. The Missing Curriculum in Physics Problem-Solving Education

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  16. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    PubMed Central

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the equations. PMID:24324454

  17. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.

  18. Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals.

    PubMed

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.

  19. Multi-Task Linear Programming Discriminant Analysis for the Identification of Progressive MCI Individuals

    PubMed Central

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966

  20. Personal and parental problem drinking: effects on problem-solving performance and self-appraisal.

    PubMed

    Slavkin, S L; Heimberg, R G; Winning, C D; McCaffrey, R J

    1992-01-01

    This study examined the problem-solving performances and self-appraisals of problem-solving ability of college-age subjects with and without parental history of problem drinking. Contrary to our predictions, children of problem drinkers (COPDs) were rated as somewhat more effective in their problem-solving skills than non-COPDs, undermining prevailing assumptions about offspring from alcoholic households. While this difference was not large and was qualified by other variables, subjects' own alcohol abuse did exert a detrimental effect on problem-solving performance, regardless of parental history of problem drinking. However, a different pattern was evident for problem-solving self-appraisals. Alcohol-abusing non-COPDs saw themselves as effective problem-solvers while alcohol-abusing COPDs appraised themselves as poor problem-solvers. In addition, the self-appraisals of alcohol-abusing COPDs were consistent with objective ratings of solution effectiveness (i.e., they were both negative) while alcohol-abusing non-COPDs were overly positive in their appraisals, opposing the judgments of trained raters. This finding suggests that the relationship between personal alcohol abuse and self-appraised problem-solving abilities may differ as a function of parental history of problem drinking. Limitations on the generalizability of findings are addressed.

  1. Social problem-solving deficits and hopelessness, depression, and suicidal risk in college students and psychiatric inpatients.

    PubMed

    D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L

    1998-12-01

    The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.

  2. An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1996-01-01

    Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)

  3. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2010-01-01

    Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…

  4. Facilitating Case Reuse during Problem Solving in Algebra-Based Physics

    ERIC Educational Resources Information Center

    Mateycik, Frances Ann

    2010-01-01

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…

  5. Problem Solving. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2004-01-01

    No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…

  6. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    ERIC Educational Resources Information Center

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  7. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  8. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  9. Enhancing Students' Problem-Solving Skills through Context-Based Learning

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi

    2015-01-01

    Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…

  10. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

    ERIC Educational Resources Information Center

    Ramani, Geetha B.; Brownell, Celia A.

    2014-01-01

    Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

  11. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  12. Factors Contributing to Problem-Solving Performance in First-Semester Organic Chemistry

    ERIC Educational Resources Information Center

    Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John

    2014-01-01

    Problem solving is a highly valued skill in chemistry. Courses within this discipline place a substantial emphasis on problem-solving performance and tend to weigh such performance heavily in assessments of learning. Researchers have dedicated considerable effort investigating individual factors that influence problem-solving performance. The…

  13. The Role of Expository Writing in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  14. Problem Solving Self-Appraisal and Coping Efforts in Distressed and Nondistressed Couples.

    ERIC Educational Resources Information Center

    Sabourin, Stephane; And Others

    1990-01-01

    Investigated relationship between problem-solving self-appraisal, specific coping efforts, and marital distress in 75 couples. Findings showed less problem-solving confidence, tendency to avoid different problem-solving activities, and poor strategies to control behavior in distressed spouses. Three coping efforts--optimistic comparisons,…

  15. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  16. Effect of Tutorial Giving on The Topic of Special Theory of Relativity in Modern Physics Course Towards Students’ Problem-Solving Ability

    NASA Astrophysics Data System (ADS)

    Hartatiek; Yudyanto; Haryoto, Dwi

    2017-05-01

    A Special Theory of Relativity handbook has been successfully arranged to guide students tutorial activity in the Modern Physics course. The low of students’ problem-solving ability was overcome by giving the tutorial in addition to the lecture class. It was done due to the limited time in the class during the course to have students do some exercises for their problem-solving ability. The explicit problem-solving based tutorial handbook was written by emphasizing to this 5 problem-solving strategies: (1) focus on the problem, (2) picture the physical facts, (3) plan the solution, (4) solve the problem, and (5) check the result. This research and development (R&D) consisted of 3 main steps: (1) preliminary study, (2) draft I. product development, and (3) product validation. The developed draft product was validated by experts to measure the feasibility of the material and predict the effect of the tutorial giving by means of questionnaires with scale 1 to 4. The students problem-solving ability in Special Theory of Relativity showed very good qualification. It implied that the tutorial giving with the help of tutorial handbook increased students problem-solving ability. The empirical test revealed that the developed handbook was significantly affected in improving students’ mastery concept and problem-solving ability. Both students’ mastery concept and problem-solving ability were in middle category with gain of 0.31 and 0.41, respectively.

  17. Assertiveness and problem solving in midwives.

    PubMed

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say "no" when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  18. Inverse imaging of the breast with a material classification technique.

    PubMed

    Manry, C W; Broschat, S L

    1998-03-01

    In recent publications [Chew et al., IEEE Trans. Blomed. Eng. BME-9, 218-225 (1990); Borup et al., Ultrason. Imaging 14, 69-85 (1992)] the inverse imaging problem has been solved by means of a two-step iterative method. In this paper, a third step is introduced for ultrasound imaging of the breast. In this step, which is based on statistical pattern recognition, classification of tissue types and a priori knowledge of the anatomy of the breast are integrated into the iterative method. Use of this material classification technique results in more rapid convergence to the inverse solution--approximately 40% fewer iterations are required--as well as greater accuracy. In addition, tumors are detected early in the reconstruction process. Results for reconstructions of a simple two-dimensional model of the human breast are presented. These reconstructions are extremely accurate when system noise and variations in tissue parameters are not too great. However, for the algorithm used, degradation of the reconstructions and divergence from the correct solution occur when system noise and variations in parameters exceed threshold values. Even in this case, however, tumors are still identified within a few iterations.

  19. JointMMCC: Joint Maximum-Margin Classification and Clustering of Imaging Data

    PubMed Central

    Filipovych, Roman; Resnick, Susan M.; Davatzikos, Christos

    2012-01-01

    A number of conditions are characterized by pathologies that form continuous or nearly-continuous spectra spanning from the absence of pathology to very pronounced pathological changes (e.g., normal aging, Mild Cognitive Impairment, Alzheimer's). Moreover, diseases are often highly heterogeneous with a number of diagnostic subcategories or subconditions lying within the spectra (e.g., Autism Spectrum Disorder, schizophrenia). Discovering coherent subpopulations of subjects within the spectrum of pathological changes may further our understanding of diseases, and potentially identify subconditions that require alternative or modified treatment options. In this paper, we propose an approach that aims at identifying coherent subpopulations with respect to the underlying MRI in the scenario where the condition is heterogeneous and pathological changes form a continuous spectrum. We describe a Joint Maximum-Margin Classification and Clustering (JointMMCC) approach that jointly detects the pathologic population via semi-supervised classification, as well as disentangles heterogeneity of the pathological cohort by solving a clustering subproblem. We propose an efficient solution to the non-convex optimization problem associated with JointMMCC. We apply our proposed approach to an MRI study of aging, and identify coherent subpopulations (i.e., clusters) of cognitively less stable adults. PMID:22328179

  20. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  1. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  2. Association Between Anticipatory Grief and Problem Solving Among Family Caregivers of Persons with Cognitive Impairment

    PubMed Central

    Fowler, Nicole R.; Hansen, Alexandra S.; Barnato, Amber E.; Garand, Linda

    2013-01-01

    Objective Measure perceived involvement in medical decision making and determine if anticipatory grief is associated with problem solving among family caregivers of older adults with cognitive impairment. Method Retrospective analysis of baseline data from a caregiver intervention (n=73). Multivariable regression models testing the association between caregivers’ anticipatory grief, measured by the Anticipatory Grief Scale (AGS), with problem solving abilities, measured by the Social Problem Solving Inventory – Revised: Short Form (SPSI-R: S). Results 47/73 (64%) of caregivers reported involvement in medical decision making. Mean AGS was 70.1 (± 14.8) and mean SPSI-R:S was 107.2 (± 11.6). Higher AGS scores were associated with lower positive problem orientation (P=0.041) and higher negative problem orientation scores (P=0.001) but not other components of problem solving- rational problem solving, avoidance style, and impulsivity/carelessness style. Discussion Higher anticipatory grief among family caregivers impaired problem solving, which could have negative consequences for their medical decision making responsibilities. PMID:23428394

  3. Analysis of students’ creative thinking level in problem solving based on national council of teachers of mathematics

    NASA Astrophysics Data System (ADS)

    Hobri; Suharto; Rifqi Naja, Ahmad

    2018-04-01

    This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.

  4. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  5. Requisite for Honing the Problem Solving Skill of Early Adolescents in the Digital Era

    ERIC Educational Resources Information Center

    Sumitha, S.; Jose, Rexlin

    2016-01-01

    Problems can be the cause of stress, tension, emotional instability and physical strain. Especially, adolescents should have the skill of solving a problem in order to reach his/her desired ambitions in life. The problem solving skill requires some abstract thinking to arrive at a clear solution. Problem solving ability helps them to meet their…

  6. How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.

    ERIC Educational Resources Information Center

    Scarl, Donald

    To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…

  7. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  8. Moving your eyes to solution: effects of movements on the perception of a problem-solving task.

    PubMed

    Werner, K; Raab, M

    2014-01-01

    There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.

  9. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  10. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  11. Decomposing intuitive components in a conceptual problem solving task.

    PubMed

    Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J

    2007-06-01

    Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.

  12. Self-Affirmation Improves Problem-Solving under Stress

    PubMed Central

    Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751

  13. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  14. The Relationship between Functional Status and Judgment/Problem Solving Among Individuals with Dementia

    PubMed Central

    Mayo, Ann M.; Wallhagen, Margaret; Cooper, Bruce A.; Mehta, Kala; Ross, Leslie; Miller, Bruce

    2012-01-01

    Objective To determine the relationship between functional status (independent activities of daily living) and judgment/problem solving and the extent to which select demographic characteristics such as dementia subtype and cognitive measures may moderate that relationship in older adult individuals with dementia. Methods The National Alzheimer’s Coordinating Center Universal Data Set was accessed for a study sample of 3,855 individuals diagnosed with dementia. Primary variables included functional status, judgment/problem solving, and cognition. Results Functional status was related to judgment/problem solving (r= 0.66; p< .0005). Functional status and cognition jointly predicted 56% of the variance in judgment/problem solving (R-squared = .56, p <.0005). As cognition decreases, the prediction of poorer judgment/problem solving by functional status became stronger. Conclusions Among individuals with a diagnosis of dementia, declining functional status as well as declining cognition should raise concerns about judgment/problem solving. PMID:22786576

  15. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Self-affirmation improves problem-solving under stress.

    PubMed

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  17. On the Analysis of Two-Person Problem Solving Protocols.

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    Methodological issues in the use of protocol analysis for research into human problem solving processes are examined through a case study in which two students were videotaped as they worked together to solve mathematical problems "out loud." The students' chosen strategic or executive behavior in examining and solving a problem was…

  18. The Development and Nature of Problem-Solving among First-Semester Calculus Students

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian; Epperson, James A. Mendoza

    2014-01-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate…

  19. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…

  20. Socially Shared Metacognition of Dyads of Pupils in Collaborative Mathematical Problem-Solving Processes

    ERIC Educational Resources Information Center

    Iiskala, Tuike; Vauras, Marja; Lehtinen, Erno; Salonen, Pekka

    2011-01-01

    This study investigated how metacognition appears as a socially shared phenomenon within collaborative mathematical word-problem solving processes of dyads of high-achieving pupils. Four dyads solved problems of different difficulty levels. The pupils were 10 years old. The problem-solving activities were videotaped and transcribed in terms of…

  1. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  2. The Development, Implementation, and Evaluation of a Problem Solving Heuristic

    ERIC Educational Resources Information Center

    Lorenzo, Mercedes

    2005-01-01

    Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…

  3. Sequenced Integration and the Identification of a Problem-Solving Approach through a Learning Process

    ERIC Educational Resources Information Center

    Cormas, Peter C.

    2016-01-01

    Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…

  4. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  5. An Examination of the Personality Constructs Underlying Dimensions of Creative Problem-Solving Style

    ERIC Educational Resources Information Center

    Isaksen, Scott G.; Kaufmann, Astrid H.; Bakken, Bjørn T.

    2016-01-01

    This study investigated the personality facets that underpin the construct of problem-solving style, particularly when approaching more creative kinds of problem-solving. Cattell's Sixteen Personality Factors Questionnaire and VIEW--An Assessment of Problem Solving Style were administered to 165 students from the Norwegian Business School. We…

  6. Teaching Social Problem Solving to Individuals with Mental Retardation

    ERIC Educational Resources Information Center

    Crites, Steven A.; Dunn, Caroline

    2004-01-01

    The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…

  7. The Microcomputer--A Problem Solving Tool.

    ERIC Educational Resources Information Center

    Hoelscher, Karen J.

    Designed to assist teachers in using the microcomputer as a tool to teach problem solving strategies, this document is divided into two sections: the first introduces the concept of problem solving as a thinking process, and suggests means by which a teacher can become an effective guide for the learning of problem solving skills; the second…

  8. Working Memory Components as Predictors of Children's Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.

    2011-01-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…

  9. The Reliability and Construct Validity of Scores on the Attitudes toward Problem Solving Scale

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Haron, Zolkepeli; Daud, Md Yusoff

    2004-01-01

    The Attitudes Toward Problem Solving Scale (ATPSS) has received limited attention concerning its reliability and validity with a Malaysian secondary education population. Developed by Charles, Lester & O'Daffer (1987), the instruments assessed attitudes toward problem solving in areas of Willingness to Engage in Problem Solving Activities,…

  10. Using Digital Mapping Tool in Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  11. Independence Pending: Teacher Behaviors Preceding Learner Problem Solving

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2017-01-01

    The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…

  12. 77 FR 32138 - Agency Information Collection Agencies: Proposed Collection; Comments Requested Census of Problem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... Agencies: Proposed Collection; Comments Requested Census of Problem-Solving Courts 2012 ACTION: 30-Day...-Solving Courts (CPSC), 201 2. The title of the form/collection: Census of Problem-Solving Courts or CPSC... Abstract: Problem-solving courts at all levels of government. Abstract: The Bureau of Justice Statistics...

  13. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  14. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  15. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  16. Capturing Problem-Solving Processes Using Critical Rationalism

    ERIC Educational Resources Information Center

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  17. [Investigation of problem solving skills among psychiatric patients].

    PubMed

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  18. The development and evaluation of a web-based programme to support problem-solving skills following brain injury.

    PubMed

    Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody

    2017-10-24

    Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.

  19. Physical activity problem-solving inventory for adolescents: Development and initial validation

    USDA-ARS?s Scientific Manuscript database

    Youth encounter physical activity barriers, often called problems. The purpose of problem-solving is to generate solutions to overcome the barriers. Enhancing problem-solving ability may enable youth to be more physically active. Therefore, a method for reliably assessing physical activity problem-s...

  20. The relation between stressful life events and adjustment in elementary school children: the role of social support and social problem-solving skills.

    PubMed

    Dubow, E F; Tisak, J

    1989-12-01

    This study investigated the relation between stressful life events and adjustment in elementary school children, with particular emphasis on the potential main and stress-buffering effects of social support and social problem-solving skills. Third through fifth graders (N = 361) completed social support and social problem-solving measures. Their parents provided ratings of stress in the child's environment and ratings of the child's behavioral adjustment. Teachers provided ratings of the children's behavioral and academic adjustment. Hierarchical multiple regressions revealed significant stress-buffering effects for social support and problem-solving skills on teacher-rated behavior problems, that is, higher levels of social support and problem-solving skills moderated the relation between stressful life events and behavior problems. A similar stress-buffering effect was found for problem-solving skills on grade-point average and parent-rated behavior problems. In terms of children's competent behaviors, analyses supported a main effect model of social support and problem-solving. Possible processes accounting for the main and stress-buffering effects are discussed.

  1. The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems

    NASA Astrophysics Data System (ADS)

    Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.

    2018-01-01

    This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.

  2. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    NASA Astrophysics Data System (ADS)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  3. Problem Solving Interventions for Diabetes Self-management and Control: A Systematic Review of the Literature

    PubMed Central

    Fitzpatrick, Stephanie L.; Schumann, Kristina P.; Hill-Briggs, Felicia

    2013-01-01

    Aims Problem solving is deemed a core skill for patient diabetes self-management education. The purpose of this systematic review is to examine the published literature on the effect of problem-solving interventions on diabetes self-management and disease control. Data Sources We searched PubMed and PsychINFO electronic databases for English language articles published between November 2006 and September 2012. Reference lists from included studies were reviewed to capture additional studies. Study Selection Studies reporting problem-solving intervention or problem solving as an intervention component for diabetes self-management training and disease control were included. Twenty-four studies met inclusion criteria. Data Extraction Study design, sample characteristics, measures, and results were reviewed. Data Synthesis Sixteen intervention studies (11 adult, 5 children/adolescents) were randomized controlled trials, and 8 intervention studies (6 adult, 2 children/adolescents) were quasi-experimental designs. Conclusions Studies varied greatly in their approaches to problem-solving use in patient education. To date, 36% of adult problem-solving interventions and 42% of children/adolescent problem-solving interventions have demonstrated significant improvement in HbA1c, while psychosocial outcomes have been more promising. The next phase of problem-solving intervention research should employ intervention characteristics found to have sufficient potency and intensity to reach therapeutic levels needed to demonstrate change. PMID:23312614

  4. Changes in problem-solving appraisal after cognitive therapy for the prevention of suicide.

    PubMed

    Ghahramanlou-Holloway, M; Bhar, S S; Brown, G K; Olsen, C; Beck, A T

    2012-06-01

    Cognitive therapy has been found to be effective in decreasing the recurrence of suicide attempts. A theoretical aim of cognitive therapy is to improve problem-solving skills so that suicide no longer remains the only available option. This study examined the differential rate of change in problem-solving appraisal following suicide attempts among individuals who participated in a randomized controlled trial for the prevention of suicide. Changes in problem-solving appraisal from pre- to 6-months post-treatment in individuals with a recent suicide attempt, randomized to either cognitive therapy (n = 60) or a control condition (n = 60), were assessed by using the Social Problem-Solving Inventory-Revised, Short Form. Improvements in problem-solving appraisal were similarly observed for both groups within the 6-month follow-up. However, during this period, individuals assigned to the cognitive therapy condition demonstrated a significantly faster rate of improvement in negative problem orientation and impulsivity/carelessness. More specifically, individuals receiving cognitive therapy were significantly less likely to report a negative view toward life problems and impulsive/carelessness problem-solving style. Cognitive therapy for the prevention of suicide provides rapid changes within 6 months on negative problem orientation and impulsivity/carelessness problem-solving style. Given that individuals are at the greatest risk for suicide within 6 months of their last suicide attempt, the current study demonstrates that a brief cognitive intervention produces a rapid rate of improvement in two important domains of problem-solving appraisal during this sensitive period.

  5. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    NASA Astrophysics Data System (ADS)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  6. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  7. Analysis of problem solving skill in learning biology at senior high school of Surakarta

    NASA Astrophysics Data System (ADS)

    Rahmawati, D.; Sajidan; Ashadi

    2018-04-01

    Problem solving is a critical component of comprehensive learning in 21st century. Problem solving is defined as a process used to obtain the best answer from a problem. Someone who can solve the problem is called a problem solver. Problem solver obtains many benefits in the future and has a chance to be an innovator, such as be an innovative entrepreneur, modify behavior, improve creativity, and cognitive skills. The goal of this research is to analyze problem solving skills of students in Senior High School Surakarta in learning Biology. Participants of this research were students of grade 12 SMA (Senior High School) N Surakarta. Data is collected by using multiple choice questions base on analysis problem solving skills on Mourtus. The result of this research showed that the percentage of defining problem was 52.38%, exploring the problem was 53.28%, implementing the solution was 50.71% for 50.08% is moderate, while the percentage of designing the solution was 34.42%, and evaluating was low for 39.24%. Based on the result showed that the problem solving skills of students in SMAN Surakarta was Low.

  8. A randomized trial of teen online problem solving: efficacy in improving caregiver outcomes after brain injury.

    PubMed

    Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2012-11-01

    To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.

  9. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Inquiry-based problem solving in introductory physics

    NASA Astrophysics Data System (ADS)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  11. Assessing Student Expertise in Introductory Physics with Isomorphic Problems. II. Effect of Some Potential Factors on Problem Solving and Transfer

    ERIC Educational Resources Information Center

    Chandralekha; Singh

    2008-01-01

    In this paper, we explore the use of isomorphic problem pairs (IPPs) to assess introductory physics students' ability to solve and successfully transfer problem-solving knowledge from one context to another in mechanics. We call the paired problems "isomorphic" because they require the same physics principle to solve them. We analyze written…

  12. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  13. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  14. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  15. Problem-solving skills training for mothers of children recently diagnosed with autism spectrum disorder: A pilot feasibility study.

    PubMed

    Nguyen, Cathina T; Fairclough, Diane L; Noll, Robert B

    2016-01-01

    Problem-solving skills training is an intervention designed to teach coping skills that has shown to decrease negative affectivity (depressive symptoms, negative mood, and post-traumatic stress symptoms) in mothers of children with cancer. The objective of this study was to see whether mothers of children recently diagnosed with autism spectrum disorder would be receptive to receiving problem-solving skills training (feasibility trial). Participants were recruited from a local outpatient developmental clinic that is part of a university department of pediatrics. Participants were to receive eight 1-h sessions of problem-solving skills training and were asked to complete assessments prior to beginning problem-solving skills training (T1), immediately after intervention (T2), and 3 months after T2 (T3). Outcome measures assessed problem-solving skills and negative affectivity (i.e. distress). In total, 30 mothers were approached and 24 agreed to participate (80.0%). Of them, 17 mothers completed problem-solving skills training (retention rate: 70.8%). Mothers of children with autism spectrum disorder who completed problem-solving skills training had significant decreases in negative affectivity and increases in problem-solving skills. A comparison to mothers of children with cancer shows that mothers of children with autism spectrum disorder displayed similar levels of depressive symptoms but less negative mood and fewer symptoms of post-traumatic stress. Data suggest that problem-solving skills training may be an effective way to alleviate distress in mothers of children recently diagnosed with autism spectrum disorder. Data also suggest that mothers of children with autism spectrum disorder were moderately receptive to receiving problem-solving skills training. Implications are that problem-solving skills training may be beneficial to parents of children with autism spectrum disorder; modifications to improve retention rates are suggested. © The Author(s) 2015.

  16. Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.

    2017-09-01

    Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.

  17. A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic

    NASA Astrophysics Data System (ADS)

    Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.

    2018-05-01

    Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.

  18. Active and passive problem solving: moderating role in the relation between depressive symptoms and future suicidal ideation varies by suicide attempt history.

    PubMed

    Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina

    2015-04-01

    Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem-solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation among suicide attempters and nonattempters. Young adults (n = 324, 73% female, mean age = 19, standard deviation = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and suicidal ideation at baseline, and a self-report measure of suicidal ideation at 6-month follow-up. Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future suicidal ideation. Among attempters, active problem solving buffered against depressive symptoms in predicting future suicidal ideation. Suicide prevention should foster active problem solving, especially among suicide attempters. © 2015 Wiley Periodicals, Inc.

  19. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  20. Active and Passive Problem Solving: Moderating Role in the Relation between Depressive Symptoms and Future Suicidal Ideation Varies by Suicide Attempt History

    PubMed Central

    Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina

    2016-01-01

    Objective Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation (SI) among suicide attempters and non-attempters. Method Young adults (n = 324, 73% female, Mage = 19, SD = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and SI at baseline, and also completed a self-report measure of SI at 6-month follow-up. Results Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future SI. Among attempters, active problem solving buffered against depressive symptoms in predicting future SI. Conclusions Suicide prevention should foster active problem solving, especially among suicide attempters. PMID:25760651

Top