Sample records for solve problems encountered

  1. A Study on the Application of Creative Problem Solving Teaching to Statistics Teaching

    ERIC Educational Resources Information Center

    Hu, Ridong; Xiaohui, Su; Shieh, Chich-Jen

    2017-01-01

    Everyone would encounter the life issue of solving complicated problems generated by economic behaviors among all activities for making a living. Various life problems encountered therefore could be generalized by economic statistics. In other words, a lot of important events in daily life are related to economic statistics. For this reason,…

  2. Physical activity problem-solving inventory for adolescents: Development and initial validation

    USDA-ARS?s Scientific Manuscript database

    Youth encounter physical activity barriers, often called problems. The purpose of problem-solving is to generate solutions to overcome the barriers. Enhancing problem-solving ability may enable youth to be more physically active. Therefore, a method for reliably assessing physical activity problem-s...

  3. Strategy Keys as Tools for Problem Solving

    ERIC Educational Resources Information Center

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  4. [Survey on drug-related problems in Lithuania's pharmacies].

    PubMed

    Kubiliene, Loreta; Liukenskyte, Simona; Savickas, Arūnas; Jureniene, Kristina

    2006-01-01

    to survey the most common and the most important drug-related problems in Lithuania, to explore their solution and factors influencing it, to formulate recommendations for solving drug-related problems. Pharmacists from community pharmacies participated in a random survey. They filled in questionnaires about drug-related problems and their solutions. It was the first survey on drug-related problems ever carried out in Lithuania. For the first time, it was found out that in Lithuania pharmacists most commonly encountered drug-related problem--additional drug therapy (52.03% of respondents)--and most rarely encountered drug-related problem--dosage too high (3% of respondents). Pharmacists stated that all categories of drug-related problems were of equal importance. It was established that pharmacists commonly solved drug-related problems associated with noncompliance with instructions (72.5% of respondents) and rarely met the problem when improper drug was selected (39.56% of respondents). Patients taking prescription medicines commonly encounter additional drug therapy problem, and patients taking nonprescription medications commonly encounter problems related to noncompliance with instructions.

  5. Learning Impasses in Problem Solving

    NASA Technical Reports Server (NTRS)

    Hodgson, J. P. E.

    1992-01-01

    Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.

  6. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    ERIC Educational Resources Information Center

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  7. Adaptation of Social Problem Solving for Children Questionnaire in 6 Age Groups and its Relationships with Preschool Behavior Problems

    ERIC Educational Resources Information Center

    Dereli-Iman, Esra

    2013-01-01

    Social Problem Solving for Child Scale is frequently used to determine behavioral problems of children with their own word and to identify ways of conflict encountered in daily life, and interpersonal relationships in abroad. The primary purpose of this study was to adapt the Wally Child Social Problem-Solving Detective Game Test. In order to…

  8. Problem Solving in Technology Rich Contexts: Mathematics Sense Making in Out-of-School Environments

    ERIC Educational Resources Information Center

    Lowrie, Tom

    2005-01-01

    This investigation describes the way in which a case study participant (aged 7) represented, posed and solved problems in a technology game-based environment. The out-of-school problem-solving context placed numeracy demands on the participant that were more complex and sophisticated than the type of mathematics experiences he encountered in…

  9. Problems Encountered during the Scientific Research Process in Graduate Education: The Institute of Educational Sciences

    ERIC Educational Resources Information Center

    Akyürek, Erkan; Afacan, Özlem

    2018-01-01

    This study was conducted to determine the problems faced by graduate students when conducting scientific research and to make suggestions for solving these problems. The research model was a case study. Semi-structured interviews were conducted with participants in the study with questions about the problems encountered during scientific research…

  10. Using CAS to Solve Classical Mathematics Problems

    ERIC Educational Resources Information Center

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  11. Beyond Utility Targeting: Toward Axiological Air Operations

    DTIC Science & Technology

    2000-01-01

    encounter the leader- sociopath , bereft of values, quite willing to live underground in hiding and in- sensitive to the absence of human comforts...that is a mere one thousand value-analysis problems to begin solving. A more difficult problem to solve is the problem of the leader- sociopath

  12. Problem-Solving Examples as Interactive Learning Objects for Educational Digital Libraries

    ERIC Educational Resources Information Center

    Brusilovsky, Peter; Yudelson, Michael; Hsiao, I-Han

    2009-01-01

    The paper analyzes three major problems encountered by our team as we endeavored to turn problem solving examples in the domain of programming into highly reusable educational activities, which could be included as first class objects in various educational digital libraries. It also suggests three specific approaches to resolving these problems,…

  13. The Effect of New Vocabulary on Problem Solving in Novice Physics Students.

    ERIC Educational Resources Information Center

    Sobolewski, Stanley J.

    One of the difficulties encountered by novice problem solvers in introductory physics is in the area of problem solving. It has been shown in other studies that poor problem solvers are affected by the surface aspects of the problem in contrast with more efficient problem solvers who are capable of constructing a mental model of the physical…

  14. Conceptualizing Perseverance in Problem Solving as Collective Enterprise

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha; Agarwal, Priyanka

    2017-01-01

    Students are expected to learn mathematics such that when they encounter challenging problems they will persist. Creating opportunities for students to persist in problem solving is therefore argued as essential to effective teaching and to children developing positive dispositions in mathematical learning. This analysis takes a novel approach to…

  15. Problem Solving.

    ERIC Educational Resources Information Center

    Pollak, Ave

    This guide is intended for use in presenting a three-session course designed to develop the problem-solving skills required of persons employed in the manufacturing and service industries. The course is structured so that, upon its completion, students will be able to accomplish the following: describe and analyze problems encountered at work;…

  16. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  17. Practical Parenting: Successful Strategies for Solving Your Child's Behaviour Problems.

    ERIC Educational Resources Information Center

    Stenhouse, Glen

    Recognizing that all parents encounter challenges in raising their children, this book presents practical strategies for solving common behavior problems. Chapter 1, "Bonding," concerns the development of parent-child attachment. Chapter 2, "Encouraging Development," discusses "hot-housing," language development, and…

  18. Applying an Information Problem-Solving Model to Academic Reference Work: Findings and Implications.

    ERIC Educational Resources Information Center

    Cottrell, Janet R.; Eisenberg, Michael B.

    2001-01-01

    Examines the usefulness of the Eisenberg-Berkowitz Information Problem-Solving model as a categorization for academic reference encounters. Major trends in the data include a high proportion of questions about location and access of sources, lack of synthesis or production activities, and consistent presence of system problems that impede the…

  19. Virtual Bridge Design

    ERIC Educational Resources Information Center

    Bisogno, Janet; JeanPierre, Bobby

    2008-01-01

    The West Point Bridge Design (WPBD) building project engages students in project-based learning by giving them a real-life problem to solve. By using technology, students are able to become involved in solving problems that they normally would not encounter. Involvement with interactive websites, such as WPBD, assists students in using…

  20. Obstacles Related to Structuring for Mathematization Encountered by Students When Solving Physics Problems

    ERIC Educational Resources Information Center

    Niss, Martin

    2017-01-01

    This paper studies the cognitive obstacles related to one aspect of mathematization in physics problem-solving, namely, what might be called "structuring for mathematization," where the problem situation is structured in such a way that a translation to a mathematical universe can be done. We report the results of an analysis of four…

  1. Complex Problem Solving in Radiologic Technology: Understanding the Roles of Experience, Reflective Judgment, and Workplace Culture

    ERIC Educational Resources Information Center

    Yates, Jennifer L.

    2011-01-01

    The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…

  2. Young Filipino Students Making Sense of Arithmetic Word Problems in English

    ERIC Educational Resources Information Center

    Bautista, Debbie; Mulligan, Joanne; Mitchelmore, Michael

    2009-01-01

    Young Filipino children are expected to solve mathematical word problems in English, a task which they typically encounter only in schools. In this exploratory study, task-based interviews were conducted with seven Filipino children from a public school. The children were asked to read and solve addition and subtraction word problems in English or…

  3. Introspection in Problem Solving

    ERIC Educational Resources Information Center

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  4. Do Focused Self-Explanation Prompts Overcome Seductive Details? A Multimedia Study

    ERIC Educational Resources Information Center

    Wang, Zhe; Adesope, Olusola

    2017-01-01

    Research on the seductive details effect on reading expository texts in multimedia learning environments has grown over the past few decades. However, less is known when seductive details are encountered in learning through worked-examples to solve problems. Thus, it is necessary to examine the seductive details effect when solving problems in a…

  5. Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language

    ERIC Educational Resources Information Center

    Verzosa, Debbie Bautista; Mulligan, Joanne

    2013-01-01

    This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…

  6. The Monte Carlo Method. Popular Lectures in Mathematics.

    ERIC Educational Resources Information Center

    Sobol', I. M.

    The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…

  7. A Study of Moroccan Pupils' Difficulties at Second Baccalaureate Year in Solving Chemistry Problems Relating to the Reactivity of Ethanoate Ions and to Copper-Aluminium Cells

    ERIC Educational Resources Information Center

    Ouasri, Ali

    2017-01-01

    This paper investigates the difficulties that Moroccan pupils (18-19) of the second Baccalaureate year encountered in solving chemical equilibrium problems relating to ethanoate ions' reactivity with water and methanoic acid, and to copper-aluminum cells. The pupils were asked to provide answers to questions derived from two problems. The…

  8. Conquering common breast-feeding problems.

    PubMed

    Walker, Marsha

    2008-01-01

    Meeting mothers' personal breast-feeding goals depends on a number of factors, including the timely resolution of any problems she encounters. Nurses are often the first providers who interact with the mother during the perinatal period and are positioned to guide mothers through the prevention and solving of breast-feeding problems. Although many problems may be "common," failure to remedy conditions that cause pain, frustration, and anxiety can lead to premature weaning and avoidance of breast-feeding subsequent children. This article describes strategies and interventions to alleviate common problems that breast-feeding mothers frequently encounter.

  9. Professional or administrative value patterns? Clinical pathways in medical problem-solving processes.

    PubMed

    Holmberg, Leif

    2007-11-01

    A health-care organization simultaneously belongs to two different institutional value patterns: a professional and an administrative value pattern. At the administrative level, medical problem-solving processes are generally perceived as the efficient application of familiar chains of activities to well-defined problems; and a low task uncertainty is therefore assumed at the work-floor level. This assumption is further reinforced through clinical pathways and other administrative guidelines. However, studies have shown that in clinical practice such administrative guidelines are often considered inadequate and difficult to implement mainly because physicians generally perceive task uncertainty to be high and that the guidelines do not cover the scope of encountered deviations. The current administrative level guidelines impose uniform structural features that meet the requirement for low task uncertainty. Within these structural constraints, physicians must organize medical problem-solving processes to meet any task uncertainty that may be encountered. Medical problem-solving processes with low task uncertainty need to be organized independently of processes with high task uncertainty. Each process must be evaluated according to different performance standards and needs to have autonomous administrative guideline models. Although clinical pathways seem appropriate when there is low task uncertainty, other kinds of guidelines are required when the task uncertainty is high.

  10. Clue Insensitivity in Remote Associates Test Problem Solving

    ERIC Educational Resources Information Center

    Smith, Steven M.; Sifonis, Cynthia M.; Angello, Genna

    2012-01-01

    Does spreading activation from incidentally encountered hints cause incubation effects? We used Remote Associates Test (RAT) problems to examine effects of incidental clues on impasse resolution. When solution words were seen incidentally 3-sec before initially unsolved problems were retested, more problems were resolved (Experiment 1). When…

  11. Democracy in NGOs: Making the Cooperative Option Work.

    ERIC Educational Resources Information Center

    Wardle, Chris

    1988-01-01

    Discusses several problems encountered by nongovernmental organizations (NGOs) that structure themselves as cooperatives, with all members being equal. Presents four problem areas--(1) decision making, (2) meetings, (3) job rotation, and (4) growth--as well as strategies to solve potential problems. (CH)

  12. A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree

    ERIC Educational Resources Information Center

    de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel

    2017-01-01

    Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…

  13. ADOPTING THE PROBLEM BASED LEARNING APPROACH IN A GIS PROJECT MANAGEMENT CLASS

    EPA Science Inventory

    Problem Based Learning (PBL) is a process that emphasizes the need for developing problem solving skills through hands-on project formulation and management. A class adopting the PBL method provides students with an environment to acquire necessary knowledge to encounter, unders...

  14. Physical activity problem-solving inventory for adolescents: development and initial validation.

    PubMed

    Thompson, Debbe; Bhatt, Riddhi; Watson, Kathy

    2013-08-01

    Youth encounter physical activity barriers, often called problems. The purpose of problem solving is to generate solutions to overcome the barriers. Enhancing problem-solving ability may enable youth to be more physically active. Therefore, a method for reliably assessing physical activity problem-solving ability is needed. The purpose of this research was to report the development and initial validation of the physical activity problem-solving inventory for adolescents (PAPSIA). Qualitative and quantitative procedures were used. The social problem-solving inventory for adolescents guided the development of the PAPSIA scale. Youth (14- to 17-year-olds) were recruited using standard procedures, such as distributing flyers in the community and to organizations likely to be attended by adolescents. Cognitive interviews were conducted in person. Adolescents completed pen and paper versions of the questionnaire and/or scales assessing social desirability, self-reported physical activity, and physical activity self-efficacy. An expert panel review, cognitive interviews, and a pilot study (n = 129) established content validity. Construct, concurrent, and predictive validity were also established (n = 520 youth). PAPSIA is a promising measure for assessing youth physical activity problem-solving ability. Future research will assess its validity with objectively measured physical activity.

  15. Modifications to give HOPE/MDC 2.0 the capability to solve for or consider vent forces: Mission planning, mission analysis, and software formulation

    NASA Technical Reports Server (NTRS)

    Zyla, L. V.

    1979-01-01

    The modifications are described as necessary to give the Houston Operations Predictor/Estimator (HOPE) program the capability to solve for or consider vent forces for orbit determination. The model implemented in solving for vent forces is described along with the integrator problems encountered. A summary derivation of the mathematical principles applicable to solve/consider methodology is provided.

  16. Lattice Boltzmann computation of creeping fluid flow in roll-coating applications

    NASA Astrophysics Data System (ADS)

    Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga

    2018-04-01

    Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.

  17. Problems Implementing Problem-Based Learning by a Private Malaysian University

    ERIC Educational Resources Information Center

    Tik, Chan Chang

    2014-01-01

    In this case study the focus is on lecturers' readiness in the design of PBL problems and to facilitate students' learning. This paper also looks into students' readiness in terms of acquiring metacognitive skills and collaborating in group to solve PBL problems. Problems encountered by both lecturers and students are discussed in the context of…

  18. Problem Solving Skills for Children.

    ERIC Educational Resources Information Center

    Youngs, Bettie B.

    This guide was written for children, to help them handle problems they might encounter, learn about other children and how they have handled similar problems, and learn what to do when things go wrong or when they feel misunderstood. In the introduction, children are assured that, even when they have problems, they can be happy again. The body of…

  19. Applications of Genetic Methods to NASA Design and Operations Problems

    NASA Technical Reports Server (NTRS)

    Laird, Philip D.

    1996-01-01

    We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.

  20. Having the Memory of an Elephant: Long-Term Retrieval and the Use of Analogues in Problem Solving

    ERIC Educational Resources Information Center

    Chen, Zhe; Mo, Lei; Honomichl, Ryan

    2004-01-01

    The authors report 4 experiments exploring long-term analogical transfer from problem solutions in folk tales participants heard during childhood, many years before encountering the target problems. Substantial culture-specific analogical transfer was found when American and Chinese participants' performance was compared on isomorphs of problems…

  1. Why Do Disadvantaged Filipino Children Find Word Problems in English Difficult?

    ERIC Educational Resources Information Center

    Bautista, Debbie; Mulligan, Joanne

    2010-01-01

    Young Filipino students are expected to solve mathematical word problems in English, a language that many encounter only in schools. Using individual interviews of 17 Filipino children, we investigated why word problems in English are difficult and the extent to which the language interferes with performance. Results indicate that children could…

  2. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    PubMed

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  3. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  4. Reflective Teaching via a Problem Exploration--Teaching Adaptations--Resolution Cycle: A Mixed Methods Study of Preservice Teachers' Reflective Notes

    ERIC Educational Resources Information Center

    Hayden, H. Emily; Chiu, Ming Ming

    2015-01-01

    We explore development of elementary preservice teachers' reflective practices as they solved problems encountered while teaching in a reading clinic. Written reflections (N = 175) were collected across 8 weeks from 23 preservice teachers and analyzed to investigate relationships among problem exploration, teaching adaptations, and problem…

  5. Modelling Difficulties and Their Overcoming Strategies in the Solution of a Modelling Problem

    ERIC Educational Resources Information Center

    Dede, Ayse Tekin

    2016-01-01

    The purpose of the study is to reveal the elementary mathematics student teachers' difficulties encountered in the solution of a modelling problem, the strategies to overcome those difficulties and whether the strategies worked or not. Nineteen student teachers solved the modelling problem in their four or five-person groups, and the video records…

  6. Close Encounters of a Sparse Kind.

    ERIC Educational Resources Information Center

    Westerberg, Arthur W.

    1980-01-01

    By providing an example problem in solving sets of nonlinear algebraic equations, the advantages and disadvantages of two methods for its solution, the tearing approach v the Newton-Raphson approach, are elucidated. (CS)

  7. Understanding Critical Thinking to Create Better Doctors

    ERIC Educational Resources Information Center

    Zayapragassarazan, Zayabalaradjane; Menon, Vikas; Kar, Sitanshu Sekhar; Batmanabane, Gitanjali

    2016-01-01

    Medical students master an enormous body of knowledge, but lack systematic problem solving ability and effective clinical decision making. High profile reports have called for reforms in medical education to create a better generation of doctors who can cope with the system based problems they would encounter in an interdisciplinary and…

  8. Education's Role in National Development Plans: Ten Country Cases.

    ERIC Educational Resources Information Center

    Thomas, R. Murray, Ed.

    The place education has been assigned in the national development programs of 10 nations is discussed, the problems that these countries have encountered in managing education are examined, and the measures adopted to solve educational problems are assessed. Included are the following papers: (1) "The Nature of National Development…

  9. Human Gene Discovery Laboratory: A Problem-Based Learning Experience

    ERIC Educational Resources Information Center

    Bonds, Wesley D., Sr.; Paolella, Mary Jane

    2006-01-01

    A single-semester elective combines Mendelian and molecular genetics in a problem-solving format. Students encounter a genetic disease scenario, construct a family pedigree, and try to confirm their medical diagnoses through laboratory experiences. Encouraged to generate ideas as they test their hypotheses, students realize the importance of data…

  10. Knowledge Inertia and Organizational Learning as the Explanation of Organizational Performance

    ERIC Educational Resources Information Center

    Aküzüm, Cemal

    2014-01-01

    Knowledge is an important concept for individuals and organizations both as a power and source. Thus, knowledge management has become important subject for researchers. However, when people encounter problems, they usually try to produce solutions by utilizing their previous knowledge and experience. Such problem solving strategies are called…

  11. Cognitive Predictors of Everyday Problem Solving across the Lifespan

    PubMed Central

    Chen, Xi; Hertzog, Christopher; Park, Denise C.

    2017-01-01

    Background An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. Objectives The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT; [1]). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Method Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24–93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on the Everyday Problems Test. Results Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of fifty. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. Conclusion This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. PMID:28273664

  12. Simulation and statistics: Like rhythm and song

    NASA Astrophysics Data System (ADS)

    Othman, Abdul Rahman

    2013-04-01

    Simulation has been introduced to solve problems in the form of systems. By using this technique the following two problems can be overcome. First, a problem that has an analytical solution but the cost of running an experiment to solve is high in terms of money and lives. Second, a problem exists but has no analytical solution. In the field of statistical inference the second problem is often encountered. With the advent of high-speed computing devices, a statistician can now use resampling techniques such as the bootstrap and permutations to form pseudo sampling distribution that will lead to the solution of the problem that cannot be solved analytically. This paper discusses how a Monte Carlo simulation was and still being used to verify the analytical solution in inference. This paper also discusses the resampling techniques as simulation techniques. The misunderstandings about these two techniques are examined. The successful usages of both techniques are also explained.

  13. Cognitive and metacognitive activity in mathematical problem solving: prefrontal and parietal patterns.

    PubMed

    Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

    2011-03-01

    Students were taught an algorithm for solving a new class of mathematical problems. Occasionally in the sequence of problems, they encountered exception problems that required that they extend the algorithm. Regular and exception problems were associated with different patterns of brain activation. Some regions showed a Cognitive pattern of being active only until the problem was solved and no difference between regular or exception problems. Other regions showed a Metacognitive pattern of greater activity for exception problems and activity that extended into the post-solution period, particularly when an error was made. The Cognitive regions included some of parietal and prefrontal regions associated with the triple-code theory of (Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506) and associated with algebra equation solving in the ACT-R theory (Anderson, J. R. (2005). Human symbol manipulation within an 911 integrated cognitive architecture. Cognitive science, 29, 313-342. Metacognitive regions included the superior prefrontal gyrus, the angular gyrus of the triple-code theory, and frontopolar regions.

  14. The Relationship of Social Problem-Solving Skills and Dysfunctional Attitudes with Risk of Drug Abuse among Dormitory Students at Isfahan University of Medical Sciences

    PubMed Central

    Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh

    2017-01-01

    Background: Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. Materials and Methods: This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. Results: The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse (P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse (P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students (P = 0.0004). Conclusions: Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students. PMID:28904539

  15. The Relationship of Social Problem-Solving Skills and Dysfunctional Attitudes with Risk of Drug Abuse among Dormitory Students at Isfahan University of Medical Sciences.

    PubMed

    Nasrazadani, Ehteram; Maghsoudi, Jahangir; Mahrabi, Tayebeh

    2017-01-01

    Dormitory students encounter multiple social factors which cause pressure, such as new social relationships, fear of the future, and separation from family, which could cause serious problems such as tendency toward drug abuse. This research was conducted with the goal to determine social problem-solving skills, dysfunctional attitudes, and risk of drug abuse among dormitory students of Isfahan University of Medical Sciences, Iran. This was a descriptive-analytical, correlational, and cross-sectional research. The research sample consisted of 211 students living in dormitories. The participants were selected using randomized quota sampling method. The data collection tools included the Social Problem-Solving Inventory (SPSI), Dysfunctional Attitude Scale (DAS), and Identifying People at Risk of Addiction Questionnaire. The results indicated an inverse relationship between social problem-solving skills and risk of drug abuse ( P = 0.0002), a direct relationship between dysfunctional attitude and risk of drug abuse ( P = 0.030), and an inverse relationship between social problem-solving skills and dysfunctional attitude among students ( P = 0.0004). Social problem-solving skills have a correlation with dysfunctional attitudes. As a result, teaching these skills and the way to create efficient attitudes should be considered in dormitory students.

  16. Social Problems in Turkish Social Studies Coursebooks and Workbooks

    ERIC Educational Resources Information Center

    Yesiltas, Erkan; Eryilmaz, Önder; Pehlivan, Aysegül

    2016-01-01

    In Turkey, the social studies course, which is taught in elementary 5th to 7th grades, prepares students to solve problems they may encounter in their future life. Therefore, the teaching of social problems to help students get to know them is one of the most important issues for the social studies course. The primary aim of this study is to…

  17. Engineering Encounters: The Tightrope Challenge

    ERIC Educational Resources Information Center

    Burton, Bill

    2014-01-01

    In order to prepare students to become the next innovators, teachers need to provide real-world challenges that allow children to exercise their innovation muscles. Innovation starts with a problem and innovators work to solve a problem by planning, creating, and testing. The real-world innovation process does not happen on a worksheet, and it…

  18. Improving Problem-Solving Skills with the Help of Plane-Space Analogies

    ERIC Educational Resources Information Center

    Budai, László

    2013-01-01

    We live our lives in three-dimensional space and encounter geometrical problems (equipment instructions, maps, etc.) every day. Yet there are not sufficient opportunities for high school students to learn geometry. New teaching methods can help remedy this. Specifically our experience indicates that there is great promise for use of geometry…

  19. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students.

    PubMed

    Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A

    2016-10-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. UFO (UnFold Operator) computer program abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissel, L.; Biggs, F.

    UFO (UnFold Operator) is an interactive user-oriented computer program designed to solve a wide range of problems commonly encountered in physical measurements. This document provides a summary of the capabilities of version 3A of UFO.

  1. Test results of the DOE/Sandia 17 meter VAWT

    NASA Technical Reports Server (NTRS)

    Nellums, R. O.; Worstell, M. H.

    1979-01-01

    A review is given of the test program of a 17 meter Vertical Axis Wind Turbine VAWT. Performance test results are discussed including difficulties encountered during the VAWT operation along with ways of solving these problems.

  2. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  3. Analysis of random point images with the use of symbolic computation codes and generalized Catalan numbers

    NASA Astrophysics Data System (ADS)

    Reznik, A. L.; Tuzikov, A. V.; Solov'ev, A. A.; Torgov, A. V.

    2016-11-01

    Original codes and combinatorial-geometrical computational schemes are presented, which are developed and applied for finding exact analytical formulas that describe the probability of errorless readout of random point images recorded by a scanning aperture with a limited number of threshold levels. Combinatorial problems encountered in the course of the study and associated with the new generalization of Catalan numbers are formulated and solved. An attempt is made to find the explicit analytical form of these numbers, which is, on the one hand, a necessary stage of solving the basic research problem and, on the other hand, an independent self-consistent problem.

  4. From problem solving to problem definition: scrutinizing the complex nature of clinical practice.

    PubMed

    Cristancho, Sayra; Lingard, Lorelei; Regehr, Glenn

    2017-02-01

    In medical education, we have tended to present problems as being singular, stable, and solvable. Problem solving has, therefore, drawn much of medical education researchers' attention. This focus has been important but it is limited in terms of preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness. In this paper, we use the Soft Systems Engineering principles to introduce the idea that in complex, team-based situations, problems usually involve divergent views and evolve with multiple solution iterations. As such we need to shift the conversation from (1) problem solving to problem definition, and (2) from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation in which the problem is manifested. Embracing such a focus on problem definition will enable us to advocate for novel educational practices that will equip trainees to effectively manage the problems they will encounter in complex, team-based healthcare.

  5. PUZZLE - A program for computer-aided design of printed circuit artwork

    NASA Technical Reports Server (NTRS)

    Harrell, D. A. W.; Zane, R.

    1971-01-01

    Program assists in solving spacing problems encountered in printed circuit /PC/ design. It is intended to have maximum use for two-sided PC boards carrying integrated circuits, and also aids design of discrete component circuits.

  6. Encounters with Transcendence in Adventure Programmes.

    ERIC Educational Resources Information Center

    McGowan, Michael L.

    1991-01-01

    Problem solving in adventure programs contains physical, social, philosophical, and transcendent (insightful) elements. Through transcendent experiences students reach a high level of performance, tolerance, and understanding. Instructors often attempt to facilitate transcendent experiences through such activities as the Native American…

  7. Encountering Problems at Home and at School: Language and Cognition in Two Settings.

    ERIC Educational Resources Information Center

    Martini, Mary

    This paper discusses cognitive communicative training in preschool and reports on a study of 11 Hawaiian preschoolers that examined how these children interacted with others, used language, manipulated objects, and solved problems at home and at school. The study observed the children at school and at home over a 5-month period, collecting…

  8. New Technologies Upset the Political Communication Balance in the Third World.

    ERIC Educational Resources Information Center

    Oduko, Segun

    This paper argues that new technologies, which play significant roles in the process of communication, may solve some problems, but they also tend to create new ones. A discussion of the various problems encountered in Nigeria, where an appreciable penetration of portable video cameras and recorders has given the public more access to, and choice…

  9. Fast and reliable symplectic integration for planetary system N-body problems

    NASA Astrophysics Data System (ADS)

    Hernandez, David M.

    2016-06-01

    We apply one of the exactly symplectic integrators, which we call HB15, of Hernandez & Bertschinger, along with the Kepler problem solver of Wisdom & Hernandez, to solve planetary system N-body problems. We compare the method to Wisdom-Holman (WH) methods in the MERCURY software package, the MERCURY switching integrator, and others and find HB15 to be the most efficient method or tied for the most efficient method in many cases. Unlike WH, HB15 solved N-body problems exhibiting close encounters with small, acceptable error, although frequent encounters slowed the code. Switching maps like MERCURY change between two methods and are not exactly symplectic. We carry out careful tests on their properties and suggest that they must be used with caution. We then use different integrators to solve a three-body problem consisting of a binary planet orbiting a star. For all tested tolerances and time steps, MERCURY unbinds the binary after 0 to 25 years. However, in the solutions of HB15, a time-symmetric HERMITE code, and a symplectic Yoshida method, the binary remains bound for >1000 years. The methods' solutions are qualitatively different, despite small errors in the first integrals in most cases. Several checks suggest that the qualitative binary behaviour of HB15's solution is correct. The Bulirsch-Stoer and Radau methods in the MERCURY package also unbind the binary before a time of 50 years, suggesting that this dynamical error is due to a MERCURY bug.

  10. Fear No Creativity

    ERIC Educational Resources Information Center

    Bush, Gail

    2014-01-01

    Young scholars readily encounter creative characters in both literature and in life who stimulate questioning, problem solving, communicating, and pursuing interests and personal growth. By fueling students' creativity, school librarians demonstrate respect for the unique individuals they are now and honor them for the people they are…

  11. HFL-10 lifting body flight control system characteristics and operational experience

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Sitterle, G. J.

    1974-01-01

    A flight evaluation was made of the mechanical hydraulic flight control system and the electrohydraulic stability augmentation system installed in the HL-10 lifting body research vehicle. Flight tests performed in the speed range from landing to a Mach number of 1.86 and the altitude range from 697 meters (2300 feet) to 27,550 meters (90,300 feet) were supplemented by ground tests to identify and correct structural resonance and limit-cycle problems. Severe limit-cycle and control sensitivity problems were encountered during the first flight. Stability augmentation system structural resonance electronic filters were modified to correct the limit-cycle problem. Several changes were made to control stick gearing to solve the control sensitivity problem. Satisfactory controllability was achieved by using a nonlinear system. A limit-cycle problem due to hydraulic fluid contamination was encountered during the first powered flight, but the problem did not recur after preflight operations were improved.

  12. Look down from the Sky: Is It a Bird? Is It Superman? No, It's a Plane

    ERIC Educational Resources Information Center

    Chick, Helen

    2016-01-01

    The plane problem is a real-world problem, presented without any suggestion as to how it might be solved. It arose unexpectedly as the author was messing around on the internet, not thinking about maths at all. She did not encounter the problem in a maths lesson, nor as homework in the middle of a unit on a particular topic, and so she had no…

  13. The Therapeutic Stage Encounters the Virtual World

    ERIC Educational Resources Information Center

    Imholz, Susan

    2008-01-01

    Clinical research in expressive therapies, psychodrama in particular, offer education researchers and software designers descriptive analyses and evidence-based impact studies on attitudinal shifts and enhanced problem solving abilities for patients and students who participate in psychodrama role-play. Gaming environments and virtual worlds that…

  14. The perceived problem-solving ability of nurse managers.

    PubMed

    Terzioglu, Fusun

    2006-07-01

    The development of a problem-solving approach to nursing has been one of the more important changes in nursing during the last decade. Nurse Managers need to have effective problem-solving and management skills to be able to decrease the cost of the health care and to increase the quality of care. This descriptive study was conducted to determine the perceived problem-solving ability of nurse managers. From a population of 87 nurse managers, 71 were selected using the stratified random sampling method, 62 nurse managers agreed to participate. Data were collected through a questionnaire including demographic information and a problem-solving inventory. The problem-solving inventory was developed by Heppner and Petersen in 1982, and validity and readability studies were done. It was adapted to Turkish by Sahin et al (1993). The acquired data have been evaluated on the software spss 10.0 programme, using percentages, mean values, one-way anova and t-test (independent samples t-test). Most of the nurses had 11 or more years of working experience (71%) and work as charge nurses in the clinics. It was determined that 69.4% of the nurse managers did not have any educational training in administration. The most encountered problems stated were issues related to managerial (30.6%) and professional staff (25.8%). It was identified that nurse managers who had received education about management, following scientific publication and scientific meeting and had followed management models, perceived their problem-resolving skills as more adequate than the others (P>0.05). In this study, it was determined that nurses do not perceive that they have problem-solving skills at a desired level. In this context, it is extremely important that this subject be given an important place in both nursing education curriculum and continuing education programmes.

  15. Towards a Cognitively Realistic Computational Model of Team Problem Solving Using ACT-R Agents and the ELICIT Experimentation Framework

    DTIC Science & Technology

    2014-06-01

    intelligence analysis processes. However, as has been noted in previous work (e.g., [42]), there are a number of important differences between the nature of the...problem encountered in the context of the ELICIT task and the problems dealt with by intelligence analysts. Perhaps most importantly, the fact that a...see Section 7). 6 departure from the reality of most intelligence analysis situations: in most real-world intelligence analysis problems agents have

  16. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  17. Avoiding Mathematics Trauma: Alternative Teaching Methods.

    ERIC Educational Resources Information Center

    Ufuktepe, Unal; Ozel, Claire Thomas

    Children in primary education often encounter mathematics having picked up a general fear of mathematics from the society around them. This results in lack of confidence, avoidance of non-standard thought processes, weakness in problem solving strategies, and other negative consequences. This study offers an alternative approach: presenting…

  18. Engineering Encounters: Catch Me if You Can!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Wallin, Mark; Roghaar, Deborah; Price, Tyson

    2013-01-01

    A science, technology, engineering, and math (STEM) activity is any activity that integrates the use of science, technology, engineering, and mathematics to solve a problem. Traditionally, STEM activities are highly engaging and may involve competition among student teams. Young children are natural engineers and often times spontaneously build…

  19. On inconsistency in frictional granular systems

    NASA Astrophysics Data System (ADS)

    Alart, Pierre; Renouf, Mathieu

    2018-04-01

    Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

  20. Applying Cases to Solve Ethical Problems: The Significance of Positive and Process-Oriented Reflection

    PubMed Central

    Antes, Alison L.; Thiel, Chase E.; Martin, Laura E.; Stenmark, Cheryl K.; Connelly, Shane; Devenport, Lynn D.; Mumford, Michael D.

    2015-01-01

    This study examined the role of reflection on personal cases for making ethical decisions with regard to new ethical problems. Participants assumed the position of a business manager in a hypothetical organization and solved ethical problems that might be encountered. Prior to making a decision for the business problems, participants reflected on a relevant ethical experience. The findings revealed that application of material garnered from reflection on a personal experience was associated with decisions of higher ethicality. However, whether the case was viewed as positive or negative, and whether the outcomes, process, or outcomes and processes embedded in the experience were examined, influenced the application of case material to the new problem. As expected, examining positive experiences and the processes involved in those positive experiences resulted in greater application of case material to new problems. Future directions and implications for understanding ethical decision-making are discussed. PMID:26257506

  1. Insight and search in Katona's five-square problem.

    PubMed

    Ollinger, Michael; Jones, Gary; Knoblich, Günther

    2014-01-01

    Insights are often productive outcomes of human thinking. We provide a cognitive model that explains insight problem solving by the interplay of problem space search and representational change, whereby the problem space is constrained or relaxed based on the problem representation. By introducing different experimental conditions that either constrained the initial search space or helped solvers to initiate a representational change, we investigated the interplay of problem space search and representational change in Katona's five-square problem. Testing 168 participants, we demonstrated that independent hints relating to the initial search space and to representational change had little effect on solution rates. However, providing both hints caused a significant increase in solution rates. Our results show the interplay between problem space search and representational change in insight problem solving: The initial problem space can be so large that people fail to encounter impasse, but even when representational change is achieved the resulting problem space can still provide a major obstacle to finding the solution.

  2. Mechanical problem-solving strategies in Alzheimer's disease and semantic dementia.

    PubMed

    Lesourd, Mathieu; Baumard, Josselin; Jarry, Christophe; Etcharry-Bouyx, Frédérique; Belliard, Serge; Moreaud, Olivier; Croisile, Bernard; Chauviré, Valérie; Granjon, Marine; Le Gall, Didier; Osiurak, François

    2016-07-01

    The goal of this study was to explore whether the tool-use disorders observed in Alzheimer's disease (AD) and semantic dementia (SD) are of the same nature as those observed in left brain-damaged (LBD) patients. Recent evidence indicates that LBD patients with apraxia of tool use encounter difficulties in solving mechanical problems, characterized by the absence of specific strategies. This pattern may show the presence of impaired mechanical knowledge, critical for both familiar and novel tool use. So, we explored the strategies followed by AD and SD patients in mechanical problem-solving tasks in order to determine whether mechanical knowledge is also impaired in these patients. We used a mechanical problem-solving task in both choice (i.e., several tools were proposed) and no-choice (i.e., only 1 tool was proposed) conditions. We analyzed quantitative data and strategy profiles. AD patients but not SD patients met difficulties in solving mechanical problem-solving tasks. However, the key finding is that AD patients, despite their difficulties, showed strategy profiles that are similar to that of SD patients or controls. Moreover, AD patients exhibited a strategy profile distinct from the one previously observed in LBD patients. Those observations lead us to consider that difficulties met by AD patients to solve mechanical problems or even to use familiar tools may not be caused by mechanical knowledge impairment per se. In broad terms, what we call apraxia of tool use in AD is certainly not the same as apraxia of tool use observed in LBD patients. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. The Common Forces: Conservative or Nonconservative?

    ERIC Educational Resources Information Center

    Keeports, David

    2006-01-01

    Of the forces commonly encountered when solving problems in Newtonian mechanics, introductory texts usually limit illustrations of the definitions of conservative and nonconservative forces to gravity, spring forces, kinetic friction and fluid resistance. However, at the expense of very little class time, the question of whether each of the common…

  4. The Effect of Eliciting Repair of Mathematics Explanations of Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Liu, Jia; Xin, Yan Ping

    2017-01-01

    Mathematical reasoning is important in conceptual understanding and problem solving. In current reform-based, discourse-oriented mathematics classrooms, students with learning disabilities (LD) encounter challenges articulating or explaining their reasoning processes. Enlightened by the concept of conversational repair borrowed from the field of…

  5. Teacher Education With an Inquiry Emphasis.

    ERIC Educational Resources Information Center

    Wright, David P.

    A program for prospective elementary and secondary teachers emphasizing inquiry and problem solving techniques for use in the classroom is described. In the conceptual framework of this program, a situation is defined as a set of circumstances that teachers commonly encounter, and an issue is a theoretical, ethical, or methodological question. A…

  6. Preactivation of Inhibitory Control Mechanisms Hinders Intuitive Reasoning

    ERIC Educational Resources Information Center

    Babai, Reuven; Eidelman, Rachel Rosanne; Stavy, Ruth

    2012-01-01

    Many students encounter difficulties in science and mathematics. Earlier research suggested that although intuitions are often needed to gain new ideas and concepts and to solve problems in science and mathematics, some of students' difficulties could stem from the interference of intuitive reasoning. The literature suggests that overcoming…

  7. Counselor and Student at Talk: A Case Study.

    ERIC Educational Resources Information Center

    He, Agnes Weiyun; Keating, Elizabeth

    1991-01-01

    Explores ways in which expert and novice roles are constituted and maintained in an academic counseling encounter. Characterizes the meeting as a socializing, problem-solving event and uses functional linguistics and discourse analysis to describe how the counselor and student mark stance through linguistic choices such as polarity, modality,…

  8. Teaching Mathematical Problem Solving to Students with Limited English Proficiency.

    ERIC Educational Resources Information Center

    Kaplan, Rochelle G.; Patino, Rodrigo A.

    Many mainstreamed students with limited English proficiency continue to face the difficulty of learning English as a second language (ESL) while studying mathematics and other content areas framed in the language of native speakers. The difficulty these students often encounter in mathematics classes and their poor performance on subsequent…

  9. Optimal Planning and Problem-Solving

    NASA Technical Reports Server (NTRS)

    Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

    2008-01-01

    CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

  10. Multigrid methods for bifurcation problems: The self adjoint case

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1987-01-01

    This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.

  11. A numerical projection technique for large-scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang

    2011-10-01

    We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.

  12. Engineering data management: Experience and projections

    NASA Technical Reports Server (NTRS)

    Jefferson, D. K.; Thomson, B.

    1978-01-01

    Experiences in developing a large engineering data management system are described. Problems which were encountered are presented and projected to future systems. Business applications involving similar types of data bases are described. A data base management system architecture proposed by the business community is described and its applicability to engineering data management is discussed. It is concluded that the most difficult problems faced in engineering and business data management can best be solved by cooperative efforts.

  13. Directions for Refining a School Nursing Intervention for Mexican Immigrant Families

    ERIC Educational Resources Information Center

    McNaughton, Diane B.; Hindin, Patricia; Guerrero, Yvonne

    2010-01-01

    Mexican immigrant mothers and their children encounter many stressors as they adapt to life in the United States. This article reports a secondary data analysis from a school-based home visiting program focused on assisting Mexican immigrant mothers and their children develop problem-solving strategies in dealing with stressors. Data were…

  14. Understanding Students' Needs: A Guide for Developing and Implementing Assessment Procedures for Students Encountering Educational Challenges.

    ERIC Educational Resources Information Center

    Samuels, Marilyn T.

    This manual, intended to help administrators, specialists, and teachers in Alberta, Canada, understand a problem-solving, process-based approach to assessment of special needs students using multiple sources of information. Assessment outcomes are viewed as describing needs and influencing education programs, rather than being used to provide…

  15. Magnetic anomalies in east Pacific using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A. (Principal Investigator)

    1983-01-01

    Methods for solving problems encountered in separating the core field from the crustal field are summarized as well as those methods developed for inverting total magnetic field data to obtain source functions for oceanic areas. Accounting for magnetization contrasts and the magnetization values measured in rocks of marine origin are also discussed.

  16. Student Understanding of Function Composition and the Effect of Dynamic Visualization

    ERIC Educational Resources Information Center

    Ratliff, Bobby Kevin

    2009-01-01

    The purpose of this study was to determine (1) strategies students use when solving composition problems and the difficulties they encounter; (2) conceptions and/or misconceptions students have with respect to composition of functions; and (3) the effect of using dynamic visualization during instruction on students' understanding of composition of…

  17. The Most Frequent Metacognitive Strategies Used in Reading Comprehension among ESP Learners

    ERIC Educational Resources Information Center

    Khoshsima, Hooshang; Samani, Elham Amiri

    2015-01-01

    Reading strategies are plans for solving problems encountered during reading while learners are deeply engage with the text. So, comprehension is not a simple decoding of symbols, but a complex multidimensional process in which the leaner draws on previous schemata applying strategies consciously. In fact, metacognitive strategies are accessible…

  18. Effects of Minute Contextual Experience on Realistic Assessment of Proportional Reasoning

    ERIC Educational Resources Information Center

    Matney, Gabriel; Jackson, Jack L., II; Bostic, Jonathan

    2013-01-01

    This mixed methods study describes the effects of a "minute contextual experience" on students' ability to solve a realistic assessment problem involving scale drawings and proportional reasoning. Minute contextual experience (MCE) is defined to be a brief encounter with a context in which aspects of the context are explored openly. The…

  19. Processes Underlying Young Children's Spatial Orientation during Movement.

    ERIC Educational Resources Information Center

    Bremner, J. Gavin; And Others

    1994-01-01

    Tested children 18 months to 4 years for their ability to relocate a hidden object after self-produced movement around an array of 4 locations. Children encountered no specific difficulty in coordinating dimensions, or they solved the task without recourse to such a system. They also appeared to change strategy when the problem requires more…

  20. The dynamics of search, impasse, and representational change provide a coherent explanation of difficulty in the nine-dot problem.

    PubMed

    Öllinger, Michael; Jones, Gary; Knoblich, Günther

    2014-03-01

    The nine-dot problem is often used to demonstrate and explain mental impasse, creativity, and out of the box thinking. The present study investigated the interplay of a restricted initial search space, the likelihood of invoking a representational change, and the subsequent constraining of an unrestricted search space. In three experimental conditions, participants worked on different versions of the nine-dot problem that hinted at removing particular sources of difficulty from the standard problem. The hints were incremental such that the first suggested a possible route for a solution attempt; the second additionally indicated the dot at which lines meet on the solution path; and the final condition also provided non-dot locations that appear in the solution path. The results showed that in the experimental conditions, representational change is encountered more quickly and problems are solved more often than for the control group. We propose a cognitive model that focuses on general problem-solving heuristics and representational change to explain problem difficulty.

  1. Shuttle payload S-band communications system

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Teasdale, W. E.; Pawlowski, J. F.; Schmidt, O. L.

    1985-01-01

    The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed.

  2. Pharmacists' role in handling problems with prescriptions for antithrombotic medication in Belgian community pharmacies.

    PubMed

    Desmaele, S; De Wulf, I; Dupont, A G; Steurbaut, S

    2015-08-01

    Community pharmacists have an important task in the follow-up of patients treated with antithrombotics. When delivering these medicines, pharmacists can encounter drug-related problems (DRPs) with substantial clinical and economic impact. To investigate the amount and type of antithrombotic related DRPs as well as how community pharmacists handled these DRPs. Belgian community pharmacies. MSc pharmacy students of six Belgian universities collected data about all DRPs encountered by a pharmacist during ten half days of their pharmacy internship. Data were registered about DRPs detected at delivery and in an a posteriori setting, when consulting the medical history of the patient. Classification of the DRP, cause of the DRP, intervention and result of the intervention were registered. Amount and type of antotrombitocs related DRPs occurring in community pharmacies, as well as how community pharmacists handled these DRPs. 3.1 % of the 15,952 registered DRPs concerned antithrombotics. 79.3 % of these DRPs were detected at delivery and 20.7 % were detected a posteriori. Most antithrombotic-related DRPs concerned problems with the choice of the drug (mainly because of drug-drug interactions) or concerned logistic problems. Almost 80 % of the antithrombotic-related DRPs were followed by an intervention of the pharmacist, mainly at the patient's level, resulting in 90.1 % of these DRPs partially or totally solved. Different DRPs with antithrombotic medication occurred in Belgian community pharmacies. About 20 % was detected in an a posteriori setting, showing the benefit of medication review. Many of the encountered DRPs were of technical nature (60.7 %). These DRPs were time-consuming for the pharmacist to resolve and should be prevented. Most of the DRPs could be solved, demonstrating the added value of the community pharmacist as first line healthcare provider.

  3. Beyond Ockham's Razor: Redefining Problem-Solving in Clinical Sleep Medicine using a “Five-Finger” Approach

    PubMed Central

    McCarty, David E.

    2010-01-01

    The rule of diagnostic parsimony—otherwise known as “Ockham's Razor”—teaches students of medicine to find a single unifying diagnosis to explain a given patient's symptoms. While this approach has merits in some settings, a more comprehensive approach is often needed for patients with chronic, nonspecific presentations for which there is a broad differential diagnosis. The cardinal manifestations of sleep disorders—daytime neurocognitive impairment and subjective sleep disturbances—are examples of such presentations. Successful sleep medicine clinicians therefore approach every patient with the knowledge that multiple diagnoses—rather than simply one—are likely to be found. Teaching an integrated and comprehensive approach to other clinicians in an organized and reproducible fashion is challenging, and the evaluation of effectiveness of such teaching is even more so. As a practical aid for teaching the approach to—and evaluation of—a comprehensive sleep medicine encounter, five functional domains of sleep medicine clinical problem-solving are presented as potential sources for sleep/wake disruption: (1) circadian misalignment, (2) pharmacologic factors, (3) medical factors, (4) psychiatric/psychosocial factors, and (5) primary sleep medicine diagnoses. These domains are presented and explained in an easy-to-remember “five finger” format. The five finger format can be used in real time to evaluate the completeness of a clinical encounter, or can be used in the design of standardized patients to identify areas of strength and potential weakness. A score sheet based upon this approach is offered as an alternative to commonly used Likert scales as a potentially more objective and practical measure of clinical problem-solving competence, making it useful for training programs striving to achieve or maintain fellowship accreditation. Citation: McCarty DE. Beyond Ockham's Razor: redefining problem-solving in clinical sleep medicine using a “five-finger” approach. J Clin Sleep Med 2010;6(3):292-269. PMID:20572425

  4. Constructing complex graphics applications with CLIPS and the X window system

    NASA Technical Reports Server (NTRS)

    Faul, Ben M.

    1990-01-01

    This article will demonstrate how the artificial intelligence concepts in CLIPS used to solve problems encountered in the design and implementation of graphics applications within the UNIX-X Window System environment. The design of an extended version of CLIPS, called XCLIPS, is presented to show how the X Windows System graphics can be incorporated without losing DOS compatibility. Using XCLIPS, a sample scientific application is built that applies solving capabilities of both two and three dimensional graphics presentations in conjunction with the standard CLIPS features.

  5. Medical serials control systems by computer--a state of the art review.

    PubMed

    Brodman, E; Johnson, M F

    1976-01-01

    A review of the problems encountered in serials control systems is followed by a description of some of the present-day attempts to solve these problems. Specific networks are described, notably PHILSOM (developed at Washington University School of Medicine Library), the UCLA Biomedical Library's system, and OCLC in Columbus, Ohio. Finally, the role of minicomputers in present and future developments is discussed, and some cautious guesses are made on future directions in the field.

  6. AGARD Flight Test Techniques Series. Volume 3. Identification of Dynamic Systems - Applications to Aircraft. Part 1. The Output Error Approach

    DTIC Science & Technology

    1986-12-01

    poorly written problem statements. We decline to artificially create difficulties for experimentation. Others have encountered these issues and treated...you lose some of the weaning. The method also does not extend well to nonlinear or time-varying system (sometimes it can be don#. but it creates ...thereby introduced creates problems and solves nothing. For variable-geometry aircraft, some projects establish reference geometry values that change as

  7. On Mixed Methods: Approaches to Language and Literacy Research (An NCRLL Volume). Language & Literacy Series (NCRLL Collection)

    ERIC Educational Resources Information Center

    Calfee, Robert; Sperling, Melanie

    2010-01-01

    This book examines the use of mixed methods for conducting language and literacy research, defining how and why this approach is successful for solving problems and clarifying issues that researchers encounter. Using research findings, the authors explore how an intermingling of multiple methods expands the possibilities of observation and…

  8. Improving Pedagogy through Action Learning and Scholarship of Teaching and Learning

    ERIC Educational Resources Information Center

    Albers, Cheryl

    2008-01-01

    This ASA Teaching Workshop explored the potential of Action Learning to use teachers' tacit knowledge to collaboratively confront pedagogical issues. The Action Learning model grows out of industrial management and is based on the notion that peers are a valuable resource for learning about how to solve the problems encountered in the workplace.…

  9. Teachers' Perceptions of the Benefits and the Challenges of Integrating Educational Robots into Primary/Elementary Curricula

    ERIC Educational Resources Information Center

    Khanlari, Ahmad

    2016-01-01

    Twenty-first century education systems should create an environment wherein students encounter critical learning components (such as problem-solving, teamwork, and communication skills) and embrace lifelong learning. A review of literature demonstrates that new technologies, in general, and robotics, in particular, are well suited for this aim.…

  10. Spontaneous Dancemaking with Beginning Improvisers: Foundational Practices in Presence, Stillness, and Problem Solving

    ERIC Educational Resources Information Center

    Martin, Nina

    2017-01-01

    Many dance artists in their first encounters with improvisational dance making begin not only to learn how to compose spontaneously, but also to gain skills for coping with the uncertainties inherent in the form. This article suggests helpful dance scores for beginning students of physical improvisation and those who teach improvisational…

  11. "A Cellular Encounter": Constructing the Cell as a Whole System Using Illustrative Models

    ERIC Educational Resources Information Center

    Cohen, Joel I.

    2014-01-01

    A standard part of biology curricula is a project-based assessment of cell structure and function. However, these are often individual assignments that promote little problem-solving or group learning and avoid the subject of organelle chemical interactions. I evaluate a model-based cell project designed to foster group and individual guided…

  12. The Role of Parents in Young Adolescents' Competence with Peers: An Observational Study of Advice Giving and Intrusiveness

    ERIC Educational Resources Information Center

    Poulin, Francois; Nadeau, Karine; Scaramella, Laura V.

    2012-01-01

    Young adolescents who encounter difficulties with peers can consult with their parents to help solve these problems. In this context, this study examines the contribution of adolescents' disclosure, parental advice giving, and parental intrusiveness into adolescents' social and behavioral adjustment. Young adolescents (N = 93; 49% girls; mean age…

  13. Exploring Challenges Encountered by EFL Libyan Learners in Research Teaching and Writing

    ERIC Educational Resources Information Center

    Alsied, Safia Mujtaba; Ibrahim, Noura Winis

    2017-01-01

    Research is conducted all over the world to solve problems or to answer questions of significance to humanity. Academic writing or writing to report research is not easy because it requires adequate background knowledge, interest, motivation and hard work. This study investigates the major challenges in research writing faced by Libyan EFL…

  14. Elderly Service Workers' Training Project. Block B: Cultural Gerontology. Module B.4: Native Culture.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This learning module, which is part of a three-block series intended to help human service workers develop the skills necessary to solve the problems encountered in their daily contact with elderly clients of different cultural backgrounds, deals with the cultural heritage of Native Canadians. The module begins with a brief introduction and…

  15. A Qualitative Study Using Project-Based Learning in a Mainstream Middle School

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Haar, Jean; Hugg, Robert; Bezon, Jennifer

    2007-01-01

    Project-based learning taps into students' interests by allowing them to create projects that result in meaningful learning experiences. The method requires teachers to identify projects that challenge students to work individually or in groups to create plans, solve problems they encounter, test their ideas, and present their projects to peers.…

  16. Exploring the Impact of Cumulative Testing on Academic Performance of Undergraduate Students in Spain

    ERIC Educational Resources Information Center

    Domenech, Josep; Blazquez, Desamparados; de la Poza, Elena; Mun?oz-Miquel, Ana

    2015-01-01

    Frequent testing provides opportunities for students to receive regular feedback and to increase their motivation. It also provides the instructor with valuable information on how course progresses, thus making it possible to solve the problems encountered before it is too late. Frequent tests with noncumulative contents have been widely analysed…

  17. Dynamic simulation solves process control problem in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-16

    A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less

  18. Technology Implementation and Workarounds in the Nursing Home

    PubMed Central

    Vogelsmeier, Amy A.; Halbesleben, Jonathon R.B.; Scott-Cawiezell, Jill R.

    2008-01-01

    Objective This study sought to explore the relationship of workarounds related to the implementation of an electronic medication administration record and medication safety practices in five Midwestern nursing homes. Design As a part of a larger study, this qualitative evaluation was conducted to identify workarounds associated with the implementation of an electronic medication administration record. Data were collected using multimethods including direct observation, process mapping, key informant interviews, and review of field notes from medication safety team meetings. Measurements Open and axial coding techniques were used to identify and categorize types of workarounds in relation to work flow blocks. Results Workarounds presented in two distinct patterns, those related to work flow blocks introduced by technology and those related to organizational processes not reengineered to effectively integrate with the technology. Workarounds such as safety alert overrides and shortcuts to documentation resulted from first-order problem solving of immediate blocks. Nursing home staff as individuals frequently used first-order problem solving instead of the more sophisticated second-order problem solving approach used by the medication safety team. Conclusion This study provides important practical examples of how nursing home staff work around work flow blocks encountered during the implementation of technology. Understanding these workarounds as a means of first-order problem solving is an important consideration to understanding risk to medication safety. PMID:17947626

  19. Medical serials control systems by computer--a state of the art review.

    PubMed Central

    Brodman, E; Johnson, M F

    1976-01-01

    A review of the problems encountered in serials control systems is followed by a description of some of the present-day attempts to solve these problems. Specific networks are described, notably PHILSOM (developed at Washington University School of Medicine Library), the UCLA Biomedical Library's system, and OCLC in Columbus, Ohio. Finally, the role of minicomputers in present and future developments is discussed, and some cautious guesses are made on future directions in the field. PMID:1247704

  20. Households encountering with catastrophic health expenditures in Ferdows, Iran.

    PubMed

    Ghoddoosinejad, Javad; Jannati, Ali; Gholipour, Kamal; Baghban Baghestan, Elham

    2014-08-01

    Out-of-pocket payments are the main sources of healthcare financing in most developing countries. Healthcare services can impose a massive cost burden on households, especially in developing countries. The purpose of this study was to calculate households encountered with catastrophic healthcare expenditures in Ferdows, Iran. The sample included 100 households representing 20% of all households in Ferdows, Iran. The data were collected using self-administered questionnaire. The ability to pay of households was calculated, and then if costs of household health were at least 40% of their ability to pay, it was considered as catastrophic expenditures. Rate of households encountered to catastrophic health expenditures was estimated to be 24%, of which dentistry services had the highest part in catastrophic health expenditures. Low ability to pay of households should be supported against these expenditures. More equitable health system would solve the problem, although more financial aid should be provided for households encountered to catastrophic costs.

  1. Using Role-Playing Games to Teach Astronomy: An Evaluation

    ERIC Educational Resources Information Center

    Francis, Paul

    2005-01-01

    Since 1998, I've been experimenting with the use of role-playing games to teach astronomy. Students play the role of competing teams of researchers, racing to solve some astrophysical mystery. In this article, I review what has been learned from using these games around the world over the last eight years. The most common problem encountered is a…

  2. Elderly Service Workers' Training Project. Block B: Cultural Gerontology. Module B.3.1: Communication and Adjustment.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This learning module, which is part of a three-block series intended to help human service workers develop the skills necessary to solve the problems encountered in their daily contact with elderly clients of different cultural backgrounds, deals with communication and adjustment from the standpoint of the way in which French-speaking Canadians…

  3. Quincy Market. [A Product of] the Regional Math Network: A Teacher Invigoration and Curriculum Development Project.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Graduate School of Education.

    In this middle school mathematics unit two imaginary characters, Horatio and Portia, decide to make their fortune in Quincy Market (Boston, Massachusetts) running a Bull Market cart. In order to solve the problems that they encounter, they need to learn ratio and proportion, map reading, estimation, area and perimeter, population sampling, problem…

  4. Engineering Encounters: No, David! but Yes, Design! Kindergarten Students Are Introduced to a Design Way of Thinking

    ERIC Educational Resources Information Center

    Douglass, Helen

    2016-01-01

    This column presents ideas and techniques to enhance science teaching. In today's classrooms, teachers face numerous challenges. They are preparing students for jobs and careers that are not even conceived of yet. Assessments are being used to address students' college and career readiness and to promote critical thinking and problem solving.…

  5. The instrumental genesis process in future primary teachers using Dynamic Geometry Software

    NASA Astrophysics Data System (ADS)

    Ruiz-López, Natalia

    2018-05-01

    This paper, which describes a study undertaken with pairs of future primary teachers using GeoGebra software to solve geometry problems, includes a brief literature review, the theoretical framework and methodology used. An analysis of the instrumental genesis process for a pair participating in the case study is also provided. This analysis addresses the techniques and types of dragging used, the obstacles to learning encountered, a description of the interaction between the pair and their interaction with the teacher, and the type of language used. Based on this analysis, possibilities and limitations of the instrumental genesis process are identified for the development of geometric competencies such as conjecture creation, property checking and problem researching. It is also suggested that the methodology used in the analysis of the problem solving process may be useful for those teachers and researchers who want to integrate Dynamic Geometry Software (DGS) in their classrooms.

  6. [Forensic evidence-based medicine in computer communication networks].

    PubMed

    Qiu, Yun-Liang; Peng, Ming-Qi

    2013-12-01

    As an important component of judicial expertise, forensic science is broad and highly specialized. With development of network technology, increasement of information resources, and improvement of people's legal consciousness, forensic scientists encounter many new problems, and have been required to meet higher evidentiary standards in litigation. In view of this, evidence-based concept should be established in forensic medicine. We should find the most suitable method in forensic science field and other related area to solve specific problems in the evidence-based mode. Evidence-based practice can solve the problems in legal medical field, and it will play a great role in promoting the progress and development of forensic science. This article reviews the basic theory of evidence-based medicine and its effect, way, method, and evaluation in the forensic medicine in order to discuss the application value of forensic evidence-based medicine in computer communication networks.

  7. Chemorheology of reactive systems: Finite element analysis

    NASA Technical Reports Server (NTRS)

    Douglas, C.; Roylance, D.

    1982-01-01

    The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.

  8. Science of the science, drug discovery and artificial neural networks.

    PubMed

    Patel, Jigneshkumar

    2013-03-01

    Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.

  9. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.

  10. Scene analysis in the natural environment

    PubMed Central

    Lewicki, Michael S.; Olshausen, Bruno A.; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    The problem of scene analysis has been studied in a number of different fields over the past decades. These studies have led to important insights into problems of scene analysis, but not all of these insights are widely appreciated, and there remain critical shortcomings in current approaches that hinder further progress. Here we take the view that scene analysis is a universal problem solved by all animals, and that we can gain new insight by studying the problems that animals face in complex natural environments. In particular, the jumping spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust solutions to scene analysis problems encountered in the natural environment. By examining the behaviors of these seemingly disparate animals, we emerge with a framework for studying scene analysis comprising four essential properties: (1) the ability to solve ill-posed problems, (2) the ability to integrate and store information across time and modality, (3) efficient recovery and representation of 3D scene structure, and (4) the use of optimal motor actions for acquiring information to progress toward behavioral goals. PMID:24744740

  11. Steady state solutions to dynamically loaded periodic structures

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.

    1980-01-01

    The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.

  12. Mechanical problem-solving strategies in left-brain damaged patients and apraxia of tool use.

    PubMed

    Osiurak, François; Jarry, Christophe; Lesourd, Mathieu; Baumard, Josselin; Le Gall, Didier

    2013-08-01

    Left brain damage (LBD) can impair the ability to use familiar tools (apraxia of tool use) as well as novel tools to solve mechanical problems. Thus far, the emphasis has been placed on quantitative analyses of patients' performance. Nevertheless, the question still to be answered is, what are the strategies employed by those patients when confronted with tool use situations? To answer it, we asked 16 LBD patients and 43 healthy controls to solve mechanical problems by means of several potential tools. To specify the strategies, we recorded the time spent in performing four kinds of action (no manipulation, tool manipulation, box manipulation, and tool-box manipulation) as well as the number of relevant and irrelevant tools grasped. We compared LBD patients' performance with that of controls who encountered difficulties with the task (controls-) or not (controls+). Our results indicated that LBD patients grasped a higher number of irrelevant tools than controls+ and controls-. Concerning time allocation, controls+ and controls- spent significantly more time in performing tool-box manipulation than LBD patients. These results are inconsistent with the possibility that LBD patients could engage in trial-and-error strategies and, rather, suggest that they tend to be perplexed. These findings seem to indicate that the inability to reason about the objects' physical properties might prevent LBD patients from following any problem-solving strategy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Beyond Ockham's razor: redefining problem-solving in clinical sleep medicine using a "five-finger" approach.

    PubMed

    McCarty, David E

    2010-06-15

    The rule of diagnostic parsimony--otherwise known as "Ockham's Razor"--teaches students of medicine to find a single unifying diagnosis to explain a given patient's symptoms. While this approach has merits in some settings, a more comprehensive approach is often needed for patients with chronic, nonspecific presentations for which there is a broad differential diagnosis. The cardinal manifestations of sleep disorders--daytime neurocognitive impairment and subjective sleep disturbances-are examples of such presentations. Successful sleep medicine clinicians therefore approach every patient with the knowledge that multiple diagnoses-rather than simply one-are likely to be found. Teaching an integrated and comprehensive approach to other clinicians in an organized and reproducible fashion is challenging, and the evaluation of effectiveness of such teaching is even more so. As a practical aid for teaching the approach to--and evaluation of--a comprehensive sleep medicine encounter, five functional domains of sleep medicine clinical problem-solving are presented as potential sources for sleep/wake disruption: (1) circadian misalignment, (2) pharmacologic factors, (3) medical factors, (4) psychiatric/psychosocial factors, and (5) primary sleep medicine diagnoses. These domains are presented and explained in an easy-to-remember "five finger" format. The five finger format can be used in real time to evaluate the completeness of a clinical encounter, or can be used in the design of standardized patients to identify areas of strength and potential weakness. A score sheet based upon this approach is offered as an alternative to commonly used Likert scales as a potentially more objective and practical measure of clinical problem-solving competence, making it useful for training programs striving to achieve or maintain fellowship accreditation.

  14. Why Thought Experiments Should Be Used as an Educational Tool to Develop Problem-Solving Skills and Creativity of the Gifted Students?

    ERIC Educational Resources Information Center

    Tortop, Hasan Said

    2016-01-01

    Many educational tools that are recommended for the training of normal students are often encountered in programs that do not work very well and are subsequently abandoned. One of the important points that program developers should now consider is that teaching tools are presented in accordance with individual differences. It is seen that the…

  15. How To Use the Spreadsheet as a Tool in the Secondary School Mathematics Classroom. Second Edition (for Windows and Macintosh Operating Systems).

    ERIC Educational Resources Information Center

    Masalski, William J.

    This book seeks to develop, enhance, and expand students' understanding of mathematics by using technology. Topics covered include the advantages of spreadsheets along with the opportunity to explore the 'what if?' type of questions encountered in the problem-solving process, enhancing the user's insight into the development and use of algorithms,…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less

  17. Application of spring tabs to elevator controls

    NASA Technical Reports Server (NTRS)

    Phillips, William H

    1944-01-01

    Equations are presented for calculating the stick-force characteristics obtained with a spring-tab type of elevator control. The main problems encountered in the design of a satisfactory elevator spring tab are to provide stick forces in the desired range, to maintain the force per g sufficiently constant throughout the speed range, to avoid undesirable "feel" of the control in ground handling or in flight at low airspeeds, and to prevent flutter. Examples are presented to show the design features of spring tabs required to solve these problems for airplanes of various sizes.

  18. Skylab thruster attitude control system

    NASA Technical Reports Server (NTRS)

    Wilmer, G. E., Jr.

    1974-01-01

    Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.

  19. Classical and neural methods of image sequence interpolation

    NASA Astrophysics Data System (ADS)

    Skoneczny, Slawomir; Szostakowski, Jaroslaw

    2001-08-01

    An image interpolation problem is often encountered in many areas. Some examples are interpolation for coding/decoding process for transmission purposes, reconstruction a full frame from two interlaced sub-frames in normal TV or HDTV, or reconstruction of missing frames in old destroyed cinematic sequences. In this paper an overview of interframe interpolation methods is presented. Both direct as well as motion compensated interpolation techniques are given by examples. The used methodology can also be either classical or based on neural networks depending on demand of a specific interpolation problem solving person.

  20. Content-addressable read/write memories for image analysis

    NASA Technical Reports Server (NTRS)

    Snyder, W. E.; Savage, C. D.

    1982-01-01

    The commonly encountered image analysis problems of region labeling and clustering are found to be cases of search-and-rename problem which can be solved in parallel by a system architecture that is inherently suitable for VLSI implementation. This architecture is a novel form of content-addressable memory (CAM) which provides parallel search and update functions, allowing speed reductions down to constant time per operation. It has been proposed in related investigations by Hall (1981) that, with VLSI, CAM-based structures with enhanced instruction sets for general purpose processing will be feasible.

  1. Procedures for estimating the frequency of commercial airline flights encountering high cabin ozone levels

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1979-01-01

    Three analytical problems in estimating the frequency at which commercial airline flights will encounter high cabin ozone levels are formulated and solved: namely, estimating flight-segment mean levels, estimating maximum-per-flight levels, and estimating the maximum average level over a specified flight interval. For each problem, solution procedures are given for different levels of input information - from complete cabin ozone data, which provides a direct solution, to limited ozone information, such as ambient ozone means and standard deviations, with which several assumptions are necessary to obtain the required estimates. Each procedure is illustrated by an example case calculation that uses simultaneous cabin and ambient ozone data obtained by the NASA Global Atmospheric Sampling Program. Critical assumptions are discussed and evaluated, and the several solutions for each problem are compared. Example calculations are also performed to illustrate how variations in lattitude, altitude, season, retention ratio, flight duration, and cabin ozone limits affect the estimated probabilities.

  2. Conducting longitudinal, process-oriented research with conflict-affected youth: Solving the inevitable challenges.

    PubMed

    Dubow, Eric F; Aber, J Lawrence; Betancourt, Theresa S; Cummings, E Mark; Huesmann, L Rowell

    2017-02-01

    The reader might get the impression that the four projects described in this Special Section proceeded in a systematic and predictable way. Of course, those of us engaged in each research project encountered pitfalls and challenges along the way. A main goal of this Special Section is to provide pathways and encouragement for those who may be interested in advancing high-quality research on this topic. In this paper, we describe a set of practical and ethical challenges that we encountered in conducting our longitudinal, process-oriented, and translational research with conflict-affected youth, and we illustrate how problems can be solved with the goal of maintaining the internal and external validity of the research designs. We are hopeful that by describing the challenges of our work, and how we overcame them, which are seldom treated in this or any other literature on research on child development in high-risk contexts, we can offer a realistic and encouraging picture of conducting methodologically sound research in conflict-affected contexts.

  3. Trusted computing strengthens cloud authentication.

    PubMed

    Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  4. Trusted Computing Strengthens Cloud Authentication

    PubMed Central

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model. PMID:24701149

  5. Moneymed: a game to develop management skills in general practice

    PubMed Central

    Essex, B.; Jackson, R. N.

    1981-01-01

    A game has been developed to train people in the financial and administrative skills needed for effective general practice management. These skills cover a wide range of legal, economic, administrative and personnel problems encountered in general practice. Thirty-four trainees and six trainers showed a highly significant improvement in knowledge and problem-solving skills after playing the game. The format and design of the game allow the problem type, complexity and solution to vary and to be readily updated. So far, this seems to be one of the most effective instruments yet developed for learning these skills. Imagesp736-a PMID:7338867

  6. Ptychadena in Mauritania and the first record of Ptychadena schillukorum.

    PubMed

    Sánchez-Vialas, Alberto; Calvo-Revuelta, Marta; Márquez, Rafael

    2017-01-01

    The study of specimens of the genus Ptychadena of the herpetological collection of the Museo Nacional de Ciencias Naturales de Madrid reveals the first record of Ptychadena schillukorum from Mauritania, extending the known distribution range of the species in West Africa more than 450 km northwards. A key is provided for the four Mauritanian species of Ptychadena to solve problems in identification encountered in previous studies.

  7. Ptychadena in Mauritania and the first record of Ptychadena schillukorum

    PubMed Central

    Sánchez-Vialas, Alberto; Calvo-Revuelta, Marta; Márquez, Rafael

    2017-01-01

    Abstract The study of specimens of the genus Ptychadena of the herpetological collection of the Museo Nacional de Ciencias Naturales de Madrid reveals the first record of Ptychadena schillukorum from Mauritania, extending the known distribution range of the species in West Africa more than 450 km northwards. A key is provided for the four Mauritanian species of Ptychadena to solve problems in identification encountered in previous studies. PMID:28769674

  8. A Collaborative Problem-solving Process Through Environmental Field Studies

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Teck Tan, Hoe

    2013-02-01

    This study explored and documented students' responses to opportunities for collective knowledge building and collaboration in a problem-solving process within complex environmental challenges and pressing issues with various dimensions of knowledge and skills. Middle-school students (n = 16; age 14) and high-school students (n = 16; age 17) from two Singapore public institutions participated in an environmental science field study to experience knowledge integration and a decision-making process. Students worked on six research topics to understand the characteristics of an organic farm and plan for building an ecological village. Students collected and analysed data from the field and shared their findings. Their field work and discussions were video-recorded, and their reflective notes and final reports were collected for data coding and interpretation. The results revealed that throughout the study, students experienced the needs and development of integrated knowledge, encountered the challenges of knowledge sharing and communication during their collaboration, and learned how to cope with the difficulties. Based on research findings, this study further discusses students' learning through a collaborative problem-solving process, including the interdependence of knowledge and the development of mutual relationships such as respect and care for others' knowledge and learning.

  9. Continuous Measurements and Quantitative Constraints: Challenge Problems for Discrete Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Goodrich, Charles H.; Kurien, James; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We present some diagnosis and control problems that are difficult to solve with discrete or purely qualitative techniques. We analyze the nature of the problems, classify them and explain why they are frequently encountered in systems with closed loop control. This paper illustrates the problem with several examples drawn from industrial and aerospace applications and presents detailed information on one important application: In-Situ Resource Utilization (ISRU) on Mars. The model for an ISRU plant is analyzed showing where qualitative techniques are inadequate to identify certain failure modes and to maintain control of the system in degraded environments. We show why the solution to the problem will result in significantly more robust and reliable control systems. Finally, we illustrate requirements for a solution to the problem by means of examples.

  10. Fix and forget or fix and report: a qualitative study of tensions at the front line of incident reporting.

    PubMed

    Hewitt, Tanya Anne; Chreim, Samia

    2015-05-01

    Practitioners frequently encounter safety problems that they themselves can resolve on the spot. We ask: when faced with such a problem, do practitioners fix it in the moment and forget about it, or do they fix it in the moment and report it? We consider factors underlying these two approaches. We used a qualitative case study design employing in-depth interviews with 40 healthcare practitioners in a tertiary care hospital in Ontario, Canada. We conducted a thematic analysis, and compared the findings with the literature. 'Fixing and forgetting' was the main choice that most practitioners made in situations where they faced problems that they themselves could resolve. These situations included (A) handling near misses, which were seen as unworthy of reporting since they did not result in actual harm to the patient, (B) prioritising solving individual patients' safety problems, which were viewed as unique or one-time events and (C) encountering re-occurring safety problems, which were framed as inevitable, routine events. In only a few instances was 'fixing and reporting' mentioned as a way that the providers dealt with problems that they could resolve. We found that generally healthcare providers do not prioritise reporting if a safety problem is fixed. We argue that fixing and forgetting patient safety problems encountered may not serve patient safety as well as fixing and reporting. The latter approach aligns with recent calls for patient safety to be more preventive. We consider implications for practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Isospin symmetry breaking and large-scale shell-model calculations with the Sakurai-Sugiura method

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Kaneko, Kazunari; Sun, Yang; Tazaki, Shigeru

    2015-05-01

    Recently isospin symmetry breaking for mass 60-70 region has been investigated based on large-scale shell-model calculations in terms of mirror energy differences (MED), Coulomb energy differences (CED) and triplet energy differences (TED). Behind these investigations, we have encountered a subtle problem in numerical calculations for odd-odd N = Z nuclei with large-scale shell-model calculations. Here we focus on how to solve this subtle problem by the Sakurai-Sugiura (SS) method, which has been recently proposed as a new diagonalization method and has been successfully applied to nuclear shell-model calculations.

  12. Medical coverage of winter Nordic sports: an overview from the field.

    PubMed

    Gaul, Lawrence W

    2010-01-01

    Traveling with sports teams requires flexibility and a wide range of knowledge, as well as problem-solving abilities. Dominating the medical types of problems in the Nordic sports are the respiratory illnesses, especially asthma and upper respiratory infections (URI). Additionally, the team physician must have an awareness of antidoping issues. This overview highlights many of the issues encountered traveling domestically as well as internationally with high-level Nordic teams. Helpful links are included to facilitate the care of all levels of athletes. Additionally, a few side issues such as altitude illness and minor trauma are mentioned.

  13. USA: Economics, Politics, Ideology, No. 10, October 1977

    DTIC Science & Technology

    1977-11-22

    Stereotype Space exploration cannot begin until many complex scientific and technical problems have been solved. The very fact that a program of space...a time of cold war. It was precisely under these conditions that the rigid stereotype of American reaction to the crises it had encountered in the...the possibility of the improvement of their relations and were in a rush to advertise the end of the cold war, and they believed, with unwarranted

  14. Physics faculty beliefs and values about the teaching and learning of problem solving. II. Procedures for measurement and analysis

    NASA Astrophysics Data System (ADS)

    Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia

    2007-12-01

    To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.

  15. Integer-ambiguity resolution in astronomy and geodesy

    NASA Astrophysics Data System (ADS)

    Lannes, A.; Prieur, J.-L.

    2014-02-01

    Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP~problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.

  16. Coping with treatment-related stress: effects on patient adherence in hemodialysis.

    PubMed

    Christensen, A J; Benotsch, E G; Wiebe, J S; Lawton, W J

    1995-06-01

    With a modified version of the Ways of Coping Checklist, the relation of coping to adherence among 57 hemodialysis patients was examined. The association of a particular type of coping to adherence was predicted to depend on the specific type of stressful encounter being considered. As predicted, coping efforts involving planful problem solving were associated with more favorable adherence when used in response to stressors involving a relatively controllable aspect of the hemodialysis context. For less controllable stressors, coping efforts involving emotional self-control were associated with more favorable adherence. The seeking of informational support in response to an uncontrollable encounter was associated with poorer fluid-intake adherence. Confrontive coping was associated with poorer adherence for both high- and low-control situations.

  17. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    NASA Technical Reports Server (NTRS)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  18. Translation of one high-level language to another: COBOL to ADA, an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J.A.

    1986-01-01

    This dissertation discusses the difficulties encountered in, and explores possible solutions to, the task of automatically converting programs written in one HLL, COBOL, into programs written in another HLL, Ada, and still maintain readability. This paper presents at least one set of techniques and algorithms to solve many of the problems that were encountered. The differing view of records is solved by isolating those instances where it is a problem, then using the RENAMES option of Ada. Several solutions to doing the decimal-arithmetic translation are discussed. One method used is to emulate COBOL arithmetic in an arithmetic package. Another partialmore » solution suggested is to convert the values to decimal-scaled integers and use modular arithmetic. Conversion to fixed-point type and floating-point type are the third and fourth methods. The work of another researcher, Bobby Othmer, is utilized to correct any unstructured code, to remap statements not directly translatable such as ALTER, and to pull together isolated code sections. Algorithms are then presented to convert this restructured COBOL code into Ada code with local variables, parameters, and packages. The input/output requirements are partially met by mapping them to a series of procedure calls that interface with Ada's standard input-output package. Several examples are given of hand translations of COBOL programs. In addition, a possibly new method is shown for measuring the readability of programs.« less

  19. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    NASA Astrophysics Data System (ADS)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and recommendations for future research are included.

  20. Using Three-Dimensional Printing to Fabricate a Tubing Connector for Dilation and Evacuation.

    PubMed

    Stitely, Michael L; Paterson, Helen

    2016-02-01

    This is a proof-of-concept study to show that simple instrumentation problems encountered in surgery can be solved by fabricating devices using a three-dimensional printer. The device used in the study is a simple tubing connector fashioned to connect two segments of suction tubing used in a surgical procedure where no commercially available product for this use is available through our usual suppliers in New Zealand. A cylindrical tubing connector was designed using three-dimensional printing design software. The tubing connector was fabricated using the Makerbot Replicator 2X three-dimensional printer. The connector was used in 15 second-trimester dilation and evacuation procedures. Data forms were completed by the primary operating surgeon. Descriptive statistics were used with the expectation that the device would function as intended in all cases. The three-dimensional printed tubing connector functioned as intended in all 15 instances. Commercially available three-dimensional printing technology can be used to overcome simple instrumentation problems encountered during gynecologic surgical procedures.

  1. An algorithmic framework for multiobjective optimization.

    PubMed

    Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization.

  2. An Algorithmic Framework for Multiobjective Optimization

    PubMed Central

    Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  3. PIV Measurements in the 14 x 22 Low Speed Tunnel: Recommendations for Future Testing

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.; Jenkins, Luther N.; Yao, Chung-Sheng; McGinley, Catherine B.; Paschal, Keith B.; Neuhart, Dan H.

    2003-01-01

    During the period from February 4 to March 21, 2003 stereo digital particle imaging velocimetry measurements were made on a generic high lift model, the Trap Wing, as part of the High Lift Flow Physics Experiment. These measurements were the first PIV measurements made in the NASA, Langley Research Center 14 x 22 Foot Low Speed Tunnel, and several problems were encountered and solved in the acquisition of the data. It is the purpose of this paper to document the solutions to these problems and to make recommendations for further improvements to the tunnel/setup in order to facilitate future measurements of this type.

  4. Practice makes perfect: familiarity of task determines success in solvable tasks for free-ranging dogs (Canis lupus familiaris).

    PubMed

    Bhattacharjee, Debottam; Dasgupta, Sandipan; Biswas, Arpita; Deheria, Jayshree; Gupta, Shreya; Nikhil Dev, N; Udell, Monique; Bhadra, Anindita

    2017-07-01

    Domestic dogs' (Canis lupus familiaris) socio-cognitive faculties have made them highly sensitive to human social cues. While dogs often excel at understanding human communicative gestures, they perform comparatively poorly in problem-solving and physical reasoning tasks. This difference in their behaviour could be due to the lifestyle and intense socialization, where problem solving and physical cognition are less important than social cognition. Free-ranging dogs live in human-dominated environments, not under human supervision and are less socialized. Being scavengers, they often encounter challenges where problem solving is required in order to get access to food. We tested Indian street dogs in familiar and unfamiliar independent solvable tasks and quantified their persistence and dependence on a novel human experimenter, in addition to their success in solving a task. Our results indicate that free-ranging dogs succeeded and persisted more in the familiar task as compared to the unfamiliar one. They showed negligible amount of human dependence in the familiar task, but showed prolonged gazing and considerable begging behaviour to the human experimenter in the context of the unfamiliar task. Cognitive abilities of free-ranging dogs thus play a pivotal role in determining task-associated behaviours based on familiarity. In addition to that, these dogs inherently tend to socialize with and depend on humans, even if they are strangers. Our results also illustrate free-ranging dogs' low competence at physical cognitive tasks.

  5. Health profiles of foreigners attending primary care clinics in Malaysia.

    PubMed

    Ab Rahman, Norazida; Sivasampu, Sheamini; Mohamad Noh, Kamaliah; Khoo, Ee Ming

    2016-06-14

    The world population has become more globalised with increasing number of people residing in another country for work or other reasons. Little is known about the health profiles of foreign population in Malaysia. The aim of this study was to provide a detailed description of the health problems presented by foreigners attending primary care clinics in Malaysia. Data were derived from the 2012 National Medical Care Survey (NMCS), a cross sectional survey of primary care encounters from public and private primary care clinics sampled from five regions in Malaysia. Patients with foreign nationality were identified and analysed for demographic profiles, reasons for encounter (RFEs), diagnosis, and provision of care. Foreigners accounted for 7.7 % (10,830) of all patient encounters from NMCS. Most encounters were from private clinics (90.2 %). Median age was 28 years (IQR: 24.0, 34.8) and 69.9 % were male. Most visits to the primary care clinics were for symptom-based complaints (69.5 %), followed by procedures (23.0 %) and follow-up visit (7.4 %). The commonest diagnosis in public clinics was antenatal care (21.8 %), followed by high risk pregnancies (7.5 %) and upper respiratory tract infection (URTI) (6.8 %). Private clinics had more cases for general medical examination (13.5 %), URTI (13.1 %) and fever (3.9 %). Medications were prescribed to 76.5 % of these encounters. More foreigners were seeking primary medical care from private clinics and the encounters were for general medical examinations and acute minor ailments. Those who sought care from public clinics were for obstetric problems and chronic diseases. Medications were prescribed to two-thirds of the encounters while other interventions: laboratory investigations, medical procedures and follow-up appointment had lower rates in private clinics. Foreigners are generally of young working group and are expected to have mandatory medical checks. The preponderance of obstetrics seen in public clinics suggests a need for improved access to maternal care and pregnancy related care. This has implication on policy and health care provision and access for foreigners and future studies are needed to look into strategies to solve these problems.

  6. Numerical simulation of electrophoresis separation processes

    NASA Technical Reports Server (NTRS)

    Ganjoo, D. K.; Tezduyar, T. E.

    1986-01-01

    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.

  7. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  8. NMESys: An expert system for network fault detection

    NASA Technical Reports Server (NTRS)

    Nelson, Peter C.; Warpinski, Janet

    1991-01-01

    The problem of network management is becoming an increasingly difficult and challenging task. It is very common today to find heterogeneous networks consisting of many different types of computers, operating systems, and protocols. The complexity of implementing a network with this many components is difficult enough, while the maintenance of such a network is an even larger problem. A prototype network management expert system, NMESys, implemented in the C Language Integrated Production System (CLIPS). NMESys concentrates on solving some of the critical problems encountered in managing a large network. The major goal of NMESys is to provide a network operator with an expert system tool to quickly and accurately detect hard failures, potential failures, and to minimize or eliminate user down time in a large network.

  9. Kh. A. Rakhmatulin's scientific legacy in the field of mechanics of deformable rigid bodies

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Dem'yanov, Yu. A.; Nikitin, L. V.; Smirnov, N. N.; Shemyakin, E. I.

    2010-02-01

    Kh. A. Rakhmatulin's scientific activity was aimed at solving the most important scientific and technical problems encountered by the country. Khalil Akhmetovich was a unique combination of a theorist and an experimenter, an engineer and an inventor, a talented teacher and a scientific research manager. He fruitfully worked in mechanics of deformable solids (the corresponding results are surveyed in the present paper) as well as in fluid mechanics (as described in detail in the journal [1] dedicated to his memory).

  10. Encouraging and supporting women through breast-feeding.

    PubMed

    Battersby, Sue

    2010-01-01

    The Department of Health and the World Health Organization recommend that mothers should exclusively breast-feed their infants for the first six months of their lives. Very few mothers in the UK achieve this, but with good support and encouragement from health professionals this could be attained. Health professionals, however, need to have knowledge of the process of breastfeeding and be able to adopt a problem-solving approach to the difficulties mothers encounter, in order to give appropriate evidence-based care.

  11. Nonlinear mechanical behavior of thermoplastic matrix materials for advanced composites

    NASA Technical Reports Server (NTRS)

    Arenz, R. J.; Landel, R. F.

    1989-01-01

    Two recent theories of nonlinear mechanical response are quantitatively compared and related to experimental data. Computer techniques are formulated to handle the numerical integration and iterative procedures needed to solve the associated sets of coupled nonlinear differential equations. Problems encountered during these formulations are discussed and some open questions described. Bearing in mind these cautions, the consequences of changing parameters that appear in the formulations on the resulting engineering properties are discussed. Hence, engineering approaches to the analysis of thermoplastic matrix material can be suggested.

  12. User oriented data processing at the University of Michigan

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.

    1970-01-01

    The multispectral techniques have shown themselves capable of solving problems in a large number of user areas. The results obtained are in some instances quite impressive. In many instances, the multispectral detection of various phenomena is an empirical fact for which there is little physical explanation today. To date, most of the user applications that have been addressed are exploratory in nature. The closest approximation to an operational situation encountered so far is that of the survey of wetlands in North Dakota reported in this paper.

  13. Onboard shuttle on-line software requirements system: Prototype

    NASA Technical Reports Server (NTRS)

    Kolkhorst, Barbara; Ogletree, Barry

    1989-01-01

    The prototype discussed here was developed as proof of a concept for a system which could support high volumes of requirements documents with integrated text and graphics; the solution proposed here could be extended to other projects whose goal is to place paper documents in an electronic system for viewing and printing purposes. The technical problems (such as conversion of documentation between word processors, management of a variety of graphics file formats, and difficulties involved in scanning integrated text and graphics) would be very similar for other systems of this type. Indeed, technological advances in areas such as scanning hardware and software and display terminals insure that some of the problems encountered here will be solved in the near-term (less than five years). Examples of these solvable problems include automated input of integrated text and graphics, errors in the recognition process, and the loss of image information which results from the digitization process. The solution developed for the Online Software Requirements System is modular and allows hardware and software components to be upgraded or replaced as industry solutions mature. The extensive commercial software content allows the NASA customer to apply resources to solving the problem and maintaining documents.

  14. Librarians Flip for Students: Teaching Searching Skills to Medical Students Using a Flipped Classroom Approach.

    PubMed

    Minuti, Aurelia; Sorensen, Karen; Schwartz, Rachel; King, Winifred S; Glassman, Nancy R; Habousha, Racheline G

    2018-01-01

    This article describes the development of a flipped classroom instructional module designed by librarians to teach first- and second-year medical students how to search the literature and find evidence-based articles. The pre-class module consists of an online component that includes reading, videos, and exercises relating to a clinical case. The in-class sessions, designed to reinforce important concepts, include various interactive activities. The specifics of designing both components are included for other health sciences librarians interested in presenting similar instruction. Challenges encountered, particularly in the live sessions, are detailed, as are the results of evaluations submitted by the students, who largely enjoyed the online component. Future plans are contingent on solving technical problems encountered during the in-class sessions.

  15. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    PubMed

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  16. The stories they tell: How third year medical students portray patients, family members, physicians, and themselves in difficult encounters.

    PubMed

    Shapiro, Johanna; Rakhra, Pavandeep; Wong, Adrianne

    2016-10-01

    Physicians have long had patients whom they have labeled "difficult", but little is known about how medical students perceive difficult encounters with patients. In this study, we analyzed 134 third year medical students' reflective essays written over an 18-month period about difficult student-patient encounters. We used a qualitative computerized software program, Atlas.ti to analyze students' observations and reflections. Main findings include that students described patients who were angry and upset; noncompliant with treatment plans; discussed "nonmedical" problems; fearful, worried, withdrawn, or "disinterested" in their health. Students often described themselves as anxious, uncertain, confused, and frustrated. Nevertheless, they saw themselves behaving in empathic and patient-centered ways while also taking refuge in "standard" behaviors not necessarily appropriate to the circumstances. Students rarely mentioned receiving guidance from attendings regarding how to manage these challenging interactions. These third-year medical students recognized the importance of behaving empathically in difficult situations and often did so. However, they often felt overwhelmed and frustrated, resorting to more reductive behaviors that did not match the needs of the patient. Students need more guidance from attending physicians in order to approach difficult interactions with specific problem-solving skills while maintaining an empathic, patient-centered context.

  17. Distributed parallel computing in stochastic modeling of groundwater systems.

    PubMed

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  18. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time.

    PubMed

    Avellar, Gustavo S C; Pereira, Guilherme A S; Pimenta, Luciano C A; Iscold, Paulo

    2015-11-02

    This paper presents a solution for the problem of minimum time coverage of ground areas using a group of unmanned air vehicles (UAVs) equipped with image sensors. The solution is divided into two parts: (i) the task modeling as a graph whose vertices are geographic coordinates determined in such a way that a single UAV would cover the area in minimum time; and (ii) the solution of a mixed integer linear programming problem, formulated according to the graph variables defined in the first part, to route the team of UAVs over the area. The main contribution of the proposed methodology, when compared with the traditional vehicle routing problem's (VRP) solutions, is the fact that our method solves some practical problems only encountered during the execution of the task with actual UAVs. In this line, one of the main contributions of the paper is that the number of UAVs used to cover the area is automatically selected by solving the optimization problem. The number of UAVs is influenced by the vehicles' maximum flight time and by the setup time, which is the time needed to prepare and launch a UAV. To illustrate the methodology, the paper presents experimental results obtained with two hand-launched, fixed-wing UAVs.

  19. "I'll look it up on the Web first": Barriers and overcoming barriers to consult for sexual dysfunction among young men.

    PubMed

    Akre, Christina; Michaud, Pierre-André; Suris, Joan-Carles

    2010-06-12

    Our aim was to identify the barriers young men face to consult a health professional when they encounter sexual dysfunctions and where they turn to, if so, for answers. We conducted an exploratory qualitative research including 12 young men aged 16-20 years old seen in two focus groups. Discussions were triggered through vignettes about sexual dysfunction. Young men preferred not to talk about sexual dysfunction problems with anyone and to solve them alone as it is considered an intimate and embarrassing subject which can negatively impact their masculinity. Confidentiality appeared to be the most important criterion in disclosing an intimate subject to a health professional. Participants raised the problem of males' accessibility to services and lack of reason to consult. Two criteria to address the problem were if it was long-lasting or considered as physical. The Internet was unanimously considered as an initial solution to solve a problem, which could guide them to a face-to-face consultation if necessary. Results suggest that Internet-based tools should be developed to become an easy access door to sexual health services for young men. Wherever they consult and for whatever problem, sexual health must be on the agenda.

  20. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects

    PubMed Central

    2011-01-01

    Background With the increasing use of nanomaterials, the need for methods and assays to examine their immunosafety is becoming urgent, in particular for nanomaterials that are deliberately administered to human subjects (as in the case of nanomedicines). To obtain reliable results, standardised in vitro immunotoxicological tests should be used to determine the effects of engineered nanoparticles on human immune responses. However, before assays can be standardised, it is important that suitable methods are established and validated. Results In a collaborative work between European laboratories, existing immunological and toxicological in vitro assays were tested and compared for their suitability to test effects of nanoparticles on immune responses. The prototypical nanoparticles used were metal (oxide) particles, either custom-generated by wet synthesis or commercially available as powders. Several problems and challenges were encountered during assay validation, ranging from particle agglomeration in biological media and optical interference with assay systems, to chemical immunotoxicity of solvents and contamination with endotoxin. Conclusion The problems that were encountered in the immunological assay systems used in this study, such as chemical or endotoxin contamination and optical interference caused by the dense material, significantly affected the data obtained. These problems have to be solved to enable the development of reliable assays for the assessment of nano-immunosafety. PMID:21306632

  1. Back pain and the resolution of diagnostic uncertainty in illness narratives.

    PubMed

    Lillrank, Annika

    2003-09-01

    In this paper I consider 30 Finnish women's written narratives about the process of getting back pain diagnosed. From the beginning of the early discomfort of back pain, the women were sure of its bodily and subjective reality. They struggled repeatedly to be taken seriously, and only after years of medical disparagement did they encounter medical professionals who were able solve the riddle and give it a name, a diagnosis. Since back pain is a baffling problem and challenges the central biomedical epistemology-objective knowledge and measurable findings separate from subjective experience-it allowed the doctors to show a disrespectful attitude toward back pain sufferers. The moral essence of the women's common story was the stigmatizing experience when doctors did not take subjective pain seriously. Instead, doctors' neglectful attitudes became part of the prolonged problem. During the long-lasting uncertainty, women tried multiple coping strategies to ease their lives and developed mental attitudes to endure the pain. Since the protagonists did not give up the lived certainty of back pain they were gradually able to challenge medical uncertainty and to demand a thorough medical examination, and/or through random circumstance they encountered doctors who were willing to take their symptoms seriously. This triggered turning points that immediately or very soon resulted in solving the riddle of the puzzling pain. To be finally diagnosed was a great relief. However, to be taken seriously as a person was considered to be the greatest relief.

  2. Resource-Saving Cleaning Technologies for Power Plant Waste-Water Cooling Ponds

    NASA Astrophysics Data System (ADS)

    Zakonnova, Lyudmila; Nikishkin, Igor; Rostovzev, Alexandr

    2017-11-01

    One of the frequently encountered problems of power plant small cooling ponds is rapid eutrophication and related intensified development of phytoplankton ("hyperflow") and overgrowing of ponds by higher aquatic vegetation. As a result of hyper-flowering, an enormous amount of detritus settles on the condenser tubes, reducing the efficiency of the power plant operation. The development of higher aquatic vegetation contributes to the appearing of the shoals. As a result the volume, area and other characteristics of the cooling ponds are getting changed. The article describes the environmental problems of small manmade ponds of power plants and coal mines in mining regions. Two approaches to the problem of eutrophication are considered: technological and ecological. The negative effects of herbicides application to aquatic organisms are experimentally proved. An ecological approach to solving the problem by fish-land reclamation method is shown.

  3. Geometric Reasoning in an Active-Engagement Upper-Division E&M Classroom

    NASA Astrophysics Data System (ADS)

    Cerny, Leonard Thomas

    A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is described using van Zee and Manogue's (2010) ethnography of communication. Bing's (2008) epistemic framing model is used to illuminate how students are framing what they are doing and whether or not they see the problem as geometric. Kuo, Hull, Gupta, and Elby's (2010) blending model and Krutetskii's (1976) model of harmonic reasoning are used to illuminate ways students show problem-solving expertise. Sayer and Wittmann's (2008) model is used to show how resource plasticity impacts students' geometric reasoning and the degree to which students accept incorrect results.

  4. A promise kept.

    PubMed

    Harper, W James

    2010-01-01

    This article is largely biographical and relates to my experiences of the past 67 years in research and teaching, both of equal importance in my life. I was fortunate to start at the beginning of the development of instrumental methods of analysis and have eagerly embraced each new methodology as it became available. This paper is dedicated to all those students and colleagues who taught me much and whose efforts are mainly responsible for what has been accomplished in our work with food science and technology. The research focused primarily on trying to find out the "why" behind the problems that food, and especially the dairy products area, encountered over the past 65 years. The teaching has tried to foster thinking and problem solving.

  5. Reflections of the social environment in chimpanzee memory: applying rational analysis beyond humans.

    PubMed

    Stevens, Jeffrey R; Marewski, Julian N; Schooler, Lael J; Gilby, Ian C

    2016-08-01

    In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees ( Pan troglodytes ) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, the frequency of past encounters in chimpanzees linearly predicted future encounters, and the recency of past encounters predicted future encounters with a power function. Consistent with the rational analyses carried out for human memory, these findings suggest that chimpanzee memory performance should reflect those environmental regularities. In re-analysing existing chimpanzee memory data, we found that chimpanzee memory patterns mirrored their social contact patterns. Our findings hint that human and chimpanzee memory systems may have evolved to solve similar information-processing problems. Overall, rational analysis offers novel theoretical and methodological avenues for the comparative study of cognition.

  6. Reflections of the social environment in chimpanzee memory: applying rational analysis beyond humans

    PubMed Central

    Marewski, Julian N.; Schooler, Lael J.; Gilby, Ian C.

    2016-01-01

    In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees (Pan troglodytes) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, the frequency of past encounters in chimpanzees linearly predicted future encounters, and the recency of past encounters predicted future encounters with a power function. Consistent with the rational analyses carried out for human memory, these findings suggest that chimpanzee memory performance should reflect those environmental regularities. In re-analysing existing chimpanzee memory data, we found that chimpanzee memory patterns mirrored their social contact patterns. Our findings hint that human and chimpanzee memory systems may have evolved to solve similar information-processing problems. Overall, rational analysis offers novel theoretical and methodological avenues for the comparative study of cognition. PMID:27853606

  7. Five heads are better than one: preliminary results of team-based learning in a communication disorders graduate course.

    PubMed

    Epstein, Baila

    2016-01-01

    Clinical problem-solving is fundamental to the role of the speech-language pathologist in both the diagnostic and treatment processes. The problem-solving often involves collaboration with clients and their families, supervisors, and other professionals. Considering the importance of cooperative problem-solving in the profession, graduate education in speech-language pathology should provide experiences to foster the development of these skills. One evidence-based pedagogical approach that directly targets these abilities is team-based learning (TBL). TBL is a small-group instructional method that focuses on students' in-class application of conceptual knowledge in solving complex problems that they will likely encounter in their future clinical careers. The purpose of this pilot study was to investigate the educational outcomes and students' perceptions of TBL in a communication disorders graduate course on speech and language-based learning disabilities. Nineteen graduate students (mean age = 26 years, SD = 4.93), divided into three groups of five students and one group of four students, who were enrolled in a required graduate course, participated by fulfilling the key components of TBL: individual student preparation; individual and team readiness assurance tests (iRATs and tRATs) that assessed preparedness to apply course content; and application activities that challenged teams to solve complex and authentic clinical problems using course material. Performance on the tRATs was significantly higher than the individual students' scores on the iRATs (p < .001, Cohen's d = 4.08). Students generally reported favourable perceptions of TBL on an end-of-semester questionnaire. Qualitative analysis of responses to open-ended questions organized thematically indicated students' high satisfaction with application activities, discontent with the RATs, and recommendations for increased lecture in the TBL process. The outcomes of this pilot study suggest the effectiveness of TBL as an instructional method that provides student teams with opportunities to apply course content in problem-solving activities followed by immediate feedback. This research also addresses the dearth of empirical information on how graduate programmes in speech-language pathology bridge students' didactic learning and clinical practice. Future studies should examine the utility of this approach in other courses within the field and with more heterogeneous student populations. © 2015 Royal College of Speech and Language Therapists.

  8. Free Wake Techniques for Rotor Aerodynamic Analysis. Volume 1: Summary of Results and Background Theory

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1982-01-01

    Results obtained during the development of a consistent aerodynamic theory for rotors in hovering flight are discussed. Methods of aerodynamic analysis were developed which are adequate for general design purposes until such time as more elaborate solutions become available, in particular solutions which include real fluids effects. Several problems were encountered in the course of this development, and many remain to be solved, however it is felt that a better understanding of the aerodynamic phenomena involved was obtained. Remaining uncertainties are discussed.

  9. Distributed software framework and continuous integration in hydroinformatics systems

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Wei; Xie, Mengfei; Lu, Chengwei; Chen, Xiao

    2017-08-01

    When encountering multiple and complicated models, multisource structured and unstructured data, complex requirements analysis, the platform design and integration of hydroinformatics systems become a challenge. To properly solve these problems, we describe a distributed software framework and it’s continuous integration process in hydroinformatics systems. This distributed framework mainly consists of server cluster for models, distributed database, GIS (Geographic Information System) servers, master node and clients. Based on it, a GIS - based decision support system for joint regulating of water quantity and water quality of group lakes in Wuhan China is established.

  10. Inversion of very large matrices encountered in large scale problems of photogrammetry and photographic astrometry

    NASA Technical Reports Server (NTRS)

    Brown, D. C.

    1971-01-01

    The simultaneous adjustment of very large nets of overlapping plates covering the celestial sphere becomes computationally feasible by virtue of a twofold process that generates a system of normal equations having a bordered-banded coefficient matrix, and solves such a system in a highly efficient manner. Numerical results suggest that when a well constructed spherical net is subjected to a rigorous, simultaneous adjustment, the exercise of independently established control points is neither required for determinancy nor for production of accurate results.

  11. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.

  12. Effects of problem-solving interventions on aggressive behaviours among primary school pupils in Ibadan, Nigeria.

    PubMed

    Abdulmalik, Jibril; Ani, Cornelius; Ajuwon, Ademola J; Omigbodun, Olayinka

    2016-01-01

    Aggressive patterns of behavior often start early in childhood, and tend to remain stable into adulthood. The negative consequences include poor academic performance, disciplinary problems and encounters with the juvenile justice system. Early school intervention programs can alter this trajectory for aggressive children. However, there are no studies evaluating the feasibility of such interventions in Africa. This study therefore, assessed the effect of group-based problem-solving interventions on aggressive behaviors among primary school pupils in Ibadan, Nigeria. This was an intervention study with treatment and wait-list control groups. Two public primary schools in Ibadan Nigeria were randomly allocated to an intervention group and a waiting list control group. Teachers rated male Primary five pupils in the two schools on aggressive behaviors and the top 20 highest scorers in each school were selected. Pupils in the intervention school received 6 twice-weekly sessions of group-based intervention, which included problem-solving skills, calming techniques and attribution retraining. Outcome measures were; teacher rated aggressive behaviour (TRAB), self-rated aggression scale (SRAS), strengths and difficulties questionnaire (SDQ), attitude towards aggression questionnaire (ATAQ), and social cognition and attribution scale (SCAS). The participants were aged 12 years (SD = 1.2, range 9-14 years). Both groups had similar socio-demographic backgrounds and baseline measures of aggressive behaviors. Controlling for baseline scores, the intervention group had significantly lower scores on TRAB and SRAS 1-week post intervention with large Cohen's effect sizes of 1.2 and 0.9 respectively. The other outcome measures were not significantly different between the groups post-intervention. Group-based problem solving intervention for aggressive behaviors among primary school students showed significant reductions in both teachers' and students' rated aggressive behaviours with large effect sizes. However, this was a small exploratory trial whose findings may not be generalizable, but it demonstrates that psychological interventions for children with high levels of aggressive behaviour are feasible and potentially effective in Nigeria.

  13. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time

    PubMed Central

    Avellar, Gustavo S. C.; Pereira, Guilherme A. S.; Pimenta, Luciano C. A.; Iscold, Paulo

    2015-01-01

    This paper presents a solution for the problem of minimum time coverage of ground areas using a group of unmanned air vehicles (UAVs) equipped with image sensors. The solution is divided into two parts: (i) the task modeling as a graph whose vertices are geographic coordinates determined in such a way that a single UAV would cover the area in minimum time; and (ii) the solution of a mixed integer linear programming problem, formulated according to the graph variables defined in the first part, to route the team of UAVs over the area. The main contribution of the proposed methodology, when compared with the traditional vehicle routing problem’s (VRP) solutions, is the fact that our method solves some practical problems only encountered during the execution of the task with actual UAVs. In this line, one of the main contributions of the paper is that the number of UAVs used to cover the area is automatically selected by solving the optimization problem. The number of UAVs is influenced by the vehicles’ maximum flight time and by the setup time, which is the time needed to prepare and launch a UAV. To illustrate the methodology, the paper presents experimental results obtained with two hand-launched, fixed-wing UAVs. PMID:26540055

  14. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  15. Optimal solution for travelling salesman problem using heuristic shortest path algorithm with imprecise arc length

    NASA Astrophysics Data System (ADS)

    Bakar, Sumarni Abu; Ibrahim, Milbah

    2017-08-01

    The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.

  16. Integrating Micro-computers with a Centralized DBMS: ORACLE, SEED AND INGRES

    NASA Technical Reports Server (NTRS)

    Hoerger, J.

    1984-01-01

    Users of ADABAS, a relational-like data base management system (ADABAS) with its data base programming language (NATURAL) are acquiring microcomputers with hopes of solving their individual word processing, office automation, decision support, and simple data processing problems. As processor speeds, memory sizes, and disk storage capacities increase, individual departments begin to maintain "their own" data base on "their own" micro-computer. This situation can adversely affect several of the primary goals set for implementing a centralized DBMS. In order to avoid this potential problem, these micro-computers must be integrated with the centralized DBMS. An easy to use and flexible means for transferring logic data base files between the central data base machine and micro-computers must be provided. Some of the problems encounted in an effort to accomplish this integration and possible solutions are discussed.

  17. Optimal routing of IP packets to multi-homed servers

    NASA Astrophysics Data System (ADS)

    Swartz, K. L.

    1992-08-01

    Multi-homing, or direct attachment to multiple networks, offers both performance and availability benefits for important servers on busy networks. Exploiting these benefits to their fullest requires a modicum of routing knowledge in the clients. Careful policy control must also be reflected in the routing used within the network to make best use of specialized and often scarce resources. While relatively straightforward in theory, this problem becomes much more difficult to solve in a real network containing often intractable implementations from a variety of vendors. This paper presents an analysis of the problem and proposes a useful solution for a typical campus network. Application of this solution at the Stanford Linear Accelerator Center is studied and the problems and pitfalls encountered are discussed, as are the workarounds used to make the system work in the real world.

  18. A restrained-torque-based motion instructor: forearm flexion/extension-driving exoskeleton

    NASA Astrophysics Data System (ADS)

    Nishimura, Takuya; Nomura, Yoshihiko; Sakamoto, Ryota

    2013-01-01

    When learning complicated movements by ourselves, we encounter such problems as a self-rightness. The self-rightness results in a lack of detail and objectivity, and it may cause to miss essences and even twist the essences. Thus, we sometimes fall into the habits of doing inappropriate motions. To solve these problems or to alleviate the problems as could as possible, we have been developed mechanical man-machine human interfaces to support us learning such motions as cultural gestures and sports form. One of the promising interfaces is a wearable exoskeleton mechanical system. As of the first try, we have made a prototype of a 2-link 1-DOF rotational elbow joint interface that is applied for teaching extension-flexion operations with forearms and have found its potential abilities for teaching the initiating and continuing flection motion of the elbow.

  19. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-01-01

    The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.

  20. Refraction statics and seismic imaging: 2-D versus 3-D solutions in the Western Desert of Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Emam, A.; Nessim, M.

    1994-12-31

    Careful review of old geophysical and geological data from the Western Desert of Egypt led to the decision of shooting a 3-D seismic survey targeted to solve some of the encountered geophysical problems such as difficulty of tracing the very thin pay zone, identifying the stratigraphic plays and the main two problems of the seismic method in the Western Desert which are statics and poor imaging. In a case history form illustrated by examples, the result of the 3-D solutions will be shown. Furthermore, an analytical approach will be undertaken to clarify and highlight the sources of those geophysical problemsmore » and how the 3-D solution helped in resolving them.« less

  1. Galactic cosmic-ray mediation of a spherical solar wind flow. 1: The steady state cold gas hydrodynamical approximation

    NASA Technical Reports Server (NTRS)

    Le Roux, J. A.; Ptuskin, V. S.

    1995-01-01

    Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.

  2. How is the Inquiry Skills of Biology Preservice Teachers in Biotechnology Lecture?

    NASA Astrophysics Data System (ADS)

    Hayat, M. S.; Rustaman, N. Y.

    2017-09-01

    This study was to investigate the inquiry skills of biology pre-service teachers in one teachers college in Central Java in biotechnology lecture. The method used is a case study of 29 biology preservice teacher. Data were collected using observation sheets, questionnaires, and interview guidelines. Research findings collected through questionnaires show that most students are accustomed to asking questions and formulating biotechnology issues; Skilled in conducting experiments; Skilled in obtaining relevant information from various sources; As well as skilled at processing, analyzing and interpreting data. Based on observation: lectures are not dominated by lecturers, students are able to solve problems encountered and conduct investigations. Based on the interview towards lecturers: students are always actively involved in questioning, investigation, inquiry, problem solving and experimenting in lectures. Why do most students show good inquiry skills? Because students are accustomed to invited inquiry in biology lectures. The impact, the students become more ready to be invited to do more advanced inquiry, such as real-world application inquiry, because the skill of inquiry is essentially trained.

  3. Computing with a single qubit faster than the computation quantum speed limit

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.

    2018-02-01

    The possibility to save and process information in fundamentally indistinguishable states is the quantum mechanical resource that is not encountered in classical computing. I demonstrate that, if energy constraints are imposed, this resource can be used to accelerate information-processing without relying on entanglement or any other type of quantum correlations. In fact, there are computational problems that can be solved much faster, in comparison to currently used classical schemes, by saving intermediate information in nonorthogonal states of just a single qubit. There are also error correction strategies that protect such computations.

  4. Navier-Stokes Simulation of Homogeneous Turbulence on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.; Rogallo, R. S.

    1984-01-01

    A computer code which solves the Navier-Stokes equations for three dimensional, time-dependent, homogenous turbulence has been written for the CYBER 205. The code has options for both 64-bit and 32-bit arithmetic. With 32-bit computation, mesh sizes up to 64 (3) are contained within core of a 2 million 64-bit word memory. Computer speed timing runs were made for various vector lengths up to 6144. With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe CYBER 205. Several problems encountered in the coding are discussed.

  5. Status of TJ-II project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alejaldre, C.; Blaumoser, M.; Almoguera, L.

    1995-04-01

    The flexible Heliac TJ-II is a medium six device (R=1.5m, [a]=0.2 m, B(0)=1.0 T) in an advanced stage of construction at Centro de Investigaciones Energeticas Medio Ambientales y Tecnologicas (CIEMAT), Madrid. The problems encountered during manufacturing so far have been solved satisfactorily. Nevertheless the narrow tolerances, which result from the compact machine design, create real challenges for all the component manufacturers. In this paper we present the present status of the project with a particular emphasis on the construction situation of the main components. 1 ref., 2 figs., 1 tab.

  6. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  7. Parallel computing for probabilistic fatigue analysis

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Lua, Yuan J.; Smith, Mark D.

    1993-01-01

    This paper presents the results of Phase I research to investigate the most effective parallel processing software strategies and hardware configurations for probabilistic structural analysis. We investigate the efficiency of both shared and distributed-memory architectures via a probabilistic fatigue life analysis problem. We also present a parallel programming approach, the virtual shared-memory paradigm, that is applicable across both types of hardware. Using this approach, problems can be solved on a variety of parallel configurations, including networks of single or multiprocessor workstations. We conclude that it is possible to effectively parallelize probabilistic fatigue analysis codes; however, special strategies will be needed to achieve large-scale parallelism to keep large number of processors busy and to treat problems with the large memory requirements encountered in practice. We also conclude that distributed-memory architecture is preferable to shared-memory for achieving large scale parallelism; however, in the future, the currently emerging hybrid-memory architectures will likely be optimal.

  8. In search of intelligence: evolving a developmental neuron capable of learning

    NASA Astrophysics Data System (ADS)

    Khan, Gul Muhammad; Miller, Julian Francis

    2014-10-01

    A neuro-inspired multi-chromosomal genotype for a single developmental neuron capable of learning and developing memory is proposed. This genotype is evolved so that the phenotype which changes and develops during an agent's lifetime (while problem-solving) gives the agent the capacity for learning by experience. Seven important processes of signal processing and neural structure development are identified from biology and encoded using Cartesian Genetic Programming. These chromosomes represent the electrical and developmental aspects of dendrites, axonal branches, synapses and the neuron soma. The neural morphology that occurs by running these chromosomes is highly dynamic. The dendritic/axonal branches and synaptic connections form and change in response to situations encountered in the learning task. The approach has been evaluated in the context of maze-solving and the board game of checkers (draughts) demonstrating interesting learning capabilities. The motivation underlying this research is to, ab initio, evolve genotypes that build phenotypes with an ability to learn.

  9. [Development of a software standardizing optical density with operation settings related to several limitations].

    PubMed

    Tu, Xiao-Ming; Zhang, Zuo-Heng; Wan, Cheng; Zheng, Yu; Xu, Jin-Mei; Zhang, Yuan-Yuan; Luo, Jian-Ping; Wu, Hai-Wei

    2012-12-01

    To develop a software that can be used to standardize optical density to normalize the procedures and results of standardization in order to effectively solve several problems generated during standardization of in-direct ELISA results. The software was designed based on the I-STOD method with operation settings to solve the problems that one might encounter during the standardization. Matlab GUI was used as a tool for the development. The software was tested with the results of the detection of sera of persons from schistosomiasis japonica endemic areas. I-STOD V1.0 (WINDOWS XP/WIN 7, 0.5 GB) was successfully developed to standardize optical density. A serial of serum samples from schistosomiasis japonica endemic areas were used to examine the operational effects of I-STOD V1.0 software. The results indicated that the software successfully overcame several problems including reliability of standard curve, applicable scope of samples and determination of dilution for samples outside the scope, so that I-STOD was performed more conveniently and the results of standardization were more consistent. I-STOD V1.0 is a professional software based on I-STOD. It can be easily operated and can effectively standardize the testing results of in-direct ELISA.

  10. The Diffuse Interstellar Bands: Solving a Century Old Problem

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2017-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of apporoximately 500 absorption bands that are seen in the spectra of reddened stars (i.e., stars obscured by the presence of interstellar clouds in their line of sight). The first DIBs were detected in the visible over a century ago. Diffuse Interstellar Bands are now detected from the near ultraviolet to the near infrared in the spectra of reddened stars spanning a variety of interstellar environments in our local, and in other galaxies. Although DIB carriers are a significant part of the interstellar chemical inventory as they account for a noticeable fraction of the interstellar extinction, the nature of their carriers is still unknown over a century after the detection of the first bands. DIB carriers are stable and ubiquitous in a broad variety of interstellar environments and play a unique role in interstellar physics and chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics and astrochemistry, quantum chemistry calculations and astrophysical modeling of line-of-sights. In this review, we'll present and discuss the current state of this perplexing problem. We'll review the progress and the failures that have been encountered in the long quest for the identification of the carriers of these ubiquitous interstellar bands.

  11. Students’ Mathematical Literacy in Solving PISA Problems Based on Keirsey Personality Theory

    NASA Astrophysics Data System (ADS)

    Masriyah; Firmansyah, M. H.

    2018-01-01

    This research is descriptive-qualitative research. The purpose is to describe students’ mathematical literacy in solving PISA on space and shape content based on Keirsey personality theory. The subjects are four junior high school students grade eight with guardian, artisan, rational or idealist personality. Data collecting methods used test and interview. Data of Keirsey Personality test, PISA test, and interview were analysed. Profile of mathematical literacy of each subject are described as follows. In formulating, guardian subject identified mathematical aspects are formula of rectangle area and sides length; significant variables are terms/conditions in problem and formula of ever encountered question; translated into mathematical language those are measurement and arithmetic operations. In employing, he devised and implemented strategies using ease of calculation on area-subtraction principle; declared truth of result but the reason was less correct; didn’t use and switch between different representations. In interpreting, he declared result as area of house floor; declared reasonableness according measurement estimation. In formulating, artisan subject identified mathematical aspects are plane and sides length; significant variables are solution procedure on both of daily problem and ever encountered question; translated into mathematical language those are measurement, variables, and arithmetic operations as well as symbol representation. In employing, he devised and implemented strategies using two design comparison; declared truth of result without reason; used symbol representation only. In interpreting, he expressed result as floor area of house; declared reasonableness according measurement estimation. In formulating, rational subject identified mathematical aspects are scale and sides length; significant variables are solution strategy on ever encountered question; translated into mathematical language those are measurement, variable, arithmetic operation as well as symbol and graphic representation. In employing, he devised and implemented strategies using additional plane forming on area-subtraction principle; declared truth of result according calculation process; used and switched between symbol and graphic representation. In interpreting, he declared result as house area within terrace and wall; declared reasonableness according measurement estimation. In formulating, idealist subject identified mathematical aspects are sides length; significant variables are terms/condition in problem; translated into mathematical language those are measurement, variables, arithmetic operations as well as symbol and graphic representation. In employing, he devised and implemented strategies using trial and error and two design in process of finding solutions; declared truth of result according the use of two design of solution; used and switched between symbol and graphic representation. In interpreting, he declared result as floor area of house; declared reasonableness according measurement estimation.

  12. Parallelization of the Flow Field Dependent Variation Scheme for Solving the Triple Shock/Boundary Layer Interaction Problem

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Chung, T. J.

    2001-01-01

    A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.

  13. Chemical water shutoff profile research status and development trends

    NASA Astrophysics Data System (ADS)

    Xu, L. T.

    2017-08-01

    Excess water production is now a common problem encountered in almost every water flooding mature oilfield. The exploitation of oil field is faced with great challenge because of the decrease of oil field production. For the development of high water cut rare the status quo chemical water shutoff profile control technology is an important solution to solve this problem. Oilfield chemical water shutoff has important application prospects. This paper analyzes the water shutoff profile control and water shutoff profile control agent currently oilfield applications, moreover the use and development of blocking agent profile technology is to improve reservoir recovery and propose solutions. With the constant increase in water cut, profile technology should be simple, efficient, practical and profile control agent of development should be economic, environmental, and long period

  14. Using the Social Web to Supplement Classical Learning

    NASA Astrophysics Data System (ADS)

    Trausan-Matu, Stefan; Posea, Vlad; Rebedea, Traian; Chiru, Costin

    The paper describes a complex e-learning experiment that has involved over 700 students that attended the Human-Computer Interaction course at the “Politehnica” University of Bucharest during the last 4 years. The experiment consisted in using social web technologies like blogs and chat conferences to engage students in collaborative learning. The paper presents the learning scenario, the problems encountered and the tools developed for solving these problems and assisting tutors in evaluating the activity of the students. The results of the experiment and of using the blog and chat analysis tools are also covered. Moreover, we show the benefits of using such a scenario for the learning community formed by the students that attended this course in order to supplement the classical teaching and learning paradigm.

  15. Regionally adaptive histogram equalization of the chest.

    PubMed

    Sherrier, R H; Johnson, G A

    1987-01-01

    Advances in the area of digital chest radiography have resulted in the acquisition of high-quality images of the human chest. With these advances, there arises a genuine need for image processing algorithms specific to the chest, in order to fully exploit this digital technology. We have implemented the well-known technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with our regionally adaptive histogram equalization method. With this technique histograms are calculated locally and then modified according to both the mean pixel value of that region as well as certain characteristics of the cumulative distribution function. This process, which has allowed certain regions of the chest radiograph to be enhanced differentially, may also have broader implications for other image processing tasks.

  16. MHD memes

    NASA Astrophysics Data System (ADS)

    Dewar, R. L.; Mills, R.; Hole, M. J.

    2009-05-01

    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.

  17. Filing Reprints: Can Office Staff Help?

    PubMed Central

    Putnam, R. W.; Gass, D. A.; Curry, Lynn

    1985-01-01

    Filing systems for reprints must be tailored to the individual's practice profile, to maximize usefulness as a resource for clinical problem solving. However, the clerical time involved often reduces the physician's ability to maintain such a filing system. The authors tested two hypotheses that using the International Classification of Health Problems in Primary Care (ICHPPC) nurses or receptionists could code, cross reference and file reprints after the physician has selected the articles. Contents pages of five primary care journals were given to two academic family physicians, two practicing physicians, a research assistant and two receptionists, one of whom had used ICHPPC to record patient encounters. All coders except the second receptionist, who was unfamiliar with ICHPPC, reached good agreement in coding. Filing reprints may therefore be done by trained staff for groups of physicians. PMID:21274020

  18. The limitations of mathematical modeling in high school physics education

    NASA Astrophysics Data System (ADS)

    Forjan, Matej

    The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems geometrical approach to solving differential equations is appropriate, while in dynamical systems of higher dimensions mathematical constraints are avoided by using a graphical oriented programs for modeling. Because in dealing with dynamical systems with four or more dimensions we may encounter problems in numerical solving, we also show how to overcome them. In the case of electrostatic pendulum we show the process of modeling the real dynamical system and we put a particular emphasize on the different phases of modeling and on the way of overcoming constraints on which we encounter in the development of the model.

  19. Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis

    NASA Astrophysics Data System (ADS)

    Chou, Hui-Yu; Yang, Jyh-Bin

    2017-10-01

    The problem of schedule delay commonly occurs in construction projects. The quality of delay analysis depends on the availability of schedule-related information and delay evidence. More information used in delay analysis usually produces more accurate and fair analytical results. How to use innovative techniques to improve the quality of schedule delay analysis results have received much attention recently. As Building Information Modeling (BIM) technique has been quickly developed, using BIM and 4D simulation techniques have been proposed and implemented. Obvious benefits have been achieved especially in identifying and solving construction consequence problems in advance of construction. This study preforms an intensive literature review to discuss the problems encountered in schedule delay analysis and the possibility of using BIM as a tool in developing a BIM-based approach for schedule delay analysis. This study believes that most of the identified problems can be dealt with by BIM technique. Research results could be a fundamental of developing new approaches for resolving schedule delay disputes.

  20. Leibniz on the metaphysical foundation of physics

    NASA Astrophysics Data System (ADS)

    Temple, Daniel R.

    This thesis examines how and why Leibniz felt that physics must be grounded in metaphysics. I argue that one of the strongest motivation Leibniz had for attempting to ground physics in metaphysics was his concern over the problem of induction. Even in his early writings, Leibniz was well aware of the problem of induction and how this problem threatened the very possibility of physics. Both his early and later theories of truth are geared towards solving this deep problem in the philosophy of science. In his early theory of truth, all truths are ultimately grounded in (but not necessarily reducible to) an identity. Hence, all truths are ultimately based in logic. Consequently, the problem of induction is seemingly solved since everything that happens, happens with the force of logical necessity. Unfortunately, this theory is incompatible with Leibniz's theory of possible worlds and hence, jeopardizes the liberty of God. In Leibniz's later theory of truth, Leibniz tries to overcome this weakness by acknowledging truths that are grounded in the free but moral necessity of God's actions. Since God's benevolence is responsible for the actualization of this world, then this world must possess rational laws. Furthermore, since God's rationality ensures that everything obeys the principle of sufficient reason, then we can use this principle to determine the fundamental laws of the universe. Leibniz himself attempts to derive these laws using this principle. Kant attempted to continue this work of securing the possibility of science, and the problems he encountered helped to shape his critical philosophy. So I conclude by a comparative analysis of Leibniz and Kant on the foundations of physics.

  1. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  2. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  3. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  4. The inverse problem of refraction travel times, part I: Types of Geophysical Nonuniqueness through Minimization

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2005-01-01

    In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.

  5. Shuttle ku-band communications/radar technical concepts

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.; Kelley, J. S.; Steiner, A. W.; Vang, H. A.; Zrubek, W. E.; Huth, G. K.

    1985-01-01

    Technical data on the Shuttle Orbiter K sub u-band communications/radar system are presented. The more challenging aspects of the system design and development are emphasized. The technical problems encountered and the advancements made in solving them are discussed. The radar functions are presented first. Requirements and design/implementation approaches are discussed. Advanced features are explained, including Doppler measurement, frequency diversity, multiple pulse repetition frequencies and pulse widths, and multiple modes. The communications functions that are presented include advances made because of the requirements for multiple communications modes. Spread spectrum, quadrature phase shift keying (QPSK), variable bit rates, and other advanced techniques are discussed. Performance results and conclusions reached are outlined.

  6. Factors Related to Breastfeeding Discontinuation Between Hospital Discharge and 2 Weeks Postpartum

    PubMed Central

    Brand, Elizabeth; Kothari, Catherine; Stark, Mary Ann

    2011-01-01

    Although breastfeeding is known to be beneficial to both mother and infant, many women encounter barriers to breastfeeding, even after successful breastfeeding initiation, which may put them at greater risk for early cessation of breastfeeding. The objectives of this study were to conduct a secondary analysis of data from a longitudinal study of postpartum depression to (a) examine factors related to very early discontinuation of breastfeeding (at 2 weeks postpartum) following hospital discharge and (b) identify women’s reasons for very early cessation of breastfeeding. The results of this study support findings from previous research. Having a perceived support system, whether it is personal or professional, may have an effect on both the initiation and duration of breastfeeding. Educating expectant and new mothers, especially women who encounter multiple barriers and are at risk for very early cessation of breastfeeding, of the benefits of breastfeeding and supporting them in developing efficient techniques and problem-solving skills can help increase the duration of breastfeeding. PMID:22211058

  7. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  8. Upper-Division Student Difficulties with Separation of Variables

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the…

  9. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  10. Understanding wheel dynamics.

    PubMed

    Proffitt, D R; Kaiser, M K; Whelan, S M

    1990-07-01

    In five experiments, assessments were made of people's understandings about the dynamics of wheels. It was found that undergraduates make highly erroneous dynamical judgments about the motions of this commonplace event, both in explicit problem-solving contexts and when viewing ongoing events. These problems were also presented to bicycle racers and high-school physics teachers; both groups were found to exhibit misunderstandings similar to those of naive undergraduates. Findings were related to our account of dynamical event complexity. The essence of this account is that people encounter difficulties when evaluating the dynamics of any mechanical system that has more than one dynamically relevant object parameter. A rotating wheel is multidimensional in this respect: in addition to the motion of its center of mass, its mass distribution is also of dynamical relevance. People do not spontaneously form the essential multidimensional quantities required to adequately evaluate wheel dynamics.

  11. Initial evaluation of discrete orthogonal basis reconstruction of ECT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E.B.; Donohue, K.D.

    1996-12-31

    Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less

  12. Numerical studies of incompressible flow around delta and double-delta wings

    NASA Technical Reports Server (NTRS)

    Krause, E.; Liu, C. H.

    1989-01-01

    The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.

  13. Assessing the role of memory in preschoolers' performance on episodic foresight tasks.

    PubMed

    Atance, Cristina M; Sommerville, Jessica A

    2014-01-01

    A total of 48 preschoolers (ages 3, 4, and 5) received four tasks modelled after prior work designed to assess the development of "episodic foresight". For each task, children encountered a problem in one room and, after a brief delay, were given the opportunity in a second room to select an item to solve the problem. Importantly, after selecting an item, children were queried about their memory for the problem. Age-related changes were found both in children's ability to select the correct item and their ability to remember the problem. However, when we controlled for children's memory for the problem, there were no longer significant age-related changes on the item choice measure. These findings suggest that age-related changes in children's performance on these tasks are driven by improvements in children's memory versus improvements in children's future-oriented thinking or "foresight" per se. Our results have important implications for how best to structure tasks to measure children's episodic foresight, and also for the relative role of memory in this task and in episodic foresight more broadly.

  14. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  15. Establishing a communications-intensive network to resolve artificial intelligence issues within NASA's Space Station Freedom research centers community

    NASA Technical Reports Server (NTRS)

    Howard, E. Davis, III

    1990-01-01

    MITRE Corporation's, A Review of Space Station Freedom Program Capabilities for the Development and Application of Advanced Automation, cites as a critical issue the following situation, extant at the NASA facilities visited in the course of preparing the review: The major issues noted with regard to design and research facilities deal with cooperative problem solving, technology transfer, and communication between these facilities. While the authors were visiting lab and test beds to collect information, personnel at many of these facilities were interested in any information they could collect on activities at other facilities. A formal means of gathering this information could not be identified by these personnel. While communication between some facilities was taking place or was planned, for technology transfer or coordination of schedules (e.g., for SADP demonstrations), poor communication between these facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces, scheduling problems, and increased cost. Formal mechanisms by which effective communication and cooperative problem solving can take place, and information can be disseminated, must be defined. A solution is proposed for the communications aspects of the issues addressed above; and offered at the same time a solution which can prove effective in dealing with some of the problems being encountered with expertise being lost via retirement or defection to the private sector. The proffered recommendations are recognizably cost-effective and tap the rising sector of expert knowledge being produced by the American academic community.

  16. Problems Encountered by Religious Vocational Secondary School and Other Secondary School Students in Physical Education and Sports Activities

    ERIC Educational Resources Information Center

    Bar, Mustafa; Yaman, Menzure Sibel; Hergüner, Gülten

    2016-01-01

    The study aimed to determine problems encountered by Religious Vocational Secondary School and other Secondary School students in physical education and sports activities and to compare these problems according to school type and gender. A questionnaire named "Problems encountered in attending to physical education and sports activities"…

  17. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  18. An assessment of the potential of PFEM-2 for solving long real-time industrial applications

    NASA Astrophysics Data System (ADS)

    Gimenez, Juan M.; Ramajo, Damián E.; Márquez Damián, Santiago; Nigro, Norberto M.; Idelsohn, Sergio R.

    2017-07-01

    The latest generation of the particle finite element method (PFEM-2) is a numerical method based on the Lagrangian formulation of the equations, which presents advantages in terms of robustness and efficiency over classical Eulerian methodologies when certain kind of flows are simulated, especially those where convection plays an important role. These situations are often encountered in real engineering problems, where very complex geometries and operating conditions require very large and long computations. The advantages that the parallelism introduced in the computational fluid dynamics making affordable computations with very fine spatial discretizations are well known. However, it is not possible to have the time parallelized, despite the effort that is being dedicated to use space-time formulations. In this sense, PFEM-2 adds a valuable feature in that its strong stability with little loss of accuracy provides an interesting way of satisfying the real-life computation needs. After having already demonstrated in previous publications its ability to achieve academic-based solutions with a good compromise between accuracy and efficiency, in this work, the method is revisited and employed to solve several nonacademic problems of technological interest, which fall into that category. Simulations concerning oil-water separation, waste-water treatment, metallurgical foundries, and safety assessment are presented. These cases are selected due to their particular requirements of long simulation times and or intensive interface treatment. Thus, large time-steps may be employed with PFEM-2 without compromising the accuracy and robustness of the simulation, as occurs with Eulerian alternatives, showing the potentiality of the methodology for solving not only academic tests but also real engineering problems.

  19. An investigation of the effect of instruction in physics on the formation of mental models for problem-solving in the context of simple electric circuits

    NASA Astrophysics Data System (ADS)

    Beh, Kian Lim

    2000-10-01

    This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.

  20. Adapting an Effective Counseling Model from Patient-centered Care to Improve Motivation in Clinical Training Programs.

    PubMed

    Hamada, Hisayuki; Martin, Dawn; Batty, Helen P

    2006-12-01

    The value of establishing a patient-centered relationship within the context of the clinical encounter is well documented. The learner-centered method of medical education parallels the patient-centered clinical method; therefore, it should be explored as a method for teaching in the context of the learning encounter. In Japan and other Asian countries, rotations through services not related to the learner's chosen medical specialty are mandatory parts of the medical internship. Participation and effort in these rotations are often met with resistance from learners and are a common problem for medical educators. We adapted the counseling method for patients based on patient-centered methods such as motivational interviewing and solution-focused therapy to address this common problem. We show one case of a medical resident who lost his motivation to learn during his training. A resident has many kinds of mental and physical stress. One such problem arises from the gap between what they want to do and what they have to do. Strategies from motivational interviewing and solution-focused therapy were adapted to successfully resolve a common teaching problem in Japan. A physician teacher (preceptor) helped this resident solve the issue for himself instead of arguing in favor of change. The positive aspects of the counseling method were based on patient-centered medicine and proved useful and effective in counseling for medical residents. We may take the lessons learned from using patient-centered counseling methods to further develop a clear and systematic process of counseling methods for residents to conduct learner-centered medical education.

  1. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  2. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  3. Computational efficiency improvements for image colorization

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Sharma, Gaurav; Aly, Hussein

    2013-03-01

    We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.

  4. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  5. Efficacy of a Latino Mother–Child Communication Intervention in Elementary Schools

    PubMed Central

    McNaughton, Diane B.; Cowell, Julia Muennich; Fogg, Louis

    2015-01-01

    Children of Latino immigrants in the United States encounter ecological stressors that heighten their risk for depressive symptoms, externalizing behavior, and problems in school. Studies have shown that affirming parent–child communication is protective of child depressive symptoms and accompanying problems. The purpose of this study was to assess the efficacy of an adapted mother–child communication intervention for Latino immigrant mothers and their fourth- to sixth-grade children delivered after school. The intervention, Family Communication (“Comunicación Familiar”), was delivered at children’s elementary schools in six sessions lasting 2 hr each. Significant improvements were found in children’s reports of problem-solving communication, with their mother and mothers’ reports of reduced family conflict. Strengths of the intervention are improved mother–child communication, acquisition of communication skills that can transfer to relationships within the classroom, and a design that allows delivery by nurses or other professional members of the school support team. PMID:24643757

  6. Development and applications of algorithms for calculating the transonic flow about harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.

    1984-01-01

    A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.

  7. Efficacy of a Latino mother-child communication intervention in elementary schools.

    PubMed

    McNaughton, Diane B; Cowell, Julia Muennich; Fogg, Louis

    2015-04-01

    Children of Latino immigrants in the United States encounter ecological stressors that heighten their risk for depressive symptoms, externalizing behavior, and problems in school. Studies have shown that affirming parent-child communication is protective of child depressive symptoms and accompanying problems. The purpose of this study was to assess the efficacy of an adapted mother-child communication intervention for Latino immigrant mothers and their fourth- to sixth-grade children delivered after school. The intervention, Family Communication ("Comunicación Familiar"), was delivered at children's elementary schools in six sessions lasting 2 hr each. Significant improvements were found in children's reports of problem-solving communication, with their mother and mothers' reports of reduced family conflict. Strengths of the intervention are improved mother-child communication, acquisition of communication skills that can transfer to relationships within the classroom, and a design that allows delivery by nurses or other professional members of the school support team. © The Author(s) 2014.

  8. An approach to complex acid-base problems

    PubMed Central

    Herd, Anthony M.

    2005-01-01

    OBJECTIVE To review rules and formulas for solving even the most complex acid-base problems. SOURCES OF INFORMATION MEDLINE was searched from January 1966 to December 2003. The search was limited to English-language review articles involving human subjects. Nine relevant review papers were found and provide the background. As this information is well established and widely accepted, it is not judged for strength of evidence, as is standard practice. MAIN MESSAGE An understanding of the body’s responses to acidemia or alkalemia can be gained through a set of four rules and two formulas that can be used to interpret almost any acid-base problems. Physicians should, however, remember the “golden rule” of acid-base interpretation: always look at a patient’s clinical condition. CONCLUSION Physicians practising in acute care settings commonly encounter acid-base disturbances. While some of these are relatively simple and easy to interpret, some are more complex. Even complex cases can be resolved using the four rules and two formulas. PMID:15751566

  9. Alignment of the Stanford Linear Collider Arcs: Concepts and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitthan, R.; Bell, B.; Friedsam, H.

    1987-02-01

    The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less

  10. Bayesian data analysis in population ecology: motivations, methods, and benefits

    USGS Publications Warehouse

    Dorazio, Robert

    2016-01-01

    During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.

  11. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  12. Problems in processing Rheinische Braunkohle (soft coal) (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Hartmann, G.B.

    At Wesseling, difficulties were encountered with the hydrogenation of Rhine brown coal. The hydrogenation reaction was proceeding too rapidly at 600 atm pressure under relatively low temperature and throughput conditions. This caused a build-up of ''caviar'' deposits containing ash and asphalts. This flocculation of asphalt seemed to arise because the rapid reaction produced a liquid medium unable to hold the heavy asphalt particles in suspension. A stronger paraffinic character of the oil was also a result. To obtain practical, problem-free yields, throughput had to be increased (from .4 kg/liter/hr to more than .5), and temperature had to be increased (frommore » 24.0 MV to 24,8 MV). Further, a considerable increase in sludge recycling was recommended. The Wesseling plant was unable to increase the temperature and throughput. However, more sludge was recycled, producing a paste better able to hold higher-molecular-weight particles in suspension. If this were not to solve the ''caviar'' deposit problems, further recommendations were suggested including addition of more heavy oil.« less

  13. The Problems Encountered in a CTEV Clinic: Can Better Casting and Bracing Be Accomplished?

    PubMed

    Agarwal, Anil; Kumar, Anubrat; Shaharyar, Abbas; Mishra, Madhusudan

    2016-09-07

    The aim of the study is to create awareness in the practicing health care workers toward the problems encountered during casting and bracing of clubfoot following Ponseti method, and in turn avoid them. Retrospective audit of 6 years' clubfoot clinic records to analyze problems associated with Ponseti method. Problems were encountered in 26 cast and in 6 braced patients. Just 4 patients out of 71 syndromic (5.6%) experienced problems during casting compared with 3% overall incidence. The common problems encountered in casted patients were moisture lesions, hematoma, dermatitis due to occlusion, pressure sores, and fractures. There was excessive bleeding in 1 patient at time of tenotomy. In braced patients, pressure sores and tenderness at tenotomy site were major problems. None of the syndromic patients experienced difficulties during bracing. Problems were encountered with Ponseti method during casting, tenotomy, or bracing. Syndromic children had lesser complication rate than idiopathic clubfeet. It is important to be aware of these problems so that appropriate intervention can be done early. Level IV: Retrospective. © 2016 The Author(s).

  14. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  15. Quantum Linear System Algorithm for Dense Matrices.

    PubMed

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-02

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.

  16. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witherspoon, P.A.

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much newmore » technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.« less

  18. Solution of the advection-dispersion equation by a finite-volume eulerian-lagrangian local adjoint method

    USGS Publications Warehouse

    Healy, R.W.; Russell, T.F.

    1992-01-01

    A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.

  19. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  20. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  1. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  2. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  3. Fade Analysis of ORCA Data Beam at NTTR and Pax River

    DTIC Science & Technology

    2010-08-01

    aJexp(Djj. Solving the minimization problem resulted in the path-averaged atmospheric parameters, C„", /o, and Lo , encountered by the ORCA beacon...spot size at fiber: P = WlP.,urt I Wcore ) + Wore ’ ^,P., uro ) Power in Fiber (PIF): PIF = PIB.V./^,.SR.-i- Power in Fiber (With Tip-Tilt @ Tx, Rx...lKH 2.7S X 10 $RH! I 4.86 X 10 ’RH5 4.48 X 10 ’RH* f 1.66 X 10 "S«! 6.26 x 10"s In (JJH) - 1.34 x lO -’JF* + 7.30 x 10"’ frrcsA) —u x io-"rc5

  4. Adjoint sensitivity analysis of chaotic dynamical systems with non-intrusive least squares shadowing

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.

    2017-11-01

    This paper presents a discrete adjoint version of the recently developed non-intrusive least squares shadowing (NILSS) algorithm, which circumvents the instability that conventional adjoint methods encounter for chaotic systems. The NILSS approach involves solving a smaller minimization problem than other shadowing approaches and can be implemented with only minor modifications to preexisting tangent and adjoint solvers. Adjoint NILSS is demonstrated on a small chaotic ODE, a one-dimensional scalar PDE, and a direct numerical simulation (DNS) of the minimal flow unit, a turbulent channel flow on a small spatial domain. This is the first application of an adjoint shadowing-based algorithm to a three-dimensional turbulent flow.

  5. Development of a measuring system of contact force during braille reading using an optical 6-axis force sensor.

    PubMed

    Watanabe, T; Oouchi, S; Yamaguchi, T; Shimojo, M; Shimada, S

    2006-01-01

    A system with an optical 6-axis force sensor was developed to measure contact force during braille reading. In using this system, we encountered two problems. One is a variability of output values depending on the contact point. This was solved by using two transformation techniques. The other is that subjects read braille in a different manner from the usual. We compared two manners of braille reading, one-handed vs two-handed, and found a small reduction in reading speed. Using this system, we collected data from four braille readers and quantitatively showed more minute contact force trajectories than those in earlier studies.

  6. Practical use and pitfalls of hepatocyte-specific contrast agents (HSCAs) for pediatric hepatic and biliary magnetic resonance imaging.

    PubMed

    Ayyala, Rama S; Anupindi, Sudha A; Callahan, Michael J

    2017-02-01

    Magnetic resonance imaging is commonly used to evaluate for hepatic and biliary pathology in the pediatric population. Recently, there has been increased use of hepatocyte-specific contrast agents (HSCAs), such as Gadoxetate disodium in children. Traditionally, HSCAs have been used to characterize focal liver lesions. However, these agents can also be used to problem solve specific hepatic or biliary diagnostic dilemmas. The purpose of this manuscript is to review the practical uses of HSCA in children with both hepatic and biliary indications, and review the corresponding imaging findings. We will highlight the diagnostic uses of HSCA in children, as well as pitfalls encountered.

  7. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  8. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  9. Mathematical Metaphors: Problem Reformulation and Analysis Strategies

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    2005-01-01

    This paper addresses the critical need for the development of intelligent or assisting software tools for the scientist who is working in the initial problem formulation and mathematical model representation stage of research. In particular, examples of that representation in fluid dynamics and instability theory are discussed. The creation of a mathematical model that is ready for application of certain solution strategies requires extensive symbolic manipulation of the original mathematical model. These manipulations can be as simple as term reordering or as complicated as discovery of various symmetry groups embodied in the equations, whereby Backlund-type transformations create new determining equations and integrability conditions or create differential Grobner bases that are then solved in place of the original nonlinear PDEs. Several examples are presented of the kinds of problem formulations and transforms that can be frequently encountered in model representation for fluids problems. The capability of intelligently automating these types of transforms, available prior to actual mathematical solution, is advocated. Physical meaning and assumption-understanding can then be propagated through the mathematical transformations, allowing for explicit strategy development.

  10. Solutions to inverse plume in a crosswind problem using a predictor - corrector method

    NASA Astrophysics Data System (ADS)

    Vanderveer, Joseph; Jaluria, Yogesh

    2013-11-01

    Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.

  11. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    NASA Astrophysics Data System (ADS)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  12. GPU-based High-Performance Computing for Radiation Therapy

    PubMed Central

    Jia, Xun; Ziegenhein, Peter; Jiang, Steve B.

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. Graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past a few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of studies have been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this article, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. PMID:24486639

  13. Computation of Asteroid Proper Elements: Recent Advances

    NASA Astrophysics Data System (ADS)

    Knežević, Z.

    2017-12-01

    The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.

  14. Numerical modeling process of embolization arteriovenous malformation

    NASA Astrophysics Data System (ADS)

    Cherevko, A. A.; Gologush, T. S.; Petrenko, I. A.; Ostapenko, V. V.

    2017-10-01

    Cerebral arteriovenous malformation is a difficult, dangerous, and most frequently encountered vascular failure of development. It consists of vessels of very small diameter, which perform a discharge of blood from the artery to the vein. In this regard it can be adequately modeled using porous medium. Endovascular embolization of arteriovenous malformation is effective treatment of such pathologies. However, the danger of intraoperative rupture during embolization still exists. The purpose is to model this process and build an optimization algorithm for arteriovenous malformation embolization. To study the different embolization variants, the initial-boundary value problems, describing the process of embolization, were solved numerically by using a new modification of CABARET scheme. The essential moments of embolization process were modeled in our numerical experiments. This approach well reproduces the essential features of discontinuous two-phase flows, arising in the embolization problems. It can be used for further study on the process of embolization.

  15. Closed-form solution of temperature and heat flux in embedded cooling channels

    NASA Astrophysics Data System (ADS)

    Griggs, Steven Craig

    1997-11-01

    An analytical method is discussed for predicting temperature in a layered composite material with embedded cooling channels. The cooling channels are embedded in the material to maintain its temperature at acceptable levels. Problems of this type are encountered in the aerospace industry and include high-temperature or high-heat-flux protection for advanced composite-material skins of high-speed air vehicles; thermal boundary-layer flow control on supersonic transports; or infrared signature suppression on military vehicles. A Green's function solution of the diffusion equation is used to simultaneously predict the global and localized effects of temperature in the material and in the embedded cooling channels. The integral method is used to solve the energy equation with fluid flow to find the solution of temperature and heat flux in the cooling fluid and material simultaneously. This method of calculation preserves the three-dimensional nature of this problem.

  16. Interactive visualization tools for the structural biologist.

    PubMed

    Porebski, Benjamin T; Ho, Bosco K; Buckle, Ashley M

    2013-10-01

    In structural biology, management of a large number of Protein Data Bank (PDB) files and raw X-ray diffraction images often presents a major organizational problem. Existing software packages that manipulate these file types were not designed for these kinds of file-management tasks. This is typically encountered when browsing through a folder of hundreds of X-ray images, with the aim of rapidly inspecting the diffraction quality of a data set. To solve this problem, a useful functionality of the Macintosh operating system (OSX) has been exploited that allows custom visualization plugins to be attached to certain file types. Software plugins have been developed for diffraction images and PDB files, which in many scenarios can save considerable time and effort. The direct visualization of diffraction images and PDB structures in the file browser can be used to identify key files of interest simply by scrolling through a list of files.

  17. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  18. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  19. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  20. Disrupted rhythms and mobile ICT in a surgical department.

    PubMed

    Hasvold, Per Erlend; Scholl, Jeremiah

    2011-08-01

    This study presents a study of mobile information and communication technology (ICT) for healthcare professionals in a surgical ward. The purpose of the study was to create a participatory design process to investigate factors that affect the acceptance of mobile ICT in a surgical ward. Observations, interviews, a participatory design process, and pilot testing of a prototype of a co-constructed application were used. Informal rhythms existed at the department that facilitated that people met and interacted several times throughout the day. These gatherings allowed for opportunistic encounters that were extensively used for dialogue, problem solving, coordination, message and logistics handling. A prototype based on handheld mobile computers was introduced. The tool supported information seeking functionality that previously required local mobility. By making the nurses more freely mobile, the tool disrupted these informal rhythms. This created dissatisfaction with the system, and lead to discussion and introduction of other arenas to solve coordination and other problems. Mobile ICT tools may break down informal communication and coordination structures. This may reduce the efficiency of the new tools, or contribute to resistance towards such systems. In some situations however such "disrupted rhythms" may be overcome by including additional sociotechnical mechanisms in the overall design to counteract this negative side-effect. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Testing accommodation or modification? The effects of integrated object representation on enhancing geometry performance in children with and without geometry difficulties.

    PubMed

    Zhang, Dake; Wang, Qiu; Ding, Yi; Liu, Jeremy Jian

    2014-01-01

    According to the National Council of Teachers of Mathematics, geometry and spatial sense are fundamental components of mathematics learning. However, learning disabilities (LD) research has shown that many K-12 students encounter particular geometry difficulties (GD). This study examined the effect of an integrated object representation (IOR) accommodation on the test performance of students with GD compared to students without GD. Participants were 118 elementary students who took a researcher-developed geometry problem solving test under both a standard testing condition and an IOR accommodation condition. A total of 36 students who were classified with GD scored below 40% correct in the geometry problem solving test in the standard testing condition, and 82 students who were classified without GD scored equal to or above 40% correct in the same test and condition. All students were tested in both standard testing condition and IOR accommodation condition. The results from both ANOVA and regression discontinuity (RD) analyses suggested that students with GD benefited more than students without GD from the IOR accommodation. Implications of the study are discussed in terms of providing accommodations for students with mathematics learning difficulties and recommending RD design in LD research. © Hammill Institute on Disabilities 2013.

  2. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  3. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  4. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  6. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  7. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  8. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  9. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  10. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  11. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  12. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  13. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  14. Artificial intelligence within the chemical laboratory.

    PubMed

    Winkel, P

    1994-01-01

    Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  16. An experience sampling study of learning, affect, and the demands control support model.

    PubMed

    Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth

    2009-07-01

    The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.

  17. What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective

    ERIC Educational Resources Information Center

    Wareham, Todd; Evans, Patricia; van Rooij, Iris

    2011-01-01

    Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…

  18. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  19. Generalization of Social Skills: Strategies and Results of a Training Program in Problem Solving Skills.

    ERIC Educational Resources Information Center

    Paraschiv, Irina; Olley, J. Gregory

    This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…

  20. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  1. Investigating Problem-Solving Perseverance Using Lesson Study

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Huhn, Craig

    2017-01-01

    Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…

  2. Phase-space finite elements in a least-squares solution of the transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less

  3. Data fitting and image fine-tuning approach to solve the inverse problem in fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Politopoulos, Kostas; Yova, Dido; Andersson-Engels, Stefan

    2008-02-01

    One of the most challenging problems in medical imaging is to "see" a tumour embedded into tissue, which is a turbid medium, by using fluorescent probes for tumour labeling. This problem, despite the efforts made during the last years, has not been fully encountered yet, due to the non-linear nature of the inverse problem and the convergence failures of many optimization techniques. This paper describes a robust solution of the inverse problem, based on data fitting and image fine-tuning techniques. As a forward solver the coupled radiative transfer equation and diffusion approximation model is proposed and compromised via a finite element method, enhanced with adaptive multi-grids for faster and more accurate convergence. A database is constructed by application of the forward model on virtual tumours with known geometry, and thus fluorophore distribution, embedded into simulated tissues. The fitting procedure produces the best matching between the real and virtual data, and thus provides the initial estimation of the fluorophore distribution. Using this information, the coupled radiative transfer equation and diffusion approximation model has the required initial values for a computational reasonable and successful convergence during the image fine-tuning application.

  4. Problem-solving deficits in Iranian people with borderline personality disorder.

    PubMed

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  5. Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.

    PubMed

    Gonzalez, Vivian M; Neander, Lucía L

    2018-03-15

    This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.

  6. To what extent are medical interviewing skills teachable?

    PubMed

    Kraan, H F; Crijnen, A A; de Vries, M W; Zuidweg, J; Imbos, T; Van der Vleuten, C P

    1990-01-01

    Growth patterns of medical interviewing skills during a 6-year undergraduate curriculum are assessed by studying 563 medical students taken from five year-groups, interviewing simulated patients. In a cross-sectional, quasi-experimental design their skills are rated by means of the Maastricht History-taking and Advice Checklist (MAAS), an observation instrument which measures five categories of interviewing skills pertaining to initial medical consultations. The findings suggest that the skills for 'history-taking', 'presenting solutions' and 'structuring of the interview' are effectively learned. These learning effects result from a continuous small group teaching program with expert and peer review of videotaped encounters with simulated patients. The teaching effects of this program seem less for the skills pertinent to the phase of 'exploring the reasons for encounter' and to the 'basic interviewing skills', because the students' growing medical knowledge and the increasing ability to solve medical problems exert a counteracting influence on the acquisition of these easily deteriorating skills. The results might be helpful to curriculum planners in order to make their programs for medical interviewing skills more effective.

  7. Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE

    NASA Astrophysics Data System (ADS)

    Pramila; Patel, J. J.; Rajpal, R.; Hansalia, C. J.; Anitha, V. P.; Sathyanarayana, K.

    2017-04-01

    Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (ne), the electron temperature (Te), the floating potential (Vf), and the plasma potential (Vp). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current.

  8. District nurses' involvement in mental health: an exploratory survey.

    PubMed

    Lee, Soo; Knight, Denise

    2006-04-01

    This article reports on a survey of district nurses' involvement in mental health interventions in one county. Seventy-nine questionnaires were sent and 46 were returned. Descriptive analysis was carried out using statistical software. The DNs reported encountering a wide range of mental health issues and interventions in practice: dementia, anxiety and depression featured highly. Over half (55%) of the respondents reported involvement in bereavement counselling, and 28% and 23% of respondents reported encountering anxiety management, and problem solving and alcohol advice respectively. A large proportion, however, reported no involvement in mental health interventions. Among the psychiatric professionals, district nurses tended to have most frequent contacts with social workers. GPs were the most likely person to whom DNs made referrals, followed by community psychiatric nurses. Despite the apparent awareness of the values of psychosocial interventions, DNs were equally influenced by the medical model of treatment. In order to realize the potential contribution of district nurses in mental health interventions, there is a need for primary care teams to foster a closer working relationship with mental health specialist services.

  9. The Relationship between Students' Problem Posing and Problem Solving Abilities and Beliefs: A Small-Scale Study with Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven

    2013-01-01

    The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…

  10. An Investigation of the Effects on Students' Attitudes, Beliefs, and Abilities in Problem Solving and Mathematics after One Year of a Systematic Approach to the Learning of Problem Solving.

    ERIC Educational Resources Information Center

    Higgins, Karen M.

    This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…

  11. Student’s scheme in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  12. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  13. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  14. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  15. Social Problem Solving and Depressive Symptoms Over Time: A Randomized Clinical Trial of Cognitive Behavioral Analysis System of Psychotherapy, Brief Supportive Psychotherapy, and Pharmacotherapy

    PubMed Central

    Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.

    2011-01-01

    Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885

  16. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    NASA Astrophysics Data System (ADS)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  17. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  18. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  19. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  20. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  1. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  2. Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children

    ERIC Educational Resources Information Center

    Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.

    2007-01-01

    This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…

  3. Personality, problem solving, and adolescent substance use.

    PubMed

    Jaffee, William B; D'Zurilla, Thomas J

    2009-03-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.

  4. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  5. Decision-Making and Problem-Solving Approaches in Pharmacy Education

    PubMed Central

    Martin, Lindsay C.; Holdford, David A.

    2016-01-01

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823

  6. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    PubMed

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  7. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  8. Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.

    ERIC Educational Resources Information Center

    Camacho, Moises; Good, Ron

    1989-01-01

    Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…

  9. Worry and problem-solving skills and beliefs in primary school children.

    PubMed

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  10. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    NASA Astrophysics Data System (ADS)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  11. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  12. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  14. Dual Processes in the Psychology of Mathematics Education and Cognitive Psychology

    ERIC Educational Resources Information Center

    Gillard, Ellen; Van Dooren, Wim; Schaeken, Walter; Verschaffel, Lieven

    2009-01-01

    Research in the psychology of mathematics education has been confronted with the fact that people blatantly fail to solve tasks they are supposed to be able to solve correctly given their available domain-specific knowledge and skills. Also researchers in cognitive psychology have encountered such phenomena. In this paper, theories that have been…

  15. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  16. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  17. Problem-Solving Deficits in Iranian People with Borderline Personality Disorder

    PubMed Central

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169

  18. Enhancing memory and imagination improves problem solving among individuals with depression.

    PubMed

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  19. Measuring Family Problem Solving: The Family Problem Solving Diary.

    ERIC Educational Resources Information Center

    Kieren, Dianne K.

    The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…

  20. Goal specificity and knowledge acquisition in statistics problem solving: evidence for attentional focus.

    PubMed

    Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J

    2004-12-01

    Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.

  1. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes

    PubMed Central

    Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.

    2017-01-01

    Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109

  2. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    PubMed

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. New Ideas on the Design of the Web-Based Learning System Oriented to Problem Solving from the Perspective of Question Chain and Learning Community

    ERIC Educational Resources Information Center

    Zhang, Yin; Chu, Samuel K. W.

    2016-01-01

    In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…

  4. Perceived problem solving, stress, and health among college students.

    PubMed

    Largo-Wight, Erin; Peterson, P Michael; Chen, W William

    2005-01-01

    To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.

  5. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  6. Kerosene space heaters--combustion technology and kerosene characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to bemore » highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.« less

  7. Using Role-Playing Games to Teach Astronomy: An Evaluation

    NASA Astrophysics Data System (ADS)

    Francis, Paul

    Since 1998, I've been experimenting with the use of role-playing games to teach astronomy. Students play the role of competing teams of researchers, racing to solve some astrophysical mystery. In this article, I review what has been learned from using these games around the world over the last eight years. The most common problem encountered is a tendency for students to become overly political. An unexpected benefit of these games is the boost that they give to student self- confidence. Overall, they seem to work well with a wide range of students, ranging from ninth grade to graduate school, and students exposed to this game comment repeatedly on how the games changed their attitudes toward the scientific process.

  8. Comparison of matrix method and ray tracing in the study of complex optical systems

    NASA Astrophysics Data System (ADS)

    Anterrieu, Eric; Perez, Jose-Philippe

    2000-06-01

    In the context of the classical study of optical systems within the geometrical Gauss approximation, the cardinal elements are efficiently obtained with the aid of the transfer matrix between the input and output planes of the system. In order to take into account the geometrical aberrations, a ray tracing approach, using the Snell- Descartes laws, has been implemented in an interactive software. Both methods are applied for measuring the correction to be done to a human eye suffering from ametropia. This software may be used by optometrists and ophthalmologists for solving the problems encountered when considering this pathology. The ray tracing approach gives a significant improvement and could be very helpful for a better understanding of an eventual surgical act.

  9. Comparing the new generation accelerator driven subcritical reactor system (ADS) to traditional critical reactors

    NASA Astrophysics Data System (ADS)

    Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza

    2017-02-01

    In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.

  10. Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving

    ERIC Educational Resources Information Center

    Both, Lilly; Needham, Douglas; Wood, Eileen

    2004-01-01

    The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…

  11. Patterns of Clinical Reasoning in Physical Therapist Students.

    PubMed

    Gilliland, Sarah; Wainwright, Susan Flannery

    2017-05-01

    Clinical reasoning is a complex, nonlinear problem-solving process that is influenced by models of practice. The development of physical therapists' clinical reasoning abilities is a crucial yet underresearched aspect of entry-level (professional) physical therapist education. The purpose of this qualitative study was to examine the types of clinical reasoning strategies physical therapist students engage in during a patient encounter. A qualitative descriptive case study design involving within and across case analysis was used. Eight second-year, professional physical therapist students from 2 different programs completed an evaluation and initial intervention for a standardized patient followed by a retrospective think-aloud interview to explicate their reasoning processes. Participants' clinical reasoning strategies were examined using a 2-stage qualitative method of thematic analysis. Participants demonstrated consistent signs of development of physical therapy-specific reasoning processes, yet varied in their approach to the case and use of reflection. Participants who gave greater attention to patient education and empowerment also demonstrated greater use of reflection-in-action during the patient encounter. One negative case illustrates the variability in the rate at which students may develop these abilities. Participants demonstrated development toward physical therapist--specific clinical reasoning, yet demonstrated qualitatively different approaches to the patient encounter. Multiple factors, including the use of reflection-in-action, may enable students to develop greater flexibility in their reasoning processes. © 2017 American Physical Therapy Association

  12. Barriers to GPs' use of evidence-based medicine: a systematic review

    PubMed Central

    Zwolsman, Sandra; te Pas, Ellen; Hooft, Lotty; Waard, Margreet Wieringa-de; van Dijk, Nynke

    2012-01-01

    Background GPs report various barriers to the use and practice of evidence-based medicine (EBM). A review of research on these barriers may help solve problems regarding the uptake of evidence in clinical outpatient practice. Aim To determine the barriers encountered by GPs in the practice of EBM and to come up with solutions to the barriers identified. Design A systematic review of the literature. Method The following databases were searched: MEDLINE® (PubMed®), Embase, CINAHL®, ERIC, and the Cochrane Library, until February 2011. Primary studies (all methods, all languages) that explore the barriers that GPs encounter in the practice of EBM were included. Results A total of 14 700 articles were identified, of which 22 fulfilled all inclusion criteria. Of the latter, nine concerned qualitative, 12 concerned quantitative, and one concerned both qualitative and quantitative research methods. The barriers described in the articles cover the categories: evidence (including the accompanying EBM steps), the GP’s preferences (experience, expertise, education), and the patient’s preferences. The particular GP setting also has important barriers to the use of EBM. Barriers found in this review, among others, include lack of time, EBM skills, and available evidence; patient-related factors; and the attitude of the GP. Conclusion Various barriers are encountered when using EBM in GP practice. Interventions that help GPs to overcome these barriers are needed, both within EBM education and in clinical practice. PMID:22781999

  13. The profile of students’ problem-solving skill in physics across interest program in the secondary school

    NASA Astrophysics Data System (ADS)

    Jua, S. K.; Sarwanto; Sukarmin

    2018-05-01

    Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.

  14. A New Problem-Posing Approach Based on Problem-Solving Strategy: Analyzing Pre-Service Primary School Teachers' Performance

    ERIC Educational Resources Information Center

    Kiliç, Çigdem

    2017-01-01

    This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…

  15. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  16. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    ERIC Educational Resources Information Center

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  17. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    ERIC Educational Resources Information Center

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  18. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  19. Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding

    ERIC Educational Resources Information Center

    Domin, Daniel; Bodner, George

    2012-01-01

    The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…

  20. Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving

    ERIC Educational Resources Information Center

    Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.

    2012-01-01

    People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…

  1. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  2. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…

  3. Problem Solving with the Elementary Youngster.

    ERIC Educational Resources Information Center

    Swartz, Vicki

    This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…

  4. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  5. The needs analysis of learning Inventive Problem Solving for technical and vocational students

    NASA Astrophysics Data System (ADS)

    Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi

    2017-08-01

    Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.

  6. Automation and adaptation: Nurses' problem-solving behavior following the implementation of bar coded medication administration technology.

    PubMed

    Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion

    2013-08-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.

  7. Automation and adaptation: Nurses’ problem-solving behavior following the implementation of bar coded medication administration technology

    PubMed Central

    Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion

    2012-01-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642

  8. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    PubMed

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  9. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  10. Tracing for the problem-solving ability in advanced calculus class based on modification of SAVI model at Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Pujiastuti, E.; Waluya, B.; Mulyono

    2018-03-01

    There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.

  11. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  12. Analogy as a strategy for supporting complex problem solving under uncertainty.

    PubMed

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.

  13. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  14. Immersed boundary methods for simulating fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Yang, Xiaolei

    2014-02-01

    Fluid-structure interaction (FSI) problems commonly encountered in engineering and biological applications involve geometrically complex flexible or rigid bodies undergoing large deformations. Immersed boundary (IB) methods have emerged as a powerful simulation tool for tackling such flows due to their inherent ability to handle arbitrarily complex bodies without the need for expensive and cumbersome dynamic re-meshing strategies. Depending on the approach such methods adopt to satisfy boundary conditions on solid surfaces they can be broadly classified as diffused and sharp interface methods. In this review, we present an overview of the fundamentals of both classes of methods with emphasis on solution algorithms for simulating FSI problems. We summarize and juxtapose different IB approaches for imposing boundary conditions, efficient iterative algorithms for solving the incompressible Navier-Stokes equations in the presence of dynamic immersed boundaries, and strong and loose coupling FSI strategies. We also present recent results from the application of such methods to study a wide range of problems, including vortex-induced vibrations, aquatic swimming, insect flying, human walking and renewable energy. Limitations of such methods and the need for future research to mitigate them are also discussed.

  15. On-line crack prognosis in attachment lug using Lamb wave-deterministic resampling particle filter-based method

    NASA Astrophysics Data System (ADS)

    Yuan, Shenfang; Chen, Jian; Yang, Weibo; Qiu, Lei

    2017-08-01

    Fatigue crack growth prognosis is important for prolonging service time, improving safety, and reducing maintenance cost in many safety-critical systems, such as in aircraft, wind turbines, bridges, and nuclear plants. Combining fatigue crack growth models with the particle filter (PF) method has proved promising to deal with the uncertainties during fatigue crack growth and reach a more accurate prognosis. However, research on prognosis methods integrating on-line crack monitoring with the PF method is still lacking, as well as experimental verifications. Besides, the PF methods adopted so far are almost all sequential importance resampling-based PFs, which usually encounter sample impoverishment problems, and hence performs poorly. To solve these problems, in this paper, the piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The deterministic resampling PF (DRPF) is proposed to be used in fatigue crack growth prognosis, which can overcome the sample impoverishment problem. The proposed method is verified through fatigue tests of attachment lugs, which are a kind of important joint component in aerospace systems.

  16. Coupled discrete element and finite volume solution of two classical soil mechanics problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Drumm, Eric; Guiochon, Georges A

    One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less

  17. An immersed-boundary method for flow–structure interaction in biological systems with application to phonation

    PubMed Central

    Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.

    2008-01-01

    A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017

  18. Active vibration mitigation of distributed parameter, smart-type structures using Pseudo-Feedback Optimal Control (PFOC)

    NASA Technical Reports Server (NTRS)

    Patten, W. N.; Robertshaw, H. H.; Pierpont, D.; Wynn, R. H.

    1989-01-01

    A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).

  19. Insightful problem solving and emulation in brown capuchin monkeys.

    PubMed

    Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A

    2017-05-01

    We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.

  20. Detecting math problem solving strategies: an investigation into the use of retrospective self-reports, latency and fMRI data.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2014-02-01

    This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Problem solving therapy - use and effectiveness in general practice.

    PubMed

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  2. Collection of solved problems in physics

    NASA Astrophysics Data System (ADS)

    Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

  3. Pre-service mathematics teachers’ ability in solving well-structured problem

    NASA Astrophysics Data System (ADS)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  4. An Investigation on Chinese Teachers' Realistic Problem Posing and Problem Solving Ability and Beliefs

    ERIC Educational Resources Information Center

    Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven

    2011-01-01

    In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…

  5. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness.

    PubMed

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah

    2016-06-01

    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  6. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  7. Pedagogy and/or technology: Making difference in improving students' problem solving skills

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.

    2013-01-01

    Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.

  8. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    PubMed

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Calculators and Strategies for Problem Solving in Grade Seven: An Implementation Program and Study. Report No. 83:3.

    ERIC Educational Resources Information Center

    Szetela, W.; Super, D.

    A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…

  10. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  11. Problem Solving: How Can We Help Students Overcome Cognitive Difficulties

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2014-01-01

    The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…

  12. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…

  13. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  14. Problem Solving Appraisal of Delinquent Adolescents.

    ERIC Educational Resources Information Center

    Perez, Ruperto M.; And Others

    The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…

  15. Computer Programming: A Medium for Teaching Problem Solving.

    ERIC Educational Resources Information Center

    Casey, Patrick J.

    1997-01-01

    Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…

  16. Perceived Problem Solving, Stress, and Health among College Students

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

    2005-01-01

    Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

  17. THE CURRENT STATUS OF RESEARCH AND THEORY IN HUMAN PROBLEM SOLVING.

    ERIC Educational Resources Information Center

    DAVIS, GARY A.

    PROBLEM-SOLVING THEORIES IN THREE AREAS - TRADITIONAL (STIMULUS-RESPONSE) LEARNING, COGNITIVE-GESTALT APPROACHES, AND COMPUTER AND MATHEMATICAL MODELS - WERE SUMMARIZED. RECENT EMPIRICAL STUDIES (1960-65) ON PROBLEM SOLVING WERE CATEGORIZED ACCORDING TO TYPE OF BEHAVIOR ELICITED BY PARTICULAR PROBLEM-SOLVING TASKS. ANAGRAM,…

  18. Developing Creativity through Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Albert, Lillie R.; Kim, Rina

    2013-01-01

    This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

  19. The effects of expected reward on creative problem solving.

    PubMed

    Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan

    2018-06-12

    Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

  20. Find the Dimensions: Students Solving a Tiling Problem

    ERIC Educational Resources Information Center

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  1. Determination of stresses in RC eccentrically compressed members using optimization methods

    NASA Astrophysics Data System (ADS)

    Lechman, Marek; Stachurski, Andrzej

    2018-01-01

    The paper presents an optimization method for determining the strains and stresses in reinforced concrete (RC) members subjected to the eccentric compression. The governing equations for strains in the rectangular cross-sections are derived by integrating the equilibrium equations of cross-sections, taking account of the effect of concrete softening in plastic range and the mean compressive strength of concrete. The stress-strain relationship for concrete in compression for short term uniaxial loading is assumed according to Eurocode 2 for nonlinear analysis. For reinforcing steel linear-elastic model with hardening in plastic range is applied. The task consists in the solving the set of the derived equations s.t. box constraints. The resulting problem was solved by means of fmincon function implemented from the Matlab's Optimization Toolbox. Numerical experiments have shown the existence of many points verifying the equations with a very good accuracy. Therefore, some operations from the global optimization were included: start of fmincon from many points and clusterization. The model is verified on the set of data encountered in the engineering practice.

  2. Quantum Linear System Algorithm for Dense Matrices

    NASA Astrophysics Data System (ADS)

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-01

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .

  3. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  4. Performance of subjects with and without severe mental illness on a clinical test of problem solving.

    PubMed

    Marshall, R C; McGurk, S R; Karow, C M; Kairy, T J; Flashman, L A

    2006-06-01

    Severe mental illness is associated with impairments in executive functions, such as conceptual reasoning, planning, and strategic thinking all of which impact problem solving. The present study examined the utility of a novel assessment tool for problem solving, the Rapid Assessment of Problem Solving Test (RAPS) in persons with severe mental illness. Subjects were 47 outpatients with severe mental illness and an equal number healthy controls matched for age and gender. Results confirmed all hypotheses with respect to how subjects with severe mental illness would perform on the RAPS. Specifically, the severely mentally ill subjects (1) solved fewer problems on the RAPS, (2) when they did solve problems on the test, they did so far less efficiently than their healthy counterparts, and (3) the two groups differed markedly in the types of questions asked on the RAPS. The healthy control subjects tended to take a systematic, organized, but not always optimal approach to solving problems on the RAPS. The subjects with severe mental illness used some of the problem solving strategies of the healthy controls, but their performance was less consistent and tended to deteriorate when the complexity of the problem solving task increased. This was reflected by a high degree of guessing in lieu of asking constraint questions, particularly if a category-limited question was insufficient to continue the problem solving effort.

  5. Effects of performance feedback and coaching on the problem-solving process: Improving the integrity of implementation and enhancing student outcomes

    NASA Astrophysics Data System (ADS)

    Lundahl, Allison A.

    Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.

  6. The Missing Curriculum in Physics Problem-Solving Education

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  7. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    PubMed Central

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the equations. PMID:24324454

  8. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.

  9. Personal and parental problem drinking: effects on problem-solving performance and self-appraisal.

    PubMed

    Slavkin, S L; Heimberg, R G; Winning, C D; McCaffrey, R J

    1992-01-01

    This study examined the problem-solving performances and self-appraisals of problem-solving ability of college-age subjects with and without parental history of problem drinking. Contrary to our predictions, children of problem drinkers (COPDs) were rated as somewhat more effective in their problem-solving skills than non-COPDs, undermining prevailing assumptions about offspring from alcoholic households. While this difference was not large and was qualified by other variables, subjects' own alcohol abuse did exert a detrimental effect on problem-solving performance, regardless of parental history of problem drinking. However, a different pattern was evident for problem-solving self-appraisals. Alcohol-abusing non-COPDs saw themselves as effective problem-solvers while alcohol-abusing COPDs appraised themselves as poor problem-solvers. In addition, the self-appraisals of alcohol-abusing COPDs were consistent with objective ratings of solution effectiveness (i.e., they were both negative) while alcohol-abusing non-COPDs were overly positive in their appraisals, opposing the judgments of trained raters. This finding suggests that the relationship between personal alcohol abuse and self-appraised problem-solving abilities may differ as a function of parental history of problem drinking. Limitations on the generalizability of findings are addressed.

  10. A multi-period distribution network design model under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Tabrizi, Babak H.; Razmi, Jafar

    2013-05-01

    Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input data determining market treatment, with respect to short-term planning, on the one hand. On the other hand, network performance may be threatened by the changes that take place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some different-sized problems to show its total performance.

  11. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  12. Image ratio features for facial expression recognition application.

    PubMed

    Song, Mingli; Tao, Dacheng; Liu, Zicheng; Li, Xuelong; Zhou, Mengchu

    2010-06-01

    Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e.g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.

  13. Locating an imaging radar in Canada for identifying spaceborne objects

    NASA Astrophysics Data System (ADS)

    Schick, William G.

    1992-12-01

    This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected.

  14. Urological considerations in space medicine.

    NASA Technical Reports Server (NTRS)

    Cockett, A. T. K.; Adey, W. R.; Roberts, A. P.

    1972-01-01

    Urological problems encountered during the preparation phases of Biosatellite III, flight of Bonny the Space Monkey, are detailed. The solution to each problem is detailed. The catheter system employed, antibiotic coverage used, and bacteria encountered in the urine of the five animals are detailed. Urinary calcium levels in three ground based animals are illustrated. Testicular alterations encountered in all animals are mentioned. It is concluded that space flights of duration beyond nine days may present serious problems of a urological nature.

  15. Social problem-solving deficits and hopelessness, depression, and suicidal risk in college students and psychiatric inpatients.

    PubMed

    D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L

    1998-12-01

    The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.

  16. An Exploration of Strategies Used by Students To Solve Problems with Multiple Ways of Solution.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    1996-01-01

    Describes a study that provides information about the extent to which students actually use their mathematical resources and strategies to solve problems. Interviews were used to analyze the problem solving abilities of high school students (N=35) as they solved five problems. (DDR)

  17. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2010-01-01

    Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…

  18. Facilitating Case Reuse during Problem Solving in Algebra-Based Physics

    ERIC Educational Resources Information Center

    Mateycik, Frances Ann

    2010-01-01

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…

  19. Problem Solving. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2004-01-01

    No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…

  20. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    ERIC Educational Resources Information Center

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  1. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  2. Using Technology to Meet the Developmental Needs of Deaf Students To Improve Their Mathematical Word Problem Solving Skills.

    ERIC Educational Resources Information Center

    Kelly, Ronald R.

    2003-01-01

    Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)

  3. Enhancing Students' Problem-Solving Skills through Context-Based Learning

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi

    2015-01-01

    Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…

  4. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

    ERIC Educational Resources Information Center

    Ramani, Geetha B.; Brownell, Celia A.

    2014-01-01

    Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

  5. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  6. Factors Contributing to Problem-Solving Performance in First-Semester Organic Chemistry

    ERIC Educational Resources Information Center

    Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John

    2014-01-01

    Problem solving is a highly valued skill in chemistry. Courses within this discipline place a substantial emphasis on problem-solving performance and tend to weigh such performance heavily in assessments of learning. Researchers have dedicated considerable effort investigating individual factors that influence problem-solving performance. The…

  7. The Role of Expository Writing in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  8. Problem Solving Self-Appraisal and Coping Efforts in Distressed and Nondistressed Couples.

    ERIC Educational Resources Information Center

    Sabourin, Stephane; And Others

    1990-01-01

    Investigated relationship between problem-solving self-appraisal, specific coping efforts, and marital distress in 75 couples. Findings showed less problem-solving confidence, tendency to avoid different problem-solving activities, and poor strategies to control behavior in distressed spouses. Three coping efforts--optimistic comparisons,…

  9. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  10. Promoting interdomain analogical transfer: When creating a problem helps to solve a problem.

    PubMed

    Minervino, Ricardo A; Olguín, Valeria; Trench, Máximo

    2017-02-01

    Research on analogical thinking has devised several ways of promoting an abstract encoding of base analogs, thus rendering them more retrievable during later encounters with similar situations lacking surface similarities. Recent studies have begun to explore ways of facilitating transfer at retrieval time, which could facilitate the retrieval of distant analogs learned within contexts that were not specially directed to emphasize their abstract structure. Such studies demonstrate that comparing a target problem to an analogous problem helps students retrieve base analogs that lack surface similarities. To devise more portable ways of enhancing analogical transfer, Experiment 1 replicated Kurtz and Loewenstein's (Memory & Cognition, 35, 334-341, 2007) target-comparison procedure with an additional condition in which participants compared the target to a nonanalogous problem before attempting to reach its solution. Although comparing two analogous targets outperformed the standard transfer condition in promoting analogical transfer, comparing nonanalogous problems did not yield a transfer advantage. Based on prior studies that showed that the activity of creating analogous problems during their initial encoding elicits a more abstract representation of base analogs, in Experiment 2 we assessed whether constructing a second analogous target problem at retrieval time helps participants retrieve superficially dissimilar base analogs. As predicted, target invention increased the retrieval of distant sources. In both experiments we found an association between the quality of the generated schemas and the probability of retrieving a distant base analog from memory.

  11. Effect of Tutorial Giving on The Topic of Special Theory of Relativity in Modern Physics Course Towards Students’ Problem-Solving Ability

    NASA Astrophysics Data System (ADS)

    Hartatiek; Yudyanto; Haryoto, Dwi

    2017-05-01

    A Special Theory of Relativity handbook has been successfully arranged to guide students tutorial activity in the Modern Physics course. The low of students’ problem-solving ability was overcome by giving the tutorial in addition to the lecture class. It was done due to the limited time in the class during the course to have students do some exercises for their problem-solving ability. The explicit problem-solving based tutorial handbook was written by emphasizing to this 5 problem-solving strategies: (1) focus on the problem, (2) picture the physical facts, (3) plan the solution, (4) solve the problem, and (5) check the result. This research and development (R&D) consisted of 3 main steps: (1) preliminary study, (2) draft I. product development, and (3) product validation. The developed draft product was validated by experts to measure the feasibility of the material and predict the effect of the tutorial giving by means of questionnaires with scale 1 to 4. The students problem-solving ability in Special Theory of Relativity showed very good qualification. It implied that the tutorial giving with the help of tutorial handbook increased students problem-solving ability. The empirical test revealed that the developed handbook was significantly affected in improving students’ mastery concept and problem-solving ability. Both students’ mastery concept and problem-solving ability were in middle category with gain of 0.31 and 0.41, respectively.

  12. Assertiveness and problem solving in midwives.

    PubMed

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say "no" when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  13. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  14. Association Between Anticipatory Grief and Problem Solving Among Family Caregivers of Persons with Cognitive Impairment

    PubMed Central

    Fowler, Nicole R.; Hansen, Alexandra S.; Barnato, Amber E.; Garand, Linda

    2013-01-01

    Objective Measure perceived involvement in medical decision making and determine if anticipatory grief is associated with problem solving among family caregivers of older adults with cognitive impairment. Method Retrospective analysis of baseline data from a caregiver intervention (n=73). Multivariable regression models testing the association between caregivers’ anticipatory grief, measured by the Anticipatory Grief Scale (AGS), with problem solving abilities, measured by the Social Problem Solving Inventory – Revised: Short Form (SPSI-R: S). Results 47/73 (64%) of caregivers reported involvement in medical decision making. Mean AGS was 70.1 (± 14.8) and mean SPSI-R:S was 107.2 (± 11.6). Higher AGS scores were associated with lower positive problem orientation (P=0.041) and higher negative problem orientation scores (P=0.001) but not other components of problem solving- rational problem solving, avoidance style, and impulsivity/carelessness style. Discussion Higher anticipatory grief among family caregivers impaired problem solving, which could have negative consequences for their medical decision making responsibilities. PMID:23428394

  15. Analysis of students’ creative thinking level in problem solving based on national council of teachers of mathematics

    NASA Astrophysics Data System (ADS)

    Hobri; Suharto; Rifqi Naja, Ahmad

    2018-04-01

    This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.

  16. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  17. Requisite for Honing the Problem Solving Skill of Early Adolescents in the Digital Era

    ERIC Educational Resources Information Center

    Sumitha, S.; Jose, Rexlin

    2016-01-01

    Problems can be the cause of stress, tension, emotional instability and physical strain. Especially, adolescents should have the skill of solving a problem in order to reach his/her desired ambitions in life. The problem solving skill requires some abstract thinking to arrive at a clear solution. Problem solving ability helps them to meet their…

  18. How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.

    ERIC Educational Resources Information Center

    Scarl, Donald

    To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…

  19. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  20. Moving your eyes to solution: effects of movements on the perception of a problem-solving task.

    PubMed

    Werner, K; Raab, M

    2014-01-01

    There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.

  1. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  2. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  3. STEM-based workbook: Enhancing students' STEM competencies on lever system

    NASA Astrophysics Data System (ADS)

    Sejati, Binar Kasih; Firman, Harry; Kaniawati, Ida

    2017-05-01

    Twenty-first century is a century of technology, a rapid development of scientific studies and technology make them relied heavily on each other. This research investigated about the effect of STEM-based workbook in enhancing students' STEM competencies in terms of knowledge understanding, problem solving skill, innovative abilities, and responsibility. The workbook was tried on 24 students that applied engineering design processes together with mathematics and science knowledge to design and create an egg cracker. The result showed that the implementation of STEM-based workbook on lever system in human body is effective to improve students' STEM competencies, it can be proven by students' result on their knowledge understanding improvement which can be seen from normalized gain () score is 0.41 and categorized as medium improvement, students' problem solving skill is also improving where it obtained a medium improvement with normalized gain as much as 0.45. Innovative abilities also encountered an the improvement, the workbook analysis obtained a higher score which means students can be more innovative after finishing their workbook. Last, students' responsibility is keep improving day by day, students' effort gain the highest score it means that the students become more responsible after implementation of STEM-based workbook. All of the results are supported with the response of students towards STEM-based workbook implementation which showed positive response in all indicators.

  4. Identification and Management of Information Problems by Emergency Department Staff

    PubMed Central

    Murphy, Alison R.; Reddy, Madhu C.

    2014-01-01

    Patient-care teams frequently encounter information problems during their daily activities. These information problems include wrong, outdated, conflicting, incomplete, or missing information. Information problems can negatively impact the patient-care workflow, lead to misunderstandings about patient information, and potentially lead to medical errors. Existing research focuses on understanding the cause of these information problems and the impact that they can have on the hospital’s workflow. However, there is limited research on how patient-care teams currently identify and manage information problems that they encounter during their work. Through qualitative observations and interviews in an emergency department (ED), we identified the types of information problems encountered by ED staff, and examined how they identified and managed the information problems. We also discuss the impact that these information problems can have on the patient-care teams, including the cascading effects of information problems on workflow and the ambiguous accountability for fixing information problems within collaborative teams. PMID:25954457

  5. Decomposing intuitive components in a conceptual problem solving task.

    PubMed

    Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J

    2007-06-01

    Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.

  6. Self-Affirmation Improves Problem-Solving under Stress

    PubMed Central

    Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751

  7. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  8. The Relationship between Functional Status and Judgment/Problem Solving Among Individuals with Dementia

    PubMed Central

    Mayo, Ann M.; Wallhagen, Margaret; Cooper, Bruce A.; Mehta, Kala; Ross, Leslie; Miller, Bruce

    2012-01-01

    Objective To determine the relationship between functional status (independent activities of daily living) and judgment/problem solving and the extent to which select demographic characteristics such as dementia subtype and cognitive measures may moderate that relationship in older adult individuals with dementia. Methods The National Alzheimer’s Coordinating Center Universal Data Set was accessed for a study sample of 3,855 individuals diagnosed with dementia. Primary variables included functional status, judgment/problem solving, and cognition. Results Functional status was related to judgment/problem solving (r= 0.66; p< .0005). Functional status and cognition jointly predicted 56% of the variance in judgment/problem solving (R-squared = .56, p <.0005). As cognition decreases, the prediction of poorer judgment/problem solving by functional status became stronger. Conclusions Among individuals with a diagnosis of dementia, declining functional status as well as declining cognition should raise concerns about judgment/problem solving. PMID:22786576

  9. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Self-affirmation improves problem-solving under stress.

    PubMed

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  11. On the Analysis of Two-Person Problem Solving Protocols.

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    Methodological issues in the use of protocol analysis for research into human problem solving processes are examined through a case study in which two students were videotaped as they worked together to solve mathematical problems "out loud." The students' chosen strategic or executive behavior in examining and solving a problem was…

  12. The Development and Nature of Problem-Solving among First-Semester Calculus Students

    ERIC Educational Resources Information Center

    Dawkins, Paul Christian; Epperson, James A. Mendoza

    2014-01-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate…

  13. Students' Dilemmas in Reaction Stoichiometry Problem Solving: Deducing the Limiting Reagent in Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia

    2009-01-01

    A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…

  14. Socially Shared Metacognition of Dyads of Pupils in Collaborative Mathematical Problem-Solving Processes

    ERIC Educational Resources Information Center

    Iiskala, Tuike; Vauras, Marja; Lehtinen, Erno; Salonen, Pekka

    2011-01-01

    This study investigated how metacognition appears as a socially shared phenomenon within collaborative mathematical word-problem solving processes of dyads of high-achieving pupils. Four dyads solved problems of different difficulty levels. The pupils were 10 years old. The problem-solving activities were videotaped and transcribed in terms of…

  15. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  16. The Development, Implementation, and Evaluation of a Problem Solving Heuristic

    ERIC Educational Resources Information Center

    Lorenzo, Mercedes

    2005-01-01

    Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…

  17. Sequenced Integration and the Identification of a Problem-Solving Approach through a Learning Process

    ERIC Educational Resources Information Center

    Cormas, Peter C.

    2016-01-01

    Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…

  18. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  19. An Examination of the Personality Constructs Underlying Dimensions of Creative Problem-Solving Style

    ERIC Educational Resources Information Center

    Isaksen, Scott G.; Kaufmann, Astrid H.; Bakken, Bjørn T.

    2016-01-01

    This study investigated the personality facets that underpin the construct of problem-solving style, particularly when approaching more creative kinds of problem-solving. Cattell's Sixteen Personality Factors Questionnaire and VIEW--An Assessment of Problem Solving Style were administered to 165 students from the Norwegian Business School. We…

  20. Teaching Social Problem Solving to Individuals with Mental Retardation

    ERIC Educational Resources Information Center

    Crites, Steven A.; Dunn, Caroline

    2004-01-01

    The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…

  1. The Microcomputer--A Problem Solving Tool.

    ERIC Educational Resources Information Center

    Hoelscher, Karen J.

    Designed to assist teachers in using the microcomputer as a tool to teach problem solving strategies, this document is divided into two sections: the first introduces the concept of problem solving as a thinking process, and suggests means by which a teacher can become an effective guide for the learning of problem solving skills; the second…

  2. Working Memory Components as Predictors of Children's Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.

    2011-01-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…

  3. The Reliability and Construct Validity of Scores on the Attitudes toward Problem Solving Scale

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Haron, Zolkepeli; Daud, Md Yusoff

    2004-01-01

    The Attitudes Toward Problem Solving Scale (ATPSS) has received limited attention concerning its reliability and validity with a Malaysian secondary education population. Developed by Charles, Lester & O'Daffer (1987), the instruments assessed attitudes toward problem solving in areas of Willingness to Engage in Problem Solving Activities,…

  4. Using Digital Mapping Tool in Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  5. Independence Pending: Teacher Behaviors Preceding Learner Problem Solving

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2017-01-01

    The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…

  6. 77 FR 32138 - Agency Information Collection Agencies: Proposed Collection; Comments Requested Census of Problem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... Agencies: Proposed Collection; Comments Requested Census of Problem-Solving Courts 2012 ACTION: 30-Day...-Solving Courts (CPSC), 201 2. The title of the form/collection: Census of Problem-Solving Courts or CPSC... Abstract: Problem-solving courts at all levels of government. Abstract: The Bureau of Justice Statistics...

  7. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  8. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  9. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  10. Capturing Problem-Solving Processes Using Critical Rationalism

    ERIC Educational Resources Information Center

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  11. [Investigation of problem solving skills among psychiatric patients].

    PubMed

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  12. The development and evaluation of a web-based programme to support problem-solving skills following brain injury.

    PubMed

    Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody

    2017-10-24

    Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.

  13. The relation between stressful life events and adjustment in elementary school children: the role of social support and social problem-solving skills.

    PubMed

    Dubow, E F; Tisak, J

    1989-12-01

    This study investigated the relation between stressful life events and adjustment in elementary school children, with particular emphasis on the potential main and stress-buffering effects of social support and social problem-solving skills. Third through fifth graders (N = 361) completed social support and social problem-solving measures. Their parents provided ratings of stress in the child's environment and ratings of the child's behavioral adjustment. Teachers provided ratings of the children's behavioral and academic adjustment. Hierarchical multiple regressions revealed significant stress-buffering effects for social support and problem-solving skills on teacher-rated behavior problems, that is, higher levels of social support and problem-solving skills moderated the relation between stressful life events and behavior problems. A similar stress-buffering effect was found for problem-solving skills on grade-point average and parent-rated behavior problems. In terms of children's competent behaviors, analyses supported a main effect model of social support and problem-solving. Possible processes accounting for the main and stress-buffering effects are discussed.

  14. The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems

    NASA Astrophysics Data System (ADS)

    Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.

    2018-01-01

    This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.

  15. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    NASA Astrophysics Data System (ADS)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  16. Problem Solving Interventions for Diabetes Self-management and Control: A Systematic Review of the Literature

    PubMed Central

    Fitzpatrick, Stephanie L.; Schumann, Kristina P.; Hill-Briggs, Felicia

    2013-01-01

    Aims Problem solving is deemed a core skill for patient diabetes self-management education. The purpose of this systematic review is to examine the published literature on the effect of problem-solving interventions on diabetes self-management and disease control. Data Sources We searched PubMed and PsychINFO electronic databases for English language articles published between November 2006 and September 2012. Reference lists from included studies were reviewed to capture additional studies. Study Selection Studies reporting problem-solving intervention or problem solving as an intervention component for diabetes self-management training and disease control were included. Twenty-four studies met inclusion criteria. Data Extraction Study design, sample characteristics, measures, and results were reviewed. Data Synthesis Sixteen intervention studies (11 adult, 5 children/adolescents) were randomized controlled trials, and 8 intervention studies (6 adult, 2 children/adolescents) were quasi-experimental designs. Conclusions Studies varied greatly in their approaches to problem-solving use in patient education. To date, 36% of adult problem-solving interventions and 42% of children/adolescent problem-solving interventions have demonstrated significant improvement in HbA1c, while psychosocial outcomes have been more promising. The next phase of problem-solving intervention research should employ intervention characteristics found to have sufficient potency and intensity to reach therapeutic levels needed to demonstrate change. PMID:23312614

  17. Changes in problem-solving appraisal after cognitive therapy for the prevention of suicide.

    PubMed

    Ghahramanlou-Holloway, M; Bhar, S S; Brown, G K; Olsen, C; Beck, A T

    2012-06-01

    Cognitive therapy has been found to be effective in decreasing the recurrence of suicide attempts. A theoretical aim of cognitive therapy is to improve problem-solving skills so that suicide no longer remains the only available option. This study examined the differential rate of change in problem-solving appraisal following suicide attempts among individuals who participated in a randomized controlled trial for the prevention of suicide. Changes in problem-solving appraisal from pre- to 6-months post-treatment in individuals with a recent suicide attempt, randomized to either cognitive therapy (n = 60) or a control condition (n = 60), were assessed by using the Social Problem-Solving Inventory-Revised, Short Form. Improvements in problem-solving appraisal were similarly observed for both groups within the 6-month follow-up. However, during this period, individuals assigned to the cognitive therapy condition demonstrated a significantly faster rate of improvement in negative problem orientation and impulsivity/carelessness. More specifically, individuals receiving cognitive therapy were significantly less likely to report a negative view toward life problems and impulsive/carelessness problem-solving style. Cognitive therapy for the prevention of suicide provides rapid changes within 6 months on negative problem orientation and impulsivity/carelessness problem-solving style. Given that individuals are at the greatest risk for suicide within 6 months of their last suicide attempt, the current study demonstrates that a brief cognitive intervention produces a rapid rate of improvement in two important domains of problem-solving appraisal during this sensitive period.

  18. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    NASA Astrophysics Data System (ADS)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  19. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  20. Analysis of problem solving skill in learning biology at senior high school of Surakarta

    NASA Astrophysics Data System (ADS)

    Rahmawati, D.; Sajidan; Ashadi

    2018-04-01

    Problem solving is a critical component of comprehensive learning in 21st century. Problem solving is defined as a process used to obtain the best answer from a problem. Someone who can solve the problem is called a problem solver. Problem solver obtains many benefits in the future and has a chance to be an innovator, such as be an innovative entrepreneur, modify behavior, improve creativity, and cognitive skills. The goal of this research is to analyze problem solving skills of students in Senior High School Surakarta in learning Biology. Participants of this research were students of grade 12 SMA (Senior High School) N Surakarta. Data is collected by using multiple choice questions base on analysis problem solving skills on Mourtus. The result of this research showed that the percentage of defining problem was 52.38%, exploring the problem was 53.28%, implementing the solution was 50.71% for 50.08% is moderate, while the percentage of designing the solution was 34.42%, and evaluating was low for 39.24%. Based on the result showed that the problem solving skills of students in SMAN Surakarta was Low.

  1. A randomized trial of teen online problem solving: efficacy in improving caregiver outcomes after brain injury.

    PubMed

    Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2012-11-01

    To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.

  2. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inquiry-based problem solving in introductory physics

    NASA Astrophysics Data System (ADS)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  4. Assessing Student Expertise in Introductory Physics with Isomorphic Problems. II. Effect of Some Potential Factors on Problem Solving and Transfer

    ERIC Educational Resources Information Center

    Chandralekha; Singh

    2008-01-01

    In this paper, we explore the use of isomorphic problem pairs (IPPs) to assess introductory physics students' ability to solve and successfully transfer problem-solving knowledge from one context to another in mechanics. We call the paired problems "isomorphic" because they require the same physics principle to solve them. We analyze written…

  5. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  6. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  7. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  8. Problem-solving skills training for mothers of children recently diagnosed with autism spectrum disorder: A pilot feasibility study.

    PubMed

    Nguyen, Cathina T; Fairclough, Diane L; Noll, Robert B

    2016-01-01

    Problem-solving skills training is an intervention designed to teach coping skills that has shown to decrease negative affectivity (depressive symptoms, negative mood, and post-traumatic stress symptoms) in mothers of children with cancer. The objective of this study was to see whether mothers of children recently diagnosed with autism spectrum disorder would be receptive to receiving problem-solving skills training (feasibility trial). Participants were recruited from a local outpatient developmental clinic that is part of a university department of pediatrics. Participants were to receive eight 1-h sessions of problem-solving skills training and were asked to complete assessments prior to beginning problem-solving skills training (T1), immediately after intervention (T2), and 3 months after T2 (T3). Outcome measures assessed problem-solving skills and negative affectivity (i.e. distress). In total, 30 mothers were approached and 24 agreed to participate (80.0%). Of them, 17 mothers completed problem-solving skills training (retention rate: 70.8%). Mothers of children with autism spectrum disorder who completed problem-solving skills training had significant decreases in negative affectivity and increases in problem-solving skills. A comparison to mothers of children with cancer shows that mothers of children with autism spectrum disorder displayed similar levels of depressive symptoms but less negative mood and fewer symptoms of post-traumatic stress. Data suggest that problem-solving skills training may be an effective way to alleviate distress in mothers of children recently diagnosed with autism spectrum disorder. Data also suggest that mothers of children with autism spectrum disorder were moderately receptive to receiving problem-solving skills training. Implications are that problem-solving skills training may be beneficial to parents of children with autism spectrum disorder; modifications to improve retention rates are suggested. © The Author(s) 2015.

  9. Electrochemical and in vitro behavior of the nanosized composites of Ti-6Al-4V and TiO2 fabricated by friction stir process

    NASA Astrophysics Data System (ADS)

    Zhang, Chengjian; Ding, Zihao; Xie, Lechun; Zhang, Lai-Chang; Wu, Laizhi; Fu, Yuanfei; Wang, Liqiang; Lu, Weijie

    2017-11-01

    Although Ti-6Al-4V has been widely used in biomaterial field. Compared with other classes of materials, it still encounters some problems such as low surface hardness and relative low biocompatibility. To solve these problems friction stir processing (FSP) was applied to fabricate a nanosized composite layer of TiO2 and Ti-6Al-4V. Uniform distribution of TiO2 particles with some clusters on the surface of alloy can be observed. Due to severe plastic deformation and stirring heat, nanocrystallines and amorphous TiO2 can be observed in stir zone. FSPed samples show significant improvement in surface microhardness and biocompatibility due to its modified structure compared with original sample. In addition, through corrosion behaviors of the samples in simulated body fluid, it is found that FSP can enhance whilst TiO2 reduces the possibility and corrosion rate of material in environment of human body.

  10. Making a Back-Illuminated Imager with Back-Side Contact and Alignment Markers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    A design modification and a fabrication process that implements the modification have been conceived to solve two problems encountered in the development of back-illuminated, back-sidethinned complementary metal oxide/ semiconductor (CMOS) image-detector integrated circuits. The two problems are (1) how to form metal electrical-contact pads on the back side that are electrically connected through the thickness in proper alignment with electrical contact points on the front side and (2) how to provide alignment keys on the back side to ensure proper registration of backside optical components (e.g., microlenses and/or color filters) with the front-side pixel pattern. The essence of the design modification is to add metal plugs that extend from the desired front-side locations through the thickness and protrude from the back side of the substrate. The plugs afford the required front-to-back electrical conduction, and the protrusions of the plugs serve as both the alignment keys and the bases upon which the back-side electrical-contact pads can be formed.

  11. The Cost of a Healthier Diet for Young Children with Type 1 Diabetes Mellitus

    PubMed Central

    Patton, Susana R.; Goggin, Kathy; Clements, Mark A.

    2015-01-01

    Objective The study used a market-basket approach to examine the availability and cost of a standard food shopping list (R-TFP) versus a healthier food shopping list (H-TFP) in the grocery stores used by a sample of 23 families of young children with type 1 diabetes mellitus (T1DM). Methods Frequency counts were used to measure availability. The average cost of the R-TFP and the H-TFP was compared using a paired t-test. Results Small or independent markets had the highest percent of missing foods (14%), followed by chain supermarkets (3%), and big box stores (2%). There was a significant difference in the average cost for the R-TFP versus the H-TFP ($324.71 and $380.07, respectively p<0.001). Conclusions and Implications Families may encounter problems finding healthier foods and/or incur greater costs for healthier foods. Nutrition education programs for T1DM need to teach problem solving to help families overcome these barriers. PMID:26164132

  12. System dynamics in medical education: a tool for life.

    PubMed

    Rubin, David M; Richards, Christopher L; Keene, Penelope A C; Paiker, Janice E; Gray, A Rosemary T; Herron, Robyn F R; Russell, Megan J; Wigdorowitz, Brian

    2012-05-01

    A course in system dynamics has been included in the first year of our university's six-year medical curriculum. System Dynamics is a discipline that facilitates the modelling, simulation and analysis of a wide range of problems in terms of two fundamental concepts viz. rates and levels. Many topics encountered in the medical school curriculum, from biochemistry to sociology, can be understood in this way. The course was introduced following a curriculum review process in which it was concluded that knowledge of systems would serve to enhance problem-solving skills and clinical reasoning. The specific characteristics of system dynamics, the widespread use of digital computers, and the availability of suitable software made it possible to introduce the course at this level. The syllabus comprises a brief review of relevant mathematics followed by system dynamics topics taught in the context of examples, which are primarily but not exclusively medical. It is anticipated that this will introduce new thought processes to medical students, including holistic thinking and improved graphical visualisation skills.

  13. Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media

    NASA Astrophysics Data System (ADS)

    Simoni, L.; Secchi, S.; Schrefler, B. A.

    2008-12-01

    This paper analyses the numerical difficulties commonly encountered in solving fully coupled numerical models and proposes a numerical strategy apt to overcome them. The proposed procedure is based on space refinement and time adaptivity. The latter, which in mainly studied here, is based on the use of a finite element approach in the space domain and a Discontinuous Galerkin approximation within each time span. Error measures are defined for the jump of the solution at each time station. These constitute the parameters allowing for the time adaptivity. Some care is however, needed for a useful definition of the jump measures. Numerical tests are presented firstly to demonstrate the advantages and shortcomings of the method over the more traditional use of finite differences in time, then to assess the efficiency of the proposed procedure for adapting the time step. The proposed method reveals its efficiency and simplicity to adapt the time step in the solution of coupled field problems.

  14. A distance learning model in a physical therapy curriculum.

    PubMed

    English, T; Harrison, A L; Hart, A L

    1998-01-01

    In response to the rural health initiative established in 1991, the University of Kentucky has developed an innovative distance learning program of physical therapy instruction that combines classroom lecture and discussion via compressed video technology with laboratory experiences. The authors describe the process of planning, implementing, and evaluating a specific distance learning course in pathomechanics for the professional-level master's-degree physical therapy students at the University of Kentucky. This presentation may serve as a model for teaching distance learning. Descriptions of optimal approaches to preclass preparation, scheduling, course delivery, use of audiovisual aids, use of handout material, and video production are given. Special activities that may enhance or deter the achievement of the learning objectives are outlined, and a problem-solving approach to common problems encountered is presented. An approach to evaluating and comparing course outcomes for the distance learnere is presented. For this particular course, there was no statistically significant difference in the outcome measures utilized to compare the distance learners with the on-site learners.

  15. A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic

    NASA Astrophysics Data System (ADS)

    Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.

    2018-05-01

    Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.

  16. Active and passive problem solving: moderating role in the relation between depressive symptoms and future suicidal ideation varies by suicide attempt history.

    PubMed

    Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina

    2015-04-01

    Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem-solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation among suicide attempters and nonattempters. Young adults (n = 324, 73% female, mean age = 19, standard deviation = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and suicidal ideation at baseline, and a self-report measure of suicidal ideation at 6-month follow-up. Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future suicidal ideation. Among attempters, active problem solving buffered against depressive symptoms in predicting future suicidal ideation. Suicide prevention should foster active problem solving, especially among suicide attempters. © 2015 Wiley Periodicals, Inc.

  17. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  18. Active and Passive Problem Solving: Moderating Role in the Relation between Depressive Symptoms and Future Suicidal Ideation Varies by Suicide Attempt History

    PubMed Central

    Quiñones, Victoria; Jurska, Justyna; Fener, Eileen; Miranda, Regina

    2016-01-01

    Objective Research suggests that being unable to generate solutions to problems in times of distress may contribute to suicidal thoughts and behavior, and that depression is associated with problem solving deficits. This study examined active and passive problem solving as moderators of the association between depressive symptoms and future suicidal ideation (SI) among suicide attempters and non-attempters. Method Young adults (n = 324, 73% female, Mage = 19, SD = 2.22) with (n = 78) and without (n = 246) a suicide attempt history completed a problem-solving task, self-report measures of hopelessness, depression, and SI at baseline, and also completed a self-report measure of SI at 6-month follow-up. Results Passive problem solving was higher among suicide attempters but did not moderate the association between depressive symptoms and future SI. Among attempters, active problem solving buffered against depressive symptoms in predicting future SI. Conclusions Suicide prevention should foster active problem solving, especially among suicide attempters. PMID:25760651

  19. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  20. The impact of childhood emotional abuse and experiential avoidance on maladaptive problem solving and intimate partner violence.

    PubMed

    Bell, Kathryn M; Higgins, Lorrin

    2015-04-16

    The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person's ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk.

Top