Sample records for solvent diffusion method

  1. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    PubMed

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.

  2. Diffusion of Small Solute Particles in Viscous Liquids: Cage Diffusion, a Result of Decoupling of Solute-Solvent Dynamics, Leads to Amplification of Solute Diffusion.

    PubMed

    Acharya, Sayantan; Nandi, Manoj K; Mandal, Arkajit; Sarkar, Sucharita; Bhattacharyya, Sarika Maitra

    2015-08-27

    We study the diffusion of small solute particles through solvent by keeping the solute-solvent interaction repulsive and varying the solvent properties. The study involves computer simulations, development of a new model to describe diffusion of small solutes in a solvent, and also mode coupling theory (MCT) calculations. In a viscous solvent, a small solute diffuses via coupling to the solvent hydrodynamic modes and also through the transient cages formed by the solvent. The model developed can estimate the independent contributions from these two different channels of diffusion. Although the solute diffusion in all the systems shows an amplification, the degree of it increases with solvent viscosity. The model correctly predicts that when the solvent viscosity is high, the solute primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion performed for a static solvent provides a correct estimation of the cage diffusion.

  3. Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method.

    PubMed

    Akhgari, Abbas; Sadeghi, Hasti; Dabbagh, Mohammad Ali

    2014-08-01

    The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Corn starch was dissolved in hydrochloric acid at 80°C and then ethanol as a non-solvent was added with lowering temperature until the formation of a precipitate of modified starch. Flow parameters, particle size and thermal behavior of the treated powders were compared with the native starch. Finally, the 1:1 mixture of naproxen and each excipient was tabletted, and hardness and friability of different tablets were evaluated. Larger and well shaped agglomerates were formed which showed different thermal behavior. Treated starch exhibited suitable flow properties and tablets made by the treated powder had relatively high hardness. It was found that recrystallization of corn starch by quasi emulsion solvent diffusion method could improve its flowability and compressibility characteristics.

  4. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    NASA Astrophysics Data System (ADS)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  5. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  6. Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation.

    PubMed

    Quintanar-Guerrero, D; Allémann, E; Fessi, H; Doelker, E

    1999-10-25

    Pseudolatexes were obtained by a new process based on an emulsification-diffusion technique involving partially water-miscible solvents. The preparation method consisted of emulsifying an organic solution of polymer (saturated with water) in an aqueous solution of a stabilizing agent (saturated with solvent) using conventional stirrers, followed by direct solvent distillation. The technique relies on the rapid displacement of the solvent from the internal into the external phase which thereby provokes polymer aggregation. Nanoparticle formation is believed to occur because rapid solvent diffusion produces regions of local supersaturation near the interface, and nanoparticles are formed due to the ensuing interfacial phase transformations and polymer aggregation that occur in these interfacial domains. Using this method, it was possible to prepare pseudolatexes of biodegradable and non-biodegradable polymers such as poly(D,L-lactic acid) and poly(epsilon-caprolactone), Eudragit E, cellulose acetate phthalate, cellulose acetate trimellitate using ethyl acetate or 2-butanone as partially water-miscible solvents and poly(vinyl alcohol) or poloxamer 407 as stabilizing agent. A transition from nano- to microparticles was observed at high polymer concentrations. At concentrations above 30% w/v of Eudragit E in ethyl acetate or cellulose acetate phthalate in 2-butanone only microparticles were obtained. This behaviour was attributed to decreased transport of polymer molecules into the aqueous phase.

  7. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer.

    PubMed

    Maghsoodi, Maryam; Nokhodchi, Ali

    2016-12-01

    Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  8. FTIR Imaging Coupled with Multivariate Analysis for Study of Initial Diffusion of Different Solvents in Cellulose Acetate Butyrate Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindblad, M.S.; Keyes, B.; Gedvilas, L.

    Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be relatedmore » to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl.« less

  9. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement

    DOE PAGES

    Xiao, Zhengguo; Dong, Qingfeng; Bi, Cheng; ...

    2014-08-26

    Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. Thus, the carrier diffusion length of MAPbI 3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI 3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.

  10. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.

  11. Synthesis of size controllable cu-phthalocyanine nanofibers by simple solvent diffusion method and their electrochemical properties.

    PubMed

    Gao, Junshan; Cheng, Chuanwei; Zhou, Xuechao; Li, Yingying; Xu, Xiaoqi; Du, Xiguang; Zhang, Haiqian

    2010-02-15

    Tetra (2-isopropyl-5-methylphenoxy) substituted Cu-phthalocyanine nanofibers were obtained in large scale by a simple solvent diffusion method. The sizes of the fibers can be finely tuned under different solvent temperature. FE-SEM micrographs indicate that the length of the fibers changed from several hundreds micrometers to several hundreds nanometers and the width changed from several micrometers to several decade nanometers. XRD measurement showed a highly long-range ordered lamellar arrangement of the substituted Cu-phthalocyanine molecules in the microfiber and the UV-vis absorption spectrum of the fibers indicated an H-aggregate of the phthalocyanine molecules. The CV curves elucidate the CuPc fibers can be fabricated Faraday pseudocapacitor. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  12. A simple and effective solution to the constrained QM/MM simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideaki; Kambe, Hiroyuki; Morita, Akihiro

    2018-04-01

    It is a promising extension of the quantum mechanical/molecular mechanical (QM/MM) approach to incorporate the solvent molecules surrounding the QM solute into the QM region to ensure the adequate description of the electronic polarization of the solute. However, the solvent molecules in the QM region inevitably diffuse into the MM bulk during the QM/MM simulation. In this article, we developed a simple and efficient method, referred to as the "boundary constraint with correction (BCC)," to prevent the diffusion of the solvent water molecules by means of a constraint potential. The point of the BCC method is to compensate the error in a statistical property due to the bias potential by adding a correction term obtained through a set of QM/MM simulations. The BCC method is designed so that the effect of the bias potential completely vanishes when the QM solvent is identical with the MM solvent. Furthermore, the desirable conditions, that is, the continuities of energy and force and the conservations of energy and momentum, are fulfilled in principle. We applied the QM/MM-BCC method to a hydronium ion(H3O+) in aqueous solution to construct the radial distribution function (RDF) of the solvent around the solute. It was demonstrated that the correction term fairly compensated the error and led the RDF in good agreement with the result given by an ab initio molecular dynamics simulation.

  13. Role of solvent in metal-on-metal surface diffusion: A case for rational solvent selection for materials synthesis

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Jagannath, Mantha Sai Pavan; Chatterjee, Abhijit

    2018-09-01

    The effect of solvent on diffusion at metal surfaces is poorly understood despite its importance to morphological evolution during materials processing, corrosion and catalysis. In this article, we probe the metal-solvent interfacial structure, effective nature of interactions and dynamics when a solvent is in contact with a metal using a novel accelerated molecular dynamics simulation technique called temperature programmed molecular dynamics (TPMD). TPMD simulations reveal that surface diffusion of metal-on-metal can be made to vary over orders-of-magnitude by tuning the metal-solvent interaction. Ultimately, the solvent can have an indirect effect on diffusion. As the solvent tugs at the metal surface the separation between the adsorbed metal atom (adatom) and the surface layer can be modulated via metal-solvent interactions. The resulting adatom-surface separation can cause stronger/weaker binding of the adatom to the metal surface, which in turn results in the observed slower/enhanced diffusion in the presence of solvent. We believe this effect is ubiquitous in pure metal and metal alloys and in principle one could rationally select solvent to control the material structural evolution. Implications on materials synthesis are discussed in the context of formation of nanoporous materials.

  14. A review on methods of regeneration of spent pickling solutions from steel processing.

    PubMed

    Regel-Rosocka, Magdalena

    2010-05-15

    The review presents various techniques of regeneration of spent pickling solutions, including the methods with acid recovery, such as diffusion dialysis, electrodialysis, membrane electrolysis and membrane distillation, evaporation, precipitation and spray roasting as well as those with acid and metal recovery: ion exchange, retardation, crystallization solvent and membrane extraction. Advantages and disadvantages of the techniques are presented, discussed and confronted with the best available techniques requirements. Most of the methods presented meet the BAT requirements. The best available techniques are electrodialysis, diffusion dialysis and crystallization; however, in practice spray roasting and retardation/ion-exchange are applied most frequently for spent pickling solution regeneration. As "waiting for their chance" solvent extraction, non-dispersive solvent extraction and membrane distillation should be indicated because they are well investigated and developed. Environmental and economic benefits of the methods presented in the review depend on the cost of chemicals and wastewater treatment, legislative regulations and cost of modernization of existing technologies or implementation of new ones. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Viscosity-dependent diffusion of fluorescent particles using fluorescence correlation spectroscopy.

    PubMed

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won

    2014-11-01

    Fluorescent particles show the variety characteristics by the interaction with other particles and solvent. In order to investigate the relationship between the dynamic properties of fluorescent particles and solvent viscosity, particle diffusion in various solvents was evaluated using a fluorescence correlation spectroscopy. Upon analyzing the correlation functions of AF-647, Q-dot, and beads with different viscosity values, the diffusion time of all particles was observed to increase with increasing solvent viscosity, and the ratio of diffusion time to solvent viscosity, τ D /η, showed a linear dependence on particle size. The particle diffusion coefficients calculated from the diffusion time decreased with increasing solvent viscosity. Further, the hydrodynamic radii of AF-647, Q-dot, and beads were 0.98 ± 0.1 nm, 64.8 ± 3.23 nm, and 89.8 ± 4.91 nm, respectively, revealing a linear dependence on τ D /η, which suggests that the hydrodynamic radius of a particle strongly depends on both the physical size of the particle and solvent viscosity.

  16. The solvent-gelator interaction as the origin of different diffusivity behavior of diols in gels formed with sugar-based low-molecular-mass gelator.

    PubMed

    Kowalczuk, Joanna; Bielejewski, Michał; Lapiński, Andrzej; Luboradzki, Roman; Tritt-Goc, Jadwiga

    2014-04-10

    Organogels are soft materials consisting of low-molecular-mass gelators (LMOGs) self-assembled through noncovalent interactions into 3D structures, in which free spaces are filled by organic solvents. 4,6,4',6'-O-terephthylidene-bis(methyl-α-d-glucopyranoside) (1) is found to be a new LMOG. It gelatinizes only a limited number of solvents. Here, the gels of 1 with ethylene glycol (EG) and 1,3-propanediol (PG) are investigated with FT-IR, Raman, and UV-vis spectroscopies, the NMR relaxometry and diffusometry methods, and microscopic observation. The chemical structures of both solvents are closely related, but the variety of physical characteristics of the gels is large. The 1/PG gels are thermally more stable compared to 1/EG gels. The types of aggregates are most likely the H- and J-type in 1/EG gels and the J-type in 1/PG gels. Different microstructures are observed: bundles of crossing fibers for 1/EG and a honeycomb-like matrix for 1/PG gels. The diffusivity of the EG solvent in gels with 1 behaves as expected, decreasing with increasing gelator concentration, whereas the opposite behavior is observed for the PG solvent. This is a most fascinating result. To explain the diffusion enhancement, we suggest that a dynamic hydrogen bonding network of PG solvent in gel matrixes is disrupted due to solvent-gelator interaction. The direct proof of this interaction is given by the observed low frequency dispersion of the spin-lattice relaxation time of solvents in the gel matrixes.

  17. Solvent and solute ingress into hydrogels resolved by a combination of imaging techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.; Burbach, J.; Egelhaaf, S. U.

    2016-05-28

    Using simultaneous neutron, fluorescence, and optical brightfield transmission imaging, the diffusion of solvent, fluorescent dyes, and macromolecules into a crosslinked polyacrylamide hydrogel was investigated. This novel combination of different imaging techniques enables us to distinguish the movements of the solvent and fluorescent molecules. Additionally, the swelling or deswelling of the hydrogels can be monitored. From the sequence of images, dye and solvent concentrations were extracted spatially and temporally resolved. Diffusion equations and different boundary conditions, represented by different models, were used to quantitatively analyze the temporal evolution of these concentration profiles and to determine the diffusion coefficients of solvent andmore » solutes. Solute size and network properties were varied and their effect was investigated. Increasing the crosslinking ratio or partially drying the hydrogel was found to hinder solute diffusion due to the reduced pore size. By contrast, solvent diffusion seemed to be slightly faster if the hydrogel was only partially swollen and hence solvent uptake enhanced.« less

  18. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  19. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  20. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    PubMed

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  1. Effects of Shapes of Solute Molecules on Diffusion: A Study of Dependences on Solute Size, Solvent, and Temperature.

    PubMed

    Chan, T C; Li, H T; Li, K Y

    2015-12-24

    Diffusivities of basically linear, planar, and spherical solutes at infinite dilution in various solvents are studied to unravel the effects of solute shapes on diffusion. On the basis of the relationship between the reciprocal of diffusivity and the molecular volume of solute molecules with similar shape in a given solvent at constant temperature, the diffusivities of solutes of equal molecular volume but different shapes are evaluated and the effects due to different shapes of two equal-sized solute molecules on diffusion are determined. It is found that the effects are dependent on the size of the solute pairs studied. Evidence of the dependence of the solute-shape effects on solvent properties is also demonstrated and discussed. Here, some new diffusion data of aromatic compounds in methanol at different temperatures are reported. The result for methanol in this study indicates that the effects of solute shape on diffusivity are only weakly dependent on temperature.

  2. Impact of solvent granularity and layering on tracer hydrodynamics in confinement.

    PubMed

    Bollinger, Jonathan A; Carmer, James; Jain, Avni; Truskett, Thomas M

    2016-11-28

    Classic hydrodynamic arguments establish that when a spherical tracer particle is suspended between parallel walls, tracer-wall coupling mediated by the solvent will cause the tracer to exhibit position-dependent diffusivity. We investigate how the diffusivity profiles of confined tracers are impacted by the diameter size-ratio of the tracer to solvent: starting from the classic limit of infinite size-ratio (i.e., continuum solvent), we consider size-ratios of four or less to examine how hydrodynamic predictions are disrupted for systems where the tracer and solvent are of similar scale. We use computer simulations and techniques based on the Fokker-Planck formalism to calculate the diffusivity profiles of hard-sphere tracer particles in hard-sphere solvents, focusing on the dynamics perpendicular to the walls. Given wall separations of several tracer diameters, we first consider confinement between hard walls, where anisotropic structuring at the solvent lengthscale generates inhomogeneity in the tracer free-energy landscape and undermines hydrodynamic predictions locally. We then introduce confining planes that we term transparent walls, which restrict tracer and solvent center-accessibilities while completely eliminating static anisotropy, and reveal position-dependent signatures in tracer diffusivity solely attributable to confinement. With or without suppressing static heterogeneity, we find that tracer diffusivity increasingly deviates on a local basis from hydrodynamic predictions at smaller size-ratios. However, hydrodynamic theory still approximately captures spatially-averaged dynamics across the pores even for very small tracer-solvent size-ratios over a wide range of solvent densities and wall separations.

  3. Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles.

    PubMed

    Noriega-Peláez, Eddy Kei; Mendoza-Muñoz, Néstor; Ganem-Quintanar, Adriana; Quintanar-Guerrero, David

    2011-02-01

    The essential aim of this article is to prepare solid lipid nanoparticles (SLNs) by emulsification and solvent displacement method and to determine the best process conditions to obtain submicron particles. The emulsification and solvent displacement method is a modification of the well-known emulsification-diffusion method, but without dilution of the system. The extraction of the partially water-miscible solvent from the emulsion globules is carried out under reduced pressure, which causes the diffusion of the solvent toward the external phase, with subsequent lipid aggregation in particles whose size will depend on the process conditions. The critical variables affecting the process, such as stirring rate, the proportion of phases in the emulsion, and the amount of stabilizer and lipid, were evaluated and optimized. By this method, it was possible to obtain a high yield of solids in the dispersion for the lipids evaluated (Compritol(®) ATO 888, Geleol(®), Gelucire(®) 44/14, and stearic acid). SLNs of up to ∼20 mg/mL were obtained for all lipids evaluated. A marked reduction in size, between 500 and 2500 rpm, was seen, and a transition from micro- to nanometric size was observed. The smaller particle sizes obtained were 113 nm for Compritol(®) ATO 888, 70 nm for Gelucire(®) 44/14, 210 nm for Geleol(®), and 527 nm for stearic acid, using a rotor-stator homogenizer (Ultra-Turrax(®)) at 16,000 rpm. The best phase ratio (organic/aqueous) was 1 : 2. The process proposed in this study is a new alternative to prepare SLNs with technological potential.

  4. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  5. Increased rate of solvent diffusion in a prototypical supramolecular gel measured on the picosecond timescale.

    PubMed

    Seydel, Tilo; Edkins, Robert M; Jones, Christopher D; Foster, Jonathan A; Bewley, Robert; Aguilar, Juan A; Edkins, Katharina

    2018-06-14

    Solvent diffusion in a prototypical supramolecular gel probed by quasi-elastic neutron scattering on the picosecond timescale is faster than that in the respective bulk solvent. This phenomenon is hypothesized to be due to disruption of the hydrogen bonding of the solvent by the large hydrophobic surface of the gel network.

  6. Holographic Methods for the Investigation of Photophysical Properties.

    DTIC Science & Technology

    1983-04-22

    terphenyl doped with 10- 3 mol/mol of pentacene . Obtaining k from decay curves as in * A -Fig. 14a and plotting k as a function of 02 (see Fig. 14b...translation diffusion of molecules in liquid solvents can be used to probe solute conformations, solvent-solute interactions and local solvent structure...eiion of 1.7omoAr WauW by TrArWAOn GFarinP So far, local heating by the absorption of the two interfering light pulses has not been taken into

  7. The effects of esterified solvents on the diffusion of a model compound across human skin: an ATR-FTIR spectroscopic study.

    PubMed

    McAuley, W J; Chavda-Sitaram, S; Mader, K T; Tetteh, J; Lane, M E; Hadgraft, J

    2013-04-15

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effects of three fatty acid esters on skin permeation. Propylene glycol diperlargonate (DPPG), isopropyl myristate (IPM) and isostearyl isostearate (ISIS) were selected as pharmaceutically relevant solvents with a range of lipophilicities and cyanophenol (CNP) was used as a model drug. The resultant data were compared with that obtained when water was used as the solvent. The diffusion of CNP, DPPG and IPM across epidermis was successfully described by a Fickian model. When ISIS was used as a solvent Fickian behaviour was only obtained across isolated stratum corneum suggesting that the hydrophilic layers of the epidermis interfere with the permeation of the hydrophobic ISIS. The diffusion coefficients of CNP across epidermis in the different solvents were not significantly different. Using chemometric data analysis diffusion profiles for the solvents were deconvoluted from that of the skin and modelled. Each of these solvents was found to diffuse at a faster rate across the skin than CNP. DPPG considerably increased the concentration of CNP in the stratum corneum in comparison with the other solvents indicating strong penetration enhancer potential. In contrast IPM produced a similar CNP concentration in the stratum corneum to water with ISIS resulting in a lower CNP concentration suggesting negligible enhancement and penetration retardation effects for these two solvents respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Molecular Dynamics Study of the Solution Structure, Clustering, and Diffusion of Four Aqueous Alkanolamines.

    PubMed

    Melnikov, Sergey M; Stein, Matthias

    2018-03-15

    CO 2 sequestration from anthropogenic resources is a challenge to the design of environmental processes at a large scale. Reversible chemical absorption by amine-based solvents is one of the most efficient methods of CO 2 removal. Molecular simulation techniques are very useful tools to investigate CO 2 binding by aqueous alkanolamine molecules for further technological application. In the present work, we have performed detailed atomistic molecular dynamics simulations of aqueous solutions of three prototype amines: monoethanolamine (MEA) as a standard, 3-aminopropanol (MPA), 2-methylaminoethanol (MMEA), and 4-diethylamino-2-butanol (DEAB) as potential novel CO 2 absorptive solvents. Solvent densities, radial distribution functions, cluster size distributions, hydrogen-bonding statistics, and diffusion coefficients for a full range of mixture compositions have been obtained. The solvent densities and diffusion coefficients from simulations are in good agreement with those in the experiment. In aqueous solution, MEA, MPA, and MMEA molecules prefer to be fully solvated by water molecules, whereas DEAB molecules tend to self-aggregate. In a range from 30/70-50/50 (w/w) alkanolamine/water mixtures, they form a bicontinuous phase (both alkanolamine and water are organized in two mutually percolating clusters). Among the studied aqueous alkanolamine solutions, the diffusion coefficients decrease in the following order MEA > MPA = MMEA > DEAB. With an increase of water content, the diffusion coefficients increase for all studied alkanolamines. The presented results are a first step for process-scale simulation and provide important qualitative and quantitative information for the design and engineering of efficient new CO 2 removal processes.

  9. Estimation of absolute solvent and solvation shell entropies via permutation reduction

    NASA Astrophysics Data System (ADS)

    Reinhard, Friedemann; Grubmüller, Helmut

    2007-01-01

    Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular dynamics, the configurational space volume explored by the diffusive motion of the solvent molecules is too large to be exhaustively sampled by current simulation techniques. Here, we develop a method to overcome the second problem and to significantly alleviate the first one. We propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way that renders established estimation methods applicable, such as the quasiharmonic approximation or principal component analysis. Our permutation-reduced approach involves a combinatorial problem, which is solved through its equivalence with the linear assignment problem, for which O(N3) methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and improved entropy estimates are obtained. Moreover, our approach renders diffusive systems accessible to improved fit functions.

  10. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers.

    PubMed

    Zhao, Jian; Liu, Chang-Sheng; Yuan, Yuan; Tao, Xin-Yi; Shan, Xiao-Qian; Sheng, Yan; Wu, Fan

    2007-03-01

    Hb (hemoglobin)-loaded particles (HbP) encapsulated by a biodegradable polymer used as oxygen carrier were prepared. A modified double emulsion and solvent diffusion/evaporation method was adopted. All experiments were performed based on two types of biodegradable polymers, poly(epsilon-caprolactone) (PCL) and poly(epsilon-caprolactone-ethylene glycol) (PCL-PEG). The biodistribution and the survival time in blood of the particles were investigated in a mouse model. Encapsulation efficiency and pore-connecting efficiency were evaluated by a novel sulfocyanate potassium method. The influence of process parameters on the particle size and pore-connecting efficiency (PCE%) of nanoparticles have been discussed. The prepared conditions: solvent, external aqueous phase, pressure were discussed. The system utilizing dichloromethane (DCM)/ethyl acetate (EA) as a solvent with an unsaturated external aqueous phase yielded the highest encapsulation efficiency (87.35%) with a small mean particle size (153 nm). The formation of porous channels was attributed to the diffusion of solvent. The PCE% was more sensitive to the rate of solvent diffusion that was obviously affected by the preparation temperature. The PCE% reached 87.47% when PCL-PEG was employed at 25 degrees C. P(50) of HbP was 27 mmHg, which does not seem to be greatly affected by the encapsulation procedure. In vivo, following intravenous injection of 6-coumarin labeled HbP, the major organ accumulating Hb-loaded particles was the liver. The half-life of nano-sized PCL HbP was 3.1 times as long as the micro-sized PCL HbP. Also, Nano-sized as well as a PEGylated surface on HbP is beneficial for prolonged blood residence (7.2 fold increase).

  11. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  12. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    PubMed

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  13. A surprising method for green extraction of essential oil from dry spices: Microwave dry-diffusion and gravity.

    PubMed

    Farhat, Asma; Fabiano-Tixier, Anne-Sylvie; Visinoni, Franco; Romdhane, Mehrez; Chemat, Farid

    2010-11-19

    Without adding any solvent or water, we proposed a novel and green approach for the extraction of secondary metabolites from dried plant materials. This "solvent, water and vapor free" approach based on a simple principle involves the application of microwave irradiation and earth gravity to extract the essential oil from dried caraway seeds. Microwave dry-diffusion and gravity (MDG) has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from dried caraway seeds. Essential oils isolated by MDG were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by HD, but MDG was better than HD in terms of rapidity (45min versus 300min), energy saving, and cleanliness. The present apparatus permits fast and efficient extraction, reduces waste, avoids water and solvent consumption, and allows substantial energy savings. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    We performed a molecular dynamics (MD) simulation for a system of 5 solute molecules in 495 solvent molecules interacting through the Lennard-Jones (LJ) 12-6 potential, in order to study solvent density effects on the diffusion coefficients in supercritical fluids. The effects of the size of the solute and the strength of the solute-solvent attractive interaction on the diffusion coefficient of the solute were examined. The diffusion coefficients of the solute molecules were calculated at T = 1.5 (in the LJ reduced unit), slightly above the critical temperature, from rho = 0.1 to rho = 0.95, where rho is the number density in the LJ reduced unit. The memory function in the generalized Langevin equation was calculated, in order to know the molecular origin of the friction on a solute. The memory function is separated into fast and slow components. The former arises from the solute-solvent repulsive interaction, and is interpreted as collisional Enskog-like friction. The interaction strength dependence of the collisional friction is larger in the low- and medium-density regions, which is consistent with the 'clustering' picture, i.e., the local density enhancement due to the solute-solvent attractive interaction. However, the slow component of the memory function suppresses the effect of the local density on the diffusion coefficients, and as a result the effect of the attractive interaction is smaller on the diffusion coefficients than on the local density. Nonetheless, the solvent density dependence of the effect of the attraction on the diffusion coefficient varies with the local density, and it is concluded that the local density is the principal factor that determines the interaction strength dependence of the diffusion coefficient in the low- and medium-density regions (p < 0.6).

  15. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong

    2014-12-01

    To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.

  16. Diffusion coefficients of nitric oxide in water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.

    2016-09-01

    Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.

  17. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less

  18. IN-VITRO CHARACTERIZATION OF GASTRORETENTIVE MICROBALLOONS PREPARED BY THE EMULSION SOLVENT DIFFUSION METHOD

    PubMed Central

    Yadav, Akash; Jain, Dinesh Kumar

    2010-01-01

    Microballoons floatable on JPXIII No.1 solution were developed as a dosage form capable of floating in the stomach. Microballoons were prepared by the emulsion solvent diffusion method using enteric acrylic and other polymers with drug in a mixture of dichloromethane and ethanol. It was found that preparation temperature determined the formation of cavity inside the microsphere and the surface smoothness, determining the floatability and the drug release rate of the microballoons. The correlation between the buoyancy of microballoons and their physical properties, e.g. apparent density and roundness of microballoons were elucidated. The drug loading efficiency of microballoons was also determined. The optimum loading amount of metformin in the microballoons was found to impart ideal floatable properties to the microballoons. By fitting the data into zero order, first order and Highuchi model it was concluded that the release followed zero order release. PMID:22247832

  19. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    PubMed

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly dispersed solvent into the PDMS.

  20. Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1990-01-01

    This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.

  1. Structure and diffusion of furans and other cellulose-derived compounds in solvents via MD simulation

    NASA Astrophysics Data System (ADS)

    Rabideau, Brooks; Ismail, Ahmed

    2011-03-01

    There is now a large push towards the development of energy sources that are both environmentally friendly and sustainable; with the conversion of cellulose derived from biomass into biofuels being one promising route. In this conversion, a variety of intermediary compounds have been identified, which appear critical to successful expansion of the process to an industrial scale. Here we examine the structure and diffusion of these furans and acids derived from cellulose within ionic liquids via molecular dynamic simulation. Ionic liquids have shown the ability to dissolve cellulose with certain `green' benefits over existing, conventional solvents. Specifically, we study the solvation properties of these chemicals by examining the pair correlation functions of solute with solvent, and by exploring the agglomeration and separation of these chemicals from the solvent as well as the hydrogen bonding between species. Additionally, we determine the diffusion constant of these compounds in ionic liquid and aqueous solvents.

  2. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Face-Dependent Solvent Adsorption: A Comparative Study on the Interfaces of HMX Crystal with Three Solvents.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Ma, Yiding; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2017-07-27

    To understand the crystal-solvent interfacial interactions on the molecular scale, the interfaces between three solvents, that is, acetone, γ-butyrolactone, and cyclohexanone, and three growth faces of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) crystal have been investigated with the aid of theoretical chemistry. The results show that the structural features of crystal faces play a critical role in the energetic, structural, and dynamic properties at the interfaces. For each solvent, the same change trend of some properties among the three faces of HMX crystal is observed, including adsorption affinity, local mass density, and solvent diffusion. For example, the rate of solvent diffusion at the three faces ranks as (011) > (110) > (020) regardless of solvent species. This can be attributed to the similar adsorption sites for solvent incorporation at the same face, which are concentrated at the cavities formed by surficial HMX molecules.

  4. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE PAGES

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less

  5. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.

    PubMed

    Ong, Mitchell T; Verners, Osvalds; Draeger, Erik W; van Duin, Adri C T; Lordi, Vincenzo; Pask, John E

    2015-01-29

    Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.

  6. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    DOE PAGES

    van Driel, Tim B.; Kjær, Kasper S.; Hartsock, Robert W.; ...

    2016-11-28

    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2(dimen) 4] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute–solvent pair distribution function, enabling themore » solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis.« less

  7. Antibacterial activity study of Attacus atlas cocoon against Staphylococcus aureus and Escherichia coli with diffusion and dilution method

    NASA Astrophysics Data System (ADS)

    Aminah; Nugraheni, E. R.; Yugatama, A.

    2018-03-01

    The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.

  8. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  9. Molecular simulations of diffusion in electrolytes

    NASA Astrophysics Data System (ADS)

    Wheeler, Dean Richard

    This work demonstrates new methodologies for simulating multicomponent diffusion in concentrated solutions using molecular dynamics (MD). Experimental diffusion data for concentrated multicomponent solutions are often lacking, as are accurate methods of predicting diffusion for nonideal solutions. MD can be a viable means of understanding and predicting multicomponent diffusion. While there have been several prior reports of MD simulations of mutual diffusion, no satisfactory expressions for simulating Stefan-Maxwell diffusivities for an arbitrary number of species exist. The approaches developed here allow for the computation of a full diffusion matrix for any number of species in both nonequilibrium and equilibrium MD ensembles. Our nonequilibrium approach is based on the application of constant external fields to drive species diffusion. Our equilibrium approach uses a newly developed Green-Kubo formula for Stefan-Maxwell diffusivities. In addition, as part of this work, we demonstrate a widely applicable means of increasing the computational efficiency of the Ewald sum, a technique for handling long-range Coulombic interactions in simulations. The theoretical development is applicable to any solution which can be simulated using MD; nevertheless, our primary interest is in electrochemical applications. To this end, the methods are tested by simulations of aqueous salt solutions and lithium-battery electrolytes. KCl and NaCl aqueous solutions were simulated over the concentration range 1 to 4 molal. Intermolecular-potential models were parameterized for these transport-based simulations. This work is the first to simulate all three independent diffusion coefficients for aqueous NaCl and KCl solutions. The results show that the nonequilibrium and equilibrium methods are consistent with each other, and in moderate agreement with experiment. We simulate lithium-battery electrolytes containing LiPF6 in propylene carbonate and mixed ethylene carbonate-dimethyl carbonate solvents. As with the aqueous-solution work, potential parameters were generated for these molecules. These nonaqueous electrolytes demonstrate rich transport behavior, which the simulations are able to reproduce qualitatively. In a mixed-solvent simulation we regress all six independent transport coefficients. The simulations show that strong ion pairing is responsible for the increase in viscosity and maximum in conductivity as ion concentrations are increased.

  10. Evaluation of the separation performance of polyvinylpyrrolidone as a virtual stationary phase for chromatographic NMR.

    PubMed

    Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei

    2014-09-01

    Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Measurement of diffusion in fluid systems: Applications to the supercritical fluid region

    NASA Astrophysics Data System (ADS)

    Bruno, Thomas J.

    1994-04-01

    The experimental procedures that are applicable to the measurement of diffusion in supercritical fluid solutions are reviewed. This topic is of great importance to the proper design of advanced aircraft and turbine fuels, since the fuels on these aircraft may sometimes operate under supercritical fluid conditions. More specifically, we will consider measurements of the binary interaction diffusion coefficient D exp 12 of a solute (species 1) and the solvent (species 2). In this discussion, the supercritical fluid is species 2, and the solute, species 1, will be at a relatively low concentration, sometimes approaching infinite dilution. After a brief introduction to the concept of diffusion, we will discuss in detail the use of chromatographic methods, and then briefly treat light scattering, nuclear magnetic resonance spectra, and physical methods.

  12. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon

    DOE PAGES

    Alam, Todd M.; Osborn Popp, Thomas M.

    2016-06-04

    High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

  13. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics

    DOE PAGES

    Ong, Mitchell T.; Verners, Osvalds; Draeger, Erik W.; ...

    2014-12-19

    We report that lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF more » $$\\bar{6}$$ anion. Li + prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li + solvation. Corresponding analysis for the PF $$\\bar{6}$$ anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. In conclusion, these results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.« less

  14. Study of mass transfer in supercritical carbon dioxide (SCCO2) using optical methods

    NASA Astrophysics Data System (ADS)

    Hu, M.; Benning, R.; Ertunç, Ö.; Delgado, A.; Nercissian, V.; Berger, M.

    2017-12-01

    The purpose of this work is to design and develop a type of experiment setup that would enable the direct observation of steady diffusion process in situ. Two different optical methods - shadowgraph and shearing interferometry - were used for the first time to visualise and quantitatively analyse the diffusion around a droplet of organic substance in supercritical carbon dioxide (SCCO2) as well as in its direct vicinity. We constructed and tested a cylindrical high-pressure chamber and an experiment system with a high speed camera. The solute/solvent combination of DL- α-tocopherol/SCCO2 was applied using shadowgraph. The diffusion coefficients at temperatures of 40o C, 50o C and 60o C and pressures between 75 bar and 90 bar were calculated based on the displacement of the droplet contour in the captured images. The shearing interferometry with a Wollaston-prism was then applied not only for the combination of DL- α-tocopherol/SCCO2, but also for other substances in SCCO2, for example for a type of rose oil and lubricant oil as well as for acetone, benzene, toluene and naphthalene. The changes of the refractive index gradient were directly measured and evaluated with the interferograms; afterwards changes of the density gradients and the diffusion coefficients were determined. We propose then a multivariate regression model to capture the relationship between the diffusion coefficient, the pressure and the temperature. To minimize the influence of gravity-driven convections in the solvent during diffusion, the experiments were also carried out under microgravity condition, i.e. in two parabolic flight campaigns.

  15. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    NASA Astrophysics Data System (ADS)

    Hu, Chengyao; Huang, Pei

    2011-05-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also the influence of the solution density change and the initial concentration conditions on the dissolved amount was investigated by the numerical results using the estimated parameters. It is found that the theoretical assumption to simplify the inverse measurement problem algorithm is reasonable for low solubility.

  16. Fractionation of Poly(butyl methacrylate) by Molecular Topology Using Multidetector Thermal Field-Flow Fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2015-12-01

    Thermal field-flow fractionation (ThFFF) is an interesting alternative to column-based fractionation being able to address different molecular parameters including size and composition. Until today it has not been shown to be able to fractionate polymers of similar molar masses and chemical compositions by molecular topology. The present study demonstrates that poly(butyl methacrylates) with identical molar masses can be fractionated by ThFFF according to the topology of the butyl group. The influence of the solvent polarity on the thermal diffusion behavior of these polymers is presented and it is shown to have a significant influence on the fractionation of poly(n-butyl methacrylate) and poly(t-butyl methacrylate). Fractionation improves with increasing solvent polarity and solvent polarity may have a greater influence on fractionation than solvent viscosity. It is found that the thermal diffusion coefficient, D(T), as well as the hydrodynamic diameter, D(h), exhibit increasing trends with increasing solvent polarity. The solvent quality has a significant influence on the fractionation. It is found that cyclohexane, being a theta solvent for poly(t-butyl methacrylate) but not for poly(n-butyl methacrylate), significantly improves the fractionation of the samples by decreasing the diffusion rate of the former but not the latter. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transport parameter estimation from lymph measurements and the Patlak equation.

    PubMed

    Watson, P D; Wolf, M B

    1992-01-01

    Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.

  18. Application of mass spectrometer-inverse gas chromatography to study polymer-solvent diffusivity and solubility.

    PubMed

    Galdámez, J Román; Danner, Ronald P; Duda, J Larry

    2007-07-20

    The application of a mass spectrometer detector in capillary column inverse gas chromatography is shown to be a valuable tool in the measurement of diffusion and solubility in polymer-solvent systems. The component specific detector provides excellent results for binary polymer-solvent systems, but it is particularly valuable because it can be readily applied to multicomponent systems. Results for a number of infinitely dilute solvents in poly(vinyl acetate) (PVAc) are reported over a range of temperature from 60 to 150 degrees C. Results are also reported for finite concentrations of toluene and methanol in PVAc from 60 to 110 degrees C. Finally, the technique was applied to study the effect of finite concentrations of toluene on the diffusion coefficients of THF and cyclohexane in PVAc. The experimental data compare well with literature values for both infinite and finite concentrations, indicating that the experimental protocol described in this work is sound.

  19. Long-range single domain array of a 5 nm pattern of supramolecules via solvent annealing in a double-sandwich cell.

    PubMed

    Kwon, Kiok; Park, Kangho; Jung, Hee-Tae

    2018-05-10

    In nanotechnology and microelectronics research, the generation of an ultradense, single-grain nanostructure with a long-range lateral order is challenging. In this paper, we report upon a new solvent-annealing method using a double-sandwich confinement to promote the formation of a large-area, single-domain array (>0.3 × 0.3 mm2) of supramolecular cylinders with a small feature size (4.7 nm). The in situ GISAXS experiment result shows the ordering process during solvent evaporation. The diffusion of the solvent molecules led to the disassembly of the supramolecules confined between the top and bottom surfaces and their subsequent mobilization, thereby producing a highly ordered hexagonal array of supramolecular materials under the double-sandwich confinement upon solvent evaporation. In addition, two key factors were found to be crucial in this process for generating highly-ordered supramolecular building blocks: (i) the presence of a top coat during solvent evaporation to provide a geometric confinement template, and (ii) the control of the solvent evaporation rate during the solvent evaporation step to provide the dendrimer sufficient time to self-assemble into the highly ordered state over a large area. Our developed approach, which can be extended to be used for a large family of supramolecules, is of critical importance in providing a new bottom-up lithographic method based on supramolecular self-assembly.

  20. Experimental and Modeling Study of Solvent Diffusion in PDMS for Nanoparticle-Polymer Cosuspension Imprint Lithography.

    PubMed

    Gervasio, Michelle; Lu, Kathy; Davis, Richey

    2015-09-15

    This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

  1. Firing of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  2. Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Kim, Jung-Hwa; Kim, Seong Heon; Seol, Minsu; Yu, DaEun; Kwon, Hyukju; Ham, Yongnam; Chung, JaeGwan; Kim, Yongsu; Heo, Sung

    2016-04-01

    In most solution-processed organic devices, a poly(3,4-ethylenedioxythiophene) (PEDOT) polymerized with poly(4-styrenesulfonate) (PSS) film is inevitably affected by various conditions during the subsequent solution-coating processes. To investigate the effects of direct solvent exposure on the properties of PEDOT polymerized with PSS (PEDOT:PSS) films, photoemission spectroscopy-based analytical methods were used before and after solvent-coating processes. Our results clearly indicate that PEDOT:PSS films undergo a different transition mechanism depending on the solubility of the solvent in water. The water-miscible solvents induce the solvation of hydrophilic PSS chains. As a result, this process allows the solvent to diffuse into the PEDOT:PSS film, and a conformational change between PEDOT and PSS occurs. On the other hand, the water-immiscible organic solvents cause the partial adsorption of solvent molecules at the PE surface, which leads to changes in the surface properties, including work function. Based on our finding, we demonstrate that the energy-level alignments at the organic semiconductor/electrode interface for the PEDOT:PSS films can be controlled by simple solvent treatments.

  3. GFP as potential cellular viscosimeter.

    PubMed

    Visser, Antonie J W G; Westphal, Adrie H; Skakun, Victor V; Borst, Jan Willem

    2016-08-18

    The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.

  4. GFP as potential cellular viscosimeter

    NASA Astrophysics Data System (ADS)

    Visser, Antonie J. W. G.; Westphal, Adrie H.; Skakun, Victor V.; Borst, Jan Willem

    2016-09-01

    The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.

  5. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  6. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes

    NASA Astrophysics Data System (ADS)

    Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.

    2014-10-01

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ˜3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  7. Elementary kinematical model of thermal diffusion in liquids and gases.

    PubMed

    Brenner, Howard

    2006-09-01

    An elementary hydrodynamic and Brownian motion model of the thermal diffusivity D(T) of a restricted class of binary liquid mixtures, previously proposed by the author, is given a more transparent derivation than originally, exposing thereby the strictly kinematic-hydrodynamic nature of an important class of thermodiffusion separation phenomena. Moreover, it is argued that the solvent's thermometric diffusivity alpha appearing in that theory as one of the two fundamental parameters governing D(T) should be replaced by the solvent's (isothermal) self-diffusivity D(S). In addition, a corrective multiplier of O(1) is inserted to reflect the general physicochemical noninertness of the solute relative to the solvent, thus enhancing the applicability of the resulting formula D(T)=lambdaD(S)beta to "nonideal" solutions. Here, beta is the solvent's thermal expansivity and lambda is a term of O(1), insensitive to the physicochemical nature of the solute (thus rendering D(T) primarily dependent upon only the properties of the solvent). This formula is, on the basis of its derivation, presumably valid only under certain idealized, albeit well-defined, circumstances. This occurs when the solute molecules are: (i) large compared with those of the solvent; and (ii) present only in small proportions relative to those of the solvent. When the solute is physicochemically inert, it is expected that lambda=1. When these conditions are met, the resulting thermal diffusivity of the mixture is, in theory, independent of any and all properties of the solute. Moreover, because beta is algebraically signed, the thermal diffusivity can either by positive or negative, according as the solvent expands or contracts upon being heated. This formula for D(T) is compared with available experimental data for selected binary liquid mixtures. Reasonable agreement is found in almost all circumstances with lambda near unity, the more so the higher the temperature, especially when the solute-solvent mixture properties closely approximate those where agreement would be expected and conversely. Finally, it is pointed out that for the restricted circumstances described, the formula D(T)=lambdaD(S)beta is equally credible for gases. Here, based on gas-kinetic theory, it is possible to furnish the theoretical value of lambda. Overall, while spanning a range of about five orders of magnitude, the D(T) values given by this elementary formula are shown to apply with reasonable accuracy to: (i) liquids (including circumstances for which D(T) is negative) as well as gases; (ii) all combinations of solvents and solutes tested (the latter including, for example, polymer molecules and metallic colloidal particles); and (iii) all sizes of solute molecules, from angstroms to submicron.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Soumya; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    Electron transfer and proton coupled electron transfer (PCET) reactions at electrochemical interfaces play an essential role in a broad range of energy conversion processes. The reorganization energy, which is a measure of the free energy change associated with solute and solvent rearrangements, is a key quantity for calculating rate constants for these reactions. We present a computational method for including the effects of the double layer and ionic environment of the diffuse layer in calculations of electrochemical solvent reorganization energies. This approach incorporates an accurate electronic charge distribution of the solute within a molecular-shaped cavity in conjunction with a dielectricmore » continuum treatment of the solvent, ions, and electrode using the integral equations formalism polarizable continuum model. The molecule-solvent boundary is treated explicitly, but the effects of the electrode-double layer and double layer-diffuse layer boundaries, as well as the effects of the ionic strength of the solvent, are included through an external Green’s function. The calculated total reorganization energies agree well with experimentally measured values for a series of electrochemical systems, and the effects of including both the double layer and ionic environment are found to be very small. This general approach was also extended to electrochemical PCET and produced total reorganization energies in close agreement with experimental values for two experimentally studied PCET systems. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  9. Microencapsulation and Electrostatic Processing Method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  10. To Keep or Not to Keep? The Question of Crystallographic Waters for Enzyme Simulations in Organic Solvent

    PubMed Central

    Dahanayake, Jayangika N.; Gautam, Devaki N.; Verma, Rajni; Mitchell-Koch, Katie R.

    2016-01-01

    The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results. PMID:27403032

  11. Physicochemical properties to determine the buoyancy of hollow microspheres (microballoons) prepared by the emulsion solvent diffusion method.

    PubMed

    Sato, Yasunori; Kawashima, Yoshiaki; Takeuchi, Hirofumi; Yamamoto, Hiromitsu

    2003-05-01

    Hollow microspheres (microballoons) floatable on JPXIII No.1 solution were developed as a dosage form capable of floating in the stomach. Hollow microspheres were prepared by the emulsion solvent diffusion method using enteric acrylic polymers with drug in a mixture of dichloromethane and ethanol. It was found that preparation temperature determined the formation of cavity inside the microsphere and the surface smoothness, determining the floatability and the drug release rate of the microballoon. The correlation between the buoyancy of microballoons and their physical properties, e.g. apparent density and roundness of microballoons were elucidated. The drug loading efficiency of microballoons with various types of drug was investigated and correlated to the distribution coefficient of drug between dichloromethane and water. The optimum loading amount of riboflavin in the microballoon was found to impart ideal floatable properties to the microballoons. On the other hand, little entrapment was observed for aspirin due to the low distribution coefficient; however, entrapment improved to some extent upon reduction of the pH of the process.

  12. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.

    PubMed

    Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J

    2017-12-20

    One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.

  13. Controlled Self-Assembly of Low-Dimensional Alq3 Nanostructures from 1D Nanowires to 2D Plates via Intermolecular Interactions

    NASA Astrophysics Data System (ADS)

    Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Jin, Cuihong; Liu, Xin; Bian, Zhenpan; Li, Jianjun; Wang, Lu; Li, Xiaoyu

    2018-03-01

    Due to the intense influence of the shape and size of the photon building blocks on the limitation and guidance of optical waves, an important strategy is the fabrication of different structures. Herein, organic semiconductor tris-(8-hydroxyquinoline)aluminium (Alq3) nanostructures with controllable morphology, ranging from one-dimensional nanowires to two-dimensional plates, have been prepared through altering intermolecular interactions with employing the anti-solvent diffusion cooperate with solvent-volatilization induced self-assembly method. The morphologies of the formed nanostructures, which are closely related to the stacking modes of the molecules, can be exactly controlled by altering the polarity of anti-solvents that can influence various intermolecular interactions. The synthesis strategy reported here can potentially be extended to other functional organic nanomaterials.

  14. Femtosecond dynamics in hydrogen-bonded solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, E.W. Jr.; Chang, Y.J.

    1993-09-01

    We present results on the ultrafast dynamics of pure hydrogen-bonding solvents, obtained using femtosecond Fourier-transform optical-heterodyne-detected, Raman-induced Kerr effect spectroscopy. Solvent systems we have studied include the formamides, water, ethylene glycol, and acetic acid. Inertial and diffusive motions are clearly resolved. We comment on the effect that such ultrafast solvent motions have on chemical reactions in solution.

  15. Low-density microcellular foam and method of making same

    DOEpatents

    Rinde, James A.

    1977-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0.degree.-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly applicable for encapsulation of laser targets.

  16. Method of making a cellulose acetate low density microcellular foam

    DOEpatents

    Rinde, James A.

    1978-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.

  17. Process analysis and modeling of a single-step lutein extraction method for wet microalgae.

    PubMed

    Gong, Mengyue; Wang, Yuruihan; Bassi, Amarjeet

    2017-11-01

    Lutein is a commercial carotenoid with potential health benefits. Microalgae are alternative sources for the lutein production in comparison to conventional approaches using marigold flowers. In this study, a process analysis of a single-step simultaneous extraction, saponification, and primary purification process for free lutein production from wet microalgae biomass was carried out. The feasibility of binary solvent mixtures for wet biomass extraction was successfully demonstrated, and the extraction kinetics of lutein from chloroplast in microalgae were first evaluated. The effects of types of organic solvent, solvent polarity, cell disruption method, and alkali and solvent usage on lutein yields were examined. A mathematical model based on Fick's second law of diffusion was applied to model the experimental data. The mass transfer coefficients were used to estimate the extraction rates. The extraction rate was found more significantly related with alkali ratio to solvent than to biomass. The best conditions for extraction efficiency were found to be pre-treatment with ultrasonication at 0.5 s working cycle per second, react 0.5 h in 0.27 L/g solvent to biomass ratio, and 1:3 ether/ethanol (v/v) with 1.25 g KOH/L. The entire process can be controlled within 1 h and yield over 8 mg/g lutein, which is more economical for scale-up.

  18. Application of solid state NMR for the study of surface bound species and fossil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althaus, Stacey

    2014-01-01

    In this study, stimulated echo with pulsed field gradients was used to measure the diffusion of two different solvents, water and hexane, in AP-MSN-2.7 and AP-MSN-3.7. The resulting data were then fit using two different methods. Based on these fits, the diffusion of hexane in AP-MSN-2.7 was shown to be slower than in the larger pores. This agrees well with our studies of catalytic activity, which show an increase in the reaction rate with the increase in pore size. Thus, both substrate inhibition and diffusion played a role in the decreased efficiency of the APMSN with small pore sizes.

  19. Apparatus for diffusion-gap thermal desalination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, Andrew

    A thermal distillation apparatus including evaporation surfaces that are wetted with a solution, and from which at least some of the volatile solvent contained in the solution evaporates, condensers having an external surface in close proximity to, but not touching, a corresponding one of the one or more evaporation surfaces, and on which vapors of the solvent condense, releasing thermal energy that heats a flow of the solution moving upward within the condensers, spacers that prevent contact between the evaporating surfaces and the condensers, wherein spaces between the evaporating surfaces and the condensers are filled with a gaseous mixture composedmore » of solvent vapor and one or more non-condensable gases, and except for diffusion of the solvent vapor relative to the non-condensable gases, the gaseous mixture is stationary.« less

  20. Solvent-assisted lipid bilayer formation on silicon dioxide and gold.

    PubMed

    Tabaei, Seyed R; Choi, Jae-Hyeok; Haw Zan, Goh; Zhdanov, Vladimir P; Cho, Nam-Joon

    2014-09-02

    Planar lipid bilayers on solid supports mimic the fundamental structure of biological membranes and can be investigated using a wide range of surface-sensitive techniques. Despite these advantages, planar bilayer fabrication is challenging, and there are no simple universal methods to form such bilayers on diverse material substrates. One of the novel methods recently proposed and proven to form a planar bilayer on silicon dioxide involves lipid deposition in organic solvent and solvent exchange to influence the phase of adsorbed lipids. To scrutinize the specifics of this solvent-assisted lipid bilayer (SALB) formation method and clarify the limits of its applicability, we have developed a simplified, continuous solvent-exchange version to form planar bilayers on silicon dioxide, gold, and alkanethiol-coated gold (in the latter case, a lipid monolayer is formed to yield a hybrid bilayer) and varied the type of organic solvent and rate of solvent exchange. By tracking the SALB formation process with simultaneous quartz crystal microbalance-dissipation (QCM-D) and ellipsometry, it was determined that the acoustic, optical, and hydration masses along with the acoustic and optical thicknesses, measured at the end of the process, are comparable to those observed by employing conventional fabrication methods (e.g., vesicle fusion). As shown by QCM-D measurements, the obtained planar bilayers are highly resistant to protein adsorption, and several, but not all, water-miscible organic solvents could be successfully used in the SALB procedure, with isopropanol yielding particularly high-quality bilayers. In addition, fluorescence recovery after photobleaching (FRAP) measurements demonstrated that the coefficient of lateral lipid diffusion in the fabricated bilayers corresponds to that measured earlier in the planar bilayers formed by vesicle fusion. With increasing rate of solvent exchange, it was also observed that the bilayer became incomplete and a phenomenological model was developed in order to explain this feature. The results obtained allowed us to clarify and discriminate likely steps of the SALB formation process as well as determine the corresponding influence of organic solvent type and flow conditions on these steps. Taken together, the findings demonstrate that the SALB formation method can be adapted to a continuous solvent-exchange procedure that is technically minimal, quick, and efficient to form planar bilayers on solid supports.

  1. Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko

    2000-08-01

    The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.

  2. Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study

    PubMed Central

    2017-01-01

    The solvent exchange procedure has become the most-used protocol to produce surface nanobubbles, while the molecular mechanisms behind the solvent exchange are far from being fully understood. In this paper, we build a simple model and use molecular dynamics simulations to investigate the dynamic characteristics of solvent exchange for producing nanobubbles. We find that at the first stage of solvent exchange, there exists an interface between interchanging solvents of different gas solubility. This interface moves toward the substrate gradually as the exchange process proceeds. Our simulations reveal directed diffusion of gas molecules against the gas concentration gradient, driven by the solubility gradient of the liquid composition across the moving solvent–solvent interface. It is this directed diffusion that causes gas retention and produces a local gas oversaturation much higher near the substrate than far from it. At the second stage of solvent exchange, the high local gas oversaturation leads to bubble nucleation either on the solid surface or in the bulk solution, which is found to depend on the substrate hydrophobicity and the degree of local gas oversaturation. Our findings suggest that solvent exchange could be developed into a standard procedure to produce oversaturation and used to a variety of nucleation applications other than generating nanobubbles. PMID:28742364

  3. Solvent removal during synthetic and Nephila fiber spinning.

    PubMed

    Kojic, Nikola; Kojic, Milos; Gudlavalleti, Sauri; McKinley, Gareth

    2004-01-01

    The process by which spiders make their mechanically superior fiber involves removal of solvent (water) from a concentrated protein solution while the solution flows through a progressively narrowing spinning canal. Our aim was to determine a possible mechanism of spider water removal by using a computational model. To develop appropriate computational techniques for modeling of solvent removal during fiber spinning, a study was first performed using a synthetic solution. In particular, the effect of solvent removal during elongational flow (also exhibited in the spinning canal of the spider) on fiber mechanical properties was examined. The study establishes a model for solvent removal during dry spinning of synthetic fibers, assuming that internal diffusion governs solvent removal and that convective resistance is small. A variable internal solvent diffusion coefficient, dependent on solvent concentration, is also taken into account in the model. An experimental setup for dry (air) spinning was used to make fibers whose diameter was on the order of those made by spiders (approximately 1 microm). Two fibers of different thickness, corresponding to different spinning conditions, were numerically modeled for solvent removal and then mechanically tested. These tests showed that the thinner fiber, which lost more solvent under elongational flow, had 5-fold better mechanical properties (elastic modulus of 100 MPa and toughness of 15 MJ/m3) than the thicker fiber. Even though the mechanical properties were far from those of dragline spider silk (modulus of 10 GPa and toughness of 150 MJ/m3), the experimental methodology and numerical principles developed for the synthetic case proved to be valuable when establishing a model for the Nephila spinning process. In this model, an assumption of rapid convective water removal at the spinning canal wall was made, with internal diffusion of water through the fiber as the governing process. Then the diffusion coefficient of water through the initial spinning solution, obtained ex vivo from the Nephila clavipes major ampullate gland, was determined and incorporated into the numerical procedure, along with the wall boundary conditions and canal geometry. Also, a typical fiber reeling speed during web making, as well as the assumption of a dry exiting fiber, were included in the model. The results show that a cross-section of spinning solution (dope), which is initially 70% water, spends 19 s in the spinning canal in order to emerge dry. While the dope cross-section traverses the canal, its velocity increases from 0.37 mm/s at the entrance to 12.5 mm/s at the canal exit. The obtained results thus indicate that simple diffusion, along with the dry wall boundary condition, is a viable mechanism for water removal during typical Nephila fiber spinning.

  4. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  5. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  6. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    PubMed Central

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  7. Expression, purification and crystallization of a human protein SH3BGRL at atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Lei; Zhu, De-Yu; Yang, Na

    2005-04-01

    The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The crystals diffract to 0.88 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 28.8886, b = 34.9676, c = 98.0016 Å. Preliminary analysis indicates that the asymmetric unit contains one molecule and has a solvent content of about 34%.

  8. Characterization and tailoring of porous sol-gel dielectrics for interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Rogojevic, Svetlana

    A new, better insulator is needed to replace SiO2 in the next generation of microelectronic devices. The dielectric constant of porous materials can be tailored by adjusting the porosity, so that their use can be extended to more than one generation of devices. Silica xerogel films with wide range of porosities (25 90%) are fabricated by varying the rate of solvent evaporation during spin-coating. Even better porosity control is achieved by using mixtures of high and low boiling point solvents, and allowing one solvent to evaporate completely during spin-coating. The quartz crystal microbalance method was employed to measure the traces of moisture adsorbed in xerogel films of varying porosities. By employing two different surface modifiers, it is demonstrated that the level of hydrophobicity is a function of surface chemistry, and can be tailored by using a suitable surface modifier. To investigate the interaction of xerogels with other materials, metallic layers were deposited on xerogel films, and subsequently annealed. When annealed in the ambient with trace amount of oxygen, Ta and Cu films undergo morphological instabilities. These morphological changes may lead to the erroneous interpretation of the Rutherford backscattering spectra as metal diffusion. When the samples are capped with a Si3N4 layer, Cu and Ta do not show diffusion through xerogel when annealed up to 650°C. Bias-temperature stressing was conducted in order to assess Cu drift through xerogel in the presence of an electric field. Contrary to what is normally observed with other dielectrics, the leakage current and C-V curve shifts were larger with an Al electrode than with a Cu electrode. This indicates that the surface modification of xerogel can contribute to the smaller charge injection from the Cu/xerogel interface, or to the inhibition of Cu diffusion, thus offering a possibility of designing future monolayer diffusion barriers for porous materials. Two possible paths of mass transfer in porous solids are identified: bulk and surface diffusion. Three driving forces are also analyzed: concentration gradient, electric field, and curvature gradient. The model of diffusion through porous solids shows the effects of the electric field, the solid network thickness, porosity, surface and bulk diffusivity. The model is a useful tool for designing and interpreting the experiments, in order to assess the role of surface diffusion in porous materials.

  9. Templated Native Silk Smectic Gels

    NASA Technical Reports Server (NTRS)

    Park, Jae-Hyung (Inventor); Valluzzi, Regina (Inventor); Jin, Hyoung-Joon (Inventor)

    2013-01-01

    One aspect of the present invention relates to a method of preparing a fibrous protein smectic hydrogel by way of a solvent templating process, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; and collecting the resulting fibrous protein smectic hydrogel and allowing it to dry. Another aspect of the present invention relates to a method of obtaining predominantly one enantiomer from a racemic mixture, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; allowing the enantiomers of racemic mixture to diffuse selectively into the smectic hydrogel in solution; removing the smectic hydrogel from the solution; rinsing predominantly one enantiomer from the surface of the smectic hydrogel; and extracting predominantly one enantiomer from the interior of the smectic hydrogel. The present invention also relates to a smectic hydrogel prepared according to an aforementioned method.

  10. Templated Native Silk Smectic Gels

    NASA Technical Reports Server (NTRS)

    Park, Jae-Hyung (Inventor); Valluzzi, Regina (Inventor); Jin, Hyoung-Joon (Inventor)

    2016-01-01

    One aspect of the present invention relates to a method of preparing a fibrous protein smectic hydrogel by way of a solvent templating process, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; and collecting the resulting fibrous protein smectic hydrogel and allowing it to dry. Another aspect of the present invention relates to a method of obtaining predominantly one enantiomer from a racemic mixture, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; allowing the enantiomers of racemic mixture to diffuse selectively into the smectic hydrogel in solution; removing the smectic hydrogel from the solution; rinsing predominantly one enantiomer from the surface of the smectic hydrogel; and extracting predominantly one enantiomer from the interior of the smectic hydrogel. The present invention also relates to a smectic hydrogel prepared according to an aforementioned method.

  11. Templated native silk smectic gels

    NASA Technical Reports Server (NTRS)

    Park, Jae-Hyung (Inventor); Valluzzi, Regina (Inventor); Jin, Hyoung-Joon (Inventor)

    2009-01-01

    One aspect of the present invention relates to a method of preparing a fibrous protein smectic hydrogel by way of a solvent templating process, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; and collecting the resulting fibrous protein smectic hydrogel and allowing it to dry. Another aspect of the present invention relates to a method of obtaining predominantly one enantiomer from a racemic mixture, comprising the steps of pouring an aqueous fibrous protein solution into a container comprising a solvent that is not miscible with water; sealing the container and allowing it to age at about room temperature; allowing the enantiomers of racemic mixture to diffuse selectively into the smectic hydrogel in solution; removing the smectic hydrogel from the solution; rinsing predominantly one enantiomer from the surface of the smectic hydrogel; and extracting predominantly one enantiomer from the interior of the smectic hydrogel. The present invention also relates to a smectic hydrogel prepared according to an aforementioned method.

  12. Mass transport in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Leyte, J. C.

    1999-02-01

    The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.

  13. Real-space analysis of diffusion behavior and activation energy of individual monatomic ions in a liquid.

    PubMed

    Miyata, Tomohiro; Uesugi, Fumihiko; Mizoguchi, Teruyasu

    2017-12-01

    Investigation of the local dynamic behavior of atoms and molecules in liquids is crucial for revealing the origin of macroscopic liquid properties. Therefore, direct imaging of single atoms to understand their motions in liquids is desirable. Ionic liquids have been studied for various applications, in which they are used as electrolytes or solvents. However, atomic-scale diffusion and relaxation processes in ionic liquids have never been observed experimentally. We directly observe the motion of individual monatomic ions in an ionic liquid using scanning transmission electron microscopy (STEM) and reveal that the ions diffuse by a cage-jump mechanism. Moreover, we estimate the diffusion coefficient and activation energy for the diffusive jumps from the STEM images, which connect the atomic-scale dynamics to macroscopic liquid properties. Our method is the only available means to observe the motion, reactions, and energy barriers of atoms/molecules in liquids.

  14. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    PubMed

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  15. Modification of the crystal habit of celecoxib for improved processability.

    PubMed

    Banga, Sheere; Chawla, Garima; Varandani, Deepak; Mehta, B R; Bansal, Arvind K

    2007-01-01

    Crystallization is often used in the pharmaceutical industry for purification and isolation of drugs, and also as a means of generating polymorphs or isomorphs. The aim of this study was to investigate the role of extrinsic crystallization parameters on the crystallized product, with special emphasis on improving the mechanical properties of acicular celecoxib. Celecoxib isomorphs were prepared using different techniques (solvent crystallization and vapour diffusion) and crystallization conditions (solvents, stirring, degree of supersaturation, crystallization temperature and seeding). Powder X-ray diffractometry, spectroscopic and thermal methods were used to investigate physical characteristics of crystals. Growth kinetics and aggregation dynamics of crystallization in polar and non-polar solvents were simulated using a dynamic light scattering method. The quick appearance of broad peaks over the range of 10-8000 nm in chloroform during crystallization simulation studies indicated faster aggregation in non-polar solvents. Aspect ratio, flow, compressibility and surface area of recrystallized products were also determined. Surface topography was determined by atomic force microscopy and the lath-shaped crystals (aspect ratio of 2-4) exhibited a roughness index of 1.79 in comparison with 2.92 for needles. Overall, the lath-shaped isomorphs exhibited improved flow and better compressibility.

  16. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  17. Measuring Solvent Content of Macromolecular Crystals Using Fluorescence Recovery after Photobleaching

    NASA Astrophysics Data System (ADS)

    Siewny, Matthew; Kmetko, Jan

    2010-10-01

    We work out a novel protocol for measuring the solvent content (the fraction of crystal volume occupied by solvent) in biological crystals by the technique of fluorescence recovery after photobleaching (FRAP). Crystals of proteins with widely varying known solvent content (lysozyme, thaumatin, catalase, and ferritin) were grown in their native solution doped with sodium fluorescein dye and hydroxylamine (to prevent dye from binding to amine groups of the proteins.) The crystals were irradiated by a broadband, high intensity light through knife slits, leaving a rectangular area of bleached dye within the crystals. Measuring the flow of dye out of the bleached area allowed us to construct a curve relating the diffusion coefficient of dye to the channel size within the crystals, by solving the diffusion equation analytically. This curve may be used to measure the solvent content of any biological crystal in its native solution and help determine the number of proteins in the crystallographic asymmetric unit cell in x-ray structure solving procedures.

  18. Effect of Aprotic Solvents on the Dynamics of a Room Temperature Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Osti, Naresh; van Aken, Katherine; Thompson, Matthew; Tiet, Felix; Jiang, De-En; Cummings, Peter; Gogotsi, Yury; Mamontov, Eugene

    Room temperature ionic liquids (RTILs) have attracted much attention as electrolytes in energy storage devices because of their peculiar physical and chemical characteristics. However, their remarkably high viscosity, which results in low conductivity and diffusivity, may adversely affect the charging and discharging rates. Despite changing molecular configurations, use of aprotic solvent allows to enhance the transport properties of ionic liquids by disrupting the cation-anion interactions. We explore the impact of dipole moment of aprotic solvents on the cation-anion interaction and transport in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM +][Tf2N-], RTIL using molecular dynamics (MD) simulations and quasi-elastic neutrons scattering (QENS) measurements. We observed an increase in cation diffusivity with the increasing dipole moment of the solvent. This effect is due to a decrease in the solvation free energy induced by the increasing solvent polarity. A clear nano-phase separation into ionic liquid-rich and ionic liquid-poor phases as observed by QENS will be also discussed.

  19. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    NASA Astrophysics Data System (ADS)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  20. Study of the solid state of carbamazepine after processing with gas anti-solvent technique.

    PubMed

    Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Alessi, P; Cortesi, A; Princivalle, F; Solinas, D

    2003-09-01

    The purpose of this study was to investigate the influence of supercritical CO2 processing on the physico-chemical properties of carbamazepine, a poorly soluble drug. The gas anti-solvent (GAS) technique was used to precipitate the drug from three different solvents (acetone, ethylacetate and dichloromethane) to study how they would affect the final product. The samples were analysed before and after treatment by scanning electron microscopy analysis and laser granulometry for possible changes in the habitus of the crystals. In addition, the solid state of the samples was studied by means of X-ray powder diffraction, differential scanning calorimetry, diffuse reflectance Fourier-transform infrared spectroscopy and hot stage microscopy. Finally, the in vitro dissolution tests were carried out. The solid state analysis of both samples untreated and treated with CO2, showed that the applied method caused a transition from the starting form III to the form I as well as determined a dramatic change of crystal morphology, resulting in needle-shaped crystals, regardless of the chosen solvent. In order to identify which process was responsible for the above results, carbamazepine was further precipitated from the same three solvents by traditional evaporation method (RV-samples). On the basis of this cross-testing, the solvents were found to be responsible for the reorganisation into a different polymorphic form, and the potential of the GAS process to produce micronic needle shaped particles, with an enhanced dissolution rate compared to the RV-carbamazepine, was ascertained.

  1. Radiation processed polychloroprene-co-ethylene-propene diene terpolymer blends: Effect of radiation vulcanization on solvent transport kinetics

    NASA Astrophysics Data System (ADS)

    Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Kumar, Virendra; Goel, N. K.; Sabharwal, S.

    2009-03-01

    Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM ( p0/ q0 ˜ 0.08), whereas it was the lowest for blends containing 40% PCR ( p0/ q0 ˜ 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The Δ G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.

  2. HF in clusters of molecular hydrogen. I. Size evolution of quantum solvation by parahydrogen molecules.

    PubMed

    Jiang, Hao; Bacić, Zlatko

    2005-06-22

    We present a theoretical study of the quantum solvation of the HF molecule by a small number of parahydrogen molecules, having n = 1-13 solvent particles. The minimum-energy cluster structures determined for n = 1-12 have all of the H(2) molecules in the first solvent shell. The first solvent shell closes at n = 12 and its geometry is icosahedral, with the HF molecule at the center. The quantum-mechanical ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. The zero-point energy of (p-H(2))(n)HF clusters is unusually large, amounting to 86% of the potential well depth for n > 7. The radial probability distribution functions (PDFs) confirm that the first solvent shell is complete for n = 12, and that the 13th p-H(2) molecule begins to fill the second solvent shell. The p-H(2) molecules execute large-amplitude motions and are highly mobile, making the solvent cage exceptionally fluxional. The anisotropy of the solvent, very pronounced for small clusters, decreases rapidly with increasing n, so that for n approximately 8-9 the solvent environment is practically isotropic. The analysis of the pair angular PDF reveals that for a given n, the parahydrogen solvent density around the HF is modulated in a pattern which clearly reflects the lowest-energy cluster configuration. The rigidity of the solvent clusters displays an interesting size dependence, increasing from n = 6 to 9, becoming floppier for n = 10, and increasing again up to n = 12, as the solvent shell is filled. The rigidity of the solvent cage appears to reach its maximum for n = 12, the point at which the first solvent shell is closed.

  3. Removal of PCB and Other Halogenated Organic Contaminants found in Ex Situ Structures

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Coon, Christina (Inventor); Berger, Cristina M. (Inventor); Filipek, Laura B. (Inventor); Milum, Kristen M. (Inventor)

    2007-01-01

    Emulsified systems or a surfactant-stabilized, biodegradable water-in-solvent emulsion with bimetallic particles contained with the emulsion droplets are useful at removing PCBs from ex situ structures. The hydrophobic emulsion system draws PCBs through the solvent/surfactant membrane. Once inside the membrane, the PCBs diffuse into the bimetallic particles and undergo degradation. The PCBs continue to enter, diffuse, degrade, and biphenyl will exit the particle maintaining a concentration gradient across the membrane and maintaining a driving force of the reaction.

  4. Removal of PCB and other halogenated organic contaminants found in ex situ structures

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Coon, Christina (Inventor); Berger, Cristina M. (Inventor); Filipek, Laura B. (Inventor); Milum, Kristen M. (Inventor)

    2007-01-01

    Emulsified systems of a surfactant-stabilized, biodegradable water-in-solvent emulsion with bimetallic particles contained with the emulsion droplets are useful at removing PCBs from ex situ structures. The hydrophobic emulsion system draws PCBs through the solvent/surfactant membrane. Once inside the membrane, the PCBs diffuse into the bimetallic particles and undergo degradation. The PCBs continue to enter, diffuse, degrade, and biphenyl will exit the particle maintaining a concentration gradient across the membrane and maintaining a driving force of the reaction.

  5. Removal of PCB and other halogenated organic contaminants found in ex situ structures

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Milum, Kristen M. (Inventor); Quinn, Jacqueline W. (Inventor); Berger, Cristina M. (Inventor); Geiger, Cherie L. (Inventor); Filipek, Laura B. (Inventor); Coon, Christina (Inventor)

    2009-01-01

    Emulsified systems of a surfactant-stabilized, biodegradable water-in-solvent emulsion with bimetallic particles contained with the emulsion droplets are useful at removing PCBs from ex situ structures. The hydrophobic emulsion system draws PCBs through the solvent/surfactant membrane. Once inside the membrane, the PCBs diffuse into the bimetallic particles and undergo degradation. The PCBs continue to enter, diffuse, degrade, and biphenyl will exit the particle maintaining a concentration gradient across the membrane and maintaining a driving force of the reaction.

  6. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  7. Hydrophilic microspheres from water-in-oil emulsions by the water diffusion technique.

    PubMed

    Trotta, Michele; Chirio, Daniela; Cavalli, Roberta; Peira, Elena

    2004-08-01

    In this study, we developed and evaluated a novel method to produce insulin-loaded hydrophilic microspheres allowing high encapsulation efficiency and the preservation of peptide stability during particle processing. The preparation method used the diffusion of water by an excess of solvent starting from a water-in-solvent emulsion. The water dispersed phase containing albumin or lactose, or albumin-lactose in different weight ratios, and insulin was emulsified in water-saturated triacetin with and without emulsifiers, producing a water-in-triacetin emulsion. An excess of triacetin was added to the emulsion so that water could be extracted into the continuous phase, allowing the insulin-loaded microsphere precipitation. Insulin stability within the microspheres after processing was evaluated by reverse-phase and size-exclusion high-performance liquid chromatography. The water diffusion extraction process provided spherical microparticles of albumin or albumin-lactose. The mean diameter of the microspheres prepared with or without emulsifiers ranged from 2 to 10 microm, and the encapsulation efficiency of insulin was between 60% and 75%, respectively. The analysis of microsphere content after processing showed that insulin did not undergo any chemical modification within microspheres. The use of lactose alone led to the formation of highly viscous droplets that coalesced during the purification step. The water extraction procedures successfully produced insulin-loaded hydrophilic microspheres allowing the preservation of peptide stability. The type of excipient and the size of the disperse phase of the primary w/o emulsion were crucial determinants of microsphere characteristics.

  8. Asymmetric lipid-polymer particles (LIPOMER) by modified nanoprecipitation: role of non-solvent composition.

    PubMed

    Jindal, Anil B; Devarajan, Padma V

    2015-07-15

    Asymmetric lipid polymer nanostructures (LIPOMER) comprising glyceryl monostearate (GMS) as lipid and Gantrez AN 119 (Gantrez) as polymer, revealed enhanced splenic accumulation. In the present paper, we attempt to explain the formation of asymmetric GMS LIPOMER using real time imaging. Particles were prepared by precipitation under static conditions using different non-solvent phase compositions. The process was video recorded and the videos converted to time elapsed images using the FFmpeg 0.10.2 software at 25 frames/sec. Non-solvent compositions comprising >30% of IPA/Acetone revealed significant stranding of the solvent phase and slower onset of precipitation(2-6s). At lower concentrations of IPA and acetone, and in non-solvent compositions comprising ethanol/water the stranding phenomenon was not evident. Further, rapid precipitation(<1 s) was evident. Nanoprecipitation based on the Marangoni effect is a result of diffusion stranding, interfacial turbulence, and mass transfer of solvent and non-solvent resulting in solute precipitation. Enhanced diffusion stranding favored by high interaction of GMS and Gantrez(low ΔPol), and the low solubility parameter(Δδtotal) and high mixing enthalpy(ΔHM) of GMS in IPA resulted in droplets with random shapes analogous to an amoeba with pseudopodia, which on precipitation formed asymmetric particles. Asymmetric particles could be readily designed through appropriate selection of solutes and non-solvent phase by modified nanoprecipitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthesis of metal-organic framework films by pore diffusion method

    NASA Astrophysics Data System (ADS)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  10. Estimating Arrhenius parameters using temperature programmed molecular dynamics.

    PubMed

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  11. The role of the attractive and the repulsive interactions in the nonpolar solvation dynamics in simple fluids from the gas-like to the liquid-like densities

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    1999-09-01

    We have performed molecular dynamics (MD) simulations of the nonpolar solvation dynamics in simple fluids composed of particles interacting through the Lennard-Jones (LJ) 12-6 potential or its repulsive part. The attractive or the repulsive part of the solute-solvent interaction is assumed to change on the excitation of a solute. We have followed the transition energy fluctuation of the solute by the equilibrium simulation. The division of the LJ potential followed the method of WCA [J. W. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)]. We have surveyed over a wide solvent density region from gas-like to liquid-like densities at the constant temperature. When the attractive part changes, the relaxation becomes faster with an increase of the solvent density. This result contradicts with previous theories that treat the nonpolar solvation dynamics in terms of the diffusion of solvent particles. The time scale of the initial part of the relaxation is well correlated with the static fluctuation divided by the static average, which suggests the importance of the curvature of the free energy surface in the initial part of the solvation. When the repulsive part changes, the initial part of the relaxation is almost density independent, determined by the binary motion between solute and solvent. It is consistent with the result that the static fluctuation is almost proportional to the static average, which indicates the absence of the static correlation between solvent particles. On the other hand, the solvation correlation function shows rather complicated density dependence at the longer time scale. In the case of the binary mixture solvent, the relaxation time is inversely proportional to the diffusion coefficient. On the basis of the nonpolar solvation dynamics, the validity of the isolated binary collision model for the vibrational energy relaxation is also discussed, and the recent hydrodynamic theory on the vibrational energy relaxation [B. J. Cherayil and M. D. Feyer, J. Chem. Phys. 107, 7642 (1997)] is critically examined.

  12. Antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea (L.) Less leaf extract.

    PubMed

    Sonibare, Mubo A; Aremu, Oluwafunmilola T; Okorie, Patricia N

    2016-06-01

    Vernonia cinerea (L.) Less is used in folk medicine as a remedy for various diseases. The present study reports antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea. The antioxidant properties of solvent fractions of V. cinerea were evaluated by determining radicals scavenging activity, total flavonoid and phenolic contents measured with the 2,2-diphenyl-1-picryl hydrazyl (DPPH) test, the aluminum chloride and the Folin-ciocalteau methods, respectively. Antimicrobial activities were tested against human pathogenic microorganisms using agar diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each active extract were determined. The ethyl acetate fraction having the IC50 value of 6.50 µg/mL demonstrated comparable DPPH radical-scavenging activity with standard antioxidants, gallic acid and quercetin included in the study. All fractions displayed moderate antimicrobial potential against the tested pathogens with the zone of inhibition that ranged from 9.0 to 13.5 mm. The MIC (1.56 mg/mL) and MBC (3.13 mg/mL) indicated highest susceptibility of Candida albicans in all fractions. The results of this study showed that the solvent fractions of V. cinerea possess antioxidant and antimicrobial activities, hence justifying the folkloric use of the plant for the treatment of various ailments in traditional medicine.

  13. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    PubMed Central

    Miao, Yinglong; Baudry, Jerome

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site. PMID:21943431

  14. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, Alex M.; Cheng, Chi-Yuan; Israelachvili, Jacob N.

    2016-07-28

    Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relativemore » to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.« less

  15. Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism.

    PubMed

    Zhang, Q B; Hua, Y X

    2014-12-28

    The electrochemical nucleation and growth kinetics of copper nanoparticles on a Ni electrode have been studied with cyclic voltammetry and chronoamperometry in the choline chloride (ChCl)-urea based deep eutectic solvent (DES). The copper source was introduced into the solvent by the dissolution of Cu(I) oxide (Cu2O). Cyclic voltammetry indicates that the electroreduction of Cu(I) species in the DES is a diffusion-controlled quasi-reversible process. The analysis of the chronoamperometric transient behavior during electrodeposition suggests that the deposition of copper on the Ni electrode at low temperatures follows a progressive nucleation and three-dimensional growth controlled by diffusion. The effect of temperature on the diffusion coefficient of Cu(I) species that is present in the solvent and electron transfer rate constant obeys the Arrhenius law, according to which the activation energies are estimated to be 49.20 and 21.72 kJ mol(-1), respectively. The initial stage of morphological study demonstrates that both electrode potential and temperature play important roles in controlling the nucleation and growth kinetics of the nanocrystals during the electrodeposition process. Electrode potential is observed to affect mainly the nucleation process, whereas temperature makes a major contribution to the growth process.

  16. Phyllanthus wightianus Müll. Arg.: A Potential Source for Natural Antimicrobial Agents

    PubMed Central

    Natarajan, D.; Srinivasan, R.; Shivakumar, M. S.

    2014-01-01

    Phyllanthus wightianus belongs to Euphorbiaceae family having ethnobotanical importance. The present study deals with validating the antimicrobial potential of solvent leaf extracts of P. wightianus. 11 human bacterial pathogens (Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, Shigella flexneri, Proteus vulgaris, and Serratia marcescens) and 4 fungal pathogens (Candida albicans, Cryptococcus neoformans, Mucor racemosus, and Aspergillus niger) were also challenged with solvent leaf extracts usingagar well and disc diffusion methods. Further, identification of the active component present in the bioactive extract was done using GC-MS analysis. Results show that all extracts exhibited broad spectrum (6–29 mm) of antibacterial activity on most of the tested organisms. The results highlight the fact that the well in agar method was more effective than disc diffusion method. Significant antimicrobial activity was detected in methanol extract against S. pneumoniae (29 mm) with MIC and MBC values of 15.62 μg/mL. GC-MS analysis revealed that 29 bioactive constituents were present in methanolic extract of P. wightianus, of which 9,12-octadecaenioic acid (peak area 22.82%; RT-23.97) and N-hexadecanoic acid (peak area 21.55% RT-21.796) are the major compounds. The findings of this study show that P. wightianus extracts may be used as an anti-infective agent in folklore medicine. PMID:24883301

  17. Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes.

    PubMed

    López-Muñoz, Gerardo A; Balderas-López, José Abraham; Ortega-Lopez, Jaime; Pescador-Rojas, José A; Salazar, Jaime Santoyo

    2012-12-06

    The thermal properties of nanofluids are an especially interesting research topic because of the variety of potential applications, which range from bio-utilities to next-generation heat-transfer fluids. In this study, photopyroelectric calorimetry for measuring the thermal diffusivity of urchin-like colloidal gold nanofluids as a function of particle size, concentration and shape in water, ethanol and ethylene glycol is reported. Urchin-like gold nanoparticles were synthesised in the presence of hydroquinone through seed-mediated growth with homogeneous shape and size ranging from 55 to 115 nm. The optical response, size and morphology of these nanoparticles were characterised using UV-visible spectroscopy and transmission electron microscopy. The thermal diffusivity of these nanofluids decreased as the size of the nanoparticles increased, and the enhancement depended on the thermal diffusivity of the solvent. The opposite effect (increase in thermal diffusivity) was observed when the nanoparticle concentration was increased. These effects were more evident for urchin-like gold nanofluids than for the corresponding spherical gold nanofluids.

  18. Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymer.

    PubMed

    Chowdhury, Mithun; Sajjad, Muhammad T; Savikhin, Victoria; Hergué, Noémie; Sutija, Karina B; Oosterhout, Stefan D; Toney, Michael F; Dubois, Philippe; Ruseckas, Arvydas; Samuel, Ifor D W

    2017-05-17

    The influence of various processing conditions on the singlet exciton diffusion is explored in films of a conjugated random copolymer poly-(3-hexylthiophene-co-3-dodecylthiophene) (P3HT-co-P3DDT) and correlated with the degree of crystallinity probed by grazing incidence X-ray scattering and with exciton bandwidth determined from absorption spectra. The exciton diffusion coefficient is deduced from exciton-exciton annihilation measurements and is found to increase by more than a factor of three when thin films are annealed using CS 2 solvent vapour. A doubling of exciton diffusion coefficient is observed upon melt annealing at 200 °C and the corresponding films show about 50% enhancement in the degree of crystallinity. In contrast, films fabricated from polymer solutions containing a small amount of either solvent additive or nucleating agent show a decrease in exciton diffusion coefficient possibly due to formation of traps for excitons. Our results suggest that the enhancement of exciton diffusivity occurs because of increased crystallinity of alkyl-stacking and longer conjugation of aggregated chains which reduces the exciton bandwidth.

  19. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.

    PubMed

    Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C

    2014-12-16

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  20. Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures.

    PubMed

    Salabat, Alireza; Eastoe, Julian; Mutch, Kevin J; Tabor, Rico F

    2008-02-15

    The effect of solvent on stability of water-in-oil microemulsions has been studied with AOT (sodium bis(2-ethylhexyl)sulfosuccinate) and different solvent mixtures of n-heptane, toluene and dodecane. Dynamic light scattering DLS was used to monitor the apparent diffusion coefficient D(A) and effective microemulsion droplet diameter on changing composition of the solvent. Interdroplet attractive interactions, as indicated by variations in D(A), can be tuned by formulation of appropriate solvent mixtures using heptane, toluene, and dodecane. In extreme cases, solvent mixtures can be used to induce phase transitions in the microemulsions. Aggregation and stability of model AOT-stabilized silica nanoparticles in different solvents were also investigated to explore further these solvent effects. For both systems the state of aggregation can be correlated with the effective molecular volume of the solvent V(mol)(eff) mixture.

  1. Molecular dynamics of acetamide based ionic deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Srinivasan, H.; Dubey, P. S.; Sharma, V. K.; Biswas, R.; Mitra, S.; Mukhopadhyay, R.

    2018-04-01

    Deep eutectic solvents are multi-component mixtures that have freezing point lower than their individual components. Mixture of acetamide+ lithium nitrate in the molar ratio 78:22 and acetamide+ lithium perchlorate in the molar ratio 81:19 are found to form deep eutectic solvents with melting point lower than the room temperature. It is known that the depression in freezing point is due to the hydrogen bond breaking ability of anions in the system. Quasielastic neutron scattering experiments on these systems were carried out to study the dynamics of acetamide molecules which may be influenced by this hydrogen bond breaking phenomena. The motion of acetamide molecules is modeled using jump diffusion mechanism to demonstrate continuous breaking and reforming hydrogen bonds in the solvent. Using the jump diffusion model, it is inferred that the jump lengths of acetamide molecules are better approximated by a Gaussian distribution. The shorter residence time of acetamide in presence of perchlorate ions suggest that the perchlorate ions have a higher hydrogen bond breaking ability compared to nitrate ions.

  2. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions.

    PubMed

    Gajjar, Rachna M; Kasting, Gerald B

    2014-11-15

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each (14)C-radiolabed compound were tested - 5, 10, 20, and 40μLcm(-2), corresponding to specific doses ranging in mass from 5.0 to 63mgcm(-2). The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, Ksc, and modest changes to the diffusion coefficients, Dsc, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Tracer diffusion in active suspensions

    NASA Astrophysics Data System (ADS)

    Burkholder, Eric W.; Brady, John F.

    2017-05-01

    We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a , characteristic swim speed U0, reorientation time τR, and mechanical energy ksTs=ζaU02τR/6 , where ζa is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity DP=kBT /ζP , where kBT is the thermal energy of the solvent and ζP is the Stokes drag coefficient for the probe. When the swimmers are inactive, collisions between the probe and the swimmers sterically hinder the probe's diffusive motion. In competition with this steric hindrance is an enhancement driven by the activity of the swimmers. The strength of swimming relative to thermal diffusion is set by Pes=U0a /DP . The active contribution to the diffusivity scales as Pes2 for weak swimming and Pes for strong swimming, but the transition between these two regimes is nonmonotonic. When fluctuations in the probe motion decay on the time scale τR, the active diffusivity scales as ksTs/ζP : the probe moves as if it were immersed in a solvent with energy ksTs rather than kBT .

  4. Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.

    PubMed

    Lee, Jae Won; Fukusaki, Eiichiro; Bamba, Takeshi

    2012-10-01

    Supercritical carbon dioxide (SCCO(2)) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO(2) has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO(2) is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO(2) in various laboratories and industries. SCCO(2) is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO(2) in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.

  5. Experimental and theoretical aspects of studying themodynamics and mass transport in polymer-solvent systems

    NASA Astrophysics Data System (ADS)

    Davis, Peter Kennedy

    Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a rather controversial topic about IGC experiments near the polymer glass transition temperature. Using a new IGC model capable of describing both bulk absorption and surface adsorption, IGC behavior around the glass transition was able to be better understood. Finally, Chapter 6 presents an IGC model that can be used to separate bulk effects from surface effects in capillary column IGC experiments.

  6. Exposure assessment of ETBE in gas station workers and gasoline tanker truck drivers.

    PubMed

    Eitaki, Yoko; Kawai, Toshio; Omae, Kazuyuki

    2011-01-01

    In order to measure occupational exposure concentrations of ethyl tertiary-butyl ether (ETBE), we developed a diffusive sampling method for monitoring ETBE and performed an ETBE exposure assessment. The applicability of diffusive samplers was examined by exposing the samplers to ETBE vapor in test chambers. The personal exposure levels of workers and airborne concentrations were measured at 4 gas stations. The ETBE sampling rate for the diffusive samplers (VOC-SD, Sigma-Aldrich Japan) was 25.04 ml/min (25°C). Compared with the active sampling method, the diffusive samplers could be used for short-term measurements and in environments containing a mixture of organic solvents. The geometric mean (GM) of TWA-8h ETBE was 0.08 ppm (0.02-0.28 ppm) in 28 gas station workers and 0.04 ppm (0.01-0.21 ppm) in 2 gasoline tanker truck drivers. With regard to ETBE airborne concentrations, the GM was 4.12 ppm (0.93-8.71 ppm) at the handles of hanging pumps but dropped to less than 0.01 ppm (less than 0.01-0.01 ppm) at the side of a public road. The diffusive sampling method can be used for the measurement of occupational ETBE exposure. The threshold limit of TLV-TWA 5 ppm recommended by the ACGIH was not exceeded in any of the workers in this study.

  7. Laser inhibited diffusion in rhodamine-ethanol solutions

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Fuhr, P. L.; Robinson, D. W.

    1981-01-01

    The diffusion of rhodamine-6G dye in ethanol is observed to be inhibited by optical pumping by a cadmium laser. The diffusion process is observed as a function of the solution temperature. The relative difference in diffusion coefficients with and without optical pumping is calculated. The effect is interpreted as being due to a stronger solvent-dye interaction in the first excited singlet state of rhodamine-6G.

  8. Methods for preparing colloidal nanocrystal-based thin films

    DOEpatents

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  9. Application of Molecular Dynamics Simulations in Molecular Property Prediction II: Diffusion Coefficient

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2011-01-01

    In this work, we have evaluated how well the General AMBER force field (GAFF) performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9 organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error (RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for 8 organic solvents with experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied. The major MD settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement (MSD) collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. PMID:21953689

  10. Diffusion affected magnetic field effect in exciplex fluorescence

    NASA Astrophysics Data System (ADS)

    Burshtein, Anatoly I.; Ivanov, Anatoly I.

    2014-07-01

    The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  11. Diffusion affected magnetic field effect in exciplex fluorescence.

    PubMed

    Burshtein, Anatoly I; Ivanov, Anatoly I

    2014-07-14

    The fluorescence of the exciplex, (1)[D(+δ)A(-δ)], formed at contact of photoexcited acceptor (1)A(*) with an electron donor (1)D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, (1, 3)[D(+)…A(-)]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  12. Optimization of technological conditions for one-pot synthesis of (S)-alpha-cyano-3-phenoxybenzyl acetate in organic media.

    PubMed

    Zhang, Ting-Zhou; Yang, Li-Rong; Zhu, Zi-Qiang

    2005-03-01

    Optically active form of alpha-cyano-3-phenoxybenzyl (CPB) alcohol, building block of pyrethroid insecticides, was synthesized as its acetate by the combination of anion-exchange resin (D301)-catalyzed transcyanation between m-phenoxybenzaldehyde (m-PBA) and acetone cyanohydrin (AC), and lipase (from Alcaligenes sp.)-catalyzed enantioselective transesterification of the resulting cyanohydrin with vinyl acetate. Through optimizing technological conditions, the catalyzing efficiency was improved considerably compared to methods previously reported. Concentrations of CPB acetate were determined by gas chromatograph. The enantio excess (e.e.) values of CPB acetate were measured by NMR (nuclear magnetic resonance) method. Effects of solvents and temperatures on this reaction were studied. Cyclohexane was shown to be the best solvent among the three tested solvents. 55 degrees C was the optimal temperature for higher degree of conversion. External diffusion limitation was excluded by raising the rotational speed to 220 r/min. However, internal diffusion could not be ignored, since the catalyst (lipase) was an immobilized enzyme and its particle dimension was not made small enough. The reaction rate was substantially accelerated when the reactant (m-PBA) concentration was as high as 249 mmol/L, but decreased when the initial concentration of m-PBA reached to 277 mmol/L. It was also found that the catalyzing capability of recovered lipase was high enough to use several batches. Study of the mole ratio of AC to m-PBA showed that 2:1 was the best choice. The strategy of adding base catalyst D301 was found to be an important factor in improving the degree of conversion of the reaction from 20% to 80%. The highest degree of conversion of the reaction has reached up to 80%.

  13. A Colorful Solubility Exercise for Organic Chemistry

    ERIC Educational Resources Information Center

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  14. Evaluation of the in vitro antibacterial activity of the solvent fractions of the leaves of Rhamnus prinoides L'Herit (Rhamnaceae) against pathogenic bacteria.

    PubMed

    Molla, Yalew; Nedi, Teshome; Tadesse, Getachew; Alemayehu, Haile; Shibeshi, Workineh

    2016-08-15

    Medicinal plants play great roles in the treatment of various infectious diseases. Rhamnus prinoides is one of the medicinal plants used traditionally for treatment of bacterial diseases. The antibacterial activity of the crude extract of the plant had been shown by a previous study, but this study was undertaken to further the claimed medicinal use of the plant by screening its solvent fractions for the said activity so that it could serve as a basis for subsequent studies. The solvent fractions of the plant were obtained by successive soxhlet extraction with solvents of increasing polarity, with chloroform and methanol, followed by maceration of the marc of methanol fraction with water. The antibacterial activity of the solvent fractions was evaluated on seven bacterial species using agar well diffusion method at different concentrations (78 mg/well, 39 mg/well and 19.5 mg/well) in the presence of positive and negative controls. The minimum inhibitory concentration of the solvent fractions was determined by micro-broth dilution method using resazurin as indicator. Methanol and chloroform fractions revealed antibacterial activities against the growth of test bacterial strains with varying antibacterial spectrum and the susceptible bacterial species were Staphylococcus aureus, Streptococcus pyogen, Streptococcus pneumoniae and Salmonella typhi. The average minimum inhibitory concentration value of the methanol and chloroform fractions ranged from 8.13 mg/ml to 32.5 mg/ml and from 8.13 mg/ml to 16.25 mg/ml, respectively. The methanol and chloroform fractions demonstrated significant antibacterial activities against the growth of pathogenic bacteria but the aqueous fraction did not reveal antibacterial activity against any of the test bacteria.

  15. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.

  16. Poly/vinyl alcohol/ membranes for reverse osmosis

    NASA Technical Reports Server (NTRS)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    A description is presented of the results of studies of the water and salt transport properties of PVA membranes, taking into account radiation crosslinked PVA membranes, diffusive salt permeability through PVA membranes, and heat treated PVA membranes. The experimental findings support an occurrence of independent water, and salt permeation processes. It is suggested that the salt permeation is governed by a solution-diffusion transport mechanism. The preparation of thin skinned, asymmetric PVA membranes is also discussed. The employed method has a certain similarity to the classical phase inversion method, which is widely applied in the casting of asymmetric reverse osmosis membranes. Instead of using a gelling bath composed of a nonsolvent for the membrane material and miscible with the solvent from which the membrane is cast, a 'complexing' bath is used, which is a solution of a complexing agent in water.

  17. Synthesis and characterization of binary titania-silica mixed oxides

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.

  18. Selective Extraction of Flavonoids from Sophora flavescens Ait. by Mechanochemistry.

    PubMed

    Zhang, Qihong; Yu, Jingbo; Wang, Yingyao; Su, Weike

    2016-07-29

    Flavonoids from Sophora flavescens were selectively extracted by mechanochemical-promoted extraction technology (MPET) after using response surface methodology to determine the optimal extraction parameters. The highest yield of 35.17 mg/g was achieved by grinding the roots with Na₂CO₃ (15%) at 440 rpm/min for 17.0 min and water was used as the sole solvent with a ratio of solvent to solid material of 25 mL/g. Flavonoids prepared by MPET demonstrated relatively higher antioxidant activities in subsequent DPPH and hydroxyl radical scavenging assays. Main constituents in the extracts, including kurarinol, kushenol I/N and kurarinone, were characterized by HPLC-MS/MS, indicating good selective extraction by MPET. Physicochemical property changes of powder during mechanochemical milling were identified by scanning electron microscopy, X-ray powder diffraction, and UV-Vis diffuse-reflectance spectroscopy. Compared with traditional extraction methods, MPET possesses notable advantages of higher selectivity, lower extraction temperature, shorter extraction time, and organic solvent free properties.

  19. Steric effects on diffusion into bituminous coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John W. Larsen; Doyoung Lee

    2006-02-01

    The reactions of maleic anhydride, cis-maleate esters, and acetylenedicarboxylate esters with Pittsburgh No. 8 or Illinois No. 6 coal using o-xylene or o-dichlorobenzene solvent are diffusion controlled. Diffusion is Fickian in all cases. The measured activation energies are between 5.4 and 7.6 kcal/mol. Diffusion rates decrease slowly with increasing alkyl chain length and sharply with branching. Diffusion rates are slightly faster with o-xylene than when o-dichlorobenzene is used. 40 refs., 5 figs., 4 tabs.

  20. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; ...

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  1. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    PubMed Central

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-01-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071

  2. Solvent sensitivity of smart 3D-printed nanocomposite liquid sensor

    NASA Astrophysics Data System (ADS)

    Aliheidari, Nahal; Ameli, Amir; Pötschke, Petra

    2018-03-01

    Fused deposition modeling (FDM) is one of the 3D printing methods that has attracted significant attention. In this method, small and complex samples with nearly no limitation in geometry can be fabricated layer by layer to form end-use parts. This work investigates the liquid sensing behavior of FDM printed flexible thermoplastic polyurethane, TPU filled with multiwalled carbon nanotubes, MWCNTs. The sensing capability of printed TPU-MWCNT was studied as a function of MWCNT content and infill density in response to different solvents, i.e., ethanol, acetone and toluene. The solvents were selected based on their widespread use and importance in medical and industrial applications. U-shaped liquid sensors with 2, 3 and 4wt.% MWCNT content were printed at three different infill densities of 50, 75 and 100%. Solvent sensitivity was then characterized by immersing the sensors in the solvents and measuring the resistance evolution over 25s. The results indicated a sensitivity order of acetone > toluene > ethanol, which was in agreement with the predictions of FloryHiggins solubility equation. For all the solvents, the sensitivity was enhanced as the infill density of the printed samples was decreased. This was attributed to the increased surface area to volume ratio and shortened diffusion paths. The MWCNT content was also observed to have a profound effect on the sensitivity; in samples with partial infill, the sensitivity was found to be inversely proportional to the MWCNT content, such that the highest resistance change was obtained for nanocomposites with the lowest MWCNT content of 2wt.%. For instance, a resistance increase of more than 10 times was obtained in 25 s once TPU-2wt.%MWCNT with 50% infill was tested against acetone. The results of this work reveals that highly sensitive liquid sensors can be fabricated with the aid of 3D printing without the need for complex processing methods.

  3. A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis

    NASA Astrophysics Data System (ADS)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2018-06-01

    A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.

  4. Understanding of Relationship between Phospholipid Membrane Permeability and Self-Diffusion Coefficients of Some Drugs and Biologically Active Compounds in Model Solvents.

    PubMed

    Blokhina, Svetlana V; Volkova, Tatyana V; Golubev, Vasiliy A; Perlovich, German L

    2017-10-02

    In this work we measured self-diffusion coefficients of 5 drugs (aspirin, caffeine, ethionamide, salicylic acid, and paracetamol) and 11 biologically active compounds of similar structure in deuterated water and 1-octanol by NMR. It has been found that an increase in the van der Waals volume of the molecules of the studied substances result in reduction of their diffusion mobility in both solvents. The analysis of the experimental data showed the influence of chemical nature and structural isomerization of the molecules on the diffusion mobility. Apparent permeability coefficients of the studied compounds were determined using an artificial phospholipid membrane made of egg lecithin as a model of in vivo absorption. Distribution coefficients in 1-octanol/buffer pH 7.4 system were measured. For the first time the model of the passive diffusion through the phospholipid membrane was validated based on the experimental data. To this end, the passive diffusion was considered as an additive process of molecule passage through the aqueous boundary layer before the membrane and 1-octanol barrier simulating the lipid layer of the membrane.

  5. Structure and Dynamics of Solvent Landscapes in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Leite, Vitor B. Pereira

    The dynamics of solvent polarization plays a major role in the control of charge transfer reactions. The success of Marcus theory describing the solvent influence via a single collective quadratic polarization coordinate has been remarkable. Onuchic and Wolynes have recently proposed (J. Chem Phys 98 (3) 2218, 1993) a simple model demonstrating how a many-dimensional-complex model composed by several dipole moments (representing solvent molecules or polar groups in proteins) can be reduced under the appropriate limits into the Marcus Model. This work presents a dynamical study of the same model, which is characterized by two parameters, an average dipole-dipole interaction as a term associated with the potential energy landscape roughness. It is shown why the effective potential, obtained using a thermodynamic approach, is appropriate for the dynamics of the system. At high temperatures, the system exhibits effective diffusive one-dimensional dynamics, where the Born-Marcus limit is recovered. At low temperatures, a glassy phase appears with a slow non-self-averaging dynamics. At intermediate temperatures, the concept of equivalent diffusion paths and polarization dependence effects are discussed. This approach is extended to treat more realistic solvent models. Real solvents are discussed in terms of simple parameters described above, and an analysis of how different regimes affect the rate of charge transfer is presented. Finally, these ideas are correlated to analogous problems in other areas.

  6. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imandi, Venkataramana; Chatterjee, Abhijit, E-mail: abhijit@che.iitb.ac.in

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight variousmore » aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.« less

  7. Comparison of non-toxic methods for creating beta-carotene encapsulated in PMMA nanoparticles

    NASA Astrophysics Data System (ADS)

    Dobrzanski, Christopher D.

    Nano/microcapsules are becoming more prevalent in various industries such as drug delivery, cosmetics, etc. Current methods of particle formation often use toxic or carcinogenic/mutagenic/reprotoxic (CMR) chemicals. This study intends to improve upon existing methods of particle formation and compare their effectiveness in terms of entrapment efficiency, mean particle size, and yield utilizing only non-toxic chemicals. In this study, the solvent evaporation (SE), spontaneous emulsification, and spontaneous emulsion solvent diffusion (SESD) methods were compared in systems containing green solvents ethyl acetate, dimethyl carbonate or acetone. PMMA particles containing encapsulated beta carotene, an ultraviolet sensitive substance, were synthesized. It was desired to produce particles with minimum mean size and maximum yield and entrapment of beta carotene. The mass of the water phase, the mass of the polymer and the pumping or blending rate were varied for each synthesis method. The smallest particle sizes for SE and SESD both were obtained from the middle water phase sizes, 200 g and 100 g respectively. The particles obtained from the larger water phase in SESD were much bigger, about 5 microns in diameter, even larger than the ones obtained from SE. When varying the mass of PMMA used in each synthesis method, as expected, more PMMA led to larger particles. Increasing the blending rate in SE from 6,500 to 13,500 rpm had a minimal effect on average particle size, but the higher shear resulted in highly polydisperse particles (PDI = 0.87). By decreasing the pump rate in SESD, particles became smaller and had lower entrapment efficiency. The entrapment efficiencies of the particles were generally higher for the larger particles within a mode. Therefore, we found that minimizing the particle size while maximizing entrapment were somewhat contradictory goals. The solvent evaporation method was very consistent in terms of the values of mean particle size, yield, and entrapment efficiency. Comparing the synthesis methods, the smallest particles with the highest yield and entrapment efficiency were generated by the spontaneous emulsification method.

  8. Synergic solventing-out crystallization with subsequent time-delay thermal annealing of PbI2 precursor in mesostructured perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jia, Fujin; Guo, Yanqun; Che, Lijia; Liu, Zhiyong; Zeng, Zhigang; Cai, Chuanbing

    2018-06-01

    Although the two-step sequential deposition method provides an efficient route to fabricate high performance perovskite solar cells (PSSCs) with increasing reproducibility, the inefficient and incomplete conversion of PbI2 to perovskite is still quite a challenge. Following pioneering works, we found that the conversion process from PbI2 to perovskite mainly involves diffusion, infiltration, contact and reaction. In order to facilitate the conversion from PbI2 to perovskite, we demonstrate an effective method to regulate supersaturation level (the driving force to crystallization) of PbI2 by solventing-out crystallization combining with subsequent time-delay thermal annealing of PbI2 wet film. Enough voids and spaces in resulting porous PbI2 layer will be in favor of efficient diffusion, infiltration of CH3NH3I solution, and further enhance the contact and reaction between PbI2 and CH3NH3I in the whole film, leading to rapid, efficient and complete perovskite conversion with a conversion level of about 99.9%. Enhancement of light harvesting ranging from visible to near-IR region was achieved for the resultant high-quality perovskite. Upon this combined method, the fabricated mesostructured solar cells show tremendous power conversion efficiency (PCE) improvement from 3.2% to about 12.3% with less hysteresis owing to the simultaneous enhancement of short-circuit photocurrent density (J sc), open-circuit voltage (V oc) and fill factor (FF).

  9. [Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine].

    PubMed

    Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu

    2007-05-01

    Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.

  10. Dielectric relaxation of ethylene carbonate and propylene carbonate from molecular dynamics simulations

    DOE PAGES

    Chaudhari, Mangesh I.; You, Xinli; Pratt, Lawrence R.; ...

    2015-11-24

    Ethylene carbonate (EC) and propylene carbonate (PC) are widely used solvents in lithium (Li)-ion batteries and supercapacitors. Ion dissolution and diffusion in those media are correlated with solvent dielectric responses. Here, we use all-atom molecular dynamics simulations of the pure solvents to calculate dielectric constants and relaxation times, and molecular mobilities. The computed results are compared with limited available experiments to assist more exhaustive studies of these important characteristics. As a result, the observed agreement is encouraging and provides guidance for further validation of force-field simulation models for EC and PC solvents.

  11. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    PubMed

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  12. Tracer diffusion in active suspensions.

    PubMed

    Burkholder, Eric W; Brady, John F

    2017-05-01

    We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a, characteristic swim speed U_{0}, reorientation time τ_{R}, and mechanical energy k_{s}T_{s}=ζ_{a}U_{0}^{2}τ_{R}/6, where ζ_{a} is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity D_{P}=k_{B}T/ζ_{P}, where k_{B}T is the thermal energy of the solvent and ζ_{P} is the Stokes drag coefficient for the probe. When the swimmers are inactive, collisions between the probe and the swimmers sterically hinder the probe's diffusive motion. In competition with this steric hindrance is an enhancement driven by the activity of the swimmers. The strength of swimming relative to thermal diffusion is set by Pe_{s}=U_{0}a/D_{P}. The active contribution to the diffusivity scales as Pe_{s}^{2} for weak swimming and Pe_{s} for strong swimming, but the transition between these two regimes is nonmonotonic. When fluctuations in the probe motion decay on the time scale τ_{R}, the active diffusivity scales as k_{s}T_{s}/ζ_{P}: the probe moves as if it were immersed in a solvent with energy k_{s}T_{s} rather than k_{B}T.

  13. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    PubMed Central

    Sathish, Kumar SR; Kokati, Venkata Bhaskara Rao

    2012-01-01

    Objective To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Methods Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Results Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 µg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. Conclusions The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms. PMID:23569848

  14. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Levi M. J.; Bhattacharya, Mithun; Wu, Qi

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystallinemore » disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.« less

  15. Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques.

    PubMed

    Duarte, Ana Rita C; Roy, Christelle; Vega-González, Arlette; Duarte, Catarina M M; Subra-Paternault, Pascale

    2007-03-06

    The possibility of preparation of ophthalmic drug delivery systems using compressed anti-solvent technology was evaluated. Eudragit RS 100 and RL 100 were used as drug carriers, acetazolamide was the model drug processed. Compressed anti-solvent experiments were carried out as a semi-continuous or a batch operation from a liquid solution of polymer(s)+solute dissolved in acetone. Both techniques allowed the recovery of composite particles, but the semi-continuous operation yielded smaller and less aggregated populations than the batch operation. The release behaviour of acetazolamide from the prepared microparticles was studied and most products exhibited a slower release than the single drug. Moreover, the release could be controlled to some extent by varying the ratio of the two Eudragit used in the formulation and by selecting one or the other anti-solvent technique. Simple diffusion models satisfactorily described the release profiles. Composites specifically produced by semi-continuous technique have a drug release rate controlled by a diffusion mechanism, whereas for composites produced by the batch operation, the polymer swelling also contributes to the overall transport mechanism.

  16. Hydrodynamically induced fluid transfer and non-convective double-diffusion in microgravity sliding solvent diffusion cells

    NASA Technical Reports Server (NTRS)

    Pollmann, Konrad W.; Stodieck, Louis S.; Luttges, Marvin W.

    1994-01-01

    Microgravity can provide a diffusion-dominated environment for double-diffusion and diffusion-reaction experiments otherwise disrupted by buoyant convection or sedimentation. In sliding solvent diffusion cells, a diffusion interface between two liquid columns is achieved by aligning two offset sliding wells. Fluid in contact with the sliding lid of the cavities is subjected to an applied shear stress. The momentum change by the start/stop action of the well creates an additional hydrodynamical force. In microgravity, these viscous and inertial forces are sufficiently large to deform the diffusion interface and induce hydrodynamic transfer between the wells. A series of KC-135 parabolic flight experiments were conducted to characterize these effects and establish baseline data for microgravity diffusion experiments. Flow visualizations show the diffusion interface to be deformed in a sinusoidal fashion following well alignment. After the wells were separated again in a second sliding movement, the total induced liquid transfer was determined and normalized by the well aspect ratio. The normalized transfer decreased linearly with Reynolds number from 3.3 to 4.0% (w/v) for Re = 0.4 (Stokes flow) to a minimum of 1.0% for Re = 23 to 30. Reynolds numbers that provide minimum induced transfers are characterized by an interface that is highly deformed and unsuitable for diffusion measurements. Flat diffusion interfaces acceptable for diffusion measurements are obtained with Reynolds numbers on the order of 7 to 10. Microgravity experiments aboard a sounding rocket flight verified counterdiffusion of different solutes to be diffusion dominated. Ground control experiments showed enhanced mixing by double-diffusive convection. Careful selection of experimental parameters improves initial conditions and minimizes induced transfer rates.

  17. Preparation of solid lipid nanoparticles from W/O/W emulsions: preliminary studies on insulin encapsulation.

    PubMed

    Gallarate, Marina; Trotta, Michele; Battaglia, Luigi; Chirio, Daniela

    2009-08-01

    A method to produce solid lipid nanoparticles (SLN) from W/O/W multiple emulsions was developed applying the solvent-in-water emulsion-diffusion technique. Insulin was chosen as hydrophilic peptide drug to be dissolved in the acidic inner aqueous phase of multiple emulsions and to be consequently carried in SLN. Several partially water-miscible solvents with low toxicity were screened in order to optimize emulsions and SLN composition, after assessing that insulin did not undergo any chemical modification in the presence of the different solvents and under the production process conditions. SLN of spherical shape and with mean diameters in the 600-1200 nm range were obtained by simple water dilution of the W/O/W emulsion. Best results, in terms of SLN mean diameter and encapsulation efficiencies, were obtained using glyceryl monostearate as lipid matrix, butyl lactate as a solvent, and soy lecithin and Pluronic F68 as surfactants. Encapsulation efficiencies up to 40% of the loaded amount were obtained, owing to the actual multiplicity of the system; the use of multiple emulsion-derived SLN can be considered a useful strategy to encapsulate a hydrophilic drug in a lipid matrix.

  18. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes

    DOE PAGES

    Sigurdsson, Jon Karl; Atzberger, Paul J.

    2016-06-27

    Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less

  19. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigurdsson, Jon Karl; Atzberger, Paul J.

    Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less

  20. A New Technique for Measuring Concentration Dependence of Self and Collective Diffusivity by using a Single Sample

    NASA Astrophysics Data System (ADS)

    Sirorattanakul, Krittanon; Shen, Chong; Ou-Yang, Daniel

    Diffusivity governs the dynamics of interacting particles suspended in a solvent. At high particle concentration, the interactions between particles become non-negligible, making the values of self and collective diffusivity diverge and concentration-dependent. Conventional methods for measuring this dependency, such as forced Rayleigh scattering, fluorescence correlation spectroscopy (FCS), and dynamic light scattering (DLS) require preparation of multiple samples. We present a new technique to measure this dependency by using only a single sample. Dielectrophoresis (DEP) is used to create concentration gradient in the solution. Across this concentration distribution, we use FCS to measure the concentration-dependent self diffusivity. Then, we switch off DEP to allow the particles to diffuse back to equilibrium. We obtain the time series of concentration distribution from fluorescence microscopy and use them to determine the concentration-dependent collective diffusivity. We compare the experimental results with computer simulations to verify the validity of this technique. Time and spatial resolution limits of FCS and imaging are also analyzed to estimate the limitation of the proposed technique. NSF DMR-0923299, Lehigh College of Arts and Sciences Undergraduate Research Grant, Lehigh Department of Physics, Emulsion Polymers Institute.

  1. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient.

    PubMed

    Wang, Junmei; Hou, Tingjun

    2011-12-01

    In this work, we have evaluated how well the general assisted model building with energy refinement (AMBER) force field performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, five organic compounds in aqueous solutions, four proteins in aqueous solutions, and nine organic compounds in nonaqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned errors and the root mean square errors are 0.137 and 0.171 × 10(-5) cm(-2) s(-1), respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for eight organic solvents with experimental data (R(2) = 0.784), four proteins in aqueous solutions (R(2) = 0.996), and nine organic compounds in nonaqueous solutions (R(2) = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide, and cyclohexane have been studied. The major molecular dynamics (MD) settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. Copyright © 2011 Wiley Periodicals, Inc.

  2. Diffusional Motion of Redox Centers in Carbonate Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Rajput, Nav Nidhi; Wei, Xiaoliang

    2014-09-14

    Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self diffusion coefficents (D) of solutes and solvents were measured by 1H and 19F pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC) and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 0-50 °C and for various concentrations (0.25 - 1.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increasedmore » in all solvents. Since the peaks for the two ions (Fc1N212 and TFSI) are separated in one-dimensional NMR spectra, separate diffusion coefficients could be measured and DTFSI is larger than DFc1N112 in all samples measured. The EC, PC and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC and EMC. A difference in D (DPC < DEC < DEMC), and both a higher Ea for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112+, which is a relatively stronger interaction than that between Fc1N112+ and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that DPC = DEC = DEMC and Fc1N112+ and all components of the EC/PC/EMC solution have the same Ea for translational motion, while the ratio DEC/PC/EMC/DFc1N112+ is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112+ transference numbers lie around 0.4 and increases slightly as the temperature is increased in the PC and EMC solvents. The trends observed for D from simulations are in good agreement with experimental results and provide molecular level understanding of the solvation structure of Fc1N112-TFSI dissolved in EC/PC/EMC.« less

  3. Comparative study of the quality characteristics of defatted soy flour treated by supercritical carbon dioxide and organic solvent.

    PubMed

    Kang, Sung-Won; Rahman, M Shafiur; Kim, Ah-Na; Lee, Kyo-Yeon; Park, Chan-Yang; Kerr, William L; Choi, Sung-Gil

    2017-07-01

    Defatted soy flour is a potential source of food protein, amino acids, ash and isoflavones. The supercritical carbon dioxide (SC-CO 2 ) and a traditional organic solvent extraction methods were used to remove fat from soy flour, and the quality characteristics of a control soy flour (CSF), defatted soy flour by SC-CO 2 (DSFSC-CO 2 ) and defatted soy flour by an organic solvent (DSF-OS) were compared. The SC-CO 2 process was carried out at a constant temperature of 45 °C, and a pressure of 40 MPa for 3 h with a CO 2 flow rate of 30 g/min. The DSFSC-CO 2 had significantly higher protein, ash, and amino acids content than CSF and DSF-OS. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that CSF and DSFSC-CO 2 had protein bands of similar intensity and area that indicated no denaturation of protein, whereas DSF-OS showed diffuse bands or no bands due to protein denaturation. In addition to higher nutritional value and protein contents, DSFSC-CO 2 showed superior functional properties in terms of total soluble solids content, water and oil absorption, emulsifying and foaming capacity. The SC-CO 2 method offers a nutritionally and environmentally friendly alternative extraction processing approach for the removal of oil from high-protein food sources. It has a great potential for producing high-protein fat-free, and low-calorie content diet than the traditional organic solvent extraction method.

  4. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol, methanol or DMSO. Consequently, obtained results show that the method of selection is extremely important and will influence the results. Thus, broth microdilution and reduction percentage methods can be recommended as reliable and useful screening methods for determination of antimicrobial activity of PLGA nanoparticle formulations used particularly in drug delivery systems compared to both agar well and disk diffusion methods.

  5. Use of GC/MS and Microtome Techniques as Methods to Evaluate ODC Free Cleaner Diffusion and Evaporation in Insulation and Phenolic Case Material

    NASA Technical Reports Server (NTRS)

    Biegert, L. L.

    2001-01-01

    Because of the 1990 Clean Air Act Amendment (CAAA) many chlorinated solvents used in the aerospace industry are being phased out. Replacement of the ODC (ozone-depleting chemicals) with less volatile, non-ozone depleting cleaners has been extensively studied over the past seven years at Thiokol Propulsion, a Division of Cordant Technologies, Inc. The down selection of ODC replacement cleaners has been based on several factors including the diffusion evaporation of the cleaners in selected substrates. Methodologies were developed to evaluate the cleaner content in substrates. Methods of cutting thin slices of material (microtoming) were combined with GC/MS (gas chromatography/mass spectroscopy) analysis. Substrates evaluated in this study include potential solid rocket motor materials: ASNBR (asbestos-filled nitrile butadiene rubber) and CFEPDM (carbon-filled ethylene propylene dimonomer) insulation and glass (GCP), carbon (CCP) and silica (SCP) cloth phenolic substrates with fibers either parallel (0 deg) or perpendicular (90 deg) to the surface. Residue profiles indicate both cleaner and substrate composition affect the diffusion and subsequent evaporation of the cleaner from the substrate surface.

  6. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  7. Simple liquid models with corrected dielectric constants

    PubMed Central

    Fennell, Christopher J.; Li, Libo; Dill, Ken A.

    2012-01-01

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577

  8. A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from Restrained Molecular Simulations of Diffusive Processes.

    PubMed

    Ovchinnikov, Victor; Nam, Kwangho; Karplus, Martin

    2016-08-25

    A method is developed to obtain simultaneously free energy profiles and diffusion constants from restrained molecular simulations in diffusive systems. The method is based on low-order expansions of the free energy and diffusivity as functions of the reaction coordinate. These expansions lead to simple analytical relationships between simulation statistics and model parameters. The method is tested on 1D and 2D model systems; its accuracy is found to be comparable to or better than that of the existing alternatives, which are briefly discussed. An important aspect of the method is that the free energy is constructed by integrating its derivatives, which can be computed without need for overlapping sampling windows. The implementation of the method in any molecular simulation program that supports external umbrella potentials (e.g., CHARMM) requires modification of only a few lines of code. As a demonstration of its applicability to realistic biomolecular systems, the method is applied to model the α-helix ↔ β-sheet transition in a 16-residue peptide in implicit solvent, with the reaction coordinate provided by the string method. Possible modifications of the method are briefly discussed; they include generalization to multidimensional reaction coordinates [in the spirit of the model of Ermak and McCammon (Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352-1360)], a higher-order expansion of the free energy surface, applicability in nonequilibrium systems, and a simple test for Markovianity. In view of the small overhead of the method relative to standard umbrella sampling, we suggest its routine application in the cases where umbrella potential simulations are appropriate.

  9. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    NASA Astrophysics Data System (ADS)

    Anil Kumar, Yedluri; Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-09-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g-1 at 1.5 A g-1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g-1 at 1.5 A g-1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors.

  10. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    PubMed Central

    Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-01-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g−1 at 1.5 A g−1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g−1 at 1.5 A g−1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors. PMID:28989753

  11. Fast internal dynamics in alcohol dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in themore » fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.« less

  12. Study of lattice strain and optical properties of nanocrystalline SnO2

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam

    2018-05-01

    Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.

  13. Microcapsules and Methods for Making

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    1998-01-01

    Methods of forming multi-lamellar microcapsules having alternating layers of hydrophilic and hydrophobic immiscible liquid phases have been developed using different polymer/solvent systems. The methods use liquid-liquid diffusion and simultaneous lateral phase separation, controlled by proper timed-sequence exposures of immiscible phases and low shear mixing, to form narrow size distributions of spherical, multilamellar microcapsules. The use of special formulations of solubilized drugs, surfactants, and polymeric co-surfactants in aqueous vehicles which are dispersed in hydrocarbon solvents containing small quantities of oil, low molecular weight co-surfactants and glycerides that are aqueous insoluble enables the formation of unique microcapsules which can carry large amounts of pharmaceuticals in both aqueous and non-aqueous solvent compartments. The liquid microcapsules are quickly formed in a single step and can include a polymeric outer 'skin' which protects the microcapsules during physical manipulation or exposure to high shear forces. Water-in-oil and oil-in-water microcapsules have been formed both in 1 x g and in microgravity, which contain several types of drugs co-encapsulated within different fluid compartments inside the same microcapsule. Large, spherical multi-lamellar microcapsules have been formed including a cytotoxic drug co-encapsulated with a radiocontrast medium which has advantages for chemoembolization of vascular tumors. In certain cases, crystals of the drug form inside the microcapsules providing zero-order and first order, sustained drug release kinetics.

  14. Formulation of improved basis sets for the study of polymer dynamics through diffusion theory methods.

    PubMed

    Gaspari, Roberto; Rapallo, Arnaldo

    2008-06-28

    In this work a new method is proposed for the choice of basis functions in diffusion theory (DT) calculations. This method, named hybrid basis approach (HBA), combines the two previously adopted long time sorting procedure (LTSP) and maximum correlation approximation (MCA) techniques; the first emphasizing contributions from the long time dynamics, the latter being based on the local correlations along the chain. In order to fulfill this task, the HBA procedure employs a first order basis set corresponding to a high order MCA one and generates upper order approximations according to LTSP. A test of the method is made first on a melt of cis-1,4-polyisoprene decamers where HBA and LTSP are compared in terms of efficiency. Both convergence properties and numerical stability are improved by the use of the HBA basis set whose performance is evaluated on local dynamics, by computing the correlation times of selected bond vectors along the chain, and on global ones, through the eigenvalues of the diffusion operator L. Further use of the DT with a HBA basis set has been made on a 71-mer of syndiotactic trans-1,2-polypentadiene in toluene solution, whose dynamical properties have been computed with a high order calculation and compared to the "numerical experiment" provided by the molecular dynamics (MD) simulation in explicit solvent. The necessary equilibrium averages have been obtained by a vacuum trajectory of the chain where solvent effects on conformational properties have been reproduced with a proper screening of the nonbonded interactions, corresponding to a definite value of the mean radius of gyration of the polymer in vacuum. Results show a very good agreement between DT calculations and the MD numerical experiment. This suggests a further use of DT methods with the necessary input quantities obtained by the only knowledge of some experimental values, i.e., the mean radius of gyration of the chain and the viscosity of the solution, and by a suitable vacuum trajectory, with great savings in computational time required. This offers a theoretical bridge between the experimental static and dynamical properties of polymers.

  15. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions

    PubMed Central

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550

  16. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus.

    PubMed

    Sathish, Kumar S R; Kokati, Venkata Bhaskara Rao

    2012-10-01

    To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 µg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  17. Effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure.

    PubMed

    Yu, Wancheng; Luo, Kaifu

    2015-03-28

    Using 3D Langevin dynamics simulations, we investigate the effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure. We show that the chain closure in good solvents is a purely diffusive process. By extrapolation to zero solvent viscosity, we find that the internal friction of a chain plays a non-ignorable role in the dynamics of the chain closure. When the solvent quality changes from good to poor, the mean closure time τc decreases by about 1 order of magnitude for the chain length 20 ≤ N ≤ 100. Furthermore, τc has a minimum as a function of the solvent quality. With increasing the chain length N, the minimum of τc occurs at a better solvent. Finally, the single exponential distributions of the closure time in poor solvents suggest that the negative excluded volume of segments does not alter the nearly Poisson statistical characteristics of the process of the chain closure.

  18. Changes in total phenol, flavonoid contents and anti-Lactobacillus activity of Callisia fragrans due to extraction solvent

    NASA Astrophysics Data System (ADS)

    Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien

    2018-04-01

    Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.

  19. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER

  20. A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules

    PubMed Central

    Elcock, Adrian H.

    2013-01-01

    Inclusion of hydrodynamic interactions (HIs) is essential in simulations of biological macromolecules that treat the solvent implicitly if the macromolecules are to exhibit correct translational and rotational diffusion. The present work describes the development and testing of a simple approach aimed at allowing more rapid computation of HIs in coarse-grained Brownian dynamics simulations of systems that contain large numbers of flexible macromolecules. The method combines a complete treatment of intramolecular HIs with an approximate treatment of the intermolecular HIs which assumes that the molecules are effectively spherical; all of the HIs are calculated at the Rotne-Prager-Yamakawa level of theory. When combined with Fixman’s Chebyshev polynomial method for calculating correlated random displacements, the proposed method provides an approach that is simple to program but sufficiently fast that it makes it computationally viable to include HIs in large-scale simulations. Test calculations performed on very coarse-grained models of the pyruvate dehydrogenase (PDH) E2 complex and on oligomers of ParM (ranging in size from 1 to 20 monomers) indicate that the method reproduces the translational diffusion behavior seen in more complete HI simulations surprisingly well; the method performs less well at capturing rotational diffusion but its discrepancies diminish with increasing size of the simulated assembly. Simulations of residue-level models of two tetrameric protein models demonstrate that the method also works well when more structurally detailed models are used in the simulations. Finally, test simulations of systems containing up to 1024 coarse-grained PDH molecules indicate that the proposed method rapidly becomes more efficient than the conventional BD approach in which correlated random displacements are obtained via a Cholesky decomposition of the complete diffusion tensor. PMID:23914146

  1. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajjar, Rachna M.; Kasting, Gerald B., E-mail: Gerald.Kasting@uc.edu

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each {sup 14}C-radiolabed compound were tested — 5, 10, 20, and 40 μL cm{sup −2}, corresponding to specific doses ranging in mass from 5.0 tomore » 63 mg cm{sup −2}. The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, K{sub sc}, and modest changes to the diffusion coefficients, D{sub sc}, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. - Highlights: • Human skin absorption of small doses of VOCs was measured in vitro in a fume hood. • The VOCs tested were ethanol, acetone, benzene and 1,2-dichloroethane. • Fraction of dose absorbed for all compounds at all doses tested was less than 0.3%. • The more aggressive VOCs absorbed at higher levels than diffusion model predictions. • We conclude that even small exposures to VOCs temporarily alter skin permeability.« less

  2. Water-induced nanochannel networks in self-assembled block ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineart, Kenneth P.; Al-Mohsin, Heba A.; Lee, Byeongdu

    2016-03-07

    Block ionomers cast from solution exhibit solvent-templated morphologies that can be altered by solvent-vapor annealing. When cast from a mixed solvent, a midblock-sulfonated pentablock ion- omer self-assembles into spherical ionic microdomains that are loosely connected. Upon exposure to liquid water, nanoscale channels irreversibly develop between the microdomains due to swelling and form a continuous mesoscale network. We use electron tomography and real-time X-ray scat- tering to follow this transformation and show that the resultant morphology provides a highly effec- tive diffusive pathway.

  3. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  4. Chemically exfoliating large sheets of phosphorene via choline chloride urea viscosity-tuning

    NASA Astrophysics Data System (ADS)

    Ng, A.; Sutto, T. E.; Matis, B. R.; Deng, Y.; Ye, P. D.; Stroud, R. M.; Brintlinger, T. H.; Bassim, N. D.

    2017-04-01

    Exfoliation of two-dimensional phosphorene from bulk black phosphorous through chemical means is demonstrated where the solvent system of choice (choline chloride urea diluted with ethanol) has the ability to successfully exfoliate large-area multi-layer phosphorene sheets and further protect the flakes from ambient degradation. The intercalant solvent molecules, aided by low-powered sonication, diffuse between the layers of the bulk black phosphorus, allowing for the exfoliation of the multi-layer phosphorene through breaking of the interlayer van der Waals bonds. Through viscosity tuning, the optimal parameters (1:1 ratio between the intercalant and the diluting solvent) at which the exfoliation takes place is determined. Our exfoliation technique is shown to produce multi-layer phosphorene flakes with surface areas greater than 3 μm2 (a factor of three larger than what has previously been reported for a similar exfoliation method) while limiting exposure to the ambient environment, thereby protecting the flakes from degradation. Characterization techniques such as optical microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, and (scanning) transmission electron microscopy are used to investigate the quality, quantity, and thickness of the exfoliated flakes.

  5. Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus.

    PubMed

    Kumari, U; Nigam, A K; Mitial, S; Mitial, A K

    2011-07-01

    The skin mucus of Rita rita and Channa punctatus was investigated to explore the possibilities of its antibacterial properties. Skin mucus was extracted in acidic solvents (0.1% trifluoroacetic acid and 3% acetic acid) and in triple distilled water (aqueous medium). The antibacterial activity of the mucus extracts was analyzed, using disc diffusion method, against five strains of bacteria--the Gram-positive Staphylococcus aureus and Micrococcus luteus; and the Gram negative Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi. In both Rita rita and Channa punctatus, the skin mucus extracted in acidic solvents as well as in aqueous medium show antibacterial activity against Staphylococcus aureus and Micrococcus luteus. Nevertheless, the activity is higher in acidic solvents than that in aqueous medium. The acidic mucus extracts of Rita rita, show antibacterial activity against Salmonella typhi as well. The results suggest that fish skin mucus have bactericidal properties and thus play important role in the protection of fish against the invasion of pathogens. Fish skin mucus could thus be regarded as a potential source of novel antibacterial components.

  6. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.

    PubMed

    Smirnov, Vladimir S; Kislenko, Sergey A

    2018-01-05

    The molecular life of intermediates, namely, O 2 - and Li + , produced during the discharge of aprotic Li-O 2 batteries was investigated by molecular dynamics simulation. This work is of potential interest in the development of new electrolytes for Li-air batteries. We present the results on the structure and stability of the Li + and O 2 - solvation shells and the thermodynamics and kinetics of the ion-association reaction in solvents such as dimethyl sulfoxide (DMSO), dimethoxyethane (DME), and acetonitrile (ACN). The residence time of solvent molecules in the Li + solvation shell increases with the solvent donor number and is 100 times larger in DMSO than in ACN. In DMSO and DME, the Li + ion diffuses with its solvation shell as a whole. On the contrary, in ACN it diffuses as a "bare" ion because of weak solvation. The rate constant for the association of the lithium ion with the superoxide anion in DMSO is two orders of magnitude slower than that in ACN due to fact that the free-energy barrier is 2.5 times larger in DMSO than in ACN. In addition, we show that despite the strong dependence of the Li + shell stability on donor number, the rate of association does not necessarily correlate with this solvent property. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  8. Fabrication, characterization, and thermal property evaluation of silver nanofluids

    PubMed Central

    2014-01-01

    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively. PMID:25489293

  9. Efficient and Unbiased Sampling of Biomolecular Systems in the Canonical Ensemble: A Review of Self-Guided Langevin Dynamics

    PubMed Central

    Wu, Xiongwu; Damjanovic, Ana; Brooks, Bernard R.

    2013-01-01

    This review provides a comprehensive description of the self-guided Langevin dynamics (SGLD) and the self-guided molecular dynamics (SGMD) methods and their applications. Example systems are included to provide guidance on optimal application of these methods in simulation studies. SGMD/SGLD has enhanced ability to overcome energy barriers and accelerate rare events to affordable time scales. It has been demonstrated that with moderate parameters, SGLD can routinely cross energy barriers of 20 kT at a rate that molecular dynamics (MD) or Langevin dynamics (LD) crosses 10 kT barriers. The core of these methods is the use of local averages of forces and momenta in a direct manner that can preserve the canonical ensemble. The use of such local averages results in methods where low frequency motion “borrows” energy from high frequency degrees of freedom when a barrier is approached and then returns that excess energy after a barrier is crossed. This self-guiding effect also results in an accelerated diffusion to enhance conformational sampling efficiency. The resulting ensemble with SGLD deviates in a small way from the canonical ensemble, and that deviation can be corrected with either an on-the-fly or a post processing reweighting procedure that provides an excellent canonical ensemble for systems with a limited number of accelerated degrees of freedom. Since reweighting procedures are generally not size extensive, a newer method, SGLDfp, uses local averages of both momenta and forces to preserve the ensemble without reweighting. The SGLDfp approach is size extensive and can be used to accelerate low frequency motion in large systems, or in systems with explicit solvent where solvent diffusion is also to be enhanced. Since these methods are direct and straightforward, they can be used in conjunction with many other sampling methods or free energy methods by simply replacing the integration of degrees of freedom that are normally sampled by MD or LD. PMID:23913991

  10. Molecular and mesoscopic study of ionic liquids and their use as solvents of active agents released by polymeric vehicles

    NASA Astrophysics Data System (ADS)

    Ramos-Rodríguez, Daniel-Apolinar; Rodríguez-Hidalgo, María-del-Rosario; Soto-Figueroa, César; Vicente, Luis

    2010-03-01

    This work explores the diffusivity of the drug albendazole contained in a polymeric vehicle, Styrene-Divinylbenzene (ST-DVD), when it is subject to different environments. The environments consist of water and three different ionic liquids. First, the solubility parameters of these ionic liquids, [BMIM][PF6], [HMIM][Br] and [BMIM][BF4], and albendazole were evaluated by means of molecular dynamics employing COMPASS force-field and a NPT ensemble at 298 K. Then a mesoscopic simulation using Dissipative Particle Dynamics (DPD) was used. In the presence of ionic liquids the albendazole exhibits a diffusivity in [BMIM][PF6] around ten times that shown in [BMIM][BF4] or [HMIM][Br]. This is connected with the corresponding solvent power. The results obtained from these molecular and mesoscopic simulations are consistent with reported experimental results and are useful to predict and evaluate the solvent power of ionic liquids applied to drugs of pharmaceutical use.

  11. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.

    PubMed

    Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan

    2016-08-01

    The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too.

  12. Behaviour of a solvent trapped in a physical molecular gel

    NASA Astrophysics Data System (ADS)

    Morfin, I.; Spagnoli, S.; Rambaud, C.; Longeville, S.; Plazanet, M.

    2016-03-01

    Physical gels formed by amphiphilic molecules, namely in this study Methyl-4,6-O-benzylidene-? -D-mannopyranoside, can be form either in polar and protic liquid-like water or in organic apolar solvent such as toluene. The solvent, that influences the supramolecular organization of the gelators, plays an important role in the stability and formation of the gel phase. Gelator-solvent interactions govern not only the assembly but also the solvent diffusion in the material. We present here measurements of neutron scattering (Time of Flight and Neutron Spin Echo) characterizing this microscopic behaviour. In addition, we show that transient grating spectroscopy provides valuable information through the characterization of the longitudinal acoustic wave propagating in the system. Opposite effects on the speed of sound in the gels are observed for the two solvents investigated, being relevant of the interactions between the gelators and the surrounding liquid.

  13. Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study.

    PubMed

    Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Ma, Yiding; Kang, Ying; Ge, Zhongxue

    2017-06-01

    Molecular dynamics simulations have been performed to understand the adsorption behavior of acetone (AC) solvent at the three surfaces of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctan (HMX) crystal, i.e. (011), (110), and (020) faces. The simulation results show that the structural features and electrostatic potentials of crystal faces are determined by the HMX molecular packing, inducing distinct mass density distribution, dipole orientation, and diffusion of solvent molecules in the interfacial regions. The solvent adsorption is mainly governed by the van der Waals forces, and the crystal-solvent interaction energies among three systems are ranked as (020)≈(110)>(011). The adsorption sites for solvent incorporation at the crystal surface were found and visualized with the aid of occupancy analysis. A uniform arrangement of adsorption sites is observed at the rough (020) surface as a result of ordered adsorption motif. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nonideality in diffusion of ionic and hydrophobic solutes and pair dynamics in water-acetone mixtures of varying composition.

    PubMed

    Gupta, Rini; Chandra, Amalendu

    2007-07-14

    We have performed a series of molecular dynamics simulations of water-acetone mixtures containing either an ionic solute or a neutral hydrophobic solute to study the extent of nonideality in the dynamics of these solutes with variation of composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to change nonmonotonically with the composition of the mixtures showing strong nonideality of their dynamics. Also, the extent of nonideality in the diffusion of these charged solutes is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and acetone molecules in these mixtures which show a somewhat similar changes in the solvation characteristics of charged and dipolar solutes with changes of composition of water-acetone mixtures. The diffusion of the hydrophobic solute, however, shows a monotonic increase with increase of acetone concentration showing its different solvation characteristics as compared to the charged and dipolar solutes. The links between the nonideality in diffusion and solvation structures are further confirmed through calculations of the relevant solute-solvent and solvent-solvent radial distribution functions for both ionic and hydrophobic solutes. We have also calculated various pair dynamical properties such as the relaxation of water-water and acetone-water hydrogen bonds and residence dynamics of water molecules in water and acetone hydration shells. The lifetimes of both water-water and acetone-water hydrogen bonds and also the residence times of water molecules are found to increase steadily with increase in acetone concentration. No maximum or minimum was found in the composition dependence of these pair dynamical quantities. The lifetimes of water-water hydrogen bonds are always found to be longer than that of acetone-water hydrogen bonds in these mixtures. The residence times of water molecules are also found to follow a similar trend.

  15. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  16. Spatial organization of surface nanobubbles and its implications in their formation process.

    PubMed

    Lhuissier, Henri; Lohse, Detlef; Zhang, Xuehua

    2014-02-21

    We study the size and spatial distribution of surface nanobubbles formed by the solvent exchange method to gain insight into the mechanism of their formation. The analysis of Atomic Force Microscopy (AFM) images of nanobubbles formed on a hydrophobic surface reveals that the nanobubbles are not randomly located, which we attribute to the role of the history of nucleation during the formation. Moreover, the size of each nanobubble is found to be strongly correlated with the area of the bubble-depleted zone around it. The precise correlation suggests that the nanobubbles grow by diffusion of the gas from the bulk rather than by diffusion of the gas adsorbed on the surface. Lastly, the size distribution of the nanobubbles is found to be well described by a log-normal distribution.

  17. Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients.

    PubMed

    Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra

    2017-01-01

    Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.

  18. Ultrafast Thermal Plasma Preparation of Solid Si Films with Potential Application in Photovoltaic Cells: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Mostajeran Goortani, Behnam; Gitzhofer, François; Bouyer, Etienne; Mousavi, Mehdi

    2009-03-01

    An innovative method, namely ultrafast plasma surface melting, is developed to fabricate solid films of silicon with very high rates (150 cm2/min). The method is composed of preparing a suspension of solid particles in a volatile solvent and spreading it on a refractory substrate such as Mo. After solvent evaporation, the resulting porous layer is exposed to the flame tale of inductively coupled RF plasma to sinter and melt the surface particles and to prepare a solid film of silicon. It is shown that by controlling the flow dynamics and heat transfer around the substrate, and managing the kinetic parameters (i.e., exposure time, substrate transport speed, and reaction kinetics) in the reactor, we can produce solid crystalline Si films with the potential applications in photovoltaic cells industry. The results indicate that the optimum formation conditions with a film thickness of 250-700 μm is when the exposure time in the plasma is in the range of 5-12.5 s for a 100 × 50 mm large layer. By combining the Fourier’s law of conduction with the experimental measurements, we obtained an effective heat diffusivity and developed a model to obtain heat diffusion in the porous layer exposed to the plasma. The model further predicts the minimum and maximum exposure time for the substrate in the plasma flame as a function of material properties, the porous layer thickness and of the imposed heat flux.

  19. What's new in the proton transfer reaction from pyranine to water? A femtosecond study of the proton transfer dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prayer, C.; Gustavsson, T.; Tran-Thi, T.-H.

    1996-04-01

    The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion.

  20. Improved Poly (D,L-lactide) nanoparticles-based formulation for hair follicle targeting.

    PubMed

    Fernandes, B; Silva, R; Ribeiro, A; Matamá, T; Gomes, A C; Cavaco-Paulo, A M

    2015-06-01

    Hair follicles are widely recognized as the preferential target and site of accumulation for nanoparticles after topical application. This feature is of particular importance for hair cosmetics, having the potential to refine the treatment of several hair follicle-related disorders. The aim of this work was to improve the preparation of Poly (D,L-lactide) (PLA) nanoparticles for in vivo follicular target and drug delivery. Envisaging a future industrial scale-up of the process, nanoprecipitation method was used to prepare PLA nanoparticles: the effect of several processing parameters on their properties was examined and the yield of nanoparticles formation determined. Encapsulation efficiencies and in vitro release profiles of lipophilic and hydrophilic model compounds were also assessed. In vitro cytotoxicity and ex vivo penetration studies were performed on a reference skin cell line (NCTC2455, human skin keratinocytes) and porcine skin, respectively. Using acetone : ethanol (50 : 50, v/v) as the solvent phase, 0.6% (w/w) of Pluronic(®) F68 as a surfactant agent and agitation to mix the solvent and non-solvent phases, a monodispersed population of non-cytotoxic spherical nanoparticles of approximately 150 nm was obtained. The yield of nanoparticles for this formulation was roughly 90%. After encapsulation of model compounds, no significant changes were found in the properties of particles and the entrapment efficiencies were above 80%. The release kinetics of dyes from PLA nanoparticles indicate an anomalous transport mechanism (diffusion and polymer degradation) for Nile Red (lipophilic) and a Fickian diffusion of first order for fluorescein 5(6)-isothiocyanate (hydrophilic). Ex vivo skin penetration studies confirmed the presence of nanoparticles along the entire follicular ducts. The optimized method allows the preparation of ideal PLA nanoparticles-based formulations for hair follicle targeting. PLA nanoparticles can effectively transport and release lipophilic and hydrophilic compounds into the hair follicles, and the yields obtained are acceptable for industrial purposes. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Ligand exchange in ionic systems and its effect on silver nucleation and growth.

    PubMed

    Abbott, Andrew P; Azam, Muhammad; Frisch, Gero; Hartley, Jennifer; Ryder, Karl S; Saleem, Saima

    2013-10-28

    The electrodeposition of metals from ionic solutions is intrinsically linked to the reactivity of the solute ions. When metal salts dissolve, the exchange of the anion with the molecular and ionic components from solution affects the speciation and therefore the characteristics of metal reduction. This study investigates the nucleation mechanism, deposition kinetics, metal speciation and diffusion coefficients of silver salts dissolved in Deep Eutectic Solvents. The electrochemical reduction of AgCl, AgNO3 and Ag2O is studied in 1 : 2 choline chloride : ethylene glycol and 1 : 2 choline chloride : urea. Cyclic voltammetry is used to evaluate electrochemical kinetics. Detailed analysis of chronoamperometric data shows that silver deposits form via multiple 3D nucleation with mass transport controlled hemispherical growth. The nucleation mechanism was found to be potential dependent, varying from progressive to instantaneous as the reduction potential becomes more cathodic. Diffusion coefficients are determined using three different methods. Trends are rationalised in terms of solvent viscosity and silver speciation analysis with EXAFS. The morphology of electroreduced silver is investigated with scanning electron microscopy and shows that deposits from the urea based liquid form more dense morphologies than those from the ethylene glycol based liquid.

  2. Single-Molecule Tracking Study of the Permeability and Transverse Width of Individual Cylindrical Microdomains in Solvent-Swollen Polystyrene-block-poly(ethylene oxide) Films.

    PubMed

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi

    2016-12-01

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.

  3. Single-molecule tracking study of the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less

  4. Single-molecule tracking study of the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) films

    DOE PAGES

    Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; ...

    2016-11-04

    Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less

  5. Chemical composition and antibacterial activity of Origanum saccatum P.H. Davis essential oil obtained by solvent-free microwave extraction: comparison with hydrodistillation.

    PubMed

    Sozmen, Fazli; Uysal, Burcu; Oksal, Birsen S; Kose, Elif Odabas; Deniz, I Gokhan

    2011-01-01

    The components of the essential oils (EOs) obtained by solvent-free microwave extraction (SFME) and hydrodistillation (HD) from endemic Origanum saccatum P.H. Davis were identified by using GC/MS. The main constituents of both EOs obtained by SFME and HD, respectively, from O. saccatum were p-cymene (72.5 and 70.6%), thymol (9.32 and 8.11%), and carvacrol (7.18 and 6.36%). The EO obtained by SFME contained substantially higher amounts of oxygenated compounds and lower amounts of monoterpenes than did the EO obtained by HD. The antibacterial activities of the EOs obtained by SFME and HD were evaluated with the disc diffusion method by comparison with 10 different bacterial strains. The antibacterial activity of the EO extracted by SFME was found to be more effective than that of the EO extracted by HD against seven of the tested bacteria.

  6. Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography.

    PubMed

    Ghosn, Mohamad G; Tuchin, Valery V; Larin, Kirill V

    2007-06-01

    Noninvasive functional imaging, monitoring, and quantification of analytes transport in epithelial ocular tissues are extremely important for therapy and diagnostics of many eye diseases. In this study the authors investigated the capability of optical coherence tomography (OCT) for noninvasive monitoring and quantification of diffusion of different analytes in sclera and cornea of rabbit eyes. A portable time-domain OCT system with wavelength of 1310 +/- 15 nm, output power of 3.5 mW, and resolution of 25 mum was used in this study. Diffusion of different analytes was monitored and quantified in rabbit cornea and sclera of whole eyeballs. Diffusion of water, metronidazole (0.5%), dexamethasone (0.2%), ciprofloxacin (0.3%), mannitol (20%), and glucose solution (20%) were examined, and their permeability coefficients were calculated by using OCT signal slope and depth-resolved amplitude methods. Permeability coefficients were calculated as a function of time and tissue depth. For instance, mannitol was found to have a permeability coefficient of (8.99 +/- 1.43) x 10(-6) cm/s in cornea and (6.18 +/- 1.08) x 10(-6) cm/s in sclera. The permeability coefficient of drugs with small concentrations (where water was the major solvent) was found to be in the range of that of water in the same tissue type, whereas permeability coefficients of higher concentrated solutions varied significantly. Results suggest that the OCT technique might be a powerful tool for noninvasive diffusion studies of different analytes in ocular tissues. However, additional methods of OCT signal acquisition and processing are required to study the diffusion of agents of small concentrations.

  7. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites

    DOE PAGES

    Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.; ...

    2017-06-21

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less

  8. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.

    PubMed

    Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W

    2017-07-20

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83 Cs 0.17 Pb(I 0.66 Br 0.34 ) 3 , resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.

  9. Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying

    NASA Astrophysics Data System (ADS)

    Kameya, Yuki

    2017-06-01

    A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.

  10. NMR study of the gelation of a designed gelator.

    PubMed

    Brand, Torsten; Nolis, Pau; Richter, Sven; Berger, Stefan

    2008-06-01

    The gelation of a designed gelator was investigated by different NMR methods, which showed a clear thermal hysteresis. Two very simple approaches for the NMR determination of the gelation point are suggested. One involves the observation of the NMR integral, and the other records the ratio of the diffusion coefficients between the gelator and the solvent. Differential behavior of the gelator protons are interpreted as a hint that a part of the gelator molecule might still be flexible as in the dissolved state. Copyright (c) 2008 John Wiley & Sons, Ltd

  11. Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

    DOE PAGES

    Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.; ...

    2016-01-22

    A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 Å. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 °C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. Lastly, this is particularly true for the film cast from ethyl lactate.« less

  12. Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.

    A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 A. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 degrees C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. This is particularly true for the film cast from ethyl lactate.« less

  13. Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.

    A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 Å. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 °C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. Lastly, this is particularly true for the film cast from ethyl lactate.« less

  14. Phytochemical screening and antibacterial activity of Cyclamen persicum Mill tuber extracts.

    PubMed

    Alkowni, Raed; Jodeh, Shehdeh; Hussein, Fatima; Jaradat, Nidal

    2018-01-01

    The emerging drug resistance bacteria increased the demand on the discovery of antibiotics from natural sources. This research was aimed to study the antibacterial reactivity; as well as the phytochemicals, of the wild type of Cyclamen persicum, using nine different extraction methods where four solvents (Methanol, Ethanol, Hexane; and Water) were involved with varied extraction periods ranged from 2 up to 10 hours. The antibacterial activity of crude methanol extract (CME) was found as the best method of extraction, with particular emphasis on the method with prolonged extraction time of (10 hrs). The antibacterial activities of produced CME were determined by using agar diffusion method against two of gram-positive bacteria and two gram-negative ones. The CME treated Mueller-Hinton-Agar plates, were exhibited antibacterial effects against the gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) by showing of inhibition zone after overnight incubation, while nothing was noticed on those of gram negative ones (Pseudomonas aeruginosa and Escherichia coli). These results that proved the antibacterial activity of the Cyclamen persicum tubers were positively tested the Saponin glycosides from plant. In addition to that, methanol solvent could be the useful method for extractions of Cyclamen and can be used in any developing drugs against pathogenic gram positive bacteria.

  15. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  16. Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance

    PubMed Central

    Kim, Jinhyun; Hwang, Taehyun; Lee, Sangheon; Lee, Byungho; Kim, Jaewon; Jang, Gil Su; Nam, Seunghoon; Park, Byungwoo

    2016-01-01

    High power conversion efficiency and device stabilization are two major challenges for CH3NH3PbI3 (MAPbI3) perovskite solar cells to be commercialized. Herein, we demonstrate a diffusion-engineered perovskite synthesis method using MAI/ethanol dipping, and compared it to the conventional synthesis method from MAI/iso-propanol. Diffusion of MAI/C2H5OH into the PbCl2 film was observed to be more favorable than that of MAI/C3H7OH. Facile perovskite conversion from ethanol and highly-crystalline MAPbI3 with minimized impurities boosted the efficiency from 5.86% to 9.51%. Additionally, we further identified the intermediates and thereby the reaction mechanisms of PbCl2 converting into MAPbI3. Through straightforward engineering to enhance the surface morphology as well as the crystallinity of the perovskite with even faster conversion, an initial power conversion efficiency of 11.23% was obtained, in addition to superior stability after 30 days under an ambient condition. PMID:27156481

  17. Development and application of QM/MM methods to study the solvation effects and surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibya, Pooja Arora

    2010-01-01

    Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize themore » computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work. Chapter 2 illustrates the methodology of the interface of the EFP method with the configuration interaction with single excitations (CIS) method to study solvent effects in excited states. Chapter 3 discusses the study of the adiabatic electron affinity of the hydroxyl radical in aqueous solution and in micro-solvated clusters using a QM/EFP method. Chapter 4 describes the study of etching and diffusion of oxygen atom on a reconstructed Si(100)-2 x 1 surface using a hybrid QM/MM embedded cluster model (SIMOMM). Chapter 4 elucidates the application of the EFP method towards the understanding of the aqueous ionization potential of Na atom. Finally, a general conclusion of this dissertation work and prospective future direction are presented in Chapter 6.« less

  18. Uncovering Implicit Assumptions: A Large-Scale Study on Students' Mental Models of Diffusion

    ERIC Educational Resources Information Center

    Stains, Marilyne; Sevian, Hannah

    2015-01-01

    Students' mental models of diffusion in a gas phase solution were studied through the use of the Structure and Motion of Matter (SAMM) survey. This survey permits identification of categories of ways students think about the structure of the gaseous solute and solvent, the origin of motion of gas particles, and trajectories of solute particles in…

  19. Scaling exponent and dispersity of polymers in solution by diffusion NMR.

    PubMed

    Williamson, Nathan H; Röding, Magnus; Miklavcic, Stanley J; Nydén, Magnus

    2017-05-01

    Molecular mass distribution measurements by pulsed gradient spin echo nuclear magnetic resonance (PGSE NMR) spectroscopy currently require prior knowledge of scaling parameters to convert from polymer self-diffusion coefficient to molecular mass. Reversing the problem, we utilize the scaling relation as prior knowledge to uncover the scaling exponent from within the PGSE data. Thus, the scaling exponent-a measure of polymer conformation and solvent quality-and the dispersity (M w /M n ) are obtainable from one simple PGSE experiment. The method utilizes constraints and parametric distribution models in a two-step fitting routine involving first the mass-weighted signal and second the number-weighted signal. The method is developed using lognormal and gamma distribution models and tested on experimental PGSE attenuation of the terminal methylene signal and on the sum of all methylene signals of polyethylene glycol in D 2 O. Scaling exponent and dispersity estimates agree with known values in the majority of instances, leading to the potential application of the method to polymers for which characterization is not possible with alternative techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Water dynamics in small reverse micelles in two solvents: two-dimensional infrared vibrational echoes with two-dimensional background subtraction.

    PubMed

    Fenn, Emily E; Wong, Daryl B; Fayer, M D

    2011-02-07

    Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.

  1. Water dynamics in small reverse micelles in two solvents: Two-dimensional infrared vibrational echoes with two-dimensional background subtraction

    NASA Astrophysics Data System (ADS)

    Fenn, Emily E.; Wong, Daryl B.; Fayer, M. D.

    2011-02-01

    Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w0 = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w0 = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w0, but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl4 system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.

  2. Controlled release from drug microparticles via solventless dry-polymer coating.

    PubMed

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-05

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study.

    PubMed

    Dai, Peng; Yan, Tao-Tao; Yu, Xin-Xin; Bai, Zhi-Man; Wu, Ming-Zai

    2016-12-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.

  5. Occupational exposures to solvents and metals are associated with fixed airflow obstruction.

    PubMed

    Alif, Sheikh M; Dharmage, Shyamali C; Benke, Geza; Dennekamp, Martine; Burgess, John A; Perret, Jennifer L; Lodge, Caroline J; Morrison, Stephen; Johns, David P; Giles, Graham G; Gurrin, Lyle C; Thomas, Paul S; Hopper, John L; Wood-Baker, Richard; Thompson, Bruce R; Feather, Iain H; Vermeulen, Roel; Kromhout, Hans; Walters, E Haydn; Abramson, Michael J; Matheson, Melanie C

    2017-11-01

    Objectives This study investigated the associations between occupational exposures to solvents and metals and fixed airflow obstruction (AO) using post-bronchodilator spirometry. Methods We included 1335 participants from the 2002-2008 follow-up of the Tasmanian Longitudinal Health Study. Ever-exposure and cumulative exposure-unit (EU) years were calculated using the ALOHA plus job exposure matrix (JEM). Fixed AO was defined as post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) <0.7 and FEV 1 /FVC

  6. Liquid-State NMR Analysis of Nanocelluloses.

    PubMed

    King, Alistair W T; Mäkelä, Valtteri; Kedzior, Stephanie A; Laaksonen, Tiina; Partl, Gabriel J; Heikkinen, Sami; Koskela, Harri; Heikkinen, Harri A; Holding, Ashley J; Cranston, Emily D; Kilpeläinen, Ilkka

    2018-04-11

    Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1 H and 13 C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P 4444 ][OAc]):DMSO- d 6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA- g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P 4444 ][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1 H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13 C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.

  7. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    PubMed Central

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  8. An empirical relation between the limiting ionic molar conductivities and self-diffusion coefficients of pure solvents

    NASA Astrophysics Data System (ADS)

    Matsuyama, Hisashi; Motoyoshi, Kota

    2018-05-01

    The limiting ionic molar conductivity (λ∞) of an electrolyte solution depends on the self-diffusion coefficient (Ds) of the pure solvent when the temperature (T) changes. To study the Ds-dependence of λ∞, we proposed a new empirical relation λ∞ ∝(Ds / T) t , with a parameter t. The relation is applied to the λ∞ and Ds of alkali, tetra-alkyl ammonium, and halogen ions in water or methanol. All ions except for tetra-alkyl ammonium ions in water exhibit excellent linear relationships in their λ∞ ∝(Ds / T) t plots, with t in the range from 0.88 to 1.26. This is the first report showing an affirmative linear correlation between λ∞ and Ds.

  9. Ballistic Motion of Enzymes that Catalyze Highly Exothermic Reactions

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos; Pressé, Steve

    Recently we proposed that the experimentally observed enhanced diffusion of enzymes catalyzing highly exothermic reactions is a consequence of their mechanism for dissipating reaction energy. More specifically, we proposed that reaction energy spreads out from the reaction site in the form of an acoustic wave which causes the enzyme to asymmetrically deform into the solvent. The solvent reaction propels the enzyme. However, it has been noted that in water, high viscosity should reduce enzyme momentum to zero within a few ps, so any diffusion increase should not be observable. Here we provide a model explaining how small volumetric expansions of biomolecules inside water may cause fluid compression that in turn creates regions of low fluid density around the biomolecule. We then investigate the dynamics of the biomolecule in the presence of these perturbations.

  10. Roles of Poly(propylene Glycol) During Solvent-Based Lamination of Ceramic Green Tapes

    NASA Technical Reports Server (NTRS)

    Suppakarn, Nitinat; Ishida, Hatsuo; Cawley, James D.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    Solvent lamination for alumina green tapes is readily accomplished using a mixture of ethanol, toluene and poly(propylene glycol). After lamination, the PPG is clearly present as a discrete film at the interface between the laminated tapes. This condition, however, does not generate delamination during firing. Systematic sets of experiments are undertaken to determine the role of PPG in the lamination process and, specifically, the mechanism by which it is redistributed during subsequent processing. PPG slowly diffuses through the organic binder film at room temperature. The PPG diffusion rapidly increases as temperature is increased to 80 C. The key to the efficiency of adhesives during green-tape lamination is mutual solubility of the nonvolatile component of the glue and the base polymeric binder.

  11. Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents.

    PubMed Central

    Solovyova, A; Schuck, P; Costenaro, L; Ebel, C

    2001-01-01

    We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle. PMID:11566761

  12. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1990-08-30

    hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The

  13. Solvent friction changes the folding pathway of the tryptophan zipper TZ2.

    PubMed

    Narayanan, Ranjani; Pelakh, Leslie; Hagen, Stephen J

    2009-07-17

    Because the rate of a diffusional process such as protein folding is controlled by friction encountered along the reaction pathway, the speed of folding is readily tunable through adjustment of solvent viscosity. The precise relationship between solvent viscosity and the rate of diffusion is complex and even conformation-dependent, however, because both solvent friction and protein internal friction contribute to the total reaction friction. The heterogeneity of the reaction friction along the folding pathway may have subtle consequences. For proteins that fold on a multidimensional free-energy surface, an increase in solvent friction may drive a qualitative change in folding trajectory. Our time-resolved experiments on the rapidly and heterogeneously folding beta-hairpin TZ2 show a shift in the folding pathway as viscosity increases, even though the energetics of folding is unaltered. We also observe a nonlinear or saturating behavior of the folding relaxation time with rising solvent viscosity, potentially an experimental signature of the shifting pathway for unfolding. Our results show that manipulations of solvent viscosity in folding experiments and simulations may have subtle and unexpected consequences on the folding dynamics being studied.

  14. Temperature Dependence of Nonelectrolyte Permeation across Red Cell Membranes

    PubMed Central

    Galey, W. R.; Owen, J. D.; Solomon, A. K.

    1973-01-01

    The temperature dependence of permeation across human red cell membranes has been determined for a series of hydrophilic and lipophilic solutes, including urea and two methyl substituted derivatives, all the straight-chain amides from formamide through valeramide and the two isomers, isobutyramide and isovaleramide. The temperature coefficient for permeation by all the hydrophilic solutes is 12 kcal mol-1 or less, whereas that for all the lipophilic solutes is 19 kcal mol-1 or greater. This difference is consonant with the view that hydrophilic molecules cross the membrane by a path different from that taken by the lipophilic ones. The thermodynamic parameters associated with lipophile permeation have been studied in detail. ΔG is negative for adsorption of lipophilic amides onto an oil-water interface, whereas it is positive for transfer of the polar head from the aqueous medium to bulk lipid solvent. Application of absolute reaction rate theory makes it possible to make a clear distinction between diffusion across the water-red cell membrane interface and diffusion within the membrane. Diffusion coefficients and apparent activation enthalpies and entropies have been computed for each process. Transfer of the polar head from the solvent into the interface is characterized by ΔG ‡ = 0 kcal mol-1 and ΔS ‡ negative, whereas both of these parameters have large positive values for diffusion within the membrane. Diffusion within the membrane is similar to what is expected for diffusion through a highly associated viscous fluid. PMID:4708405

  15. Generalized thermoelastic diffusive waves in heat conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.

    2007-04-01

    Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

  16. Comparison of methods for the measurement of mist and vapor from light mineral oil-based metalworking fluids.

    PubMed

    Simpson, Andrew T

    2003-11-01

    The measurement of oil mist derived from metalworking fluids formulated with light mineral oils can be highly inaccurate when using traditional filter sampling. This is due to evaporation of oil from the filter. In this work the practicability of an alternative approach measuring total oil mist and vapor was investigated. Combinations of inhalable particle samplers with backup sorbent vapor traps and standard vapor sampling on pumped and diffusive sorbent tubes were evaluated with gravimetric, infrared spectroscopic, and gas chromatographic analytical methods against the performance requirements of European Standard EN 482. An artificial aerosol was used to compare the methods against a reference method of filter sampler in series with three impingers. Multi-orifice samplers were used with standard 8-mm diameter charcoal tubes at 2 L/min without any signs of channelling or significant breakthrough, as were conical inhalable samplers with XAD-2 tubes at 1 L/min. Most combinations of samplers had a bias of less than 3 percent, but solitary pumped charcoal tubes underestimated total oil by 13 percent. Diffusive sampling was affected by impaction of mist particles and condensation of oil vapor. Gravimetric analysis of filters revealed significant potential sample loss during storage, with 4 percent being lost after one day when stored at room temperature and 2 percent when refrigerated. Samples left overnight in the balance room to equilibrate lost 24 percent. Infrared spectroscopy gave more precise results for vapor than gas chromatography (p = 0.002). Gas chromatography was less susceptible to bias from contaminating solvent vapors than infrared spectroscopy, but was still vulnerable to petroleum distillates. Under the specific test conditions (one oil type and mist particle size), all combinations of methods examined complied with the requirements of European Standard EN 484. Total airborne oil can be measured accurately; however, care must be taken to avoid contamination by hydrocarbon solvent vapors during sampling.

  17. Diffusional Transport of Organic Solutes in Subsurface Clay Lenses and Layers

    NASA Astrophysics Data System (ADS)

    Demond, A. H.; Ayral, D.; Goltz, M. N.

    2009-12-01

    The storage of organic solvents in clay lenses and layers in the subsurface creates long-term contaminant sources. Because of the low hydraulic conductivities of clay, it is thought that organic movement into clay lenses occurs through the process of diffusion. The ratio of the effective diffusion coefficient in the porous medium and the diffusion coefficient in bulk water is usually given by the tortuosity factor which accounts for the reduced area and the increased path length in the porous medium. However, there is field evidence which suggests that the concentrations in these lenses exceed that which can be accounted for by simple diffusion. There are reports, for example, of tortuosity factors greater than 1.0, which theoretically is not possible. Clays such as montmorillonite or bentonite shrink and swell depending on water content, and similar behavior can occur in the presence of organic solvents. In fact, research has shown that the basal spacing of bentonite can decrease by 50% when permeated with heptane. Such contraction of the clay structure can lead to the formation of cracks and macropores, with a concomitant alteration of the diffusional pathways that solutes follow. Models formulated for diffusional transport in soil are available to calculate the tortuosity factor as a function of water content. In addition, models are available to simulate phenomena in which the diffusion coefficient is concentration dependent. However, calculations of diffusional transport using such models show that they may not adequately reflect the impact of the alteration of the clay structure. However, modeling the transport of organic solutes in clay as a dual-domain system with some minimal advective transport in macropores can yield tortuosity factors greater than 1.0. Thus, it appears the cracking of clay in contact with organic solvents and a resultant advective component to transport of the solute may be an explanation of field observations.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stagg, Alan K; Yoon, Su-Jong

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P11.02: Hydra-TH Extensions for Multispecies and Thermosolutal Convection. A critical requirement for modeling reactor thermal hydraulics is to account for species transport within the fluid. In particular, this capability is needed for modeling transport and diffusion of boric acid within water for emergency, reactivity-control scenarios. To support this need, a species transport capability has been implemented in Hydra-TH for binary systems (for example, solute within a solvent). A species transport equation is solved formore » the species (solute) mass fraction, and both thermal and solutal buoyancy effects are handled with specification of a Boussinesq body force. Species boundary conditions can be specified with a Dirichlet condition on mass fraction or a Neumann condition on diffusion flux. To enable enhanced species/fluid mixing in turbulent flow, the molecular diffusivity for the binary system is augmented with a turbulent diffusivity in the species transport calculation. The new capabilities are demonstrated by comparison of Hydra-TH calculations to the analytic solution for a thermosolutal convection problem, and excellent agreement is obtained.« less

  19. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    NASA Astrophysics Data System (ADS)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.

  20. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia

    PubMed Central

    Gebreyohannes, Gebreselema; Moges, Feleke; Sahile, Samuel; Raja, Nagappan

    2013-01-01

    Objective To isolate, evaluate and characterize potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Methods A total of 31 strains of actinomycetes were isolated and tested against Gram positive and Gram negative bacterial strains by primary screening. In the primary screening, 11 promising isolates were identified and subjected to solid state and submerged state fermentation methods to produce crude extracts. The fermented biomass was extracted by organic solvent extraction method and tested against bacterial strains by disc and agar well diffusion methods. The isolates were characterized by using morphological, physiological and biochemical methods. Results The result obtained from agar well diffusion method was better than disc diffusion method. The crude extract showed higher inhibition zone against Gram positive bacteria than Gram negative bacteria. One-way analysis of variance confirmed most of the crude extracts were statistically significant at 95% confidence interval. The minimum inhibitory concentration and minimum bactericidal concentration of crude extracts were 1.65 mg/mL and 3.30 mg/mL against Staphylococcus aureus, and 1.84 mg/mL and 3.80 mg/mL against Escherichia coli respectively. The growth of aerial and substrate mycelium varied in different culture media used. Most of the isolates were able to hydrolysis starch and urea; able to survive at 5% concentration of sodium chloride; optimum temperature for their growth was 30 °C. Conclusions The results of the present study revealed that freshwater actinomycetes of Lake Tana appear to have immense potential as a source of antibacterial compounds. PMID:23730554

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Rajput, Nav Nidhi; Persson, Kristin A.

    Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self-diffusion coefficients (D) of solutes and solvents were measured by {sup 1}H and {sup 19}F pulsed field gradient nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC), and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 0–50 °C and for various concentrations (0.25–1.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increased in allmore » solvents. Since TFSI{sup −} has fluoromethyl groups (CF{sub 3}), D{sub TFSI} could be measured separately and the values found are larger than those for D{sub Fc1N112} in all samples measured. The EC, PC, and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC, and EMC. A difference in D (D{sub PC} < D{sub EC} < D{sub EMC}), and both a higher E{sub a} for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112{sup +}, which is a relatively stronger interaction than that between Fc1N112{sup +} and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that D{sub PC} = D{sub EC} = D{sub EMC} and Fc1N112{sup +} and all components of the EC/PC/EMC solution have the same E{sub a} for translational motion, while the ratio D{sub EC/PC/EMC}/D{sub Fc1N112} is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112{sup +} transference numbers lie around 0.4 and increase slightly as the temperature is increased in the PC and EMC solvents. The trends observed for D from simulations are in good agreement with experimental results and provide molecular level understanding of the solvation structure of Fc1N112-TFSI dissolved in EC/PC/EMC.« less

  2. Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach

    NASA Astrophysics Data System (ADS)

    Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.

    2017-01-01

    Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.

  3. Diffusion behavior of the fluorescent proteins eGFP and Dreiklang in solvents of different viscosity monitored by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-12-01

    Fluorescence correlation spectroscopy relies on temporal autocorrelation analysis of fluorescence intensity fluctuations that spontaneously arise in systems at equilibrium due to molecular motion and changes of state that cause changes in fluorescence, such as triplet state transition, photoisomerization and other photophysical transformations, to determine the rates of these processes. The stability of a fluorescent molecule against dark state conversion is of particular concern for chromophores intended to be used as reference tags for comparing diffusion processes on multiple time scales. In this work, we analyzed properties of two fluorescent proteins, the photoswitchable Dreiklang and its parental eGFP, in solvents of different viscosity to vary the diffusion time through the observation volume element by several orders of magnitude. In contrast to eGFP, Dreiklang undergoes a dark-state conversion on the time scale of tens to hundreds of microseconds under conditions of intense fluorescence excitation, which results in artificially shortened diffusion times if the diffusional motion through the observation volume is sufficiently slowed down. Such photophysical quenching processes have also been observed in FCS studies on other photoswitchable fluorescent proteins including Citrine, from which Dreiklang was derived by genetic engineering. This property readily explains the discrepancies observed previously between the diffusion times of eGFP- and Dreiklang-labeled plasma membrane protein complexes.

  4. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    PubMed

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Extraction and identification of bioactive compounds from agarwood leaves

    NASA Astrophysics Data System (ADS)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.

  6. Solidification of II-VI Compounds in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Volz, M. P.; Mazuruk, K.; Motakef, S.; Dudley, M.; Matyi, R.

    1999-01-01

    This project is aimed at using a rotating magnetic field (RMF) to control fluid flow and transport during directional solidification of elemental and compound melts. Microgravity experiments have demonstrated that small amounts of residual acceleration of less than a micro-g can initiate and prolong fluid flow, particularly when there is a static component of the field perpendicular to the liquid solid interface. Thus a true diffusion boundary layer is not formed, and it becomes difficult to verify theories of solidification or to achieve diffusion controlled solidification. The RMF superimposes a stirring effect on an electrically conducting liquid, and with appropriate field strengths and frequencies, controlled transport of material through a liquid column can be obtained. As diffusion conditions are precluded and complete mixing conditions prevail, the technique is appropriate for traveling solvent zone or float zone growth methods in which the overall composition of the liquid can be maintained throughout the growth experiment. Crystals grown by RMF techniques in microgravity in previous, unrelated missions have shown exceptional properties. The objective of the project is two-fold, namely (1) using numerical modeling to simulate the behavior of a solvent zone with applied thermal boundary conditions and demonstrate the effects of decreasing gravity levels, or an increasing applied RMF, or both, and (2) to grow elements and II-VI compounds from traveling solvent zones both with and without applied RMFs, and to determine objectively how well the modeling predicts solidification parameters. Numerical modeling has demonstrated that, in the growth of CdTe from a tellurium solution, a rotating magnetic field can advantageously modify the shape of the liquid solid interface such that the interface is convex as seen from the liquid. Under such circumstances, the defect structure is reduced as any defects which are formed tend to grow out and not propagate. The flow of liquid, however, is complex due to the competing flow induced by the rotating magnetic field and the buoyancy driven convection. When the acceleration forces are reduced to one thousandth of gravity, the flow pattern is much simplified and well controlled material transport through the solvent zone can be readily achieved. Triple axis diffractometry and x-ray synchrotron topography have demonstrated that there is no significant improvement in crystal quality for HgCdTe grown on earth from a tellurium solution when a rotating magnetic field is applied. However, modeling shows that the flow in microgravity with a rotating magnetic field would produce a superior product.

  7. Carbon dioxide extraction of residual chloroform from biodegradable polymers.

    PubMed

    Koegler, Wendy S; Patrick, Carmen; Cima, Michael J; Griffith, Linda G

    2002-01-01

    Biodegradable polymeric devices for drug delivery and tissue engineering are often fabricated with the use of organic solvents and may still contain significant amounts of solvent (> 1 wt%) even after aggressive vacuum drying. This excess solvent can interfere with tissue response and the mechanical properties of the devices. The aim of this article is to demonstrate that liquid CO(2) extraction can be used to reduce residual solvent in dense poly(L-lactide-co-glycolide) devices to 50 ppm relatively quickly and with minimal changes in architecture under some conditions. Two liquid CO(2) extraction systems were developed to examine the removal of residual solvents from bar-shaped PLGA devices: (1) a low-pressure (1400 psi) batch system, and (2) a high-pressure (5000 psi) continuous-flow system. Eight hours of extraction in the high-pressure system reduced residual chloroform in 3 mm thick bars below the 50-ppm target. A simple Fickian diffusion model was fit to the extraction results. Diffusion coefficients ranged from 1.10 x 10(-6) cm(2)/s to 2.64 x 10(-6) cm(2)/s. The model predicts that approximately 1 h is needed to dry 1-mm bars to chloroform levels below 50 ppm, and 7 h are needed for 3 mm thick bars. The micro- and macroarchitectures of porous PLGA scaffolds created by particulate leaching were not significantly altered by CO(2) drying if the salt used to make the pores was not removed before drying. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 567-576, 2002

  8. The preparation and characterization of monomethoxypoly(ethylene glycol)-b-poly-DL-lactide microcapsules containing bovine hemoglobin.

    PubMed

    Meng, Fan-Tao; Zhang, Wan-Zhong; Ma, Guang-Hui; Su, Zhi-Guo

    2003-08-01

    Methoxypoly(ethylene glycol)-b-poly-DL-lactide (PELA) microcapsules containing bovine hemoglobin (bHb) were prepared by a W/O/W double emulsion-solvent diffusion process. bHb solution was used as the internal aqueous phase, PELA/organic solvent as the oil phase, and polyvinyl alcohol (PVA) solution as the external aqueous phase. This W/O/W double emulsion was added into a large volume of water (solidification solution) to allow organic solvent to diffuse into water. The optimum preparative condition for PELA microcapsules loaded with bovine hemoglobin was investigated. It was found that homogenization rate, type of organic solvent, and volume of the solidification solution influenced the activity of bovine hemoglobin encapsulated. When the homogenization rate was lower than 9000 rpm and ethyl acetate was used as the organic solvent, there was no significant influence on the activity of hemoglobin. High homogenization rate as 12 000 rpm decreased the P50 and Hill coefficient. Increasing the volume of solidification solution had an effect of improving the activity of microencapsulated hemoglobin. The composition of the PELA had the most important influence on the success of encapsulation. Microcapsules fabricated by PELA with MPEG2k block (molecular weight of MPEG block: 2000) achieved a high entrapment efficiency of 90%, better than PL A homopolymer and PELA with MPEG5k blocks. Hemoglobin microcapsules with native loading oxygen activity (P50 = 26.0 mmHg, Hill coefficient = 2.4), mean size of about 10 microm, and high entrapment efficiency (ca. 93%) were obtained at the optimum condition.

  9. Dissolution enhancement of glibenclamide by solid dispersion: solvent evaporation versus a supercritical fluid-based solvent -antisolvent technique

    PubMed Central

    Tabbakhian, M.; Hasanzadeh, F.; Tavakoli, N.; Jamshidian, Z.

    2014-01-01

    Glibenclamide (GLIB) is a poorly soluble drug with formulation-dependent bioavailability. Therefore, we attempted in this study to improve GLIB dissolution rate by preparing drug solid dispersions by solvent evaporation (SE) and supercritical fluid solvent-antisolvent techniques (SCF-SAS). A D-optimal mixture design was used to investigate the effects of different ratios of HPMCE5 (50-100%), PEG6000 (0-40%), and Poloxamer407 (0-20%) on drug dissolution from different solid dispersion (SD) formulations prepared by SE. The ratios of carriers used in SCF-SAS method were HPMCE5 (fixed at 60%), PEG6000 (20-40%), and Poloxamer407 (0-20%). A constant drug: carrier weight ratio of 1:10 was used in all experiments. The SDs obtained were physically characterized and subjected to the dissolution study. The major GLIB bands in FTIR spectra were indicative of drug integrity. The reduced intensity and the fewer number of peaks observed in X-ray diffractograms (XRD) of GLIB formulations was the indicative of at least partial transformation of crystalline to amorphous GLIB. This change and/or dilution of drug in much higher amounts of carriers present caused disappearance of distinctive endothermic peaks in differential scanning calorimetry thermograms of GLIB formulations. The model generated according to the results of the D-optimal mixture design indicated that GLIB formulations comprising HPMC (50%-60%), PEG (34-40%), and poloxamer (6-10%) had enhanced dissolution performances. As compared to SE method, the SCF-SAS technique produced formulations of higher dissolution performances, likely due to the effects of solution and the supercritical CO2 (SC-CO2) on enhanced plasticization of polymers and thus increased diffusion of the drug into the polymer matrix. PMID:25657806

  10. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, E A; Bashkatov, A N; Tuchin, V V

    One of the lines of development of modern medicine is theranostics consisting in simultaneous diagnosis and laser treatment with the use of multifunctional agents such as fluorescent indocyanine green that has photodynamic and photothermal properties. Diffusion of indocyanine green dissolved in water and aqueous solutions of alcohols (glycerol, propylene glycol and ethanol) into the dermis is studied by using backscattering spectroscopy. The coefficients of the dye diffusion into the dermis are obtained for the first time by using these solvents. (laser biophotonics)

  11. Proteins as micro viscosimeters: Brownian motion revisited.

    PubMed

    Lavalette, Daniel; Hink, Mark A; Tourbez, Martine; Tétreau, Catherine; Visser, Antonie J

    2006-08-01

    Translational and rotational diffusion coefficients of proteins in solution strongly deviate from the Stokes-Einstein laws when the ambient viscosity is induced by macromolecular co-solutes rather than by a solvent of negligible size as was assumed by A. Einstein one century ago for deriving the laws of Brownian motion and diffusion. Rotational and translational motions experience different micro viscosities and both become a function of the size ratio of protein and macromolecular co-solute. Possible consequences upon fluorescence spectroscopy observations of diffusing proteins within living cells are discussed.

  12. Multidetector thermal field-flow fractionation as a novel tool for the microstructure separation of polyisoprene and polybutadiene.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2014-11-01

    For the first time, it is demonstrated that thermal field-flow fractionation (ThFFF) is an efficient tool for the fractionation of polyisoprene (PI) and polybutadiene (PB) with regard to molecular microstructure. ThFFF analysis of 1,4- and 3,4-PI as well as 1,4- and 1,2-PB samples in tetrahydrofuran (THF), THF/cyclohexane, and cyclohexane reveals that isomers of the same polymer family having similar molar masses exhibit different Soret coefficients depending on microstructure for each solvent. The separation according to microstructure is found to be based on the cooperative influence of the normal and the thermal diffusion coefficient. Of the three solvents, cyclohexane has the greatest influence on the fractionation of the isomers. In order to determine the distribution of isomeric structures in the PI and PB samples, the samples are fractionated by ThFFF in cyclohexane and subsequently analyzed by (1) H NMR. The isomeric distributions determined from NMR data correlate well with ThFFF retention data of the samples and thus further highlight the unique fractionating capabilities of ThFFF. The interplay of the normal and thermal diffusion coefficients that are influenced by temperature and the mobile phase opens the way to highly selective fractionations without the drawbacks of column-based separation methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microscopic diffusion in hydrated encysted eggs of brine shrimp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene

    We have studied microscopic diffusion of water in fully hydrated encysted eggs of brine shrimp (Artemia). We utilized quasielastic neutron scattering. Dry eggs of brine shrimp were rehydrated using (1) water without additives, (2) eutectic mixture of water and dimethyl sulfoxide, and (3) a concentrated aqueous solution of lithium chloride. Despite the complexity of the hydrated multicellular organism, measurable microscopic diffusivity of water is rather well defined. Pure hydration water in eggs exhibits freezing temperature depression, whereas hydration water in eggs mixed with dimethyl sulfoxide or lithium chloride does not crystallize at all. The characteristic size of the voids occupiedmore » by water or aqueous solvents in hydrated brine shrimp eggs is between 2 and 10 nm. Those voids are accessible to co-solvents such as dimethyl sulfoxide and lithium chloride. There is no evidence of intracellular water in the hydrated eggs. The lack of intracellular water in the fully hydrated (but still under arrested development) state must be linked to the unique resilience against adverse environmental factors documented not only for the anhydrous, but also hydrated encysted eggs of brine shrimp.« less

  14. Microscopic diffusion in hydrated encysted eggs of brine shrimp

    DOE PAGES

    Mamontov, Eugene

    2017-05-24

    We have studied microscopic diffusion of water in fully hydrated encysted eggs of brine shrimp (Artemia). We utilized quasielastic neutron scattering. Dry eggs of brine shrimp were rehydrated using (1) water without additives, (2) eutectic mixture of water and dimethyl sulfoxide, and (3) a concentrated aqueous solution of lithium chloride. Despite the complexity of the hydrated multicellular organism, measurable microscopic diffusivity of water is rather well defined. Pure hydration water in eggs exhibits freezing temperature depression, whereas hydration water in eggs mixed with dimethyl sulfoxide or lithium chloride does not crystallize at all. The characteristic size of the voids occupiedmore » by water or aqueous solvents in hydrated brine shrimp eggs is between 2 and 10 nm. Those voids are accessible to co-solvents such as dimethyl sulfoxide and lithium chloride. There is no evidence of intracellular water in the hydrated eggs. The lack of intracellular water in the fully hydrated (but still under arrested development) state must be linked to the unique resilience against adverse environmental factors documented not only for the anhydrous, but also hydrated encysted eggs of brine shrimp.« less

  15. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    NASA Astrophysics Data System (ADS)

    Zhul'Kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.

    2009-05-01

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  16. Morphology and transport in biodegradable polymer compositions based on poly(3-hydroxybutyrate) and polyamide 54C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.

    2009-05-15

    Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.

  17. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    PubMed

    Mereghetti, Paolo; Wade, Rebecca C

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less

  19. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorenbos, G., E-mail: dorenbos@ny.thn.ne.jp

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead,more » respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.« less

  20. Transport methods for probing the barrier domain of lipid bilayer membranes.

    PubMed Central

    Xiang, T X; Chen, X; Anderson, B D

    1992-01-01

    Two experimental techniques have been utilized to explore the barrier properties of lecithin/decane bilayer membranes with the aim of determining the contributions of various domains within the bilayer to the overall barrier. The thickness of lecithin/decane bilayers was systematically varied by modulating the chemical potential of decane in the annulus surrounding the bilayer using different mole fractions of squalene in decane. The dependence of permeability of a model permeant (acetamide) on the thickness of the solvent-filled region of the bilayer was assessed in these bilayers to determine the contribution of this region to the overall barrier. The flux of acetamide was found to vary linearly with bilayer area with Pm = (2.9 +/- 0.3) x 10(-4) cm s-1, after correcting for diffusion through unstirred water layers. The ratio between the overall membrane permeability coefficient and that calculated for diffusion through the hydrocarbon core in membranes having maximum thickness was 0.24, suggesting that the solvent domain contributes only slightly to the overall barrier properties. Consistent with these results, the permeability of acetamide was found to be independent of bilayer thickness. The relative contributions of the bilayer interface and ordered hydrocarbon regions to the transport barrier may be evaluated qualitatively by exploring the effective chemical nature of the barrier microenvironment. This may be probed by comparing functional group contributions to transport with those obtained for partitioning between water and various model bulk solvents ranging in polarity or hydrogen-bonding potential. A novel approach is described for obtaining group contributions to transport using ionizable permeants and pH adjustment. Using this approach, bilayer permeability coefficients of p-toluic acid and p-hydroxymethyl benzoic acid were determined to be 1.1 +/- 0.2 cm s-1 and (1.6 +/- 0.4) x 10(-3) cm s-1, respectively. From these values, the -OH group contribution to bilayer transport [delta(delta G0-OH)] was found to be 3.9 kcal/mol. This result suggests that the barrier region of the bilayer does not resemble the hydrogen-bonding environment found in octanol, but is somewhat less selective (more polar) than a hydrocarbon solvent. PMID:1420875

  1. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhixin, E-mail: czx@fzu.edu.cn; Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002; Xu, Jingjing

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4}more » prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.« less

  2. Comparison of extraction methods for quantifying vitamin E from animal tissues.

    PubMed

    Xu, Zhimin

    2008-12-01

    Four extraction methods: (1) solvent (SOL), (2) ultrasound assisted solvent (UA), (3) saponification and solvent (SP), and (4) saponification and ultrasound assisted solvent (SP-UA), were used in sample preparation for quantifying vitamin E (tocopherols) in chicken liver and plasma samples. The extraction yields of SOL, UA, SP, and SP-UA methods obtained by adding delta-tocopherol as internal reference were 95%, 104%, 65%, and 62% for liver and 98%, 103%, 97%, and 94% for plasma, respectively. The methods with saponification significantly affected the stabilities of tocopherols in liver samples. The measured values of alpha- and gamma-tocopherols using the solvent only extraction (SOL) method were much lower than that using any of the other extraction methods. This indicated that less of the tocopherols in those samples were in a form that could be extracted directly by solvent. The measured value of alpha-tocopherol in the liver sample using the ultrasound assisted solvent (UA) method was 1.5-2.5 times of that obtained from the saponification and solvent (SP) method. The differences in measured values of tocopherols in the plasma samples by using the two methods were not significant. However, the measured value of the saponification and ultrasound assisted solvent (SP-UA) method was lower than either the saponification and solvent (SP) or the ultrasound assisted solvent (UA) method. Also, the reproducibility of the ultrasound assisted solvent (UA) method was greater than any of the saponification methods. Compared with the traditional saponification method, the ultrasound assisted solvent method could effectively extract tocopherols from sample matrix without any chemical degradation reactions, especially for complex animal tissue such as liver.

  3. Self-thermophoresis and thermal self-diffusion in liquids and gases.

    PubMed

    Brenner, Howard

    2010-09-01

    This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

  4. Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Haugh, C.J.; Webbers, Ank; Diehl, T.H.

    1997-01-01

    Published and unpublished reports and data from 22 contaminated sites in Tennessee were reviewed to develop preliminary conceptual models of the behavior of chlorinated solvents in karst aquifers. Chlorinated solvents are widely used in many industrial operations. High density and volatility, low viscosity, and solubilities that are low in absolute terms but high relative to drinkingwater standards make chlorinated solvents mobile and persistent contaminants that are difficult to find or remove when released into the groundwater system. The major obstacle to the downward migration of chlorinated solvents in the subsurface is the capillary pressure of small openings. In karst aquifers, chemical dissolution has enlarged joints, bedding planes, and other openings that transmit water. Because the resulting karst conduits are commonly too large to develop significant capillary pressures, chlorinated solvents can migrate to considerable depth in karst aquifers as dense nonaqueous-phase liquids (DNAPL?s). Once chlorinated DNAPL accumulates in a karst aquifer, it becomes a source for dissolved-phase contamination of ground water. A relatively small amount of chlorinated DNAPL has the potential to contaminate ground water over a significant area for decades or longer. Conceptual models are needed to assist regulators and site managers in characterizing chlorinated-solvent contamination in karst settings and in evaluating clean-up alternatives. Five preliminary conceptual models were developed, emphasizing accumulation sites for chlorinated DNAPL in karst aquifers. The models were developed for the karst regions of Tennessee, but are intended to be transferable to similar karst settings elsewhere. The five models of DNAPL accumulation in karst settings are (1) trapping in regolith, (2) pooling at the top of bedrock, (3) pooling in bedrock diffuse-flow zones, (4) pooling in karst conduits, and (5) pooling in isolation from active ground-water flow. More than one conceptual model of DNAPL accumulation may be applicable to a given site, depending on details of the contaminant release and geologic setting. Trapping in regolith is most likely to occur where the regolith is thick and relatively impermeable with few large cracks, fissures, or macropores. Accumulation at the top of rock is favored by flat-lying strata with few fractures or karst features near the bedrock surface. Fractures or karst features near the bedrock surface encourage migration of chlorinated DNAPL into karst conduits or diffuse-flow zones in bedrock. DNAPL can migrate through one bedrock flow regime into an underlying flow regime with different characteristics or into openings that are isolated from significant ground-water flow. As a general rule, the difficulty of finding and removing DNAPL increases with depth, lateral distance from the source, and complexity of the ground-water flow system. The prospects for mitigation are generally best for DNAPL accumulation in the regolith or at the bedrock surface. However, many such accumulations are likely to be difficult to find or remove. Accumulations in bedrock diffuse-flow zones or in fractures isolated from flow may be possible to find and partially mitigate, but will likely leave significant amounts of contaminant in small fractures or as solute diffused into primary pores.

  5. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature.

    PubMed

    Tao, Yang; Zhang, Zhihang; Sun, Da-Wen

    2014-07-01

    The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Ionization energies and infrared spectra studies of histidine using density functional theory].

    PubMed

    Hu, Qiong; Wang, Guo-Ying; Liu, Gang; Ou, Jia-Ming; Wang, Rui-Li

    2010-05-01

    Histidines provide axial ligands to the primary electron donors in photosynthetic reaction centers (RCs) and play an important role in the protein environments of these donors. In this paper the authors present a systematic study of ionization energies and vibrational properties of histidine using hybrid density functional theory (DFT). All calculations were undertaken by using B3LYP method in combination with four basis sets: 6-31G(d), 6-31G(df, p), 6-31+G(d) and 6-311+G(2d, 2p) with the aim to investigate how the basis sets influence the calculation results. To investigate solvent effects and gain a detailed understanding of marker bands of histidine, the ionization energies of histidine and the vibrational frequencies of histidine which are unlabeled and 13C, 15N, and 2H labeled in the gas phase, CCl4, protein environment, THF and water solution, which span a wide range of dielectric constant, were also calculated. Our results showed that: (1) The main geometry parameters of histidine were impacted by basis sets and mediums, and C2-N3 and N3-C4 bond of imidazole ring of histidine side chain display the maximum bond lengths in the gas phase; (2) single point energies and frequencies calculated were decreased while ionization energies increased with the increasing level of basis sets and diffuse function applied in the same solvent; (3) with the same computational method, the higher the dielectric constant of the solvent used, the lower the ionization energy and vibrational frequency and the higher the intensity obtained. In addition, calculated ionization energy in the gas phase and marker bands of histidine as well as frequency shift upon 13C and 15N labeling at the computationally more expensive 6-311+G(2d, 2p) level are in good agreement with experimental observations available in literatures. All calculations indicated that the results calculated by using higher level basis set with diffuse function were more accurate and closer to the experimental value. In conclusion, the results provide useful information for the further studies of the functional and vibrational properties of chlorophyll-a ligated to histidine residue in photosynthetic reaction center.

  7. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  8. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine.

    PubMed

    Nair, Rahul; Kumar, Ashok C K; Priya, Vishnu K; Yadav, Chakrapani M; Raju, Prasanna Y

    2012-06-13

    The present work aims at preparing aqueous suspension of Solid lipid Nanoparticles containing Chitosan (CT) which is a biopolymer that exhibits a number of interesting properties which include controlled drug delivery. Carbamezapine (CBZ) is a lipophilic drug which shows it antiepileptic activity by inactivating sodium channels. The solid lipid Nanoparticles (SLN) of Chitosan-CBZ were prepared by using solvent injection method using ethanol as organic solvent. The prepared SLN formulations exhibited high encapsulation efficiency, high physical stability. The drug incorporated SLNs have demonstrated that the controlled release patterns of the drug for prolonged period. The prepared SLNs were characterized for surface morphology by SEM analysis, entrapment efficiency, zeta potential, FTIR, DSC and In-vitro diffusion studies. The hydrodynamic mean diameter and zeta potential were 168.7 ± 1.8 nm and -28.9 ± 2.0 mV for SLN-chitosan-CBZ respectively. Therefore chitosan-SLN can be good candidates to encapsulate CBZ and to increase its therapeutic efficacy in the treatment of Epilepsy.

  9. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine

    PubMed Central

    2012-01-01

    The present work aims at preparing aqueous suspension of Solid lipid Nanoparticles containing Chitosan (CT) which is a biopolymer that exhibits a number of interesting properties which include controlled drug delivery. Carbamezapine (CBZ) is a lipophilic drug which shows it antiepileptic activity by inactivating sodium channels. The solid lipid Nanoparticles (SLN) of Chitosan-CBZ were prepared by using solvent injection method using ethanol as organic solvent. The prepared SLN formulations exhibited high encapsulation efficiency, high physical stability. The drug incorporated SLNs have demonstrated that the controlled release patterns of the drug for prolonged period. The prepared SLNs were characterized for surface morphology by SEM analysis, entrapment efficiency, zeta potential, FTIR, DSC and In-vitro diffusion studies. The hydrodynamic mean diameter and zeta potential were 168.7 ±1.8 nm and −28.9 ±2.0 mV for SLN-chitosan-CBZ respectively. Therefore chitosan-SLN can be good candidates to encapsulate CBZ and to increase its therapeutic efficacy in the treatment of Epilepsy. PMID:22695222

  10. Ciprofloxacin hydrochloride-loaded glyceryl monostearate nanoparticle: factorial design of Lutrol F68 and Phospholipon 90G.

    PubMed

    Shah, Malay; Agrawal, Yadvendra

    2012-01-01

    This investigation was undertaken to develop glyceryl monostearate (Geleol)-based solid lipid nanoparticles (SLNs) of a hydrophilic drug ciprofloxacin HCl. Hansen's solubility parameter study was carried out in screening of a suitable carrier and solvent system. Subsequently, SLNs were prepared by solvent diffusion evaporation method and investigated for particle size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE) and drug release behaviour. Variations in SLN composition resulted in particle sizes between 170 and 810 nm and ZPs between 8 and 14 mV. The maximum EE was found to be 26.3% with particle size of 188.8 nm. SLN can sustain the release of drug for up to 15 h and it shows Higuchi matrix model as the best-fitted model. SLNs were stable without aggregation of particles under storage conditions. The results of this study provide the framework for further study involving the SLN formulation for hydrophilic drug molecule.

  11. Tuning structure and mobility of solvation shells surrounding tracer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmer, James; Jain, Avni; Bollinger, Jonathan A.

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less

  12. Tuning structure and mobility of solvation shells surrounding tracer additives.

    PubMed

    Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.

  13. How does low-molecular-weight polystyrene dissolve: osmotic swelling vs. surface dissolution.

    PubMed

    Marcon, Valentina; van der Vegt, Nico F A

    2014-12-07

    By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact. After this initial transient time the two mechanisms are concurrent. We furthermore observe that the presence of the solvent significantly enhances the mobility of the polymer chains of the surface layer, but only in the direction parallel to the interface.

  14. Transport of organic solutes through amorphous teflon AF films.

    PubMed

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  15. A New Method to Grow SiC: Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali

    2012-01-01

    The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.

  16. Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer

    The research interests lie in a deeper understanding of the mechanisms of diffusion and nucle-ation of organic solutes in near-and supercritical state of a solvent, which count as important means of mass transfer in the process engineering industry. The use of supercritical fluids in industrial processes, such as extraction and particle handling, has become a more and more popular method. Take a closer look at the two processes one would find that there are obviously two sub-processes involved in each of the process, namely the diffusion/nucleation as well as a phase transition procedure. Because of the operational limitations in the practice, this phase transition can-not be neglected. So it is also included in the theoretical approach. Classically to deduce conclusions from experiment results, mathematical/physical models outlining property changes and summarizing characteristics of the two processes are expected. In order to become an insight of these phenomena from the origin, and also to serve as a fundamental attribute for the numerical simulation later, the theories of statistical thermodynamics are adopted here as a proper means to describe the behaviors of the two processes. As the diffusion coefficients of the samples in our case are only of an order of approx. 10-8m2s-1, it can be assumed that the processes are in equilibrium (local changes are neglectably small), a model can be built on a general macroscopic approach for equilibrium systems, namely the Boltzmann-Gibbs distri-bution. And some rather general methods e.g. linear response theory can be applied. But as the transfer phenomena are genuinely not equilibrium systems, from this aspect a model can also be built based on the microscopic description -the kinetic theory of the behaviors of the particles of this non-equilibrium system. The characteristics under compensated gravity are also to be considered in the models. The differences and constraints between the models are to be compared and discussed. As the thermodynamic properties of a fluid are strongly dependent on the dimensions and the conditions in which the process is taken place, the models are limited to the hardware designed for this experiment setup. In order to evolve other applications, they need to be generalized and adjusted to fit the situations accordingly. As usual, the experiment data are to be submitted to these calculations to complete the models, and also to test and to proof if they satisfy some general properties of the systems that are already known. This leads to another very important part of the work -the experiments. Because of the sophistication of the behavior of fluids around their critical points, throughout the literature the theoretical description of the phase transition as well as other processes taken place under this circumstance, still depends largely on the empirical analysis. No matter how well considered a model can be, it represents only a partial and a simplified picture of the whole process. So the experimental part is of great importance not only as a support to the theoretical solution, but also as a means to get first hand data especially for the processes under investigation in this work. As solvent supercritical carbon dioxide was chosen considering its unique economical and ecological effects. As solutes DL-α-tocopherol and n-hexane were cho-sen. Two fundamental mass transfer processes are observed, namely diffusion and nucleation, both in laboratory as well as under compensated gravity (The experiment are to be performed in parabolic flight this March 2010). Both phenomena are obtained under isothermal condition through adjustments of the pressure inside a high pressure container. The container was spe-cially designed for this case. It has a cylindrical geometry with two pistons as movable walls on both sides to control the solvent volume. For diffusion a droplet of sample is fixed between two wetting barriers in the middle of the container with filled solvent -sub-critical CO2. The ex-periment pressure is reached by reducing the volume of the container above the critical pressure of the solvent. For nucleation the container is firstly filled with saturated mixture of solvent -supercritical CO2 and the sample, the experiment pressure is achieved by enlarging the volume of the container below the critical pressure of the solvent. During the experiments the pressure and temperature data are monitored and recorded. As a direct observation means a high speed camera is used, the visual changes inside are recorded through the windows integrated on the container. The experiments are carried out under three different initial conditions, namely with three start temperatures (313K, 333K and 353K), to cover the area from vicinity of the critical point. This research serves as a pilot project topic in cooperation with DLR, which has the ultimate aim of performing the experiments of mass transfer processes in a longtime microgravity facility (e.g. ISS) in order to further explore the influences and utilities of earth gravity on these basic transport processes.

  17. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris) extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobroth dilution technique. Anti-biofilm effects were assessed by microtiter plate method. Results: According to disc diffusion test (MIC and MBC), the ability of Thymus vulgaris (T. vulgaris ) extracts for inhibition of bacteria in planktonic form was confirmed. In dealing with biofilm structures, the inhibitory effect of the extracts was directly correlated to their concentration. Except for the inhibition of biofilm formation, efficacy of each extract was independent from type of solvent. Conclusion: According to the potential of Thymus vulgaris (T. vulgaris) extracts to inhibit the test bacteria in planktonic and biofilm form, it can be suggested that Thymus vulgaris (T. vulgaris) extracts can be applied as antimicrobial agents against the pathogenic bacteria particularly in biofilm forms. PMID:26442753

  18. Detection of non-absorbing charge dynamics via refractive index change in dye-sensitized solar cells.

    PubMed

    Kuwahara, Shota; Hata, Hiroaki; Taya, Soichiro; Maeda, Naotaka; Shen, Qing; Toyoda, Taro; Katayama, Kenji

    2013-04-28

    The carrier dynamics in dye-sensitized solar cells was investigated by using the transient grating, in addition to the transient absorption method and transient photocurrent method on the order of microseconds to seconds. The signals for the same sample were obtained under a short-circuit condition to compare the carrier dynamics via refractive index change with the transient photocurrent measurement. Optically silent carrier dynamics by transient absorption have been successfully observed via a refractive index change. The corresponding signal components were originated from the charge dynamics at the solid/liquid interface, especially on the liquid side; rearrangement or diffusion motion of charged redox species occurred when the injected electrons were trapped at the TiO2 surface and when the electron-electrolyte recombination occurred at the interface. The assignments were confirmed from the dependence on the viscosity of the solvent and the presence of 4-tert-butyl pyridine. As the viscosity of the solvent increased, the rearrangement and the motion of the charged redox species were delayed. Since the rearrangement dynamics was changed by the presence of 4-tert-butyl pyridine, it affected not only the TiO2 surface but also the redox species close to the interface.

  19. Characterization and structure elucidation of antibacterial compound of Streptomyces sp. ECR77 isolated from east coast of India.

    PubMed

    Thirumurugan, D; Vijayakumar, R

    2015-05-01

    Forty marine actinobacteria were isolated from the sediments of east coast (Bay of Bengal) region of Tamilnadu, India. Morphologically distinct colonies were primarily tested against fish pathogenic bacteria such as Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, Pseudomonas fluorescens and Aeromonas hydrophila by cross-streak plate method. The secondary metabolites produced by the highly potential strain cultured on starch casein broth were extracted separately with various solvents such as alcohol, ethyl acetate, methanol, petroleum ether and chloroform. The antibacterial assay of the bioactive compounds was tested against the fish pathogenic bacteria by well diffusion method. Of the various solvents used, the ethyl acetate extract of the isolate had good antibacterial activity. The potential strain was identified as Streptomyces labedae by phenotypic, 16S rRNA gene sequence and phylogenetic analysis. Purification of the biologically active compounds by column chromatography led to isolation of 27 fractions. The biologically active fraction was re-chromatographed on a silica gel column to obtain a single active compound, namely N-isopentyltridecanamide. The structure of the compounds was elucidated on the basis of ultra violet, Fourier transform infrared and nuclear magnetic resonance spectra.

  20. Anti-mycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica.

    PubMed

    Singh, Rambir; Hussain, Shariq; Verma, Rajesh; Sharma, Poonam

    2013-05-13

    To find out the anti-mycobacterial potential of Cassia sophera (C. sophera), Urtica dioica (U. dioica), Momordica dioica, Tribulus terrestris and Coccinia indica plants against multi-drug resistant (MDR) strain of Mycobacterium tuberculosis (M. tuberculosis). Plant materials were extracted successively with solvents of increasing polarity. Solvent extracts were screened for anti-mycobacterial activity against fast growing, non-pathogenic mycobacterium strain, Mycobacterium semegmatis, by disk diffusion method. The active extracts were tested against MDR and clinical isolates of M. tuberculosis by absolute concentration and proportion methods. The active extracts were subjected to bio-autoassay on TLC followed by silica column chromatography for isolation of potential drug leads. Hexane extract of U. dioica (HEUD) and methanol extract of C. sophera (MECS) produced inhibition zone of 20 mm in disc diffusion assay and MIC of 250 and 125 μ g/mL respectively in broth dilution assay against Mycobacterium semegmatis. Semipurified fraction F2 from MECS produced 86% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. F18 from HEUD produced 81% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. Phytochemical analysis indicated that anti-mycobacterial activity of MECS may be due to presence of alkaloids or flavonoids and that of HEUD due to terpenoids. C. sophera and U. dioica plant extracts exhibited promising anti-mycobacterial activity against MDR strain of M. tuberculosis. This is the first report of anti-mycobacterial activity form C. sophera. This study showed possibility of purifying novel anti-mycobacterial compound(s) from C. sophera and U. dioica. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. High-performance liquid chromatography with nuclear magnetic resonance detection applied to organosilicon polymers. Part 2. Comparison with other methods.

    PubMed

    Blechta, Vratislav; Kurfürst, Milan; Sýkora, Jan; Schraml, Jan

    2007-03-23

    LC-NMR utilizing (1)H and (29)Si NMR spectroscopy is ideally suited for the analysis of silicones. It is shown that reversed phase gradient LC-NMR surpasses standard gel permeation chromatography (GPC) and diffusion ordered spectroscopy (DOSY) in the analysis of model hydride terminated polydimethylsiloxane. (1)H and (29)Si NMR in the stopped-flow arrangement leads to full identification of the components. Concentration gradient introduces a dependence of the (29)Si shifts on solvent composition, this dependence can be substantially reduced by a proposed method of referencing. It is shown that the ADEQUATE version of powerful but insensitive 2D INADEQUATE experiment can be used for complete line assignment.

  2. Assessing Electrolyte Transport Properties with Molecular Dynamics

    DOE PAGES

    Jones, R. E.; Ward, D. K.; Gittleson, F. S.; ...

    2017-04-15

    Here in this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF 4 and O 2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimationmore » techniques is necessary for a reliable ranking of a large set of electrolytes.« less

  3. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    PubMed

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  4. Description of jambolan (Syzygium cumini (L.)) anthocyanin extraction kinetics at different stirring frequencies of the medium using diffusion models

    NASA Astrophysics Data System (ADS)

    da Silva, Wilton Pereira; Nunes, Jarderlany Sousa; Gomes, Josivanda Palmeira; de Araújo, Auryclennedy Calou; e Silva, Cleide M. D. P. S.

    2018-05-01

    Anthocyanin extraction kinetics was described for jambolan fruits. The spherical granules obtained were dried at 40 °C and the average radius of the sphere equivalent to the granules was determined. Solid-solvent ratio was fixed at 1:20 and temperature at 35 °C. A mixture of ethyl alcohol and hydrochloric acid (85:15) was used as solvent. Experiments were conducted with the following stirring frequencies: 0, 50, 100 and 150 rpm. Two diffusion models were used to describe the extraction process. The first one used an analytical solution, with boundary condition of the first kind. The second one used a numerical solution, with boundary condition of the third kind. The second model was the most adequate, and its results were used to determine empirical equations relating the process parameters with the stirring frequency, allowing to simulate new extraction kinetics.

  5. Preparation and evaluation of posaconazole-loaded enteric microparticles in rats.

    PubMed

    Yang, Min; Dong, Zhonghua; Zhang, Yongchun; Zhang, Fang; Wang, Yongjie; Zhao, Zhongxi

    2017-04-01

    Posaconazole (POS) is an antifungal compound which has a low oral bioavailability. The aim of this study was to prepare POS enteric microparticles to enhance its oral bioavailability. POS enteric microparticles were prepared with hypromellose acetate succinate (HPMCAS) via the spray drying method. The solvent mixtures of acetone and ethanol used in the preparation of the microparticles were optimized to produce the ideal POS enteric microparticles. Multivariate data analysis using a principal component analysis (PCA) was used to find the relationship among the HPMCAS molecular characteristics, particle properties and drug release kinetics from the spray dried microparticles. The optimal spray solvent mixtures were critical to produce the POS microparticles with the defined polymer entanglement index, drug surface enrichment, particle size and drug loading. The HPMCAS molecular characteristics affected the microscopic connectivity and diffusivity of polymer matrix and eventually influenced the drug release behavior, and enhanced the bioavailability of POS. These studies suggested that the selection of suitable solvent mixtures of acetone and ethanol used in the spray drying of the microparticles was quite important to produce the entangled polymer structures with preferred polymer molecular properties of polymer coiling, overlap concentration and entanglement index. Additional studies on particle size and surface drug enrichment eventually produced HPMCAS-based enteric microparticles to enhance the oral bioavailability of POS.

  6. Spin-mapping of Coal Structures with ESE and ENDOR

    DOE R&D Accomplishments Database

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  7. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang

    2014-12-01

    Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.

  8. Dimensional reduction of a general advection–diffusion equation in 2D channels

    NASA Astrophysics Data System (ADS)

    Kalinay, Pavol; Slanina, František

    2018-06-01

    Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.

  9. a Migration Well Model for the Binding of Ligands to Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Beece, Daniel Kenneth

    The binding of carbon monoxide and dioxygen to heme proteins can be viewed as occurring in distinct stages: diffusion in the solvent, migration through the matrix, and occupation of the pocket before the final binding step. A model is presented which can explain the dominant kinetic behavior of several different heme protein-ligand systems. The model assumes that a ligand molecule in the solvent sequentially encounters discrete energy barriers on the way to the binding site. The rate to surmount each barrier is distributed, except for the pseudofirst order rate corresponding to the step into the protein from the solvent. The migration through the matrix is equivalent to a small number of distinct jumps. Quantitative analysis of the data permit estimates of the barrier heights, preexponentials and solvent coupling factors for each rate. A migration coefficient and a matrix occupation factor are defined.

  10. On a Multiphase Multicomponent Model of Biofilm Growth

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Hu, Bei; Xue, Chuan

    2014-01-01

    Biofilms are formed when free-floating bacteria attach to a surface and secrete polysaccharide to form an extracellular polymeric matrix (EPS). A general model of biofilm growth needs to include the bacteria, the EPS, and the solvent within the biofilm region Ω( t), and the solvent in the surrounding region D( t). The interface between the two regions, Γ( t), is a free boundary. In this paper, we consider a mathematical model that consists of a Stokes equation for the EPS with bacteria attached to it, a Stokes equation for the solvent in Ω( t) and another for the solvent in D( t). The volume fraction of the EPS is another unknown satisfying a reaction-diffusion equation. The entire system is coupled nonlinearly within Ω( t) and across the free surface Γ( t). We prove the existence and uniqueness of a solution, with a smooth surface Γ( t), for a small time interval.

  11. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Benzhuo; Holst, Michael J.; Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA 92093

    2010-09-20

    In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for simulating electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised formore » time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.« less

  12. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions

    PubMed Central

    Lu, Benzhuo; Holst, Michael J.; McCammon, J. Andrew; Zhou, Y. C.

    2010-01-01

    In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems. PMID:21709855

  13. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.

    PubMed

    Lu, Benzhuo; Holst, Michael J; McCammon, J Andrew; Zhou, Y C

    2010-09-20

    In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.

  14. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.

    PubMed

    Adamson, David T; de Blanc, Phillip C; Farhat, Shahla K; Newell, Charles J

    2016-08-15

    Management of groundwater sites impacted by 1,4-dioxane can be challenging due to its migration potential and perceived recalcitrance. This study examined the extent to which 1,4-dioxane's persistence was subject to diffusion of mass into and out of lower-permeability zones relative to co-released chlorinated solvents. Two different release scenarios were evaluated within a two-layer aquifer system using an analytical modeling approach. The first scenario simulated a 1,4-dioxane and 1,1,1-TCA source zone where spent solvent was released. The period when 1,4-dioxane was actively loading the low-permeability layer within the source zone was estimated to be <3years due to its high effective solubility. While this was approximately an order-of-magnitude shorter than the loading period for 1,1,1-TCA, the mass of 1,4-dioxane stored within the low-permeability zone at the end of the simulation period (26kg) was larger than that predicted for 1,1,1-TCA (17kg). Even 80years after release, the aqueous 1,4-dioxane concentration was still several orders-of-magnitude higher than potentially-applicable criteria. Within the downgradient plume, diffusion contributed to higher concentrations and enhanced penetration of 1,4-dioxane into the low-permeability zones relative to 1,1,1-TCA. In the second scenario, elevated 1,4-dioxane concentrations were predicted at a site impacted by migration of a weak source from an upgradient site. Plume cutoff was beneficial because it could be implemented in time to prevent further loading of the low-permeability zone at the downgradient site. Overall, this study documented that 1,4-dioxane within transmissive portions of the source zone is quickly depleted due to characteristics that favor both diffusion-based storage and groundwater transport, leaving little mass to treat using conventional means. Furthermore, the results highlight the differences between 1,4-dioxane and chlorinated solvent source zones, suggesting that back diffusion of 1,4-dioxane mass may be serving as the dominant long-term "secondary source" at many contaminated sites that must be managed using alternative approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.

    PubMed

    Lu, Benzhuo; Zhou, Y C; Huber, Gary A; Bond, Stephen D; Holst, Michael J; McCammon, J Andrew

    2007-10-07

    A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.

  16. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DTIC Science & Technology

    2015-01-15

    isoprene determined by 1H NMR of each copolymer. Hydration Macromolecules Article DOI: 10.1021/ma502362a Macromolecules XXXX, XXX, XXX−XXX B number (λ) is...C. This is attributed to the decomposition of the TMA groups. Slight weight loss at lower temperatures is presumably due to the loss of trapped water...that at sufficiently high hydration levels the diffusion coefficient of ions approach their dilute solution diffusivity limits.30 Since conductivity is

  17. Resonance spectra of a paramagnetic probe dissolved in a viscous medium

    NASA Technical Reports Server (NTRS)

    Kaplan, J. I.; Gelerinter, E.; Fryburg, G. C.

    1972-01-01

    A model is presented for calculating the paramagnetic resonance (EPR) spectrum of vanadyl acetylacetonate (VAAC) dissolved in either a liquid crystal or isotropic solvent. It employs density matrix formulation in the rotating reference frame. The molecules occupy several discrete angles with respect to the magnetic field and can relax to neighboring positions in a characteristic time tau(theta). The form of tau(theta) is found from a diffusion approach, and the magnitude of tau(theta) is a measure of how freely the VAAC probe tumbles in the solvent. Spectra are predicted for values of tau between 10 to the minus 11th power sec and 10 to the minus 7th power sec. The EPR spectrum, in the isotropic case, is obtained be summing the contributions from the allowed angles weighted by the polar volume element, sin theta. When applying the model to the nematic liquid crystal case it is also necessary to multiply by the Saupe distribution function. For this case tau(theta) is obtained from the diffusion approach in which two diffusion constants are employed to reflect the difference in the parallel and perpendicular components of the viscosity.

  18. Diffusion of Chlorinated Organic Contaminants into Aquitards: Enhanced by the Flocculation of Clay?

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero, M.; Demond, A. H.; Goltz, M. N.; Huang, J.

    2011-12-01

    Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. Current models consider the movement into and out of aquitards or other low permeability layers to occur through transverse diffusion. Yet, field evidence suggests higher transport rates of contaminants than can be accounted for by diffusion alone. Waste organic liquids contain both organic liquid solvents as well as surface-active solutes. Measurements using montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that the basal spacing is similar to the case of montmorillonite in contact with air, thus suggesting that these fluids have similar flocculation effects. On the other hand, the basal spacing increased in contact with aqueous surfactant solutions. Measurements of the basal spacing in contact with a TCE waste gave the same results as with pure TCE, suggesting that effect on basal spacing is dominated by the organic solvent matrix rather than by the surfactant content. Since flocculation can lead to cracking, this behavior suggests that aquitards underlying aquifers contaminated with chlorinated organic wastes may develop cracks, thus enhancing the transport into low permeability layers.

  19. The Use Of Fluorescence Quenching To Measure Oxygen Concentration

    NASA Astrophysics Data System (ADS)

    Cox, M. E.; Dunn, B.

    1986-01-01

    The method of fluorescence quenching is used to measure the concentration of molecular oxygen. The method is rapid, reversible, and does not consume oxygen. The method may provide the basis for a unique biomedical sensor. The key to developing such a device lies in the choice of a fluorophor/polymer composite matrix having the desired optical and transport properties. Experimental results will be presented for certain parameters essential for assessing device development. The properties of interest include the kinetics of fluorescence quenching, the biomolecular rate constants, the temperature dependence of oxygen solubility and diffusivity in the composite matrix, and the oxygen diffusion coefficient. Poly(dimethyl siloxane) [PDMS] was chosen as the polymer host because it is biocompatible, hydrophobic, has a high diffusivity for the simple gases, and is easily bonded to fused silica. 9,10-diphenyl anthracene [9,10-D] was selected since it is readily soluble in a number of organic solvents, has an excitation spectrum in the near UV, an emission spectrum in the visible, a long fluorescence lifetime, and a high quantum yield. When incorporated into PDMS, the optical spectra of 9,10-D does not alter appreciably. The response time of the device is determined by the solution/diffusion kinetics of oxygen in PDMS. The solubility of oxygen in PDMS decreases with increasing temperature and an enthalpy of solution of off = -3.0 kcal/mole. (1) The diffusion of oxyzen in PDMS is found to obey an Arrhenius relation over the temperature range of 5'C to 450C with D = Do exp (-ED/RT) (2) where Do = 0.115 cm2/s (3) and ED = 4.77 kcal/mole. (4) Results of these studies indicate that an appropriate device, based on a fluorophor/polymer composite, for the measurement of oxygen concentration should be sensitive over those ranges which are important for physiological monitoring.

  20. Western blotting.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2006-04-01

    Western blotting (protein blotting or immunoblotting) is a powerful and important procedure for the immunodetection of proteins post-electrophoresis, particularly proteins that are of low abundance. Since the inception of the protocol for protein transfer from an electrophoresed gel to a membrane in 1979, protein blotting has evolved greatly. The scientific community is now confronted with a variety of ways and means to carry out this transfer. This review describes the various procedures that have been used to transfer proteins from a gel to a membrane based on the principles of simple diffusion, vacuum-assisted solvent flow and electrophoretic elution. Finally, a brief description of methods generally used to detect antigens on blots is also described.

  1. Purification, Crystallization, and Preliminary Crystallographic Analysis of Deoxyuridine Triphosphate Nucleotidohydrolase from Arabidopsis Thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj,M.; Moriyama, H.

    2007-01-01

    The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Angstroms resolution using Cu K{alpha} radiation. The crystal belongs to the orthorhombic space group P212121, with unit-cell parameters a = 69.90, b = 70.86 Angstroms, c = 75.55 Angstroms . Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a VM of 1.8 Angstroms 3 Da-1.

  2. Used Solvent Testing and Reclamation. Volume 2. Vapor Degreasing and Precision Cleaning Solvents

    DTIC Science & Technology

    1988-12-01

    of 5 to 500 ppm in halogenated solvents using Karl - Fischer reagent. Arbitrary criteria to identify a spent solvent have evolved in various industries... methods of managing waste solvent. Some DOD installations are reclaiming used solvents rather than discarding them. Reclamation is feasible because the...most E E CT E reliable methods for testing solvent quality. Further testing isnecessary for chlorinated solvents to determine the inhibitor con- FEB 24

  3. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production.

    PubMed

    Liang, Yu Teng; Vijayan, Baiju K; Gray, Kimberly A; Hersam, Mark C

    2011-07-13

    With its unique electronic and optical properties, graphene is proposed to functionalize and tailor titania photocatalysts for improved reactivity. The two major solution-based pathways for producing graphene, oxidation-reduction and solvent exfoliation, result in nanoplatelets with different defect densities. Herein, we show that nanocomposites based on the less defective solvent-exfoliated graphene exhibit a significantly larger enhancement in CO(2) photoreduction, especially under visible light. This counterintuitive result is attributed to their superior electrical mobility, which facilitates the diffusion of photoexcited electrons to reactive sites.

  4. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  5. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    NASA Astrophysics Data System (ADS)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  6. Optical diffusion property of cerumen from ear canal and correlation to metal content measured by synchrotron x-ray absorption

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.

    2012-03-01

    Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.

  7. In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta

    PubMed Central

    2012-01-01

    Background Following claims that some plants have antimicrobial activities against infectious microbes, the in vitro antimicrobial activities of different solvent fractions of ethanolic extract of Cryptolepis sanguinolenta were evaluated against eight standard bacteria and clinical isolates. Methods The solvent partitioning protocol involving ethanol, petroleum ether, chloroform, ethyl acetate and water, was used to extract various fractions of dried pulverized Cryptolepis sanguinolenta roots. Qualitative phyto-constituents screening was performed on the ethanol extract, chloroform fraction and the water fraction. The Kirby Bauer disk diffusion method was employed to ascertain the antibiogram of the test organisms while the agar diffusion method was used to investigate the antimicrobial properties of the crude plant extracts. The microplate dilution method aided in finding the MICs while the MBCs were obtained by the method of Nester and friends. The SPSS 16.0 version was used to analyze the percentages of inhibitions and bactericidal activities. Results The phytochemical screening revealed the presence of alkaloids, reducing sugars, polyuronides, anthocyanosides and triterpenes. The ethanol extract inhibited 5 out of 8 (62.5%) of the standard organisms and 6 out of 8 (75%) clinical isolates. The petroleum ether fraction inhibited 4 out of 8 (50%) of the standard microbes and 1 out of 8 (12.5%) clinical isolates. It was also observed that the chloroform fraction inhibited the growth of all the organisms (100%). Average inhibition zones of 14.0 ± 1.0 mm to 24.67 ± 0.58 mm was seen in the ethyl acetate fraction which halted the growth of 3 (37.5%) of the standard organisms. Inhibition of 7 (87.5%) of standard strains and 6 (75%) of clinical isolates were observed in the water fraction. The chloroform fraction exhibited bactericidal activity against all the test organisms while the remaining fractions showed varying degrees of bacteriostatic activity. Conclusion The study confirmed that fractions of Cryptolepis sanguinolenta have antimicrobial activity. The chloroform fraction had the highest activity, followed by water, ethanol, petroleum ether and ethyl acetate respectively. Only the chloroform fraction exhibited bactericidal activity and further investigations are needed to ascertain its safety and prospects of drug development. PMID:22709723

  8. Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR.

    PubMed

    D'Agostino, Carmine; Gladden, Lynn F; Mantle, Mick D; Abbott, Andrew P; Ahmed, Essa I; Al-Murshedi, Azhar Y M; Harris, Robert C

    2015-06-21

    Pulsed field gradient (PFG) NMR has been used to probe self-diffusion of molecular and ionic species in aqueous mixtures of choline chloride (ChCl) based deep eutectic solvents (DESs), in order to elucidate the effect of water on motion and inter-molecular interactions between the different species in the mixtures, namely the Ch(+) cation and hydrogen bond donor (HBD). The results reveal an interesting and complex behaviour of such mixtures at a molecular level. In general, it is observed that the hydroxyl protons ((1)H) of Ch(+) and the hydrogen bond donor have diffusion coefficients significantly different from those measured for their parent molecules when water is added. This indicates a clear and significant change in inter-molecular interactions. In aqueous Ethaline, the hydroxyl species of Ch(+) and HBD show a stronger interaction with water as water is added to the system. In the case of Glyceline, water has little effect on both hydroxyl proton diffusion of Ch(+) and HBD. In Reline, it is likely that water allows the formation of small amounts of ammonium hydroxide. The most surprising observation is from the self-diffusion of water, which is considerably higher that expected from a homogeneous liquid. This leads to the conclusion that Reline and Glyceline form mixtures that are inhomogeneous at a microscopic level despite the hydrophilicity of the salt and HBD. This work shows that PFG NMR is a powerful tool to elucidate both molecular dynamics and inter-molecular interactions in complex liquid mixtures, such as the aqueous DES mixtures.

  9. Solvent shift method for anti-precipitant screening of poorly soluble drugs using biorelevant medium and dimethyl sulfoxide.

    PubMed

    Yamashita, Taro; Ozaki, Shunsuke; Kushida, Ikuo

    2011-10-31

    96-well plate based anti-precipitant screening using bio-relevant medium FaSSIF (fasted-state simulated small intestinal fluid) is a useful technique for discovering anti-precipitants that maintain supersaturation of poorly soluble drugs. In a previous report, two disadvantages of the solvent evaporation method (solvent casting method) were mentioned: precipitation during the evaporation process and the use of volatile solvents to dissolve compounds. In this report, we propose a solvent shift method using DMSO (dimethyl sulfoxide). Initially, the drug substance was dissolved in DMSO at a high concentration and diluted with FaSSIF that contained anti-precipitants. To evaluate the validity of the method, itraconazole (ITZ) was used as the poorly soluble model drug. The solvent shift method resolved the disadvantages of the evaporation method, and AQOAT (HPMC-AS) was found as the most appropriate anti-precipitant for ITZ in a facile and expeditious manner when compared with the solvent evaporation method. In the large scale JP paddle method, AQOAT-based solid dispersion maintained a higher concentration than Tc-5Ew (HPMC)-based formulation; this result corresponded well with the small scale of the solvent shift method. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Diffusivity of nitrous oxide in N-methyldiethanolamine + diethanolamine + water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinker, E.B.; Russell, J.W.; Tamimi, A.

    1995-05-01

    The tertiary amine N-methyldiethanolamine and the secondary amine diethanolamine are commonly used in the gas-treating industry as chemical solvents for the removal of acid gases such as CO{sub 2} and H{sub 2}S. The diffusion coefficients for nitrous oxide in aqueous solutions consisting of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) were measured over the temperature range 293--353 K for a total amine concentration of 50 mass % and for the mass ratio of DEA to MDEA varying from 0.0441 to 0.588. The experimental diffusion coefficients were found to be relatively insensitive to the mass ratio of amines.

  11. Rotational Diffusion Depends on Box Size in Molecular Dynamics Simulations.

    PubMed

    Linke, Max; Köfinger, Jürgen; Hummer, Gerhard

    2018-06-07

    We show that the rotational dynamics of proteins and nucleic acids determined from molecular dynamics simulations under periodic boundary conditions suffer from significant finite-size effects. We remove the box-size dependence of the rotational diffusion coefficients by adding a hydrodynamic correction k B T/6 ηV with k B Boltzmann's constant, T the absolute temperature, η the solvent shear viscosity, and V the box volume. We show that this correction accounts for the finite-size dependence of the rotational diffusion coefficients of horse-heart myoglobin and a B-DNA dodecamer in aqueous solution. The resulting hydrodynamic radii are in excellent agreement with experiment.

  12. Methods for recovering a solvent from a fluid volume and methods of removing at least one compound from a nonpolar solvent

    DOEpatents

    Ginosar, Daniel M.; Wendt, Daniel S.; Petkovic, Lucia M.

    2014-06-10

    A method of removing a nonpolar solvent from a fluid volume that includes at least one nonpolar compound, such as a fat, an oil or a triglyceride, is provided. The method comprises contacting a fluid volume with an expanding gas to expand the nonpolar solvent and form a gas-expanded solvent. The gas-expanded solvent may have a substantially reduced density in comparison to the at least one nonpolar compound and/or a substantially reduced capacity to solubilize the nonpolar compound, causing the nonpolar compounds to separate from the gas-expanded nonpolar solvent into a separate liquid phase. The liquid phase including the at least one nonpolar compound may be separated from the gas-expanded solvent using conventional techniques. After separation of the liquid phase, at least one of the temperature and pressure may be reduced to separate the nonpolar solvent from the expanding gas such that the nonpolar solvent may be recovered and reused.

  13. The heat released during catalytic turnover enhances the diffusion of an enzyme

    PubMed Central

    Riedel, Clement; Gabizon, Ronen; Wilson, Christian A. M.; Hamadani, Kambiz; Tsekouras, Konstantinos; Marqusee, Susan; Pressé, Steve; Bustamante, Carlos

    2015-01-01

    Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis1,2. Although this observation has been reported and characterized for several different systems3–10, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms11,12. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein–solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). This novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme. PMID:25487146

  14. The heat released during catalytic turnover enhances the diffusion of an enzyme

    DOE PAGES

    Riedel, Clement; Gabizon, Ronen; Wilson, Christian A. M.; ...

    2014-12-10

    Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis. Although this observation has been reported and characterized for several different systems, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theorymore » to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). We find this novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme.« less

  15. Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid)

    PubMed Central

    Yu, Tao; Wang, Ying-Ying; Yang, Ming; Schneider, Craig; Zhong, Weixi; Pulicare, Sarah; Choi, Woo-Jin; Mert, Olcay; Fu, Jie; Lai, Samuel K.; Hanes, Justin

    2013-01-01

    Mucus secretions coating entry points to the human body that are not covered by skin efficiently trap and clear conventional drug carriers, limiting controlled drug delivery at mucosal surfaces. To overcome this challenge, we recently engineered nanoparticles that readily penetrate a variety of human mucus secretions, which we termed mucus-penetrating particles (MPP). Here, we report a new biodegradable MPP formulation based on diblock copolymers of poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA-PEG). PLGA-PEG nanoparticles prepared by a solvent diffusion method rapidly diffused through fresh, undiluted human cervicovaginal mucus (CVM) with an average speed only eightfold lower than their theoretical speed in water. In contrast, PLGA nanoparticles were slowed more than 12,000-fold in the same CVM secretions. Based on the measured diffusivities, as much as 75% of the PLGA-PEG nanoparticles are expected to penetrate a 10-μm-thick mucus layer within 30 min, whereas virtually no PLGA nanoparticles are expected to do so over the same duration. These results encourage further development of PLGA-PEG nanoparticles as mucus-penetrating drug carriers for improved drug and gene delivery to mucosal surfaces. PMID:24205449

  16. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G.

    In this study, an experimental design matrix was created and executed in order to test the effects of various real-world factors on the ability of the (1) accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposuremore » time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) ADS-SPME with vacuum (i.e., reduced pressure) increased the amount of detected CAS impurity, as measured by GC/MS peak area, by a factor of 1.7 to 1.9 for PWB under certain experimental conditions, (2) the amount of detected CAS impurity was most influenced by spiked volume, stock, and ADS headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, the ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB.« less

  17. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction.

    PubMed

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G

    2017-03-01

    In this study, an experimental design matrix was created and executed to test the effects of various real-world factors on the ability of (1) the accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposure time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) the amount of CAS impurity detected using ADS-SPME and GC/MS was most influenced by spiked volume, stock, and ADS headspace pressure, (2) reduced ADS headspace pressure increased the amount of detected CAS impurity, as measured by GC/MS peak area, by up to a factor of 1.7-1.9 compared to ADS at ambient headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  19. Molecular Dynamic Simulation of Diffusion Coefficients for Alkanols in Supercritical CO2 1

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Lai, Shuhui; Gao, Wei; Chen, Liuping

    2018-07-01

    The infinite dilution diffusion coefficients ( D 12) of methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol in supercritical CO2 (scCO2) at 313.2 K and 10-16 MPa were simulated by molecular dynamics (MD) simulation. The microscopic structure was also analyzed by calculation of the radial distribution function, coordination number (CN) between the center mass of solute and solvent molecules, and the average number of hydrogen bonding of this system. In infinite dilute solution, the probability of forming hydrogen bond between alkanol molecules is greatly reduced relative to pure alkanol fluid, and the weak hydrogen bonds formed between alkanol and CO2 molecules. In general, this work provides a reliable simulation method for transfer properties of solutes in scCO2. The prediction data were provides for the design and development of chemical processing. The results are helpful for one to deeper understand the relationship between microscopic structures of fluid and its transfer properties.

  20. Computing pKa Values in Different Solvents by Electrostatic Transformation.

    PubMed

    Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter

    2016-07-12

    We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.

  1. Development and validation of a fast static headspace GC method for determination of residual solvents in permethrin.

    PubMed

    Tian, Jingzhi; Rustum, Abu

    2016-09-05

    A fast static headspace gas chromatography (HS-GC) method was developed to separate all residual solvents present in commercial active pharmaceutical ingredient (API) batches of permethrin. A total of six residual solvents namely 2-methylpentane, 3-methylpentane, methylcyclopentane, n-hexane, cyclohexane and toluene were found in typical commercial batches of permethrin; and three of them are not in the list of ICH solvents. All six residual solvents were baseline separated in five minutes by the new method presented in this paper. The method was successfully validated as per International Conference on Harmonisation (ICH) guidelines. Evaluation of this method was conducted to separate 26 commonly used solvents in the manufacturing of various APIs, key intermediates of APIs and pharmaceutical excipients. The results of the evaluation demonstrated that this method can also be used as a general method to determine residual solvents in various APIs, intermediates and excipients that are used in pharmaceutical products. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Methods for recovering a polar solvent from a fluid stream contaminated with at least one polar impurity

    DOEpatents

    Ginosar, Daniel M.; Wendt, Daniel S.

    2012-11-13

    A method of removing a polar solvent from a fluid volume contaminated with at least one polar impurity, such as a free fatty acid, is provided. The method comprises providing a fluid volume that includes at least one polar impurity dissolved in at least one solvent. The fluid volume is contacted with an expanding gas to remove the at least one solvent. The expanding gas may be dissolved into the at least one solvent in the fluid volume to form a gas-expanded solvent. The immiscibility of the polar impurities in the gas-expanded solvent enables separation of the polar impurities from the gas-expanded solvent. After separation of the polar impurities, at least one of the temperature and pressure may be reduced to separate the solvent from the expanding gas such that the clean solvent may be reused.

  3. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules.

    PubMed

    Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo

    2016-05-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.

  4. Numerical Treatment of Stokes Solvent Flow and Solute-Solvent Interfacial Dynamics for Nonpolar Molecules

    PubMed Central

    Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo

    2015-01-01

    We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866

  5. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Katharina; Raupp, Sebastian, E-mail: sebastian.raupp@kit.edu; Scharfer, Philip

    2016-06-15

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processedmore » with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.« less

  6. Experimental and Molecular Modeling Evaluation of the Physicochemical Properties of Proline-Based Deep Eutectic Solvents.

    PubMed

    van den Bruinhorst, Adriaan; Spyriouni, Theodora; Hill, Jörg-Rüdiger; Kroon, Maaike C

    2018-01-11

    The liquid range and applicability of deep eutectic solvents (DESs) are determined by their physicochemical properties. In this work, the physicochemical properties of glycolic acid:proline and malic acid:proline were evaluated experimentally and with MD simulations at five different ratios. Both DESs exhibited esterification upon preparation, which affected the viscosity in particular. In order to minimize oligomer formation and water release, three different experimental preparation methods were explored, but none could prevent esterification. The experimental and calculated densities of the DESs were found to be in good agreement. The measured and modeled glass transition temperature showed similar trends with composition, as did the experimental viscosity and the calculated diffusivities. The MD simulations provided additional insight at the atomistic level, showing that at acid-rich compositions, the acid-acid hydrogen bonding (HB) interactions prevail. Malic acid-based DESs show stronger acid-acid HB interactions than glycolic acid-based ones, possibly explaining its extreme viscosity. Upon the addition of proline, the interspecies interactions become predominant, confirming the formation of the widely assumed HB network between the DESs constituents in the liquid phase.

  7. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acik, Muge; Alam, Todd M.; Guo, Fangmin

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). Onmore » the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.« less

  8. Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols

    DOE PAGES

    Acik, Muge; Alam, Todd M.; Guo, Fangmin; ...

    2017-09-29

    Methylammonium lead iodide (MAPbI 3) perovskites are organic–inorganic semiconductors with long carrier diffusion lengths serving as the light-harvesting component in optoelectronics. Through a substitutional growth of MAPbI 3 catalyzed by polar protic alcohols, evidence is shown in this paper for their substrate- and annealing-free production and use of toxic solvents and high temperature is prevented. The resulting variable-sized crystals (≈100 nm–10 µm) are found to be tetragonally single-phased in alcohols and precipitated as powders that are metallic-lead-free. A comparatively low MAPbI 3 yield in toluene supports the role of alcohol polarity and the type of solvent (protic vs aprotic). Themore » theoretical calculations suggest that overall Gibbs free energy in alcohols is lowered due to their catalytic impact. Based on this alcohol-catalyzed approach, MAPbI 3 is obtained, which is chemically stable in air up to ≈1.5 months and thermally stable (≤300 °C). Finally, this method is amendable to large-scale manufacturing and ultimately can lead to energy-efficient, low-cost, and stable devices.« less

  9. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  10. Short communication: in vitro assessment of antioxidant, antibacterial and phytochemical analysis of peel of Citrus sinensis.

    PubMed

    Mehmood, Basharat; Dar, Kamran Khurshid; Ali, Shaukat; Awan, Uzma Azeem; Nayyer, Abdul Qayyum; Ghous, Tahseen; Andleeb, Saiqa

    2015-01-01

    Antibacterial effect of Citrus sinensis peel extracts was evaluated against several pathogenic bacteria associated with human and fish infections viz., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, Serratia marcesnces, Shigella flexneri, Enterobacter amnigenus, Salmonella Typhimurium and Serratia odorifera. Methanol, ethanol, chloroform and diethyl ether solvents were used for extraction. In vitro antibacterial activity was analyzed by agar well and agar disc diffusion methods. It was found that ethanol extract showed highly significant inhibition of E. coli and K. pneumonia (12.6±0.94 mm and 11.6±1.2 mm) whereas methanol extract of C. sinensis also showed high zone of inhibition of S. odorifera (10.0±2.16 mm). The potential activity of active extracts was assessed and also compared with standard antibiotics through activity index formulation. The order of antioxidant activity through ABTS·+ and DPPH free radical scavenging activity was ethanol>methanol>chloroform>diethyl ether. Phytochemical screening of all solvents had determined the presence of terpenoids, alkaloids, steroids, glycosides and flavonoids. It was also found that Chloroform/Methanol (5:5) and Butanol/Ethanol/Water (4:1:2.2) solvent systems showed significant separation of active phytochemical constituents. These findings reveal the potential use of C. sinensis peel to treat infectious diseases, which are being caused by microorganisms.

  11. Development of extract library from indonesian biodiversity: exploration of antibacterial activity of mangrove bruguiera cylindrica leaf extracts

    NASA Astrophysics Data System (ADS)

    Audah, K. A.; Amsyir, J.; Almasyhur, F.; Hapsari, A. M.; Sutanto, H.

    2018-03-01

    Antibacterial drugs derived from natural sources play significant roles in the prevention and treatment of bacterial infections since antibiotics have become less effective against many infectious diseases. Mangroves are very potential natural antibacterial sources among great numbers of wild medicinal plants. Bruguiera cylindrica is one of the many mangroves species which spread along Indonesian coastline. The aim of this study was to explore the antibacterial activity of B. cylindrica wet and dried leaf extracts. The wet extracts study was conducted with three different solvents system (water, ethanol, and n-Hexane) against Escherichia coli and Staphylococcus aureus. While, the dried extracts study was conducted with four different solvents system (water, ethanol, chloroform and n-Hexane) against three types of bacteria, Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. The study showed that ethanol was the best solvent for extraction of phenolic and flavonoid. Antibacterial actitivity was measured by zone of inhibition which obtained from agar-disk diffusion method. The widest area of zone of inhibition was showed by wet extracts with ethanol against S. aureus and E. coli are 14.30 and 13.30 mm, respectively. While, the zone of inhibition dried extracts with ethanol against S. aureus, S. epidermidis and E. coli are 9.32, 6.59 and 6.20 mm, respectively. In conclusion, both type of extracts showed significant antibacterial activity against gram-positive bacteria as crude extracts.

  12. Growth of ZnO films in sol-gel electrophoretic deposition by different solvents

    NASA Astrophysics Data System (ADS)

    Hallajzadeh, Amir Mohammad; Abdizadeh, Hossein; Taheri, Mahtab; Golobostanfard, Mohammad Reza

    2018-01-01

    This article introduces a process to fabricate zinc oxide (ZnO) films through combining sol preparation and electrophoretic deposition (EPD). The experimental results have proved that the EPD process is a powerful route to fabricate ZnO films with desire thickness from stable colloidal suspension under a direct current (DC) electric field. In this method, ZnO sol is prepared by dissolving zinc acetate dehydrate (ZAD) as the main precursor and diethanolamine (DEA) as the additive in various solvents such as methanol (MeOH), ethanol (EtOH), and 2-proponal (2-PrOH). The deposition was performed under a constant voltage of 30 V for 2 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS) were used to characterize ZnO films. XRD pattern of the ZnO film prepared by MeOH shows the highest degree of preferential orientation and this is mainly attributed to the higher dielectric constant of the MeOH which results in higher current density in electrophoretic deposit ion. The SEM cross section images also show that the thickness of the ZnO film enhances by decreasing the solvent chain length. According to SEM results, as the viscosity of the medium increased, more compact layers are formed, which can be attributed to the lower deposition rates in heavier alcohols.

  13. Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.

    PubMed

    Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E

    2016-08-09

    Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system.

  14. Poly(2-ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents.

    PubMed

    Plothe, Ramona; Sittko, Ina; Lanfer, Franziska; Fortmann, Maximilian; Roth, Meike; Kolbach, Vivien; Tiller, Joerg C

    2017-01-01

    Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2-ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39-45. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Exploring Solvent Shape and Function Using - and Isomer-Selective Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Mark

    2010-06-01

    We illustrate the new types of information than can be obtained through isomer-selective ``hole-burning'' spectroscopy carried out in the vibrational manifolds of Ar-tagged cluster ions. Three examples of increasing complexity will be presented where the changes in a solute ion are correlated with different morphologies of a surrounding solvent cage. In the first, we discuss the weak coupling limit where different hydration morphologies lead to small distortions of a covalent ion. We then introduce the more interesting case of the hydrated electron, where different shapes of the water network lead to dramatic changes in the extent of delocalization in the diffuse excess electron cloud. We then turn to the most complex case involving hydration of the nitrosonium ion, where different arrangements of the same number of water molecules span the range in behavior from simple solvation to actively causing a chemical reaction. The latter results are particularly interesting as they provide a microscopic, molecular-level picture of the ``solvent coordinate'' commonly used to describe solvent mediated processes.

  16. Diffusion and saponification inside porous cellulose triacetate fibers.

    PubMed

    Braun, Jennifer L; Kadla, John F

    2005-01-01

    Cellulose triacetate (CTA) fibers were partially hydrolyzed in 0.054 N solutions of NaOH/H(2)O and NaOMe/MeOH. The surface concentration of acetyl groups was determined using ATR-FTIR. Total acetyl content was determined by the alkaline hydrolysis method. Fiber cross-sections were stained with Congo red in order to examine the interface between reacted and unreacted material; these data were used to estimate the rate constant k and effective diffusivity D(B) for each reagent during the early stages of reaction by means of a volume-based unreacted core model. For NaOH/H(2)O, k = 0.37 L mol(-1) min(-1) and D(B) = 6.2 x 10(-7) cm(2)/sec; for NaOMe/MeOH, k = 4.0 L mol(-1) min(-1) and D(B) = 5.7 x 10(-6) cm(2)/sec. The NaOMe/MeOH reaction has a larger rate constant due to solvent effects and the greater nucleophilicity of MeO(-) as compared to OH(-); the reaction has a larger effective diffusivity because CTA swells more in MeOH than it does in water. Similarities between calculated concentration profiles for each case indicate that the relatively diffuse interface seen in fibers from the NaOMe/MeOH reaction results from factors not considered in the model; shrinkage of stained fiber cross-sections suggests that increased disruption of intermolecular forces may be the cause.

  17. Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Xie, Xueliang; Zou, Xingli; Lu, Xionggang; Lu, Changyuan; Cheng, Hongwei; Xu, Qian; Zhou, Zhongfu

    2016-11-01

    The electrodeposition of Zn and Cu-Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu-Zn alloy films have also been electrodeposited directly from CuO-ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu-Zn alloy depends on the electrodeposition potential.

  18. Effect of solvent and subsequent thermal annealing on the performance of phenylenevinylene copolymer: PCBM solar cells.

    PubMed

    Sharma, G D; Suresh, P; Sharma, S S; Vijay, Y K; Mikroyannidis, John A

    2010-02-01

    The morphology of the photoactive layer used in the bulk heterojunction photovoltaic devices is crucial for efficient charge generation and their collection at the electrodes. We investigated the solvent vapor annealing and thermal annealing effect of an alternating phenylenevinylene copolymer P:PCBM blend on its morphology and optical properties. The UV-visible absorption spectroscopy shows that both solvent and thermal annealing can result in self-assembling of copolymer P to form an ordered structure, leading to enhanced absorption in the red region and hole transport enhancement. By combining the solvent and thermal annealing of the devices, the power conversion efficiency is improved. This feature was attributed to the fact that the PCBM molecules begin to diffuse into aggregates and together with the ordered copolymer P phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Furthermore, the measured photocurrent also suggests that the space charges no longer limit the values of the short circuit current (J(sc)) and fill factor (FF) for solvent-treated and thermally annealed devices. These results indicate that the higher J(sc) and PCE for the solvent-treated and thermally annealed devices can be attributed to the phase separation of active layers, which leads to a balanced carrier mobility. The overall PCE of the device based on the combination of solvent annealing and thermal annealing is about 3.7 %.

  19. Microcapsules and Methods for Making

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    1994-01-01

    This invention relates to methods for forming multi-lamellar microcapsules of both hydrophilic and hydrophobic immiscible liquid phases using several polymer/solvent systems. Liquid-Liquid diffusion and spontaneous emulsification are controlled by properly timed sequence exposures of immiscible phases in aqueous vehicles dispersed in hydrocarbon solvents containing small quantities of oil, co-surfactants, and glycerides. Water-in-oil and oil-in-water microcapsules are formed containing selected combinations of several types of drugs, co-encapsulated within fluid compartments inside the microcapsule. Commercial applications of the process and the resultant product relate to drug therapy for treating medical conditions such as cancer, circulatory conditions, and other conditions in which pharmaceuticals are advantageously targeted to specific organs, or delivered in combination with other pharmaceuticals. Small microcapsules may be delivered intravenously to diseased organs or clotted vessels. The use of multiple drugs within the same microcapsule structure provides advantages for applications such as chemoembolization treatments and may be used to deliver both chemotherapeutic drugs, against tumor cells, and an immuno-adjuvant or immunological stimulant to enhance the patient's immune response. Active forms of urokinase and other enzymes may be delivered without dilution to the local site of an embolism for dissolving the embolism. Thus, the invention has several potentially valuable commercial applications related to pharmaceutical and medical applications.

  20. Preparation and characterization of CuInS2 absorber layers by sol-gel method for solar cell applications

    NASA Astrophysics Data System (ADS)

    Amerioun, M. H.; Ghazi, M. E.; Izadifard, M.; Bahramian, B.

    2016-04-01

    CuInSe2 , CuInS2 ( CIS2 and CuInGaS2 alloys and their compounds with band gaps between 1.05 and 1.7eV are absorbance materials based on chalcopyrite, in which, because of their suitable direct band gap, high absorbance coefficient and short carrier diffusion are used as absorbance layers in solar cells. In this work, the effects of decrease in p H and thickness variation on characteristics of the CIS2 absorber layers, grown by spin coating on glass substrates, are investigated. Furthermore by using thiourea as a sulphur source in solvent, the sulfurization of layers was done easier than other sulfurization methods. Due to the difficulty in dissolving thiourea in the considered solvent that leads to a fast deposition during the dissolving process, precise conditions are employed in order to prepare the solution. In fact, this procedure can facilitate the sulfurization process of CuIn layers. The results obtained from this investigation indicate reductions in absorbance and band gap in the visible region of the spectrum as a result of decrease in p H. Finally, conductivity of layers is studied by the current vs. voltage curve that represents reduction of electrical resistance with decrease and increase in p H and thickness, respectively.

  1. System and method for treatment of a flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiry, Irina Pavlovna; Wood, Benjamin Rue; Singh, Surinder Prabhjot

    A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the leanmore » solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.« less

  2. Experimental and theoretical analysis of the rate of solvent equilibration in the hanging drop method of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Fowlis, William W.; Delucas, Lawrence J.; Twigg, Pamela J.; Howard, Sandra B.; Meehan, Edward J.

    1988-01-01

    The principles of the hanging-drop method of crystal growth are discussed, and the rate of water evaporation in a water droplet (containing protein, buffer, and a precipitating agent) suspended above a well containing a double concentration of precipitating agent is investigated theoretically. It is shown that, on earth, the rate of evaporation may be determined from diffusion theory and the colligative properties of solutions. The parameters affecting the rate of evaporation include the temperature, the vapor pressure of water, the ionization constant of the salt, the volume of the drop, the contact angle between the droplet and the coverslip, the number of moles of salt in the droplet, the number of moles of water and salt in the well, the molar volumes of water and salt, the distance from the droplet to the well, and the coefficient of diffusion of water vapor through air. To test the theoretical equations, hanging-drop experiments were conducted using various reagent concentrations in 25-microliter droplets and measuring the evaporation times at 4 C and 25 C. The results showed good agreement with the theory.

  3. Expression, purification, crystallization and preliminary X-ray analysis of the ligand-binding domain of metabotropic glutamate receptor 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Takanori; Tsuchiya, Daisuke; Morikawa, Kosuke, E-mail: morikako@protein.osaka-u.ac.jp

    2007-07-01

    The ligand-binding domain of metabotropic glutamate receptor 7 has been overexpressed, purified, and crystallized by the hanging-drop vapour-diffusion method. A complete data set has been collected to 3.30 Å. Glutamate is the major excitatory neurotransmitter and its metabotropic glutamate receptor (mGluR) plays an important role in the central nervous system. The ligand-binding domain (LBD) of mGluR subtype 7 (mGluR7) was produced using the baculovirus expression system and purified from the culture medium. The purified protein was characterized by gel-filtration chromatography, SDS–PAGE and a ligand-binding assay. Crystals of mGluR7 LBD were grown at 293 K by the hanging-drop vapour-diffusion method. Themore » crystals diffracted X-rays to 3.30 Å resolution using synchrotron radiation and belong to the trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 92.4, c = 114.3 Å. Assuming the presence of one protomer per crystallographic asymmetric unit, the Matthews coefficient V{sub M} was calculated to be 2.5 Å{sup 3} Da{sup −1} and the solvent content was 51%.« less

  4. Crystallization and X-ray analysis of the salmon-egg lectin SEL24K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Kenji; Fisher, Andrew J.; Hedrick, Jerry L., E-mail: jlhedrick@ucdavis.edu

    2007-05-01

    The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 Å resolution. The crystal belongsmore » to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 Å, α = 90, β = 92.82, γ = 90°. The crystal is likely to contain eight molecules in the asymmetric unit (V{sub M} = 2.3 Å{sup 3} Da{sup −1}), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.« less

  5. Super-resolution study of polymer mobility fluctuations near c*.

    PubMed

    King, John T; Yu, Changqian; Wilson, William L; Granick, Steve

    2014-09-23

    Nanoscale dynamic heterogeneities in synthetic polymer solutions are detected using super-resolution optical microscopy. To this end, we map concentration fluctuations in polystyrene-toluene solutions with spatial resolution below the diffraction limit, focusing on critical fluctuations near the polymer overlap concentration, c*. Two-photon super-resolution microscopy was adapted to be applicable in an organic solvent, and a home-built STED-FCS system with stimulated emission depletion (STED) was used to perform fluorescence correlation spectroscopy (FCS). The polystyrene serving as the tracer probe (670 kg mol(-1), radius of gyration RG ≈ 35 nm, end-labeled with a bodipy derivative chromophore) was dissolved in toluene at room temperature (good solvent) and mixed with matrix polystyrene (3,840 kg mol(-1), RG ≈ 97 nm, Mw/Mn = 1.04) whose concentration was varied from dilute to more than 10c*. Whereas for dilute solutions the intensity-intensity correlation function follows a single diffusion process, it splits starting at c* to imply an additional relaxation process provided that the experimental focal area does not greatly exceed the polymer blob size. We identify the slower mode as self-diffusion and the increasingly rapid mode as correlated segment fluctuations that reflect the cooperative diffusion coefficient, Dcoop. These real-space measurements find quantitative agreement between correlation lengths inferred from dynamic measurements and those from determining the limit below which diffusion coefficients are independent of spot size. This study is considered to illustrate the potential of importing into polymer science the techniques of super-resolution imaging.

  6. O2 and Water Migration Pathways between the Solvent and Heme Pockets of Hemoglobin with Open and Closed Conformations of the Distal HisE7.

    PubMed

    Shadrina, Maria S; Peslherbe, Gilles H; English, Ann M

    2015-09-01

    Hemoglobin transports O2 by binding the gas at its four hemes. Hydrogen bonding between the distal histidine (HisE7) and heme-bound O2 significantly increases the affinity of human hemoglobin (HbA) for this ligand. HisE7 is also proposed to regulate the release of O2 to the solvent via a transient E7 channel. To reveal the O2 escape routes controlled by HisE7 and to evaluate its role in gating heme access, we compare simulations of O2 diffusion from the distal heme pockets of the T and R states of HbA performed with HisE7 in its open (protonated) and closed (neutral) conformations. Irrespective of HisE7's conformation, we observe the same four or five escape routes leading directly from the α- or β-distal heme pockets to the solvent. Only 21-53% of O2 escapes occur via these routes, with the remainder escaping through routes that encompass multiple internal cavities in HbA. The conformation of the distal HisE7 controls the escape of O2 from the heme by altering the distal pocket architecture in a pH-dependent manner, not by gating the E7 channel. Removal of the HisE7 side chain in the GlyE7 variant exposes the distal pockets to the solvent, and the percentage of O2 escapes to the solvent directly from the α- or β-distal pockets of the mutant increases to 70-88%. In contrast to O2, the dominant water route from the bulk solvent is gated by HisE7 because protonation and opening of this residue dramatically increase the rate of influx of water into the empty distal heme pockets. The occupancy of the distal heme site by a water molecule, which functions as an additional nonprotein barrier to binding of the ligand to the heme, is also controlled by HisE7. Overall, analysis of gas and water diffusion routes in the subunits of HbA and its GlyE7 variant sheds light on the contribution of distal HisE7 in controlling polar and nonpolar ligand movement between the solvent and the hemes.

  7. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin

    PubMed Central

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin–sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit® FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery. PMID:25999713

  8. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin.

    PubMed

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin-sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit(®) FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery.

  9. Polymer Nanocomposites: Insights from Theory and Molecular Simulations

    NASA Astrophysics Data System (ADS)

    Pani, Rakhee

    Advantages of polymer nanocomposites have attracted great industrial attention due to their multifunctionality and innovative technological properties. Addition of small amount of nanoparticle (nanospheres, nanotubes, nanorods, nanoplatelets, or sheets) to polymer matrix cause dramatic improvement in structural and functional properties, which is difficult to attain from those of individual components. The interaction between polymer and nanoparticle create bulk materials dominated by solid state physics at the nanoscale. Furthermore, morphology of nanocomposites depends on structural arrangements of nanoparticles. Thus, for achievement of optimized functionality like electrical, optical, mechanical and thermal properties control over the dispersion of the nanoparticle is essential. However, properties of polymer nanocomposites depend on morphology control and nature of interfacial interactions. In order to control the morphology it is necessary to understand how the processing conditions, shape and size of nanoparticle influence the structure of composite. Molecular simulations can help us to predict the parameters that control the structural changes and we could design polymer nanocomposite entailing their end-use. In this work, we addressed the following research questions: (1) the dependence of nanoparticle ligand corona structure on solvent quality and (2) the role of interfacial energy and interactions on the dispersion of molecules and nanoparticles. Specifically, this research assessed the effect of solvent interactions on the structure of nanoparticles on the example of redox core encapsulating dendrimer and ligand functionalized gold nanoparticles, role of chemical interaction on solubility of glucose in ionic liquids, diffusion of fullerene nanoparticles in polymer matrix and influence of solubility parameters on the compatibility of gold nanoparticles with diblock copolymers. Computational methods allow quantifying the structure and flexibility of the polymer chains, how energetics and surface tension change with chemical composition of the polymer/dendrimer blocks, influence of nanoparticle on structural properties of polymer and factors which may contribute to the phase separation of the polymer from nanoparticle. Interfacial characteristics are not only determined by the size-induced properties, but also the surface chemistry of the particles. Presence of solvent and the resultant interactions with the solvent are known to influence the morphology and prevent or induce aggregation of nanoparticles in polymers. We found that surface chemistry can induce change in the structure of dendrimers encapsulating a redox active core and change the solubility of the nanoparticles. The interactions between nanoparticles and polymers can also influence the morphology. We performed investigation on the role of orientation of fullerene derivatives and surface energy of polymer surface which may induce the aggregation of the fullerene nanoparticles. Furthermore, we used quantitative measurements like cluster analysis to understand the most probable orientation of the fullerene derivative with respect to the polymer chains and the diffusion of the fullerene nanoparticle, which is related to the efficiency of solar cells, can change on presence of regiorandom and regioregular polymer chains. Furthermore, we have also used different solvents based on their Hildebrand solubility parameters to investigate factors governing the morphology of polymer nanocomposite via solvent interactions. We showed that change in solvent interactions affect the compatibility, aggregation/dispersion of the gold nanoparticles, which will directly affect the morphology of polymer matrix and structural aspects which can impact their functionality. Overall, our research indicated that solvent interaction play a role in controlling the morphology of polymer nanocomposite and solubility parameter can help us to predict the resulting morphology.

  10. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  11. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  12. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    PubMed Central

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-01-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities. PMID:27853187

  13. Particle size-controllable microwave-assisted solvothermal synthesis of the high-voltage cathode material LiCoPO4 using water/ethylene glycol solvent blends

    NASA Astrophysics Data System (ADS)

    Ludwig, Jennifer; Haering, Dominik; Doeff, Marca M.; Nilges, Tom

    2017-03-01

    Particle size-tuned platelets of the high-voltage cathode material LiCoPO4 for Li-ion batteries have been synthesized by a simple one-step microwave-assisted solvothermal process using an array of water/ethylene glycol (EG) solvent mixtures. Particle size control was achieved by altering the concentration of the EG co-solvent in the mixture between 0 and 100 vol%, with amounts of 0-80 vol% EG producing single phase, olivine-type LiCoPO4. The particle sizes of the olivine materials were significantly reduced from about 1.2 μm × 1.2 μm × 500 nm (0 vol% EG) to 200 nm × 100 nm × 50 nm (80 vol% EG) with increasing EG content, while specific surface areas increased from 2 to 13 m2 g-1. The particle size reduction could mainly be attributed to the modified viscosities of the solvent blends. Owing to the soft template effect of EG, the crystals exhibited the smallest dimensions along the [010] direction of the Li diffusion pathways in the olivine crystal structure, resulting in enhanced lithium diffusion properties. The relationship between the synthesis, crystal properties and electrochemical performance was further elucidated, indicating that the electrochemical performances of the as-prepared materials mainly depend on the solvent composition and the respective particle size range. LiCoPO4 products obtained from reaction media with low and high EG contents exhibited good electrochemical performances (initial discharge capacities of 87-124 mAh g-1 at 0.1 C), whereas materials made from medium EG concentrations (40-60 vol% EG) showed the highest capacities and gravimetric energy densities (up to 137 mAh g-1 and 658 Wh kg-1 at 0.1 C), excellent rate capabilities, and cycle life.

  14. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels.

    PubMed

    Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun

    2005-04-27

    Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.

  15. The Stokes-Einstein relationship and the levitation effect: size-dependent diffusion maximum in dense fluids and close-packed disordered solids.

    PubMed

    Ghorai, Pradip Kr; Yashonath, S

    2005-03-31

    We report a molecular dynamics study of a binary mixture consisting of a large (host) particle and a smaller (guest) particle whose radius is varied over a range. These simulations investigate the possible existence of a diffusion anomaly or levitation effect in dense fluids, previously seen for guest molecules diffusing within porous solids. The voids in the larger component have been characterized in terms of void and neck distributions by means of Voronoi polyhedral analysis. Four different mixtures with differing ratios of guest to host diffusivities (D) have been studied. The results suggest that the diffusion anomaly is seen in both close-packed solids with disorder and dense fluids. In the latter, the void network is constantly and dynamically changing and possesses a considerable degree of disorder. The two regimes, viz., the linear regime (LR) and the anomalous regime (AR), found for porous solids are shown to exist for a dense medium as well. The linear regime is characterized by D(g) proportional to 1/sigma(gg)(2), where sigma(gg) is the diameter of the guest. The anomalous regime exhibits a maximum in D up to rather high temperatures (T = 1.663), even though in porous solids the maximum disappears at higher temperatures. In agreement with previous studies on porous solids, a particle in the AR is associated with lower activation energy, lower friction, and less backscattering in the velocity autocorrelation function when compared to a particle in the LR. Wavevector dependent self-diffusivity, Delta, and decay of the intermediate scattering function, F(s)(k, t), exhibit contrasting behaviors for the LR and AR. For LR, Delta exhibits a minimum at values of k at which there are spatial correlations in S(k) while a smooth decrease with k is seen for AR. For LR, F(s)(k, t) shows a biexponential decay corresponding to two different time scales of motion. Probably, the fast decay is associated with motion within the first shell of solvent neighbors and the slow decay with motion past these shells. For AR, a single-exponential decay is seen. The results indicate a breakdown of the Stokes-Einstein (SE) relationship. The relevant quantity that determines the validity of the SE relationship is the levitation parameter which is indirectly related to the solute/solvent radius ratio and not either the size of the solute or the solvent alone.

  16. Real Time Quantification of Ultrafast Photoinduced Bimolecular Electron Transfer Rate: Direct Probing of the Transient Intermediate.

    PubMed

    Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik

    2015-08-27

    Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.

  17. Scalar rate correlation at a turbulent liquid free surface - A two-regime correlation for high Schmidt numbers

    NASA Technical Reports Server (NTRS)

    Khoo, Boo-Cheong; Sonin, Ain A.

    1992-01-01

    An experimental correlation is derived for gas absorption at a turbulent, shear-free liquid interface. The correlation is expressed in terms of the liquid-side turbulence intensity, liquid-side macroscale, and the properties of the diffusing gas and solvent. The transfer coefficient increases linearly with rms velocity up to a point where the eddy Reynolds number reaches a critical (Schmidt number dependent) value. At higher velocities, there is a more rapid linear rise. The slope of the lower Reynolds number region is proportional to the square root of the diffusivity; at Reynolds numbers much higher than that of the break point, the slope becomes independent of diffusivity.

  18. Increased concentrations of endogenous 13-cis- and all-trans-retinoic acids in diffuse idiopathic skeletal hyperostosis, as demonstrated by HPLC.

    PubMed

    Periquet, B; Lambert, W; Garcia, J; Lecomte, G; De Leenheer, A P; Mazieres, B; Thouvenot, J P; Arlet, J

    1991-11-09

    Endogenous 13-cis- and all-trans-retinoic acids have been quantitated in human serum using a solvent extraction procedure followed by isocratic reversed phase high performance liquid chromatography and UV detection. In healthy adults, after an overnight fasting period, the concentrations of 13-cis- and all-trans-retinoic acids yielded 5.3 +/- 2.43 nmol/l and 11.8 +/- 3.3 nmol/l, respectively (mean +/- SD). The method has been successfully applied to the analysis of both isomers in serum from patients with idiopathic skeletal hyperostosis in whom, the 13-cis- as well as all-trans-retinoic acid levels were raised as compared to the control group.

  19. Effect of formulation and processing variables on the characteristics of microspheres for water-soluble drugs prepared by w/o/o double emulsion solvent diffusion method.

    PubMed

    Lee, J; Park, T G; Choi, H

    2000-02-25

    80% except for acetaminophen, due to its lower solubility in water and higher solubility in corn oil. The release profile of the drug was pH dependent. In acidic medium, the release rate was much slower, however, the drug was released quickly at pH 7.4. Tacrine showed unexpected release profiles, probably due to ionic interaction with polymer matrix and the shell structure and the highest release rate was obtained at pH 2.0. The prepared microspheres had a sponge-like inner structure with or without central hollow core and the surface was dense with no apparent pores.

  20. ms 2: A molecular simulation tool for thermodynamic properties, release 3.0

    NASA Astrophysics Data System (ADS)

    Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran

    2017-12-01

    A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.

  1. A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution.

    PubMed

    Huang, Hanjing; Yang, Shang-Tian; Ramey, David E

    2004-01-01

    An energy-efficient hollow-fiber membrane extraction process was successfully developed to separate and recover lactic acid produced in fermentation. Although many fermentation processes have been developed for lactic acid production, an economical method for lactic acid recovery from the fermentation broth is still needed. Continuous extraction of lactic acid from a simulated aqueous stream was achieved by using Alamine 336 in 2-octanol contained in a hollow-fiber membrane extractor. In this process, the extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor, and the final product is a concentrated lactate salt solution. The extraction rate increased linearly with an increase in the Alamine 336 content in the solvent (from 5 to 40%). Increasing the concentration of the undissociated lactic acid in the feed solution by either increasing the lactate concentration (from 5 to 40 g/L) or decreasing the solution pH (from 5.0 to 4.0) also increased the extraction rate. Based on these observations, a reactive extraction model with a first-order reaction mechanism for both lactic acid and amine concentrations was proposed. The extraction rate also increased with an increase in the feed flow rate, but not the flow rates of solvent and the stripping solution, suggesting that the process was not limited by diffusion in the liquid films or membrane pores. A mathematical model considering both diffusion and chemical reaction in the extractor and back extractor was developed to simulate the process. The model fits the experimental data well and can be used in scale up design of the process.

  2. Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach.

    PubMed

    de Marco, Bianca Aparecida; Natori, Jéssica Sayuri Hisano; Fanelli, Stefany; Tótoli, Eliane Gandolpho; Salgado, Hérida Regina Nunes

    2017-05-04

    Bacterial infections are the second leading cause of global mortality. Considering this fact, it is extremely important studying the antimicrobial agents. Amoxicillin is an antimicrobial agent that belongs to the class of penicillins; it has bactericidal activity and is widely used in the Brazilian health system. In literature, some analytical methods are found for the identification and quantification of this penicillin, which are essential for its quality control, which ensures maintaining the product characteristics, therapeutic efficacy and patient's safety. Thus, this study presents a brief literature review on amoxicillin and the analytical methods developed for the analysis of this drug in official and scientific papers. The major analytical methods found were high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (U-HPLC), capillary electrophoresis and iodometry and diffuse reflectance infrared Fourier transform. It is essential to note that most of the developed methods used toxic and hazardous solvents, which makes necessary industries and researchers choose to develop environmental-friendly techniques to provide enhanced benefits to environment and staff.

  3. Direct observation of two-step crystallization in nanoparticle superlattice formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the additionmore » of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.« less

  4. Aminosilicone solvent recovery methods and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  5. Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles A. Eckert; Charles L. Liotta; Rigoberto Hernandez

    2007-06-26

    This project focuses on the characterization of a new class of solvent systems called gas-expanded liquids (GXLs), targeted for green-chemistry processing. The collaboration has adopted a synergistic approach combining elements of molecular dynamics (MD) simulation and spectroscopic experiments to explore the local solvent behavior that could not be studied by simulation or experiment alone. The major accomplishments from this project are: • Applied MD simulations to explore the non-uniform structure of CO2/methanol and CO2/acetone GXLs and studied their dynamic behavior with self-diffusion coefficients and correlation functions • Studied local solvent structure and solvation behavior with a combination of spectroscopy andmore » MD simulations • Measured transport properties of heterocyclic solutes in GXLs through Taylor-Aris diffusion techniques and compared these findings to those of MD simulations • Probed local polarity and specific solute-solvent interactions with Diels-Alder and SN2 reaction studies The broader scientific impact resulting from the research activities of this contract have been recognized by two recent awards: the Presidential Green Chemistry Award (Eckert & Liotta) and a fellowship in the American Association for the Advancement of Science (Hernandez). In addition to the technical aspects of this contract, the investigators have been engaged in a number of programs extending the broader impacts of this project. The project has directly supported the development of two postdoctoral researcher, four graduate students, and five undergraduate students. Several of the undergraduate students were co-funded by a Georgia Tech program, the Presidential Undergraduate Research Award. The other student, an African-American female graduated from Georgia Tech in December 2005, and was co-funded through an NSF Research and Education for Undergraduates (REU) award.« less

  6. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  7. Hierarchical calibration and validation for modeling bench-scale solvent-based carbon capture. Part 1: Non-reactive physical mass transfer across the wetted wall column: Original Research Article: Hierarchical calibration and validation for modeling bench-scale solvent-based carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    A hierarchical model calibration and validation is proposed for quantifying the confidence level of mass transfer prediction using a computational fluid dynamics (CFD) model, where the solvent-based carbon dioxide (CO2) capture is simulated and simulation results are compared to the parallel bench-scale experimental data. Two unit problems with increasing level of complexity are proposed to breakdown the complex physical/chemical processes of solvent-based CO2 capture into relatively simpler problems to separate the effects of physical transport and chemical reaction. This paper focuses on the calibration and validation of the first unit problem, i.e. the CO2 mass transfer across a falling ethanolaminemore » (MEA) film in absence of chemical reaction. This problem is investigated both experimentally and numerically using nitrous oxide (N2O) as a surrogate for CO2. To capture the motion of gas-liquid interface, a volume of fluid method is employed together with a one-fluid formulation to compute the mass transfer between the two phases. Bench-scale parallel experiments are designed and conducted to validate and calibrate the CFD models using a general Bayesian calibration. Two important transport parameters, e.g. Henry’s constant and gas diffusivity, are calibrated to produce the posterior distributions, which will be used as the input for the second unit problem to address the chemical adsorption of CO2 across the MEA falling film, where both mass transfer and chemical reaction are involved.« less

  8. Extracting organic matter on Mars: A comparison of methods involving subcritical water, surfactant solutions and organic solvents

    NASA Astrophysics Data System (ADS)

    Luong, Duy; Court, Richard W.; Sims, Mark R.; Cullen, David C.; Sephton, Mark A.

    2014-09-01

    The first step in many life detection protocols on Mars involves attempts to extract or isolate organic matter from its mineral matrix. A number of extraction options are available and include heat and solvent assisted methods. Recent operations on Mars indicate that heating samples can cause the loss or obfuscation of organic signals from target materials, raising the importance of solvent-based systems for future missions. Several solvent types are available (e.g. organic solvents, surfactant based solvents and subcritical water extraction) but a comparison of their efficiencies in Mars relevant materials is missing. We have spiked the well characterised Mars analogue material JSC Mars-1 with a number of representative organic standards. Extraction of the spiked JSC Mars-1 with the three solvent methods provides insights into the relative efficiency of these methods and indicates how they may be used on future Mars missions.

  9. NONEQUILIBRIUM SORPTION DURING DISPLACEMENT OF HYRDOPHOBIC ORGANIC CHEMICALS AND 45CA THROUGH SOIL COLUMNS WITH AQUEOUS AND MIXED SOLVENTS

    EPA Science Inventory

    A series of miscible displacement experiments was conducted to investigate the significance of intraorganic matter diffusion (IOMD) as the rate-limiting step in sorption of organic and inorganic solutes during steady water flow in soil columns. Displacement studies were performed...

  10. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    USDA-ARS?s Scientific Manuscript database

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  11. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory.

    PubMed

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V

    2012-09-19

    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  12. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    NASA Astrophysics Data System (ADS)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  13. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    PubMed

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling method without the need to determine the initial gas phase TCE concentration. The simplified field deployment approach of the solvent-based dissolution method combined with the conventional analytical procedure used for groundwater samples substantially facilitates the application of CSIA to gas phase studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study.

    PubMed

    Nelson, Tammie R; Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2011-05-12

    We report molecular dynamics (MD) simulation of energy exchange between single-walled carbon nanotubes (CNTs) and two aprotic solvents, acetonitrile and cyclohexane. Following our earlier study of hydrated CNTs, we find that the time scales and molecular mechanisms of the energy transfer are largely independent of the nature of the surrounding medium, and therefore, should hold for other media including polymer matrices and DNA. The vibrational energy exchange between CNT and solvents exhibits two time-scales. Over half of the energy is transferred in less than one picosecond, indicating that the dominant exchange mechanism is inertial relaxation. It occurs by collisions of solvent molecules with CNT walls, facilitated by the short-range Lennard-Jones interaction. Additional several picoseconds are required for the remainder of the vibrational energy exchange, corresponding to the diffusive relaxation mechanism and involving collective molecular motions. The faster stage of the CNT-solvent energy exchange occurs on the same time-scale, and therefore, competes with the vibrational energy relaxation inside CNTs. The energy exchange time-scales are significantly influenced by the arrangement of solvent molecules inside CNTs. Generally, the effects of confinement on the dynamics can be rationalized by analysis of the solvent structure. For the same CNT diameter, the extent of the confinement effect strongly depends on the size of the solvent molecules. Icelike properties in water seen in small CNTs disappear in CNTs with intermediate diameters. In acetonitrile and cyclohexane, medium size CNTs still show strong confinement effects. Rotational motions of acetonitrile molecules are inhibited, and the cyclohexane density is dramatically decreased. The disbalance between the local temperatures of the inside and outside regions of the solvent equilibrates through a tube-mediated interaction, rather than by a direct coupling between the two solvent subsystems. In all cases, the CNT-solvent energy transfer is mediated by slow motions in the frequency range of CNT radial breathing modes.

  15. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    PubMed

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. METHOD FOR SOLVENT-ISOSTATIC PRESSING

    DOEpatents

    Archibald, P.B.

    1962-09-18

    This invention provides a method for producing densely compacted bodies having relatively large dimensions. The method comprises the addition of a small quantity of a suitable solvent to a powder which is to be compacted. The solvent- moistened powder is placed inside a flexible bag, and the bag is suspended in an isostatic press. The solvent is squeezed out of the powder by the isostatic pressure, and the resulting compacted body is recovered. The presence of the solvent markedly decreases the proportion of void space in the powder, thereby resulting in a denser, more homogeneous compact. Another effect of the solvent is that it allows the isostatic pressing operation to be conducted at substantially lower pressures than are conventionally employed. (AEC)

  17. Longitudinal nuclear spin relaxation of ortho- and para-hydrogen dissolved in organic solvents.

    PubMed

    Aroulanda, Christie; Starovoytova, Larisa; Canet, Daniel

    2007-10-25

    The longitudinal relaxation time of ortho-hydrogen (the spin isomer directly observable by NMR) has been measured in various organic solvents as a function of temperature. Experimental data are perfectly interpreted by postulating two mechanisms, namely intramolecular dipolar interaction and spin-rotation, with activation energies specific to these two mechanisms and to the solvent in which hydrogen is dissolved. This permits a clear separation of the two contributions at any temperature. Contrary to the self-diffusion coefficients at a given temperature, the rotational correlation times extracted from the dipolar relaxation contribution do not exhibit any definite trend with respect to solvent viscosity. Likewise, the spin-rotation correlation time obeys Hubbard's relation only in the case of hydrogen dissolved in acetone-d6, yielding in that case a spin-rotation constant in agreement with literature data. Concerning para-hydrogen, which is NMR-silent, the only feasible approach is to dissolve para-enriched hydrogen in these solvents and to follow the back-conversion of the para-isomer into the ortho-isomer. Experimentally, this conversion has been observed to be exponential, with a time constant assumed to be the relaxation time of the singlet state (the spin state of the para-isomer). A theory, based on intermolecular dipolar interactions, has been worked out for explaining the very large values of these relaxation times which appear to be solvent-dependent.

  18. A molecular dynamics computer simulation study of room-temperature ionic liquids. II. Equilibrium and nonequilibrium solvation dynamics.

    PubMed

    Shim, Y; Choi, M Y; Kim, Hyung J

    2005-01-22

    The molecular dynamics (MD) simulation study of solvation structure and free energetics in 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate using a probe solute in the preceding article [Y. Shim, M. Y. Choi and H. J. Kim, J. Chem. Phys. 122, 044510 (2005)] is extended to investigate dynamic properties of these liquids. Solvent fluctuation dynamics near equilibrium are studied via MD and associated time-dependent friction is analyzed via the generalized Langevin equation. Nonequilibrium solvent relaxation following an instantaneous change in the solute charge distribution and accompanying solvent structure reorganization are also investigated. Both equilibrium and nonequilibrium solvation dynamics are characterized by at least two vastly different time scales--a subpicosecond inertial regime followed by a slow diffusive regime. Solvent regions contributing to the subpicosecond nonequilibrium relaxation are found to vary significantly with initial solvation configurations, especially near the solute. If the solvent density near the solute is sufficiently high at the outset of the relaxation, subpicosecond dynamics are mainly governed by the motions of a few ions close to the solute. By contrast, in the case of a low local density, solvent ions located not only close to but also relatively far from the solute participate in the subpicosecond relaxation. Despite this difference, linear response holds reasonably well in both ionic liquids. (c) 2005 American Institute of Physics.

  19. Characterization of 2-(2-Methoxyethoxy)ethanol Substituted Phosphazene Polymers Using Pervaporation, Solubility Parameters and Sorption Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, Christopher Joseph; Klaehn, John Ray; Harrup, Mason Kurt

    Two linear phosphazene polymers were synthesized with differing amounts of hydrophilic 2-(2-methoxyethoxy)ethanol (MEE) and hydrophobic 4-methoxyphenol (MEOP) substituted on the backbone. These high polymers were cast into membranes and their permeability to water, methanol, ethanol, and 2-propanol was evaluated as a function of temperature. An additional polymer with a low content of MEE was studied for water permeation and was characterized by trace flux. At higher levels of MEE on the backbone, fluxes of all solvents increased. Solubility also was found to increase with increasing MEE content for all solvents except water. Unexpectedly, water was found to be less solublemore » in the higher MEE polymer, although higher membrane fluxes were observed. Diffusion coefficients showed the following trend: methanol 2-propanol > ethanol water. Finally, the affinity of solvents and polymers was discussed in terms of Hansen solubility parameters.« less

  20. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  1. Dynamics of water in sulfonated poly(phenylene) membranes

    NASA Astrophysics Data System (ADS)

    Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher

    2011-03-01

    The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.

  2. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves.

    PubMed

    Saleh, I A; Vinatoru, M; Mason, T J; Abdel-Azim, N S; Aboutabl, E A; Hammouda, F M

    2016-07-01

    The use of ultrasound-assisted extraction (UAE) for the extraction of chlorogenic acid (CA) from Cynara scolymus L., (artichoke) leaves using 80% methanol at room temperature over 15 min gave a significant increase in yield (up to a 50%) compared with maceration at room temperature and close to that obtained by boiling over the same time period. A note of caution is introduced when comparing UAE with Soxhlet extraction because, in the latter case, the liquid entering the Soxhlet extractor is more concentrated in methanol (nearly 100%) that the solvent in the reservoir (80% methanol) due to fractionation during distillation. The mechanism of UAE is discussed in terms of the effects of cavitation on the swelling index, solvent diffusion and the removal of a stagnant layer of solvent surrounding the plant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Analyze nanofiltration separation rule of chlorogenic acid from low concentration ethanol by Donnan effect and solution-diffusion effect].

    PubMed

    Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping

    2017-07-01

    To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.

  4. Effect of Solvent Variations in the Alcothermal Synthesis of Template-Free Mesoporous Titania for Dye-Sensitized Solar Cells Applications

    PubMed Central

    Wawrzyńczak, Agata; Półrolniczak, Paulina; Sobuś, Jan; Schroeder, Grzegorz; Jurga, Stefan; Selli, Elena

    2016-01-01

    A series of 14 mesoporous titania materials has been synthesized using the simple alcothermal template-free method and various alcohols, such as methanol, propanols and butanols, as solvents. All materials were characterized by both wide and small angle XRD, which exhibited the anatase phase with short-range ordered mesoporous structure that is still forming during post synthetic temperature treatment in most of the investigated materials. Nitrogen adsorption–desorption isotherms confirmed the mesoporous structure with surface area ranging from 241 to 383 m2g- 1 and pore volumes from 0.162 to 0.473 m3g-1, UV-Vis diffuse reflectance showed the redshift of the absorption edge and the bandgap decrease after post synthetic calcination of the materials presented. The TEM, FT-IR, DTA and TG measurements have been made to well characterize the materials synthesized. The mesoporous samples obtained were applied as anode materials for dye-sensitized solar cells and showed good activity in photon-to-current conversion process with efficiency values ranging from 0.54% to 4.6% and fill factors in the 52% to 67% range. The photovoltaic performances were not as high as those obtained for the materials synthesized by us earlier employing ethanol as a solvent. The differences in the electron lifetime, calculated from electrochemical impedance spectroscopy results and varying between 4.3 to 17.5 ms, were found as a main factor determining the efficiency of the investigated photovoltaic cells. PMID:27741313

  5. Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots

    PubMed Central

    Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng

    2011-01-01

    Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627

  6. Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin Drug Delivery.

    PubMed

    Sala, M; Locher, F; Bonvallet, M; Agusti, G; Elaissari, A; Fessi, H

    2017-09-01

    Herein, we detail a promising strategy of nanovesicle preparation based on control of phospholipid self-assembly: the Double Solvent Displacement. A systematic study was conducted and diclofenac as drug model encapsulated. In vitro skin studies were carried out to identify better formulation for dermal/transdermal delivery. This method consists in two solvent displacements. The first one, made in a free water environment, has allowed triggering a phospholipid pre-organization. The second one, based on the diffusion into an aqueous phase has led to liposome formation. Homogeneous liposomes were obtained with a size close to 100 nm and a negative zeta potential around -40 mV. After incorporation of acid diclofenac, we obtained nanoliposomes with a size between 101 ± 45 and 133 ± 66 nm, a zeta potential between 34 ± 2 and 49 ± 3 mV, and the encapsulation efficiency (EE%) was between 58 ± 3 and 87 ± 5%. In vitro permeation studies showed that formulation with higher EE% dispayed the higher transdermal passage (18,4% of the applied dose) especially targeting dermis and beyond. Our results suggest that our diclofenac loaded lipid vesicles have significant potential as transdermal skin drug delivery system. Here, we produced cost effective lipid nanovesicles in a merely manner according to a process easily transposable to industrial scale. Graphical Abstract ᅟ.

  7. Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

    PubMed Central

    Canning, John; Huyang, George; Ma, Miles; Beavis, Alison; Bishop, David; Cook, Kevin; McDonagh, Andrew; Shi, Dongqi; Peng, Gang-Ding; Crossley, Maxwell J.

    2014-01-01

    Percolation diffusion into long (11.5 cm) self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS). Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1) of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP) observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described. PMID:28348290

  8. NMR Water Self–Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions

    PubMed Central

    Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc

    2013-01-01

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  9. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  10. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents

    PubMed Central

    Bahadori, Laleh; Chakrabarti, Mohammed Harun; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Brandon, Nigel

    2015-01-01

    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden’s rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices. PMID:26642045

  11. Solvent viscosity and friction in protein folding dynamics.

    PubMed

    Hagen, Stephen J

    2010-08-01

    The famous Kramers rate theory for diffusion-controlled reactions has been extended in numerous ways and successfully applied to many types of reactions. Its application to protein folding reactions has been of particular interest in recent years, as many researchers have performed experiments and simulations to test whether folding reactions are diffusion-controlled, whether the solvent is the source of the reaction friction, and whether the friction-dependence of folding rates generally can provide insight into folding dynamics. These experiments involve many practical difficulties, however. They have also produced some unexpected results. Here we briefly review the Kramers theory for reactions in the presence of strong friction and summarize some of the subtle problems that arise in the application of the theory to protein folding. We discuss how the results of these experiments ultimately point to a significant role for internal friction in protein folding dynamics. Studies of friction in protein folding, far from revealing any weakness in Kramers theory, may actually lead to new approaches for probing diffusional dynamics and energy landscapes in protein folding.

  12. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Harsh; Gyulassy, Attila; Ong, Mitchell

    2016-09-27

    The performance of lithium-ion batteries is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact, both, the solvation and diffusivity of Li ions. In this work, we present our application of the topological techniques to extract and predict such behavior in the data generated by the first-principles molecular dynamics simulation of Li ions in an important organic solvent -ethylene carbonate. More specifically, we use the scalar topology of the electron charge density field tomore » analyze the evolution of the solvation structures. This allows us to derive a parameter-free bond definition for lithium-oxygen bonds, to provide a quantitative measure for bond strength, and to understand the regions of influence of each atom in the simulation. This has provided new insights into how and under what conditions certain bonds may form and break. As a result, we can identify and, more importantly, predict, unstable configurations in solvation structures. This can be very useful in understanding when small changes to the atoms' movements can cause significantly different bond structures to evolve. Ultimately, this promises to allow scientists to explore lithium ion solvation and diffusion more systematically, with the aim of new insights and potentially accelerating the calculations themselves.« less

  13. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Evans, Christopher M. (Inventor); Ruf, Herbert J. (Inventor); Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  14. Solvent-based and solvent-free characterization of low solubility and low molecular weight polyamides by mass spectrometry: a complementary approach.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Lange, Catherine M; Rejaibi, Majed; Kebir, Nasreddine; Désilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2012-06-15

    Polyamides (PA) belong to the most used classes of polymers because of their attractive chemical and mechanical properties. In order to monitor original PA design, it is essential to develop analytical methods for the characterization of these compounds that are mostly insoluble in usual solvents. A low molecular weight polyamide (PA11), synthesized with a chain limiter, has been used as a model compound and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In the solvent-based approach, specific solvents for PA, i.e. trifluoroacetic acid (TFA) and hexafluoroisopropanol (HFIP), were tested. Solvent-based sample preparation methods, dried-droplet and thin layer, were optimized through the choice of matrix and salt. Solvent-based (thin layer) and solvent-free methods were then compared for this low solubility polymer. Ultra-high-performance liquid chromatography/electrospray ionization (UHPLC/ESI)-TOF-MS analyses were then used to confirm elemental compositions through accurate mass measurement. Sodium iodide (NaI) and 2,5-dihydroxybenzoic acid (2,5-DHB) are, respectively, the best cationizing agent and matrix. The dried-droplet sample preparation method led to inhomogeneous deposits, but the thin-layer method could overcome this problem. Moreover, the solvent-free approach was the easiest and safest sample preparation method giving equivalent results to solvent-based methods. Linear as well as cyclic oligomers were observed. Although the PA molecular weights obtained by MALDI-TOF-MS were lower than those obtained by (1)H NMR and acido-basic titration, this technique allowed us to determine the presence of cyclic and linear species, not differentiated by the other techniques. TFA was shown to induce modification of linear oligomers that permitted cyclic and linear oligomers to be clearly highlighted in spectra. Optimal sample preparation conditions were determined for the MALDI-TOF-MS analysis of PA11, a model of polyamide analogues. The advantages of the solvent-free and solvent-based approaches were shown. Molecular weight determination using MALDI was discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Crystallization and preliminary X-ray analysis of PH1566, a putative ribosomal RNA-processing factor from the hyperthermophilic archaeon Pyrococcus horikoshii OT3

    PubMed Central

    Jia, Min Ze; Ohtsuka, Jun; Lee, Woo Cheol; Nagata, Koji; Tanokura, Masaru

    2006-01-01

    A putative ribosomal RNA-processing factor consisting of two KH domains from Pyrococcus horikoshii OT3 (PH1566; 25 kDa) was crystallized by the sitting-drop vapour-diffusion method using PEG 3000 as the precipitant. The crystals diffracted X-rays to beyond 2.0 Å resolution using a synchrotron-radiation source. The space group of the crystals was determined as primitive orthorhombic P212121, with unit-cell parameters a = 45.9, b = 47.4, c = 95.7 Å. The crystals contain one molecule in the asymmetric unit (V M = 2.5 Å3 Da−1) and have a solvent content of 50%. PMID:16511260

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavira, José A.; Jesus, Walleska de; Camara-Artigas, Ana

    The haemoglobin II from the clam L. pectinata has been crystallized using counter-diffusion in single capillary in the presence of agarose to improve crystal quality. Initial phases have been obtained by molecular replacement. Haemoglobin II is one of three haemoglobins present in the cytoplasm of the Lucina pectinata mollusc that inhabits the Caribbean coast. Using HBII purified from its natural source, crystallization screening was performed using the counter-diffusion method with capillaries of 0.2 mm inner diameter. Crystals of HbII suitable for data collection and structure determination were grown in the presence of agarose at 0.1%(w/v) in order to improve theirmore » quality. The crystals belong to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 73.92, c = 152.35 Å, and diffracted X-rays to a resolution of better than 2.0 Å. The asymmetric unit is a homodimer with a corresponding Matthews coefficient (V{sub M}) of 3.15 Å{sup 3} Da{sup −1} and a solvent content of 61% by volume.« less

  17. The covalently bound diazo group as an infrared probe for hydrogen bonding environments.

    PubMed

    You, Min; Liu, Liyuan; Zhang, Wenkai

    2017-07-26

    Covalently bound diazo groups are frequently found in biomolecular substrates. The C[double bond, length as m-dash]N[double bond, length as m-dash]N asymmetric stretching vibration (ν as ) of the diazo group has a large extinction coefficient and appears in an uncongested spectral region. To evaluate the solvatochromism of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band for studying biomolecules, we recorded the infrared (IR) spectra of a diazo model compound, 2-diazo-3-oxo-butyric acid ethyl ester, in different solvents. The width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly dependent on the Kamlet-Taft solvent parameter, which reflects the polarizability and hydrogen bond accepting ability of the solvent. Therefore, the width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band could be used to probe these properties for a solvent. We found that the position of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band was linearly correlated with the density of hydrogen bond donor groups in the solvent. We studied the relaxation dynamics and spectral diffusion of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of a natural amino acid, 6-diazo-5-oxo-l-norleucine, in water using nonlinear IR spectroscopy. The relaxation and spectral diffusion time constants of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band were similar to those of the N[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band. We concluded that the position and width of the C[double bond, length as m-dash]N[double bond, length as m-dash]N ν as band of the diazo group could be used to probe the hydrogen bond donating and accepting ability of a solvent, respectively. These results suggest that the diazo group could be used as a site-specific IR probe for the local hydration environments.

  18. Computation of Thermal Transport in a Protein

    NASA Astrophysics Data System (ADS)

    Leitner, David M.

    2003-03-01

    Calculation of the coefficient of thermal conductivity and thermal diffusivity for a protein will be discussed. Thermal transport coefficients are obtained by computing the proteinÂ's normal modes, their lifetimes, the speed of sound and mean free path. We find the thermal diffusivity of myoglobin at 300 K to be 14 Å^2 /ps, the same as the value for water. The thermal conductivity at 300 K is calculated to be 2.0 mW/cm K in the absence of solvent and somewhat higher for the solvated protein, about one-third the value for water.

  19. Comparison of the exposure-excretion relationship between men and women exposed to organic solvents.

    PubMed

    Kawai, Toshio; Takeuchi, Akito; Ikeda, Masayuki

    2015-01-01

    The present study was initiated to examine if application of the same biological occupational exposure limits (BOELs) for organic solvents is applicable across the sexes. A survey was conducted in 69 micro-scale enterprises in a furniture-producing industrial park. In practice, 211 men and 52 women participated in the survey. They worked in a series of production process, and were exposed to solvent vapor mixtures. The exposure intensities were monitored with two types of diffusive samplers, one with carbon cloth (for solvents in general) and the other with water (for methyl alcohol) as adsorbents. Solvents in the adsorbents and head-space air from urine samples were analyzed with capillary FID-GC. The measured values were subjected to linear regression analysis followed by statistical evaluation for possible sex-related differences in slopes. Essentially no significant difference was detected between men and women in regression line parameters including slopes. Possible differences in the cases of acetone and toluene were discussed and excluded. With the exceptions for acetone and toluene, the present study did not detect any clear differences between men and women. In examinations of past reports, no support for the observed differences was found. The present findings deserve further study so that a solid conclusion can be formed.

  20. Flash nano-precipitation of polymer blends: a role for fluid flow?

    NASA Astrophysics Data System (ADS)

    Grundy, Lorena; Mason, Lachlan; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Lee, Victoria; Prudhomme, Robert; Priestley, Rodney; Matar, Omar K.

    2017-11-01

    Porous structures can be formed by the controlled precipitation of polymer blends; ranging from porous matrices, with applications in membrane filtration, to porous nano-particles, with applications in catalysis, targeted drug delivery and emulsion stabilisation. Under a diffusive exchange of solvent for non-solvent, prevailing conditions favour the decomposition of polymer blends into multiple phases. Interestingly, dynamic structures can be `trapped' via vitrification prior to thermodynamic equilibrium. A promising mechanism for large-scale polymer processing is flash nano-precipitation (FNP). FNP particle formation has recently been modelled using spinodal decomposition theory, however the influence of fluid flow on structure formation is yet to be clarified. In this study, we couple a Navier-Stokes equation to a Cahn-Hilliard model of spinodal decomposition. The framework is implemented using Code BLUE, a massively scalable fluid dynamics solver, and applied to flows within confined impinging jet mixers. The present method is valid for a wide range of mixing timescales spanning FNP and conventional immersion precipitation processes. Results aid in the fabrication of nano-scale polymer particles with tuneable internal porosities. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), PETRONAS.

  1. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  2. Thermally managed fs Z-scan methods investigation of the size-dependent nonlinearity of Graphene Oxide in different solvents

    NASA Astrophysics Data System (ADS)

    Burkins, Paul; Basaldua, Isaac; Kuis, Robinson; Johnson, Anthony; Swaminathan, Sivaram; Zhang, Daije; Trivedi, Sudhir; University of Maryland, Baltimore Maryland Team; Brimrose Corporation of America Collaboration

    Acoustic and thermal diffusion effects are often ignored in Z-scan measurements resulting in misinterpretation of the nonlinear index of refraction and nonlinear absorption. Thermally managed Z-scan using a modified chopper was compared to utilizing a pulsepicker with the common calibration material CS2 and then extended to Graphene Oxide (GO) in different solvents. The chopper reveals properties of the material in time and is an inexpensive alternative to changing the repetition rate with a pulsepicker. The pulsepicker allows for much faster rise-times and therefore measurements can be taken before thermal effects have overwhelmed the nonlinear electronic response. GO in DI water using pulsepicked fs laser excitation yielded a value of (-1.79 +/-.6)x10-15 cm2/W for nanometer particles and (-1.09 +/-.6)x10-15 cm2/W for micrometer sized particles. Open aperture Z-scan of GO in THF using the modified chopper shows a flip from reverse saturable absorption to saturable absorption in time, previously shown to be intensity dependent, potentially resulting from thermal effects. Both measurements indicate smaller particles have larger negative nonlinearities originating from thermal effects or from defects in lattice structure at the edges.

  3. Formulation Development of Spherical Crystal Agglomerates of Itraconazole for Preparation of Directly Compressible Tablets with Enhanced Bioavailability.

    PubMed

    Fadke, Janki; Desai, Jagruti; Thakkar, Hetal

    2015-12-01

    The objective of the present work was to formulate tablet dosage form of itraconazole with enhanced bioavailability. Spherical crystal agglomerates (SCA) of itraconazole prepared by quasi emulsification solvent diffusion method using Soluplus and polyethylene glycol 4000 (PEG 4000) showed increased solubility (540 μg/ml) in 0.1 N hydrochloric acid as compared to pure drug (12 μg/ml). A Fourier transform infrared (FTIR) study indicated compatibility of drug with the excipients. The developed SCA were spherical with smooth surface having an average size of 412 μm. The significantly improved micromeritic properties compared to the plain drug suggested its suitability for direct compression. The antifungal activity of itraconazole was retained in the SCA form as evidenced from the results of the disc diffusion method. The optimized SCA formulation could be easily compressed into tablet with desirable characteristics of hardness (5 kg/cm(2)) and disintegration time (6.3 min). The in vitro dissolution studies showed significant difference in the dissolution profiles of pure drug (21%) and SCA formulation (85%) which was even greater than that of marketed preparation (75%). In vivo pharmacokinetic showed significant enhancement in C max and AUC0-t with relative bioavailability of 225%. The SCA formulation seems to be promising for enhancement of oral bioavailability of itraconazole.

  4. Do group 1 metal salts form deep eutectic solvents?

    PubMed

    Abbott, A P; D'Agostino, C; Davis, S J; Gladden, L F; Mantle, M D

    2016-09-14

    Mixtures of metal salts such as ZnCl 2 , AlCl 3 and CrCl 3 ·6H 2 O form eutectic mixtures with complexing agents, such as urea. The aim of this research was to see if alkali metal salts also formed eutectics in the same way. It is shown that only a limited number of sodium salts form homogeneous liquids at ambient temperatures and then only with glycerol. None of these mixtures showed eutectic behaviour but the liquids showed the physical properties similar to the group of mixtures classified as deep eutectic solvents. This study focussed on four sodium salts: NaBr, NaOAc, NaOAc·3H 2 O and Na 2 B 4 O 7 ·10H 2 O. The ionic conductivity and viscosity of these salts with glycerol were studied, and it was found that unlike previous studies of quaternary ammonium salts with glycerol, where the salt decreased the viscosity, most of the sodium salts increased the viscosity. This suggests that sodium salts have a structure making effect on glycerol. This phenomenon is probably due to the high charge density of Na + , which coordinates to the glycerol. 1 H and 23 Na NMR diffusion and relaxation methods have been used to understand the molecular dynamics in the glycerol-salt mixtures, and probe the effect of water on some of these systems. The results reveal a complex dynamic behaviour of the different species within these liquids. Generally, the translational dynamics of the 1 H species, probed by means of PFG NMR diffusion coefficients, is in line with the viscosity of these liquids. However, 1 H and 23 Na T 1 relaxation measurements suggest that the Na-containing species also play a crucial role in the structure of the liquids.

  5. Development of Poly(lactide-co-glicolide) Nanoparticles Incorporating Morphine Hydrochloride to Prolong its Circulation in Blood.

    PubMed

    Gomez-Murcia, Victoria; Montalban, Mercedes Garcia; Gomez-Fernandez, Juan C; Almela, Pilar

    2017-01-01

    Formulations incorporating nanoparticles (NPs) are widely used to prolong drug release. In this regard, poly(lactide-co-glicolide) (PLGA) is often used in their preparation due to its high degree of biocompatibility and biodegradability. In the present study, morphine HCl is incorporated in PLGA-NPs and different preparation alternatives are evaluated for their effects on the properties, stability and capacity of encapsulation. NPs were prepared by a double emulsion solvent diffusion-ammonium loading (DESD-AL) or double emulsion solvent diffusion-traditional (DESD-T) technique. NP morphology, size, zeta potential and encapsulation efficiency were investigated. In vitro studies were performed in phosphate buffer pH 7.4 at 37 ºC and deionized water at 4ºC. Adult male Swiss mice were used to study the pharmacokinetic behavior in vivo. Our results show that DESD-AL provides a higher level of morphine entrapment and that increasing the sonication time reduces the size but does not appreciably reduce the entrapment percentage. It was also observed that NP stability was greater when Pluronic F68 was used rather than PVA, and that in vitro assays provided better results with low concentrations of both stabilizers. Lyophilized NPs, after rehydration showed properties that were only slightly different from those of the untreated ones, with no sign of precipitation or aggregation. Finally, the obtained NPs enhanced morphine bioavailability. In conclusion, a useful method for encapsulating morphine in order to obtain an extended delivery period is described and its effects are compared with those of the free drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Phytochemical Screening and Antimicrobial Activity of Some Medicinal Plants Against Multi-drug Resistant Bacteria from Clinical Isolates

    PubMed Central

    Dahiya, Praveen; Purkayastha, Sharmishtha

    2012-01-01

    The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60%) inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%). The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml) were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus. PMID:23716873

  7. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  8. Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion

    DOE PAGES

    Chaudhari, Mangesh I.; Nair, Jijeesh R.; Pratt, Lawrence R.; ...

    2016-10-21

    Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate solvation free energies. The computed free energy for transfer of Li + to PC from water, based on electronicmore » structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li +/PF 6 - transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions.« less

  9. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  10. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  11. Solvent dynamics and electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Rasaiah, Jayendran C.; Zhu, Jianjun

    1994-02-01

    Recent experimental and theoretical studies of the influence of solvent dynamics on electron transfer (ET) reactions are discussed. It is seen that the survival probabilities of the reactants and products can be obtained as the solution to an integral equation using experimental or simulation data on the solvation dynamics. The theory developed for ET between thermally equilibrated reactants in solution, in which the ligand vibrations were treated classically, is extended to include quantum effects on the inner-shell ligand vibration and electron transfer from a nonequilibrium initial state prepared, for example, by laser excitation. This leads to a slight modification of the integral equation which is easily solved on a personal computer to provide results that can be directly compared with experiment. Analytic approximations to the solutions of the integral equation, ranging from a single exponential to multiexponential time dependence of the survival probabilities are discussed. The rate constant for the single exponential decay of the reactants interpolates between the thermal equilibrium rate constant kie (that is independent of solvent dynamics) and a diffusion controlled rate constant kid (determined by solvent dynamics) and also between the wide (A=0) and narrow (A=1) window limits dominated by inner-sphere ligand vibration and outer-sphere solvent reorganization respectively. The explicit dependence of the integral equation solutions on solvation dynamics S(t), the free energy of reaction ΔG0, the total reorganization energy λ and its partitioning between ligand vibration λq and solvent polarization fluctuations λ0, and the nature of the initial state should be useful in the analysis and design of ET experiments in different solvents.

  12. Skin penetration and kinetics of pristine fullerenes (C{sub 60}) topically exposed in industrial organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xin R., E-mail: xia@ncsu.ed; Monteiro-Riviere, Nancy A.; Riviere, Jim E.

    2010-01-01

    Pristine fullerenes (C{sub 60}) in different solvents will be used in many industrial and pharmaceutical manufacturing and derivatizing processes. This report explores the impact of solvents on skin penetration of C{sub 60} from different types of industrial solvents (toluene, cyclohexane, chloroform and mineral oil). Yorkshire weanling pigs (n = 3) were topically dosed with 500 muL of 200 mug/mL C{sub 60} in a given solvent for 24 h and re-dosed daily for 4 days to simulate the worst scenario in occupational exposures. The dose sites were tape-stripped and skin biopsies were taken after 26 tape-strips for quantitative analysis. When dosedmore » in toluene, cyclohexane or chloroform, pristine fullerenes penetrated deeply into the stratum corneum, the primary barrier of skin. More C{sub 60} was detected in the stratum corneum when dosed in chloroform compared to toluene or cyclohexane. Fullerenes were not detected in the skin when dosed in mineral oil. This is the first direct evidence of solvent effects on the skin penetration of pristine fullerenes. The penetration of C{sub 60} into the stratum corneum was verified using isolated stratum corneum in vitro; the solvent effects on the stratum corneum absorption of C{sub 60} were consistent with those observed in vivo. In vitro flow-through diffusion cell experiments were conducted in pig skin and fullerenes were not detected in the receptor solutions by 24 h. The limit of detection was 0.001 mug/mL of fullerenes in 2 mL of the receptor solutions.« less

  13. New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    NASA Astrophysics Data System (ADS)

    Hou, Zhenqing; Wei, Heng; Wang, Qian; Sun, Qian; Zhou, Chunxiao; Zhan, Chuanming; Tang, Xiaolong; Zhang, Qiqing

    2009-07-01

    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC-SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC-PLA particles prepared by classical method were used as comparison. The formulated MMC-SPC-PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA-MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA-MMC-SPC nanoparticles, and 74.1% for PLA-MMC particles. The IR analysis of MMC-SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method.

  14. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    PubMed

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  15. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review

    PubMed Central

    Miazek, Krystian; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Goffin, Dorothee

    2017-01-01

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted. PMID:28677659

  16. Solid-State Solvation and Enhanced Exciton Diffusion in Doped Organic Thin Films under Mechanical Pressure.

    PubMed

    Chang, Wendi; Akselrod, Gleb M; Bulović, Vladimir

    2015-04-28

    Direct modification of exciton energy has been previously used to optimize the operation of organic optoelectronic devices. One demonstrated method for exciton energy modification is through the use of the solvent dielectric effects in doped molecular films. To gain a deeper appreciation of the underlying physical mechanisms, in this work we test the solid-state solvation effect in molecular thin films under applied external pressure. We observe that external mechanical pressure increases dipole-dipole interactions, leading to shifts in the Frenkel exciton energy and enhancement of the time-resolved spectral red shift associated with the energy-transfer-mediated exciton diffusion. Measurements are performed on host:dopant molecular thin films, which show bathochromic shifts in photoluminescence (PL) under increasing pressure. This is in agreement with a simple solvation theory model of exciton energetics with a fitting parameter based on the mechanical properties of the host matrix material. We measure no significant change in exciton lifetime with increasing pressure, consistent with unchanged aggregation in molecular films under compression. However, we do observe an increase in exciton spectral thermalization rate for compressed molecular films, indicating enhanced exciton diffusion for increased dipole-dipole interactions under pressure. The results highlight the contrast between molecular energy landscapes obtained when dipole-dipole interactions are increased by the pressure technique versus the conventional dopant concentration variation methods, which can lead to extraneous effects such as aggregation at higher doping concentrations. The present work demonstrates the use of pressure-probing techniques in studying energy disorder and exciton dynamics in amorphous molecular thin films.

  17. Solid-State Solvation and Enhanced Exciton Diffusion in Doped Organic Thin Films under Mechanical Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Wendi; Akselrod, Gleb M.; Bulović, Vladimir

    2015-04-28

    Direct modification of exciton energy has been previously used to optimize the operation of organic optoelectronic devices. One demonstrated method for exciton energy modification is through the use of the solvent dielectric effects in doped molecular films. To gain a deeper appreciation of the underlying physical mechanisms, in this work we test the solid-state solvation effect in molecular thin films under applied external pressure. We observe that external mechanical pressure increases dipole–dipole interactions, leading to shifts in the Frenkel exciton energy and enhancement of the time-resolved spectral red shift associated with the energy-transfer-mediated exciton diffusion. Measurements are performed on host:dopantmore » molecular thin films, which show bathochromic shifts in photoluminescence (PL) under increasing pressure. This is in agreement with a simple solvation theory model of exciton energetics with a fitting parameter based on the mechanical properties of the host matrix material. We measure no significant change in exciton lifetime with increasing pressure, consistent with unchanged aggregation in molecular films under compression. However, we do observe an increase in exciton spectral thermalization rate for compressed molecular films, indicating enhanced exciton diffusion for increased dipole–dipole interactions under pressure. The results highlight the contrast between molecular energy landscapes obtained when dipole–dipole interactions are increased by the pressure technique versus the conventional dopant concentration variation methods, which can lead to extraneous effects such as aggregation at higher doping concentrations. The present work demonstrates the use of pressure-probing techniques in studying energy disorder and exciton dynamics in amorphous molecular thin films.« less

  18. Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations

    NASA Astrophysics Data System (ADS)

    Daniel, William Francis McKemie, Jr.

    Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (<105 Pa) must be developed. Single component systems do not suffer from compositional changes over time and display more stable performance in a wider variety of temperatures and humidity conditions. A solvent-free system also has the potential to be homogeneous which replaces the large energetic interactions with comparatively small architectural interaction parameters. If a solvent-free alternative to liquid-filled gels is to be created, we must first consider the fundamental barrier to softer elastomers, i.e. entanglements - intrinsic topological restrains which define a lower limit of modulus ( 105 Pa). These entanglements are determined by chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush-like polymer) to experimentally verify theoretical predictions of disentangled bottlebrush melts. By attaching well-defined side chains onto long polymer backbones, individual polymer strands are separated in space (similar to dilution with solvent) accompanied by a comparatively small increase in the rigidity of the strands. The end result is an architectural disentangled melt with an entanglement plateau modulus as much as three orders of magnitude lower than typical linear polymers and a broadly expanded potential for extensibility once crosslinked.

  19. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  20. Solvent signal suppression for high-resolution MAS-DNP

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël

    2017-05-01

    Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.

  1. Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.

    PubMed

    Gor, G Yu; Kuchma, A E

    2009-07-21

    This paper presents a theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution. We study systems where gas molecules completely dissociate in the solvent into two parts, thus making Sievert's solubility law valid. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux is steady we obtain a differential equation on bubble radius. Bubble dynamics equation is solved analytically for the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop. We also obtain conditions of diffusion flux steadiness. The fulfillment of these conditions is studied for the case of nucleation of water vapor bubbles in magmatic melts.

  2. An extensible framework for capturing solvent effects in computer generated kinetic models.

    PubMed

    Jalan, Amrit; West, Richard H; Green, William H

    2013-03-14

    Detailed kinetic models provide useful mechanistic insight into a chemical system. Manual construction of such models is laborious and error-prone, which has led to the development of automated methods for exploring chemical pathways. These methods rely on fast, high-throughput estimation of species thermochemistry and kinetic parameters. In this paper, we present a methodology for extending automatic mechanism generation to solution phase systems which requires estimation of solvent effects on reaction rates and equilibria. The linear solvation energy relationship (LSER) method of Abraham and co-workers is combined with Mintz correlations to estimate ΔG(solv)°(T) in over 30 solvents using solute descriptors estimated from group additivity. Simple corrections are found to be adequate for the treatment of radical sites, as suggested by comparison with known experimental data. The performance of scaled particle theory expressions for enthalpic-entropic decomposition of ΔG(solv)°(T) is also presented along with the associated computational issues. Similar high-throughput methods for solvent effects on free-radical kinetics are only available for a handful of reactions due to lack of reliable experimental data, and continuum dielectric calculations offer an alternative method for their estimation. For illustration, we model liquid phase oxidation of tetralin in different solvents computing the solvent dependence for ROO• + ROO• and ROO• + solvent reactions using polarizable continuum quantum chemistry methods. The resulting kinetic models show an increase in oxidation rate with solvent polarity, consistent with experiment. Further work needed to make this approach more generally useful is outlined.

  3. Solvent Effects on Protein Folding/Unfolding

    NASA Astrophysics Data System (ADS)

    García, A. E.; Hillson, N.; Onuchic, J. N.

    Pressure effects on the hydrophobic potential of mean force led Hummer et al. to postulate a model for pressure denaturation of proteins in which denaturation occurs by means of water penetration into the protein interior, rather than by exposing the protein hydrophobic core to the solvent --- commonly used to describe temperature denaturation. We study the effects of pressure in protein folding/unfolding kinetics in an off-lattice minimalist model of a protein in which pressure effects have been incorporated by means of the pair-wise potential of mean force of hydrophobic groups in water. We show that pressure slows down the kinetics of folding by decreasing the reconfigurational diffusion coefficient and moves the location of the folding transition state.

  4. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries.

    PubMed

    Yang, Yang; Chen, Dingqiong; Liu, Bo; Zhao, Jinbao

    2015-04-15

    A binder-free silicon (Si) based electrode for lithium-ion battery was fabricated in an organic solvent through one-step electrophoretic deposition (EPD). The nanosized Si and acetylene black (AB) particles were bonded tightly together to form a homogeneous co-deposited film with 3D porous structure through the EPD process. The 3D porous structure provides buffer spaces to alleviate the mechanical stress due to silicon volume change during the cycling and improves lithium-ion conductivity by shortening ion diffusion length and better ion conducting pathway. The electrode prepared with 5 s deposition duration shows the best cycling performance among electrodes fabricated by EPD method, and thus, it was selected to be compared with the silicon electrode prepared by the conventional method. Our results demonstrate that the Si nanoparticle electrode prepared through EPD exhibits smaller cycling capacity decay rate and better rate capability than the electrode prepared by the conventional method.

  5. New valve and bonding designs for microfluidic biochips containing proteins.

    PubMed

    Lu, Chunmeng; Xie, Yubing; Yang, Yong; Cheng, Mark M-C; Koh, Chee-Guan; Bai, Yunling; Lee, L James; Juang, Yi-Je

    2007-02-01

    Two major concerns in the design and fabrication of microfluidic biochips are protein binding on the channel surface and protein denaturing during device assembly. In this paper, we describe new methods to solve these problems. A "fishbone" microvalve design based on the concept of superhydrophobicity was developed to replace the capillary valve in applications where the chip surface requires protein blocking to prevent nonspecific binding. Our experimental results show that the valve functions well in a CD-like ELISA device. The packaging of biochips containing pre-loaded proteins is also a challenging task since conventional sealing methods often require the use of high temperatures, electric voltages, or organic solvents that are detrimental to the protein activity. Using CO2 gas to enhance the diffusion of polymer molecules near the device surface can result in good bonding at low temperatures and low pressure. This bonding method has little influence on the activity of the pre-loaded proteins after bonding.

  6. Exfoliation of non-oxidized graphene flakes for scalable conductive film.

    PubMed

    Park, Kwang Hyun; Kim, Bo Hyun; Song, Sung Ho; Kwon, Jiyoung; Kong, Byung Seon; Kang, Kisuk; Jeon, Seokwoo

    2012-06-13

    The increasing demand for graphene has required a new route for its mass production without causing extreme damages. Here we demonstrate a simple and cost-effective intercalation based exfoliation method for preparing high quality graphene flakes, which form a stable dispersion in organic solvents without any functionalization and surfactant. Successful intercalation of alkali metal between graphite interlayers through liquid-state diffusion from ternary KCl-NaCl-ZnCl(2) eutectic system is confirmed by X-ray diffraction and X-ray photoelectric spectroscopy. Chemical composition and morphology analyses prove that the graphene flakes preserve their intrinsic properties without any degradation. The graphene flakes remain dispersed in a mixture of pyridine and salts for more than 6 months. We apply these results to produce transparent conducting (∼930 Ω/□ at ∼75% transmission) graphene films using the modified Langmuir-Blodgett method. The overall results suggest that our method can be a scalable (>1 g/batch) and economical route for the synthesis of nonoxidized graphene flakes.

  7. Method of analysis of polymerizable monomeric species in a complex mixture

    DOEpatents

    Hermes, Robert E

    2014-03-18

    Method of selective quantitation of a polymerizable monomeric species in a well spacer fluid, said method comprising the steps of adding at least one solvent having a refractive index of less than about 1.33 to a sample of the complex mixture to produce a solvent phase, and measuring the refractive index of the solvent phase.

  8. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    PubMed

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (X DMSO ), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing X DMSO (≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Extended Hansen solubility approach: naphthalene in individual solvents.

    PubMed

    Martin, A; Wu, P L; Adjei, A; Beerbower, A; Prausnitz, J M

    1981-11-01

    A multiple regression method using Hansen partial solubility parameters, delta D, delta p, and delta H, was used to reproduce the solubilities of naphthalene in pure polar and nonpolar solvents and to predict its solubility in untested solvents. The method, called the extended Hansen approach, was compared with the extended Hildebrand solubility approach and the universal-functional-group-activity-coefficient (UNIFAC) method. The Hildebrand regular solution theory was also used to calculate naphthalene solubility. Naphthalene, an aromatic molecule having no side chains or functional groups, is "well-behaved', i.e., its solubility in active solvents known to interact with drug molecules is fairly regular. Because of its simplicity, naphthalene is a suitable solute with which to initiate the difficult study of solubility phenomena. The three methods tested (Hildebrand regular solution theory was introduced only for comparison of solubilities in regular solution) yielded similar results, reproducing naphthalene solubilities within approximately 30% of literature values. In some cases, however, the error was considerably greater. The UNIFAC calculation is superior in that it requires only the solute's heat of fusion, the melting point, and a knowledge of chemical structures of solute and solvent. The extended Hansen and extended Hildebrand methods need experimental solubility data on which to carry out regression analysis. The extended Hansen approach was the method of second choice because of its adaptability to solutes and solvents from various classes. Sample calculations are included to illustrate methods of predicting solubilities in untested solvents at various temperatures. The UNIFAC method was successful in this regard.

  10. Microscale solution manipulation using photopolymerized hydrogel membranes and induced charge electroosmosis micropumps

    NASA Astrophysics Data System (ADS)

    Paustian, Joel Scott

    Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.

  11. Connecting Free Energy Surfaces in Implicit and Explicit Solvent: an Efficient Method to Compute Conformational and Solvation Free Energies

    PubMed Central

    Deng, Nanjie; Zhang, Bin W.; Levy, Ronald M.

    2015-01-01

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle. PMID:26236174

  12. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    PubMed

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  13. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    DOEpatents

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  14. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A [Aberdeen, ID; Law, Jack D [Pocatello, ID; Herbst, R Scott [Idaho Falls, ID; Romanovskiy, Valeriy N [St. Petersburg, RU; Smirnov, Igor V [St.-Petersburg, RU; Babain, Vasily A [St-Petersburg, RU; Esimantovski, Vyatcheslav M [St-Petersburg, RU

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  15. Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions.

    PubMed

    Dantan, N; Frenzel, W; Küppers, S

    2000-05-31

    Flow injection methods utilising the Karl Fischer (KF) reaction with spectrophotometric and potentiometric detection are described for the determination of the trace water content in various organic solvents. Optimisation of the methods resulted in an accessible (linear) working range of 0.01-0.2% water for many solvents studied with a typical precision of 1-2% R.S.D. Only 50 mul of organic solvent was injected and the sampling frequency was about 120 samples per h. Since the slopes of the calibration curves were different for different solvents appropriate calibration was required. Problems associated with spectrophotometric detection and caused by refractive index changes were pointed out and a nested-loop configuration was proposed to overcome this kind of interference. The potentiometric method with a novel flow-through detector cell was shown to surpass the performance of spectrophotometric detection in any respect. The characteristics of the procedures developed made them well applicable for on-line monitoring of technical solvent distillations in an industrial plant.

  16. Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms

    PubMed Central

    Wagoner, Jason A.; Baker, Nathan A.

    2006-01-01

    Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675

  17. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  18. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi

    Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.

  20. Extending the solvent-free MALDI sample preparation method.

    PubMed

    Hanton, Scott D; Parees, David M

    2005-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data can be used to determine the polymer average molecular weights, repeat units, and end groups. One of the key issues in traditional MALDI sample preparation is making good solutions of the analyte and the matrix. Solvent-free sample preparation methods have been developed to address these issues. Previous results of solvent-free or dry prepared samples show some advantages over traditional wet sample preparation methods. Although the results of the published solvent-free sample preparation methods produced excellent mass spectra, we found the method to be very time-consuming, with significant tool cleaning, which presents a significant possibility of cross contamination. To address these issues, we developed an extension of the solvent-free method that replaces the mortar and pestle grinding with ball milling the sample in a glass vial with two small steel balls. This new method generates mass spectra with equal quality of the previous methods, but has significant advantages in productivity, eliminates cross contamination, and is applicable to liquid and soft or waxy analytes.

  1. Supercritical Fluid Technologies to Fabricate Proliposomes.

    PubMed

    Falconer, James R; Svirskis, Darren; Adil, Ali A; Wu, Zimei

    2015-01-01

    Proliposomes are stable drug carrier systems designed to form liposomes upon addition of an aqueous phase. In this review, current trends in the use of supercritical fluid (SCF) technologies to prepare proliposomes are discussed. SCF methods are used in pharmaceutical research and industry to address limitations associated with conventional methods of pro/liposome fabrication. The SCF solvent methods of proliposome preparation are eco-friendly (known as green technology) and, along with the SCF anti-solvent methods, could be advantageous over conventional methods; enabling better design of particle morphology (size and shape). The major hurdles of SCF methods include poor scalability to industrial manufacturing which may result in variable particle characteristics. In the case of SCF anti-solvent methods, another hurdle is the reliance on organic solvents. However, the amount of solvent required is typically less than that used by the conventional methods. Another hurdle is that most of the SCF methods used have complicated manufacturing processes, although once the setup has been completed, SCF technologies offer a single-step process in the preparation of proliposomes compared to the multiple steps required by many other methods. Furthermore, there is limited research into how proliposomes will be converted into liposomes for the end-user, and how such a product can be prepared reproducibly in terms of vesicle size and drug loading. These hurdles must be overcome and with more research, SCF methods, especially where the SCF acts as a solvent, have the potential to offer a strong alternative to the conventional methods to prepare proliposomes.

  2. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  3. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  4. Method for removing impurities from an impurity-containing fluid stream

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.

    2010-04-06

    A method of removing at least one polar component from a fluid stream. The method comprises providing a fluid stream comprising at least one nonpolar component and at least one polar component. The fluid stream is contacted with a supercritical solvent to remove the at least one polar component. The at least one nonpolar component may be a fat or oil and the at least one polar component may be water, dirt, detergents, or mixtures thereof. The supercritical solvent may decrease solubility of the at least one polar component in the fluid stream. The supercritical solvent may function as a solvent or as a gas antisolvent. The supercritical solvent may dissolve the nonpolar components of the fluid stream, such as fats or oils, while the polar components may be substantially insoluble. Alternatively, the supercritical solvent may be used to increase the nonpolarity of the fluid stream.

  5. Characterization of an organic phase peroxide biosensor based on horseradish peroxidase immobilized in Eastman AQ.

    PubMed

    Konash, Anastassija; Magner, Edmond

    2006-07-15

    Due to their frequent occurrence in food, cosmetics and pharmaceutical products, and their poor solubility in water, the detection of peroxides in organic solvents has aroused significant interest. For diagnostics or on-site testing, a fast and specific experimental approach is required. Although aqueous peroxide biosensors are well known, they are usually not suitable for nonaqueous applications due to their instability. Here we describe an organic phase biosensor for hydrogen peroxide based on horseradish peroxidase immobilized in an Eastman AQ 55 polymer matrix. Rotating disc amperometry was used to examine the effect of the solvent properties, the amount and pH of added buffer, the concentration of peroxide and ferrocene dimethanol, and the amount of Eastman AQ 55 and of enzyme on the response of the biosensor to hydrogen peroxide. The response of the biosensor was limited by diffusion. Linear responses (with detection limits to hydrogen peroxide given in parentheses) were obtained in methanol (1.2 microM), ethanol (0.6 microM), 1-propanol (2.8 microM), acetone (1.4 microM), acetonitrile (2.6 microM), and ethylene glycol (13.6 microM). The rate of diffusion of ferrocene dimethanol was more constrained than the rate of diffusion of hydrogen peroxide, resulting in a comparatively narrow linear range. The main advantages of the sensor are its ease of use and a high degree of reproducibility, together with good operational and storage stability.

  6. Self-healing of optical functions by molecular metabolism in a swollen elastomer

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Nishimura, Tatsuya; Sakiyama, Kohei; Inagaki, Sota

    2012-12-01

    Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.

  7. Antimicrobial properties of black grape (Vitis vinifera L.) peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds.

    PubMed

    Yadav, Devbrat; Kumar, Arvind; Kumar, Pramod; Mishra, Diwaker

    2015-01-01

    Black grape peel possesses a substantial amount of polyphenolic antimicrobial compounds that can be used for controlling the growth of pathogenic microorganisms. The purpose of this study was to assess antibacterial and antifungal activity of black grape peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds, respectively. Peel of grape was subjected to polyphenolic extraction using different solvents viz., water, ethanol, acetone, and methanol. Antibiotic-resistant strains of Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Salmonella typhimurium, and Escherichia coli were screened for the antibacterial activity of different grape extracts. Antibacterial activity was analyzed using agar well diffusion method. Penicillium chrysogenum, Penicillium expansum, Aspergillus niger and Aspergillus versicolor were screened for the antifungal activity. Antifungal activity was determined by counting nongerminated spores in the presence of peel extracts. As compared to other solvent extracts, methanol extracts possessed high antibacterial and antifungal activity. S. typhimurium and E. coli showed complete resistance against antibacterial action at screened concentrations of grape peel extracts. Maximum zone of inhibition was found in case of S. aureus, i.e., 22 mm followed by E. faecalis and E. aerogenes, i.e., 18 and 21 mm, respectively, at 1080 mg tannic acid equivalent (TAE)/ml. The maximum and minimum percent of growth inhibition was shown by P. expansum and A. niger as 73% and 15% at 1080 TAE/ml concentration of grape peel extract, respectively. Except S. typhimurium and E. coli, growth of all bacterial and mold species were found to be significantly (P < 0.05) inhibited by all the solvent extracts.

  8. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Kevin

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  9. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Kevin; ...

    2017-10-24

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  10. Solvent Flux Method (SFM): A Case Study of Water Access to Candida antarctica Lipase B.

    PubMed

    Benson, Sven P; Pleiss, Jürgen

    2014-11-11

    The solvent flux method (SFM) was developed to comprehensively characterize the influx of solvent molecules from the solvent environment into the active site of a protein in the framework of molecular dynamics simulations. This was achieved by introducing a solvent concentration gradient as well as partially reorienting and rescaling the velocity vector of all solvent molecules contained within a spherical volume enclosing the protein, thus inducing an accelerated solvent influx toward the active site. In addition to the detection of solvent access pathway within the protein structure, it is hereby possible to identify potential amino acid positions relevant to solvent-related enzyme engineering with high statistical significance. The method is particularly aimed at improving the reverse hydrolysis reaction rates in nonaqueous media. Candida antarctica lipase B (CALB) binds to a triglyceride-water interface with its substrate entrance channel oriented toward the hydrophobic substrate interface. The lipase-triglyceride-water system served as a model system for SFM to evaluate the influx of water molecules to the active site. As a proof of principle for SFM, a previously known water access pathway in CALB was identified as the primary water channel. In addition, a secondary water channel and two pathways for water access which contribute to water leakage between the protein and the triglyceride-water interface were identified.

  11. Apparent Activation Energies Associated with Protein Dynamics on Hydrophobic and Hydrophilic Surfaces

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Schwartz, Daniel K.

    2012-01-01

    With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions. PMID:22713578

  12. Anisotropic Brownian motion in ordered phases of DNA fragments.

    PubMed

    Dobrindt, J; Rodrigo Teixeira da Silva, E; Alves, C; Oliveira, C L P; Nallet, F; Andreoli de Oliveira, E; Navailles, L

    2012-01-01

    Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.

  13. Crystallization and preliminary X-ray analysis of 2,3-diketo-5-methylthiopentyl-1-phosphate enolase from Bacillus subtilis

    PubMed Central

    Tamura, Haruka; Ashida, Hiroki; Koga, Shogo; Saito, Yohtaro; Yadani, Tomonori; Kai, Yasushi; Inoue, Tsuyoshi; Yokota, Akiho; Matsumura, Hiroyoshi

    2009-01-01

    2,3-Diketo-5-methylthiopentyl-1-phosphate enolase (DK-MTP-1P enolase) from Bacillus subtilis was crystallized using the hanging-drop vapour-diffusion method. Crystals grew using PEG 3350 as the precipitant at 293 K. The crystals diffracted to 2.3 Å resolution at 100 K using synchrotron radiation and were found to belong to the monoclinic space group P21, with unit-cell parameters a = 79.3, b = 91.5, c = 107.0 Å, β = 90.8°. The asymmetric unit contained four molecules of DK-MTP-1P enolase, with a V M value of 2.2 Å3 Da−1 and a solvent content of 43%. PMID:19194007

  14. Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy

    PubMed Central

    Zhang, Xing-guo; Miao, Jing; Li, Min-wei; Jiang, Sai-ping; Hu, Fu-qiang; Du, Yong-zhong

    2008-01-01

    Herein, solid lipid nanoparticles (SLN) were proposed as a new drug delivery system for adefovir dipivoxil (ADV). The octadecylamine-fluorescein isothiocynate (ODA-FITC) was synthesized and used as a fluorescence maker to be incorporated into SLN to investigate the time-dependent cellular uptake of SLN by HepG2.2.15. The SLN of monostearin with ODA-FITC or ADV were prepared by solvent diffusion method in an aqueous system. About 15 wt% drug entrapment efficiency (EE) and 3 wt% drug loading (DL) could be reached in SLN loading ADV. Comparing with free ADV, the inhibitory effects of ADV loaded in SLN on hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B virus (HBV) DNA levels in vitro were significantly enhanced. PMID:18543406

  15. Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.

    PubMed

    Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P

    2012-03-01

    The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Analysis of biomolecular solvation sites by 3D-RISM theory.

    PubMed

    Sindhikara, Daniel J; Hirata, Fumio

    2013-06-06

    We derive, implement, and apply equilibrium solvation site analysis for biomolecules. Our method utilizes 3D-RISM calculations to quickly obtain equilibrium solvent distributions without either necessity of simulation or limits of solvent sampling. Our analysis of these distributions extracts highest likelihood poses of solvent as well as localized entropies, enthalpies, and solvation free energies. We demonstrate our method on a structure of HIV-1 protease where excellent structural and thermodynamic data are available for comparison. Our results, obtained within minutes, show systematic agreement with available experimental data. Further, our results are in good agreement with established simulation-based solvent analysis methods. This method can be used not only for visual analysis of active site solvation but also for virtual screening methods and experimental refinement.

  17. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles

    NASA Astrophysics Data System (ADS)

    Banchio, Adolfo J.; Heinen, Marco; Holmqvist, Peter; Nägele, Gerhard

    2018-04-01

    We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in concentrated suspensions of charge-stabilized colloidal spheres. In theory and simulation, the spheres are assumed to interact directly by a hard-core plus screened Coulomb effective pair potential. The intermediate scattering function, fc(q, t), is calculated by elaborate accelerated Stokesian dynamics (ASD) simulations for Brownian systems where many-particle hydrodynamic interactions (HIs) are fully accounted for, using a novel extrapolation scheme to a macroscopically large system size valid for all correlation times. The study spans the correlation time range from the colloidal short-time to the long-time regime. Additionally, Brownian Dynamics (BD) simulation and mode-coupling theory (MCT) results of fc(q, t) are generated where HIs are neglected. Using these results, the influence of HIs on collective and self-diffusion and the accuracy of the MCT method are quantified. It is shown that HIs enhance collective and self-diffusion at intermediate and long times. At short times self-diffusion, and for wavenumbers outside the structure factor peak region also collective diffusion, are slowed down by HIs. MCT significantly overestimates the slowing influence of dynamic particle caging. The dynamic scattering functions obtained in the ASD simulations are in overall good agreement with our dynamic light scattering (DLS) results for a concentration series of charged silica spheres in an organic solvent mixture, in the experimental time window and wavenumber range. From the simulation data for the time derivative of the width function associated with fc(q, t), there is indication of long-time exponential decay of fc(q, t), for wavenumbers around the location of the static structure factor principal peak. The experimental scattering functions in the probed time range are consistent with a time-wavenumber factorization scaling behavior of fc(q, t) that was first reported by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for suspensions of hard spheres. Our BD simulation and MCT results predict a significant violation of exact factorization scaling which, however, is approximately restored according to the ASD results when HIs are accounted for, consistent with the experimental findings for fc(q, t). Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function, fs(q, t), and its non-Gaussian parameter α2(t) and for the particle mean squared displacement W(t) and its time derivative. Since self-diffusion properties are not assessed in standard DLS measurements, a method to deduce W(t) approximately from fc(q, t) is theoretically validated.

  19. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  20. Measuring internal friction of an ultrafast-folding protein.

    PubMed

    Cellmer, Troy; Henry, Eric R; Hofrichter, James; Eaton, William A

    2008-11-25

    Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing temperature, suggesting a shift in the transition state along the reaction coordinate toward the native state with more compact structures, and therefore, a smaller diffusion coefficient due to increased landscape roughness. Fitting the data with an Ising-like model yields a relatively small position dependence for the diffusion coefficient. This finding is consistent with the excellent correlation found between experimental and calculated folding rates based on free energy barrier heights using the same diffusion coefficient for every protein.

  1. Transient swelling behavior and drug delivery from a dissolving film deploying anti-HIV microbicide

    NASA Astrophysics Data System (ADS)

    Tasoglu, Savas; Katz, David F.; Szeri, Andrew J.

    2010-11-01

    Despite more than two decades of HIV vaccine research, there is still no efficacious HIV vaccine. Very recently, a research group has shown that a microbicide gel formulation of antiretroviral drug Tenofovir, significantly inhibits HIV transmission to women [1]. However, there is a widespread agreement that more effective and diverse drug delivery vehicles must be developed. In this setting, there is now great interest in developing different delivery vehicles such as vaginal rings, gels, and films. Here, we develop a model for transient fluid uptake and swelling behavior, and subsequent dissolution and drug deployment from a film containing anti-HIV microbicide. In the model, the polymer structural relaxation via water uptake is assumed to follow first order kinetics. In the case of a film loaded with an osmotically active solute, the kinetic equation is modified to account for the osmotic effect. The transport rate of solvent and solute within the matrix is characterized by a diffusion equation. After the matrix is relaxed to a specified concentration of solvent, lubrication theory and convective-diffusive transport are employed for flow of the liquefied matrix and drug dispersion respectively. [1] Karim, et al., Science, 2010.

  2. Effect of extraction method on the yield of furanocoumarins from fruits of Archangelica officinalis Hoffm.

    PubMed

    Waksmundzka-Hajnos, M; Petruczynik, A; Dragan, A; Wianowska, D; Dawidowicz, A L

    2004-01-01

    Optimal conditions for the extraction and analysis of furanocoumarins from fruits of Archangelica officinalis Hoffm. have been determined. The following extraction methods were used: exhaustive extraction in a Soxhlet apparatus, ultrasonication at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed systems, and accelerated solvent extraction (ASE). In most cases the yields of furanocoumarins were highest using the ASE method. The effects of extracting solvent, temperature and time of extraction using this method were investigated. The highest yield of furanocoumarins by ASE was obtained with methanol at 100-130 degrees C for 10 min. The extraction yields of furanocoumarins from plant material by ultrasonication at 60 degrees C and microwave-assisted solvent extraction in an open system were comparable to the extraction yields obtained in the time- and solvent-consuming exhaustive process involving the Soxhlet apparatus.

  3. A novel organic solvent-based coupling method for the preparation of covalently immobilized proteins on gold.

    PubMed Central

    Parker, M. C.; Patel, N.; Davies, M. C.; Roberts, C. J.; Tendler, S. J.; Williams, P. M.

    1996-01-01

    A novel organic solvent-based coupling method has been developed for the covalent immobilization of biological material to gold surfaces. The method employs the polar organic solvent anhydrous 2,2,2-trifluoroethanol as the reaction medium and involves dissolution of the protein (catalase) in the solvent allowing protein coupling to proceed under basic conditions in a dry organic environment. The advantage of this method is that protein attachment is favored over hydrolysis of the coupling reagent. We have shown qualitatively and quantitatively that following attachment to the gold surface a significant proportion of the enzyme catalase remains catalytically active (at least 20-31%). PMID:8931151

  4. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    PubMed

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  5. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  6. Solute-solvent contact by intermolecular cross relaxation. I. The nature of the water-hydrophobic interface.

    PubMed

    Nordstierna, Lars; Yushmanov, Pavel V; Furó, István

    2006-08-21

    Intermolecular cross-relaxation rates between solute and solvent were measured by {1H} 19F nuclear magnetic resonance experiments in aqueous molecular solutions of ammonium perfluoro-octanoate and sodium trifluoroacetate. The experiments performed at three different magnetic fields provide frequency-dependent cross-relaxation rates which demonstrate clearly the lack of extreme narrowing for nuclear spin relaxation by diffusionally modulated intermolecular interactions. Supplemented by suitable intramolecular cross-relaxation, longitudinal relaxation, and self-diffusion data, the obtained cross-relaxation rates are evaluated within the framework of recent relaxation models and provide information about the hydrophobic hydration. In particular, water dynamics around the trifluoromethyl group in ammonium perfluoro-octanoate are more retarded than that in the smaller trifluoroacetate.

  7. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  8. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; Delaurentiis, Gary M [Jamestown, CA

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  9. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  10. Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films

    NASA Astrophysics Data System (ADS)

    Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn

    2015-03-01

    Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.

  11. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  12. Modeling of the phase equilibria of polystyrene in methylcyclohexane with semi-empirical quantum mechanical methods I.

    PubMed

    Wilczura-Wachnik, Hanna; Jónsdóttir, Svava Osk

    2003-04-01

    A method for calculating interaction parameters traditionally used in phase-equilibrium computations in low-molecular systems has been extended for the prediction of solvent activities of aromatic polymer solutions (polystyrene+methylcyclohexane). Using ethylbenzene as a model compound for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum chemical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction energies are determined for three molecular pairs, the solvent and the model molecule, two solvent molecules and two model molecules, and used to calculated UNIQUAC interaction parameters, a(ij) and a(ji). Using these parameters, the solvent activities of the polystyrene 90,000 amu+methylcyclohexane system, and the total vapor pressures of the methylcyclohexane+ethylbenzene system were calculated. The latter system was compared to experimental data, giving qualitative agreement. Figure Solvent activities for the methylcylcohexane(1)+polystyrene(2) system at 316 K. Parameters aij (blue line) obtained with the AM1 method; parameters aij (pink line) from VLE data for the ethylbenzene+methylcyclohexane system. The abscissa is the polymer weight fraction defined as y2(x1)=(1mx1)M2/[x1M1+(1mx1)M2], where x1 is the solvent mole fraction and Mi are the molecular weights of the components.

  13. Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors.

    PubMed

    Li, Meili; Sun, Guoying; Yin, Pingping; Ruan, Changping; Ai, Kelong

    2013-11-13

    Vanadium pentoxide (V2O5) has attracted much attention for energy storage application because of its high Faradaic activity and stable crystal structure, which make it a promising electrode material for supercapacitors. However, the low electronic conductivity and small lithium-ion diffusion coefficient of V2O5 limit its practical applications. To overcome these limitations, a facile and efficient method is here demonstrated for the fabrication of V2O5/reduced graphene oxide (rGO) nanocomposites as electrode materials for supercapacitors. With this method, the reduction of graphene oxide can be achieved in a cost-effective and environmentally friendly solvent, without the addition of any other toxic reducing agent. Importantly, this solvent can control the formation of the uniform rodlike V2O5 nanocrystals on the surface of rGO. Compared to pure V2O5 microspheres, the V2O5/rGO nanocomposites exhibited a higher specific capacitance of 537 F g(-1) at a current density of 1 A g(-1) in neutral aqueous electrolytes, a higher energy density of 74.58 Wh kg(-1) at a power density of 500 W kg(-1), and better stability even after 1000 charge/discharge cycles. Their excellent performances can be attributed to the synergistic effect of rGO and rodlike V2O5 nanocrystals. Such impressive results may promote new opportunities for these electrode materials in high-energy-density storage systems.

  14. Measuring the penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal Raman spectroscopy.

    PubMed

    Bonnist, E Y M; Gorce, J-P; Mackay, C; Pendlington, R U; Pudney, P D A

    2011-01-01

    Among the factors determining the propensity of a chemical to induce skin allergy are the penetration into skin and the kinetics of ingress. Confocal Raman spectroscopy can provide such information as it enables direct, spatially resolved measurement of the skin and of any chemical uptake. Several chemicals can be monitored at once, and the method is non-destructive (light in, light out) so that the skin can be kept intact for repeated and continuous measurement. Raman spectroscopy was used to follow the penetration of 2.5 weight percent trans-cinnamaldehyde and its delivery vehicle into skin in vitro, up to 24 h after topical application. A custom-made Bronaugh-type diffusion cell that was suitable for the Raman experiment was used. Four different vehicles were tested: absolute ethanol, 50% aqueous ethanol, propylene glycol and acetone:olive oil (4:1); these gave different time scales for cinnamaldehyde penetration. The acetone:olive oil vehicle phase-separated on the skin surface and the cinnamaldehyde penetrated at different rates in the different phases, which may be of significance since this is the preferred solvent for the local lymph node assay (an in vivo animal test used to generate hazard information on skin sensitization). In conclusion, the Raman method gives valuable detailed information on chemical ingress, clearly differentiates between different delivery rates and allows solvent monitoring alongside the chemical of interest. Copyright © 2011 S. Karger AG, Basel.

  15. Evaluation of antibacterial, antioxidant and nootropic activities of Tiliacora racemosa Colebr. leaves: In vitro and in vivo approach.

    PubMed

    T, Vivek Kumar; M, Vishalakshi; M, Gangaraju; Das, Parijat; Roy, Pratiti; Banerjee, Anindita; Dutta Gupta, Sayan

    2017-02-01

    The antibacterial and antioxidant potential of Tiliacora racemosa leaf extracts in various solvents (methanolic, hexane, chloroform and ethyl acetate) was determined. Additionally, the presence of bisbenzylisoquinoline alkaloids in the plant prompted us to evaluate the nootropic activity of the methanolic extract in mice. Further, we seek to verify the nootropic effect by examining the anticholinesterase inhibition potential of the methanolic extract. The leaf extracts in various solvents were evaluated for their antibacterial and antioxidant activity by agar diffusion technique and α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method, respectively. The ex vivo acetylcholine esterase inhibitory activity of the methanolic extract was carried out by Ellman's method in male Wistar rats. The nootropic capacity of the methanolic extract was examined in Swiss albino mice by utilizing the diazepam induced acute amnesic model. The chloroform/n-hexane and ethyl acetate fraction showed promising antioxidant and antibacterial (Gram positive and Gram negative bacteria) property, respectively. The methanolic extract was able to diminish the amnesic effect induced by diazepam (1mg/kg i.p.) in mice. The extract also showed significant acetyl cholinesterase inhibition in rats. The findings prove that the memory enhancing capability is due to increased acetyl choline level at the nerve endings. The strong antioxidant nature and potential nootropic activity shown by the extract suggests its future usage in the treatment of neurodegenerative disorders such as dementia and Alzheimer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Investigation of Cleanliness Verification Techniques for Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Fritzemeier, Marilyn L.; Skowronski, Raymund P.

    1994-01-01

    Oxidizer propellant systems for liquid-fueled rocket engines must meet stringent cleanliness requirements for particulate and nonvolatile residue. These requirements were established to limit residual contaminants which could block small orifices or ignite in the oxidizer system during engine operation. Limiting organic residues in high pressure oxygen systems, such as in the Space Shuttle Main Engine (SSME), is particularly important. The current method of cleanliness verification for the SSME uses an organic solvent flush of the critical hardware surfaces. The solvent is filtered and analyzed for particulate matter followed by gravimetric determination of the nonvolatile residue (NVR) content of the filtered solvent. The organic solvents currently specified for use (1, 1, 1-trichloroethane and CFC-113) are ozone-depleting chemicals slated for elimination by December 1995. A test program is in progress to evaluate alternative methods for cleanliness verification that do not require the use of ozone-depleting chemicals and that minimize or eliminate the use of solvents regulated as hazardous air pollutants or smog precursors. Initial results from the laboratory test program to evaluate aqueous-based methods and organic solvent flush methods for NVR verification are provided and compared with results obtained using the current method. Evaluation of the alternative methods was conducted using a range of contaminants encountered in the manufacture of rocket engine hardware.

  17. Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory.

    PubMed

    Daschakraborty, Snehasis; Biswas, Ranjit

    2016-03-14

    A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when experimental estimates for the effective rotational volume (V(eff)(dip)) are used as inputs. The fraction, V(eff)(dip)/V(mol)(dip), sharply decreases from ∼1 at pure dipolar solvent to ∼0.01 at neat IL, reflecting a dramatic crossover from viscosity-coupled hydrodynamic angular diffusion at low IL mole fractions to orientational relaxation predominantly via large angle jumps at high x(IL). Similar results are obtained on applying the present theory to the aqueous solution of an electrolyte guanidinium chloride (GdmCl) having a permanent dipole moment associated with the cation, Gdm(+).

  18. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry

    DOE PAGES

    Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; ...

    2015-11-17

    The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF 6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC) n(DMC) m–Li+ and (EC) n(DMC) m–LiPF 6 solvates in the gas-phase and for an implicit solvent (asmore » a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC 4)–Li+ and (EC) 3–LiPF 6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF 6 mixed solvent electrolyte was studied using the BOMD simulations.« less

  19. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE PAGES

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  20. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  1. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  2. Method for destroying halocarbon compositions using a critical solvent

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Janikowski, Stuart K.

    2006-01-10

    A method for destroying halocarbons. Halocarbon materials are reacted in a dehalogenation process wherein they are combined with a solvent in the presence of a catalyst. A hydrogen-containing solvent is preferred which functions as both a solvating agent and hydrogen donor. To augment the hydrogen donation capacity of the solvent if needed (or when non-hydrogen-containing solvents are used), a supplemental hydrogen donor composition may be employed. In operation, at least one of the temperature and pressure of the solvent is maintained near, at, or above a critical level. For example, the solvent may be in (1) a supercritical state; (2) a state where one of the temperature or pressure thereof is at or above critical; or (3) a state where at least one of the temperature and pressure thereof is near-critical. This system provides numerous benefits including improved reaction rates, efficiency, and versatility.

  3. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy.

    PubMed

    Brookes, Jennifer F; Slenkamp, Karla M; Lynch, Michael S; Khalil, Munira

    2013-07-25

    The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.

  4. Probing Selection Mechanism of the Most Favorable Conformation of a Dipeptide in Chaotropic and Kosmotropic Solution.

    PubMed

    Jas, Gouri S; Middaugh, C Russell; Kuczera, Krzysztof

    2016-07-21

    Chaotropes like urea and guanidinium chloride (GdmCl) tend to destabilize, and kosmotropes like proline tend to stabilize folded structures of peptides and proteins. Here, we combine fluorescence anisotropy decay measurements and molecular dynamics simulations to gain a microscopic understanding of the molecular mechanism for shifting conformational preferences in aqueous, GdmCl, urea, and proline solutions of a simple model dipeptide, N-acetyl-tryptophan-amide (NATA). Measured anisotropy decay of NATA as a function of temperature, pH, and cosolvent concentrations showed reorientations moderately slower in GdmCl and urea and substantially slower in proline compared to those of aqueous environment. A small change in pH significantly slows orientation time in water and GdmCl and less markedly in urea. Computationally, we use molecular dynamics with dihedral restraints to separately analyze the motions and interactions of the representative NATA conformers in the four different solvent environments. This novel analysis provides a dissection of the observed overall diffusion rates into contributions from individual dipeptide conformations. The variation of rotational diffusion rates with conformation are quite large. Population-weighted averaging or using properties of the major cluster reproduces the dynamical features of the full unrestrained dynamics. Additionally, we correlate the observable diffusion rates with microscopic features of conformer size, shape, and solvation. This analysis uncovered underlying differences in detailed atomistic behavior of the three cosolvents-urea, GdmCl, and proline. For both urea and the pure water system we find good agreement with hydrodynamic theory, with diffusion rates primarily correlated with conformer size and shape. In contrast, for GdmCl and proline solutions, the variation in conformer diffusion rates was mostly determined by specific interactions with the cosolvents. We also find preferences for different molecular shapes by the three cosolvents, with increased preferential solvation of smaller and more spherical conformers by urea and larger and more elongated conformers by GdmCl and proline. Additionally, our results provide a basis for a simple approximate model of the effects of pH lowering on dipeptide conformational equilibria. The translational diffusion rates of NATA are less sensitive to conformations, but variation with solvation strength is similar to rotational diffusion. Our results, combining experiment and simulation, show that we can identify the individual peptide conformers with definite microscopic properties of shape, size, and solvation, that are responsible for producing physical observables, such as translational and orientational diffusion in the complex solvent environments of denaturants and osmolytes.

  5. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    PubMed Central

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  6. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  7. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  8. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2017-04-01

    Enhanced fluidity liquid chromatography using the hydrophilic interaction retention mechanism (EFLC-HILIC) is studied as an alternative separation mode for analyzing oligosaccharides and other sugars. These carbohydrates, which are important for the study of foods and biological systems, are difficult to comprehensively profile and either require a non-green, expensive solvent (i.e. acetonitrile) or derivatization of the analytes at the expense of time, sample loss, and loss of quantitative information. These difficulties arise from the diverse isomerism, mutarotation, and lack of a useable chromophore/fluorophore for spectroscopic detection. Enhanced fluidity liquid chromatography is an alternative separation method that involves the use of conventional polar solvents, such as methanol/water mixtures, as the primary mobile phase component and liquid carbon dioxide (CO 2 ) as the modifier in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis and higher efficiency. This work illustrates an optimized EFLC-HILIC separation of a test mixture of oligosaccharides and simple sugars with a resolution greater than 1.3 and an analysis time decrease of over 35% compared to a conventional HPLC HILIC-mode analysis using acetonitrile/water mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riedel, Clement; Gabizon, Ronen; Wilson, Christian A. M.

    Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis. Although this observation has been reported and characterized for several different systems, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theorymore » to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). We find this novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme.« less

  10. Synthesis and characterization of polylactide/doxorubicin/magnetic nanoparticles composites for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhlanga, Nikiwe; Ray, Suprakas Sinha; DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001

    Magnetic iron oxide nanoparticles have potential to transform conventional therapeutics, through targeted delivery by external magnetic field modulation. Conventional drug delivery lacks specificity; both normal and infected cells are exposed to toxic drugs. Consequently, the toxicity towards healthy cells leads to detrimental side effects which are formidable. However, iron oxide research in biomedicine has been hindered by their lack of stability. This study reports on the stabilization of iron oxide by polylactide (PLA). Besides affording stable iron oxide, PLA is also good for sustained delivery of the drug. PLA/doxorubicin/magnetic nanoparticles (PLA/DOX/MNPs) spheres were synthesized by solvent evaporation method and DOXmore » anticancer drug was encapsulated. The spheres were characterized using scanning electron microscope, Fourier transform infrared microscope, thermogravimetric analyzer and UV-visible spectroscopy, which ascertained formation of the anticipated spheres and incorporation of DOX. In vitro drug release studies were carried out in both phosphate buffer (pH 7.4) and acetate buffer (pH 4.6) and they showed the same trend in both mediums. Drug release kinetics followed Higuchi model, which proved drug release by diffusion via a diffusion gradient.« less

  11. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  12. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  13. Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Canhai; ...

    2018-03-27

    The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less

  14. Method of making monodisperse nanoparticles

    DOEpatents

    Fan, Hongyon; Sun, Zaicheng

    2012-10-16

    A method of making particles of either spherical or cylindrical geometry with a characteristic diameter less than 50 nanometers by mixing at least one structure directing agent dissolved in a solvent with at least one amphiphilic block copolymer dissolved in a solvent to make a solution containing particles, where the particles can be subsequently separated and dispersed in a solvent of choice.

  15. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  16. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.

    PubMed

    Beck-Broichsitter, Moritz

    2016-09-10

    The introduction of "Ouzo diagrams" has enhanced the applicability of the basic nanoprecipitation process for drug delivery research. The current study investigated the interaction of two relevant polymer/solvent systems, which is thought to impact the location of the stability-limit "Ouzo boundary". Viscosity measurements (Kurata-Stockmayer-Fixman approach) and static light scattering (Debye method) underlined a distinct interplay of the employed polymer (poly(lactide-co-glycolide)) with the utilized organic solvents (acetone and tetrahydrofuran). Both methods indicated that tetrahydrofuran was the "better" solvent for poly(lactide-co-glycolide). Thus, nanoprecipitation of this polymer/solvent composition resulted in larger nanoparticles. This observation can be attributed to the chain configuration of poly(lactide-co-glycolide) in the organic solvent, which influenced the extent of the break-up of the injected solvent layer. Accordingly, the stability-limit curve of the "Ouzo region" was shifted to lower poly(lactide-co-glycolide) fractions for tetrahydrofuran. Overall, the location of the "Ouzo region", which is an essential tool for drug delivery research, is influenced by the employed organic solvent. The current study described two distinct methods suitable to identify relevant polymer-solvent interactions, which dictate the stability-limit "Ouzo boundary" for relevant poly(lactide-co-glycolide). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Inhibitory Effects of Pterodon emarginatus Bean Oil and Extract on Staphylococcus aureus

    PubMed Central

    Mendes, V. S.; Sant'Anna, J. B.; Oliveira, S. C. C.; Maldonade, Iriani Rodrigues; Machado, Eleuza Rodrigues

    2017-01-01

    Background: Pterodon emarginatus is a tree of the Brazilian Savannah. The beans of this tree are used in folk medicine as anti-inflammatory preparations, especially for infections caused by Staphylococcus aureus. These bacteria can cause simple infections or serious illnesses such as pneumonia, meningitis, endocarditis, toxic shock syndrome, septicemia, and others. Objective: This study had the goal of verifying the effect of the essential oil (OE) from P. emarginatus on the inhibition of S. aureus in culture medium, i.e., “ in vitro” tests. Materials and Methods: The vegetable material was cut and crushed with a press. The OE was obtained by extraction using hexane, alcohol, and water. The P. emarginatus extracts obtained were used to evaluate the antimicrobial effect on S. aureus (ATCC 25923) by tests of well diffusion, disc diffusion, and microdilution. The strain used in the assays was maintained in brain heart infusion broth and nutrient agar until testing. Afterward, the bacteria were spread on agar plates with Mueller-Hinton agar medium. In the wells and on the paper discs, the OE suspensions were placed in the following volumes: 10, 15, 20, 25, 30, 40, and 80 μL and subsequently they were incubated at 35°C ± 2°C. After 24 h, the number of colony-forming unit was determined. Results: Pure OE and hydroalcoholic extract inhibited the growth of S. aureus, while aqueous extract had no effect on bacterial growth in all microbial methods used. Conclusion: Thus, the present study showed the potential of sucupira-based extracts against S. aureus growth, opening new perspectives for the evaluation of these bioactive compounds as phytopharmaceutical products. SUMMARY Plant extract act as antimicrobials to prevent and reduce bacterial contaminationBeans of Pterodon emarginatus has antibacterial propertiesExtraction with different solvents might implicate on the rate of bacterial deathThe effect of different microbiological methods (well diffusion, disc diffusion and microdilution) was evaluated on reducing CFUThe results showed by MBC that concentrations superior to 10% (v/v) using AC and 7.5% (v/v) using OE were necessary to eliminate colonies formedAccording to data of MIC, at 2.5% of AC and OE was enough to kill S. aureusThe well diffusion technique demonstrated better performance than disc diffusion test for OE and AC extractsHydroalcoholic and oil extracts of sucupira beans had highest effect against Staphylococcus aureusAqueous extract had no effect on bacterial growth in all microbial methods testedThe sucupira-based extracts is a promising source as herbal drug due to therapeutic value Abbreviations Used: OE: Essencial oil; AC: Hydroalcoholic oil extract; AQ: Aqueous extracts; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony formed unit. PMID:29263627

  18. Replacement solvents for use in chemical synthesis

    DOEpatents

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  19. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites. Two new solvent systems, a self-sustaining ozonation system and a cyclohexane/acetone/water or a cyclohexane/acetone/methanol system, were studied to overcome the drawback of using halogenated solvents. The self-sustaining ozonation process employed the final ozonation products as the reaction solvent. Compared to the self-sustaining ozonation, the cyclohexane solvent system showed higher ozone efficiency; however, it required dynamic adjustment of the solvent system during ozonation. An extensively ozonated asphaltene's weight would be doubled. Distillation of the products separated about 45% volatile products having biodiesel-style chemical structures. Compared to distillation, more than 90% of the ozonation products were extractable by acetone. The remaining acetone-insoluble part was further classified by dichloromethane and other solvents of different polarities. The separated ozonation products were good fuel additives or materials for other products.

  20. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations.

    PubMed

    Godschalk, Frithjof; Genheden, Samuel; Söderhjelm, Pär; Ryde, Ulf

    2013-05-28

    Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular method to calculate the free energy of the binding of ligands to proteins. It involves molecular dynamics (MD) simulations with an explicit solvent of the protein-ligand complex to give a set of snapshots for which energies are calculated with an implicit solvent. This change in the solvation method (explicit → implicit) would strictly require that the energies are reweighted with the implicit-solvent energies, which is normally not done. In this paper we calculate MM/GBSA energies with two generalised Born models for snapshots generated by the same methods or by explicit-solvent simulations for five synthetic N-acetyllactosamine derivatives binding to galectin-3. We show that the resulting energies are very different both in absolute and relative terms, showing that the change in the solvent model is far from innocent and that standard MM/GBSA is not a consistent method. The ensembles generated with the various solvent models are quite different with root-mean-square deviations of 1.2-1.4 Å. The ensembles can be converted to each other by performing short MD simulations with the new method, but the convergence is slow, showing mean absolute differences in the calculated energies of 6-7 kJ mol(-1) after 2 ps simulations. Minimisations show even slower convergence and there are strong indications that the energies obtained from minimised structures are different from those obtained by MD.

Top