Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J
2004-12-01
Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.
Knowledge-based control for robot self-localization
NASA Technical Reports Server (NTRS)
Bennett, Bonnie Kathleen Holte
1993-01-01
Autonomous robot systems are being proposed for a variety of missions including the Mars rover/sample return mission. Prior to any other mission objectives being met, an autonomous robot must be able to determine its own location. This will be especially challenging because location sensors like GPS, which are available on Earth, will not be useful, nor will INS sensors because their drift is too large. Another approach to self-localization is required. In this paper, we describe a novel approach to localization by applying a problem solving methodology. The term 'problem solving' implies a computational technique based on logical representational and control steps. In this research, these steps are derived from observing experts solving localization problems. The objective is not specifically to simulate human expertise but rather to apply its techniques where appropriate for computational systems. In doing this, we describe a model for solving the problem and a system built on that model, called localization control and logic expert (LOCALE), which is a demonstration of concept for the approach and the model. The results of this work represent the first successful solution to high-level control aspects of the localization problem.
Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems
ERIC Educational Resources Information Center
Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye
2017-01-01
The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…
NASA Astrophysics Data System (ADS)
Prasetyo, H.; Alfatsani, M. A.; Fauza, G.
2018-05-01
The main issue in vehicle routing problem (VRP) is finding the shortest route of product distribution from the depot to outlets to minimize total cost of distribution. Capacitated Closed Vehicle Routing Problem with Time Windows (CCVRPTW) is one of the variants of VRP that accommodates vehicle capacity and distribution period. Since the main problem of CCVRPTW is considered a non-polynomial hard (NP-hard) problem, it requires an efficient and effective algorithm to solve the problem. This study was aimed to develop Biased Random Key Genetic Algorithm (BRKGA) that is combined with local search to solve the problem of CCVRPTW. The algorithm design was then coded by MATLAB. Using numerical test, optimum algorithm parameters were set and compared with the heuristic method and Standard BRKGA to solve a case study on soft drink distribution. Results showed that BRKGA combined with local search resulted in lower total distribution cost compared with the heuristic method. Moreover, the developed algorithm was found to be successful in increasing the performance of Standard BRKGA.
Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.
Mohsen, Abdulqader M
2016-01-01
Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.
Development of parallel algorithms for electrical power management in space applications
NASA Technical Reports Server (NTRS)
Berry, Frederick C.
1989-01-01
The application of parallel techniques for electrical power system analysis is discussed. The Newton-Raphson method of load flow analysis was used along with the decomposition-coordination technique to perform load flow analysis. The decomposition-coordination technique enables tasks to be performed in parallel by partitioning the electrical power system into independent local problems. Each independent local problem represents a portion of the total electrical power system on which a loan flow analysis can be performed. The load flow analysis is performed on these partitioned elements by using the Newton-Raphson load flow method. These independent local problems will produce results for voltage and power which can then be passed to the coordinator portion of the solution procedure. The coordinator problem uses the results of the local problems to determine if any correction is needed on the local problems. The coordinator problem is also solved by an iterative method much like the local problem. The iterative method for the coordination problem will also be the Newton-Raphson method. Therefore, each iteration at the coordination level will result in new values for the local problems. The local problems will have to be solved again along with the coordinator problem until some convergence conditions are met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Jakeman, John; Gittelson, Claude
2015-01-08
In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained frommore » the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.« less
ERIC Educational Resources Information Center
Wilson, Stephen
An urban school reform strategy which stresses the development of local capacities for problem solving is described in this paper. The context which gave rise to this conceptualization of reform is analyzed and some difficulties with the conceptualization are discussed. Difficulties include ambiguities about the boundaries of "local,"…
Annealing Ant Colony Optimization with Mutation Operator for Solving TSP
2016-01-01
Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590
A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks
Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza
2015-01-01
Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502
Solving SAT Problem Based on Hybrid Differential Evolution Algorithm
NASA Astrophysics Data System (ADS)
Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan
Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.
The Environmental Justice Collaborative Problem-Solving Cooperative Agreement Program
The Environmental Justice Collaborative Problem-Solving (CPS) Cooperative Agreement Program provides financial assistance to eligible organizations working on or planning to work on projects to address local environmental and/or public health issues
How many invariant polynomials are needed to decide local unitary equivalence of qubit states?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maciążek, Tomasz; Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa; Oszmaniec, Michał
2013-09-15
Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure.
Path planning for mobile robot using the novel repulsive force algorithm
NASA Astrophysics Data System (ADS)
Sun, Siyue; Yin, Guoqiang; Li, Xueping
2018-01-01
A new type of repulsive force algorithm is proposed to solve the problem of local minimum and the target unreachable of the classic Artificial Potential Field (APF) method in this paper. The Gaussian function that is related to the distance between the robot and the target is added to the traditional repulsive force, solving the problem of the goal unreachable with the obstacle nearby; variable coefficient is added to the repulsive force component to resize the repulsive force, which can solve the local minimum problem when the robot, the obstacle and the target point are in the same line. The effectiveness of the algorithm is verified by simulation based on MATLAB and actual mobile robot platform.
A Novel Harmony Search Algorithm Based on Teaching-Learning Strategies for 0-1 Knapsack Problems
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an
2014-01-01
To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems. PMID:24574905
A novel harmony search algorithm based on teaching-learning strategies for 0-1 knapsack problems.
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an
2014-01-01
To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems.
Asymptotically suboptimal control of weakly interconnected dynamical systems
NASA Astrophysics Data System (ADS)
Dmitruk, N. M.; Kalinin, A. I.
2016-10-01
Optimal control problems for a group of systems with weak dynamical interconnections between its constituent subsystems are considered. A method for decentralized control is proposed which distributes the control actions between several controllers calculating in real time control inputs only for theirs subsystems based on the solution of the local optimal control problem. The local problem is solved by asymptotic methods that employ the representation of the weak interconnection by a small parameter. Combination of decentralized control and asymptotic methods allows to significantly reduce the dimension of the problems that have to be solved in the course of the control process.
Solving and Learning Soft Temporal Constraints: Experimental Scenario and Examples
NASA Technical Reports Server (NTRS)
Rossi, F.; Venable, K. B.; Sperduti, A.; Khatib, L.; Morris, P.; Morris, R.; Koga, Dennis (Technical Monitor)
2001-01-01
Soft temporal constraint problems allow to describe in a natural way scenarios where events happen over time and preferences are associated to event distances and durations. However, sometimes such local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preference use machine learning techniques which learn the local preferences from the global ones. In this paper we describe the existing framework for both solving and learning preferences in temporal constraint problems, the implemented modules, the experimental scenario, and preliminary results on some examples.
Matrix Completion Optimization for Localization in Wireless Sensor Networks for Intelligent IoT
Nguyen, Thu L. N.; Shin, Yoan
2016-01-01
Localization in wireless sensor networks (WSNs) is one of the primary functions of the intelligent Internet of Things (IoT) that offers automatically discoverable services, while the localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop a framework to solve the Euclidean distance matrix completion problem, which is an important technical problem for distance-based localization in WSNs. The sensor network localization problem is described as a low-rank dimensional Euclidean distance completion problem with known nodes. The task is to find the sensor locations through recovery of missing entries of a squared distance matrix when the dimension of the data is small compared to the number of data points. We solve a relaxation optimization problem using a modification of Newton’s method, where the cost function depends on the squared distance matrix. The solution obtained in our scheme achieves a lower complexity and can perform better if we use it as an initial guess for an interactive local search of other higher precision localization scheme. Simulation results show the effectiveness of our approach. PMID:27213378
Local Responses to Global Problems: A Key to Meeting Basic Human Needs. Worldwatch Paper 17.
ERIC Educational Resources Information Center
Stokes, Bruce
The booklet maintains that the key to meeting basic human needs is the participation of individuals and communities in local problem solving. Some of the most important achievements in providing food, upgrading housing, improving human health, and tapping new energy sources, comes through local self-help projects. Proponents of local efforts at…
A localized model of spatial cognition in chemistry
NASA Astrophysics Data System (ADS)
Stieff, Mike
This dissertation challenges the assumption that spatial cognition, particularly visualization, is the key component to problem solving in chemistry. In contrast to this assumption, I posit a localized, or task-specific, model of spatial cognition in chemistry problem solving to locate the exact tasks in a traditional organic chemistry curriculum that require students to use visualization strategies to problem solve. Instead of assuming that visualization is required for most chemistry tasks simply because chemistry concerns invisible three-dimensional entities, I instead use the framework of the localized model to identify how students do and do not make use of visualization strategies on a wide variety of assessment tasks regardless of each task's explicit demand for spatial cognition. I establish the dimensions of the localized model with five studies. First, I designed two novel psychometrics to reveal how students selectively use visualization strategies to interpret and analyze molecular structures. The third study comprised a document analysis of the organic chemistry assessments that empirically determined only 12% of these tasks explicitly require visualization. The fourth study concerned a series of correlation analyses between measures of visuo-spatial ability and chemistry performance to clarify the impact of individual differences. Finally, I performed a series of micro-genetic analyses of student problem solving that confirmed the earlier findings and revealed students prefer to visualize molecules from alternative perspectives without using mental rotation. The results of each study reveal that occurrences of sophisticated spatial cognition are relatively infrequent in chemistry, despite instructors' ostensible emphasis on the visualization of three-dimensional structures. To the contrary, students eschew visualization strategies and instead rely on the use of molecular diagrams to scaffold spatial cognition. Visualization does play a key role, however, in problem solving on a select group of chemistry tasks that require students to translate molecular representations or fundamentally alter the morphology of a molecule. Ultimately, this dissertation calls into question the assumption that individual differences in visuo-spatial ability play a critical role in determining who succeeds in chemistry. The results of this work establish a foundation for defining the precise manner in which visualization tools can best support problem solving.
Minimization of transmission cost in decentralized control systems
NASA Technical Reports Server (NTRS)
Wang, S.-H.; Davison, E. J.
1978-01-01
This paper considers the problem of stabilizing a linear time-invariant multivariable system by using local feedback controllers and some limited information exchange among local stations. The problem of achieving a given degree of stability with minimum transmission cost is solved.
ERIC Educational Resources Information Center
Ampuero, David; Miranda, Christian E.; Delgado, Luisa E.; Goyen, Samantha; Weaver, Sean
2015-01-01
The present study explores the outcomes of teaching empathy and critical thinking to solve environmental problems. This investigation was done throughout the duration of an environmental education course within a primary school located in central Chile. A community-based research methodology was used to understand the formation of empathy and…
Multiple-variable neighbourhood search for the single-machine total weighted tardiness problem
NASA Astrophysics Data System (ADS)
Chung, Tsui-Ping; Fu, Qunjie; Liao, Ching-Jong; Liu, Yi-Ting
2017-07-01
The single-machine total weighted tardiness (SMTWT) problem is a typical discrete combinatorial optimization problem in the scheduling literature. This problem has been proved to be NP hard and thus provides a challenging area for metaheuristics, especially the variable neighbourhood search algorithm. In this article, a multiple variable neighbourhood search (m-VNS) algorithm with multiple neighbourhood structures is proposed to solve the problem. Special mechanisms named matching and strengthening operations are employed in the algorithm, which has an auto-revising local search procedure to explore the solution space beyond local optimality. Two aspects, searching direction and searching depth, are considered, and neighbourhood structures are systematically exchanged. Experimental results show that the proposed m-VNS algorithm outperforms all the compared algorithms in solving the SMTWT problem.
Liu, Haorui; Yi, Fengyan; Yang, Heli
2016-01-01
The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584
An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.
Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur
2017-01-01
Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.
Application of decentralized cooperative problem solving in dynamic flexible scheduling
NASA Astrophysics Data System (ADS)
Guan, Zai-Lin; Lei, Ming; Wu, Bo; Wu, Ya; Yang, Shuzi
1995-08-01
The object of this study is to discuss an intelligent solution to the problem of task-allocation in shop floor scheduling. For this purpose, the technique of distributed artificial intelligence (DAI) is applied. Intelligent agents (IAs) are used to realize decentralized cooperation, and negotiation is realized by using message passing based on the contract net model. Multiple agents, such as manager agents, workcell agents, and workstation agents, make game-like decisions based on multiple criteria evaluations. This procedure of decentralized cooperative problem solving makes local scheduling possible. And by integrating such multiple local schedules, dynamic flexible scheduling for the whole shop floor production can be realized.
Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.
Wang, Xinghu; Hong, Yiguang; Ji, Haibo
2016-07-01
The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.
Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem
Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849
Solving traveling salesman problems with DNA molecules encoding numerical values.
Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak
2004-12-01
We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.
WATER CONSERVATION: LOCAL SOLUTIONS TO A GLOBAL PROBLEM
Water conservation issues are discussed. Local solutions to a global problem include changing old habits relating to the usage and abuse of water resources. While the suggested behavioral changes may not solve the world's pending water crisis, they may ease the impact of the l...
NASA Astrophysics Data System (ADS)
Hong, Jianzhong
2000-11-01
This paper explores the process of workplace learning and problem solving by examining Western and local enterprises in South China. The paper addresses the subject on two levels. First, it examines the process of learning by solving problems on the shop floor. Second, it deals with certain managerial concepts embedded in Chinese culture and discusses whether these concepts help or impede collective learning. The article concludes that new ways of working and learning are emerging through the interaction of Western and Chinese culture.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini
2018-07-01
This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.
A machine learning approach for efficient uncertainty quantification using multiscale methods
NASA Astrophysics Data System (ADS)
Chan, Shing; Elsheikh, Ahmed H.
2018-02-01
Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.
A connectionist model for diagnostic problem solving
NASA Technical Reports Server (NTRS)
Peng, Yun; Reggia, James A.
1989-01-01
A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.
NASA Astrophysics Data System (ADS)
Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena
2017-09-01
The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.
NASA Astrophysics Data System (ADS)
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2017-11-01
This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.
Nguyen, Cathina T; Fairclough, Diane L; Noll, Robert B
2016-01-01
Problem-solving skills training is an intervention designed to teach coping skills that has shown to decrease negative affectivity (depressive symptoms, negative mood, and post-traumatic stress symptoms) in mothers of children with cancer. The objective of this study was to see whether mothers of children recently diagnosed with autism spectrum disorder would be receptive to receiving problem-solving skills training (feasibility trial). Participants were recruited from a local outpatient developmental clinic that is part of a university department of pediatrics. Participants were to receive eight 1-h sessions of problem-solving skills training and were asked to complete assessments prior to beginning problem-solving skills training (T1), immediately after intervention (T2), and 3 months after T2 (T3). Outcome measures assessed problem-solving skills and negative affectivity (i.e. distress). In total, 30 mothers were approached and 24 agreed to participate (80.0%). Of them, 17 mothers completed problem-solving skills training (retention rate: 70.8%). Mothers of children with autism spectrum disorder who completed problem-solving skills training had significant decreases in negative affectivity and increases in problem-solving skills. A comparison to mothers of children with cancer shows that mothers of children with autism spectrum disorder displayed similar levels of depressive symptoms but less negative mood and fewer symptoms of post-traumatic stress. Data suggest that problem-solving skills training may be an effective way to alleviate distress in mothers of children recently diagnosed with autism spectrum disorder. Data also suggest that mothers of children with autism spectrum disorder were moderately receptive to receiving problem-solving skills training. Implications are that problem-solving skills training may be beneficial to parents of children with autism spectrum disorder; modifications to improve retention rates are suggested. © The Author(s) 2015.
ERIC Educational Resources Information Center
Badru, Ademola K.
2015-01-01
This study examined the prediction of academic success of Junior secondary school mathematics students using their cognitive style and problem solving technique. A descriptive survey of correlation type was adopted for this study. A purposive sampling procedure was used to select five Public Junior secondary schools in Ijebu-Ode local government…
The generalized quadratic knapsack problem. A neuronal network approach.
Talaván, Pedro M; Yáñez, Javier
2006-05-01
The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.
Reconstruction of local perturbations in periodic surfaces
NASA Astrophysics Data System (ADS)
Lechleiter, Armin; Zhang, Ruming
2018-03-01
This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.
A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles
1994-05-02
AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation
NASA Astrophysics Data System (ADS)
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
A New Approach for Solving the Generalized Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Pop, P. C.; Matei, O.; Sabo, C.
The generalized traveling problem (GTSP) is an extension of the classical traveling salesman problem. The GTSP is known to be an NP-hard problem and has many interesting applications. In this paper we present a local-global approach for the generalized traveling salesman problem. Based on this approach we describe a novel hybrid metaheuristic algorithm for solving the problem using genetic algorithms. Computational results are reported for Euclidean TSPlib instances and compared with the existing ones. The obtained results point out that our hybrid algorithm is an appropriate method to explore the search space of this complex problem and leads to good solutions in a reasonable amount of time.
Problem-Solving Test: Southwestern Blotting
ERIC Educational Resources Information Center
Szeberényi, József
2014-01-01
Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…
Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment
NASA Astrophysics Data System (ADS)
Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc
2012-11-01
This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.
Localization of synchronous cortical neural sources.
Zerouali, Younes; Herry, Christophe L; Jemel, Boutheina; Lina, Jean-Marc
2013-03-01
Neural synchronization is a key mechanism to a wide variety of brain functions, such as cognition, perception, or memory. High temporal resolution achieved by EEG recordings allows the study of the dynamical properties of synchronous patterns of activity at a very fine temporal scale but with very low spatial resolution. Spatial resolution can be improved by retrieving the neural sources of EEG signal, thus solving the so-called inverse problem. Although many methods have been proposed to solve the inverse problem and localize brain activity, few of them target the synchronous brain regions. In this paper, we propose a novel algorithm aimed at localizing specifically synchronous brain regions and reconstructing the time course of their activity. Using multivariate wavelet ridge analysis, we extract signals capturing the synchronous events buried in the EEG and then solve the inverse problem on these signals. Using simulated data, we compare results of source reconstruction accuracy achieved by our method to a standard source reconstruction approach. We show that the proposed method performs better across a wide range of noise levels and source configurations. In addition, we applied our method on real dataset and identified successfully cortical areas involved in the functional network underlying visual face perception. We conclude that the proposed approach allows an accurate localization of synchronous brain regions and a robust estimation of their activity.
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
NASA Astrophysics Data System (ADS)
Konno, Yohko; Suzuki, Keiji
This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.
Optimal matching for prostate brachytherapy seed localization with dimension reduction.
Lee, Junghoon; Labat, Christian; Jain, Ameet K; Song, Danny Y; Burdette, Everette C; Fichtinger, Gabor; Prince, Jerry L
2009-01-01
In prostate brachytherapy, x-ray fluoroscopy has been used for intra-operative dosimetry to provide qualitative assessment of implant quality. More recent developments have made possible 3D localization of the implanted radioactive seeds. This is usually modeled as an assignment problem and solved by resolving the correspondence of seeds. It is, however, NP-hard, and the problem is even harder in practice due to the significant number of hidden seeds. In this paper, we propose an algorithm that can find an optimal solution from multiple projection images with hidden seeds. It solves an equivalent problem with reduced dimensional complexity, thus allowing us to find an optimal solution in polynomial time. Simulation results show the robustness of the algorithm. It was validated on 5 phantom and 18 patient datasets, successfully localizing the seeds with detection rate of > or = 97.6% and reconstruction error of < or = 1.2 mm. This is considered to be clinically excellent performance.
Localization from near-source quasi-static electromagnetic fields
NASA Astrophysics Data System (ADS)
Mosher, J. C.
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUltiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
Localization from near-source quasi-static electromagnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, John Compton
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. Themore » nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.« less
Solving Infeasibility Problems in Computerized Test Assembly.
ERIC Educational Resources Information Center
Timminga, Ellen
1998-01-01
Discusses problems of diagnosing and repairing infeasible linear-programming models in computerized test assembly. Demonstrates that it is possible to localize the causes of infeasibility, although this is not always easy. (SLD)
The Circle of Apollonius and Its Applications in Introductory Physics
NASA Astrophysics Data System (ADS)
Partensky, Michael B.
2008-02-01
The circle of Apollonius is named after the ancient geometrician Apollonius of Perga. This beautiful geometric construct can be helpful when solving some general problems of geometry and mathematical physics, optics, and electricity. Here we discuss two of its applications: localizing an object in space and calculating electric fields. First, we pose an entertaining localization problem to trigger students' interest in the subject. Analyzing this problem, we introduce the circle of Apollonius and show that this geometric technique helps solve the problem in an elegant and intuitive manner. Then we switch to seemingly unrelated problems of calculating the electric fields. We show that the zero equipotential line for two unlike charges is the Apollonius circle for these two charges and use this discovery to find the electric field of a charge positioned near a grounded conductive sphere. Finally, we pose some questions for further examination.
Power law-based local search in spider monkey optimisation for lower order system modelling
NASA Astrophysics Data System (ADS)
Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala
2017-01-01
The nature-inspired algorithms (NIAs) have shown efficiency to solve many complex real-world optimisation problems. The efficiency of NIAs is measured by their ability to find adequate results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This paper presents a solution for lower order system modelling using spider monkey optimisation (SMO) algorithm to obtain a better approximation for lower order systems and reflects almost original higher order system's characteristics. Further, a local search strategy, namely, power law-based local search is incorporated with SMO. The proposed strategy is named as power law-based local search in SMO (PLSMO). The efficiency, accuracy and reliability of the proposed algorithm is tested over 20 well-known benchmark functions. Then, the PLSMO algorithm is applied to solve the lower order system modelling problem.
Signature neural networks: definition and application to multidimensional sorting problems.
Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo
2011-01-01
In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.
Iterated local search algorithm for solving the orienteering problem with soft time windows.
Aghezzaf, Brahim; Fahim, Hassan El
2016-01-01
In this paper we study the orienteering problem with time windows (OPTW) and the impact of relaxing the time windows on the profit collected by the vehicle. The way of relaxing time windows adopted in the orienteering problem with soft time windows (OPSTW) that we study in this research is a late service relaxation that allows linearly penalized late services to customers. We solve this problem heuristically by considering a hybrid iterated local search. The results of the computational study show that the proposed approach is able to achieve promising solutions on the OPTW test instances available in the literature, one new best solution is found. On the newly generated test instances of the OPSTW, the results show that the profit collected by the OPSTW is better than the profit collected by the OPTW.
NASA Astrophysics Data System (ADS)
Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao
2017-02-01
Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.
Hybrid water flow-like algorithm with Tabu search for traveling salesman problem
NASA Astrophysics Data System (ADS)
Bostamam, Jasmin M.; Othman, Zulaiha
2016-08-01
This paper presents a hybrid Water Flow-like Algorithm with Tabu Search for solving travelling salesman problem (WFA-TS-TSP).WFA has been proven its outstanding performances in solving TSP meanwhile TS is a conventional algorithm which has been used since decades to solve various combinatorial optimization problem including TSP. Hybridization between WFA with TS provides a better balance of exploration and exploitation criteria which are the key elements in determining the performance of one metaheuristic. TS use two different local search namely, 2opt and 3opt separately. The proposed WFA-TS-TSP is tested on 23 sets on the well-known benchmarked symmetric TSP instances. The result shows that the proposed WFA-TS-TSP has significant better quality solutions compared to WFA. The result also shows that the WFA-TS-TSP with 3-opt obtained the best quality solution. With the result obtained, it could be concluded that WFA has potential to be further improved by using hybrid technique or using better local search technique.
Local Conjecturing Process in the Solving of Pattern Generalization Problem
ERIC Educational Resources Information Center
Sutarto; Nusantara, Toto; Subanji; Sisworo
2016-01-01
This aim of this study is to describe the process of local conjecturing in generalizing patterns based on Action, Process, Object, Schema (APOS) theory. The subjects were 16 grade 8 students from a junior high school. Data collection used Pattern Generalization Problem (PGP) and interviews. In the first stage, students completed PGP; in the second…
Review on solving the forward problem in EEG source analysis
Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace
2007-01-01
Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144
A Local Government Services Program
ERIC Educational Resources Information Center
Jacobs, Bruce
1975-01-01
The Local Government Services Program, a cooperative venture of Ferris State College and six community colleges in northern Michigan, is providing local government leaders with a wide range of educational and practical problem solving services. Students and faculty conduct seminars, workshops, and training programs; they also provide consultation…
A Relaxation Method for Nonlocal and Non-Hermitian Operators
NASA Astrophysics Data System (ADS)
Lagaris, I. E.; Papageorgiou, D. G.; Braun, M.; Sofianos, S. A.
1996-06-01
We present a grid method to solve the time dependent Schrödinger equation (TDSE). It uses the Crank-Nicholson scheme to propagate the wavefunction forward in time and finite differences to approximate the derivative operators. The resulting sparse linear system is solved by the symmetric successive overrelaxation iterative technique. The method handles local and nonlocal interactions and Hamiltonians that correspond to either Hermitian or to non-Hermitian matrices with real eigenvalues. We test the method by solving the TDSE in the imaginary time domain, thus converting the time propagation to asymptotic relaxation. Benchmark problems solved are both in one and two dimensions, with local, nonlocal, Hermitian and non-Hermitian Hamiltonians.
Improved artificial bee colony algorithm for vehicle routing problem with time windows
Yan, Qianqian; Zhang, Mengjie; Yang, Yunong
2017-01-01
This paper investigates a well-known complex combinatorial problem known as the vehicle routing problem with time windows (VRPTW). Unlike the standard vehicle routing problem, each customer in the VRPTW is served within a given time constraint. This paper solves the VRPTW using an improved artificial bee colony (IABC) algorithm. The performance of this algorithm is improved by a local optimization based on a crossover operation and a scanning strategy. Finally, the effectiveness of the IABC is evaluated on some well-known benchmarks. The results demonstrate the power of IABC algorithm in solving the VRPTW. PMID:28961252
Multi-period project portfolio selection under risk considerations and stochastic income
NASA Astrophysics Data System (ADS)
Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood
2018-02-01
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.
Jiang, Feng; Han, Ji-zhong
2018-01-01
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods. PMID:29623088
Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong
2018-01-01
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.
Iterative Nonlocal Total Variation Regularization Method for Image Restoration
Xu, Huanyu; Sun, Quansen; Luo, Nan; Cao, Guo; Xia, Deshen
2013-01-01
In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods. PMID:23776560
The development and nature of problem-solving among first-semester calculus students
NASA Astrophysics Data System (ADS)
Dawkins, Paul Christian; Mendoza Epperson, James A.
2014-08-01
This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving performance, we observe that current instruction requires ongoing refinement to help students develop multi-register fluency and the ability to model quantitatively, as is called for in current US standards for mathematical instruction.
Lexical Problems in Large Distributed Information Systems.
ERIC Educational Resources Information Center
Berkovich, Simon Ya; Shneiderman, Ben
1980-01-01
Suggests a unified concept of a lexical subsystem as part of an information system to deal with lexical problems in local and network environments. The linguistic and control functions of the lexical subsystems in solving problems for large computer systems are described, and references are included. (Author/BK)
Helping Young Students to Better Pose an Environmental Problem
ERIC Educational Resources Information Center
Pruneau, Diane; Freiman, Viktor; Barbier, Pierre-Yves; Langis, Joanne
2009-01-01
Grade 3 students were asked to solve a sedimentation problem in a local river. With scientists, students explored many aspects of the problem and proposed solutions. Graphic representation tools were used to help students to better pose the problem. Using questionnaires and interviews, researchers observed students' capacity to pose the problem…
Problem-based learning on quantitative analytical chemistry course
NASA Astrophysics Data System (ADS)
Fitri, Noor
2017-12-01
This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.
Parallel algorithms for boundary value problems
NASA Technical Reports Server (NTRS)
Lin, Avi
1990-01-01
A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are two fold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.
Patron ID Cards Made Easy and Cheap
ERIC Educational Resources Information Center
Peischl, Tom
1978-01-01
Four major problems of academic library identification cards are expense, distribution, timeliness, and validation. By moving from a commercially produced plastic library card to a locally produced paper IBM-type card, this library solved these four library card problems. (Author)
Minimal norm constrained interpolation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Irvine, L. D.
1985-01-01
In computational fluid dynamics and in CAD/CAM, a physical boundary is usually known only discreetly and most often must be approximated. An acceptable approximation preserves the salient features of the data such as convexity and concavity. In this dissertation, a smooth interpolant which is locally concave where the data are concave and is locally convex where the data are convex is described. The interpolant is found by posing and solving a minimization problem whose solution is a piecewise cubic polynomial. The problem is solved indirectly by using the Peano Kernal theorem to recast it into an equivalent minimization problem having the second derivative of the interpolant as the solution. This approach leads to the solution of a nonlinear system of equations. It is shown that Newton's method is an exceptionally attractive and efficient method for solving the nonlinear system of equations. Examples of shape-preserving interpolants, as well as convergence results obtained by using Newton's method are also shown. A FORTRAN program to compute these interpolants is listed. The problem of computing the interpolant of minimal norm from a convex cone in a normal dual space is also discussed. An extension of de Boor's work on minimal norm unconstrained interpolation is presented.
Toward a Comprehensive Rural Development Policy.
ERIC Educational Resources Information Center
Knutson, Ronald D.; And Others
Rural development is broader than just agriculture. Farm policy cannot solve rural community problems. Rural problems are sufficiently unique to require special emphasis and special programs. Since rural development has a broader focus than the local community, its problems need to be addressed by all levels of government as well as the private…
Learning from Dealing with Real World Problems
ERIC Educational Resources Information Center
Akcay, Hakan
2017-01-01
The purpose of this article is to provide an example of using real world issues as tools for science teaching and learning. Using real world issues provides students with experiences in learning in problem-based environments and encourages them to apply their content knowledge to solving current and local problems.
Ethical issues in action-oriented research in Indonesia.
Rachmawaty, Rini
2017-09-01
Action-oriented research is one of the most frequent research types implemented to transform community health in Indonesia. Three researchers and 11 graduate students from a developed country in East Asia conducted a fieldwork program in a remote area in South Sulawesi Province. Although the project was completed, whether or not the international standards for human subject research were applied into that study remains unclear. This study aimed to examine ethical issues raised from that case, analyze constraints to the problems, and recommend alternatives to protect vulnerable populations from being exploited by local/international researchers. A problem-solving approach was used in this study. It began with problem identification, evaluation of the action-oriented research goal, investigation of the constraints to the problem, and recommendation of some relevant alternatives to address the central issue. Ethical Consideration: The approval for conducting the action-oriented research that being investigated in this work was only obtained from the Head of local district. Some ethical issues were found in this case. No special protection for this population, no informed consent was obtained from the participants, exposure to social and economic risks, no future benefits for the subjects, and conflict of interests. Lack of control from the local research ethics committee and lack of competence of local researchers on human subject research were considered as the constraints to the problems. Creating an independent research ethics committee, providing research ethics training to the local researchers, obtaining written/video consents from underserved populations, and meeting local health needs were recommended alternatives to solve these problems. Indonesian government bodies should reform their international collaborative system on research involving human subjects. Exploitation may not occur if all participants as well as all local and national governing bodies understand the research ethics on human subjects and apply it into their practice.
NASA Astrophysics Data System (ADS)
Sayevand, K.; Pichaghchi, K.
2018-04-01
In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.
Fuzzy spaces topology change as a possible solution to the black hole information loss paradox
NASA Astrophysics Data System (ADS)
Silva, C. A. S.
2009-06-01
The black hole information loss paradox is one of the most intricate problems in modern theoretical physics. A proposal to solve this is one related with topology change. However it has found some obstacles related to unitarity and cluster decomposition (locality). In this Letter we argue that modelling the black hole's event horizon as a noncommutative manifold - the fuzzy sphere - we can solve the problems with topology change, getting a possible solution to the black hole information loss paradox.
Problem-Solving Test: Submitochondrial Localization of Proteins
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…
Pourhassan, Mojgan; Neumann, Frank
2018-06-22
The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which meta-heuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a Cluster-Based approach and a Node-Based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this paper, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the Node-Based approach solves the hard instance of the Cluster-Based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the Node-Based approach for a class of Euclidean instances.
Conflict in Context: Understanding Local to Global Security.
ERIC Educational Resources Information Center
Mertz, Gayle; Lieber, Carol Miller
This multidisciplinary guide provides middle and high school teachers and students with inquiry-based tools to support their exploration of emerging local, national, international, and transboundary security issues. Students are introduced to critical thinking, problem solving, and peacemaking strategies that will help them better understand…
Developer/Demonstrator Directory.
ERIC Educational Resources Information Center
Far West Lab. for Educational Research and Development, San Francisco, CA.
The National Diffusion Network (NDN) was established to bring together representatives of federal, state, and local agencies to promote widespread adoption of new and innovative programs within and across state boundaries. The goal in publishing this directory is to help local educators solve problems through program improvements gleaned from…
NASA Astrophysics Data System (ADS)
Hannel, Mark D.; Abdulali, Aidan; O'Brien, Michael; Grier, David G.
2018-06-01
Holograms of colloidal particles can be analyzed with the Lorenz-Mie theory of light scattering to measure individual particles' three-dimensional positions with nanometer precision while simultaneously estimating their sizes and refractive indexes. Extracting this wealth of information begins by detecting and localizing features of interest within individual holograms. Conventionally approached with heuristic algorithms, this image analysis problem can be solved faster and more generally with machine-learning techniques. We demonstrate that two popular machine-learning algorithms, cascade classifiers and deep convolutional neural networks (CNN), can solve the feature-localization problem orders of magnitude faster than current state-of-the-art techniques. Our CNN implementation localizes holographic features precisely enough to bootstrap more detailed analyses based on the Lorenz-Mie theory of light scattering. The wavelet-based Haar cascade proves to be less precise, but is so computationally efficient that it creates new opportunities for applications that emphasize speed and low cost. We demonstrate its use as a real-time targeting system for holographic optical trapping.
The Davey-Stewartson Equation on the Half-Plane
NASA Astrophysics Data System (ADS)
Fokas, A. S.
2009-08-01
The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.
Learning locality preserving graph from data.
Zhang, Yan-Ming; Huang, Kaizhu; Hou, Xinwen; Liu, Cheng-Lin
2014-11-01
Machine learning based on graph representation, or manifold learning, has attracted great interest in recent years. As the discrete approximation of data manifold, the graph plays a crucial role in these kinds of learning approaches. In this paper, we propose a novel learning method for graph construction, which is distinct from previous methods in that it solves an optimization problem with the aim of directly preserving the local information of the original data set. We show that the proposed objective has close connections with the popular Laplacian Eigenmap problem, and is hence well justified. The optimization turns out to be a quadratic programming problem with n(n-1)/2 variables (n is the number of data points). Exploiting the sparsity of the graph, we further propose a more efficient cutting plane algorithm to solve the problem, making the method better scalable in practice. In the context of clustering and semi-supervised learning, we demonstrated the advantages of our proposed method by experiments.
NASA Astrophysics Data System (ADS)
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Motion-based prediction is sufficient to solve the aperture problem
Perrinet, Laurent U; Masson, Guillaume S
2012-01-01
In low-level sensory systems, it is still unclear how the noisy information collected locally by neurons may give rise to a coherent global percept. This is well demonstrated for the detection of motion in the aperture problem: as luminance of an elongated line is symmetrical along its axis, tangential velocity is ambiguous when measured locally. Here, we develop the hypothesis that motion-based predictive coding is sufficient to infer global motion. Our implementation is based on a context-dependent diffusion of a probabilistic representation of motion. We observe in simulations a progressive solution to the aperture problem similar to physiology and behavior. We demonstrate that this solution is the result of two underlying mechanisms. First, we demonstrate the formation of a tracking behavior favoring temporally coherent features independently of their texture. Second, we observe that incoherent features are explained away while coherent information diffuses progressively to the global scale. Most previous models included ad-hoc mechanisms such as end-stopped cells or a selection layer to track specific luminance-based features as necessary conditions to solve the aperture problem. Here, we have proved that motion-based predictive coding, as it is implemented in this functional model, is sufficient to solve the aperture problem. This solution may give insights in the role of prediction underlying a large class of sensory computations. PMID:22734489
ERIC Educational Resources Information Center
Posamentier, Jordan; Lake, Robin; Hill, Paul
2017-01-01
State policy plays a critical role in determining whether and how well local education improvement strategies can be implemented. As states rework their education policies under the Every Student Succeeds Act (ESSA), state and local leaders need a way to assess their current policy environment and identify the changes needed to encourage local…
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan
2018-05-21
The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan
2018-01-01
The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods. PMID:29883410
Mesh refinement strategy for optimal control problems
NASA Astrophysics Data System (ADS)
Paiva, L. T.; Fontes, F. A. C. C.
2013-10-01
Direct methods are becoming the most used technique to solve nonlinear optimal control problems. Regular time meshes having equidistant spacing are frequently used. However, in some cases these meshes cannot cope accurately with nonlinear behavior. One way to improve the solution is to select a new mesh with a greater number of nodes. Another way, involves adaptive mesh refinement. In this case, the mesh nodes have non equidistant spacing which allow a non uniform nodes collocation. In the method presented in this paper, a time mesh refinement strategy based on the local error is developed. After computing a solution in a coarse mesh, the local error is evaluated, which gives information about the subintervals of time domain where refinement is needed. This procedure is repeated until the local error reaches a user-specified threshold. The technique is applied to solve the car-like vehicle problem aiming minimum consumption. The approach developed in this paper leads to results with greater accuracy and yet with lower overall computational time as compared to using a time meshes having equidistant spacing.
Reinforcement learning in computer vision
NASA Astrophysics Data System (ADS)
Bernstein, A. V.; Burnaev, E. V.
2018-04-01
Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.
Ahlfeld, David P.; Baker, Kristine M.; Barlow, Paul M.
2009-01-01
This report describes the Groundwater-Management (GWM) Process for MODFLOW-2005, the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model. GWM can solve a broad range of groundwater-management problems by combined use of simulation- and optimization-modeling techniques. These problems include limiting groundwater-level declines or streamflow depletions, managing groundwater withdrawals, and conjunctively using groundwater and surface-water resources. GWM was initially released for the 2000 version of MODFLOW. Several modifications and enhancements have been made to GWM since its initial release to increase the scope of the program's capabilities and to improve its operation and reporting of results. The new code, which is called GWM-2005, also was designed to support the local grid refinement capability of MODFLOW-2005. Local grid refinement allows for the simulation of one or more higher resolution local grids (referred to as child models) within a coarser grid parent model. Local grid refinement is often needed to improve simulation accuracy in regions where hydraulic gradients change substantially over short distances or in areas requiring detailed representation of aquifer heterogeneity. GWM-2005 can be used to formulate and solve groundwater-management problems that include components in both parent and child models. Although local grid refinement increases simulation accuracy, it can also substantially increase simulation run times.
A new effective operator for the hybrid algorithm for solving global optimisation problems
NASA Astrophysics Data System (ADS)
Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac
2018-04-01
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.
Using the Storypath Approach to Make Local Government Understandable
ERIC Educational Resources Information Center
McGuire, Margit E.; Cole, Bronwyn
2008-01-01
Learning about local government seems boring and irrelevant to most young people, particularly to students from high-poverty backgrounds. The authors explore a promising approach for solving this problem, Storypath, which engages students in authentic learning and active citizenship. The Storypath approach is based on a narrative in which students…
Environmental Education through Watershed Studies: Budd/Deschutes Project GREEN.
ERIC Educational Resources Information Center
Lewis, Lisa Bryce
1992-01-01
Describes the development and current status of the Global Rivers Environmental Education Network, cited as an exemplary Environmental Education program in the Pacific northwest. It is an international educational effort that provides a means for improving local and global water quality through hands-on monitoring and local problem solving for…
A fast direct solver for boundary value problems on locally perturbed geometries
NASA Astrophysics Data System (ADS)
Zhang, Yabin; Gillman, Adrianna
2018-03-01
Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.
Drawing simulation by static implicit analysis with the artificial damping method
NASA Astrophysics Data System (ADS)
Oide, K.; Mihara, Y.; Kobayashi, T.; Takizawa, H.; Amaishi, T.; Umezu, Y.
2016-08-01
Wrinkling during draw is typically a local instability problem. When the structural instability is localized, there will be a local transfer of strain energy from one part of the structure to neighboring parts, and global solution methods, which is typically represented by the arc length method, may not work. So, this type of problems has to be solved either dynamically or with the artificial damping. On the other hand, the essential nature of the buckling behavior can be regarded as a static problem, even though it may be possible to raise some side issues due to the inertia effect. In this study, we traced the local buckling behavior of anisotropic elasto-plastic thin shells in Numisheet2014 BM4 using the artificial damping method.
The P1-RKDG method for two-dimensional Euler equations of gas dynamics
NASA Technical Reports Server (NTRS)
Cockburn, Bernardo; Shu, Chi-Wang
1991-01-01
A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.
Berteletti, Ilaria; Prado, Jérôme; Booth, James R
2014-08-01
Greater skill in solving single-digit multiplication problems requires a progressive shift from a reliance on numerical to verbal mechanisms over development. Children with mathematical learning disability (MD), however, are thought to suffer from a specific impairment in numerical mechanisms. Here we tested the hypothesis that this impairment might prevent MD children from transitioning toward verbal mechanisms when solving single-digit multiplication problems. Brain activations during multiplication problems were compared in MD and typically developing (TD) children (3rd to 7th graders) in numerical and verbal regions which were individuated by independent localizer tasks. We used small (e.g., 2 × 3) and large (e.g., 7 × 9) problems as these problems likely differ in their reliance on verbal versus numerical mechanisms. Results indicate that MD children have reduced activations in both the verbal (i.e., left inferior frontal gyrus and left middle temporal to superior temporal gyri) and the numerical (i.e., right superior parietal lobule including intra-parietal sulcus) regions suggesting that both mechanisms are impaired. Moreover, the only reliable activation observed for MD children was in the numerical region when solving small problems. This suggests that MD children could effectively engage numerical mechanisms only for the easier problems. Conversely, TD children showed a modulation of activation with problem size in the verbal regions. This suggests that TD children were effectively engaging verbal mechanisms for the easier problems. Moreover, TD children with better language skills were more effective at engaging verbal mechanisms. In conclusion, results suggest that the numerical- and language-related processes involved in solving multiplication problems are impaired in MD children. Published by Elsevier Ltd.
Source localization in an ocean waveguide using supervised machine learning.
Niu, Haiqiang; Reeves, Emma; Gerstoft, Peter
2017-09-01
Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data. The pressure received by a vertical linear array is preprocessed by constructing a normalized sample covariance matrix and used as the input for three machine learning methods: feed-forward neural networks (FNN), support vector machines (SVM), and random forests (RF). The range estimation problem is solved both as a classification problem and as a regression problem by these three machine learning algorithms. The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF, and conventional matched-field processing and demonstrate the potential of machine learning for underwater source localization.
NASA Astrophysics Data System (ADS)
Chan, Man Ching Esther; Clarke, David; Cao, Yiming
2018-03-01
Interactive problem solving and learning are priorities in contemporary education, but these complex processes have proved difficult to research. This project addresses the question "How do we optimise social interaction for the promotion of learning in a mathematics classroom?" Employing the logic of multi-theoretic research design, this project uses the newly built Science of Learning Research Classroom (ARC-SR120300015) at The University of Melbourne and equivalent facilities in China to investigate classroom learning and social interactions, focusing on collaborative small group problem solving as a way to make the social aspects of learning visible. In Australia and China, intact classes of local year 7 students with their usual teacher will be brought into the research classroom facilities with built-in video cameras and audio recording equipment to participate in purposefully designed activities in mathematics. The students will undertake a sequence of tasks in the social units of individual, pair, small group (typically four students) and whole class. The conditions for student collaborative problem solving and learning will be manipulated so that student and teacher contributions to that learning process can be distinguished. Parallel and comparative analyses will identify culture-specific interactive patterns and provide the basis for hypotheses about the learning characteristics underlying collaborative problem solving performance documented in the research classrooms in each country. The ultimate goals of the project are to generate, develop and test more sophisticated hypotheses for the optimisation of social interaction in the mathematics classroom in the interest of improving learning and, particularly, student collaborative problem solving.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
NASA Astrophysics Data System (ADS)
Shiangjen, Kanokwatt; Chaijaruwanich, Jeerayut; Srisujjalertwaja, Wijak; Unachak, Prakarn; Somhom, Samerkae
2018-02-01
This article presents an efficient heuristic placement algorithm, namely, a bidirectional heuristic placement, for solving the two-dimensional rectangular knapsack packing problem. The heuristic demonstrates ways to maximize space utilization by fitting the appropriate rectangle from both sides of the wall of the current residual space layer by layer. The iterative local search along with a shift strategy is developed and applied to the heuristic to balance the exploitation and exploration tasks in the solution space without the tuning of any parameters. The experimental results on many scales of packing problems show that this approach can produce high-quality solutions for most of the benchmark datasets, especially for large-scale problems, within a reasonable duration of computational time.
ERIC Educational Resources Information Center
Steffes, Tracy L.
2008-01-01
In 1918, Minnesota county superintendent Julius Arp argued that the greatest educational problem facing the American people was the Rural School Problem, saying: "There is no defect more glaring today than the inequality that exists between the educational facilities of the urban and rural communities. Rural education in the United States has…
Combining constraint satisfaction and local improvement algorithms to construct anaesthetists' rotas
NASA Technical Reports Server (NTRS)
Smith, Barbara M.; Bennett, Sean
1992-01-01
A system is described which was built to compile weekly rotas for the anaesthetists in a large hospital. The rota compilation problem is an optimization problem (the number of tasks which cannot be assigned to an anaesthetist must be minimized) and was formulated as a constraint satisfaction problem (CSP). The forward checking algorithm is used to find a feasible rota, but because of the size of the problem, it cannot find an optimal (or even a good enough) solution in an acceptable time. Instead, an algorithm was devised which makes local improvements to a feasible solution. The algorithm makes use of the constraints as expressed in the CSP to ensure that feasibility is maintained, and produces very good rotas which are being used by the hospital involved in the project. It is argued that formulation as a constraint satisfaction problem may be a good approach to solving discrete optimization problems, even if the resulting CSP is too large to be solved exactly in an acceptable time. A CSP algorithm may be able to produce a feasible solution which can then be improved, giving a good, if not provably optimal, solution.
Fast words boundaries localization in text fields for low quality document images
NASA Astrophysics Data System (ADS)
Ilin, Dmitry; Novikov, Dmitriy; Polevoy, Dmitry; Nikolaev, Dmitry
2018-04-01
The paper examines the problem of word boundaries precise localization in document text zones. Document processing on a mobile device consists of document localization, perspective correction, localization of individual fields, finding words in separate zones, segmentation and recognition. While capturing an image with a mobile digital camera under uncontrolled capturing conditions, digital noise, perspective distortions or glares may occur. Further document processing gets complicated because of its specifics: layout elements, complex background, static text, document security elements, variety of text fonts. However, the problem of word boundaries localization has to be solved at runtime on mobile CPU with limited computing capabilities under specified restrictions. At the moment, there are several groups of methods optimized for different conditions. Methods for the scanned printed text are quick but limited only for images of high quality. Methods for text in the wild have an excessively high computational complexity, thus, are hardly suitable for running on mobile devices as part of the mobile document recognition system. The method presented in this paper solves a more specialized problem than the task of finding text on natural images. It uses local features, a sliding window and a lightweight neural network in order to achieve an optimal algorithm speed-precision ratio. The duration of the algorithm is 12 ms per field running on an ARM processor of a mobile device. The error rate for boundaries localization on a test sample of 8000 fields is 0.3
Cognitive development in introductory physics: A research-based approach to curriculum reform
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca Elena
This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Ta'asan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is addressed. Leading eigenvalues of large matrices that arise from discretization are calculated, and an efficient multigrid method for solving these problems is presented. The resulting grid functions are used as initial approximations for appropriate eigenvalue problems. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved on the coarse grid. This leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem are presented which demonstrate the effectiveness of the method.
Hernando, Leticia; Mendiburu, Alexander; Lozano, Jose A
2013-01-01
The solution of many combinatorial optimization problems is carried out by metaheuristics, which generally make use of local search algorithms. These algorithms use some kind of neighborhood structure over the search space. The performance of the algorithms strongly depends on the properties that the neighborhood imposes on the search space. One of these properties is the number of local optima. Given an instance of a combinatorial optimization problem and a neighborhood, the estimation of the number of local optima can help not only to measure the complexity of the instance, but also to choose the most convenient neighborhood to solve it. In this paper we review and evaluate several methods to estimate the number of local optima in combinatorial optimization problems. The methods reviewed not only come from the combinatorial optimization literature, but also from the statistical literature. A thorough evaluation in synthetic as well as real problems is given. We conclude by providing recommendations of methods for several scenarios.
Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.
2007-01-01
Scattered data interpolation is a problem of interest in numerous areas such as electronic imaging, smooth surface modeling, and computational geometry. Our motivation arises from applications in geology and mining, which often involve large scattered data sets and a demand for high accuracy. The method of choice is ordinary kriging. This is because it is a best unbiased estimator. Unfortunately, this interpolant is computationally very expensive to compute exactly. For n scattered data points, computing the value of a single interpolant involves solving a dense linear system of size roughly n x n. This is infeasible for large n. In practice, kriging is solved approximately by local approaches that are based on considering only a relatively small'number of points that lie close to the query point. There are many problems with this local approach, however. The first is that determining the proper neighborhood size is tricky, and is usually solved by ad hoc methods such as selecting a fixed number of nearest neighbors or all the points lying within a fixed radius. Such fixed neighborhood sizes may not work well for all query points, depending on local density of the point distribution. Local methods also suffer from the problem that the resulting interpolant is not continuous. Meyer showed that while kriging produces smooth continues surfaces, it has zero order continuity along its borders. Thus, at interface boundaries where the neighborhood changes, the interpolant behaves discontinuously. Therefore, it is important to consider and solve the global system for each interpolant. However, solving such large dense systems for each query point is impractical. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. The problems arise from the fact that the covariance functions that are used in kriging have global support. Our implementations combine, utilize, and enhance a number of different approaches that have been introduced in literature for solving large linear systems for interpolation of scattered data points. For very large systems, exact methods such as Gaussian elimination are impractical since they require 0(n(exp 3)) time and 0(n(exp 2)) storage. As Billings et al. suggested, we use an iterative approach. In particular, we use the SYMMLQ method, for solving the large but sparse ordinary kriging systems that result from tapering. The main technical issue that need to be overcome in our algorithmic solution is that the points' covariance matrix for kriging should be symmetric positive definite. The goal of tapering is to obtain a sparse approximate representation of the covariance matrix while maintaining its positive definiteness. Furrer et al. used tapering to obtain a sparse linear system of the form Ax = b, where A is the tapered symmetric positive definite covariance matrix. Thus, Cholesky factorization could be used to solve their linear systems. They implemented an efficient sparse Cholesky decomposition method. They also showed if these tapers are used for a limited class of covariance models, the solution of the system converges to the solution of the original system. Matrix A in the ordinary kriging system, while symmetric, is not positive definite. Thus, their approach is not applicable to the ordinary kriging system. Therefore, we use tapering only to obtain a sparse linear system. Then, we use SYMMLQ to solve the ordinary kriging system. We show that solving large kriging systems becomes practical via tapering and iterative methods, and results in lower estimation errors compared to traditional local approaches, and significant memory savings compared to the original global system. We also developed a more efficient variant of the sparse SYMMLQ method for large ordinary kriging systems. This approach adaptively finds the correct local neighborhood for each query point in the interpolation process.
Topology-changing shape optimization with the genetic algorithm
NASA Astrophysics Data System (ADS)
Lamberson, Steven E., Jr.
The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.
Computational Study for Planar Connected Dominating Set Problem
NASA Astrophysics Data System (ADS)
Marzban, Marjan; Gu, Qian-Ping; Jia, Xiaohua
The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. [ESA2005, LNCS3669,pp95-106] introduce a new technique to generate 2^{O(sqrt{n})} time and fixed-parameter algorithms for a number of non-local hard problems, including the CDS problem in planar graphs. The practical performance of this algorithm is yet to be evaluated. We perform a computational study for such an evaluation. The results show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical result. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space. This suggests that the branch-decomposition based algorithms can be practical for the planar CDS problem.
NASA Astrophysics Data System (ADS)
Navas, Pedro; Sanavia, Lorenzo; López-Querol, Susana; Yu, Rena C.
2017-12-01
Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue. An implicit time integration scheme is herein developed within the framework of the u-w (solid displacement-relative fluid displacement) formulation for the Biot's equations. In particular, liquid water saturated porous media is considered and the linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through the application to an embankment problem subjected to an earthquake.
Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.
Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M
2015-06-12
In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.
ERIC Educational Resources Information Center
National Association of Manufacturers, New York, NY.
Proceedings of the closed-circuit Teleconference on Pollution Control conducted by the National Association of Manufacturers on May 26, 1971 are supplied in this compendium. Edited transcripts are provided for the national programs and local panel sessions. Seeking to bring business and government together for cooperative problem solving, the…
NASA Astrophysics Data System (ADS)
Ning, Po; Feng, Zhi-Qiang; Quintero, Juan Antonio Rojas; Zhou, Yang-Jing; Peng, Lei
2018-03-01
This paper deals with elastic and elastic-plastic fretting problems. The wear gap is taken into account along with the initial contact distance to obtain the Signorini conditions. Both the Signorini conditions and the Coulomb friction laws are written in a compact form. Within the bipotential framework, an augmented Lagrangian method is applied to calculate the contact forces. The Archard wear law is then used to calculate the wear gap at the contact surface. The local fretting problems are solved via the Uzawa algorithm. Numerical examples are performed to show the efficiency and accuracy of the proposed approach. The influence of plasticity has been discussed.
Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm
NASA Astrophysics Data System (ADS)
Anam, S.
2017-10-01
Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.
ERIC Educational Resources Information Center
Harkavy, Ira; Hartley, Matthew; Hodges, Rita Axelroth; Weeks, Joann
2016-01-01
In the rapidly accelerating global era in which we now live, human beings must solve a vast array of unprecedently complex problems. Given their proclaimed dedication to critical intelligence, and their unique constellation of formidable resources to develop it, institutions of higher education have a unique responsibility to help solve these…
NASA Astrophysics Data System (ADS)
Inoue, Hisaki; Gen, Mitsuo
The logistics model used in this study is 3-stage model employed by an automobile company, which aims to solve traffic problems at a total minimum cost. Recently, research on the metaheuristics method has advanced as an approximate means for solving optimization problems like this model. These problems can be solved using various methods such as the genetic algorithm (GA), simulated annealing, and tabu search. GA is superior in robustness and adjustability toward a change in the structure of these problems. However, GA has a disadvantage in that it has a slightly inefficient search performance because it carries out a multi-point search. A hybrid GA that combines another method is attracting considerable attention since it can compensate for a fault to a partial solution that early convergence gives a bad influence on a result. In this study, we propose a novel hybrid random key-based GA(h-rkGA) that combines local search and parameter tuning of crossover rate and mutation rate; h-rkGA is an improved version of the random key-based GA (rk-GA). We attempted comparative experiments with spanning tree-based GA, priority based GA and random key-based GA. Further, we attempted comparative experiments with “h-GA by only local search” and “h-GA by only parameter tuning”. We reported the effectiveness of the proposed method on the basis of the results of these experiments.
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem
Akutsah, Francis; Olusanya, Micheal O.; Adewumi, Aderemi O.
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems. PMID:29554662
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.
Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.
Interacting dark sector and the coincidence problem within the scope of LRS Bianchi type I model
NASA Astrophysics Data System (ADS)
Muharlyamov, Ruslan K.; Pankratyeva, Tatiana N.
2018-05-01
It is shown that a suitable interaction between dark energy and dark matter in locally rotationally symmetric (LRS) Bianchi-I space-time can solve the coincidence problem and not contradict the accelerated expansion of present Universe. The interaction parameters are estimated from observational data.
A distributed algorithm for machine learning
NASA Astrophysics Data System (ADS)
Chen, Shihong
2018-04-01
This paper considers a distributed learning problem in which a group of machines in a connected network, each learning its own local dataset, aim to reach a consensus at an optimal model, by exchanging information only with their neighbors but without transmitting data. A distributed algorithm is proposed to solve this problem under appropriate assumptions.
Projects, Puzzles and Other Pedagogies: Working with Kids to Solve Local Problems
ERIC Educational Resources Information Center
Marshman, Margaret
2012-01-01
Engaging and extending middle years students in mathematics is a continual challenge. One of the aims of the "Australian Curriculum: Mathematics" is to ensure that students are "confident, creative users and communicators of mathematics" (ACARA, 2011). Use of mathematical models and/or problems has been suggested as methods of…
Grid-Independent Compressive Imaging and Fourier Phase Retrieval
ERIC Educational Resources Information Center
Liao, Wenjing
2013-01-01
This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…
Fostering Authentic Problem Seeking: A Step toward Social Justice Engagement
ERIC Educational Resources Information Center
Bruce-Davis, Micah N.; Gilson, Cindy M.; Matthews, Michael S.
2017-01-01
Because of these learners' potential as future leaders, it is imperative that educators develop gifted students' ability to identify and solve complex social justice problems. Nourishing students' affective traits, including empathy for others, understanding of themselves, and the ability to connect to others in local and global society, will help…
Maximum Principles and Application to the Analysis of An Explicit Time Marching Algorithm
NASA Technical Reports Server (NTRS)
LeTallec, Patrick; Tidriri, Moulay D.
1996-01-01
In this paper we develop local and global estimates for the solution of convection-diffusion problems. We then study the convergence properties of a Time Marching Algorithm solving Advection-Diffusion problems on two domains using incompatible discretizations. This study is based on a De-Giorgi-Nash maximum principle.
Understanding Partnerships: A Rural College's Role in Recycling Refuse.
ERIC Educational Resources Information Center
Adams, Frank G.
2000-01-01
Describes the partnership that was formed by a county government, three city governments, Weyerhaeuser Company, and Cossatot Technical College in Arkansas to solve the refuse problem when the local landfill closed. (JOW)
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
A radial basis function Galerkin method for inhomogeneous nonlocal diffusion
Lehoucq, Richard B.; Rowe, Stephen T.
2016-02-01
We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.
Solving a discrete model of the lac operon using Z3
NASA Astrophysics Data System (ADS)
Gutierrez, Natalia A.
2014-05-01
A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.
NASA Astrophysics Data System (ADS)
Bazhenov, V. G.; Bragov, A. M.; Konstantinov, A. Yu.; Kotov, V. L.
2015-05-01
This paper presents an analysis of the accuracy of known and new modeling methods using the hypothesis of local and plane sections for solution of problems of the impact and plane-parallel motion of conical bodies at an angle to the free surface of the half-space occupied by elastoplastic soil. The parameters of the local interaction model that is quadratic in velocity are determined by solving the one-dimensional problem of the expansion of a spherical cavity. Axisymmetric problems for each of the meridional section are solved simultaneously neglecting mass and momentum transfer in the circumferential direction and using an approach based on the hypothesis of plane sections. The dynamic and kinematic parameters of oblique penetration obtained using modified models are compared with the results of computer simulation in a three-dimensional formulation. The results obtained with regard to the contact stress distribution along the generator of the pointed cone are in satisfactory agreement.
A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems
NASA Astrophysics Data System (ADS)
Ben Dhia, Hachmi; Du, Shuimiao
2018-05-01
The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.
Solving a real-world problem using an evolving heuristically driven schedule builder.
Hart, E; Ross, P; Nelson, J
1998-01-01
This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.
Calculation of transmission probability by solving an eigenvalue problem
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Varga, Kálmán
2010-11-01
The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.
A review of developments in the theory of elasto-plastic flow
NASA Technical Reports Server (NTRS)
Swedlow, J. L.
1973-01-01
The theory of elasto-plastic flow is developed so that it may accommodate features such as work-hardening, anisotropy, plastic compressibility, non-continuous loading including local or global unloading, and others. A complete theory is given in quasi-linear form; as a result, many useful attributes are accessible. Several integral theorems may be written, finite deformations may be incorporated, and efficient methods for solving problems may be developed; these and other aspects are described in some detail. The theory is reduced to special forms for 2-space, and extensive experience in solving such problems is cited.
Multigrid methods for bifurcation problems: The self adjoint case
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1987-01-01
This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.
A gradient system solution to Potts mean field equations and its electronic implementation.
Urahama, K; Ueno, S
1993-03-01
A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.
Overset meshing coupled with hybridizable discontinuous Galerkin finite elements
Kauffman, Justin A.; Sheldon, Jason P.; Miller, Scott T.
2017-03-01
We introduce the use of hybridizable discontinuous Galerkin (HDG) finite element methods on overlapping (overset) meshes. Overset mesh methods are advantageous for solving problems on complex geometrical domains. We also combine geometric flexibility of overset methods with the advantages of HDG methods: arbitrarily high-order accuracy, reduced size of the global discrete problem, and the ability to solve elliptic, parabolic, and/or hyperbolic problems with a unified form of discretization. This approach to developing the ‘overset HDG’ method is to couple the global solution from one mesh to the local solution on the overset mesh. We present numerical examples for steady convection–diffusionmore » and static elasticity problems. The examples demonstrate optimal order convergence in all primal fields for an arbitrary amount of overlap of the underlying meshes.« less
NASA Astrophysics Data System (ADS)
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
An evolutionary algorithm for large traveling salesman problems.
Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan
2004-08-01
This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.
Artificial immune algorithm for multi-depot vehicle scheduling problems
NASA Astrophysics Data System (ADS)
Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling
2008-10-01
In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.
ERIC Educational Resources Information Center
Ramadoss, Alexandar; Poyya Moli, Gopalsamy
2011-01-01
Promoting students commitment to protect local biodiversity is an important goal of education for sustainable development in India and elsewhere. The main focus of the biodiversity education was to create knowledge, interest and necessary skills to solve various biodiversity problems with reference to the local context. In order to develop the…
NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
Code of Federal Regulations, 2010 CFR
2010-04-01
... State or local concerns, and must include a determination that an individual: (1) Computes or solves problems, reads, writes, or speaks English at or below the 8th grade level on a generally accepted standardized test or a comparable score on a criterion-referenced test; or (2) Is unable to compute or solve...
Cota-Ruiz, Juan; Rosiles, Jose-Gerardo; Sifuentes, Ernesto; Rivas-Perea, Pablo
2012-01-01
This research presents a distributed and formula-based bilateration algorithm that can be used to provide initial set of locations. In this scheme each node uses distance estimates to anchors to solve a set of circle-circle intersection (CCI) problems, solved through a purely geometric formulation. The resulting CCIs are processed to pick those that cluster together and then take the average to produce an initial node location. The algorithm is compared in terms of accuracy and computational complexity with a Least-Squares localization algorithm, based on the Levenberg-Marquardt methodology. Results in accuracy vs. computational performance show that the bilateration algorithm is competitive compared with well known optimized localization algorithms.
ERIC Educational Resources Information Center
Cowden, Chapel D.; Santiago, Manuel F.
2016-01-01
Interdisciplinary approaches to research in the sciences have become increasingly important in solving a wide range of pressing problems at both global and local levels. It is imperative then that science majors in higher education understand the need for exploring information from a wide array of disciplines. With this in mind, interdisciplinary…
NASA Astrophysics Data System (ADS)
Malekan, Mohammad; Barros, Felício B.
2017-12-01
Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.
Efficiency of quantum vs. classical annealing in nonconvex learning problems
Zecchina, Riccardo
2018-01-01
Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764
Collaborative Localization and Location Verification in WSNs
Miao, Chunyu; Dai, Guoyong; Ying, Kezhen; Chen, Qingzhang
2015-01-01
Localization is one of the most important technologies in wireless sensor networks. A lightweight distributed node localization scheme is proposed by considering the limited computational capacity of WSNs. The proposed scheme introduces the virtual force model to determine the location by incremental refinement. Aiming at solving the drifting problem and malicious anchor problem, a location verification algorithm based on the virtual force mode is presented. In addition, an anchor promotion algorithm using the localization reliability model is proposed to re-locate the drifted nodes. Extended simulation experiments indicate that the localization algorithm has relatively high precision and the location verification algorithm has relatively high accuracy. The communication overhead of these algorithms is relative low, and the whole set of reliable localization methods is practical as well as comprehensive. PMID:25954948
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.
2014-09-01
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach
Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations
NASA Astrophysics Data System (ADS)
Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.
2018-03-01
Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.
Going the distance for certified cancer registrars.
Backus, Amanda; Kolender, Ellen R
2009-01-01
Cancer registry departments are using electronic technology to solve the local and national Certified Tumor Registrar (CTR) shortages. As demand for CTRs continues to increase without an accompanied increase in the supply of qualified personnel, cancer registry departments are looking for new solutions to this growing local and national trend. In order to solve this problem, some cancer registries have started using telecommunication to fill the empty positions within their departments. This is the case at Roper St. Francis Healthcare (RSFH) in Charleston, SC, where Cancer Registry Manager, Ellen Kolender, RHIA, CTR, used telecommuting to fill one full-time and one part-time CTR position.
NASA Astrophysics Data System (ADS)
Ge, Yongbin; Cao, Fujun
2011-05-01
In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.
Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.
Carrascal, A; Manrique, D; Ríos, J; Rossi, C
2003-01-01
This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.
Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications
NASA Astrophysics Data System (ADS)
Zu, Yue
Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.
Solving the vehicle routing problem by a hybrid meta-heuristic algorithm
NASA Astrophysics Data System (ADS)
Yousefikhoshbakht, Majid; Khorram, Esmaile
2012-08-01
The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the total distance traveled by all the vehicles. This paper presents a hybrid two-phase algorithm called sweep algorithm (SW) + ant colony system (ACS) for the classical VRP. At the first stage, the VRP is solved by the SW, and at the second stage, the ACS and 3-opt local search are used for improving the solutions. Extensive computational tests on standard instances from the literature confirm the effectiveness of the presented approach.
NASA Astrophysics Data System (ADS)
Sirota, Dmitry; Ivanov, Vadim
2017-11-01
Any mining operations influence stability of natural and technogenic massifs are the reason of emergence of the sources of differences of mechanical tension. These sources generate a quasistationary electric field with a Newtonian potential. The paper reviews the method of determining the shape and size of a flat source field with this kind of potential. This common problem meets in many fields of mining: geological exploration mineral resources, ore deposits, control of mining by underground method, determining coal self-heating source, localization of the rock crack's sources and other applied problems of practical physics. This problems are ill-posed and inverse and solved by converting to Fredholm-Uryson integral equation of the first kind. This equation will be solved by A.N. Tikhonov regularization method.
Problem-solving test: Southwestern blotting.
Szeberényi, József
2014-01-01
Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA, deletion mutants, expression plasmid, transfection, RNA polymerase II, promoter, Shine-Dalgarno sequence, polyadenylation element, affinity chromatography, Northern blotting, immunoprecipitation, sodium dodecylsulfate, autoradiography, tandem repeats. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.
Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method
Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...
2016-09-22
Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less
Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalchev, Delyan Z.; Lee, C. S.; Villa, U.
Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less
Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia
2017-02-15
This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Linear homotopy solution of nonlinear systems of equations in geodesy
NASA Astrophysics Data System (ADS)
Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.
2010-01-01
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.
ERIC Educational Resources Information Center
Hong, Jianzhong
2000-01-01
Explores the process of workplace learning and problem solving by examining Western and local enterprises in South China. Discusses whether the managerial concepts embedded in Chinese culture help or impede collective learning and concludes that new ways of working and learning are emerging through the interaction of Western and Chinese culture.…
Third Earth Resources Technology Satellite Symposium. Volume 2: Summary of results
NASA Technical Reports Server (NTRS)
Freden, S. C. (Editor); Mercanti, E. P. (Editor); Friedman, D. B. (Editor)
1974-01-01
Summaries are provided of significant results taken from presentations at the symposium along with some typical examples of the applications of ERTS-1 data for solving resources management problems at the national, state, and local levels.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2012-02-01
We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.
Working for a not-for-Profit Research and Development Organization in the Earth Sciences
NASA Astrophysics Data System (ADS)
McKague, h L
2001-12-01
The Southwest Research Institute (SwRI) is an independent not-for-profit applied engineering and physical sciences research and development organization. This means that SwRI owes no allegiance to organizations other than its clients. As a not-for-profit organization, SwRI reinvests its net income into the organization to improve, strengthen, and expand facilities and to support internal research and development projects. Located in San Antonio, Texas, on 1200 acres, SwRI employs nearly 2800 staff and occupies nearly 2,000,000 square feet of office space. Its business is about equally divided between commercial and government clients, most of whom have specific scientific and technical problems that need to be solved in a timely, cost-effective manner. Governmental clients include local, state, and federal agencies and foreign governments. Commercial clients include local, national, and international businesses. Earth science disciplines at SwRI include geology, geophysics, hydrology, geochemistry, rock mechanics, mining engineering, and natural hazard assessment. Our overall approach is to systematically examine client problems and develop solutions that may include field work, laboratory work, numerical modeling, or some combination of these approaches. This method of problem solving places a strong emphasis on interdisciplinary teamwork. The work environment at SwRI strikes a balance among the freedom to attack technically important problems, consistent support to professional development, and a strong commitment to meeting client's deadlines and goals. Real problems with real consequences are routinely solved on a tight schedule. The diversity of clients gives exposure to an extraordinarily wide range of problems. Successful employees have sound technical backgrounds, are flexible in accommodating varying clients needs, bring creativity and energy to problem solving and applications of technologies, can work on multiple tasks in parallel, and can communicate clearly with clients and other team members. Professional development is supported through encouragement of continuing education, as well as publication and presentation of professional work. An overview of the earth science staff and work at SwRI can be found at http://www.swri.edu/4org/d20/d20home.htm
A Simple Label Switching Algorithm for Semisupervised Structural SVMs.
Balamurugan, P; Shevade, Shirish; Sundararajan, S
2015-10-01
In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.
NASA Astrophysics Data System (ADS)
Ranaivomiarana, Narindra; Irisarri, François-Xavier; Bettebghor, Dimitri; Desmorat, Boris
2018-04-01
An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.
Toward multiscale modelings of grain-fluid systems
NASA Astrophysics Data System (ADS)
Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon
2017-06-01
Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.
Time domain localization technique with sparsity constraint for imaging acoustic sources
NASA Astrophysics Data System (ADS)
Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain
2017-09-01
This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.
NASA Astrophysics Data System (ADS)
Sampoorna, M.; Trujillo Bueno, J.
2010-04-01
The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.
Tuo, Shouheng; Yong, Longquan; Deng, Fang’an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application. PMID:28403224
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.
Strategy community development based on local resources
NASA Astrophysics Data System (ADS)
Meirinawati; Prabawati, I.; Pradana, G. W.
2018-01-01
The problem of progressing regions is not far from economic problems and is often caused by the inability of the regions in response to changes in economic conditions that occur, so the need for community development programs implemented to solve various problems. Improved community effort required with the real conditions and needs of each region. Community development based on local resources process is very important, because it is an increase in human resource capability in the optimal utilization of local resource potential. In this case a strategy is needed in community development based on local resources. The community development strategy are as follows:(1) “Eight Line Equalization Plus” which explains the urgency of rural industrialization, (2) the construction of the village will be more successful when combining strategies are tailored to regional conditions, (3) the escort are positioning themselves as the Planner, supervisor, information giver, motivator, facilitator, connecting at once evaluators.
Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.
Sridhar, A; Kouznetsova, V G; Geers, M G D
This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.
ERIC Educational Resources Information Center
Turetzky, Joel A.
1982-01-01
MAARDAC (Mid-Atlantic/Appalachian Race Desegregation Assistance Center), located at the University of Tennessee (Knoxville), is federally funded (Title IV of Civil Rights Act of 1964) to help local education agencies in Kentucky, North Carolina, South Carolina, and Tennessee solve problems connected with school desegregation. (LC)
Application of Information Technology in the Outpatient Service Optimization.
Zhang, Xiaoying
2017-01-01
In a hierarchical diagnosis and treatment policy local tertiary hospitals assume the majority of clinic service, improving patient medical experience and enhancing service quality. Information technologies such as comprehensive self-services, and palm medical APPs can help solve these problems.
Data access and decision tools for coastal water resources management
US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal ...
Face recognition algorithm based on Gabor wavelet and locality preserving projections
NASA Astrophysics Data System (ADS)
Liu, Xiaojie; Shen, Lin; Fan, Honghui
2017-07-01
In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.
Indirect addressing and load balancing for faster solution to Mandelbrot Set on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1989-01-01
SIMD computers with local indirect addressing allow programs to have queues and buffers, making certain kinds of problems much more efficient. Examined here are a class of problems characterized by computations on data points where the computation is identical, but the convergence rate is data dependent. Normally, in this situation, the algorithm time is governed by the maximum number of iterations required by each point. Using indirect addressing allows a processor to proceed to the next data point when it is done, reducing the overall number of iterations required to approach the mean convergence rate when a sufficiently large problem set is solved. Load balancing techniques can be applied for additional performance improvement. Simulations of this technique applied to solving Mandelbrot Sets indicate significant performance gains.
NASA Astrophysics Data System (ADS)
Wang, Chun; Ji, Zhicheng; Wang, Yan
2017-07-01
In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.
Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method
Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...
2017-11-20
The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
ERIC Educational Resources Information Center
United States Conference of Mayors, Washington, DC.
"If we can put a man on the moon, why can't we solve the problems of our cities?" The demand for urban services and the manpower needs of local governments were increasing dramatically. Skilled professional personnel were unemployed. The Aerospace Employment Project was set up as a special pilot project to test whether unemployed professional…
2012-01-01
Background While participatory social network analysis can help health service partnerships to solve problems, little is known about its acceptability in cross-cultural settings. We conducted two case studies of chronic illness service partnerships in 2007 and 2008 to determine whether participatory research incorporating social network analysis is acceptable for problem-solving in Australian Aboriginal health service delivery. Methods Local research groups comprising 13–19 partnership staff, policy officers and community members were established at each of two sites to guide the research and to reflect and act on the findings. Network and work practice surveys were conducted with 42 staff, and the results were fed back to the research groups. At the end of the project, 19 informants at the two sites were interviewed, and the researchers conducted critical reflection. The effectiveness and acceptability of the participatory social network method were determined quantitatively and qualitatively. Results Participants in both local research groups considered that the network survey had accurately described the links between workers related to the exchange of clinical and cultural information, team care relationships, involvement in service management and planning and involvement in policy development. This revealed the function of the teams and the roles of workers in each partnership. Aboriginal workers had a high number of direct links in the exchange of cultural information, illustrating their role as the cultural resource, whereas they had fewer direct links with other network members on clinical information exchange and team care. The problem of their current and future roles was discussed inside and outside the local research groups. According to the interview informants the participatory network analysis had opened the way for problem-solving by “putting issues on the table”. While there were confronting and ethically challenging aspects, these informants considered that with flexibility of data collection to account for the preferences of Aboriginal members, then the method was appropriate in cross-cultural contexts for the difficult discussions that are needed to improve partnerships. Conclusion Critical reflection showed that the preconditions for difficult discussions are, first, that partners have the capacity to engage in such discussions, second, that partners assess whether the effort required for these discussions is balanced by the benefits they gain from the partnership, and, third, that “boundary spanning” staff can facilitate commitment to partnership goals. PMID:22682504
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-08-13
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.
Taboo Search: An Approach to the Multiple Minima Problem
NASA Astrophysics Data System (ADS)
Cvijovic, Djurdje; Klinowski, Jacek
1995-02-01
Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.
NASA Astrophysics Data System (ADS)
Battaïa, Olga; Dolgui, Alexandre; Guschinsky, Nikolai; Levin, Genrikh
2014-10-01
Solving equipment selection and line balancing problems together allows better line configurations to be reached and avoids local optimal solutions. This article considers jointly these two decision problems for mass production lines with serial-parallel workplaces. This study was motivated by the design of production lines based on machines with rotary or mobile tables. Nevertheless, the results are more general and can be applied to assembly and production lines with similar structures. The designers' objectives and the constraints are studied in order to suggest a relevant mathematical model and an efficient optimization approach to solve it. A real case study is used to validate the model and the developed approach.
Geodesic regression for image time-series.
Niethammer, Marc; Huang, Yang; Vialard, François-Xavier
2011-01-01
Registration of image-time series has so far been accomplished (i) by concatenating registrations between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint estimation with additional temporal irregularity penalties. Here, we propose a generative model extending least squares linear regression to the space of images by using a second-order dynamic formulation for image registration. Unlike previous approaches, the formulation allows for a compact representation of an approximation to the full spatio-temporal trajectory through its initial values. The method also opens up possibilities to design image-based approximation algorithms. The resulting optimization problem is solved using an adjoint method.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)
2000-01-01
The use of the Principal Component Analysis technique for the analysis of geophysical time series has been questioned in particular for its tendency to extract components that mix several physical phenomena even when the signal is just their linear sum. We demonstrate with a data simulation experiment that the Independent Component Analysis, a recently developed technique, is able to solve this problem. This new technique requires the statistical independence of components, a stronger constraint, that uses higher-order statistics, instead of the classical decorrelation a weaker constraint, that uses only second-order statistics. Furthermore, ICA does not require additional a priori information such as the localization constraint used in Rotational Techniques.
A quantum annealing architecture with all-to-all connectivity from local interactions.
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-10-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.
A quantum annealing architecture with all-to-all connectivity from local interactions
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-01-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316
Toward Solving the Problem of Problem Solving: An Analysis Framework
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
A study of the performance of patients with frontal lobe lesions in a financial planning task.
Goel, V; Grafman, J; Tajik, J; Gana, S; Danto, D
1997-10-01
It has long been argued that patients with lesions in the prefrontal cortex have difficulties in decision making and problem solving in real-world, ill-structured situations, particularly problem types involving planning and look-ahead components. Recently, several researchers have questioned our ability to capture and characterize these deficits adequately using just the standard neuropsychological test batteries, and have called for tests that reflect real-world task requirements more accurately. We present data from 10 patients with focal lesions to the prefrontal cortex and 10 normal control subjects engaged in a real-world financial planning task. We also introduce a theoretical framework and methodology developed in the cognitive science literature for quantifying and analysing the complex data generated by problem-solving tasks. Our findings indicate that patient performance is impoverished at a global level but not at the local level. Patients have difficulty in organizing and structuring their problem space. Once they begin problem solving, they have difficulty in allocating adequate effort to each problem-solving phase. Patients also have difficulty dealing with the fact that there are no right or wrong answers nor official termination points in real-world planning problems. They also find it problematic to generate their own feedback. They invariably terminate the session before the details are fleshed out and all the goals satisfied. Finally, patients do not take full advantage of the fact that constraints on real-world problems are negotiable. However, it is not necessary to postulate a 'planning' deficit. It is possible to understand the patients' difficulties in real world planning tasks in terms of the following four accepted deficits: inadequate access to 'structured event complexes', difficulty in generalizing from particulars, failure to shift between 'mental sets', and poor judgment regarding adequacy and completeness of a plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz-Dobrzanski, Rafal; Lewenstein, Maciej; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover
We solve the problem of the optimal cloning of pure entangled two-qubit states with a fixed degree of entanglement using local operations and classical communication. We show that, amazingly, classical communication between the parties can improve the fidelity of local cloning if and only if the initial entanglement is higher than a certain critical value. It is completely useless for weakly entangled states. We also show that bound entangled states with positive partial transpose are not useful as a resource to improve the best local cloning fidelity.
Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow
NASA Technical Reports Server (NTRS)
Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.
1981-01-01
Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.
Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda
2008-07-01
Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.
NASA Astrophysics Data System (ADS)
Umam, M. I. H.; Santosa, B.
2018-04-01
Combinatorial optimization has been frequently used to solve both problems in science, engineering, and commercial applications. One combinatorial problems in the field of transportation is to find a shortest travel route that can be taken from the initial point of departure to point of destination, as well as minimizing travel costs and travel time. When the distance from one (initial) node to another (destination) node is the same with the distance to travel back from destination to initial, this problems known to the Traveling Salesman Problem (TSP), otherwise it call as an Asymmetric Traveling Salesman Problem (ATSP). The most recent optimization techniques is Symbiotic Organisms Search (SOS). This paper discuss how to hybrid the SOS algorithm with variable neighborhoods search (SOS-VNS) that can be applied to solve the ATSP problem. The proposed mechanism to add the variable neighborhoods search as a local search is to generate the better initial solution and then we modify the phase of parasites with adapting mechanism of mutation. After modification, the performance of the algorithm SOS-VNS is evaluated with several data sets and then the results is compared with the best known solution and some algorithm such PSO algorithm and SOS original algorithm. The SOS-VNS algorithm shows better results based on convergence, divergence and computing time.
Resources in Technology: Problem-Solving.
ERIC Educational Resources Information Center
Technology Teacher, 1986
1986-01-01
This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)
Intervention into a turbulent urban situation: A case study. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Caldwell, G. M., Jr.
1973-01-01
The application is reported of NASA management philosophy and techniques within New Castle County, Delaware, to meet actual problems of community violence. It resulted in restructuring the county approach to problems of this nature, and development of a comprehensive system for planning, based on the NASA planning process. The method involved federal, state, and local resources with community representatives in solving the problems. The concept of a turbulent environment is presented with parallels drawn between NASA management experience and problems of management within an urban arena.
Effect of conductor geometry on source localization: Implications for epilepsy studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlitt, H.; Heller, L.; Best, E.
1994-07-01
We shall discuss the effects of conductor geometry on source localization for applications in epilepsy studies. The most popular conductor model for clinical MEG studies is a homogeneous sphere. However, several studies have indicated that a sphere is a poor model for the head when the sources are deep, as is the case for epileptic foci in the mesial temporal lobe. We believe that replacing the spherical model with a more realistic one in the inverse fitting procedure will improve the accuracy of localizing epileptic sources. In order to include a realistic head model in the inverse problem, we mustmore » first solve the forward problem for the realistic conductor geometry. We create a conductor geometry model from MR images, and then solve the forward problem via a boundary integral equation for the electric potential due to a specified primary source. One the electric potential is known, the magnetic field can be calculated directly. The most time-intensive part of the problem is generating the conductor model; fortunately, this needs to be done only once for each patient. It takes little time to change the primary current and calculate a new magnetic field for use in the inverse fitting procedure. We present the results of a series of computer simulations in which we investigate the localization accuracy due to replacing the spherical model with the realistic head model in the inverse fitting procedure. The data to be fit consist of a computer generated magnetic field due to a known current dipole in a realistic head model, with added noise. We compare the localization errors when this field is fit using a spherical model to the fit using a realistic head model. Using a spherical model is comparable to what is usually done when localizing epileptic sources in humans, where the conductor model used in the inverse fitting procedure does not correspond to the actual head.« less
Consolidating Learning from Experience.
ERIC Educational Resources Information Center
Leat, David; And Others
1992-01-01
A study investigated the ability of University of Newcastle upon Tyne (England) teacher trainees to use their problem-solving skills in experiential programs in local businesses and public services. Students were grouped in teams and placed as "intelligent outsiders" with employers. Results for hosts and students are reported, and…
NASA Astrophysics Data System (ADS)
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2018-05-01
This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.
NASA Astrophysics Data System (ADS)
Kuznetsova, E. V.; Bordovitsyna, T. V.; Chernitsov, A. M.
2011-07-01
In this paper mathematical modeling results of some algorithms for solving problems of local geodynamics by using base GLONASSGPS stations are presented. The statistical algorithm for trend discovering in coordinates of the point and ways of reduction of influencing random errors on results of coordinate determination with using third differences of measured distances are discussed.
Manothum, Aniruth; Rukijkanpanich, Jittra; Thawesaengskulthai, Damrong; Thampitakkul, Boonwa; Chaikittiporn, Chalermchai; Arphorn, Sara
2009-01-01
The purpose of this study was to evaluate the implementation of an Occupational Health and Safety Management Model for informal sector workers in Thailand. The studied model was characterized by participatory approaches to preliminary assessment, observation of informal business practices, group discussion and participation, and the use of environmental measurements and samples. This model consisted of four processes: capacity building, risk analysis, problem solving, and monitoring and control. The participants consisted of four local labor groups from different regions, including wood carving, hand-weaving, artificial flower making, and batik processing workers. The results demonstrated that, as a result of applying the model, the working conditions of the informal sector workers had improved to meet necessary standards. This model encouraged the use of local networks, which led to cooperation within the groups to create appropriate technologies to solve their problems. The authors suggest that this model could effectively be applied elsewhere to improve informal sector working conditions on a broader scale.
Direct Density Functional Energy Minimization using an Tetrahedral Finite Element Grid
NASA Astrophysics Data System (ADS)
Vaught, A.; Schmidt, K. E.; Chizmeshya, A. V. G.
1998-03-01
We describe an O(N) (N proportional to volume) technique for solving electronic structure problems using the finite element method (FEM). A real--space tetrahedral grid is used as a basis to represent the electronic density, of a free or periodic system and Poisson's equation is solved as a boundary value problem. Nuclear cusps are treated using a local grid consisting of radial elements. These features facilitate the implementation of complicated energy functionals and permit a direct (constrained) energy minimization with respect to the density. We demonstrate the usefulness of the scheme by calculating the binding trends and polarizabilities of a number of atoms and molecules using a number of recently proposed non--local, orbital--free kinetic energy functionals^1,2. Scaling behavior, computational efficiency and the generalization to band--structure will also be discussed. indent 0 pt øbeylines øbeyspaces skip 0 pt ^1 P. Garcia-Gonzalez, J.E. Alvarellos and E. Chacon, Phys. Rev. B 54, 1897 (1996). ^2 A. J. Thakkar, Phys.Rev.B 46, 6920 (1992).
Short-time quantum dynamics of sharp boundaries potentials
NASA Astrophysics Data System (ADS)
Granot, Er'el; Marchewka, Avi
2015-02-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
Summary of hydrologic conditions of the Louisville area of Kentucky
Bell, Edwin Allen
1966-01-01
Water problems and their solutions have been associated with the growth and development of the Louisville area for more than a century. Many hydrologic data that aided water users in the past can be applied to present water problems and will be helpful for solving many similar problems in the future. Most of the water problems of Louisville, a water-rich area, concern management and are associated with the distribution of supplies, the quality of water, drainage, and waste disposal. The local hydrologic system at Louisville is dominated by the Ohio River and the glacial-outwash deposits beneath its flood plain. The water-bearing limestones in the uplands are ,secondary sources of water. The average flow of the Ohio River at Louisville, 73 billion gallons per day, and the potential availability of 370 million gallons per day of ground water suitable for industrial cooling purposes minimize the chance of acute water shortage in the area. Under current development, use of water averages about 211 million gallons per day, excluding about 392 million gallons of Ohio River water circulated daily through steampower plants and returned directly to the river. Optimum use and control of the water resources will be dependent on solving several water problems. The principal sources of water are in the Ohio River bottom land, whereas the new and potential centers of use are in the uplands. Either water must be piped to these new centers from the present sources or new supplies must be developed. Available data on streamflow and ground water are adequate to plan for the development of small local supplies. Since the completion of floodwalls and levees in 1953, widespread damage from flooding is a thing of the past in the Louisville area. Some local flooding of unprotected areas and of lowlands along tributary streams still takes place. The analyses of streamflow data are useful in planning for protection of these areas, but additional streamflow records and flood-area mapping are needed to best solve the problem. Droughts are a problem only to users of small water supplies in the uplands, where additional water either can be imported or developed locally. Pollution and undesirable chemical quality of water for some uses are the most serious drawbacks to the optimum development of the water resources in Louisville and Jefferson County. Available chemical analyses of ground water are useful for determining its suitability for various uses, but additional data are needed to guide management decisions. Sources of contamination should be inventoried and water samples analyzed periodically to monitor changes in quality.
NASA Astrophysics Data System (ADS)
Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc
2011-06-01
This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.
NASA Astrophysics Data System (ADS)
Bogiatzis, P.; Ishii, M.; Davis, T. A.
2016-12-01
Seismic tomography inverse problems are among the largest high-dimensional parameter estimation tasks in Earth science. We show how combinatorics and graph theory can be used to analyze the structure of such problems, and to effectively decompose them into smaller ones that can be solved efficiently by means of the least squares method. In combination with recent high performance direct sparse algorithms, this reduction in dimensionality allows for an efficient computation of the model resolution and covariance matrices using limited resources. Furthermore, we show that a new sparse singular value decomposition method can be used to obtain the complete spectrum of the singular values. This procedure provides the means for more objective regularization and further dimensionality reduction of the problem. We apply this methodology to a moderate size, non-linear seismic tomography problem to image the structure of the crust and the upper mantle beneath Japan using local deep earthquakes recorded by the High Sensitivity Seismograph Network stations.
Thamareerat, N; Luadsong, A; Aschariyaphotha, N
2016-01-01
In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.
Object matching using a locally affine invariant and linear programming techniques.
Li, Hongsheng; Huang, Xiaolei; He, Lei
2013-02-01
In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.
A non-local free boundary problem arising in a theory of financial bubbles
Berestycki, Henri; Monneau, Regis; Scheinkman, José A.
2014-01-01
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
Teaching Sustainability in the Anthropocene
NASA Astrophysics Data System (ADS)
Ibarra, D. L.
2017-12-01
Human impact on our planet Earth and its ecosystems is well documented and a new epoch, Anthropocene, has been suggested within the scientific community. As educators in the 21st century we are tasked within our communities to teach both the impacts of mankind on our planet and help students to design solutions that will solve a multitude of life threatening challenges. At ISF Academy in Hong Kong, faculty are working collaboratively within the whole school community to educate students about the fundamental problems facing society today and give students to skills to creatively solve these problems locally, regionally, and globally. As a leading school in HK, the physical campus has been updated to provide students with hands-on opportunities to see the latest technologies used for sustainable development. Recently added infrastructure includes air pollution monitoring equipment, an energy management system, aerobic food waste composting, organic garden, bio-diverse landscaping, and photovoltaic renewable energy. The design of each of these systems allows for students to interact directly with the equipment, and conduct student-led research. The curriculum across the campus is designed for all students K-12 and there is an on-going effort to make cross-disciplinary links. The programs outside of the classroom include ecology trips in the Asia region, experiential learning programs that allow students to learn first hand the climate change challenges for communities in distress, and field trips where students work with local experts. Also within the context of the school, there is a new established maker-space that will allow students to work collaboratively together while testing and prototyping their solutions. Hong Kong will need to solve many pressing problems in the next few years and this will require expertise, new innovations, and behaviour changes on the part of all citizens. Our goal at ISF Academy is to equip our students with the required background knowledge to help solve these problems.
Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.
Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue
2015-01-01
As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.
A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry
NASA Astrophysics Data System (ADS)
Rusyda, N. A.; Kusnandi, K.; Suhendra, S.
2017-09-01
The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.
NASA Astrophysics Data System (ADS)
Narwadi, Teguh; Subiyanto
2017-03-01
The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.
An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT
NASA Technical Reports Server (NTRS)
Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian
2015-01-01
Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.
NASA Astrophysics Data System (ADS)
Vera, N. C.; GMMC
2013-05-01
In this paper we present the results of macrohybrid mixed Darcian flow in porous media in a general three-dimensional domain. The global problem is solved as a set of local subproblems which are posed using a domain decomposition method. Unknown fields of local problems, velocity and pressure are approximated using mixed finite elements. For this application, a general three-dimensional domain is considered which is discretized using tetrahedra. The discrete domain is decomposed into subdomains and reformulated the original problem as a set of subproblems, communicated through their interfaces. To solve this set of subproblems, we use finite element mixed and parallel computing. The parallelization of a problem using this methodology can, in principle, to fully exploit a computer equipment and also provides results in less time, two very important elements in modeling. Referencias G.Alduncin and N.Vera-Guzmán Parallel proximal-point algorithms for mixed _nite element models of _ow in the subsurface, Commun. Numer. Meth. Engng 2004; 20:83-104 (DOI: 10.1002/cnm.647) Z. Chen, G.Huan and Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2006. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.
ERIC Educational Resources Information Center
Purcell, Larry O.
Staff development programs and activities are common methods of stimulating change in the behavior of educators. These programs may be designed for a number of purposes, including (1) problem-solving within the local school or district; (2) remediation to develop work-related skills; (3) motivation to change and improve staff; and (4) development…
Melding Classroom Instruction With Real-World Problem-Solving.
ERIC Educational Resources Information Center
Gannon, John E.; Fairchild, G. Winfield
1983-01-01
Describes a course used to teach freshwater ecology to graduate and undergraduate students at the University of Michigan Biological Station. Explains how students receive an introduction to lake ecology and work on applied resource management questions concerning local lakes and streams. Gives case study examples. (SB)
Secure Wireless Networking at Simon Fraser University.
ERIC Educational Resources Information Center
Johnson, Worth
2003-01-01
Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)
Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction
NASA Astrophysics Data System (ADS)
Xiong, Jun; Li, Junmin
2017-07-01
In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-01-01
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well. PMID:26287194
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan
2018-02-01
Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.
Berkes, Fikret
2009-04-01
Over a period of some 20 years, different aspects of co-management (the sharing of power and responsibility between the government and local resource users) have come to the forefront. The paper focuses on a selection of these: knowledge generation, bridging organizations, social learning, and the emergence of adaptive co-management. Co-management can be considered a knowledge partnership. Different levels of organization, from local to international, have comparative advantages in the generation and mobilization of knowledge acquired at different scales. Bridging organizations provide a forum for the interaction of these different kinds of knowledge, and the coordination of other tasks that enable co-operation: accessing resources, bringing together different actors, building trust, resolving conflict, and networking. Social learning is one of these tasks, essential both for the co-operation of partners and an outcome of the co-operation of partners. It occurs most efficiently through joint problem solving and reflection within learning networks. Through successive rounds of learning and problem solving, learning networks can incorporate new knowledge to deal with problems at increasingly larger scales, with the result that maturing co-management arrangements become adaptive co-management in time.
Inferring Spatial Variations of Microstructural Properties from Macroscopic Mechanical Response
Liu, Tengxiao; Hall, Timothy J.; Barbone, Paul E.; Oberai, Assad A.
2016-01-01
Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used these parameters cannot be linked to the microstructure. However, when the constitutive model is derived from a microstructural representation of the material, it allows for the possibility of inferring the local averages of the spatial distribution of the microstructural parameters. This idea forms the basis of this study. In particular, we first derive a constitutive model by homogenizing the mechanical response of a network of elastic, tortuous fibers. Thereafter, we use this model in an inverse problem to determine the spatial distribution of the microstructural parameters. We solve the inverse problem as a constrained minimization problem, and develop efficient methods for solving it. We apply these methods to displacement fields obtained by deforming gelatin-agar co-gels, and determine the spatial distribution of agar concentration and fiber tortuosity, thereby demonstrating that it is possible to image local averages of microstructural parameters from macroscopic measurements of deformation. PMID:27655420
Examining End-Of-Chapter Problems Across Editions of an Introductory Calculus-Based Physics Textbook
NASA Astrophysics Data System (ADS)
Xiao, Bin
End-Of-Chapter (EOC) problems have been part of many physics education studies. Typically, only problems "localized" as relevant to a single chapter were used. This work examines how well this type of problem represents all EOC problems and whether EOC problems found in leading textbooks have changed over the past several decades. To investigate whether EOC problems have connections between chapters, I solved all problems of the E&M; chapters of the most recent edition of a popular introductory level calculus-based textbook and coded the equations used to solve each problem. These results were compared to the first edition of the same text. Also, several relevant problem features were coded for those problems and results were compared for sample chapters across all editions. My findings include two parts. The result of equation usage shows that problems in the E&M; chapters do use equations from both other E&M; chapters and non-E&M; chapters. This out-of-chapter usage increased from the first edition to the last edition. Information about the knowledge structure of E&M; chapters was also revealed. The results of the problem feature study show that most EOC problems have common features but there was an increase of diversity in some of the problem features across editions.
A new distributed systems scheduling algorithm: a swarm intelligence approach
NASA Astrophysics Data System (ADS)
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.
Conrad, Patricia A; Hird, Dave; Arzt, Jonathan; Hayes, Rick H; Magliano, Dave; Kasper, Janine; Morfin, Saul; Pinney, Stephen
2007-01-01
This article describes a computerized case-based CD-ROM (CD) on international animal health that was developed to give veterinary students an opportunity to "virtually" work alongside veterinarians and other veterinary students as they try to solve challenging disease problems relating to tuberculosis in South African wildlife, bovine abortion in Mexico, and neurologic disease in horses in Rapa Nui, Chile. Each of the three case modules presents, in a highly interactive format, a problem or mystery that must be solved by the learner. As well as acquiring information via video clips and text about the specific health problem, learners obtain information about the different countries, animal-management practices, diagnostic methods, related disease-control issues, economic factors, and the opinions of local experts. After assimilating this information, the learner must define the problem and formulate an action plan or make a recommendation or diagnosis. The computerized program invokes three principles of adult education: active learning, learner-centered education, and experiential learning. A medium that invokes these principles is a potentially efficient learning tool and template for developing other case-based problem-solving computerized programs. The program is accessible on the World Wide Web at
Hoppmann, Christiane A; Blanchard-Fields, Fredda
2011-09-01
Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.
Numerical time-domain electromagnetics based on finite-difference and convolution
NASA Astrophysics Data System (ADS)
Lin, Yuanqu
Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving sparsely-populated problems. The scheme uses a discrete Green's function (DGF) on the FDTD lattice to truncate the local subregions, and thus reduces reflection error on the local boundary. A continuous Green's function (CGF) is implemented to pass the influence of external fields into each FDTD region which mitigates the numerical dispersion and anisotropy of standard FDTD. Numerical results will illustrate the accuracy and stability of the proposed techniques.
Resource Letter RPS-1: Research in problem solving
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.
2004-09-01
This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.
Local Minima Free Parameterized Appearance Models
Nguyen, Minh Hoai; De la Torre, Fernando
2010-01-01
Parameterized Appearance Models (PAMs) (e.g. Eigentracking, Active Appearance Models, Morphable Models) are commonly used to model the appearance and shape variation of objects in images. While PAMs have numerous advantages relative to alternate approaches, they have at least two drawbacks. First, they are especially prone to local minima in the fitting process. Second, often few if any of the local minima of the cost function correspond to acceptable solutions. To solve these problems, this paper proposes a method to learn a cost function by explicitly optimizing that the local minima occur at and only at the places corresponding to the correct fitting parameters. To the best of our knowledge, this is the first paper to address the problem of learning a cost function to explicitly model local properties of the error surface to fit PAMs. Synthetic and real examples show improvement in alignment performance in comparison with traditional approaches. PMID:21804750
[Research on non-rigid registration of multi-modal medical image based on Demons algorithm].
Hao, Peibo; Chen, Zhen; Jiang, Shaofeng; Wang, Yang
2014-02-01
Non-rigid medical image registration is a popular subject in the research areas of the medical image and has an important clinical value. In this paper we put forward an improved algorithm of Demons, together with the conservation of gray model and local structure tensor conservation model, to construct a new energy function processing multi-modal registration problem. We then applied the L-BFGS algorithm to optimize the energy function and solve complex three-dimensional data optimization problem. And finally we used the multi-scale hierarchical refinement ideas to solve large deformation registration. The experimental results showed that the proposed algorithm for large de formation and multi-modal three-dimensional medical image registration had good effects.
ERIC Educational Resources Information Center
Dowler, Lorraine
Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less
NASA Astrophysics Data System (ADS)
Barajas-Solano, D. A.; Tartakovsky, A. M.
2017-12-01
We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
NASA Astrophysics Data System (ADS)
Li, Shuwen; Xu, Jin
2018-05-01
China’s environmental pollution governance has entered the game stage centered on interests, and there are three main bodies in environmental pollution governance: the central government, local governments and firms. The research firstly reveals the relationships among the central government, local governments, and firms in the process of environmental governance, and then analyzes the game among the central government, local governments and firms using game theory in Economics. Finally, the research makes a conclusion and proposes some corresponding policy proposals so as to solve the problem of environmental pollution.
Study of lattice defect vibration
NASA Technical Reports Server (NTRS)
Elliott, R. J.
1969-01-01
Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.
Environmental Practice, the New Conservation.
ERIC Educational Resources Information Center
Griffith, Charles J.; And Others
Environmental concern and involvement in solving environmental problems are the themes emphasized in this handbook. It offers suggestions for citizen groups who wish to contribute more effectively to a better environment. They are encouraged to start at the local level, where pollution and environmental degradation begin. If they want others to…
Capacity Building for Rural Development in the United States.
ERIC Educational Resources Information Center
Murray, Michael; Dunn, Larry
1995-01-01
An essential component of community-based rural development is the leadership and problem-solving abilities of local people. The Colorado Rural Revitalization Project--a joint venture of two universities and a state agency--provided educational, consultative, and technical assistance services for a 1-year capacity-building program in 47…
Epistemic Game for Answer Making in Learning about Hydrostatics
ERIC Educational Resources Information Center
Chen, Ying; Irving, Paul W.; Sayre, Eleanor C.
2013-01-01
Previous research into problem solving in physics resulted in researchers introducing six epistemic games to describe the organizational structures of locally coherent resources. We present a new epistemic game--the "answer-making epistemic game"--which was identified in this paper through the analysis of interviews carried out to validate a…
Community Problem Solving and Small/Rural Schools.
ERIC Educational Resources Information Center
DeFoe, Bettye Haller
Because demographic and social changes in rural communities also affect small and rural school environments, schools must consider the impact of community change and plan accordingly. Rural school administrators, who are visible and respected, know how to work with groups, and understand the local community, are well qualified to provide their…
ERIC Educational Resources Information Center
Credit Union National Association, Inc., Madison, WI.
This revised pamphlet was developed by a national association of credit unions for the purpose of directing consumer complaints to appropriate agencies or heads of agencies for action. Suggestions to aid the consumer are included, such as trying to solve problems at the local level before complaining to top officials. Addresses and phone numbers…
Environmental Education . . . The Way of the Hula Hoop?
ERIC Educational Resources Information Center
Applegate, Warren
1974-01-01
Given is information on a federally funded environmental education program based on field experience and community awareness. Problem-solving methods were used to involve students in local environmental issues. Field experiences included trips to the mountains and seashore and community projects in water quality, recycling, and nature trail…
Estimating the Local Size and Coverage of Interaction Network Regions
ERIC Educational Resources Information Center
Eagle, Michael; Barnes, Tiffany
2015-01-01
Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…
NASA Astrophysics Data System (ADS)
Mund, Jens; Rehren, Karl-Henning; Schroer, Bert
2017-10-01
The problem of accounting for the quantum degrees of freedom in passing from massive higher-spin potentials to massless ones, and the inverse problem of "fattening" massless tensor potentials of helicity ±h to their massive s = | h | counterparts, are solved - in a perfectly ghost-free approach - using "string-localized fields". This approach allows to overcome the Weinberg-Witten impediment against the existence of massless | h | ≥ 2 energy-momentum tensors, and to qualitatively and quantitatively resolve the van Dam-Veltman-Zakharov discontinuity concerning, e.g., very light gravitons, in the limit m → 0.
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
NASA Astrophysics Data System (ADS)
Tereshin, Alexander A.; Usilin, Sergey A.; Arlazarov, Vladimir V.
2018-04-01
This paper aims to study the problem of multi-class object detection in video stream with Viola-Jones cascades. An adaptive algorithm for selecting Viola-Jones cascade based on greedy choice strategy in solution of the N-armed bandit problem is proposed. The efficiency of the algorithm on the problem of detection and recognition of the bank card logos in the video stream is shown. The proposed algorithm can be effectively used in documents localization and identification, recognition of road scene elements, localization and tracking of the lengthy objects , and for solving other problems of rigid object detection in a heterogeneous data flows. The computational efficiency of the algorithm makes it possible to use it both on personal computers and on mobile devices based on processors with low power consumption.
Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi
2007-01-01
Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.
The heat exchanger of small pellet boiler for phytomass
NASA Astrophysics Data System (ADS)
Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef
2014-08-01
Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.
Baggie: A unique solution to an orbiter icing problem
NASA Technical Reports Server (NTRS)
Walkover, L. J.
1982-01-01
The orbiter icing problem, located in two lower surface mold line cavities, was solved. These two cavities are open during Shuttle ground operations and ascent, and are then closed after orbit insertion. If not protected, these cavities may be coated with ice, which may be detrimental to the adjacent thermal protection system (TPS) tiles if the ice breaks up during ascent, and may hinder the closing of the cavity doors if the ice does not break up. The problem of ice in these cavities was solved by the use of a passive mechanism called baggie, which is purge curtain used to enclose the cavity and is used in conjunction with gaseous nitrogen as the local purge gas. The baggie, the final solution, is unique in its simplicity, but its design and development were not. The final baggie design and its development testing are discussed. Also discussed are the baggie concepts and other solutions not used.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Having it all: national benefit equity and local payment parity in Medicare.
Dowd, Bryan; Feldman, Roger
2002-01-01
The Medicare Payment Advisory Commission (MedPAC) has identified two important problems with the Medicare+Choice (M+C) program: nationwide geographic inequity in government-financed benefits, and unequal government payments for M+C plans versus fee-for-service (FFS) Medicare in the same market area. MedPAC concludes that both problems cannot be solved simultaneously. We argue that both problems could be solved if Congress discontinued its policy of underwriting the cost of FFS Medicare. Instead, Congress should define a national entitlement benefit package and have all health plans submit bids on the package in each market area. The government's premium contribution should be equal to the lowest bid submitted by a qualified health plan in each market area. The contribution could be adjusted for health risk, the special obligations of FFS Medicare, and welfare enhancements associated with FFS Medicare that are valued by both beneficiaries and taxpayers but unrelated to beneficiaries' health status.
Spontaneous gestures influence strategy choices in problem solving.
Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro
2011-09-01
Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.
Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris
2011-10-01
Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.
Yan, Bo; Pan, Chongle; Olman, Victor N; Hettich, Robert L; Xu, Ying
2004-01-01
Mass spectrometry is one of the most popular analytical techniques for identification of individual proteins in a protein mixture, one of the basic problems in proteomics. It identifies a protein through identifying its unique mass spectral pattern. While the problem is theoretically solvable, it remains a challenging problem computationally. One of the key challenges comes from the difficulty in distinguishing the N- and C-terminus ions, mostly b- and y-ions respectively. In this paper, we present a graph algorithm for solving the problem of separating bfrom y-ions in a set of mass spectra. We represent each spectral peak as a node and consider two types of edges: a type-1 edge connects two peaks possibly of the same ion types and a type-2 edge connects two peaks possibly of different ion types, predicted based on local information. The ion-separation problem is then formulated and solved as a graph partition problem, which is to partition the graph into three subgraphs, namely b-, y-ions and others respectively, so to maximize the total weight of type-1 edges while minimizing the total weight of type-2 edges within each subgraph. We have developed a dynamic programming algorithm for rigorously solving this graph partition problem and implemented it as a computer program PRIME. We have tested PRIME on 18 data sets of high accurate FT-ICR tandem mass spectra and found that it achieved ~90% accuracy for separation of b- and y- ions.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.
An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving
NASA Astrophysics Data System (ADS)
Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani
2016-02-01
Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.
ERIC Educational Resources Information Center
Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia
2016-01-01
The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.
Vassal, J-P; Orgéas, L; Favier, D; Auriault, J-L; Le Corre, S
2008-01-01
In paper I [Vassal, Phys. Rev. E77, 011302 (2008)] of this contribution, the effective diffusion properties of particulate media with highly conductive particles and particle-particle interfacial barriers have been investigated with the homogenization method with multiple scale asymptotic expansions. Three different macroscopic models have been proposed depending on the quality of contacts between particles. However, depending on the nature and the geometry of particles contained in representative elementary volumes of the considered media, localization problems to be solved to compute the effective conductivity of the two first models can rapidly become cumbersome, time and memory consuming. In this second paper, the above problem is simplified and applied to networks made of slender, wavy and entangled fibers. For these types of media, discrete formulations of localization problems for all macroscopic models can be obtained leading to very efficient numerical calculations. Semianalytical expressions of the effective conductivity tensors are also proposed under simplifying assumptions. The case of straight monodisperse and homogeneously distributed slender fibers with a circular cross section is further explored. Compact semianalytical and analytical estimations are obtained when fiber-fiber contacts are perfect or very poor. Moreover, two discrete element codes have been developed and used to solve localization problems on representative elementary volumes for the same types of contacts. Numerical results underline the significant roles of the fiber content, the orientation of fibers as well as the relative position and orientation of contacting fibers on the effective conductivity tensors. Semianalytical and analytical predictions are discussed and compared with numerical results.
[The phenomenon of alcoholism in Poland as a legal issue].
Jagielska-Burduk, Alicja; Jagielska, Iwona; Janicki, Radosław; Grabiec, Marek
2012-01-01
Alcoholism is a problem of a social value. About 140 million people worldwide suffer from alcoholism. Research has demonstrated adverse effects of alcohol. In the scientific project were confirmed: increased risk of cancer, liver disease, abnormal course of pregnancy and development of fetus. Among alcoholics are frequent phenomena of criminal behavior, accidents and trauma. The Polish Constitution granted the right to health citizens. The consequence of the above mentioned constitutional guarantee is the duty of the state that consists in caring for the functioning of a society free from addictions and alcohol problems. The basic legal act in this field is the Act on Upbringing in Sobriety and Counteracting Alcoholism. The state policy in the fight against alcoholism is implemented at various levels of both government and local government. The established National Agency for Solving Alcohol Problems drafts a National Programme for Prevention and Solving Alcohol Problems every year. Also important are public awareness campaigns conducted to raise awareness about the negative effects of alcohol.
Hybrid General Pattern Search and Simulated Annealing for Industrail Production Planning Problems
NASA Astrophysics Data System (ADS)
Vasant, P.; Barsoum, N.
2010-06-01
In this paper, the hybridization of GPS (General Pattern Search) method and SA (Simulated Annealing) incorporated in the optimization process in order to look for the global optimal solution for the fitness function and decision variables as well as minimum computational CPU time. The real strength of SA approach been tested in this case study problem of industrial production planning. This is due to the great advantage of SA for being easily escaping from trapped in local minima by accepting up-hill move through a probabilistic procedure in the final stages of optimization process. Vasant [1] in his Ph. D thesis has provided 16 different techniques of heuristic and meta-heuristic in solving industrial production problems with non-linear cubic objective functions, eight decision variables and 29 constraints. In this paper, fuzzy technological problems have been solved using hybrid techniques of general pattern search and simulated annealing. The simulated and computational results are compared to other various evolutionary techniques.
Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows
NASA Technical Reports Server (NTRS)
Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.
1990-01-01
A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.
Peridynamic Multiscale Finite Element Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Timothy; Bond, Stephen D.; Littlewood, David John
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less
Constraint-based Temporal Reasoning with Preferences
NASA Technical Reports Server (NTRS)
Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca; Sperduti, Alessandro; Venable, K. Brent
2005-01-01
Often we need to work in scenarios where events happen over time and preferences are associated to event distances and durations. Soft temporal constraints allow one to describe in a natural way problems arising in such scenarios. In general, solving soft temporal problems require exponential time in the worst case, but there are interesting subclasses of problems which are polynomially solvable. In this paper we identify one of such subclasses giving tractability results. Moreover, we describe two solvers for this class of soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and robustness. Sometimes, however, temporal local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preferences, we show that machine learning techniques can be useful in this respect. In particular, we present a learning module based on a gradient descent technique which induces local temporal preferences from global ones. We also show the behavior of the learning module on randomly-generated examples.
A general strategy to solve the phase problem in RNA crystallography
Keel, Amanda Y.; Rambo, Robert P.; Batey, Robert T.; Kieft, Jeffrey S.
2007-01-01
SUMMARY X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding a heavy-atom derivative to obtain high-quality experimental phase information. Existing techniques have drawbacks, severely limiting the rate at which important new structures are solved. To address this need, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G·U wobble pair cation binding motif we have identified an optimal version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This “directed soaking” strategy can be integrated fully into existing RNA and crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kα radiation. The success of this method has been proven in that it has already been used to solve several novel crystal structures. PMID:17637337
Discontinuous finite element method for vector radiative transfer
NASA Astrophysics Data System (ADS)
Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping
2017-03-01
The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.
Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonicwaves
NASA Astrophysics Data System (ADS)
Ogam, Erick; Fellah, Z. E. A.; Sebaa, Naima; Groby, J.-P.
2011-03-01
The inverse problem of the recovery of the poroelastic parameters of open-cell soft plastic foam panels is solved by employing transmitted ultrasonic waves (USW) and the Biot-Johnson-Koplik-Champoux-Allard (BJKCA) model. It is shown by constructing the objective functional given by the total square of the difference between predictions from the BJKCA interaction model and experimental data obtained with transmitted USW that the inverse problem is ill-posed, since the functional exhibits several local minima and maxima. In order to solve this problem, which is beyond the capability of most off-the-shelf iterative nonlinear least squares optimization algorithms (such as the Levenberg Marquadt or Nelder-Mead simplex methods), simple strategies are developed. The recovered acoustic parameters are compared with those obtained using simpler interaction models and a method employing asymptotic phase velocity of the transmitted USW. The retrieved elastic moduli are validated by solving an inverse vibration spectroscopy problem with data obtained from beam-like specimens cut from the panels using an equivalent solid elastodynamic model as estimator. The phase velocities are reconstructed using computed, measured resonance frequencies and a time-frequency decomposition of transient waves induced in the beam specimen. These confirm that the elastic parameters recovered using vibration are valid over the frequency range ofstudy.
Fingerprints selection for topological localization
NASA Astrophysics Data System (ADS)
Popov, Vladimir
2017-07-01
Problems of visual navigation are extensively studied in contemporary robotics. In particular, we can mention different problems of visual landmarks selection, the problem of selection of a minimal set of visual landmarks, selection of partially distinguishable guards, the problem of placement of visual landmarks. In this paper, we consider one-dimensional color panoramas. Such panoramas can be used for creating fingerprints. Fingerprints give us unique identifiers for visually distinct locations by recovering statistically significant features. Fingerprints can be used as visual landmarks for the solution of various problems of mobile robot navigation. In this paper, we consider a method for automatic generation of fingerprints. In particular, we consider the bounded Post correspondence problem and applications of the problem to consensus fingerprints and topological localization. We propose an efficient approach to solve the bounded Post correspondence problem. In particular, we use an explicit reduction from the decision version of the problem to the satisfiability problem. We present the results of computational experiments for different satisfiability algorithms. In robotic experiments, we consider the average accuracy of reaching of the target point for different lengths of routes and types of fingerprints.
Extraction of a group-pair relation: problem-solving relation from web-board documents.
Pechsiri, Chaveevan; Piriyakul, Rapepun
2016-01-01
This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Jha, M. K.
1993-01-01
Basic formulations, analyses, and numerical procedures are presented to investigate radiative heat interactions in diatomic and polyatomic gases under local and nonlocal thermodynamic equilibrium conditions. Essential governing equations are presented for both gray and nongray gases. Information is provided on absorption models, relaxation times, and transfer equations. Radiative flux equations are developed which are applicable under local and nonlocal thermodynamic equilibrium conditions. The problem is solved for fully developed laminar incompressible flows between two parallel plates under the boundary condition of a uniform surface heat flux. For specific applications, three diatomic and three polyatomic gases are considered. The results are obtained numerically by employing the method of variation of parameters. The results are compared under local and nonlocal thermodynamic equilibrium conditions at different temperature and pressure conditions. Both gray and nongray studies are conducted extensively for all molecular gases considered. The particular gases selected for this investigation are CO, NO, OH, CO2, H2O, and CH4. The temperature and pressure range considered are 300-2000 K and 0.1-10 atmosphere, respectively. In general, results demonstrate that the gray gas approximation overestimates the effect of radiative interaction for all conditions. The conditions of NLTE, however, result in underestimation of radiative interactions. The method developed for this study can be extended to solve complex problems of radiative heat transfer involving nonequilibrium phenomena.
NASA Astrophysics Data System (ADS)
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
Using a general problem-solving strategy to promote transfer.
Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John
2014-09-01
Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Hafner, Robert; Stewart, Jim
Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).
Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.
2016-01-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604
Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M
2016-12-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.
NASA Astrophysics Data System (ADS)
Rr Chusnul, C.; Mardiyana, S., Dewi Retno
2017-12-01
Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.
Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.
Kraines, Morganne A; Wells, Tony T
2017-01-01
Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.
Takahashi, Y
1998-01-01
It is well known that the Hopfield Model (HM) for neural networks to solve the Traveling Salesman Problem (TSP) suffers from three major drawbacks. (1) It can converge on nonoptimal locally minimum solutions. (2) It can converge on infeasible solutions. (3) Results are very sensitive to the careful tuning of its parameters. A number of methods have been proposed to overcome (a) well. In contrast, work on (b) and (c) has not been sufficient; techniques have not been generalized to more general optimization problems. Thus this paper mathematically resolves (b) and (c) to such an extent that the resolution can be applied to solving with some general network continuous optimization problems including the Hopfield version of the TSP. It first constructs an Extended HM (E-HM) that overcomes both (b) and (c). Fundamental techniques of the E-HM lie in the addition of a synapse dynamical system cooperated with the current HM unit dynamical system. It is this synapse dynamical system that makes the TSP constraint hold at any final states for whatever choices of the IIM parameters and an initial state. The paper then generalizes the E-HM further to a network that can solve a class of continuous optimization problems with a constraint equation where both of the objective function and the constraint function are nonnegative and continuously differentiable.
The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework
ERIC Educational Resources Information Center
Carlson, Marilyn P.; Bloom, Irene
2005-01-01
This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…
Mathematical Problem Solving: A Review of the Literature.
ERIC Educational Resources Information Center
Funkhouser, Charles
The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…
Teaching Problem Solving Skills to Elementary Age Students with Autism
ERIC Educational Resources Information Center
Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.
2014-01-01
Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…
A range-based predictive localization algorithm for WSID networks
NASA Astrophysics Data System (ADS)
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Learning problem-solving skills in a distance education physics course
NASA Astrophysics Data System (ADS)
Rampho, G. J.; Ramorola, M. Z.
2017-10-01
In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.
Li, Jun-qing; Pan, Quan-ke; Mao, Kun
2014-01-01
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414
[Planning disorders in men with schizophrenia and in men with localized frontal lobe lesions].
Okruszek, Łukasz; Rutkowska, Aleksandra
2013-01-01
Planning disorders have been observed in people with frontal lobe lesions for many decades. There's also growing body of evidence of frontal dysfunction in people with schizophrenia. The aim of this study is to compare the planning abilities in men with schizophrenia, men with localized frontal lobe lesions and healthy men. A sample of 90 men participated in the study. They were divided into three groups: men with schizophrenia (n = 30), men with localized frontal lobe lesions (n = 30) and healthy men (n = 30) as a control group. Planning abilities were assessed with a clinical trial based on Tower of London task. Significant differences in ToL measures were found between controls and men with schizophrenia (Trials solved: p < 0.01; Trials solved perfectly: p < 0.05; Execution time: p < 0.001) and between controls and men with frontal lobe lesions (Trials solved: p < 0.001; Thinking time: p < 0.05; Execution time: p < 0.001). No significant differences were found between schizophrenia and frontal lobe lesion groups. Similar deficits in planning and solving problems, which require planning, may be observed in men with schizophrenia and men with frontal lobe lesions. In both groups time spent on thinking is less effective than in healthy men. Not only quantitative, but also qualitative assessment should be carried when examining patients' performance on Tower of London task.
Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem
Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue
2015-01-01
As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764
NASA Astrophysics Data System (ADS)
Paramestha, D. L.; Santosa, B.
2018-04-01
Two-dimensional Loading Heterogeneous Fleet Vehicle Routing Problem (2L-HFVRP) is a combination of Heterogeneous Fleet VRP and a packing problem well-known as Two-Dimensional Bin Packing Problem (BPP). 2L-HFVRP is a Heterogeneous Fleet VRP in which these costumer demands are formed by a set of two-dimensional rectangular weighted item. These demands must be served by a heterogeneous fleet of vehicles with a fix and variable cost from the depot. The objective function 2L-HFVRP is to minimize the total transportation cost. All formed routes must be consistent with the capacity and loading process of the vehicle. Sequential and unrestricted scenarios are considered in this paper. We propose a metaheuristic which is a combination of the Genetic Algorithm (GA) and the Cross Entropy (CE) named Cross Entropy Genetic Algorithm (CEGA) to solve the 2L-HFVRP. The mutation concept on GA is used to speed up the algorithm CE to find the optimal solution. The mutation mechanism was based on local improvement (2-opt, 1-1 Exchange, and 1-0 Exchange). The probability transition matrix mechanism on CE is used to avoid getting stuck in the local optimum. The effectiveness of CEGA was tested on benchmark instance based 2L-HFVRP. The result of experiments shows a competitive result compared with the other algorithm.
Enhanced ant colony optimization for inventory routing problem
NASA Astrophysics Data System (ADS)
Wong, Lily; Moin, Noor Hasnah
2015-10-01
The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.
An analytically iterative method for solving problems of cosmic-ray modulation
NASA Astrophysics Data System (ADS)
Kolesnyk, Yuriy L.; Bobik, Pavol; Shakhov, Boris A.; Putis, Marian
2017-09-01
The development of an analytically iterative method for solving steady-state as well as unsteady-state problems of cosmic-ray (CR) modulation is proposed. Iterations for obtaining the solutions are constructed for the spherically symmetric form of the CR propagation equation. The main solution of the considered problem consists of the zero-order solution that is obtained during the initial iteration and amendments that may be obtained by subsequent iterations. The finding of the zero-order solution is based on the CR isotropy during propagation in the space, whereas the anisotropy is taken into account when finding the next amendments. To begin with, the method is applied to solve the problem of CR modulation where the diffusion coefficient κ and the solar wind speed u are constants with an Local Interstellar Spectra (LIS) spectrum. The solution obtained with two iterations was compared with an analytical solution and with numerical solutions. Finally, solutions that have only one iteration for two problems of CR modulation with u = constant and the same form of LIS spectrum were obtained and tested against numerical solutions. For the first problem, κ is proportional to the momentum of the particle p, so it has the form κ = k0η, where η =p/m_0c. For the second problem, the diffusion coefficient is given in the form κ = k0βη, where β =v/c is the particle speed relative to the speed of light. There was a good matching of the obtained solutions with the numerical solutions as well as with the analytical solution for the problem where κ = constant.
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
NASA Technical Reports Server (NTRS)
Smith, Stephen F.; Pathak, Dhiraj K.
1991-01-01
In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosmanis, Ansis
2011-02-15
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, whichmore » asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.« less
Inversion method based on stochastic optimization for particle sizing.
Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix
2016-08-01
A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.
Parallel Monotonic Basin Hopping for Low Thrust Trajectory Optimization
NASA Technical Reports Server (NTRS)
McCarty, Steven L.; McGuire, Melissa L.
2018-01-01
Monotonic Basin Hopping has been shown to be an effective method of solving low thrust trajectory optimization problems. This paper outlines an extension to the common serial implementation by parallelizing it over any number of available compute cores. The Parallel Monotonic Basin Hopping algorithm described herein is shown to be an effective way to more quickly locate feasible solutions, and improve locally optimal solutions in an automated way without requiring a feasible initial guess. The increased speed achieved through parallelization enables the algorithm to be applied to more complex problems that would otherwise be impractical for a serial implementation. Low thrust cislunar transfers and a hybrid Mars example case demonstrate the effectiveness of the algorithm. Finally, a preliminary scaling study quantifies the expected decrease in solve time compared to a serial implementation.,
NASA Astrophysics Data System (ADS)
Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun
2018-03-01
Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467
A Cognitive Model for Exposition of Human Deception and Counterdeception
1987-10-01
for understanding deception and counterdeceptlon, for developing related tactics, and for stimulating research in cognitive processes. Further...Processing Resources; Attention) BUFFER MEMORY MANAGER (Local) (Problem Solving; Learning; Procedures) BUFFER MEMORY SENSORS Visual, Auditory ...Perception and Misperception in International Politics, Princeton University Press, Princeton, NJ, 1976. Key, W.B., Subliminal Seduction. New
International Mathematics Tournament of the Towns.
ERIC Educational Resources Information Center
Liu, Andy
The International Mathematics Tournament of the Towns is a mathematics competition for junior and senior high school students all over the world. The tournament began in 1980 in the former Soviet Union. Participants write contest papers locally, with emphasis on solving within a very generous time allowance a small number of interesting problems.…
Initial implementation of The National Map
Roth, K.
2003-01-01
The development of The National Map is "national" in the broadest sense of the word. Although the U.S. Geological Survey is taking the lead, local governments, states, and regions are active and essential partners in the process, contributing, for example, data updates, problem-solving data integration, and map development from multiple data layers.
The Circle of Apollonius and Its Applications in Introductory Physics
ERIC Educational Resources Information Center
Partensky, Michael B.
2008-01-01
The circle of Apollonius is named after the ancient geometrician Apollonius of Perga. This beautiful geometric construct can be helpful when solving some general problems of geometry and mathematical physics, optics, and electricity. Here we discuss two of its applications: localizing an object in space and calculating electric fields. First, we…
Interagency Coordination and Rapid Community Growth. Coping with Growth.
ERIC Educational Resources Information Center
Canham, Ronald R.
Promoting coordinated and/or joint programs among local agencies is one strategy small, rural communities can use to cope with rapid population and economic growth. Interagency coordination is a process in which two or more organizations come together to solve a specific problem or meet a specific need. Coordination means more than just…
Watershed councils: it takes a community to restore a watershed
Marie Oliver; Rebecca Flitcroft
2011-01-01
Regulation alone cannot solve complex ecological problems on private lands that are managed for diverse uses. Executing coordinated restoration projects at the watershed scale is only possible with the cooperation and commitment of all stakeholders. Locally organized, nonregulatory watershed councils have proven to be a powerful method of engaging citizens from all...
Mathematical Instructional Practices and Self-Efficacy of Kindergarten Teachers
ERIC Educational Resources Information Center
Schillinger, Tammy
2016-01-01
A local urban school district recently reported that 86% of third graders did not demonstrate proficiency on the Math Standardized Test, which challenges students to solve problems and justify solutions. It is beneficial if these skills are developed prior to third grade. Students may be more academically successful if kindergarten teachers have…
Making a World of Difference by Looking Locally
ERIC Educational Resources Information Center
Lowenstein, Ethan; Smith, Gregory
2017-01-01
By allowing students to ask critical questions about the places and spaces surrounding them, teachers can empower them to develop problem-solving skills to tackle issues and make a difference in their communities. In this article, Smith and Lowenstein offer three wonderful examples of long-standing environmental place-based education projects that…
ERIC Educational Resources Information Center
Hill, Robert
2004-01-01
The purpose of this qualitative research was to determine the ways that knowledge is constructed and used by emergent citizen's groups (ECGs are grassroots, action-oriented, problem-solving groups) engaged in environmental conflicts, and by a state government environmental regulatory agency that interfaced with them. Four…
Military Installations and Local News: Effects on Military News Coverage.
1986-04-08
upper-class comunities within the same geographical area stressed problem solving. This may be an indication of a newspaper’s response to its perceived...apply to the conflict. Thus, military action against a government may be labeled as "insurgency," "guerilla action," or " terrorism ," each generating
Supporting students' learning in the domain of computer science
NASA Astrophysics Data System (ADS)
Gasparinatou, Alexandra; Grigoriadou, Maria
2011-03-01
Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.
A structural model decomposition framework for systems health management
NASA Astrophysics Data System (ADS)
Roychoudhury, I.; Daigle, M.; Bregon, A.; Pulido, B.
Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.
A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing
Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian
2016-01-01
Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623
Amirghasemi, Mehrdad; Zamani, Reza
2014-01-01
This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust.
A Structural Model Decomposition Framework for Systems Health Management
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Daigle, Matthew J.; Bregon, Anibal; Pulido, Belamino
2013-01-01
Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.
An experience sampling study of learning, affect, and the demands control support model.
Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth
2009-07-01
The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
NASA Astrophysics Data System (ADS)
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
A Multi-Start Evolutionary Local Search for the Two-Echelon Location Routing Problem
NASA Astrophysics Data System (ADS)
Nguyen, Viet-Phuong; Prins, Christian; Prodhon, Caroline
This paper presents a new hybrid metaheuristic between a greedy randomized adaptive search procedure (GRASP) and an evolutionary/iterated local search (ELS/ILS), using Tabu list to solve the two-echelon location routing problem (LRP-2E). The GRASP uses in turn three constructive heuristics followed by local search to generate the initial solutions. From a solution of GRASP, an intensification strategy is carried out by a dynamic alternation between ELS and ILS. In this phase, each child is obtained by mutation and evaluated through a splitting procedure of giant tour followed by a local search. The tabu list, defined by two characteristics of solution (total cost and number of trips), is used to avoid searching a space already explored. The results show that our metaheuristic clearly outperforms all previously published methods on LRP-2E benchmark instances. Furthermore, it is competitive with the best meta-heuristic published for the single-echelon LRP.
NASA Astrophysics Data System (ADS)
Park, Byeolteo; Myung, Hyun
2014-12-01
With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.
What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective
ERIC Educational Resources Information Center
Wareham, Todd; Evans, Patricia; van Rooij, Iris
2011-01-01
Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
Young Children's Analogical Problem Solving: Gaining Insights from Video Displays
ERIC Educational Resources Information Center
Chen, Zhe; Siegler, Robert S.
2013-01-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…
Investigating Problem-Solving Perseverance Using Lesson Study
ERIC Educational Resources Information Center
Bieda, Kristen N.; Huhn, Craig
2017-01-01
Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…
Finke, Stefan; Gulrajani, Ramesh M; Gotman, Jean; Savard, Pierre
2013-01-01
The non-invasive localization of the primary sensory hand area can be achieved by solving the inverse problem of electroencephalography (EEG) for N(20)-P(20) somatosensory evoked potentials (SEPs). This study compares two different mathematical approaches for the computation of transfer matrices used to solve the EEG inverse problem. Forward transfer matrices relating dipole sources to scalp potentials are determined via conventional and reciprocal approaches using individual, realistically shaped head models. The reciprocal approach entails calculating the electric field at the dipole position when scalp electrodes are reciprocally energized with unit current-scalp potentials are obtained from the scalar product of this electric field and the dipole moment. Median nerve stimulation is performed on three healthy subjects and single-dipole inverse solutions for the N(20)-P(20) SEPs are then obtained by simplex minimization and validated against the primary sensory hand area identified on magnetic resonance images. Solutions are presented for different time points, filtering strategies, boundary-element method discretizations, and skull conductivity values. Both approaches produce similarly small position errors for the N(20)-P(20) SEP. Position error for single-dipole inverse solutions is inherently robust to inaccuracies in forward transfer matrices but dependent on the overlapping activity of other neural sources. Significantly smaller time and storage requirements are the principal advantages of the reciprocal approach. Reduced computational requirements and similar dipole position accuracy support the use of reciprocal approaches over conventional approaches for N(20)-P(20) SEP source localization.
NASA Astrophysics Data System (ADS)
Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir
2017-12-01
The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.
Problem-solving deficits in Iranian people with borderline personality disorder.
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.
Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.
Gonzalez, Vivian M; Neander, Lucía L
2018-03-15
This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.
Improving mathematical problem solving skills through visual media
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Darhim; Ikhwanudin, T.
2018-01-01
The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.
ERIC Educational Resources Information Center
Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven
2013-01-01
The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…
ERIC Educational Resources Information Center
Higgins, Karen M.
This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…
Cakar, Tarik; Koker, Rasit
2015-01-01
A particle swarm optimization algorithm (PSO) has been used to solve the single machine total weighted tardiness problem (SMTWT) with unequal release date. To find the best solutions three different solution approaches have been used. To prepare subhybrid solution system, genetic algorithms (GA) and simulated annealing (SA) have been used. In the subhybrid system (GA and SA), GA obtains a solution in any stage, that solution is taken by SA and used as an initial solution. When SA finds better solution than this solution, it stops working and gives this solution to GA again. After GA finishes working the obtained solution is given to PSO. PSO searches for better solution than this solution. Later it again sends the obtained solution to GA. Three different solution systems worked together. Neurohybrid system uses PSO as the main optimizer and SA and GA have been used as local search tools. For each stage, local optimizers are used to perform exploitation to the best particle. In addition to local search tools, neurodominance rule (NDR) has been used to improve performance of last solution of hybrid-PSO system. NDR checked sequential jobs according to total weighted tardiness factor. All system is named as neurohybrid-PSO solution system.
Study of motion of optimal bodies in the soil of grid method
NASA Astrophysics Data System (ADS)
Kotov, V. L.; Linnik, E. Yu
2016-11-01
The paper presents a method of calculating the optimum forms in axisymmetric numerical method based on the Godunov and models elastoplastic soil vedium Grigoryan. Solved two problems in a certain definition of generetrix rotation of the body of a given length and radius of the base, having a minimum impedance and maximum penetration depth. Numerical calculations are carried out by a modified method of local variations, which allows to significantly reduce the number of operations at different representations of generetrix. Significantly simplify the process of searching for optimal body allows the use of a quadratic model of local interaction for preliminary assessments. It is noted the qualitative similarity of the process of convergence of numerical calculations for solving the optimization problem based on local interaction model and within the of continuum mechanics. A comparison of the optimal bodies with absolutely optimal bodies possessing the minimum resistance of penetration below which is impossible to achieve under given constraints on the geometry. It is shown that the conical striker with a variable vertex angle, which equal to the angle of the solution is absolutely optimal body of minimum resistance of penetration for each value of the velocity of implementation will have a final depth of penetration is only 12% more than the traditional body absolutely optimal maximum depth penetration.
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
Student’s scheme in solving mathematics problems
NASA Astrophysics Data System (ADS)
Setyaningsih, Nining; Juniati, Dwi; Suwarsono
2018-03-01
The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.
Efficient Parallel Formulations of Hierarchical Methods and Their Applications
NASA Astrophysics Data System (ADS)
Grama, Ananth Y.
1996-01-01
Hierarchical methods such as the Fast Multipole Method (FMM) and Barnes-Hut (BH) are used for rapid evaluation of potential (gravitational, electrostatic) fields in particle systems. They are also used for solving integral equations using boundary element methods. The linear systems arising from these methods are dense and are solved iteratively. Hierarchical methods reduce the complexity of the core matrix-vector product from O(n^2) to O(n log n) and the memory requirement from O(n^2) to O(n). We have developed highly scalable parallel formulations of a hybrid FMM/BH method that are capable of handling arbitrarily irregular distributions. We apply these formulations to astrophysical simulations of Plummer and Gaussian galaxies. We have used our parallel formulations to solve the integral form of the Laplace equation. We show that our parallel hierarchical mat-vecs yield high efficiency and overall performance even on relatively small problems. A problem containing approximately 200K nodes takes under a second to compute on 256 processors and yet yields over 85% efficiency. The efficiency and raw performance is expected to increase for bigger problems. For the 200K node problem, our code delivers about 5 GFLOPS of performance on a 256 processor T3D. This is impressive considering the fact that the problem has floating point divides and roots, and very little locality resulting in poor cache performance. A dense matrix-vector product of the same dimensions would require about 0.5 TeraBytes of memory and about 770 TeraFLOPS of computing speed. Clearly, if the loss in accuracy resulting from the use of hierarchical methods is acceptable, our code yields significant savings in time and memory. We also study the convergence of a GMRES solver built around this mat-vec. We accelerate the convergence of the solver using three preconditioning techniques: diagonal scaling, block-diagonal preconditioning, and inner-outer preconditioning. We study the performance and parallel efficiency of these preconditioned solvers. Using this solver, we solve dense linear systems with hundreds of thousands of unknowns. Solving a 105K unknown problem takes about 10 minutes on a 64 processor T3D. Until very recently, boundary element problems of this magnitude could not even be generated, let alone solved.
Multiresolution strategies for the numerical solution of optimal control problems
NASA Astrophysics Data System (ADS)
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.
ERIC Educational Resources Information Center
Scherer, Ronny; Tiemann, Rudiger
2012-01-01
The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…
Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process
ERIC Educational Resources Information Center
Yerushalmi, Edit; Magen, Esther
2006-01-01
Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…
ERIC Educational Resources Information Center
Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta
2015-01-01
The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…
Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.
2011-01-01
Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885
Implementing thinking aloud pair and Pólya problem solving strategies in fractions
NASA Astrophysics Data System (ADS)
Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.
2017-12-01
This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.
Chou, Sheng-Kai; Jiau, Ming-Kai; Huang, Shih-Chia
2016-08-01
The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.
Wireless Power Transfer for Distributed Estimation in Sensor Networks
NASA Astrophysics Data System (ADS)
Mai, Vien V.; Shin, Won-Yong; Ishibashi, Koji
2017-04-01
This paper studies power allocation for distributed estimation of an unknown scalar random source in sensor networks with a multiple-antenna fusion center (FC), where wireless sensors are equipped with radio-frequency based energy harvesting technology. The sensors' observation is locally processed by using an uncoded amplify-and-forward scheme. The processed signals are then sent to the FC, and are coherently combined at the FC, at which the best linear unbiased estimator (BLUE) is adopted for reliable estimation. We aim to solve the following two power allocation problems: 1) minimizing distortion under various power constraints; and 2) minimizing total transmit power under distortion constraints, where the distortion is measured in terms of mean-squared error of the BLUE. Two iterative algorithms are developed to solve the non-convex problems, which converge at least to a local optimum. In particular, the above algorithms are designed to jointly optimize the amplification coefficients, energy beamforming, and receive filtering. For each problem, a suboptimal design, a single-antenna FC scenario, and a common harvester deployment for colocated sensors, are also studied. Using the powerful semidefinite relaxation framework, our result is shown to be valid for any number of sensors, each with different noise power, and for an arbitrarily number of antennas at the FC.
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.
[EEG source localization using LORETA (low resolution electromagnetic tomography)].
Puskás, Szilvia
2011-03-30
Eledctroencephalography (EEG) has excellent temporal resolution, but the spatial resolution is poor. Different source localization methods exist to solve the so-called inverse problem, thus increasing the accuracy of spatial localization. This paper provides an overview of the history of source localization and the main categories of techniques are discussed. LORETA (low resolution electromagnetic tomography) is introduced in details: technical informations are discussed and localization properties of LORETA method are compared to other inverse solutions. Validation of the method with different imaging techniques is also discussed. This paper reviews several publications using LORETA both in healthy persons and persons with different neurological and psychiatric diseases. Finally future possible applications are discussed.
Understanding Undergraduates’ Problem-Solving Processes †
Nehm, Ross H.
2010-01-01
Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710
Thinking Process of Naive Problem Solvers to Solve Mathematical Problems
ERIC Educational Resources Information Center
Mairing, Jackson Pasini
2017-01-01
Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…
Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."
ERIC Educational Resources Information Center
Pestel, Beverly C.
1993-01-01
Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…
Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children
ERIC Educational Resources Information Center
Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.
2007-01-01
This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…
Based on the CSI regional segmentation indoor localization algorithm
NASA Astrophysics Data System (ADS)
Zeng, Xi; Lin, Wei; Lan, Jingwei
2017-08-01
To solve the problem of high cost and low accuracy, the method of Channel State Information (CSI) regional segmentation are proposed in the indoor positioning. Because Channel State Information (CSI) stability, and effective against multipath effect, we used the Channel State Information (CSI) to segment location area. The method Acquisition CSI the influence of different link to pinpoint the location of the area. Then the method can improve the accuracy of positioning, and reduce the cost of the fingerprint localization algorithm.
Primal-dual techniques for online algorithms and mechanisms
NASA Astrophysics Data System (ADS)
Liaghat, Vahid
An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.
Neural networks for continuous online learning and control.
Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long
2006-11-01
This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.
Yu, Yi; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743
Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.
Personality, problem solving, and adolescent substance use.
Jaffee, William B; D'Zurilla, Thomas J
2009-03-01
The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.
Payá, Luis; Reinoso, Oscar; Jiménez, Luis M; Juliá, Miguel
2017-01-01
Along the past years, mobile robots have proliferated both in domestic and in industrial environments to solve some tasks such as cleaning, assistance, or material transportation. One of their advantages is the ability to operate in wide areas without the necessity of introducing changes into the existing infrastructure. Thanks to the sensors they may be equipped with and their processing systems, mobile robots constitute a versatile alternative to solve a wide range of applications. When designing the control system of a mobile robot so that it carries out a task autonomously in an unknown environment, it is expected to take decisions about its localization in the environment and about the trajectory that it has to follow in order to arrive to the target points. More concisely, the robot has to find a relatively good solution to two crucial problems: building a model of the environment, and estimating the position of the robot within this model. In this work, we propose a framework to solve these problems using only visual information. The mobile robot is equipped with a catadioptric vision sensor that provides omnidirectional images from the environment. First, the robot goes along the trajectories to include in the model and uses the visual information captured to build this model. After that, the robot is able to estimate its position and orientation with respect to the trajectory. Among the possible approaches to solve these problems, global appearance techniques are used in this work. They have emerged recently as a robust and efficient alternative compared to landmark extraction techniques. A global description method based on Radon Transform is used to design mapping and localization algorithms and a set of images captured by a mobile robot in a real environment, under realistic operation conditions, is used to test the performance of these algorithms.
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.
Decision-Making and Problem-Solving Approaches in Pharmacy Education
Martin, Lindsay C.; Holdford, David A.
2016-01-01
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823
Decision-Making and Problem-Solving Approaches in Pharmacy Education.
Martin, Lindsay C; Donohoe, Krista L; Holdford, David A
2016-04-25
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.
Social problem-solving in Chinese baccalaureate nursing students.
Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia
2016-11-01
To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.
ERIC Educational Resources Information Center
Camacho, Moises; Good, Ron
1989-01-01
Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…
Worry and problem-solving skills and beliefs in primary school children.
Parkinson, Monika; Creswell, Cathy
2011-03-01
To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Mushlihuddin, R.; Nurafifah; Irvan
2018-01-01
The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
Social problem-solving among adolescents treated for depression.
Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S
2010-01-01
Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.
Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021
Solving Fluid Structure Interaction Problems with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.
NASA Astrophysics Data System (ADS)
Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.
2017-12-01
The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.
The Differential Role of Verbal and Spatial Working Memory in the Neural Basis of Arithmetic
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2014-01-01
We examine the relations of verbal and spatial WM ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems. PMID:25144257
An intermediary's perspective of online databases for local governments
NASA Technical Reports Server (NTRS)
Jack, R. F.
1984-01-01
Numerous public administration studies have indicated that local government agencies for a variety of reasons lack access to comprehensive information resources; furthermore, such entities are often unwilling or unable to share information regarding their own problem-solving innovations. The NASA/University of Kentucky Technology Applications Program devotes a considerable effort to providing scientific and technical information and assistance to local agencies, relying on its access to over 500 distinct online databases offered by 20 hosts. The author presents a subjective assessment, based on his own experiences, of several databases which may prove useful in obtaining information for this particular end-user community.
Proof of Concept for the Rewrite Rule Machine: Interensemble Studies
1994-02-23
34 -,,, S2 •fbo fibo 0 1 Figure 1: Concurrent Rewriting of Fibonacci Expressions exploit a problem’s parallelism at several levels. We call this...property multigrain concurrency; it makes the RRM very well suited for solving not only homogeneous problems, but also complex, locally homogeneous but...interprocessor message passing over a network-is not well suited to data parallelism. A key goal of the RRM is to combine the best of these two approaches in a
Research on the precise positioning of customers in large data environment
NASA Astrophysics Data System (ADS)
Zhou, Xu; He, Lili
2018-04-01
Customer positioning has always been a problem that enterprises focus on. In this paper, FCM clustering algorithm is used to cluster customer groups. However, due to the traditional FCM clustering algorithm, which is susceptible to the influence of the initial clustering center and easy to fall into the local optimal problem, the short board of FCM is solved by the gray optimization algorithm (GWO) to achieve efficient and accurate handling of a large number of retailer data.
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
Problem-Solving Deficits in Iranian People with Borderline Personality Disorder
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169
Enhancing memory and imagination improves problem solving among individuals with depression.
McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T
2017-08-01
Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.
Controlling chromium slag pollution utilising scavengers: a case of Shandong Province, China.
Liu, Changhao; Côté, Raymond P
2015-04-01
The problem of chromium slag pollution is a great challenge for China. It is now an urgent task for China to take effective measures to eliminate chromium slag pollution. This article examines the case of the treatment of chromium slag in Shandong Province and explores how chromium slag pollution can be eliminated in Shandong Province. It shows that the chromium slag stockpiled by the chemical plants was successfully utilised by local steel companies, who act as 'scavenger companies'. The driving mechanism, seeking a potential 'scavenger company' within the local region and the role of the local government on the case of Shandong Province are discussed. This article concludes that local steel companies can be utilised to effectively and efficiently treat the chromium slag while benefiting the steel companies. The local governments need to play multiple roles in solving the problem of chromium slag pollution. Seeking and identifying 'scavenger companies' within a region could be an important approach to reducing pollution within the region. © The Author(s) 2015.
Cao, Meng-Li; Meng, Qing-Hao; Zeng, Ming; Sun, Biao; Li, Wei; Ding, Cheng-Jun
2014-06-27
This paper investigates the problem of locating a continuous chemical source using the concentration measurements provided by a wireless sensor network (WSN). Such a problem exists in various applications: eliminating explosives or drugs, detecting the leakage of noxious chemicals, etc. The limited power and bandwidth of WSNs have motivated collaborative in-network processing which is the focus of this paper. We propose a novel distributed least-squares estimation (DLSE) method to solve the chemical source localization (CSL) problem using a WSN. The DLSE method is realized by iteratively conducting convex combination of the locally estimated chemical source locations in a distributed manner. Performance assessments of our method are conducted using both simulations and real experiments. In the experiments, we propose a fitting method to identify both the release rate and the eddy diffusivity. The results show that the proposed DLSE method can overcome the negative interference of local minima and saddle points of the objective function, which would hinder the convergence of local search methods, especially in the case of locating a remote chemical source.
PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices
Tian, Zengshan; Li, Ze; Zhou, Mu; Jin, Yue; Wu, Zipeng
2016-01-01
The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment. PMID:27735879
PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices.
Tian, Zengshan; Li, Ze; Zhou, Mu; Jin, Yue; Wu, Zipeng
2016-10-10
The aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation. Third, we construct a new objective function to solve the localization problem by integrating the AOA and RSS information. Although the localization problem is non-convex, we use the Second-order Cone Programming (SOCP) relaxation approach to transform it into a convex problem. Finally, the effectiveness of our approach is verified based on the prototype implementation by using the commodity Wi-Fi devices. The experimental results show that our approach can achieve the median error 0.7 m in the actual indoor environment.
Matched field localization based on CS-MUSIC algorithm
NASA Astrophysics Data System (ADS)
Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng
2016-04-01
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.
Measuring Family Problem Solving: The Family Problem Solving Diary.
ERIC Educational Resources Information Center
Kieren, Dianne K.
The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…
A framework for qualitative reasoning about solid objects
NASA Technical Reports Server (NTRS)
Davis, E.
1987-01-01
Predicting the behavior of a qualitatively described system of solid objects requires a combination of geometrical, temporal, and physical reasoning. Methods based upon formulating and solving differential equations are not adequate for robust prediction, since the behavior of a system over extended time may be much simpler than its behavior over local time. A first-order logic, in which one can state simple physical problems and derive their solution deductively, without recourse to solving the differential equations, is discussed. This logic is substantially more expressive and powerful than any previous AI representational system in this domain.
Arcmancer: Geodesics and polarized radiative transfer library
NASA Astrophysics Data System (ADS)
Pihajoki, Pauli; Mannerkoski, Matias; Nättilä, Joonas; Johansson, Peter H.
2018-05-01
Arcmancer computes geodesics and performs polarized radiative transfer in user-specified spacetimes. The library supports Riemannian and semi-Riemannian spaces of any dimension and metric; it also supports multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. Arcmancer can be used to solve various problems in numerical geometry, such as solving the curve equation of motion using adaptive integration with configurable tolerances and differential equations along precomputed curves. It also provides support for curves with an arbitrary acceleration term and generic tools for generating ray initial conditions and performing parallel computation over the image, among other tools.
Calibration of Lévy Processes with American Options
NASA Astrophysics Data System (ADS)
Achdou, Yves
We study options on financial assets whose discounted prices are exponential of Lévy processes. The price of an American vanilla option as a function of the maturity and the strike satisfies a linear complementarity problem involving a non-local partial integro-differential operator. It leads to a variational inequality in a suitable weighted Sobolev space. Calibrating the Lévy process may be done by solving an inverse least square problem where the state variable satisfies the previously mentioned variational inequality. We first assume that the volatility is positive: after carefully studying the direct problem, we propose necessary optimality conditions for the least square inverse problem. We also consider the direct problem when the volatility is zero.
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes
Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.
2017-01-01
Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.
Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G
2017-08-01
To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A distributed approach to the OPF problem
NASA Astrophysics Data System (ADS)
Erseghe, Tomaso
2015-12-01
This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of the network), the approach guarantees a performance very close to the optimum, with an appreciably fast convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller local computational complexity effort.
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.
2017-01-01
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790
NASA Astrophysics Data System (ADS)
Khan, Imad; Shafquatullah; Malik, M. Y.; Hussain, Arif; Khan, Mair
Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration) are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number) which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters.
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G
2017-11-03
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.
ERIC Educational Resources Information Center
Zhang, Yin; Chu, Samuel K. W.
2016-01-01
In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…
Perceived problem solving, stress, and health among college students.
Largo-Wight, Erin; Peterson, P Michael; Chen, W William
2005-01-01
To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.
NASA Astrophysics Data System (ADS)
Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew
2013-06-01
Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.
Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving
ERIC Educational Resources Information Center
Both, Lilly; Needham, Douglas; Wood, Eileen
2004-01-01
The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…
Domain decomposition for a mixed finite element method in three dimensions
Cai, Z.; Parashkevov, R.R.; Russell, T.F.; Wilson, J.D.; Ye, X.
2003-01-01
We consider the solution of the discrete linear system resulting from a mixed finite element discretization applied to a second-order elliptic boundary value problem in three dimensions. Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic problem by eliminating the pressure through the use of substructures of the domain. The practicality of the reduction relies on a local basis, presented here, for the divergence-free subspace of the velocity space. We consider additive and multiplicative domain decomposition methods for solving the reduced elliptic problem, and their uniform convergence is established.
NASA Astrophysics Data System (ADS)
Jua, S. K.; Sarwanto; Sukarmin
2018-05-01
Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.
A three-dimensional, finite element model for coastal and estuarine circulation
Walters, R.A.
1992-01-01
This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.
NASA Technical Reports Server (NTRS)
Atluri, Satya N.; Shen, Shengping
2002-01-01
In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.
Students without Borders: Global Collaborative Learning Connects School to the Real World
ERIC Educational Resources Information Center
Bickley, Mali; Carleton, Jim
2009-01-01
Kids can't help but get engaged when they're collaborating with peers across the globe to solve real-life problems. Global collaborative learning is about connecting students in communities of learners around the world so they can work together on projects that make a difference locally and globally. It is about building relationships and…
ERIC Educational Resources Information Center
Kelly, Courtney
2013-01-01
This article describes the inaugural year of a cross-cultural after-school program that used a problem-solving, project-based pedagogy to promote meaningful interactions between immigrant middle school students and their urban, low-income peers. The program relied on the students' local knowledge as they worked together to create social maps of…
Tri-P-LETS: Changing the Face of High School Computer Science
ERIC Educational Resources Information Center
Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James
2012-01-01
From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…
Cognitive Diffusion Model: Facilitating EFL Learning in an Authentic Environment
ERIC Educational Resources Information Center
Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min; Liu, Tzu-Yu
2017-01-01
For this study, we designed learning activities in which students applied newly acquired knowledge to solve meaningful daily life problems in their local community--a real, familiar, and relevant environment for students. For example, students learned about signs and rules in class and then applied this new knowledge to create their own rules for…
Heat-Energy Analysis for Solar Receivers
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1982-01-01
Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are "custom made" for analyzing solar receivers. Can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.
Solutions Unlimited: Evaluation of Prototype Units 1 and 3. Research Report 89.
ERIC Educational Resources Information Center
Agency for Instructional Television, Bloomington, IN.
Solutions Unlimited is a computer/video project developed by the Agency for Instructional Television (AIT) in collaboration with a consortium of state, provincial, and local education agencies. The goal of the project is to improve the problem-solving skills of students in grades 6 through 8 through the use of brief instructional television…
Changes in Small Town Social Capital and Civic Engagement
ERIC Educational Resources Information Center
Besser, Terry L.
2009-01-01
Small towns are often depicted as places with many interpersonal relationships and generalized trust, or high social capital. Social capital is a resource which towns can use to solve problems and improve the local quality of life. In this paper, I determined if social capital and civic engagements have declined in small towns in the U.S. Midwest…
Cornell OEO Project: An Exploration in Urban Extension Activity.
ERIC Educational Resources Information Center
Ostrander, Edward; And Others
To explore ways of adapting cooperative extension education to help urban poor families solve their home management and consumer problems, the Cornell-OEO project trained and then employed 38 South Brooklyn women as family assistants to work with over 500 local families. The dynamic program changed frequently during its 2 year term as its range…
ERIC Educational Resources Information Center
Anger, Sophie Gay; Hachard, Virginie
2011-01-01
The Master Grande Ecole curriculum at EM Normandie School is organized around junior consulting projects and real problem solving activities aiming at bridging the gap between classroom knowledge and professional competencies. Since the 90's, students are involved in regular consulting activities for local and national companies following the…
ERIC Educational Resources Information Center
Kiliç, Çigdem
2017-01-01
This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…
ERIC Educational Resources Information Center
Maries, Alexandru; Singh, Chandralekha
2018-01-01
Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…
ERIC Educational Resources Information Center
Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen
2009-01-01
In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…
The Place of Problem Solving in Contemporary Mathematics Curriculum Documents
ERIC Educational Resources Information Center
Stacey, Kaye
2005-01-01
This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…
Translation among Symbolic Representations in Problem-Solving. Revised.
ERIC Educational Resources Information Center
Shavelson, Richard J.; And Others
This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…
Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding
ERIC Educational Resources Information Center
Domin, Daniel; Bodner, George
2012-01-01
The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…
Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving
ERIC Educational Resources Information Center
Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.
2012-01-01
People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…
Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving
ERIC Educational Resources Information Center
Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim
2016-01-01
This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…
King Oedipus and the Problem Solving Process.
ERIC Educational Resources Information Center
Borchardt, Donald A.
An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…
Problem Solving with the Elementary Youngster.
ERIC Educational Resources Information Center
Swartz, Vicki
This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
The needs analysis of learning Inventive Problem Solving for technical and vocational students
NASA Astrophysics Data System (ADS)
Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi
2017-08-01
Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.
A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.
Zhang, Geng; Li, Yangmin
2016-06-01
It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems.
A Green's function method for local and non-local parallel transport in general magnetic fields
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, Diego; Chacón, Luis
2009-11-01
The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields. The numerical implementation employs a volume-preserving field-line integrator [Finn and Chac'on, Phys. Plasmas, 12 (2005)] for an accurate representation of the magnetic field lines regardless of the level of stochasticity. The general formalism and its algorithmic properties are discussed along with illustrative analytical and numerical examples. Problems of particular interest include: the departures from the Rochester--Rosenbluth diffusive scaling in the weak magnetic chaos regime, the interplay between non-locality and chaos, and the robustness of transport barriers in reverse shear configurations.
Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion
2013-08-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.
Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion
2012-01-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642
Bayindir Çevik, Ayfer; Olgun, Nermin
2015-04-01
This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
NASA Astrophysics Data System (ADS)
Pujiastuti, E.; Waluya, B.; Mulyono
2018-03-01
There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.
Flexibility in Mathematics Problem Solving Based on Adversity Quotient
NASA Astrophysics Data System (ADS)
Dina, N. A.; Amin, S. M.; Masriyah
2018-01-01
Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.
Analogy as a strategy for supporting complex problem solving under uncertainty.
Chan, Joel; Paletz, Susannah B F; Schunn, Christian D
2012-11-01
Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.
Interference thinking in constructing students’ knowledge to solve mathematical problems
NASA Astrophysics Data System (ADS)
Jayanti, W. E.; Usodo, B.; Subanti, S.
2018-04-01
This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.
Local and global evaluation for remote sensing image segmentation
NASA Astrophysics Data System (ADS)
Su, Tengfei; Zhang, Shengwei
2017-08-01
In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results.
Woolcock, Michael
2018-06-01
In rich and poor countries alike, a core challenge is building the state's capability for policy implementation. Delivering high-quality public health and health care-affordably, reliably and at scale, for all-exemplifies this challenge, since doing so requires deftly integrating refined technical skills (surgery), broad logistics management (supply chains, facilities maintenance), adaptive problem solving (curative care), and resolving ideological differences (who pays? who provides?), even as the prevailing health problems themselves only become more diverse, complex, and expensive as countries become more prosperous. However, the current state of state capability in developing countries is demonstrably alarming, with the strains and demands only likely to intensify in the coming decades. Prevailing "best practice" strategies for building implementation capability-copying and scaling putative successes from abroad-are too often part of the problem, while individual training ("capacity building") and technological upgrades (e.g. new management information systems) remain necessary but deeply insufficient. An alternative approach is outlined, one centered on building implementation capability by working iteratively to solve problems nominated and prioritized by local actors.
NASA Astrophysics Data System (ADS)
Aittokoski, Timo; Miettinen, Kaisa
2008-07-01
Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.
Aono, Masashi; Gunji, Yukio-Pegio
2003-10-01
The emergence derived from errors is the key importance for both novel computing and novel usage of the computer. In this paper, we propose an implementable experimental plan for the biological computing so as to elicit the emergent property of complex systems. An individual plasmodium of the true slime mold Physarum polycephalum acts in the slime mold computer. Modifying the Elementary Cellular Automaton as it entails the global synchronization problem upon the parallel computing provides the NP-complete problem solved by the slime mold computer. The possibility to solve the problem by giving neither all possible results nor explicit prescription of solution-seeking is discussed. In slime mold computing, the distributivity in the local computing logic can change dynamically, and its parallel non-distributed computing cannot be reduced into the spatial addition of multiple serial computings. The computing system based on exhaustive absence of the super-system may produce, something more than filling the vacancy.
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
Insightful problem solving and emulation in brown capuchin monkeys.
Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A
2017-05-01
We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.
Tenison, Caitlin; Fincham, Jon M; Anderson, John R
2014-02-01
This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Problem solving therapy - use and effectiveness in general practice.
Pierce, David
2012-09-01
Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.
Collection of solved problems in physics
NASA Astrophysics Data System (ADS)
Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie
2017-01-01
To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).
Pre-service mathematics teachers’ ability in solving well-structured problem
NASA Astrophysics Data System (ADS)
Paradesa, R.
2018-01-01
This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.
ERIC Educational Resources Information Center
Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven
2011-01-01
In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…
Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah
2016-06-01
This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.
NASA Astrophysics Data System (ADS)
Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee
2005-10-01
This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.
Pedagogy and/or technology: Making difference in improving students' problem solving skills
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.
2013-01-01
Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.
Working memory dysfunctions predict social problem solving skills in schizophrenia.
Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K
2014-12-15
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Szetela, W.; Super, D.
A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Problem Solving: How Can We Help Students Overcome Cognitive Difficulties
ERIC Educational Resources Information Center
Cardellini, Liberato
2014-01-01
The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment
ERIC Educational Resources Information Center
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Problem Solving Appraisal of Delinquent Adolescents.
ERIC Educational Resources Information Center
Perez, Ruperto M.; And Others
The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…
Computer Programming: A Medium for Teaching Problem Solving.
ERIC Educational Resources Information Center
Casey, Patrick J.
1997-01-01
Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…
Perceived Problem Solving, Stress, and Health among College Students
ERIC Educational Resources Information Center
Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William
2005-01-01
Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…
THE CURRENT STATUS OF RESEARCH AND THEORY IN HUMAN PROBLEM SOLVING.
ERIC Educational Resources Information Center
DAVIS, GARY A.
PROBLEM-SOLVING THEORIES IN THREE AREAS - TRADITIONAL (STIMULUS-RESPONSE) LEARNING, COGNITIVE-GESTALT APPROACHES, AND COMPUTER AND MATHEMATICAL MODELS - WERE SUMMARIZED. RECENT EMPIRICAL STUDIES (1960-65) ON PROBLEM SOLVING WERE CATEGORIZED ACCORDING TO TYPE OF BEHAVIOR ELICITED BY PARTICULAR PROBLEM-SOLVING TASKS. ANAGRAM,…
Developing Creativity through Collaborative Problem Solving
ERIC Educational Resources Information Center
Albert, Lillie R.; Kim, Rina
2013-01-01
This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…
The effects of expected reward on creative problem solving.
Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan
2018-06-12
Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.
Find the Dimensions: Students Solving a Tiling Problem
ERIC Educational Resources Information Center
Obara, Samuel
2018-01-01
Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.
Marshall, R C; McGurk, S R; Karow, C M; Kairy, T J; Flashman, L A
2006-06-01
Severe mental illness is associated with impairments in executive functions, such as conceptual reasoning, planning, and strategic thinking all of which impact problem solving. The present study examined the utility of a novel assessment tool for problem solving, the Rapid Assessment of Problem Solving Test (RAPS) in persons with severe mental illness. Subjects were 47 outpatients with severe mental illness and an equal number healthy controls matched for age and gender. Results confirmed all hypotheses with respect to how subjects with severe mental illness would perform on the RAPS. Specifically, the severely mentally ill subjects (1) solved fewer problems on the RAPS, (2) when they did solve problems on the test, they did so far less efficiently than their healthy counterparts, and (3) the two groups differed markedly in the types of questions asked on the RAPS. The healthy control subjects tended to take a systematic, organized, but not always optimal approach to solving problems on the RAPS. The subjects with severe mental illness used some of the problem solving strategies of the healthy controls, but their performance was less consistent and tended to deteriorate when the complexity of the problem solving task increased. This was reflected by a high degree of guessing in lieu of asking constraint questions, particularly if a category-limited question was insufficient to continue the problem solving effort.
NASA Astrophysics Data System (ADS)
Lundahl, Allison A.
Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.
The Missing Curriculum in Physics Problem-Solving Education
NASA Astrophysics Data System (ADS)
Williams, Mobolaji
2018-05-01
Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.
Crooks, Noelle M.; Alibali, Martha W.
2013-01-01
This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the equations. PMID:24324454
NASA Astrophysics Data System (ADS)
Steen-Eibensteiner, Janice Lee
2006-07-01
A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.
Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem
NASA Astrophysics Data System (ADS)
Luo, Yabo; Waden, Yongo P.
2017-06-01
Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.
Personal and parental problem drinking: effects on problem-solving performance and self-appraisal.
Slavkin, S L; Heimberg, R G; Winning, C D; McCaffrey, R J
1992-01-01
This study examined the problem-solving performances and self-appraisals of problem-solving ability of college-age subjects with and without parental history of problem drinking. Contrary to our predictions, children of problem drinkers (COPDs) were rated as somewhat more effective in their problem-solving skills than non-COPDs, undermining prevailing assumptions about offspring from alcoholic households. While this difference was not large and was qualified by other variables, subjects' own alcohol abuse did exert a detrimental effect on problem-solving performance, regardless of parental history of problem drinking. However, a different pattern was evident for problem-solving self-appraisals. Alcohol-abusing non-COPDs saw themselves as effective problem-solvers while alcohol-abusing COPDs appraised themselves as poor problem-solvers. In addition, the self-appraisals of alcohol-abusing COPDs were consistent with objective ratings of solution effectiveness (i.e., they were both negative) while alcohol-abusing non-COPDs were overly positive in their appraisals, opposing the judgments of trained raters. This finding suggests that the relationship between personal alcohol abuse and self-appraised problem-solving abilities may differ as a function of parental history of problem drinking. Limitations on the generalizability of findings are addressed.
D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L
1998-12-01
The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.
An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.
ERIC Educational Resources Information Center
Santos-Trigo, Manuel
1996-01-01
Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)
Surveying Graduate Students' Attitudes and Approaches to Problem Solving
ERIC Educational Resources Information Center
Mason, Andrew; Singh, Chandralekha
2010-01-01
Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…
Facilitating Case Reuse during Problem Solving in Algebra-Based Physics
ERIC Educational Resources Information Center
Mateycik, Frances Ann
2010-01-01
This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…
Problem Solving. Research Brief
ERIC Educational Resources Information Center
Muir, Mike
2004-01-01
No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…
Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement
ERIC Educational Resources Information Center
Zheng, Robert; Cook, Anne
2012-01-01
The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…
LEGO Robotics: An Authentic Problem Solving Tool?
ERIC Educational Resources Information Center
Castledine, Alanah-Rei; Chalmers, Chris
2011-01-01
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…
ERIC Educational Resources Information Center
Kelly, Ronald R.
2003-01-01
Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)
Enhancing Students' Problem-Solving Skills through Context-Based Learning
ERIC Educational Resources Information Center
Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi
2015-01-01
Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…
Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving
ERIC Educational Resources Information Center
Ramani, Geetha B.; Brownell, Celia A.
2014-01-01
Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…
Kindergarten Students Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Johnson, Nickey Owen
2013-01-01
The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…
Factors Contributing to Problem-Solving Performance in First-Semester Organic Chemistry
ERIC Educational Resources Information Center
Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John
2014-01-01
Problem solving is a highly valued skill in chemistry. Courses within this discipline place a substantial emphasis on problem-solving performance and tend to weigh such performance heavily in assessments of learning. Researchers have dedicated considerable effort investigating individual factors that influence problem-solving performance. The…
The Role of Expository Writing in Mathematical Problem Solving
ERIC Educational Resources Information Center
Craig, Tracy S.
2016-01-01
Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…
Problem Solving Self-Appraisal and Coping Efforts in Distressed and Nondistressed Couples.
ERIC Educational Resources Information Center
Sabourin, Stephane; And Others
1990-01-01
Investigated relationship between problem-solving self-appraisal, specific coping efforts, and marital distress in 75 couples. Findings showed less problem-solving confidence, tendency to avoid different problem-solving activities, and poor strategies to control behavior in distressed spouses. Three coping efforts--optimistic comparisons,…
How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.
ERIC Educational Resources Information Center
Niaz, Mansoor
1996-01-01
Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…
NASA Astrophysics Data System (ADS)
Hartatiek; Yudyanto; Haryoto, Dwi
2017-05-01
A Special Theory of Relativity handbook has been successfully arranged to guide students tutorial activity in the Modern Physics course. The low of students’ problem-solving ability was overcome by giving the tutorial in addition to the lecture class. It was done due to the limited time in the class during the course to have students do some exercises for their problem-solving ability. The explicit problem-solving based tutorial handbook was written by emphasizing to this 5 problem-solving strategies: (1) focus on the problem, (2) picture the physical facts, (3) plan the solution, (4) solve the problem, and (5) check the result. This research and development (R&D) consisted of 3 main steps: (1) preliminary study, (2) draft I. product development, and (3) product validation. The developed draft product was validated by experts to measure the feasibility of the material and predict the effect of the tutorial giving by means of questionnaires with scale 1 to 4. The students problem-solving ability in Special Theory of Relativity showed very good qualification. It implied that the tutorial giving with the help of tutorial handbook increased students problem-solving ability. The empirical test revealed that the developed handbook was significantly affected in improving students’ mastery concept and problem-solving ability. Both students’ mastery concept and problem-solving ability were in middle category with gain of 0.31 and 0.41, respectively.
Assertiveness and problem solving in midwives.
Yurtsal, Zeliha Burcu; Özdemir, Levent
2015-01-01
Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say "no" when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.
Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George
2017-08-15
A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.
Prediction of static friction coefficient in rough contacts based on the junction growth theory
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2017-08-01
The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.
Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization.
Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng Chai; Xie, Lihua
2015-01-05
Location-based services (LBS) have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR) have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m.
Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization
Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng Chai; Xie, Lihua
2015-01-01
Location-based services (LBS) have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR) have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m. PMID:25569750