Sample records for solvent electrolyte system

  1. Electrolyte Suitable for Use in a Lithium Ion Cell or Battery

    NASA Technical Reports Server (NTRS)

    McDonald, Robert C. (Inventor)

    2014-01-01

    Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.

  2. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Smart, Marshall C. (Inventor); Surampudi, Subbarao (Inventor); Bugga, Ratnakumar V. (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  3. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    NASA Astrophysics Data System (ADS)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  4. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  5. Ion conducting polymers and polymer blends for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  6. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives.

    PubMed

    Kalhoff, Julian; Eshetu, Gebrekidan Gebresilassie; Bresser, Dominic; Passerini, Stefano

    2015-07-08

    Lithium-ion batteries are becoming increasingly important for electrifying the modern transportation system and, thus, hold the promise to enable sustainable mobility in the future. However, their large-scale application is hindered by severe safety concerns when the cells are exposed to mechanical, thermal, or electrical abuse conditions. These safety issues are intrinsically related to their superior energy density, combined with the (present) utilization of highly volatile and flammable organic-solvent-based electrolytes. Herein, state-of-the-art electrolyte systems and potential alternatives are briefly surveyed, with a particular focus on their (inherent) safety characteristics. The challenges, which so far prevent the widespread replacement of organic carbonate-based electrolytes with LiPF6 as the conducting salt, are also reviewed herein. Starting from rather "facile" electrolyte modifications by (partially) replacing the organic solvent or lithium salt and/or the addition of functional electrolyte additives, conceptually new electrolyte systems, including ionic liquids, solvent-free, and/or gelled polymer-based electrolytes, as well as solid-state electrolytes, are also considered. Indeed, the opportunities for designing new electrolytes appear to be almost infinite, which certainly complicates strict classification of such systems and a fundamental understanding of their properties. Nevertheless, these innumerable opportunities also provide a great chance of developing highly functionalized, new electrolyte systems, which may overcome the afore-mentioned safety concerns, while also offering enhanced mechanical, thermal, physicochemical, and electrochemical performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directlymore » involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.« less

  8. Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Smart, Marshall; West, William

    2010-01-01

    A previous NASA Tech Brief ["Low-Temperature Supercapacitors" (NPO-44386) NASA Tech Briefs, Vol. 32, No 7 (July 2008), page 32] detailed ongoing efforts to develop non-aqueous supercapacitor electrolytes capable of supporting operation at temperatures below commercially available cells (which are typically limited to charging and discharging at > or equal to -40 C). These electrolyte systems may enable energy storage and power delivery for systems operating in extreme environments, such as those encountered in the Polar regions on Earth or in the exploration of space. Supercapacitors using these electrolytes may also offer improved power delivery performance at moderately low temperatures (e.g. -40 to 0 C) relative to currently available cells, offering improved cold-cranking and cold-weather acceleration capabilities for electrical or hybrid vehicles. Supercapacitors store charge at the electrochemical double-layer, formed at the interface between a high surface area electrode material and a liquid electrolyte. The current approach to extending the low-temperature limit of the electrolyte focuses on using binary solvent systems comprising a high-dielectric-constant component (such as acetonitrile) in conjunction with a low-melting-point co-solvent (such as organic formates, esters, and ethers) to depress the freezing point of the system, while maintaining sufficient solubility of the salt. Recent efforts in this area have led to the identification of an electrolyte solvent formulation with a freezing point of -85.7 C, which is achieved by using a 1:1 by volume ratio of acetonitrile to 1,3-dioxolane

  9. Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    The present invention relates to electrolyte solvents for use in liquid or rubbery electrolyte solutions. Specifically, this invention is directed to boron-containing electrolyte solvents and boron-containing electrolyte solutions.

  10. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ketack; Cho, Young-Hyun; Shin, Heon-Cheol

    2013-03-01

    1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide (EMP-TFSI) is an ionic liquid with a melting temperature of 85 °C. Although it is a solid salt, it shows good miscibility with carbonate solvents, which allows EMP-TFSI to be used as a co-solvent in these systems. Ethylene carbonate is another solid co-solvent used in Li-ion batteries. Due to its smaller cationic size, EMP-TFSI provides better conductivity as a co-solvent than 1-methyl-1-propyl piperidinium bis(trifluoromethanesulfonyl)imide (MPP-TFSI), which is the smallest room-temperature piperidinium liquid salt known. In cells with 50 wt% IL and 50 wt% carbonate electrolyte, an EMP-TFSI mixed electrolyte performs better than an MPP-TFSI mixed electrolyte. Additionally, the discharge capacity values obtained from rate capability tests carried out with mixed EMP-TFSI are as good as those conducted with a pure carbonate electrolyte.

  11. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenton, Kyle R.; Nagasubramanian, Ganesan; Staiger, Chad L.

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  12. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Yan, Pengfei

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition,more » such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.« less

  13. Thermal regeneration of an electrochemical concentration cell

    DOEpatents

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  14. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  15. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wu; Xiao, Jie; Zhang, Jian

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte hasmore » reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.« less

  17. Preferential Solvation of an Asymmetric Redox Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Rajput, Nav Nidhi; Vijayakumar, M.

    2016-12-15

    The fundamental correlations between inter-molecular interactions, solvation structure and functionality of electrolytes are in many cases unknown, particularly for multi-component liquid systems. In this work, we explore such correlations by investigating the complex interplay between solubility and solvation structure for the electrolyte system comprising N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethylsulfonimide (Fc1N112-TFSI) dissolved in a ternary carbonate solvent mixture using combined NMR relaxation and computational analyses. Probing the evolution of the solvent-solvent, ion-solvent and ion-ion interactions with an increase in solute concentration provides a molecular level understanding of the solubility limit of the Fc1N112-TFSI system. An increase in solute con-centration leads to pronounced Fc1N112-TFSI contact-ionmore » pair formation by diminishing solvent-solvent and ion-solvent type interactions. At the solubility limit, the precipitation of solute is initiated through agglomeration of contact-ion pairs due to overlapping solvation shells.« less

  18. Thermal regeneration of an electrochemical concentration cell

    DOEpatents

    Krumpelt, M.; Bates, J.K.

    1980-05-09

    A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  19. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.

    PubMed

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

    2014-07-16

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  20. Influence of electrolyte ion-solvent interactions on the performances of supercapacitors porous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Decaux, C.; Matei Ghimbeu, C.; Dahbi, M.; Anouti, M.; Lemordant, D.; Béguin, F.; Vix-Guterl, C.; Raymundo-Piñero, E.

    2014-10-01

    The development of advanced and safe electrochemical supercapacitors or hybrid supercapacitors combining a battery electrode material such as graphite and a porous carbon electrode implies the use of new electrolytes containing a tetra-alkylammonium or lithium salt dissolved preferentially in a safe and environmentally friendly solvent such as alkylcarbonates. In those systems, the carbon porosity of the activated carbon electrode controls the electrochemical behavior of the whole device. In this work, it is demonstrated that electrolytes containing highly polarizing ions such as Li+ dissolved in polar solvents such as alkylcarbonates do not completely loss their solvation shell at the opposite of what is observed for poorly solvated cations like TEABF4. As a consequence, the optimal carbon pore size for obtaining the largest energy density, while keeping a high power density, is wider when strongly solvated cations, like Li+ are used than for conventional organic electrolytes using acetonitrile as solvent and TEA+ as salt cations. TEA+ cations are easily desolvated and hence are able to penetrate in small pores matching the dimensions of bare ions. The dissimilarity of behavior of alkylcarbonates and acetonitrile based electrolytes highlights the importance of ion-solvent interactions when searching the optimal porous texture for the electrode material.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang

    Understanding the solvation structures of electrolytes should prove conducive for the development of nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivatived ferrocene compound, ferrocenylmethyl dimethyl ethyl ammonium bis(trifluoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C, 1H and 17O NMR investigations were carried out using electrolyte solutions consisting of Fc1N112-TFSI as the solute and the mixed alkyl carbonate as the solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergomore » linewidth broadening, indicating interactions between solute and solvent molecules. Quantum chemistry calculations of both molecular structures and chemical shifts (13C, 1H and 17O) are performed for interpreting experimental results and of understanding the detailed solvation structures and molecular dynamics. The results indicate that Fc1N112-TFSI is dissociated at varying degrees in mixed solvent depending on concentrations. Solvent molecules encircle Fc1N112 and TFSI respectively as solvation shells, rapidly exchanging with both bulk solvent and TFSI. Additionally, the solvent with high dielectric constant is more capable of dissociating Fc1N112-TFSI molecules compared with those with low dielectric constant. At saturated concentration, contact ion pairs are formed and the solvent molecules are interacting with the Fc rings rather than interacting with the ionic pendant arm of Fc1N112-TFSI. These studies will contribute to the development of nonaqueous electrolytes of storage systems.« less

  2. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents.

    PubMed

    Mazzini, Virginia; Craig, Vincent S J

    2017-10-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity.

  3. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.

    PubMed

    Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J

    2017-12-20

    One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.

  4. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  5. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  6. Energetics of Na + Transport through the Electrode/Cathode Interface in Single Solvent Electrolytes

    DOE PAGES

    Browning, Katie L.; Sacci, Robert L.; Veith, Gabriel M.

    2017-01-27

    Here, the activation energy of desolvation for Na-ion electrolyte systems were studied using temperature dependent electrochemical impedance spectroscopy (EIS). Propylene carbonate (PC) and tetraglyme were chosen as solvents in single solvent electrolyte solution coupled with NaClO 4, NaPF 6, NaAsF 6, NaBF 4, and NaOFt salts. The results demonstrate the insertion and desolvation processes are extremely fast at or above room temperature. The data shows under optimal salt chemistry the desolvation activation energy is less than 21 kJ/mole. This is in contrast to the ~50 kJ/mole measured for analogous Li systems. The dominant factor affecting performance was the anion. Indeed,more » anions with lower donor numbers (PF 6 –, AsF 6 –) had more than 30 kJ/mole lower desolvation energies than species like NaBF 4 and NaOFt.« less

  7. Electric current-producing device having sulfone-based electrolyte

    DOEpatents

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  8. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  9. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles

    1997-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  10. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery.

    PubMed

    Wang, Qingsong; Sun, Jinhua; Chen, Chunhua

    2009-08-15

    The thermal stability of lithiated graphite in the presence of solvents, electrolytes and LiPF(6) salt was studied using C80 micro-calorimeter. The presence of cyclic carbonates or linear carbonates increases the activity of Li(x)C(6)-solvent coexisting system, especially for the Li(x)C(6)-linear carbonates one. LiPF(6) was detected that it increases the activity greatly of its coexisting system with lithiated graphite. The coexisting system of Li(x)C(6) with the electrolyte of LiPF(6)/ethylene carbonate+diethyl carbonate shows less thermal stability, which is attributed to the activity between diethyl carbonate and Li(x)C(6). This also agrees with the experiment result of Li(x)C(6)-diethyl carbonate coexisting system.

  11. Electrolyte with Low Polysulfide Solubility for Li-S Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke; Wu, Qin; Tong, Xiao

    Here, Li-S battery is one of the most promising next generation rechargeable battery technologies due to its high theoretical energy density and low material cost. While its success is impeded by the low energy efficiency and fast capacity fade primarily caused by the discharge intermediates, Li-polysulfides (PS), dissolution in the electrolyte. Mitigation of PS dissolution in electrolyte involves the search of new electrolyte solvent system that exhibits poor solvation to the PS while still have good solvation ability to the electrolyte salt for high ionic conductivity. Applying co-solvents with reduced solvating power but compatible with the state of art Li-Smore » battery’s ether-based electrolyte is one of the most promising concepts. This route is also advantageous of having a low scale-up cost. With the aids of Quantum Chemical Calculation, we have identified high carbon-to-oxygen (C/O) ratio ethers as co-solvent in the new electrolytes that effectively impede PS dissolution while still maintaining high ionic conductivity. Significantly improved cycle life and cycling Coulombic efficiency are observed for Li-S cells using the new composite electrolytes. Anode analysis with different methods also demonstrate that reducing electrolyte’s PS solubility results in less sulfur total amount on the lithium anode surface and lower ratio of the longer-chain PS, which is probably a sign of suppressed side reactions between the anode and PS in the electrolyte.« less

  12. Electrolyte with Low Polysulfide Solubility for Li-S Batteries

    DOE PAGES

    Sun, Ke; Wu, Qin; Tong, Xiao; ...

    2018-05-23

    Here, Li-S battery is one of the most promising next generation rechargeable battery technologies due to its high theoretical energy density and low material cost. While its success is impeded by the low energy efficiency and fast capacity fade primarily caused by the discharge intermediates, Li-polysulfides (PS), dissolution in the electrolyte. Mitigation of PS dissolution in electrolyte involves the search of new electrolyte solvent system that exhibits poor solvation to the PS while still have good solvation ability to the electrolyte salt for high ionic conductivity. Applying co-solvents with reduced solvating power but compatible with the state of art Li-Smore » battery’s ether-based electrolyte is one of the most promising concepts. This route is also advantageous of having a low scale-up cost. With the aids of Quantum Chemical Calculation, we have identified high carbon-to-oxygen (C/O) ratio ethers as co-solvent in the new electrolytes that effectively impede PS dissolution while still maintaining high ionic conductivity. Significantly improved cycle life and cycling Coulombic efficiency are observed for Li-S cells using the new composite electrolytes. Anode analysis with different methods also demonstrate that reducing electrolyte’s PS solubility results in less sulfur total amount on the lithium anode surface and lower ratio of the longer-chain PS, which is probably a sign of suppressed side reactions between the anode and PS in the electrolyte.« less

  13. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

    PubMed Central

    Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin

    2016-01-01

    A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system. PMID:26878890

  14. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte.

    PubMed

    Walker, Wesley; Giordani, Vincent; Uddin, Jasim; Bryantsev, Vyacheslav S; Chase, Gregory V; Addison, Dan

    2013-02-13

    A major challenge in the development of rechargeable Li-O(2) batteries is the identification of electrolyte materials that are stable in the operating environment of the O(2) electrode. Straight-chain alkyl amides are one of the few classes of polar, aprotic solvents that resist chemical degradation in the O(2) electrode, but these solvents do not form a stable solid-electrolyte interphase (SEI) on the Li anode. The lack of a persistent SEI leads to rapid and sustained solvent decomposition in the presence of Li metal. In this work, we demonstrate for the first time successful cycling of a Li anode in the presence of the solvent, N,N-dimethylacetamide (DMA), by employing a salt, lithium nitrate (LiNO(3)), that stabilizes the SEI. A Li-O(2) cell containing this electrolyte composition is shown to cycle for more than 2000 h (>80 cycles) at a current density of 0.1 mA/cm(2) with a consistent charging profile, good capacity retention, and O(2) detected as the primary gaseous product formed during charging. The discovery of an electrolyte system that is compatible with both electrodes in a Li-O(2) cell may eliminate the need for protecting the anode with a ceramic membrane.

  15. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  16. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Sue B.

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  17. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    NASA Astrophysics Data System (ADS)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  18. Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj

    2018-04-01

    Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.

  19. Method of preparing thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  20. Electrolytes including fluorinated solvents for use in electrochemical cells

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  1. Ionic liquid electrolytes for dye-sensitized solar cells.

    PubMed

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  2. Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2002-01-01

    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.

  3. Electrolyte formulations

    DOEpatents

    Zhu, Ye; Strand, Deidre; Cheng, Gang

    2018-05-29

    An electrochemical cell including a silicon-based anode and an electrolyte, where the electrolyte is formulated to contain solvents having cyclic sulfone or cyclic sulfite chemical structure. Specific additional solvent and salt combinations yield superior performance in these electrochemical cells.

  4. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems

    NASA Astrophysics Data System (ADS)

    Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B.

    2014-12-01

    The thermal, transport, rheological and flammability properties of electrolyte mixtures, proposed for safer lithium-ion battery systems, were investigated as a function of the mole composition. The blends were composed of a lithium salt (LiTFSI), organic solvents (namely EC, DEC) and an ionic liquid (PYR13TFSI). The main goal is to combine the fast ion transport properties of the organic compounds with the safe issues of the non-flammable and non-volatile ionic liquids. Preliminary tests in batteries have evidenced cycling performance approaching that observed in commercial organic electrolytes.

  5. Evaluation of mixed solvent electrolytes for ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Subbarao, S.; Deligiannis, F.; Dawson, S.; Halpert, G.

    1988-01-01

    The ethylene carbonate/2-methyltetrahydrofuran (EC/2-MeTHF) mixed-solvent electrolyte has been experimentally found to possess many desirable electrolyte characteristics for ambient-temperature secondary Li-TiS2 cell applications. As many as 300 cycles have been demonstrated, and a cycling efficiency figure-of-merit of 38.5 percent, for 10-percent EC/90-percent MeTHF mixed-solvent electrolyte in experimental Li-TiS2 cells. The improved performance of this electrolyte is attributable to the formation of a beneficial passivating film on the Li electrode by interaction with the EC.

  6. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, D.J.; Hubaud, A.A.; Vaughey, J.T., E-mail: vaughey@anl.gov

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stabilitymore » of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.« less

  7. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  8. Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery.

    PubMed

    Ushirogata, Keisuke; Sodeyama, Keitaro; Okuno, Yukihiro; Tateyama, Yoshitaka

    2013-08-14

    The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and capability of a lithium-ion battery (LIB). Here we investigated the effects of adding vinylene carbonate (VC) to ethylene carbonate (EC) solvent, a typical electrolyte in LIBs, on the reductive decomposition. We focused on both thermodynamics and kinetics of the possible processes and used density functional theory-based molecular dynamics with explicit solvent and Blue-moon ensemble technique for the free energy change. We considered Li(+) in only EC solvent (EC system) and in EC solvent with a VC additive (EC/VC system) to elucidate the additive effects. In addition to clarifying the equilibrium properties, we evaluated the free energy changes along several EC or VC decomposition pathways under one-electron (1e) reduction condition. Two-electron (2e) reduction and attacks of anion radicals to intact molecules were also examined. The present results completely reproduce the gaseous products observed in the experiments. We also found a new mechanism involving the VC additive: the VC additive preferentially reacts with the EC anion radical to suppress the 2e reduction of EC and enhance the initial SEI formation, contrary to the conventional scenario in which VC additive is sacrificially reduced and its radical oligomerization becomes the source of SEI. Because our mechanism needs only 1e reduction, the irreversible capacity at the SEI formation will decrease, which is also consistent with the experimental observations. These results reveal the primary role of VC additive in the EC solvent.

  9. Nonflammable Perfluoropolyether Electrolytes for Safer Lithiumbased Batteries

    NASA Astrophysics Data System (ADS)

    Olson, Kevin Raymond

    The importance of batteries to sustainable energy is widely recognized. Lithium-ion batteries (LIBs) not only power handheld electronics but also are increasingly being implemented in electric vehicles and "smart-grid" applications to store energy from intermittent solar and wind sources, making sustainable energy a reality. Unfortunately, LIBs contain a highly flammable solvent and can exhibit catastrophic failure, as was brought to the public's attention by the Boeing 787, Samsung Galaxy Note 7, hoverboard, and Tesla battery fires. Thus, realizing the full potential of LIBs in large-scale systems requires the development of nonflammable electrolytes. Perfluoropolyether (PFPE)-based electrolytes address many of the shortcomings of conventional carbonate-based electrolytes or polymer electrolytes such as poly(ethylene oxide). PFPE-based electrolytes transport lithium more efficiently than conventional electrolytes, which has important implications on long-term battery performance. PFPEs make interesting electrolyte solvents because they are nonflammable, nonvolatile, liquid across a broad temperature range, chemically stable, and interact favorably with the anion of fluorinated salts. In this work, the molecular underpinnings for ion transport in PFPE electrolytes will be established by systematically probing how PFPE structure affects electrolyte performance including ionic conductivity, diffusivity, and transference number. End group polarity, end group concentration, and PFPE molecular weight all have important implications on electrolyte performance.

  10. A salient effect of density on the dynamics of nonaqueous electrolytes.

    PubMed

    Han, Sungho

    2017-04-24

    The mobility and solvation of lithium ions in electrolytes are crucial for the performance and safety of lithium ion batteries. It has been known that a single type of solvent cannot satisfy the requirements of both mobility and solvation simultaneously for electrolytes. Therefore, complex solvent mixtures have been used to optimize both properties. Here we present the effects of density on the dynamics and solvation of organic liquid electrolytes via extensive molecular dynamics simulations. Our study finds that a small variation in density can induce a significant effect on the mobility of electrolytes but does not influence the solvation structure of a lithium ion. It turns out that an adjustment of the density of electrolytes could provide a more effective way to enhance mobility than a control of the solvent mixture ratio of electrolytes. Our study reveals that the density change of electrolytes mainly affects the residence time of solvents in the first solvation shell of a lithium ion rather than the structural change of the solvation sheath. Finally, our results suggest an intriguing point for understanding and designing electrolytes of lithium ion batteries for better performance and safety.

  11. A salient effect of density on the dynamics of nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Han, Sungho

    2017-04-01

    The mobility and solvation of lithium ions in electrolytes are crucial for the performance and safety of lithium ion batteries. It has been known that a single type of solvent cannot satisfy the requirements of both mobility and solvation simultaneously for electrolytes. Therefore, complex solvent mixtures have been used to optimize both properties. Here we present the effects of density on the dynamics and solvation of organic liquid electrolytes via extensive molecular dynamics simulations. Our study finds that a small variation in density can induce a significant effect on the mobility of electrolytes but does not influence the solvation structure of a lithium ion. It turns out that an adjustment of the density of electrolytes could provide a more effective way to enhance mobility than a control of the solvent mixture ratio of electrolytes. Our study reveals that the density change of electrolytes mainly affects the residence time of solvents in the first solvation shell of a lithium ion rather than the structural change of the solvation sheath. Finally, our results suggest an intriguing point for understanding and designing electrolytes of lithium ion batteries for better performance and safety.

  12. Ion Speciation and Transport Properties of LiTFSI in 1,3-Dioxolane Solutions: A Case Study for Li-S Battery Applications.

    PubMed

    Raccichini, Rinaldo; Dibden, James W; Brew, Ashley; Owen, John R; García-Aráez, Nuria

    2018-01-11

    Lithium-sulfur battery is considered to be one of the main candidates for "post-lithium-ion" battery generation because of its high theoretical specific capacity and inherently low cost. The role of electrolyte is particularly important in this system, and remarkable battery performances have been reported by tuning the amount of salt in the electrolyte. To further understand the reasons for such improvements, we chose the lithium bis(trifluoromethanesulfonyl)imide in 1,3-dioxolane electrolyte as a model salt-solvent system for a systematic study of conductivity and viscosity over a wide range of concentration from 10 -5 up to 5 m. The experimental results, discussed and interpreted with reference to the theory of electrolyte conductance, lead to the conclusion that triple ion formation is responsible for the highest molal conductivity values before reaching the maximum at 1.25 m. At higher concentrations, the molal conductivity drops quickly because of a rapid increase in viscosity and the salt-solvent system can be treated as a diluted form of molten salt.

  13. Exploratory studies on some electrochemical cell systems

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Srikumar; Guha, D.

    Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.

  14. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02691a Click here for additional data file.

    PubMed Central

    Mazzini, Virginia

    2017-01-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity. PMID:29147533

  15. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  16. TiO2 as conductivity enhancer in PVdF-HFP polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shreya; Manojkumar Ubarhande, Radha; Usha Rani, M.; Shanker Babu, Ravi; Arunkumar, R.

    2017-11-01

    Composite polymer electrolytes were prepared by incorporating inorganic filler TiO2 into PVdF-HFP-PMMA-EC-LiClO4 system. The electrolyte films were prepared by solvent casting technique. The effect of inorganic filler on the conductivity of the blended polymer electrolyte was studied and it is found that there is a considerable increase in ionic conductivity 1.296 × 10-3 S/cm-1 on the addition of TiO2. X-ray diffraction (XRD) study elucidate the increase in amorphous nature of the polymer electrolyte. This tendency of the polymer electrolyte could be the reason behind the increase in ionic conductivity. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components.

  17. Nuclear magnetic resonance studies of the solvation structures of a high-performance nonaqueous redox flow electrolyte

    NASA Astrophysics Data System (ADS)

    Deng, Xuchu; Hu, Mary; Wei, Xiaoliang; Wang, Wei; Mueller, Karl T.; Chen, Zhong; Hu, Jian Zhi

    2016-03-01

    Understanding the solvation structures of electrolytes is important for developing nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivatived ferrocene compound, ferrocenylmethyl dimethyl ethyl ammonium bis(trifluoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C, 1H and 17O NMR investigations were carried out using electrolyte solutions consisting of Fc1N112-TFSI as the solute and the mixed alkyl carbonate as the solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergo linewidth broadening, indicating interactions between solute and solvent molecules. Quantum chemistry calculations of both molecular structures and chemical shifts (13C, 1H and 17O) are performed for interpreting experimental results and for understanding the detailed solvation structures. The results indicate that Fc1N112-TFSI is dissociated at varying degrees in mixed solvent depending on concentrations. At dilute solute concentrations, most Fc1N112+ and TFSI- are fully disassociated with their own solvation shells formed by solvent molecules. At saturated concentration, Fc1N112+-TFSI- contact ion pairs are formed and the solvent molecules are preferentially interacting with the Fc rings rather than interacting with the ionic pendant arm of Fc1N112-TFSI.

  18. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries.

    PubMed

    Gao, Han; Maglia, Filippo; Lamp, Peter; Amine, Khalil; Chen, Zonghai

    2017-12-27

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in lithium-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a "corrosion inhibitor film" that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot be mitigated. Effect of two exemplary electrolyte additives, lithium difluoro(oxalato)borate (LiDFOB) and 3-hexylthiophene (3HT), on LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next-generation high-energy-density lithium-ion chemistries.

  19. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  20. From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.

    PubMed

    Gavish, Nir; Elad, Doron; Yochelis, Arik

    2018-01-04

    The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.

  1. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion methodmore » on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.« less

  2. Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions.

    PubMed

    Nandy, Lucy; Dutcher, Cari S

    2017-09-21

    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute-solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions.

  3. Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shin, Yongwoo

    2017-04-10

    Fundamental molecular level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applica-tions. In particular, exhaustive knowledge of solvation structure, stability and transport properties is critical for developing stable electrolytes for fast charging and high energy density next-generation energy storage systems. Here we report the correlation between solubility, solvation structure and translational dynamics of a lithium salt (Li-TFSI) and polysulfides species using well-benchmarked classical molecular dynamics simulations combined with nuclear magnetic resonance (NMR). It is observed that the polysulfide chain length has a significant effect on the ion-ion and ion-solvent interaction asmore » well as on the diffusion coefficient of the ionic species in solution. In particular, extensive cluster formation is observed in lower order poly-sulfides (Sx2-; x≤4), whereas the longer polysulfides (Sx2-; x>4) show high solubility and slow dynamics in the solu-tion. It is observed that optimal solvent/salt ratio is essen-tial to control the solubility and conductivity as the addi-tion of Li salt increases the solubility but decreases the mo-bility of the ionic species. This work provides a coupled theoretical and experimental study of bulk solvation struc-ture and transport properties of multi-component electro-lyte systems, yielding design metrics for developing optimal electrolytes with improved stability and solubility.« less

  4. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Han; Maglia, Filippo; Lamp, Peter

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generatedmore » from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xuchu; Hu, Mary; Wei, Xiaoliang

    Understanding the solvation structures of electrolytes is important for developing nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivative ferrocene compounds, ferrocenylmethyl dimethyl ethyl ammonium bis (triflyoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C1H and 17O NMR investigations were carried out using solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergo line width broadening, indicating interactions between solute and solvent molecules

  6. Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Krause, Frederick C.

    2011-01-01

    A number of future NASA missions involving the exploration of the Moon and Mars will be human-rated and thus require high-specific-energy rechargeable batteries that possess enhanced safety characteristics. Given that Li-ion technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) automotive applications. Therefore, extensive effort has been devoted recently to developing non-flammable electrolytes to reduce the flammability of the cells/battery. A number of electrolyte formulations have been developed, including systems that (1) incorporate greater concentrations of the flame-retardant additive (FRA); (2) use di-2,2,2-trifluoroethyl carbonate (DTFEC) as a co-solvent; (3) use 2,2,2- trifluoroethyl methyl carbonate (TFEMC); (4) use mono-fluoroethylene carbonate (FEC) as a co-solvent and/or a replacement for ethylene carbonate in the electrolyte mixture; and (5) utilize vinylene carbonate as a "SEI promoting" electrolyte additive, to build on the favorable results previously obtained. To extend the family of electrolytes developed under previous work, a number of additional electrolyte formulations containing FRAs, most notably triphenyl phosphate (TPP), were investigated and demonstrated in experimental MCMB (mesocarbon micro beads) carbon- LiNi(0.8)Co(0.2)O2 cells. The use of higher concentrations of the FRA is known to reduce the flammability of the electrolyte solution, thus, a concentration range was investigated (i.e., 5 to 20 percent by volume). The desired concentration of the FRA is the highest amount tolerable without adversely affecting the performance in terms of reversibility, ability to operate over a wide temperature range, and the discharge rate capability. The use of fluorinated carbonates, much in the same manner as the incorporation of fluorinated ester-based solvents, was employed to reduce the inherent flammability of mixtures. Thus, electrolyte formulations that embody both approaches are anticipated to have much lower flammability, resulting in enhanced safety.

  7. Order of wetting transitions in electrolyte solutions.

    PubMed

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  8. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trulove, Paul C.; Foley, Matthew P.

    2012-09-30

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF 3SO 3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that couldmore » be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li + ions in a Li-ion battery.« less

  9. Influence of Polar Organic Solvents in an Ionic Liquid Containing Lithium Bis(fluorosulfonyl)amide: Effect on the Cation-Anion Interaction, Lithium Ion Battery Performance, and Solid Electrolyte Interphase.

    PubMed

    Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank

    2016-12-14

    Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py 1,4 ]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.

  10. Mixed solvent electrolytes for ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Deligiannis, Fotios (Inventor); Halpert, Gerald (Inventor)

    1991-01-01

    The present invention comprises an improved electrolyte for secondary lithium-based cells as well as batteries fabricated using this electrolyte. The electrolyte is a lithium containing salt dissolved in a non-aqueous solvent, which is made from a mixture of ethylene carbonate, ethylene propylene diene terpolymer, 2-methylfuran, and 2-methyltetrahydrofuran. This improved, mixed solvent electrolyte is more conductive than prior electrolytes and much less corrosive to lithium anodes. Batteries constructed with this improved electrolyte utilize lithium or lithium alloy anodes and cathodes made of metal chalcogenides or oxides, such as TiS.sub.2, NbSe.sub.3, V.sub.6 O.sub.13, V.sub.2 O.sub.5, MoS.sub.2, MoS.sub.3, CoO.sub.2, or CrO.sub.2, dissolved in a supporting polymer matrix, like EPDM. The preferred non-aqueous solvent mixture comprises approximately 5 to 30 volume percent ethylene carbonate, approximately 0.01 to 0.1 weight percent ethylene propylene diene terpolymer, and approximately 0.2 to 2 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The most preferred solvent comprises approximately 10 to 20 volume percent ethylene carbonate, about 0.05 weight percent ethylene propylene diene terpolymer, and about 1.0 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The concentration of lithium arsenic hexafluoride can range from about 1.0 to 1.8 M; a concentration 1.5 M is most preferred. Secondary batteries made with the improved electrolyte of this invention have lower internal impedance, longer cycle life, higher energy density, low self-discharge, and longer shelf life.

  11. Fire-extinguishing organic electrolytes for safe batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Watanabe, Eriko; Takada, Koji; Tateyama, Yoshitaka; Yamada, Atsuo

    2018-01-01

    Severe safety concerns are impeding the large-scale employment of lithium/sodium batteries. Conventional electrolytes are highly flammable and volatile, which may cause catastrophic fires or explosions. Efforts to introduce flame-retardant solvents into the electrolytes have generally resulted in compromised battery performance because those solvents do not suitably passivate carbonaceous anodes. Here we report a salt-concentrated electrolyte design to resolve this dilemma via the spontaneous formation of a robust inorganic passivation film on the anode. We demonstrate that a concentrated electrolyte using a salt and a popular flame-retardant solvent (trimethyl phosphate), without any additives or soft binders, allows stable charge-discharge cycling of both hard-carbon and graphite anodes for more than 1,000 cycles (over one year) with negligible degradation; this performance is comparable or superior to that of conventional flammable carbonate electrolytes. The unusual passivation character of the concentrated electrolyte coupled with its fire-extinguishing property contributes to developing safe and long-lasting batteries, unlocking the limit toward development of much higher energy-density batteries.

  12. A study of perfluorocarboxylate ester solvents for lithium ion battery electrolytes

    DOE PAGES

    Fears, Tyler M.; Sacci, Robert L.; Winiarz, Jeffrey G.; ...

    2015-09-18

    We prepared several high-purity methyl perfluorocarboxylates (>99.5% purity by mole) and investigated as potential fluorine-rich electrolyte solvents in Li-ion batteries. The most conductive electrolyte, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl perfluoroglutarate (PF5M 2) (ionic conductivity 1.87 10 -2 mS cm -1), is investigated in Si thin-film half-cells. The solid-electrolyteinterphase (SEI) formed by the PF5M2 electrolyte is composed of similar organic and inorganic moieties and at comparable concentrations as those formed by ethylene carbonate/dimethyl carbonate electrolytes containing LiPF 6 and LiTFSI salts. But, the SEI formed by the PF5M 2 electrolyte undergoes reversible electrochemical defluorination, contributing to the reversible capacitymore » of the cell and compensating in part for capacity fade in the Si electrode. These electrolytes, though far from ideal, provide an opportunity to further develop predictions of suitable fluorinated molecules for use in battery solvents.« less

  13. Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Smith, Kiah A.; Bugga, Ratnakumar V.; Prakash, G. K. Surya

    2010-01-01

    Future NASA missions aimed at exploring Mars, the Moon, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications. In addition, many of these applications will require improved safety, due to their use by humans. Currently, the state-of-the-art lithium-ion (Li-ion) system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, abuse conditions can often lead to cell rupture and fire. The nature of the electrolyte can greatly affect the propensity of the cell/battery to catch fire, given the flammability of the organic solvents used within. Li-ion electrolytes have been developed that contain a flame-retardant additive in conjunction with fluorinated co-solvents to provide a safe system with a wide operating temperature range. Previous work incorporated fluorinated esters into multi-component electrolyte formulations, which were demonstrated to cover a temperature range from 60 to +60 C. This work was described in Fluoroester Co-Solvents for Low-Temperature Li+ Cells (NPO-44626), NASA Tech Briefs, Vol. 33, No. 9 (September 2009), p. 37; and Optimized Li-Ion Electrolytes Con tain ing Fluorinated Ester Co-Solvents (NPO-45824), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 48. Other previous work improved the safety characteristics of the electrolytes by adding flame-retardant additives such as triphenyl phosphate (TPhPh), tri-butyl phosphate (TBuPh), triethyl phosphate (TEtPh), and bis(2,2,2-trifluoroethyl) methyl phosphonate (TFMPo). The current work involves further investigation of other types of flame-retardant additives, including tris(2,2,2-trifluoroethyl) phosphate, tris(2,2,2-trifluoroethyl) phosphite, triphenylphosphite, diethyl ethylphosphonate, and diethyl phenylphosphonate added to an electrolyte composition intended for wide operating temperatures. In general, many of the formulations investigated in this study displayed good performance over a wide temperature range, good cycle life characteristics, and are expected to have improved safety characteristics, such as low flammability. Of the electrolytes studied, 1.0 M LiPF6 in EC+EMC+DEP (20:75:5 v/v %) and 1.0 M LiPF6 in EC+EMC+DPP (20:75:5 v/v %) displayed the best operation at low temperatures, whereas the electrolyte containing triphenylphosphite displayed the best cycle life performance compared to the baseline solution. It is anticipated that further improvements can be made to the life characteristics with the incorporation of a SET promoters (such as VC, vinylene carbonate), which will likely inhibit the decomposition of the flame-retardant additives.

  14. Electrolytes for lithium ion batteries

    DOEpatents

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  15. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent mixture of acetonitrile (AN) and methyl formate (MF) enables double-layer capacitor cells to operate well below -40 C with a relatively low ESR. Typically, a less than twofold increase in ESR is observed at -65 C relative to room-temperature values, when these modified electrolyte blends are used in prototype cells. Double-layer capacitor coin cells filled with these electrolytes have displayed the lowest measured ESR for an organic electrolyte to date at low temperature (based on a wide range of electrolyte screening studies at JPL). The cells featured high-surface-area (approximately equal to 2,500 m/g) carbon electrodes that were 0.50 mm thick and 1.6 cm in diameter, and coated with a thin layer of platinum to reduce cell resistance. A polyethylene separator was used to electrically isolate the electrodes.

  16. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki

    A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.

  17. ELECTROLYTIC SOLUTIONS. Annual Progress Report, May 1, 1962-June 1, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunstein, J.

    Results of investigations of the thermodynamics of association in molten salts and in concentrated aqueous electrolyte solutions are reported. Association constants of Pb(II) with chloride or bromide and of Cd(II) with chloride or bromide in molten mixtures of LiNC/sub 3/ and KNO/sub 3/ were measured potentiometrically at several temperatures and compared with previous results in mixtures of NaNO/sub 3/ and KNO/sub 3/. The anomalous'' solvent effect of lithium ion, reported previously for the association of Cd(II) with bromide was observed aiso for the other associations and a tentative explanation is suggested. The temperature dependence of the association constants was foundmore » to be in agreement with the quasi-lattice model. The association constant of Ag(I) with iodide in molten mixtures of NaNO/sub 3/ and KNO/sub 3/ was measured and compared with previous results in pure KNO/sub 3/. The solvent effect was consistent with the reciprocal coulomb effect.'' Techniques were developed, and preliminary results obtained for measuring association constants in the solvent system KNO/sub 3/--Ca(NO/sub 3/)/sub 2/ in order to investigate the effect of charge as well as size of solvent cation on association constants in molten salt solutions. The measurement of association constants in concentrated aqueous electrolyte solutions was continued. The association of Cd(II) with bromide in aqueous LiNC/sub 3/ was measured as part of a program to find a system that would lend itself to investigation over the range between anhydrous molten salt and aqueous electrolyte solution. Cells and electrodes were developed for investigating association constants in equimolar LiNO/sub 3/ -KNO/sub 3/ with controlled small water contents, and preliminary results are reported. (auth)« less

  18. Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery

    NASA Astrophysics Data System (ADS)

    Christy, Maria; Arul, Anupriya; Zahoor, Awan; Moon, Kwang Uk; Oh, Mi Young; Stephan, A. Manuel; Nahm, Kee Suk

    2017-02-01

    The choice of electrolyte solvent is expected to play a key role in influencing the lithium-oxygen battery performance. The electrochemical performances of three electrolytes composed of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) salt and different solvents namely, ethylene carbonate/propylene carbonate (EC/PC), tetra ethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO) are investigated by assembling lithium oxygen cells. The electrolyte composition significantly varied the specific capacity of the battery. The choice of electrolyte also influences the overpotential, cycle life, and rechargeability of the battery. Electrochemical impedance spectra, cyclic voltammetry, and chronoamperometry were utilized to determine the reversible reactions associated with the air cathode.

  19. Toxicity of materials used in the manufacture of lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in currentmore » lithium battery research and development is evaluated and described.« less

  20. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.

    PubMed

    Borodin, Oleg; Ren, Xiaoming; Vatamanu, Jenel; von Wald Cresce, Arthur; Knap, Jaroslaw; Xu, Kang

    2017-12-19

    Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices. In this work, we focus on how the molecular-scale insight into the solvent and ion partitioning in the electrolyte double layer as a function of applied potential could predict changes in electrolyte stability and its initial oxidation and reduction reactions. In molecular dynamics (MD) simulations, highly concentrated lithium aqueous and nonaqueous electrolytes were found to exclude the solvent molecules from directly interacting with the positive electrode surface, which provides an additional mechanism for extending the electrolyte oxidation stability in addition to the well-established simple elimination of "free" solvent at high salt concentrations. We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential. This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition. The opposite electrosorption behaviors of bis(trifluoromethane)sulfonimide (TFSI) and trifluoromethanesulfonate (OTF) as predicted by MD simulation in highly concentrated aqueous electrolytes were confirmed by surface enhanced infrared spectroscopy. The proton transfer (H-transfer) reactions between solvent molecules on the cathode surface coupled with solvent oxidation were found to be ubiquitous for common Li-ion electrolyte components and dependent on the local molecular environment. Quantum chemistry (QC) calculations on the representative clusters showed that the majority of solvents such as carbonates, phosphates, sulfones, and ethers have significantly lower oxidation potential when oxidation is coupled with H-transfer, while without H-transfer their oxidation potentials reside well beyond battery operating potentials. Thus, screening of the solvent oxidation limits without considering H-transfer reactions is unlikely to be relevant, except for solvents containing unsaturated functionalities (such as C═C) that oxidize without H-transfer. On the anode, the F-transfer reaction and LiF formation during anion and fluorinated solvent reduction could be enhanced or diminished depending on salt and solvent partitioning in the double layer, again giving an additional tool to manipulate the order of reductive decompositions and interphase chemistry. Combined with experimental efforts, modeling results highlight the promise of interphasial compositional control by either bringing the desired components closer to the electrode surface to facilitate redox reaction or expelling them so that they are kinetically shielded from the potential of the electrode.

  1. Effects of Solvent Composition on Liquid Range, Glass Transition, and Conductivity of Electrolytes of a (Li, Cs)PF 6 Salt in EC-PC-EMC Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Michael S.; Li, Qiuyan; Li, Xing

    Electrolytes of 1 M LiPF 6 (lithium hexafluorophosphate) and 0.05 M CsPF 6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data inmore » their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.« less

  2. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, inmore » which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.« less

  3. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  4. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  5. "Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research.

    PubMed

    Azov, Vladimir A; Egorova, Ksenia S; Seitkalieva, Marina M; Kashin, Alexey S; Ananikov, Valentine P

    2018-02-21

    Inorganic and organic "solvent-in-salt" (SIS) systems have been known for decades but have attracted significant attention only recently. Molten salt hydrates/solvates have been successfully employed as non-flammable, benign electrolytes in rechargeable lithium-ion batteries leading to a revolution in battery development and design. SIS with organic components (for example, ionic liquids containing small amounts of water) demonstrate remarkable thermal stability and tunability, and present a class of admittedly safer electrolytes, in comparison with traditional organic solvents. Water molecules tend to form nano- and microstructures (droplets and channel networks) in ionic media impacting their heterogeneity. Such microscale domains can be employed as microreactors for chemical and enzymatic synthesis. In this review, we address known SIS systems and discuss their composition, structure, properties and dynamics. Special attention is paid to the current and potential applications of inorganic and organic SIS systems in energy research, chemistry and biochemistry. A separate section of this review is dedicated to experimental methods of SIS investigation, which is crucial for the development of this field.

  6. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness.

    PubMed

    Meister, Paul; Qi, Xin; Kloepsch, Richard; Krämer, Elisabeth; Streipert, Benjamin; Winter, Martin; Placke, Tobias

    2017-02-22

    The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al 2 O 3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS.

    PubMed

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei; Zhou, Yufan; Wang, Jungang; Cao, Ruiguo; Xu, Wu; Wang, Chongmin; Baer, Donald R; Borodin, Oleg; Xu, Kang; Wang, Yanting; Wang, Xue-Lin; Xu, Zhijie; Wang, Fuyi; Zhu, Zihua

    2018-03-06

    Ion-solvent interactions in nonaqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF 6 ) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC) and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li + by EC. Besides, from the negative spectra, we also found that PF 6 - forms association with EC, which has been neglected by previous studies due to the relatively weak interaction. In both LiFSI in DME electrolytes, however, no evidence shows that FSI - is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF 6 in EC-DMC electrolyte, suggesting that a significant amount of Li + ions stay in the vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in nonaqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.

  8. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei

    2018-02-06

    Ion-solvent interactions in non-aqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF6) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC), and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li+ by EC. Besides, from the negative spectra, we also found that PF6- forms association with EC,more » which has been neglected by previous studies due to the relatively weak interaction. While in both LiFSI in DME electrolytes, no evidence shows that FSI- is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF6 in EC-DMC electrolyte, suggesting that a significant amount of Li+ ions stay in vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics (MD) simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in non-aqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.« less

  9. Investigation of Ion–Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei

    Ion-solvent interactions in non-aqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF6) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC), and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li+ by EC. Besides, from the negative spectra, we also found that PF6- forms association with EC,more » which has been neglected by previous studies due to the relatively weak interaction. While in both LiFSI in DME electrolytes, no evidence shows that FSI- is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF6 in EC-DMC electrolyte, suggesting that a significant amount of Li+ ions stay in vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics (MD) simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in non-aqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.« less

  10. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-07

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO{sub 4}) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-{Delta}G{sub r}) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO{sub 4} concentrations,more » and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-{Delta}G{sub r}), the former in ethanol and ACN increases only linearly with the increase in driving force (-{Delta}G{sub r}). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.« less

  11. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide temperature range in MCMB-LiNiCoAlO2 and Li4Ti5O12-LiNi-CoAlO2 prototype cells. These electrolytes have enabled high rate performance at low temperature (i.e., up to 2.0C rates at -50 C and 5.0C rates at -40 C), and good cycling performance over a wide temperature range (i.e., from -40 to +70 C). Current efforts are focused upon improving the high temperature resilience of the methyl propionatebased system through the use of electrolyte additives, which are envisioned to improve the nature of the solid electrolyte interphase (SEI) layers.

  12. Partially Fluorinated Solvent as a co-solvent for the Non-aqueous Electrolyte of Li/air Battery

    DTIC Science & Technology

    2010-11-11

    ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li–air battery. Results...fluorinated solvents on the discharge performance of Li–air bat- tery. For this purpose, we here selectmethyl nonafluorobutyl ether ( MFE ) and tris...196, (2011) pgs. 2867-2870 14. ABSTRACT In this workwestudy methyl nonafluorobutyl ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP

  13. Ultracapacitor electroyte

    DOEpatents

    Wei, Chang; LeBlanc, Jr., Oliver Harris; Jerabek, Elihu Calvin

    2001-07-03

    The invention relates to an ultracapacitor and to a method of making an ultracapacitor. The ultracapacitor of the invention includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte includes a cyclic carbonate solvent, a cyclic ester solvent and an electrolyte salt. The invention also relates to a stack of ultracapacitor cells.

  14. Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, Surya; Krause, Frederick C.

    2013-01-01

    Given that lithium-ion (Li-ion) technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. Therefore, extensive effort has been devoted to developing nonflammable electrolytes to reduce the flammability of the cells/battery. A number of promising electrolytes have been developed incorporating flame-retardant additives, and have been shown to have good performance in a number of systems. However, these electrolyte formulations did not perform well when utilizing carbonaceous anodes with the high-voltage materials. Thus, further development was required to improve the compatibility. A number of Li-ion battery electrolyte formulations containing a flame-retardant additive [i.e., triphenyl phosphate (TPP)] were developed and demonstrated in high-voltage systems. These electrolytes include: (1) formulations that incorporate varying concentrations of the flame-retardant additive (from 5 to 15%), (2) the use of mono-fluoroethylene carbonate (FEC) as a co-solvent, and (3) the use of LiBOB as an electrolyte additive intended to improve the compatibility with high-voltage systems. Thus, improved safety has been provided without loss of performance in the high-voltage, high-energy system.

  15. Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton

    DOE PAGES

    Matsubara, Yasuo; Grills, David C.; Koide, Yoshihiro

    2016-12-28

    Room-temperature ionic liquids (ILs) are a class of nonaqueous solvents that have expanded the realm of modern chemistry, drawing increasing interest over the last few decades, not only in terms of their own unique physical chemistry but also in many applications including organic synthesis, electrochemistry, and biological systems, wherein charged solutes (i.e., electrolytes) often play vital roles. But, our fundamental understanding of the dissolution of an electrolyte in an IL is still rather limited. For example, the activity of a charged species has frequently been assumed to be unity without a clear experimental basis. In this study, we have discussedmore » a standard component-based scheme for the dissolution of an electrolyte in an IL, supported by our observation of ideal Nernstian responses for the reduction of silver and ferrocenium salts in a representative IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([emim +][NTf 2 -] or [emim +][TFSI -]). Using this scheme, which was also supported by temperature-dependent measurements with ILs having longer alkyl chains in the imidazolium ring, and the solubility of the IL in water, we established the concept of Gibbs transfer energies of “pseudo-single ions” from the IL to conventional neutral molecular solvents (water, acetonitrile, and methanol). This concept, which bridges component- and constituent-based energetics, utilizes an extrathermodynamic assumption, which itself was justified by experimental observations. Furthermore, these energies enable us to eliminate inner potential differences between the IL and molecular solvents (solvent-solvent interactions), that is, on a practical level, conditional liquid junction potential differences, so that we can discuss ion-solvent interactions independently. Specifically, we have examined the standard electrode potential of the ferrocenium/ferrocene redox couple, Fc +/Fc, and the absolute intrinsic standard chemical potential of a proton in [emim +][NTf 2 -], finding that the proton is more acidic in the IL than in water by 6.5 ± 0.6 units on the unified pH scale. Finally, our results strengthen the progress on the physical chemistry of ions in IL solvent systems on the basis of their activities, providing a rigorous thermodynamic framework.« less

  16. Optimizing Ionic Electrolytes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan; Hall, Sarah

    2009-03-01

    Dye-sensitized solar cells DSSCs provide next generation, low cost, and easy fabrication photovoltaic devices based on organic sensitizing molecules, polymer gel electrolyte, and metal oxide semiconductors. One of the key components is the solvent-free ionic liquid electrolyte that has low volatility and high stability. We report a rapid and low cost method to fabricate ionic polymer electrolyte used in DSSCs. Poly(ethylene oxide) (PEO) is blended with imidazolinium salt without any chemical solvent to form a gel electrolyte. Uniform and crack-free porous TiO2 thin films are sensitized by porphrine dye covered by the synthesized gel electrolyte. The fabricated DSSCs are more stable and potentially increase the photo-electricity conversion efficiency.

  17. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  18. Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, N.; Xue, Z.; Rago, N. D.

    The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with themore » fluorinated electrolyte showed prolonged shelf life at fully charged state.« less

  19. Anomalous Protein-Protein Interactions in Multivalent Salt Solution.

    PubMed

    Pasquier, Coralie; Vazdar, Mario; Forsman, Jan; Jungwirth, Pavel; Lund, Mikael

    2017-04-13

    The stability of aqueous protein solutions is strongly affected by multivalent ions, which induce ion-ion correlations beyond the scope of classical mean-field theory. Using all-atom molecular dynamics (MD) and coarse grained Monte Carlo (MC) simulations, we investigate the interaction between a pair of protein molecules in 3:1 electrolyte solution. In agreement with available experimental findings of "reentrant protein condensation", we observe an anomalous trend in the protein-protein potential of mean force with increasing electrolyte concentration in the order: (i) double-layer repulsion, (ii) ion-ion correlation attraction, (iii) overcharge repulsion, and in excess of 1:1 salt, (iv) non Coulombic attraction. To efficiently sample configurational space we explore hybrid continuum solvent models, applicable to many-protein systems, where weakly coupled ions are treated implicitly, while strongly coupled ones are treated explicitly. Good agreement is found with the primitive model of electrolytes, as well as with atomic models of protein and solvent.

  20. Novel Elastomeric Membranes Developed for Polymer Electrolytes in Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Maryann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    Lithium-based polymer batteries for aerospace applications need to be highly conductive from -70 to 70 C. State-of-the-art polymer electrolytes are based on polyethylene oxide (PEO) because of the ability of its ether linkages to solvate lithium ions. Unfortunately, PEO has a tendency to form crystalline regions below 60 C, dramatically lowering conductivity below this temperature. PEO has acceptable ionic conductivities (10(exp -4) to 10(exp -3) S/cm) above 60 C, but it is not mechanically strong. The room-temperature conductivity of PEO can be increased by adding solvent or plasticizers, but this comes at the expense of thermal and mechanical stability. One of NASA Glenn Research Center s objectives in the Polymer Rechargeable System program (PERS) is to develop novel polymer electrolytes that are highly conductive at and below room temperature without added solvents or plasticizers.

  1. Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Buga, Ratnakumar V.; Gozdz, Antoni S.; Mani, Suresh

    2010-01-01

    As part of the continuing efforts to develop advanced electrolytes to improve the performance of lithium-ion cells, especially at low temperatures, a number of electrolyte formulations have been developed that result in improved low-temperature performance (down to 60 C) of 26650 A123Systems commercial lithium-ion cells. The cell type/design, in which the new technology has been demonstrated, has found wide application in the commercial sector (i.e., these cells are currently being used in commercial portable power tools). In addition, the technology is actively being considered for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In current work, a number of low-temperature electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed, which include the use of ternary mixtures of carbonates, the use of ester co-solvents [e.g., methyl butyrate (MB)], and optimized lithium salt concentrations (e.g., LiPF6), were compared with the commercial baseline electrolyte, as well as an electrolyte being actively considered for DoE HEV applications and previously developed by a commercial enterprise, namely LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC)(30:70%).

  2. Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Chen, Junzheng; Cao, Ruiguo

    The electrolyte is a crucial component of lithium-sulfur (Li-S) batteries, as it controls polysulfide dissolution, charge shuttling processes, and solid-electrolyte interphase (SEI) layer formation. Experimentally, the overall performance of Li-S batteries varies with choice of solvent system and Li-salt used in the electrolyte, and a lack of predictive understanding about the effects of individual electrolyte components inhibits the rational design of electrolytes for Li-S batteries. Here we analyze the role of the counter anions of common Li salts (such as TfO-, FSI-, TFSI-, and TDI-) when dissolved in DOL/DME (1:1 vol.) for use in Li-S batteries. The evolution of ion-ionmore » and ion-solvent interactions due to vari-ous anions was analyzed using 17O NMR and pulsed-field gradient (PFG) NMR and then correlated with electrochemi-cal performance in Li-S cells. These data reveal that the for-mation of the passivation layer on the anode and the loss of active materials from the cathode (evidenced by polysulfide dissolution) are related to anion mobility and affinity with lithium polysulfide, respectively. For future electrolyte de-sign, anions with lower mobility and weaker interactions with lithium polysulfides may be superior candidates for increasing the long-term stability of Li-S batteries.« less

  3. Kinetic-Dominated Charging Mechanism within Representative Aqueous Electrolyte-based Electric Double-Layer Capacitors.

    PubMed

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Chen, Xia; Shuai, Xiaorui; Kong, Jing; Yan, Jianhua; Cen, Kefa

    2017-08-03

    The chemical nature of electrolytes has been demonstrated to play a pivotal role in the charge storage of electric double-layer capacitors (EDLCs), whereas primary mechanisms are still partially resolved but controversial. In this work, a systematic exploration into EDL structures and kinetics of representative aqueous electrolytes is performed with numerical simulation and experimental research. Unusually, a novel charging mechanism exclusively predominated by kinetics is recognized, going beyond traditional views of manipulating capacitances preferentially via interfacial structural variations. Specifically, strikingly distinctive EDL structures stimulated by diverse ion sizes, valences, and mixtures manifest a virtually identical EDL capacitance, where the dielectric nature of solvents attenuates ionic effects on electrolyte redistributions, in stark contradiction with solvent-free counterpart and traditional Helmholtz theory. Meanwhile, corresponding kinetics evolve conspicuously with ionic species, intimately correlated with ion-solvent interactions. The achieved mechanisms are subsequently illuminated by electrochemical measurements, highlighting the crucial interplay between ions and solvents in regulating EDLC performances.

  4. Safe battery solvents

    DOEpatents

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  5. Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar

    2010-01-01

    A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non-halogenated esters, film forming additives, thermal stabilizing additives, and flame retardant additives. Further optimization of these electrolyte formulations is anticipated to yield improved performance. It is also anticipated that much improved performance will be demonstrated once these electrolyte solutions are incorporated into hermetically sealed, large capacity prototype cells, especially if effort is devoted to ensure that all electrolyte components are highly pure.

  6. Lithium-Ion Electrolytes with Fluoroester Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Smith, Kiah (Inventor); Bhalla, Pooja (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, G. K. Surya (Inventor)

    2014-01-01

    An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed.

  7. Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: High throughput screening

    NASA Astrophysics Data System (ADS)

    Kafle, Janak; Harris, Joshua; Chang, Jeremy; Koshina, Joe; Boone, David; Qu, Deyang

    2018-07-01

    In this report, we demonstrate that the low temperature power capability of a Li-ion battery can be substantially improved not by adding commercially unavailable additives into the electrolyte, but by rational design of the composition of the most commonly used solvents. Through the detail analysis with electrochemical impedance spectroscopy, the formation of a homogenous solid electrolyte interface (SEI) layer on the carbon anode surface is found to be critical to ensure the performance of a Li-ion battery in a wide temperature range. The post mortem analysis of the negative electrode by XPS revealed that all the electrolyte compositions form similar compounds in the solid electrolyte interphase. However, the electrolytes which give higher capacities at low temperature showed higher percentage of LiF and lower percentage of carbon containing species such as lithium carbonate and lithium ethylene di-carbonate. The electrolyte compositions where cyclic carbonates make up less than 25% of the total solvent showed increased low temperature performance. The solvent composition with higher percentage of linear short chain carbonates showed an improved low temperature performance. The high temperature performances were similar in almost all the combinations.

  8. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Prakash, Surya G. (Inventor); Bugga, Ratnakumar V. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  9. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties

    NASA Astrophysics Data System (ADS)

    Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik

    2015-02-01

    Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.

  10. Co-solvents with high coulombic efficiency in propylene carbonate based electrolytes

    DOEpatents

    Liu, Gao; Zhao, Hui; Park, Sang-Jae

    2017-06-27

    A homologous series of cyclic carbonate or propylene carbonate (PC) analogue solvents with increasing length of linear alkyl substitutes were synthesized and used as co-solvents with PC for graphite based lithium ion half cells. A graphite anode reaches a capacity around 310 mAh/g in PC and its analogue co-solvents with 99.95% Coulombic efficiency. Cyclic carbonate co-solvents with longer alkyl chains are able to prevent exfoliation of graphite when used as co-solvents with PC. The cyclic carbonate co-solvents of PC compete for solvation of Li ion with PC solvent, delaying PC co-intercalation. Reduction products of PC on graphite surfaces via single-electron path form a stable Solid Electrolyte Interphase (SEI), which allows the reversible cycling of graphite.

  11. Electronic Structure at Electrode/Electrolyte Interfaces in Magnesium based Batteries

    NASA Astrophysics Data System (ADS)

    Balachandran, Janakiraman; Siegel, Donald

    2015-03-01

    Magnesium is a promising multivalent element for use in next generation electrochemical energy storage systems. However, a wide range of challenges such as low coulombic efficiency, low/varying capacity and cyclability need to be resolved in order to realize Mg based batteries. Many of these issues can be related to interfacial phenomena between the Mg anode and common electrolytes. Ab-initio based computational models of these interfaces can provide insights on the interfacial interactions that can be difficult to probe experimentally. In this work we present ab-initio computations of common electrolyte solvents (THF, DME) in contact with two model electrode surfaces namely -- (i) an ``SEI-free'' electrode based on Mg metal and, (ii) a ``passivated'' electrode consisting of MgO. We perform GW calculations to predict the reorganization of the molecular orbitals (HOMO/LUMO) upon contact with the these surfaces and their alignment with respect to the Fermi energy of the electrodes. These computations are in turn compared with more efficient GGA (PBE) & Hybrid (HSE) functional calculations. The results obtained from these computations enable us to qualitatively describe the stability of these solvent molecules at electrode-electrolyte interfaces

  12. Process for the production of low flammability electrolyte solvents

    DOEpatents

    Krumdick, Gregory K.; Pupek, Krzysztof; Dzwiniel, Trevor L.

    2016-02-16

    The invention provides a method for producing electrolyte solvent, the method comprising reacting a glycol with a disilazane in the presence of a catalyst for a time and at a temperature to silylate the glycol, separating the catalyst from the silylated glycol, removing unreacted silazane; and purifying the silylated glycol.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Yasuo; Grills, David C.; Koide, Yoshihiro

    Room-temperature ionic liquids (ILs) are a class of nonaqueous solvents that have expanded the realm of modern chemistry, drawing increasing interest over the last few decades, not only in terms of their own unique physical chemistry but also in many applications including organic synthesis, electrochemistry, and biological systems, wherein charged solutes (i.e., electrolytes) often play vital roles. But, our fundamental understanding of the dissolution of an electrolyte in an IL is still rather limited. For example, the activity of a charged species has frequently been assumed to be unity without a clear experimental basis. In this study, we have discussedmore » a standard component-based scheme for the dissolution of an electrolyte in an IL, supported by our observation of ideal Nernstian responses for the reduction of silver and ferrocenium salts in a representative IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([emim +][NTf 2 -] or [emim +][TFSI -]). Using this scheme, which was also supported by temperature-dependent measurements with ILs having longer alkyl chains in the imidazolium ring, and the solubility of the IL in water, we established the concept of Gibbs transfer energies of “pseudo-single ions” from the IL to conventional neutral molecular solvents (water, acetonitrile, and methanol). This concept, which bridges component- and constituent-based energetics, utilizes an extrathermodynamic assumption, which itself was justified by experimental observations. Furthermore, these energies enable us to eliminate inner potential differences between the IL and molecular solvents (solvent-solvent interactions), that is, on a practical level, conditional liquid junction potential differences, so that we can discuss ion-solvent interactions independently. Specifically, we have examined the standard electrode potential of the ferrocenium/ferrocene redox couple, Fc +/Fc, and the absolute intrinsic standard chemical potential of a proton in [emim +][NTf 2 -], finding that the proton is more acidic in the IL than in water by 6.5 ± 0.6 units on the unified pH scale. Finally, our results strengthen the progress on the physical chemistry of ions in IL solvent systems on the basis of their activities, providing a rigorous thermodynamic framework.« less

  14. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Liu, Jun; Pan, Huilin

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li 2S x electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  15. The Role of Electrolyte Upon the SEI Formation Characteristics and Low Temperature Performance of Lithium-Ion Cells With Graphite Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Greenbaum, S.; Surampudi, S.

    2000-01-01

    Quarternary lithium-ion battery electrolyte solutions containing ester co-solvents in mixtures of carbonates have been demonstrated to have high conductivity at low temperatures (< -20C). However, in some cases the presence of such co-solvents does not directly translate into improved low temperature cell performance, presumably due to the formation of ionically resistive surface films on carbonaceous anodes. In order to understand this behavior, a number of lithium-graphite cells have been studied containing electrolytes with various ester co-solvents, including methyl acetate (MA), ethyl acetate (EA), ethyl propionate (EP), and ethyl butyrate (EB). The charge/discharge characterization of these cells indicates that the higher molecular weight esters result in electrolytes which possess superior low temperature performance in contrast to the lower molecular weight ester-containing solutions, even though these solutions display lower conductivity values.

  16. Lithium ion battery with improved safety

    DOEpatents

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  17. Wide-Temperature Electrolytes for Lithium-Ion Batteries.

    PubMed

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S; Zheng, Jianming; Cartmell, Samuel S; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-06-07

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service-temperature range of lithium (Li)-ion batteries (LIBs). In this study, we report such wide-temperature electrolyte formulations by optimizing the ethylene carbonate (EC) content in the ternary solvent system of EC, propylene carbonate (PC), and ethyl methyl carbonate (EMC) with LiPF 6 salt and CsPF 6 additive. An extended service-temperature range from -40 to 60 °C was obtained in LIBs with lithium nickel cobalt aluminum oxide (LiNi 0.80 Co 0.15 Al 0.05 O 2 , NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room temperature and elevated temperatures were systematically investigated together with the ionic conductivity and phase-transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF 6 in EC-PC-EMC (1:1:8 by wt) with 0.05 M CsPF 6 , which was demonstrated in both coin cells of graphite∥NCA and 1 Ah pouch cells of graphite∥LiNi 1/3 Mn 1/3 Co 1/3 O 2 . This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the high capacity retention (68%) at -40 °C and C/5 rate, significantly higher than that (20%) of the conventional LIB electrolyte, and the nearly identical stable cycle life as the conventional LIB electrolyte at room temperature and elevated temperatures up to 60 °C.

  18. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    NASA Astrophysics Data System (ADS)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  19. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the saltmore » in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.« less

  20. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1994-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  1. A high performance lithium–sulfur battery enabled by a fish-scale porous carbon/sulfur composite and symmetric fluorinated diethoxyethane electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Mengyao; Su, ChiCheung; He, Meinan

    A high performance lithium–sulfur (Li–S) battery comprising a symmetric fluorinated diethoxyethane electrolyte coupled with a fish-scale porous carbon/S composite electrode was demonstrated. 1,2-Bis(1,1,2,2-tetrafluoroethoxy)ethane (TFEE) was first studied as a new electrolyte solvent for Li–S chemistry. When co-mixed with 1,3-dioxolane (DOL), the DOL/TFEE electrolyte suppressed the polysulfide dissolution and shuttling reaction. Lastly, when coupled with a fish-scale porous carbon/S composite electrode, the Li–S cell exhibited a significantly high capacity retention of 99.5% per cycle for 100 cycles, which is far superior to the reported numerous systems.

  2. A high performance lithium–sulfur battery enabled by a fish-scale porous carbon/sulfur composite and symmetric fluorinated diethoxyethane electrolyte

    DOE PAGES

    Gao, Mengyao; Su, ChiCheung; He, Meinan; ...

    2017-03-07

    A high performance lithium–sulfur (Li–S) battery comprising a symmetric fluorinated diethoxyethane electrolyte coupled with a fish-scale porous carbon/S composite electrode was demonstrated. 1,2-Bis(1,1,2,2-tetrafluoroethoxy)ethane (TFEE) was first studied as a new electrolyte solvent for Li–S chemistry. When co-mixed with 1,3-dioxolane (DOL), the DOL/TFEE electrolyte suppressed the polysulfide dissolution and shuttling reaction. Lastly, when coupled with a fish-scale porous carbon/S composite electrode, the Li–S cell exhibited a significantly high capacity retention of 99.5% per cycle for 100 cycles, which is far superior to the reported numerous systems.

  3. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity.

    PubMed

    Burke, Colin M; Pande, Vikram; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

    2015-07-28

    Among the "beyond Li-ion" battery chemistries, nonaqueous Li-O2 batteries have the highest theoretical specific energy and, as a result, have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O2 batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than fourfold) in Li-O2 cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using (7)Li NMR and modeling, we confirm that this improvement is a result of enhanced Li(+) stability in solution, which, in turn, induces solubility of the intermediate to Li2O2 formation. Using this strategy, the challenging task of identifying an electrolyte solvent that possesses the anticorrelated properties of high intermediate solubility and solvent stability is alleviated, potentially providing a pathway to develop an electrolyte that affords both high capacity and rechargeability. We believe the model and strategy presented here will be generally useful to enhance Coulombic efficiency in many electrochemical systems (e.g., Li-S batteries) where improving intermediate stability in solution could induce desired mechanisms of product formation.

  4. Qualitative Investigation of the Decomposition of Organic Solvent Based Lithium Ion Battery Electrolytes with LC-IT-TOF-MS.

    PubMed

    Schultz, Carola; Vedder, Sven; Winter, Martin; Nowak, Sascha

    2016-11-15

    The development of a novel high performance liquid chromatography (HPLC) method hyphenated to an ion-trap time-of-flight mass spectrometer (IT-TOF-MS) for the separation and identification of constituents from common organic carbonate solvent-based electrolyte systems in lithium ion batteries (LIBs) is presented in this work. The method development was conducted for the qualitative structural elucidation of electrolyte main constituents with a special focus on the aging products of these components. The determination of their limits of detection was performed as well. Four different LiPF 6 -based LIB electrolytes were investigated in this study. The selected aging procedures for the electrolytes were thermal aging (storage at 60 °C for 2 weeks, storage at 60 °C in the presence of 2 vol % water contamination for 2 weeks) and electrochemical aging for 100 cycles at 2C. After thermal aging, several aging products were identified. The formation of organic phosphate aging products and several organofluorophosphates aging products was observed after thermal aging with water. Additionally, the content of carbonate aging products increased. After electrochemical aging, several carbonate aging products were detected. Electrochemical aging at 60 °C leads to the additional generation of organofluorophosphate aging products.

  5. Non-aqueous electrolytes for electrochemical cells

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  6. Electrochemical characteristics of Li/LiMn 2O 4 cells using gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Ko, Jang-Myoun; Chun, Jong-Han

    Gel polymer electrolytes composed of acrylonitrile-methylmethacrylate (AM) copolymer and 1 M LiClO 4-ethylene carbonate (EC)/propylene carbonate (PC) are prepared. The ionic conductivity reaches 1.9×10 -3 S cm -1 in a gel polymer electrolyte with 20 wt.% of AM copolymer and 80 wt.% of LiClO 4-EC/PC at room temperature. These systems showed no solvent exudation from the matrix polymer due to enhanced compatibility between AM copolymer and organic liquid electrolyte. A Li/gel polymer electrolyte/LiMn 2O 4 cell has a reversible capacity of 132 mAh g -1 in the voltage range of 3.0-4.3 V at the C/5 rate and shows good cycling performance with a coulombic efficiency >99%.

  7. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.

    PubMed

    Shyamsunder, Abhinandan; Beichel, Witali; Klose, Petra; Pang, Quan; Scherer, Harald; Hoffmann, Anke; Murphy, Graham K; Krossing, Ingo; Nazar, Linda F

    2017-05-22

    The step-change in gravimetric energy density needed for electrochemical energy storage devices to power unmanned autonomous vehicles, electric vehicles, and enable low-cost clean grid storage is unlikely to be provided by conventional lithium ion batteries. Lithium-sulfur batteries comprising lightweight elements provide a promising alternative, but the associated polysulfide shuttle in typical ether-based electrolytes generates loss in capacity and low coulombic efficiency. The first new electrolyte based on a unique combination of a relatively hydrophobic sulfonamide solvent and a low ion-pairing salt, which inhibits the polysulfide shuttle, is presented. This system behaves as a sparingly solvating electrolyte at slightly elevated temperatures, where it sustains reversible capacities as high as 1200-1500 mAh g -1 over a wide range of current density (2C-C/5, respectively) when paired with a lithium metal anode, with a coulombic efficiency of >99.7 % in the absence of LiNO 3 additive. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anodic Dissolution of Al Current Collectors in Unconventional Solvents for High Voltage Electrochemical Double-Layer Capacitors.

    PubMed

    Krummacher, Jakob; Heß, Lars-Henning; Balducci, Andrea

    2017-09-04

    This study investigated the anodic dissolution of Al current collectors in unconventional electrolytes for high voltage electrochemical double-layer capacitors (EDLCs) containing adiponitrile (ADN), 3-cyanopropionic acid methyl ester (CPAME), 2-methyl-glutaronitrile (2-MGN) as solvent, and tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bis(trifluoromethanesulfonyl)imide (Et 4 NTFSI) as conductive salts. To have a comparison with the state-of-the-art electrolytes, the same salts were also used in combination with acetonitrile (ACN). The chemical-physical properties of the electrolytes were investigated. Furthermore, their impact on the anodic dissolution of Al was analyzed in detail as well as the influence of this process on the performance of high voltage EDLCs. The results of this study indicated that in the case of Et 4 NBF 4 -based electrolytes, the use of an alternative solvent is very beneficial for the realization of stable devices. When Et 4 NTFSI is used, the reduced solubility of the complex Al(TFSI) 3 appears to be the key for the realization of advanced electrolytes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Anionic microemulsion to solvent stacking for on-line sample concentration of cationic analytes in capillary electrophoresis.

    PubMed

    Kukusamude, Chunyapuk; Srijaranai, Supalax; Quirino, Joselito P

    2014-05-01

    The common SDS microemulsion (i.e. 3.3% SDS, 0.8% octane, and 6.6% butanol) and organic solvents were investigated for the stacking of cationic drugs in capillary zone electrophoresis using a low pH separation electrolyte. The sample was prepared in the acidic microemulsion and a high percentage of organic solvent was included in the electrolyte at anodic end of capillary. The stacking mechanism was similar to micelle to solvent stacking where the micelles were replaced by the microemulsion for the transport of analytes to the organic solvent rich boundary. This boundary is found between the microemulsion and anodic electrolyte. The effective electrophoretic mobility of the cations reversed from the direction of the anode in the microemulsion to the cathode in the boundary. Microemulsion to solvent stacking was successfully achieved with 40% ACN in the anodic electrolyte and hydrodynamic sample injection of 21 s at 1000 mbar (equivalent to 30% of the effective length). The sensitivity enhancement factors in terms of peak height and corrected peak area were 15 to 35 and 21 to 47, respectively. The linearity R(2) in terms of corrected peak area were >0.999. Interday precisions (%RSD, n = 6) were 3.3-4.0% for corrected peak area and 2.0-3.0% for migration time. Application to spiked real sample is also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firouzi, Ali; Qiao, Ruimin; Motallebi, Shahrokh

    The demand of sustainable power supply requires high-performance cost-effective energy storage technologies. Here in this paperwe report a high-rate long-life low-cost sodium-ion battery full-cell system by innovating both the anode and the electrolyte. The redox couple of manganese(I/II) in Prussian blue analogs enables a high-rate and stable anode. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering provide direct evidence suggesting the existence of monovalent manganese in the charged anode. There is a strong hybridization between cyano ligands and manganese-3d states, which benefits the electronic property for improving rate performance. Additionally, we employ an organic-aqueous cosolvent electrolyte to solve themore » long-standing solubility issue of Prussian blue analogs. A full-cell sodium-ion battery with low-cost Prussian blue analogs in both electrodes and co-solvent electrolyte retains 95% of its initial discharge capacity after 1000 cycles at 1C and 9 5% depth of discharge. The revealed manganese(I/II) redox couple inspires conceptual innovations of batteries based on atypical oxidation states.« less

  11. Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries

    DOE PAGES

    Firouzi, Ali; Qiao, Ruimin; Motallebi, Shahrokh; ...

    2018-02-28

    The demand of sustainable power supply requires high-performance cost-effective energy storage technologies. Here in this paperwe report a high-rate long-life low-cost sodium-ion battery full-cell system by innovating both the anode and the electrolyte. The redox couple of manganese(I/II) in Prussian blue analogs enables a high-rate and stable anode. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering provide direct evidence suggesting the existence of monovalent manganese in the charged anode. There is a strong hybridization between cyano ligands and manganese-3d states, which benefits the electronic property for improving rate performance. Additionally, we employ an organic-aqueous cosolvent electrolyte to solve themore » long-standing solubility issue of Prussian blue analogs. A full-cell sodium-ion battery with low-cost Prussian blue analogs in both electrodes and co-solvent electrolyte retains 95% of its initial discharge capacity after 1000 cycles at 1C and 9 5% depth of discharge. The revealed manganese(I/II) redox couple inspires conceptual innovations of batteries based on atypical oxidation states.« less

  12. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends in stability and ionic mobility imparted by different alkyl substituents in linear carbonates.

  13. Performance Characteristics of Lithium Ion Polymeric Electrolyte Cells

    NASA Technical Reports Server (NTRS)

    Shen, D.; Nagasubramanian, G.; Huang, C-K.; Surampudi, S.; Halpert, G.

    1994-01-01

    A series of polyacrylonitrile-based (PAN) electrolytes containing LiAsF6 and a number of solvent mixtures including ethylene carbonate (EC) + propylene carbonate (PC) were prepared, electrochemically evaluated and used as electrolyte in the polymer cells.

  14. Entropy Driven Self-Assembly in Charged Lock-Key Particles.

    PubMed

    Odriozola, Gerardo; Lozada-Cassou, Marcelo

    2016-07-07

    In this work we study the lock-key model successfully used in supramolecular chemistry and particles self-assembly and gain further insight into the infinite diluted limit of the lock and key, depletant mediated, effective attraction. We discuss the depletant forces and entropy approaches to self-assembly and give details on the different contributions to the net force for a charged lock and key pair immersed in a solvent plus a primitive model electrolyte. We show a strong correlation of the force components behavior and the underlying processes of co-ion and solvent release from the cavity. In addition, we put into context the universal behavior observed for the energy-distance curves when changing the lock and key to solvent size ratio. Basically, we now show that this behavior is not always achieved and depends on the particular system geometry. Finally, we present a qualitative good agreement with experiments when changing the electrolyte concentration, valence, and cavity-key size ratio.

  15. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI

    NASA Astrophysics Data System (ADS)

    Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano

    2017-06-01

    The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.

  16. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twicemore » less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.« less

  17. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore » the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  18. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE PAGES

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; ...

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore » the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  19. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The Jet Propulsion Laboratory is involved in a Research and Development program sponsored by NASA/OAST on the development of ambient temperature secondary lithium cells for future space applications. Some of the projected applications are planetary spacecraft, planetary rovers, and astronaut equipment. The main objective is to develop secondary lithium cells with greater than 100 Wh/kg specific energy while delivering 1000 cycles at 50 percent Depth of Discharge (DOD). To realize these ambitious goals, the work was initially focused on several important basic issues related to the cell chemistry, selection of cathode materials and electrolytes, and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of realizable specific energy and cycle life. Some of the major advancements made so far in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. Methods were developed for the fabrication of large size high performance TiS2 cathodes. Among the various electrolytes examined, 1.5M LiAsF6/EC + 2-MeTHF mixed solvent electrolyte was found to be more stable towards lithium. Experimental cells activated with this electrolyte exhibited more than 300 cycles at 100 percent Depth of Discharge. Work is in progress in other areas such as selection of lithium alloys as candidate anode materials, optimization of cell design, and development of 5 Ah cells. The advances made at the Jet Propulsion Laboratory on the development of secondary lithium cells are summarized.

  20. Influence of solvent species on the charge-discharge characteristics of a natural graphite electrode

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masahisa; Shoji, Yoshihiro; Kida, Yoshinori; Ohshita, Ryuji; Nohma, Toshiyuki; Nishio, Koji

    The charge-discharge characteristics of a natural graphite electrode are examined in a mixed solvent composed of ethylene carbonate (EC) and propylene carbonate (PC). The characteristics are influenced largely by the solvent species. Natural graphite electrode displays good charge-discharge characteristics in an electrolyte containing EC with a high volume fraction. In an electrolyte containing PC, however, the electrode cannot be charged and the solvent is decomposed. X-ray photoelectron spectroscopy is used to obtain information about the surface of natural graphite. A thin LiF layer, the decomposition product of lithium hexafluorophosphate (LiPF 6), is formed on the surface of the natural graphite charged to 0.5 V (vs. Li/Li +) in an electrolyte containing a high volume fraction of EC. On the other hand, LiF and a carbonate compound are formed in the bulk and on the surface of natural graphite when the volume fraction of PC is high. These results suggest that the thin LiF layer, which is produced at a potential higher than 0.5 V (vs. Li/Li +) on the surface of natural graphite, enables the lithium ions to intercalate into the natural graphite without further decomposition of the electrolyte.

  1. High‐Performance Lithium‐Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt

    PubMed Central

    Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kim, Hwan Kyu

    2017-01-01

    Abstract To fabricate a sustainable lithium‐oxygen (Li‐O2) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO3) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV‐DEMS study confirms that the TMS‐LiNO3 electrolyte efficiently produces NO2 −, which initiates a redox shuttle reaction. Interestingly, this NO2 −/NO2 redox reaction derived from the LiNO3 salt is not very effective in solvents other than TMS. Compared with other common Li‐O2 solvents, TMS seems optimum solvent for the efficient use of LiNO3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO2 −/NO2 redox reaction, which results in a high‐performance Li‐O2 battery. PMID:29051863

  2. High-Performance Lithium-Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt.

    PubMed

    Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kang, Yongku; Kim, Hwan Kyu; Kim, Dong Wook

    2017-10-01

    To fabricate a sustainable lithium-oxygen (Li-O 2 ) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO 3 ) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO 3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV-DEMS study confirms that the TMS-LiNO 3 electrolyte efficiently produces NO 2 - , which initiates a redox shuttle reaction. Interestingly, this NO 2 - /NO 2 redox reaction derived from the LiNO 3 salt is not very effective in solvents other than TMS. Compared with other common Li-O 2 solvents, TMS seems optimum solvent for the efficient use of LiNO 3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO 2 - /NO 2 redox reaction, which results in a high-performance Li-O 2 battery.

  3. Precursor-route ZnO films from a mixed casting solvent for high performance aqueous electrolyte-gated transistors.

    PubMed

    Althagafi, Talal M; Algarni, Saud A; Al Naim, Abdullah; Mazher, Javed; Grell, Martin

    2015-12-14

    We significantly improved the performance of precursor-route semiconducting zinc oxide (ZnO) films in electrolyte-gated thin film transistors (TFTs). We find that the organic precursor to ZnO, zinc acetate (ZnAc), dissolves more readily in a 1 : 1 mixture of ethanol (EtOH) and acetone than in pure EtOH, pure acetone, or pure isopropanol. XPS and SEM characterisation show improved morphology of ZnO films converted from a mixed solvent cast ZnAc precursor compared to the EtOH cast precursor. When gated with a biocompatible electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived from ZnAc cast from pure EtOH. The sheet resistance at VG = VD = 1 V is 30 kΩ □(-1), lower than for any organic TFT, and lower than for any electrolyte-gated ZnO TFT reported to date.

  4. Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes

    NASA Astrophysics Data System (ADS)

    Rollins, Harry W.; Harrup, Mason K.; Dufek, Eric J.; Jamison, David K.; Sazhin, Sergiy V.; Gering, Kevin L.; Daubaras, Dayna L.

    2014-10-01

    The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells. We have evaluated the performance of the electrolytes by determining the physical properties, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our most recent results on a new series of fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

  5. Impact resistant electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veith, Gabriel M.; Armstrong, Beth L.; Tenhaeff, Wyatt E.

    A passively impact resistant composite electrolyte composition includes an electrolyte solvent, up to 2M of an electrolyte salt, and shear thickening ceramic particles having a polydispersity index of no greater than 0.1, an average particle size of in a range of 50 nm to 1 .mu.m, and an absolute zeta potential of greater than .+-.40 mV.

  6. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    PubMed Central

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-01-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level. PMID:28272396

  7. Influence of grafting solvents on the properties of polymer electrolyte membranes prepared by γ-ray preirradiation method

    NASA Astrophysics Data System (ADS)

    Kimura, Yosuke; Asano, Masaharu; Chen, Jinhua; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2008-07-01

    The effect of grafting solvents, such as isopropanol (iPrOH), tetrachloroethane (TCE), tetrahydrofuran (THF), and toluene, on the preparation of poly(ethylene- co-tetrafluoroethylene)-graft-poly(styrene sulfonic acid) (ETFE-g-PSSA) electrolyte membranes by the γ-ray preirradiation grafting method was investigated. It was found that the iPrOH can drastically accelerate the grafting, resulting in a higher degree of grafting. However, for an appropriate degree of grafting of about 50%, the sulfonic acid groups in the ETFE-g-PSSA membrane prepared with the iPrOH were mainly distributed near the membrane surface, as shown by low proton conductivity in the membrane thickness direction. In contrast to this result, the ETFE-g-PSSA membranes prepared with the THF, toluene and TCE exhibited uniform distribution of the sulfonic acid groups in the membrane. Especially, in the case of the TCE grafting solvent, the chemical stability of the resultant electrolyte membrane was clearly higher than those prepared with the other grafting solvents.

  8. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-03-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion...carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

  9. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery.

    PubMed

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-03-08

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

  10. High rate and stable cycling of lithium metal anode

    DOE PAGES

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; ...

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm -2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less

  11. Development of High Conductivity Lithium-Ion Electrolytes for Low Temperature Cell Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    1998-01-01

    NASA has continued interest in developing power sources which are capable of operating at low temperatures (-20 C and below) to enable future missions, such as the Mars Rover and Lander. Thus, under a program sponsored by the Mars Exploration Program, we have been involved in developing Li-ion batteries with improved low temperature performance. To accomplish this task, the focus of the research has been upon the development of advanced electrolyte systems with improved low temperature properties. This had led to the identification of a carbonate-based electrolyte, consisting of 1.0 M LiPF6 in EC + DEC + DMC (33:33:34), which has been shown to have excellent performance at -20 C in Li-ion AA-size prototype cells. Other groups are also actively engaged in developing electrolytes which can result in improved low temperature performance of Li-ion cells, including Polystor, Yardney, and Covalent. In addition to developing cells capable of operation at -20 C, there is continued interest in systems which can successfully operate at even lower temperatures (less than -30 C) and at high discharge rates (greater than C/2). Thus, we are currently focusing upon developing advanced electrolytes which are highly conductive at low temperatures and will result in cells capable of operation at -40 C. One approach to improve the low temperature conductivity of ethylene carbonate-based electrolytes involves adding co-solvents which will decrease the viscosity and extend the liquid range. Candidate solvent additives include formates, acetates, cyclic and aliphatic ethers, lactones, as well as other carbonates. Using this approach, we have prepared a number of electrolytes which contain methyl formate (MF), methyl acetate (MA), ethyl acetate (EA), ethyl proprionate (EP), and 1,2-dimethoxyethane (DME), some of which have been characterized and reported. Other groups have also reported electrolytes based on mixtures of carbonates and acetates. In the present study, electrolytes which have been identified to have good low temperature conductivity and stability were incorporated into lithium-graphite cells for evaluation. Using various electrochemical methods, including ac impedence and DC micropolarization techniques, the film formation characteristics of graphite electrodes in contact with various lectrolyte formulations was investigated.

  12. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE PAGES

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; ...

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li +(FEC) 3] n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  13. Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study.

    PubMed

    Boyer, Mathew J; Vilčiauskas, Linas; Hwang, Gyeong S

    2016-10-12

    Electrolyte and electrode materials used in lithium-ion batteries have been studied separately to a great extent, however the structural and dynamical properties of the electrolyte-electrode interface still remain largely unexplored despite its critical role in governing battery performance. Using molecular dynamics simulations, we examine the structural reorganization of solvent molecules (cyclic ethylene carbonate : linear dimethyl carbonate 1 : 1 molar ratio doped with 1 M LiPF 6 ) in the vicinity of graphite electrodes with varying surface charge densities (σ). The interfacial structure is found to be sensitive to the molecular geometry and polarity of each solvent molecule as well as the surface structure and charge distribution of the negative electrode. We also evaluated the potential difference across the electrolyte-electrode interface, which exhibits a nearly linear variation with respect to σ up until the onset of Li + ion accumulation onto the graphite edges from the electrolyte. In addition, well-tempered metadynamics simulations are employed to predict the free-energy barriers to Li + ion transport through the relatively dense interfacial layer, along with analysis of the Li + solvation sheath structure. Quantitative analysis of the molecular arrangements at the electrolyte-electrode interface will help better understand and describe electrolyte decomposition, especially in the early stages of solid-electrolyte-interphase (SEI) formation. Moreover, the computational framework presented in this work offers a means to explore the effects of solvent composition, electrode surface modification, and operating temperature on the interfacial structure and properties, which may further assist in efforts to engineer the electrolyte-electrode interface leading to a SEI layer that optimizes battery performance.

  14. Microfluidic process monitor for industrial solvent extraction system

    DOEpatents

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  15. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.

  16. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.

    PubMed

    Huie, Matthew M; DiLeo, Roberta A; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-10

    Batteries are multicomponent systems where the theoretical voltage and stoichiometric electron transfer are defined by the electrochemically active anode and cathode materials. While the electrolyte may not be considered in stoichiometric electron-transfer calculations, it can be a critical factor determining the deliverable energy content of a battery, depending also on the use conditions. The development of ionic liquid (IL)-based electrolytes has been a research area of recent reports by other researchers, due, in part, to opportunities for an expanded high-voltage operating window and improved safety through the reduction of flammable solvent content. The study reported here encompasses a systematic investigation of the physical properties of IL-based hybrid electrolytes including quantitative characterization of the electrolyte-separator interface via contact-angle measurements. An inverse trend in the conductivity and wetting properties was observed for a series of IL-based electrolyte candidates. Test-cell measurements were undertaken to evaluate the electrolyte performance in the presence of functioning anode and cathode materials, where several promising IL-based hybrid electrolytes with performance comparable to that of conventional carbonate electrolytes were identified. The study revealed that the contact angle influenced the performance more significantly than the conductivity because the cells containing IL-tetrafluoroborate-based electrolytes with higher conductivity but poorer wetting showed significantly decreased performance relative to the cells containing IL-bis(trifluoromethanesulfonyl)imide electrolytes with lower conductivity but improved wetting properties. This work contributes to the development of new IL battery-based electrolyte systems with the potential to improve the deliverable energy content as well as safety of lithium-ion battery systems.

  17. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes.

    PubMed

    Lau, Genevieve P S; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M; Grätzel, Michael; Dyson, Paul J

    2015-12-16

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability.

  18. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Verbrugge, Mark; Soukiazian, Souren

    For hybrid electric vehicle traction applications, energy storage devices with high power density and energy efficiency are required. A primary attribute of supercapacitors is that they retain their high power density and energy efficiency even at -30 °C, the lowest temperature at which unassisted starting must be provided to customers. More abuse-tolerant electrolytes are preferred to the high-conductivity acetonitrile-based systems commonly employed. Propylene carbonate based electrolytes are a promising alternative. In this work, we compare the electrochemical performance of two high-power density electrical double layer supercapacitors employing acetonitrile and propylene carbonate as solvents. From this study, we are able to elucidate phenomena that control the resistance of supercapacitor at lower temperatures, and quantify the difference in performance associated with the two electrolytes.

  19. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.

    PubMed

    Ong, Mitchell T; Verners, Osvalds; Draeger, Erik W; van Duin, Adri C T; Lordi, Vincenzo; Pask, John E

    2015-01-29

    Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.

  20. Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hwang, C.; Krause, F. C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Amine, K.

    2012-01-01

    A number of electrolyte formulations that have been designed to operate over a wide temperature range have been investigated in conjunction with layered-layered metal oxide cathode materials developed at Argonne. In this study, we have evaluated a number of electrolytes in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li(1.2)Ni(0.15)Co(0.10)Mn(0.55)O2 cathodes. The electrolytes studied consisted of LiPF6 in carbonate-based electrolytes that contain ester co-solvents with various solid electrolyte interphase (SEI) promoting additives, many of which have been demonstrated to perform well in 4V systems. More specifically, we have investigated the performance of a number of methyl butyrate (MB) containing electrolytes (i.e., LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + MB (20:20:60 v/v %) that contain various additives, including vinylene carbonate, lithium oxalate, and lithium bis(oxalato)borate (LiBOB). When these systems were evaluated at various rates at low temperatures, the methyl butyrate-based electrolytes resulted in improved rate capability compared to cells with all carbonate-based formulations. It was also ascertained that the slow cathode kinetics govern the generally poor rate capability at low temperature in contrast to traditionally used LiNi(0.80)Co(0.15)Al(0.05)O2-based systems, rather than being influenced strongly by the electrolyte type.

  1. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Nagasubramanian, Ganesan (Inventor)

    1997-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  2. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries.

    PubMed

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T; Shao, Yuyan; Liu, Jun

    2017-02-08

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li 2 S limits sulfur utilization, increases polarization, and decreases cycling stability. Dissolving Li 2 S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li 2 S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li 2 S by forming complex ligands with S 2- anions coupled with the solvent's solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li 2 S, and therefore enable the direct use of Li 2 S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.

  3. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S.

    2016-03-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible with Li-metal anodes, prevent Li dendrite formation, and eliminate risks associated with flammable organic solvents. Less than 10 years ago, LiBH4 was proposed as a solid-state electrolyte. It showed a high ionic conductivity, but only at elevated temperatures. Since then a range of other complex metal hydrides has been reported to show similar characteristics. Strategies have been developed to extend the high ionic conductivity of LiBH4 down to room temperature by partial anion substitution or nanoconfinement. The present paper reviews the recent developments in complex metal hydrides as solid electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries.

  4. Performance Demonstration of Mcmb-LiNiCoO2 Cells Containing Electrolytes Designed for Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whicanack, L. D.; Smith, K. A.; Santee, S.; Puglia, F. J.; Gitzendanner, R.

    2009-01-01

    With the intent of improving the performance of Li-ion cells over a wide operating temperature range, we have investigated the use of co-solvents to improve the properties of electrolyte formulations. In the current study, we have focused upon evaluating promising electrolytes which have been incorporated into large capacity (7 Ah) prototype Li-ion cells, fabricated by Yardney Technical Products, Inc. The electrolytes selected for performance evaluation include the use of a number of esters as co-solvents, including methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), propyl butyrate (PB), and 2,2,2-trifluoroethyl butyrate (TFEB). The performance of the prototype cells containing the ester-based electrolytes was compared with an extensive data base generated on cells containing previously developed all carbonate-based electrolytes. A number of performance tests were performed, including determining (i) the discharge rate capacity over a wide range of temperatures, (ii) the charge characteristics, (iii) the cycle life characteristics under various conditions, and (iv) the impedance characteristics.

  5. Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature.

    PubMed

    Merrill, Laura C; Schaefer, Jennifer L

    2017-09-19

    Magnesium batteries are a promising alternative to lithium-ion batteries due to the widespread abundance of magnesium and its high specific volumetric energy capacity. Ethereal solvents such as tetrahydrofuran (THF) are commonly used for magnesium-ion electrolytes due to their chemical compatibility with magnesium metal, but the volatile nature of THF is a concern for practical application. Herein, we investigate magnesium bis(hexamethyldisilazide) plus aluminum chloride (Mg(HMDS) 2 -AlCl 3 ) electrolytes in THF, diglyme, and tetraglyme at varying temperature. We find that, despite the higher thermal stability of the glyme-based electrolytes, THF-based electrolytes have better reversibility at room temperature. Deposition/stripping efficiency is found to be a strong function of temperature. Diglyme-based Mg(HMDS) 2 -AlCl 3 electrolytes are found to not exchange as quickly as THF and tetraglyme, stabilizing AlCl 2 + and facilitating undesired aluminum deposition. Raman spectroscopy, 27 Al NMR, and mass spectrometry are used to identify solution speciation.

  6. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance.

    PubMed

    Shao, Yuyan; Liu, Tianbiao; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark; Xiao, Jie; Lv, Dongping; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a study in understanding coordination chemistry of Mg(BH₄)₂ in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new electrolyte is developed based on Mg(BH₄)₂, diglyme and LiBH₄. The preliminary electrochemical test results show that the new electrolyte demonstrates a close to 100% coulombic efficiency, no dendrite formation, and stable cycling performance for Mg plating/stripping and Mg insertion/de-insertion in a model cathode material Mo₆S₈ Chevrel phase.

  7. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    PubMed

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  8. An Artificial Lithium Protective Layer that Enables the Use of Acetonitrile-Based Electrolytes in Lithium Metal Batteries.

    PubMed

    Trinh, Ngoc Duc; Lepage, David; Aymé-Perrot, David; Badia, Antonella; Dollé, Mickael; Rochefort, Dominic

    2018-04-23

    The resurgence of the lithium metal battery requires innovations in technology, including the use of non-conventional liquid electrolytes. The inherent electrochemical potential of lithium metal (-3.04 V vs. SHE) inevitably limits its use in many solvents, such as acetonitrile, which could provide electrolytes with increased conductivity. The aim of this work is to produce an artificial passivation layer at the lithium metal/electrolyte interface that is electrochemically stable in acetonitrile-based electrolytes. To produce such a stable interface, the lithium metal was immersed in fluoroethylene carbonate (FEC) to generate a passivation layer via the spontaneous decomposition of the solvent. With this passivation layer, the chemical stability of lithium metal is shown for the first time in 1 m LiPF 6 in acetonitrile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    DOE PAGES

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; ...

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH 4) 2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimizedmore » LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less

  10. Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry W. Rollins; Mason K. Harrup; Eric J. Dufek

    2014-10-01

    The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility andmore » low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.« less

  11. A search map for organic additives and solvents applicable in high-voltage rechargeable batteries.

    PubMed

    Park, Min Sik; Park, Insun; Kang, Yoon-Sok; Im, Dongmin; Doo, Seok-Gwang

    2016-09-29

    Chemical databases store information such as molecular formulas, chemical structures, and the physical and chemical properties of compounds. Although the massive databases of organic compounds exist, the search of target materials is constrained by a lack of physical and chemical properties necessary for specific applications. With increasing interest in the development of energy storage systems such as high-voltage rechargeable batteries, it is critical to find new electrolytes efficiently. Here we build a search map to screen organic additives and solvents with novel core and functional groups, and thus establish a database of electrolytes to identify the most promising electrolyte for high-voltage rechargeable batteries. This search map is generated from MAssive Molecular Map BUilder (MAMMBU) by combining a high-throughput quantum chemical simulation with an artificial neural network algorithm. MAMMBU is designed for predicting the oxidation and reduction potentials of organic compounds existing in the massive organic compound database, PubChem. We develop a search map composed of ∼1 000 000 redox potentials and elucidate the quantitative relationship between the redox potentials and functional groups. Finally, we screen a quinoxaline compound for an anode additive and apply it to electrolytes and improve the capacity retention from 64.3% to 80.8% near 200 cycles for a lithium ion battery in experiments.

  12. Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes

    DOE PAGES

    Tao, Ran; Bi, Xuanxuan; Li, Shu; ...

    2017-02-13

    Lithium batteries are one of the most advance energy storage devices in the world and have attracted extensive research interests. However, lithium dendrite growth was a safety issue which handicapped the application of pure lithium metal in the negative electrode. In this paper, two solvents, propylene carbonate (PC) and 2-methyl-tetrahydrofuran (2MeTHF), and four Li + salts, LiPF 6, LiAsF 6, LiBF 4 and LiClO 4 were investigated in terms of their effects on the kinetics of lithium dendrite formation in eight electrolyte solutions. The kinetic parameters of charge transfer step (exchange current density, j 0, transfer coefficient, α) of Limore » +/Li redox system, the mass transfer parameters of Li + (transfer number of Li +, t Li+, diffusion coefficient of Li +, D Li+), and the conductivity (κ) of each electrolyte were studied separately. The results demonstrate that the solvents play a critical role in the measured j 0, t Li+, D Li+, and κ of the electrolyte, while the choice of Li + salts only slightly affect the measured parameters. Finally, the understanding of the kinetics will gain insight into the mechanism of lithium dendrite formation and provide guidelines to the future application of lithium metal.« less

  13. Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Ran; Bi, Xuanxuan; Li, Shu

    Lithium batteries are one of the most advance energy storage devices in the world and have attracted extensive research interests. However, lithium dendrite growth was a safety issue which handicapped the application of pure lithium metal in the negative electrode. In this paper, two solvents, propylene carbonate (PC) and 2-methyl-tetrahydrofuran (2MeTHF), and four Li + salts, LiPF 6, LiAsF 6, LiBF 4 and LiClO 4 were investigated in terms of their effects on the kinetics of lithium dendrite formation in eight electrolyte solutions. The kinetic parameters of charge transfer step (exchange current density, j 0, transfer coefficient, α) of Limore » +/Li redox system, the mass transfer parameters of Li + (transfer number of Li +, t Li+, diffusion coefficient of Li +, D Li+), and the conductivity (κ) of each electrolyte were studied separately. The results demonstrate that the solvents play a critical role in the measured j 0, t Li+, D Li+, and κ of the electrolyte, while the choice of Li + salts only slightly affect the measured parameters. Finally, the understanding of the kinetics will gain insight into the mechanism of lithium dendrite formation and provide guidelines to the future application of lithium metal.« less

  14. Possible Mg intercalation mechanism at the Mo6 S8 cathode surface proposed by first-principles methods

    NASA Astrophysics Data System (ADS)

    Wan, Liwen; Prendergast, David

    2015-03-01

    In recent years, great attention has been paid to the development of divalent Mg-ion batteries, which can potentially double the energy density and volumetric capacity compared to monovalent Li-ion batteries. The prototype Mg-ion battery, comprising Mg(anode)/Mg(AlCl2BuEt)2.THF(electrolyte)/Mo6S8(cathode), was established in 2000 by Aurbach et al. Despite the remarkable success of this prototype system, we still lack a clear understanding of the fundamental Mg intercalation/deposition mechanism at the electrolyte/electrode interfaces that perhaps results in the observed sluggish Mg transport process. Our previous work has shown that Mg-ions are strongly coordinated in the bulk electrolyte by a combination of counterion, Cl-, and organic aprotic solvent, THF. In this work, we use first-principles methods to study Mg intercalation behavior at the Mo6S8 cathode surface with the presence of solvent molecules. It is found that the image charge, formed on this metallic cathode surface, can effectively weaken the solvent-surface interactions and facilitate Mg intercalation. A detailed Mg intercalation mechanism is proposed and the unique role of Mo6S8 as the cathode material is emphasized. This work is supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  15. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte

    DOE PAGES

    Chen, Shuru; Gao, Yue; Yu, Zhaoxin; ...

    2016-11-30

    We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less

  16. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuru; Gao, Yue; Yu, Zhaoxin

    We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less

  17. Polymeric electrolytes based on hydrosilyation reactions

    DOEpatents

    Kerr, John Borland [Oakland, CA; Wang, Shanger [Fairfield, CA; Hou, Jun [Painted Post, NY; Sloop, Steven Edward [Berkeley, CA; Han, Yong Bong [Berkeley, CA; Liu, Gao [Oakland, CA

    2006-09-05

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  18. Oxygen solubility and transport in Li–air battery electrolytes: Establishing criteria and strategies for electrolyte design

    DOE PAGES

    Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; ...

    2017-02-15

    Li–air or Li–oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li–air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stabilitymore » of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li–air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. Furthermore, these results showcase the impact of electrolyte composition on transport in metal–air batteries and provide guiding principles and simulation-based tools for future electrolyte design.« less

  19. Electrolyte compositions for lithium ion batteries

    DOEpatents

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  20. Temperature dependence of ion transport: the compensated Arrhenius equation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-04-30

    The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor. Scaling the experimentally measured conductivities to conductivities at a chosen reference temperature leads to a "compensated" Arrhenius equation that provides an excellent description of temperature-dependent conductivities. A plot of the prefactors as a function of the solvent dielectric constant results in a single master curve for each family of solvents. These data suggest that ion transport in these and related systems is governed by a single activated process differing only in the activation energy for each family of solvents. Connection is made to the shift factor used to describe electrical and mechanical relaxation in a wide range of phenomena, suggesting that this scaling procedure might have broad applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.

    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li+(FEC)(3)](n) polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior.

  2. Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices

    NASA Astrophysics Data System (ADS)

    Stettner, T.; Huang, P.; Goktas, M.; Adelhelm, P.; Balducci, A.

    2018-05-01

    Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrH4TFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

  3. The effect of co-solvent addition on Li-solvation in solvate electrolytes in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Lau, Kah Chun; See, Kimberly A.; Wu, Heng-Liang; Shin, Minjeong; Curtiss, Larry A.; Gewirth, Andrew A.

    Li?S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed `solvates' that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability, however, cosolvents that thought to be inert to the solvate structure itself, can be introduced to reduce viscosity and enhance diffusion. In this work, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations are used to study the unique solvation structure of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether as co-solvent in solvate (MeCN)2?LiTFSI electrolyte that used in Li-S battery. The underlying design rules and implications to Li-S battery performance will be discussed. This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  4. Gel polymer electrolyte for lithium-ion batteries comprising cyclic carbonate moieties

    NASA Astrophysics Data System (ADS)

    Tillmann, S. D.; Isken, P.; Lex-Balducci, A.

    2014-12-01

    A polymer system based on oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and cyclic carbonate methacrylate (CCMA) was chosen as matrix to realize high-performance gel polymer electrolytes due to the fact that both monomers are able to interact with the liquid electrolyte, thus, retaining it inside the matrix. Additionally, OEGMA enables high flexibility, while CCMA provides mechanical stability. The polymer displays a high thermal stability up to 200 °C and a glass transition temperature below room temperature (5 °C) allowing an easy handling of the obtained films. By immobilizing the liquid electrolyte 1 M LiPF6 in EC:DMC 1:1 w:w in the polymer host a gel polymer electrolyte with a high conductivity of 2.3 mS cm-1 at 25 °C and a stable cycling behavior with high capacities and efficiencies in Li(Ni1/3Co1/3Mn1/3)O2 (NCM)/graphite full cells is obtained. The investigated gel polymer electrolyte is identified as promising electrolyte for lithium-ion batteries, because it combines good electrochemical properties comparable to that of liquid electrolytes with the safety advantage that no leakage of the flammable electrolyte solvents can occur.

  5. Wide-Temperature Electrolytes for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli

    2017-05-26

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service temperature range of lithium (Li)-ion batteries (LIBs), for which propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl butyrate (MB) are excellent candidates. In this work, we report such low temperature electrolyte formulations by optimizing the content of ethylene carbonate (EC) in the EC-PC-EMC ternary solvent system with LiPF6 salt and CsPF6 additive. An extended service temperature range from 40°C to 60°C was obtained in LIBs with lithium nickel cobalt aluminum mixed oxide (LiNi0.80Co0.15Al0.05O2, NCA) as cathode andmore » graphite as anode. The discharge capacities at low temperatures and the cycle life at room and elevated temperatures were systematically investigated in association with the ionic conductivity and phase transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF6 in EC-PC-EMC (1:1:8 by wt.) with 0.05 M CsPF6, which was demonstrated in both coin cells of graphite||NCA and 1 Ah pouch cells of graphite||LiNi1/3Mn1/3Co1/3O2. This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the 68% capacity retention at 40C and C/5 rate, and nearly identical stable cycle life at room and elevated temperatures up to 60C.« less

  6. INORGANIC ELECTROLYTES IN ANHYDROUS ACETONITRILE. Technical Report No. 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janz, G.J.; Marcinkowsky, A.E.

    Research concerned with the properties of inorganic electrolytes in anhydrous acetonitrile is reported. Infor mation related to ionic interactions, solute-solvent interactions and solute-solute interactions is emphasized. The work is differentiated into phases including that pertaining to the region of dilute concentration in which Kl was studied, the region of high concentration in which. AgNO/sub 3/ was studied, and systems which exhibit pronounced complexion behavior for which the cobaltous halide salts were investigated. Discussions of procedures, and result interpretation are included with data. (J.R.D.)

  7. Energy storage devices having anodes containing Mg and electrolytes utilized therein

    DOEpatents

    Shao, Yuyan; Liu, Jun

    2015-08-18

    For a metal anode in a battery, the capacity fade is a significant consideration. In energy storage devices having an anode that includes Mg, the cycling stability can be improved by an electrolyte having a first salt, a second salt, and an organic solvent. Examples of the organic solvent include diglyme, triglyme, tetraglyme, or a combination thereof. The first salt can have a magnesium cation and be substantially soluble in the organic solvent. The second salt can enhance the solubility of the first salt and can have a magnesium cation or a lithium cation. The first salt, the second salt, or both have a BH.sub.4 anion.

  8. Stability improvement of gel-state dye-sensitized solar cells by utilization the co-solvent effect of propionitrile/acetonitrile and 3-methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinyl acetate)

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Su, Song-Chuan; Kao, Shon-Chen; Teng, Hsisheng; Lee, Yuh-Lang

    2015-01-01

    Propionitrile (PPN) or 3-methoxypropionitrile (MPN) is mixed with acetonitrile (ACN) to prepare ACN/PPN and ACN/MPN co-solvents and used to fabricate polymer gel electrolytes (PGEs) of dye-sensitized solar cells (DSSCs), aiming at improving the stability of gel-state DSSCs. Co-solvents with various ratios are utilized to prepare PGEs using poly(acrylonitrile-co-vinyl acetate) (PAN-VA) as the gelator. The ratio effects of the co-solvents on the properties of PGEs and the performances of the corresponding DSSCs are studied. The results show that in-situ gelation of the gel-electrolytes can still be performed at the presence of 40% PPN or 30% MPN. However, increasing the composition of PPN and MPN in the co-solvents triggers a decrease in the diffusivity and conductivity of the PGEs, but an increase in the viscosity. Therefore, the energy conversion efficiencies of the cells decrease as a result. However, the introduction of PPN and MPN elevates the gel-to-liquid transition temperature (Tp) of the PGEs which significantly increases the stability of the gel-state DSSCs. Comparing between the effects of the two co-solvents, PPN and MPN have similar effect on elevation of Tp, but the conductivity of PGEs and the corresponding cell efficiency are higher for the ACN/PPN system, attributed to its lower viscosity compared with ACN/MPN system. By using the ACN/PPN (60/40) co-solvent at the presence of TiO2 fillers, gel-state cell with an efficiency of 8.3% can be achieved, which is even higher than that obtained by the liquid state cell (8%). After 500 h test at 60 °C, the cell can retain 95.4% of its initial efficiency.

  9. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics

    DOE PAGES

    Ong, Mitchell T.; Verners, Osvalds; Draeger, Erik W.; ...

    2014-12-19

    We report that lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF more » $$\\bar{6}$$ anion. Li + prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li + solvation. Corresponding analysis for the PF $$\\bar{6}$$ anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. In conclusion, these results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.« less

  10. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    NASA Astrophysics Data System (ADS)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  11. Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material

    NASA Astrophysics Data System (ADS)

    Hilder, Matthias; Howlett, Patrick C.; Saurel, Damien; Gonzalo, Elena; Armand, Michel; Rojo, Teófilo; Macfarlane, Douglas R.; Forsyth, Maria

    2017-05-01

    A saturated solution of 2.3 M sodium bis(fluorosulfonyl)imide in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide ionic liquid shows a high conductivity (0.94 mScm-1 at 50 °C), low ion association, and a wide operational temperature window (-71 °C-305 °C) making it a promising electrolyte for sodium battery applications. Cycling with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode display excellent performance at 50 °C outperforming conventional organic solvent based electrolytes in terms of capacities (at C/10) and long term cycle stability (at C/2). Post analysis of the electrolyte shows no measurable changes while the sodium metal anode and the cathode surface shows the presence of electrolyte specific elements after cycling, suggesting the formation of a stabilizing solid electrolyte interface. Additionally, cycling changes the topography and particle morphology of the cathode. Thus, the electrolyte properties and cell performance match or outperform previously reported results with the additional benefit of replacing the hazardous and flammable organic solvent solutions commonly employed.

  12. Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module

    NASA Technical Reports Server (NTRS)

    Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2018-01-01

    A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.

  13. Non-aqueous electrolytes for lithium ion batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  14. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  15. Ambient lithium-SO2 batteries with ionic liquids as electrolytes.

    PubMed

    Xing, Huabin; Liao, Chen; Yang, Qiwei; Veith, Gabriel M; Guo, Bingkun; Sun, Xiao-Guang; Ren, Qilong; Hu, Yong-Sheng; Dai, Sheng

    2014-02-17

    Li-SO2 batteries have a high energy density but bear serious safety problems that are associated with pressurized SO2 and flammable solvents in the system. Herein, a novel ambient Li-SO2 battery was developed through the introduction of ionic liquid (IL) electrolytes with tailored basicities to solvate SO2 by reversible chemical absorption. By tuning the interactions of ILs with SO2, a high energy density and good discharge performance with operating voltages above 2.8 V were obtained. This strategy based on reversible chemical absorption of SO2 in IL electrolytes enables the development of the next generation of ambient Li-SO2 batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  17. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    2017-07-05

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  18. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE PAGES

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong; ...

    2017-07-05

    Here, oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type,more » and electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  19. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  20. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry

    DOE PAGES

    Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; ...

    2015-11-17

    The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF 6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC) n(DMC) m–Li+ and (EC) n(DMC) m–LiPF 6 solvates in the gas-phase and for an implicit solvent (asmore » a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC 4)–Li+ and (EC) 3–LiPF 6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF 6 mixed solvent electrolyte was studied using the BOMD simulations.« less

  1. Control of lithium metal anode cycleability by electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masashi; Kanemoto, Manabu; Morita, Masayuki

    Precycling of lithium (Li) metal on a nickel substrate at low temperatures (0 and -20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) was found to enhance Li cycleability in the subsequent cycles at a room temperature (25°C). In contrast when the precycling at the low temperatures was performed in PC mixed with 2-methyltetrahydrofuran (2MeTHF) and LiPF 6 (LiPF 6-PC/2MeTHF), no improvement in the Li cycling efficiency was observed in the subsequent cycles at 25°C. These results suggest that the low-temperature precycling effect on the Li cycleability depends on a co-solvent used in the PC-based electrolytes. Ac impedance analysis revealed that the precycling in the low-temperature LiPF 6-PC/DMC electrolyte provided a compact Li interface with a low resistance. In marked constant to this, a Li anode interface formed by the precycling in the LiPF 6-PC/2MeTHF system was irregular and resistive to Li-ion diffusion. The origins of the low-temperature precycling effect dependent on the co-solvents were discussed.

  2. Ester-Based Electrolytes for Low-Temperature Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2005-01-01

    Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in five different solvent mixtures of alkyl carbonates have been found to afford improved performance in rechargeable lithium-ion electrochemical cells at temperatures as low as -70 C. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells (NPO-30226), NASA Tech Briefs, Vol. 27, No. 1 (January 2003), page 46. The ingredients of the present solvent mixtures are ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), and ethyl valerate (EV). In terms of volume proportions of these ingredients, the present solvent mixtures are 1EC + 1EMC + 8MB, 1EC + 1EMC + 8EB, 1EC + 1EMC + 8MP, 1EC + 1EMC + 8EV, and 1EC + 9EMC. These electrolytes were placed in Liion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the low-temperature electrical performances of the cells were measured. The cells containing the MB and MP mixtures performed best.

  3. Allotropic control: How certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers

    DOE PAGES

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.

    2016-07-28

    Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less

  4. Allotropic control: How certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.

    Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less

  5. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premalatha, M.; Materials Research Center, Coimbatore-641 045; Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasingmore » temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.« less

  6. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    DOEpatents

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  7. Negative Transference Numbers in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash

    Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.

  8. Lithium Batteries and Supercapacitors Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2012-01-01

    Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.

  9. Chemical modification of electrolytes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Vladimir N.; Grechin, Aleksandr G.

    2002-09-01

    Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.

  10. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.

    Lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, the low coulombic efficiency (CE) during repeated Li plating/stripping of these processes have limited practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on high concentration of LiNO3 in diglyme solvent is developed which enables high CE of Li metal plating/stripping and high stability of Li anode in the sulfur containing electrolyte. Tailoring of electrolyte properties formore » the Li negative electrode has proven to be a successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE for Li plating/stripping of greater than 99% for over 200 cycles. In contrast, Li metal cycles for only less than 35 cycles at high CE in the standard 1 M LiTFSI + 2wt% LiNO3 in DOL:DME electrolyte under the same conditions. The stable Li metal anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.« less

  11. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was fabricated. In addition to developing an understanding of UV-polymerized systems, a rapid 10 to 20 second, microwave-assisted polymerization method was developed as a novel means to create ionogels. These ionogels exhibited comparable mechanical response and ionic conductivity levels to those gels fabricated by the UV method. Lastly, an EDLC prototype was fabricated using a UV-polymerized ionogel formed in situ between two high-surface area carbon electrodes. The device performance metrics were comparable to commercial EDLCs, and functioned for several thousand cycles with limited loss in capacitance.

  12. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); West, William C. (Inventor); Smart, Marshall C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  13. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    NASA Astrophysics Data System (ADS)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li-air battery. Towards this end, using either tetrabutylammonium hexafluorophosphate (TBAPF6) or lithium hexafluorophosphate (LiPF6) electrolyte solutions in four different solvents, namely, dimethyl sulfoxide (DMSO), acetonitrile (MeCN), dimethoxyethane (DME), and tetraethylene glycol dimethyl ether (TEGDME), possessing a range of properties, we have determined that the solvent and the supporting electrolyte cations in the solution act in concert to influence the nature of reduction products and their rechargeability. In solutions containing TBA +, O2 reduction is a highly reversible one-electron process involving the O2/O2- couple in all of the electrolytes examined with little effect on the nature of the solvent. On the other hand, in Li+-containing electrolytes relevant to the Li-air battery, O2 reduction proceeds in a stepwise fashion to form O2-, O22- and O2- as products. These reactions in presence of Li+ are irreversible or quasi-reversible electrochemical processes and the solvents have significant influence on the kinetics, and reversibility or lack thereof, of the different reduction products. Reversible reduction of O2 to long-lived superoxide in a Li+-conducting electrolyte in DMSO has been shown for the first time here. Chapter 5 is the culmination of the thesis where the practical application of the work is demonstrated. We designed electrolytes that facilitate Li-Air rechargeability, by applying the knowledge gained from chapters 2-4. A rechargeable Li-air cell utilizing an electrolyte composed of a solution of LiPF6 in tetraethylene glycol dimethyl ether, CH3O(CH2CH 2O)4CH3 was designed, built and its performance studied. It was shown that the cell yields high capacity and can be recharged in spite the absence of catalyst in the carbon cathode. The application of X-ray diffraction to identify these products formed in a porous carbon electrode is shown here for the first time. The rechargeability of the cell was investigated by repeated charge/discharge cycling of the cell, and the factors limiting the cycle life of the cell were studied using AC impedance spectra of the cells as a function of cycle number. In conclusion, the work carried out in this research has shown that the O2 electrochemistry in organic electrolytes is substantially different from that in aqueous electrolytes. Our work has uncovered the key roles the ion conducting salts and the organic solvents play in determining the nature of the reduction products and their reversibility. The results presented here for the first time provide a rational approach to the design and selection of organic electrolyte solutions for use in the rechargeable Li-air battery. (Abstract shortened by UMI.)

  14. The Role of Electrolyte Upon the SEI Formation Characteristics and Low Temperature Performance of Lithium-Ion Cells With Graphite Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M.; Ratnakumar, B.; Greenbaum, S.; Surampudi, S.

    1998-01-01

    Quarternary lithium-ion battery electrolyte solutions containing ester co-solvents in mixtures of carbonates have been demonstrated to have high conductivity at low temperatures (<-20 degrees Celcius).

  15. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  16. Electrolytes with Improved Safety Developed for High Specific Energy Li-Ion Cells with Si-Based Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Prakash, G. K. S.

    2012-01-01

    A number of electrolyte formulations that have improved safety characteristics have been developed for use with high capacity silicon-based anodes. To improve the compatibility with Si-based anodes, a number of technical approaches have been employed, including: (1) the use of mono-fluoroethylene carbonate (FEC) in conjunction with, or in lieu of, ethylene carbonate (EC), (2) the use of high proportions of fluorinated co-solvents, (3) the use of vinylene carbonate (VC) to stabilize the Si/C electrode, and (4) the use of lithium bis(oxalato)borate (LiBOB) to improve the compatibility of the electrolyte when Si/C electrodes are used in conjunction with high voltage cathodes. Candidate electrolytes were studied in Li/Si-C and Si-C/ Li(MnNiCo)O2 (NMC) coin cells, as well as in larger Si-C/NMC three-electrode cells equipped with lithium reference electrodes. In summary, many electrolytes that contain triphenyl phosphate (TPP), which is used as a flame retardant additive up to concentrations of 15 volume percent, and possess FEC as a co-solvent have been demonstrated to outperform the all-carbonate baseline electrolytes when evaluated in Si-C/ Li(MnNiCo)O2 cells.

  17. Does Marcus-Hush theory really work Optical studies of intervalence transfer in acetylene-bridged biferrocene monocation at infinite dilution and at finite ionic strengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackbourn, R.L.; Hupp, J.T.

    1990-03-08

    Intervalence charge-transfer data for acetylene-bridged biferrocene monocation (Bf{sup +}) have been collected in five solvents in the presence and absence of excess electrolyte and in the limit of infinite chromophore dilution. The study was motivated by earlier work which demonstrated that the intervalence absorption maximum for Bf{sup +} in methylene chloride could vary substantially with both chromophore concentration and added electrolyte concentration. In the present study similar (but smaller) variations are found in other solvents.

  18. Electrolytes For Electrooptic Devices Comprising Ionic Liqu Ids

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Burrell, Anthony K.

    2005-02-08

    Electrolyte solutions of soluble bifunctional redox dyes in molten salt solvent may be used to prepare electrooptic devices with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3 SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3 SO.sub.2).sub.2 N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3 CF.sub.2 SO.sub.2).sub.2 N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3 SO.sub.2).sub.3 C.sup.-).

  19. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    PubMed

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    PubMed Central

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  1. Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes

    DOE PAGES

    Canepa, Pieremanuele; Gautam, Gopalakrishnan Sai; Malik, Rahul; ...

    2015-04-08

    Multivalent (MV) battery architectures based on pairing a Mg metal anode with a high-voltage (~3 V) intercalation cathode offer a realistic design pathway toward significantly surpassing the energy storage performance of traditional Li-ion-based batteries, but there are currently only few electrolyte systems that support reversible Mg deposition. Using both static first-principles calculations and ab initio molecular dynamics, we perform a comprehensive adsorption study of several salt and solvent species at the interface of Mg metal with an electrolyte of Mg 2+ and Cl–dissolved in liquid tetrahydrofuran (THF). Our findings not only provide a picture of the stable species at themore » interface but also explain how this system can support reversible Mg deposition, and as such, we provide insights in how to design other electrolytes for Mg plating and stripping. Furthermore, the active depositing species are identified to be (MgCl) + monomers coordinated by THF, which exhibit preferential adsorption on Mg compared to possible passivating species (such as THF solvent or neutral MgCl 2 complexes). We found that upon deposition, the energy to desolvate these adsorbed complexes and facilitate charge transfer is shown to be small (~61–46.2 kJ mol –1 to remove three THF from the strongest adsorbing complex), and the stable orientations of the adsorbed but desolvated (MgCl) + complexes appear to be favorable for charge transfer. Lastly, observations of Mg–Cl dissociation at the Mg surface at very low THF coordinations (0 and 1) suggest that deleterious Cl incorporation in the anode may occur upon plating. In the stripping process, this is beneficial by further facilitating the Mg removal reaction.« less

  2. Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canepa, Pieremanuele; Gautam, Gopalakrishnan Sai; Malik, Rahul

    Multivalent (MV) battery architectures based on pairing a Mg metal anode with a high-voltage (~3 V) intercalation cathode offer a realistic design pathway toward significantly surpassing the energy storage performance of traditional Li-ion-based batteries, but there are currently only few electrolyte systems that support reversible Mg deposition. Using both static first-principles calculations and ab initio molecular dynamics, we perform a comprehensive adsorption study of several salt and solvent species at the interface of Mg metal with an electrolyte of Mg 2+ and Cl–dissolved in liquid tetrahydrofuran (THF). Our findings not only provide a picture of the stable species at themore » interface but also explain how this system can support reversible Mg deposition, and as such, we provide insights in how to design other electrolytes for Mg plating and stripping. Furthermore, the active depositing species are identified to be (MgCl) + monomers coordinated by THF, which exhibit preferential adsorption on Mg compared to possible passivating species (such as THF solvent or neutral MgCl 2 complexes). We found that upon deposition, the energy to desolvate these adsorbed complexes and facilitate charge transfer is shown to be small (~61–46.2 kJ mol –1 to remove three THF from the strongest adsorbing complex), and the stable orientations of the adsorbed but desolvated (MgCl) + complexes appear to be favorable for charge transfer. Lastly, observations of Mg–Cl dissociation at the Mg surface at very low THF coordinations (0 and 1) suggest that deleterious Cl incorporation in the anode may occur upon plating. In the stripping process, this is beneficial by further facilitating the Mg removal reaction.« less

  3. 1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengyun; Zuo, Xiaoxi; Zhao, Minkai; Xiao, Xin; Yu, Le; Nan, Junmin

    2016-03-01

    1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether (F-EAE) mixed with ethylene carbonate (EC), diethyl carbonate (DEC), and lithium hexafluorophosphate (LiPF6) is evaluated as a co-solvent high-potential electrolyte of LiNi1/3Co1/3Mn1/3O2/graphite batteries. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicate that the EC/DEC-based electrolyte with F-EAE possesses a high oxidation potential (>5.2 V vs. Li/Li+) and excellent film-forming characteristics. With 40 wt% F-EAE in the electrolyte, the capacity retention of the LiNi1/3Co1/3Mn1/3O2/graphite pouch cells that are cycled between 3.0 and 4.5 V is significantly improved from 28.8% to 86.8% after 100 cycles. In addition, electrochemical impedance spectroscopy (EIS) of three-electrode pouch cells, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) are used to characterize the effects of F-EAE on the enhanced capacity retention. It is demonstrated that F-EAE facilitates the formation of a stable surface electrolyte interface (SEI) layer with low impedance on the anode and effectively suppresses an increase in the charge-transfer resistance on the cathode. These results suggest that F-EAE can serve as an alternative electrolyte solvent for 4.5 V high voltage rechargeable lithium-ion batteries.

  4. Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo

    2016-02-15

    The effects Of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite parallel to LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly-affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs+ additive. The synergistic effects of Cs+ additive and appropriate amount of PC enable the formation ofmore » a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li+ ions and allows fast Li+ ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite parallel to NCA full cells under a wide temperature range. The fundamental findings also shed light On the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.« less

  5. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The goal is to develop secondary lithium cells with a 100 Wh/kg specific energy capable of 1000 cycles at 50 percent DOD. The approach towards meeting this goal initially focused on several basic issues related to the cell chemistry, selection of cathode materials and electrolytes and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of achievable specific energy and cycle life. Major advancements to date in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. A summary is given of these advances.

  6. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGES

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  7. Design of new triphenylamine-sensitized solar cells: a theoretical approach.

    PubMed

    Preat, Julien; Jacquemin, Denis; Perpète, Eric A

    2010-07-15

    This work reports a theoretical study of the photovoltaic properties of a series of original conjugated metal-free organic dyes containing the triphenylamine (TPA) moiety. These compounds have recently been develop for dye sensitized solar cells (DSSCs). Our (TD)DFT-based procedure made it possible to get insights into the geometrical and electronic structures of the dyes and to unravel the structural modifications optimizing the properties of TPA-based DSSCs. In particular, we aimed at improving the electron injection process as well as the light harvesting efficiency of the dyes. On the other hand, molecular dynamic (MD) investigations of the kinetics of the regeneration step have been performed for both "classical" (CHCl(3)/I(3)(-)/I(-)/Li(+)) and iodide imidazolium-based solvent-free electrolytes (DMII(+)/I(-)). The MD simulations helped to understand the regeneration mechanism for the solvent-free electrolyte: it combines the DMII(+)/DMII(0) couple to the I(3)(-)/I(-) redox system which acts as a "mediator".

  8. Improved performance of lithium–sulfur battery with fluorinated electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, Nasim; Weng, Wei; Takoudis, Christos

    An organo-fluorine compound, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), was investigated for the first time as the electrolyte solvent in the lithium–sulfur battery. The new fluorinated electrolyte suppressed the deleterious shuttling effect and improved the capacity retention and coulombic efficiency in cell tests. In addition, it was found to eliminate the self-discharge of the lithium–sulfur battery.

  9. Magnesium Electrorefining in Non-Aqueous Electrolyte at Room Temperature

    NASA Astrophysics Data System (ADS)

    Kwon, Kyungjung; Park, Jesik; Kusumah, Priyandi; Dilasari, Bonita; Kim, Hansu; Lee, Churl Kyoung

    Magnesium, of which application is often limited by its poor corrosion resistance, is more vulnerable to corrosion with existence of metal impurities such as Fe. Therefore, for the refining and recycling of magnesium, high temperature electrolysis using molten salts has been frequently adopted. In this report, the purification of magnesium scrap by electrolysis at room temperature is investigated with non-aqueous electrolytes. An aprotic solvent of tetrahydrofuran (THF) was used as a solvent of the electrolyte. Magnesium scrap was used as anode materials and ethyl magnesium bromide (EtMgBr) was dissolved in THF for magnesium source. The purified magnesium can be uniformly electrodeposited on copper electrode under potentiostatic conditions. The deposits were confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.

  10. Model forecasting of phase composition of electrolytic alloys Co-Ni-Mn (part 1)

    NASA Astrophysics Data System (ADS)

    Schmidt, V. V.; Zhikhareva, I. G.

    2018-03-01

    With the help of four criteria for phase formation, a model forecasting of the phase composition of electrolytic alloy Co-Ni-Mn was carried out; the expected phases were calculated. The boundaries of the chemical content of the metal-solvent (Co) in these phases are determined, depending on the ratio of metal ions in the electrolyte of deposition. Model forecasting of the phase composition of Co-Ni-Mn alloys makes it possible to predict the type and number of Co phases (hexagonal close-packed - HCP-α-Co, face-centered cubic - FCC-β-Co) depending on the mole fraction of the solvent metal (Co). In the first approximation, the forecast allows one to determine the phase and chemical composition of the coating, which corresponds to the specified operational properties.

  11. Manufacturing and actuation characterization of ionic polymer metal composites with silver as electrodes

    NASA Astrophysics Data System (ADS)

    Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol

    2006-03-01

    Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.

  12. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.

    PubMed

    Tasaki, Ken

    2005-02-24

    The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.

  13. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo

    2016-02-10

    Cesium salt has been demonstrated as an efficient electrolyte additive in suppressing the lithium (Li) dendrite formation and directing the formation of an ultrathin and stable solid electrolyte interphase (SEI) even in propylene carbonate (PC)-ethylene carbonate (EC)-based electrolytes. Here, we further investigate the effect of PC content in the presence of CsPF6 additive (0.05 M) on the performances of graphite electrode in Li||graphite half cells and in graphite||LiNi0.80Co0.15Al0.05O2 (NCA) full cells. It is found that the performance of graphite electrode is also affected by PC content even though CsPF6 additive is present in the electrolytes. An optimal PC content ofmore » 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode is attributed to the synergistic effects of the Cs+ additive and the PC solvent. The formation of a robust, ultrathin and compact SEI layer containing lithium-enriched species on the graphite electrode, directed by Cs+, effectively suppresses the PC co-intercalation and thus prevents the graphite exfoliation. This SEI layer is only permeable for de-solvated Li+ ions and allows fast Li+ ion transport through it, which therefore largely alleviates the Li dendrite formation on graphite electrode during lithiation even at high current densities. The presence of low-melting-point PC solvent also enables the sustainable operation of the graphite||NCA full cells under a wide spectrum of temperatures. The fundamental findings of this work shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in a variety of energy storage devices.« less

  14. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  15. Catching TFSI: A Computational-Experimental Approach to β-Cyclodextrin-Based Host-Guest Systems as electrolytes for Li-Ion Batteries.

    PubMed

    Jeschke, Steffen; Jankowski, Piotr; Best, Adam S; Johansson, Patrik

    2018-03-12

    Cyclodextrins (CDs) are pyranoside-based macromolecules with a hydrophobic cavity to encapsulate small molecules. They are used as molecular vehicles, for instance in pharmaceutical drug delivery or as solubility enhancer of monomers for their polymerization in aqueous solution. In this context, it was discovered about 10 years ago that the bis(trifluoromethylsulonyl)imide (TFSI) anion forms host-guest complexes with βCD in aqueous media. This sparked interest in using the TFSI anion in lithium-based battery electrolytes open for its encapsulation by βCD as an attractive approach to increase the contribution of the cation to the total ion conductivity. By using semi-empirical quantum mechanical (SQM) methods and the conductor-like screening model for a real solvent (COSMO-RS), a randomly methylated βCD (RMβCD) is here identified as a suitable host for TFSI when using organic solvents often used in battery technology. By combining molecular dynamics (MD) simulations with different NMR and FTIR experiments, the formation of the corresponding RMβCD-TFSI complex was investigated. Finally, the effects of the addition RMβCD to a set of electrolytes on the ion conductivity are measured and explained using three distinct scenarios. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  17. High rate and stable cycling of lithium metal anode

    PubMed Central

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark; Borodin, Oleg; Zhang, Ji-Guang

    2015-01-01

    Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide salt enables the high-rate cycling of a lithium metal anode at high Coulombic efficiency (up to 99.1%) without dendrite growth. With 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane as the electrolyte, a lithium|lithium cell can be cycled at 10 mA cm−2 for more than 6,000 cycles, and a copper|lithium cell can be cycled at 4 mA cm−2 for more than 1,000 cycles with an average Coulombic efficiency of 98.4%. These excellent performances can be attributed to the increased solvent coordination and increased availability of lithium ion concentration in the electrolyte. Further development of this electrolyte may enable practical applications for lithium metal anode in rechargeable batteries. PMID:25698340

  18. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent.

    PubMed

    Kalhoff, Julian; Bresser, Dominic; Bolloli, Marco; Alloin, Fannie; Sanchez, Jean-Yves; Passerini, Stefano

    2014-10-01

    In this Full Paper we show that the use of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as conducting salt in commercial lithium-ion batteries is made possible by introducing fluorinated linear carbonates as electrolyte (co)solvents. Electrolyte compositions based on LiTFSI and fluorinated carbonates were characterized regarding their ionic conductivity and electrochemical stability towards oxidation and with respect to their ability to form a protective film of aluminum fluoride on the aluminum surface. Moreover, the investigation of the electrochemical performance of standard lithium-ion anodes (graphite) and cathodes (Li[Ni1/3 Mn1/3 Co1/3 ]O2 , NMC) in half-cell configuration showed stable cycle life and good rate capability. Finally, an NMC/graphite full-cell confirmed the suitability of such electrolyte compositions for practical lithium-ion cells, thus enabling the complete replacement of LiPF6 and allowing the realization of substantially safer lithium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.

    PubMed

    Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan

    2018-03-01

    The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.

  20. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  1. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents.

    PubMed

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-28

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  2. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-01

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  3. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    PubMed Central

    Lochala, Joshua A.; Kwok, Alexander; Deng, Zhiqun Daniel

    2017-01-01

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices with batteries being a prime example. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode, and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1–1.2 m based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (>1.0 m) have received intensive attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally distinct from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanisms are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges. PMID:28852621

  4. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    DOE PAGES

    Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander; ...

    2017-03-31

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquidmore » electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.« less

  5. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications.

    PubMed

    Zheng, Jianming; Lochala, Joshua A; Kwok, Alexander; Deng, Zhiqun Daniel; Xiao, Jie

    2017-08-01

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices with batteries being a prime example. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode, and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 m based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (>1.0 m) have received intensive attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally distinct from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanisms are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.

  6. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander

    The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices, for example, batteries. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode and electrolyte are optimized, it is the interface between the solid electrode and the liquidmore » electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 M based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 M) have received additional attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally different from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanism are discussed. As a result, new insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.« less

  7. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    DOE PAGES

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.; ...

    2017-09-08

    The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg -1). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO 3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in themore » sulfur-containing electrolyte. The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO 3 in 1,3-dioxolane:1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. Lastly, the stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.« less

  8. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.

    The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg -1). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO 3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in themore » sulfur-containing electrolyte. The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO 3 in 1,3-dioxolane:1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. Lastly, the stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.« less

  9. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.

    The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg(-1)). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in the sulfur-containing electrolyte.more » The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO3 in 1,3-dioxolane: 1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. The stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.« less

  10. Comparison of starch and gelatin hydrogels for non-toxic supercapacitor electrolytes

    NASA Astrophysics Data System (ADS)

    Railanmaa, Anna; Lehtimäki, Suvi; Lupo, Donald

    2017-06-01

    Starch and gelatin are two of the most abundantly available natural polymers. Their non-toxicity, low cost, and compatibility with aqueous solvents make them ideal for use in ubiquitous, environmentally friendly electronics systems. This work presents the results of conductivity measurements through impedance spectroscopy for gelatin- and starch-based aqueous gel electrolytes. The NaCl-based gels were physically cross-linked. The conductivity values were 84.6 mS/cm at 1.5 mol L-1 and 71.5 mS/cm at 2 mol L-1 for gelatin and starch, respectively. The mechanical properties of gelatin were found preferable to those of starch, although they deteriorated significantly when the salt concentration exceeded 2 mol L-1. The ability of the gels to successfully act as a supercapacitor electrolyte was demonstrated with printed electrodes on plastic substrate. The devices were characterized through cyclic voltammetry measurements. The results imply that these polymer gel electrolytes are very promising for replacing the traditional aqueous liquid electrolytes in supercapacitors in applications where, for example, user and environmental safety is essential.

  11. Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambient-Temperature Sodium-Ion Secondary Batteries.

    PubMed

    Bella, Federico; Colò, Francesca; Nair, Jijeesh R; Gerbaldi, Claudio

    2015-11-01

    The first example of a photopolymerized electrolyte for a sodium-ion battery is proposed herein. By means of a preparation process free of solvents, catalysts, purification steps, and separation steps, it is possible to obtain a three-dimensional polymeric network capable of efficient sodium-ion transport. The thermal properties of the resulting solid electrolyte separator, characterized by means of thermogravimetric and calorimetric techniques, are excellent for use in sustainable energy systems conceived for safe large-scale grid storage. The photopolymerized electrolyte shows a wide electrochemical stability window up to 4.8 V versus Na/Na(+) along with the highest ionic conductivity (5.1 mS cm(-1) at 20 °C) obtained in the field of Na-ion polymer batteries so far and stable long-term constant-current charge/discharge cycling. Moreover, the polymeric networks are also demonstrated for the in situ fabrication of electrode/electrolyte composites with excellent interfacial properties, which are ideal for all-solid-state, safe, and easily upscalable device assembly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient and Stable Photovoltaic Characteristics of Quasi-Solid State DSSC using Polymer Gel Electrolyte Based on Ionic Liquid in Organosiloxane Polymer Gels

    NASA Astrophysics Data System (ADS)

    Pujiarti, H.; Arsyad, W. S.; Shobih; Muliani, L.; Hidayat, R.

    2018-04-01

    Dye-Sensitized Solar Cell (DSSC) is still one of the promising solar cell types among the third generation of solar cells because of easiness of fabrication and variety of available materials. In this type of solar cell, the electrolyte is one of the important components for regenerating excited dyes and transporting electric charge carriers to the counter electrode. Indeed, the power conversion efficiency of DSSC can be then significantly affected by the chemical and physical properties of the electrolyte. The simplest electrolyte system of an I-/I3 - redox couple in an organic solvent, however, has some drawbacks due to corrosive properties, volatile and leakage problem. Use of solid phase or gel phase electrolyte may overcome those problems, but it is often considered to suppress the efficiency due to low ion diffusion. Here, we report the photovoltaic characteristics of DSSC using polymer gel electrolyte (PGE), which is composed of ionic liquid and an organosiloxane polymer gel. The better cell performance with power conversion efficiency of about 6% has been obtained by optimizing the mesoporous size of the TiO2 layer and the PGE viscosity.

  13. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  14. Charge fluctuations in nanoscale capacitors.

    PubMed

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  15. Charge Fluctuations in Nanoscale Capacitors

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Liang; Ferrandon, Magali; Barton, John L.

    The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemicalmore » and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.« less

  17. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  18. Electrolytes for magnesium electrochemical cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  19. SBIR reports on the chemistry of lithium battery technology

    NASA Astrophysics Data System (ADS)

    Kilroy, W. P.

    1989-11-01

    The following contents are included: Identification of an Improved Mixed Solvent Electrolyte for a Lithium Secondary Battery; Catalyzed Cathodes for Lithium-Thionyl Chloride Batteries; Improved Lithium/Thionyl Chloride Cells Using New Electrolyte Salts; Development of Calcium Primary Cells With Improved Anode Stability and Energy Density.

  20. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  1. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.

    PubMed

    Patra, Chandra N

    2014-11-14

    A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.

  2. PVA:LiClO4: a robust, high Tg polymer electrolyte for adjustable ion gating of 2D materials

    NASA Astrophysics Data System (ADS)

    Kinder, Erich; Fullerton, Susan; CenterLow Energy Systems Technology Team

    2015-03-01

    Polymer electrolytes are an effective way to gate organic semiconductors and nanomaterials, such as nanotubes and 2D materials, by establishing an electrostatic double layer with large capacitance. Widely used solid electrolytes, such as those based on polyethylene oxide, have a glass transition temperature below room temperature. This permits relatively fast ion mobility at T = 23 °C, but requires a constant applied field to maintain a doping profile. Moreover, PEO-based electrolytes cannot withstand a variety of solvents, limiting its use. Here, we demonstrate a polymer electrolyte using polyvinyl alcohol (PVA) with Tg >23 °C, through which a doping profile can be defined by a potential applied when the polymer is heated above Tg, then ``locked-in'' by cooling the electrolyte to room temperature (

  3. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries.

    PubMed

    Boisset, Aurélien; Menne, Sebastian; Jacquemin, Johan; Balducci, Andrea; Anouti, Mérièm

    2013-12-14

    In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li(+), X(-) and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO4 (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g(-1) with a good efficiency (99%) is observed in the DES based on the LiNO3 salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs.

  4. Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko

    2000-08-01

    The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.

  5. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Cronin,; John, P [Tucson, AZ; Tonazzi, Juan C. L. [Tucson, AZ; Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  6. Anion Solvation in Carbonate-Based Electrolytes

    DOE PAGES

    von Wald Cresce, Arthur; Gobet, Mallory; Borodin, Oleg; ...

    2015-11-16

    The correlation between Li + solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. Now, most studies are dedicated to the solvation of Li +, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. Moreover, as a mirror effort to prior Li + solvation studies, this work focuses on the interactions between carbonate-based solvents andmore » two anions (hexafluorophosphate, PF 6–, and tetrafluoroborate, BF 4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.« less

  7. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  8. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI) 2 in Diglyme: Implications for Multivalent Electrolytes

    DOE PAGES

    Baskin, Artem; Prendergast, David

    2016-02-05

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturatedmore » moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.« less

  10. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    PubMed Central

    Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica

    2014-01-01

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770

  11. The effect of relative solubility on crystal purity

    NASA Astrophysics Data System (ADS)

    Givand, Jeffrey Christopher

    This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given level can now be determined based on existing solubility and purity measurements and solubilities of the product and impurity in the new solvent mixture.

  12. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang D.; Borodin, Oleg; Seo, D. M.

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  14. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  15. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  16. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  17. Electrode stabilizing materials

    DOEpatents

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  18. Lithium Cell Reactions.

    DTIC Science & Technology

    1985-02-01

    electrolyte has been characterized by both infrared and voltammetric analysis, some of the results of these earlier electrolyses ex- periments can be better...understood. For example, 16 hours after the constant current electrolyses of 8 mg of SOC 2 acid electrolyte in DMF to n = 1.12 at a Pt cathode, the...with the SOCI2 electrolyte which produced residues that could not be removed by common solvents (except water ). Thus, after several hours of use, it

  19. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes

    PubMed Central

    Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N.

    2012-01-01

    Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L−1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798

  20. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  1. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  2. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  3. Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, Rajeev S.; Curtiss, Larry A.; Moore, Jeffrey S.

    2014-06-05

    The Li-S battery (secondary cell or redox flow) technology is a promising future alternative to the present lithium intercalation-based energy storage and, therefore, a molecular level understanding of the chemical processes and properties such as stability of intermediates, reactivity of polysulfides and reactivity towards the non-aqueous electrolytes in the Li-S batteries is of great interest. In this paper, quantum chemical methods (G4MP2, MP2, and B3LYP) were utilized to compute reduction potentials of lithium polysulfides and polysulfide molecular clusters, energetics of disproportionation and association reactions of likely intermediates, and their reactions with ether-based electrolytes. Based on the computed reaction energetics inmore » solution, a probable mechanism during the discharge process for polysulfide anions and lithium polysulfides in solution is proposed and likely intermediates such as S42-,S32-, S22-, and S31- radical were identified. Additionally, the stability and reactivity of propylene carbonate and tetraglyme solvent molecules were assessed against the above-mentioned intermediates and other reactive species by computing the reaction energetics required to initiate the solvent decomposition reactions in solution. Calculations suggest that the propylene carbonate molecule is unstable against the polysulfide anions such as S22-, S32-, and S42- (ΔH† < 0.8 eV) and highly reactive towards Li2S2 and Li2S3. Even though the tetraglyme solvent molecule exhibits increased stability towards polysulfide anions compared to propylene carbonate, this molecule too is vulnerable to nucleophilic attack from Li2S2 and Li2S3 species in solutions. Hence, a long- term stability of the ether molecules is unlikely if high concentration of these reactive intermediates present in the Li-S energy storage systems.« less

  4. Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: an investigation of charge transport and shift in the TiO2 conduction band.

    PubMed

    Wang, Xiu; Kulkarni, Sneha A; Ito, Bruno Ieiri; Batabyal, Sudip K; Nonomura, Kazuteru; Wong, Chee Cheong; Grätzel, Michael; Mhaisalkar, Subodh G; Uchida, Satoshi

    2013-01-23

    Nanoclay minerals play a promising role as additives in the liquid electrolyte to form a gel electrolyte for quasi-solid-state dye-sensitized solar cells, because of the high chemical stability, unique swelling capability, ion exchange capacity, and rheological properties of nanoclays. Here, we report the improved performance of a quasi-solid-state gel electrolyte that is made from a liquid electrolyte and synthetic nitrate-hydrotalcite nanoclay. Charge transport mechanisms in the gel electrolyte and nanoclay interactions with TiO(2)/electrolyte interface are discussed in detail. The electrochemical analysis reveals that the charge transport is solely based on physical diffusion at the ratio of [PMII]:[I(2)] = 10:1 (where PMII is 1-propyl-3-methylimidazolium iodide). The calculated physical diffusion coefficient shows that the diffusion of redox ions is not affected much by the viscosity of nanoclay gel. The addition of nitrate-hydrotalcite clay in the electrolyte has the effect of buffering the protonation process at the TiO(2)/electrolyte interface, resulting in an upward shift in the conduction band and a boost in open-circuit voltage (V(OC)). Higher V(OC) values with undiminished photocurrent is achieved with nitrate-hydrotalcite nanoclay gel electrolyte for organic as well as for inorganic dye (D35 and N719) systems. The efficiency for hydrotalcite clay gel electrolyte solar cells is increased by 10%, compared to that of the liquid electrolyte. The power conversion efficiency can reach 10.1% under 0.25 sun and 9.6% under full sun. This study demonstrates that nitrate-hydrotalcite nanoclay in the electrolyte not only solidifies the liquid electrolyte to prevent solvent leakage, but also facilitates the improvement in cell efficiency.

  5. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.

    PubMed

    Cresce, Arthur V; Russell, Selena M; Borodin, Oleg; Allen, Joshua A; Schroeder, Marshall A; Dai, Michael; Peng, Jing; Gobet, Mallory P; Greenbaum, Steven G; Rogers, Reginald E; Xu, Kang

    2016-12-21

    Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li + and Na + -based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, 17 O, 23 Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li + and Na + cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF 6 - anion interactions with the Na + and Li + cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na + were longer than Li + , and Na + had a greater tendency towards forming contact pairs compared to Li + in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na + solvent preference, leading to the possibility that Na + solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

  6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.

    PubMed

    Yu, Xingwen; Manthiram, Arumugam

    2017-11-21

    Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li + -ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO 3 . The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li + -ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li-S batteries and how the resulting chemical and physical properties of the SEI affect the overall battery performance. A few strategies recently proposed for improving the stability of SEI are briefly summarized. Solid Li + -ion conductive electrolytes have been attempted for the development of Li-S batteries to eliminate the polysulfide shuttle issues. One approach is based on a concept of "all-solid-state Li-S battery," in which all the cell components are in the solid state. Another approach is based on a "hybrid-electrolyte Li-S battery" concept, in which the solid electrolyte plays roles both as a Li + -ion conductor for the electrochemical reaction and as a separator to prevent polysulfide shuttle. However, these endeavors with the solid electrolyte are not able to provide an overall satisfactory cell performance. In addition to the low ionic conductivity of solid-state electrolytes, a critical issue lies in the poor interfacial properties between the electrode and the solid electrolyte. This Account provides a survey of the relevant research progress in understanding and manipulating the interfaces of electrode and solid electrolytes in both the "all-solid-state Li-S batteries" and the "hybrid-electrolyte Li-S batteries". A recently proposed "semi-solid-state Li-S battery" concept is also briefly discussed. Finally, future research and development directions in all the above areas are suggested.

  7. Organic non-aqueous cation-based redox flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturatedmore » moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.« less

  8. Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Krause, Frederick Charles (Inventor); Smart, Marshall C. (Inventor); Prakash, Surya G. (Inventor); Smith, Kiah A. (Inventor)

    2014-01-01

    The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  10. Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Chen, Shuru; Zhao, Wengao

    Sodium (Na) metal is a promising anode for Na ion batteries. However, the high reactivity of Na metal with electrolytes and the low Na metal cycling efficiency have limited its practical application in rechargeable Na metal batteries. High concentration electrolytes (HCE, ≥4 M) consisting of sodium bis(fluorosulfonyl)imide (NaFSI) and ether solvent could ensure the stable cycling of Na metal with high coulombic efficiency, but suffer from high viscosity, poor wetting ability, and high salt cost. Here, we report that the salt concentration could be significantly reduced (≤ 1.5 M) by diluting with a hydrofluoroether (HFE) as ‘inert’ diluent, which maintainsmore » the solvation structures of HCE, thereby forming a localized high concentration electrolyte (LHCE). A LHCE (2.1 M NaFSI/DME-BTFE (solvent molar ratio 1:2)) has been demonstrated to enable the dendrite-free Na deposition with high coulombic efficiency of > 99%, fast-charging (20C) and stable cycling (90.8% retention after 40,000 cycles) of Na||Na3V2(PO4)3 batteries.« less

  11. Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Noelle, Daniel J.; Shi, Yang; Wang, Meng; Le, Anh V.; Qiao, Yu

    2018-04-01

    Electrolyte poisons comprised of diols and diamines are investigated for the intended function of exacerbating internal resistance in lithium-ion batteries upon short circuit failure, to quickly arrest uncontrolled joule heat generation in the earliest stages. The competing dynamics of powerful short circuit currents and electrolyte poisoning interactions are evaluated via simultaneous nail penetration and poison injection of LIR2450 format LiCoO2/graphite 120 mAh coin cells. To forcibly increase electrolyte impedance, diols serve to hinder charge-carrying ion mobility by raising solution viscosity, while diamines disrupt solvent permittivity by rapidly polymerizing the ethylene carbonate solvent. Diamines demonstrate great potency, and are suitable for integration into battery cells within chemically-inert, breakable containers, rigged for release upon mechanical activation. Mixtures of 1,2-ethanediol and 1,2-ethanediamine show synergistic poisoning effects, decreasing peak temperature accrued by 70% when introduced simultaneously upon nail penetration. With the innate presence and abundance of diols and diamines in electric vehicle heat exchangers, they may be employed for multifunctional applications.

  12. Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes.

    PubMed

    Borodin, Oleg; Smith, Grant D

    2006-03-30

    A quantum chemistry study of Li(+) interactions with ethers, carbonates, alkanes, and a trifluoromethanesulfonylimide anion (TFSI(-)) was performed at the MP2, B3LYP, and HF levels using the aug-cc-pvDz basis set for solvents and TFSI(-) anion, and [8s4p3d/5s3p2d]-type basis set for Li. A classical many-polarizable force field was developed for the LiTFSI salt interacting with ethylene carbonate (EC), gamma-butyrolactone (GBL), dimethyl carbonate (DMC), acetone, oligoethers, n-alkanes, and perfluoroalkanes. Molecular dynamics (MD) simulations were performed for EC/LiTFSI, PC/LiTFSI, GBL/LiTFSI, DMC/LiTFSI, 1,2-dimethoxyethane/LiTFSI, pentaglyme/LiTFSI, and poly(ethylene oxide) (MW = 2380)/LiTFSI electrolytes at temperatures from 298 to 423 K and salt concentrations from 0.3 to 5 M. The ion and solvent self-diffusion coefficients, electrolyte conductivity, electrolyte density, LiTFSI apparent molar volumes, and structure of the Li(+) cation environment predicted by MD simulations were found in good agreement with experimental data.

  13. Hindered Glymes for Graphite-Compatible Electrolytes.

    PubMed

    Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stephane; Armand, Michel

    2015-08-24

    Organic carbonate mixtures are used almost exclusively as lithium battery electrolyte solvents. The linear compounds (dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate) act mainly as thinner for the more viscous and high-melting ethylene carbonate but are the least stable component and have low flash points; these are serious handicaps for lifetime and safety. Polyethers (glymes) are useful co-solvents, but all formerly known representatives solvate Li(+) strongly enough to co-intercalate in the graphite negative electrode and exfoliate it. We have put forward a new electrolyte composition comprising a polyether to which a bulky tert-butyl group is attached ("hindered glyme"), thus completely preventing co-intercalation while maintaining good conductivity. This alkyl-carbonate-free electrolyte shows remarkable cycle efficiency of the graphite electrode, not only at room temperature, but also at 50 and 70 °C in the presence of lithium bis(fluorosulfonimide). The two-ethylene-bridge hindered glyme has a high boiling point and a flash point of 80 °C, a considerable advantage for safety. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    PubMed

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  15. Combined NMR and molecular dynamics modeling study of transport properties in sulfonamide based deep eutectic lithium electrolytes: LiTFSI based binary systems.

    PubMed

    Pauric, Allen D; Halalay, Ion C; Goward, Gillian R

    2016-03-07

    The trend toward Li-ion batteries operating at increased (>4.3 V vs. Li/Li(+)) voltages requires the development of novel classes of lithium electrolytes with electrochemical stability windows exceeding those of LiPF6/carbonate electrolyte solutions. Several new classes of electrolytes have been synthesized and investigated over the past decade, in the search for LIB electrolytes with improved properties (increased hydrolytic stability, improved thermal abuse tolerance, higher oxidation voltages, etc.) compared with the present state-of-the-art LiPF6 and organic carbonates-based formulations. Among these are deep eutectic electrolytes (DEEs), which share many beneficial characteristics with ionic liquids, such as low vapor pressure and large electrochemical stability windows, with the added advantage of a significantly higher lithium transference number. The present work presents the pulsed field gradient NMR characterization of the transport properties (diffusion coefficients and cation transport numbers) of binary DEEs consisting of a sulfonamide solvent and lithium bis(trifluoromethanesulfonyl)imide salt. Insights into the structural and dynamical properties, which enable one to rationalize the observed ionic conductivity behavior were obtained from a combination of NMR data and MD simulations. The insights thus gained should assist the formulation of novel DEEs with improved properties for LIB applications.

  16. Quasi-solid state electrolytes for low-grade thermal energy harvesting using a cobalt redox couple.

    PubMed

    Taheri, Abuzar; MacFarlane, Douglas; Pozo-Gonzalo, Cristina; Pringle, Jennifer M

    2018-06-06

    Thermoelectrochemical cells, also known as thermocells, are electrochemical devices for the conversion of thermal energy directly to electricity. They are a promising method for harvesting low-grade waste heat from a variety of different natural and man-made sources. The development of solid or quasi-solid state electrolytes for thermocells could address the possible leakage problems of liquid electrolytes and make this technology more applicable for wearable devices. Here we report the gelation of an organic solvent-based electrolyte system containing a redox couple, for application in thermocell technologies. The effect of gelation of the liquid electrolyte, comprising a cobalt bipyridyl redox couple dissolved in 3-methoxypropionitrile (MPN), on the performance of thermocells was investigated. Polyvinylidene difluoride (PVDF) and poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) were used for gelation of the electrolyte, and the influence of the different polymers on the mechanical properties was studied. The Seebeck coefficient and diffusivity of the cobalt redox couple were measured in both liquid and gelled electrolytes and the effect of gelation on the thermocell performance is reported. Finally, the cell performance was further improved by optimising the redox couple concentration and the separation between the hot and cold electrode, and the stability of the device over 25 hours of operation is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fluoroester Co-Solvents for Low-Temperature Li+ Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar; Prakash, G. K. Surya; Smith, Kiah; Bhalla, Pooja

    2009-01-01

    Electrolytes comprising LiPF6 dissolved in alkyl carbonate/fluoroester mixtures have been found to afford improved low-temperature performance and greater high-temperature resilience in rechargeable lithium-ion electrochemical cells. These and other electrolytes comprising lithium salts dissolved mixtures of esters have been studied in continuing research directed toward extending the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. The purpose of the present focus on high-temperature resilience in addition to low-temperature performance is to address issues posed by the flammability of the esters and, at temperatures near the upper end (about 55 C) of their intended operating temperature range, by their high chemical reactivity. As used here, high-temperature resilience signifies, loosely, a desired combination of low flammability of an electrolyte mixture and the ability of a cell that contains the mixture to sustain a relatively small loss of reversible charge/discharge capacity during storage in the fully charged condition at high temperature. The selection of fluoroesters for study as candidate electrolyte solvent components to increase high-temperature resilience was prompted in part by the observation that like other halogenated compounds, fluoroesters have low flammability. The fluoroesters investigated in this study include trifluoroethyl butyrate (TFEB), ethyl trifluoroacetate (ETFA), trifluoroethyl acetate (TFEA), and methyl pentafluoropropionate (MPFP). Solvent mixtures were prepared by mixing these fluoroesters with two other esters: ethylene carbonate (EC) and ethyl methyl carbonate (EMC).

  18. LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reddy, V. Prakash; Prakash, G. K. Syria; Hu, Jinbo; Yan, Ping; Smart, Marshall; Bugga, ratnakumar; Chin, Keith; Surampudi, Subarao

    2008-01-01

    Lithium tetrakis(trifluoromethane sulfo - nato)gallate [abbreviated "LiGa(OTf)4" (wherein "OTf" signifies trifluoro - methanesulfonate)] has been found to be promising as an electrolyte salt for incorporation into both liquid and polymer electrolytes in both rechargeable and non-rechargeable lithium-ion electrochemical cells. This and other ingredients have been investigated in continuing research oriented toward im proving the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. As described in more detail in those articles, lithiumion cells most commonly contain nonaqueous electrolyte solutions consisting of lithium hexafluorophosphate (LiPF6) dissolved in mixtures of cyclic and linear alkyl carbonates, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Although such LiPF6-based electrolyte solutions are generally highly ionically conductive and electrochemically stable, as needed for good cell performance, there is interest in identifying alternate lithium electrolyte salts that, relative to LiPF6, are more resilient at high temperature and are less expensive. Experiments have been performed on LiGa(OTf)4 as well as on several other candidate lithium salts in pursuit of this interest. As part of these experiments, LiGa(OTf)4 was synthesized by the reaction of Ga(OTf)3 with an equimolar portion of LiOTf in a solvent consisting of anhydrous acetonitrile. Evaporation of the solvent yielded LiGa(OTf)4 as a colorless crystalline solid. The LiGa(OTf)4 and the other salts were incorporated into solutions with PC and DMC. The resulting electrolyte solutions exhibited reasonably high ionic conductivities over a relatively wide temperature range down to 40 C (see figure). In cyclic voltammetry measurements, LiGa(OTf)4 and the other salts exhibited acceptably high electrochemical stability over the relatively wide potential window of 0 to 5 V versus Li+/Li. 13C nuclear-magneticresonance measurements yielded results that suggested that in comparison with the other candidate salts, LiGa(OTf)4 exhibits less ion pairing. Planned further development will include optimization of the salt and solvent contents of such electrolyte solutions and incorporation of LiGa(OTf)4 into gel and solid-state polymer electrolytes. Of the salts, LiGa(OTf)4 is expected to be especially desirable for incorporation into lithium polymer electrolytes, wherein decreased ion pairing is advantageous and the large delocalized anions can exert a plasticizing effect.

  19. Electrolytes for high voltage electrochemical double layer capacitors: A perspective article

    NASA Astrophysics Data System (ADS)

    Balducci, A.

    2016-09-01

    The development of innovative electrolyte components is nowadays considered one of the most important aspects for the realization of high energy electrochemical double capacitors (EDLCs). Consequently, in the last years many investigations have been dedicated towards new solvents, new salts and ionic liquids able to replace the current electrolytes. This perspective article aims to supply a critical analysis about the results obtained so far on the development of new electrolytes for high energy EDLCs and to outline the advantages as well as the limits related to the use of these innovative components. Furthermore, this article aims to give indications about the strategies could be used in the future for a further development of advanced electrolytes.

  20. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.

    PubMed

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2013-07-01

    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or 'slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (V(L)). Whilst the highest CO2 flux was recorded at high V(L), selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Migration behavior of organic dyes based on physicochemical properties of solvents as background electrolytes in non-aqueous capillary electrophoresis.

    PubMed

    Gu, Minjeong; Cho, Keunchang; Kang, Seong Ho

    2018-07-27

    The migration behavior of organic fluorescent dyes (i.e., crystal violet, methyl violet base, methyl violet B base, rhodamine 6G, and rhodamine B base) in non-aqueous capillary electrophoresis (NACE) was investigated by focusing on the physicochemical properties of various organic solvents [ethanol, methanol, 2-propanol, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)] in background electrolyte (BGE). Laser-induced fluorescence (LIF) and UV/Vis detectors were employed to observe both the migration time of organic dyes and the electroosmotic flow (EOF) in NACE, respectively. As seen in conventional aqueous BGE, the mobility of EOF in organic solvents tended to rise when the ratio between the dielectric constant and the solvent's viscosity (ε/η) increased in accordance with Smoluchowski's equation. However, unlike the ε/η of pure organic solvents, the migration order of dyes changed as follows: methanol (60.0) > DMF (45.8) > ethanol (22.8) > DMSO (23.4) > 2-propanol (9.8). Since the amount of acetic acid added to balance the pH depends on the pK a of each solvent, EOF changed when the difference in the ε/η value was small. This resulted from the inhibition of mobility, and its difference was dependent on the ε/η of BGEs with high ionic strength. In particular, the actual mobility of dyes in DMF showed excellent compliance with the Debye-Hückel-Onsager (DHO) theory extended by Falkenhagen and Pitts, which enabled us to analyze all dyes within 15 min with excellent resolution (R s >  2.5) under optimum NACE conditions (10 mM sodium borate and 4661 mM acetic acid in 100% DMF, pH 4.5). In addition, the NACE method was successfully applied for analyzing commercially available ballpoint ink pens. Thus, these results could be used to anticipate the migration order of organic dyes in a 100% NACE separation system. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells

    PubMed Central

    2010-01-01

    We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP) into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4) ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3−) in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC) was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency. PMID:20676195

  3. Deliberate modification of the solid electrolyte interphase (SEI) during lithiation of magnetite, Fe 3O 4: impact on electrochemistry

    DOE PAGES

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; ...

    2017-11-20

    Here, magnetite is a conversion anode material displaying multi-electron transfer during lithiation and delithiation. The solid electrolyte interphase (SEI) on magnetite, Fe 3O 4, electrodes for lithium ion batteries was deliberately modified through the use of fluoroethylene carbonate (FEC) electrolyte additive, improving both capacity retention and rate capability. Analysis showed reduction of FEC at higher voltage compared to non-fluorinated solvents with formation of a modified lithium flouride containing electrode surface.

  4. Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl.

    PubMed

    Moučka, Filip; Lísal, Martin; Škvor, Jiří; Jirsák, Jan; Nezbeda, Ivo; Smith, William R

    2011-06-23

    We present a new and computationally efficient methodology using osmotic ensemble Monte Carlo (OEMC) simulation to calculate chemical potential-concentration curves and the solubility of aqueous electrolytes. The method avoids calculations for the solid phase, incorporating readily available data from thermochemical tables that are based on well-defined reference states. It performs simulations of the aqueous solution at a fixed number of water molecules, pressure, temperature, and specified overall electrolyte chemical potential. Insertion/deletion of ions to/from the system is implemented using fractional ions, which are coupled to the system via a coupling parameter λ that varies between 0 (no interaction between the fractional ions and the other particles in the system) and 1 (full interaction between the fractional ions and the other particles of the system). Transitions between λ-states are accepted with a probability following from the osmotic ensemble partition function. Biasing weights associated with the λ-states are used in order to efficiently realize transitions between them; these are determined by means of the Wang-Landau method. We also propose a novel scaling procedure for λ, which can be used for both nonpolarizable and polarizable models of aqueous electrolyte systems. The approach is readily extended to involve other solvents, multiple electrolytes, and species complexation reactions. The method is illustrated for NaCl, using SPC/E water and several force field models for NaCl from the literature, and the results are compared with experiment at ambient conditions. Good agreement is obtained for the chemical potential-concentration curve and the solubility prediction is reasonable. Future improvements to the predictions will require improved force field models.

  5. 76 FR 3118 - Notice of Availability of Advanced Battery Technology Related Patents for Exclusive, Partially...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ..., Less Expensive Lithium Ion Batteries (US 7,629,080). 6. ARL 05-18--High Capacity Metal/Air Battery... Resistance in Lithium Ion Batteries. Filed with USPTO on 2/3/2010 (S/N 12/699,182). 11. ARL 09-33--Pure LiBOB... Electrolytes for Lithium/Air Batteries (US 7,585,579). 2. ARL 02-06--Solvent Systems Comprising a Mixture of...

  6. Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent.

    PubMed

    Abbott, Andrew P; Ballantyne, Andrew; Harris, Robert C; Juma, Jamil A; Ryder, Karl S

    2017-01-25

    Organic and inorganic additives are often added to nickel electroplating solutions to improve surface finish, reduce roughness and promote uniform surface morphology of the coatings. Such additives are usually small molecules and often referred to as brighteners or levellers. However, there have been limited investigations into the effect of such additives on electrodeposition from ionic liquids (ILs) and deep eutectic solvents (DESs). Here we study the effect of four additives on electrolytic nickel plating from an ethyleneglycol based DES; these are nicotinic acid (NA), methylnicotinate (MN), 5,5-dimethylhydantoin (DMH) and boric acid (BA). The additives show limited influence on the bulk Ni(ii) speciation but have significant influence on the electrochemical behaviour of Ni deposition. Small concentrations (ca. 15 mM) of NA and MN show inhibition of Ni(ii) reduction whereas high concentrations of DMH and BA are required for a modest difference in behaviour from the additive free system. NA and MN also show that they significantly alter the nucleation and growth mechanism when compared to the additive free system and those with DMH and BA. Each of the additive systems had the effect of producing brighter and flatter bulk electrodeposits with increased coating hardness but XRD shows that NA and MN direct crystal growth to the [111] orientation whereas DMH and BA direct crystal growth to the [220] orientation.

  7. Acoustical Studies of L-leucine and L-asparagine in aqueous electrolyte through thermal expansion coefficient

    NASA Astrophysics Data System (ADS)

    Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.

    2012-12-01

    Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.

  8. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    NASA Astrophysics Data System (ADS)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  9. Process for manufacturing a lithium alloy electrochemical cell

    DOEpatents

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  10. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  11. Dielectric Relaxations of (Acetamide + Electrolyte) Deep Eutectic Solvents in the Frequency Window, 0.2 ≤ ν/GHz ≤ 50: Anion and Cation Dependence.

    PubMed

    Mukherjee, Kallol; Das, Anuradha; Choudhury, Samiran; Barman, Anjan; Biswas, Ranjit

    2015-06-25

    Dielectric relaxation (DR) measurements in the frequency range 0.2 ≤ ν/GHz ≤ 50 have been carried out for neat molten acetamide and six different (acetamide + electrolyte) deep eutectic solvents (DESs) for investigating ion effects on DR dynamics in these ionic DESs. Electrolytes used are lithium salts of bromide (LiBr), nitrate (LiNO3), and perchlorate (LiClO4); sodium salts of perchlorate (NaClO4) and thiocyante (NaSCN); and potassium thiocyanate (KSCN). With these electrolytes acetamide forms DESs approximately at an 80:20 mol ratio. Simultaneous fits to the measured permittivity (ε′) and loss (ε″) spectra of these DESs at ∼293 K require a sum of four Debye (4-D) processes with relaxation times spread over picosecond to nanosecond regime. In contrast, DR spectra for neat molten acetamide (∼354 K) depict 2-D relaxation with time constants ∼50 ps and ∼5 ps. For both the neat and ionic systems, the undetected dispersion, ε∞ – n(D)2, remains to be ∼3–4. Upon comparison, measured DR dynamics reveal pronounced anion and cation effects. Estimated static dielectric constants (ε0) from fits for these DESs cover the range 12 < ε0 < 30 and are remarkably lower than that (ε0 ∼ 64) measured for molten acetamide at ∼354 K. Hydrodynamic effective rotation volumes (Veff) estimated from the slowest DR relaxation time constants vary with ion identity and are much smaller than the molecular volume of acetamide. This decrease of ε0 and Veff is attributed respectively to the pinning of acetamide molecules by ions and orientation jumps and undetected portion to the limited frequency coverage employed in these measurements

  12. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate capability at low temperatures (i.e., 20 to 40 C), this approach was optimized further, resulting in the development of 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %), which were demonstrated to operate well over a wide temperature range in MCMB-LiNiCoAlO2 and Li4Ti5O12(-)LiNiCoAlO2 prototype cells.

  13. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.

    PubMed

    Luo, Jia-Yan; Cui, Wang-Jun; He, Ping; Xia, Yong-Yao

    2010-09-01

    Aqueous lithium-ion batteries may solve the safety problem associated with lithium-ion batteries that use highly toxic and flammable organic solvents, and the poor cycling life associated with commercialized aqueous rechargeable batteries such as lead-acid and nickel-metal hydride systems. But all reported aqueous lithium-ion battery systems have shown poor stability: the capacity retention is typically less than 50% after 100 cycles. Here, the stability of electrode materials in an aqueous electrolyte was extensively analysed. The negative electrodes of aqueous lithium-ion batteries in a discharged state can react with water and oxygen, resulting in capacity fading upon cycling. By eliminating oxygen, adjusting the pH values of the electrolyte and using carbon-coated electrode materials, LiTi(2)(PO(4))(3)/Li(2)SO(4)/LiFePO(4) aqueous lithium-ion batteries exhibited excellent stability with capacity retention over 90% after 1,000 cycles when being fully charged/discharged in 10 minutes and 85% after 50 cycles even at a very low current rate of 8 hours for a full charge/discharge offering an energy storage system with high safety, low cost, long cycling life and appropriate energy density.

  14. Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2006-01-01

    Electrolytes comprising, variously, LiPF6 or LiPF6 plus LiBF4 dissolved at various concentrations in mixtures of alkyl carbonates and alkyl esters have been found to afford improved low-temperature performance in rechargeable lithium-ion electrochemical cells. These and other electrolytes have been investigated in a continuing effort to extend the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Ester-Based Electrolytes for Low-Temperature Li-Ion Cells (NPO-41097), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 59. The ingredients of the solvent mixtures include ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), and methyl propionate (MP). The electrolytes were placed in Li-ion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the electrical performances of the cells were measured over a range of temperatures down to 60 C. The electrolytes that yielded the best low-temperature performances were found to consist, variously, of 1.0 M LiPF6 + 0.4 M LiBF4 or 1.4 LiPF6 in 1EC + 1EMC + 8MP or 1EC + 1EMC + 8MB, where the concentrations of the salts are given in molar units and the proportions of the solvents are by relative volume.

  15. [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide: A novel cathode additive for high-voltage performance in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hyun; Yoon, Sukeun; Hwang, Eui-Hyung; Kwon, Young-Gil; Lee, Young-Gi; Cho, Kuk Young

    2018-02-01

    High-voltage operation of lithium-ion batteries (LIBs) is a facile approach to obtaining high specific energy density, especially for LiNi0·5Mn0·3Co0·2O2 (NMC532) cathodes currently used in mid- and large-sized energy storage devices. However, high-voltage charging (>4.3 V) is accompanied by a rapid capacity fade over long cycles due to severe continuous electrolyte decomposition and instability at the cathode surface. In this study, the sulfite-based compound, [4,4‧-bi(1,3,2-dioxathiolane)] 2,2‧-dioxide (BDTD) is introduced as a novel electrolyte additive to enhance electrochemical performances of alumina-coated NMC532 cathodes cycled in the voltage range of 3.0-4.6 V. X-ray photoelectron spectroscopy (XPS) and AC impedance of cells reveal that BDTD preferentially oxidizes prior to the electrolyte solvents and forms stable film layers on to the cathode surface, preventing increased impedance caused by repeated electrolyte solvent decomposition in high-voltage operation. The cycling performance of the Li/NMC532 half-cell using an electrolyte of 1.0 M LiPF6 in ethylene carbonate/ethyl methyl carbonate (3/7, in volume) can be improved by adding a small amount of BDTD into the electrolyte. BDTD enables the usage of sulfite-type additives for cathodes in high-voltage operation.

  16. Structure-Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance.

    PubMed

    Kaiser, Mohammad Rejaul; Chou, Shulei; Liu, Hua-Kun; Dou, Shi-Xue; Wang, Chunsheng; Wang, Jiazhao

    2017-12-01

    Electrolytes, which are a key component in electrochemical devices, transport ions between the sulfur/carbon composite cathode and the lithium anode in lithium-sulfur batteries (LSBs). The performance of a LSB mostly depends on the electrolyte due to the dissolution of polysulfides into the electrolyte, along with the formation of a solid-electrolyte interphase. The selection of the electrolyte and its functionality during charging and discharging is intricate and involves multiple reactions and processes. The selection of the proper electrolyte, including solvents and salts, for LSBs strongly depends on its physical and chemical properties, which is heavily controlled by its molecular structure. In this review, the fundamental properties of organic electrolytes for LSBs are presented, and an attempt is made to determine the relationship between the molecular structure and the properties of common organic electrolytes, along with their effects on the LSB performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ether-based nonflammable electrolyte for room temperature sodium battery

    NASA Astrophysics Data System (ADS)

    Feng, Jinkui; Zhang, Zhen; Li, Lifei; Yang, Jian; Xiong, Shenglin; Qian, Yitai

    2015-06-01

    Safety problem is one of the key points that hinder the development of room temperature sodium batteries. In this paper, four well-known nonflammable organic compounds, Trimethyl Phosphate (TMP), Tri(2,2,2-trifluoroethyl) phosphite (TFEP), Dimethyl Methylphosphonate (DMMP), Methyl nonafluorobuyl Ether (MFE), are investigated as nonflammable solvents in sodium batteries for the first time. Among them, MFE is stable towards sodium metal at room temperature. The electrochemical properties and electrode compatibility of MFE based electrolyte are investigated. Both Prussian blue cathode and carbon nanotube anode show good electrochemical performance retention in this electrolyte. The results suggest that MFE is a promising option as nonflammable electrolyte additive for sodium batteries.

  18. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    PubMed

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  19. Nanocatalysis for Primary and Secondary High Energy Lithium Oxygen Cells

    DTIC Science & Technology

    2011-04-01

    Synthesis of sulfoxyphenyldiazonium Chloride 2.2.3 Assessment of -COOH and –SO3H surface groups on carbon .- Attempts to prepare sulfoxyphenyl...alumina column before used for electrolyte preparation. Synthesis of the electrolyte solvent, methyl n- propyl carbonate (MPC).- The ele- ctrolyte co...2 2.0 EXPERIMENTAL APPROACH AND PROCEDURES ............................ 3 2.1 Synthesis of the Hollow Carbon Sphere

  20. Electrolytes for Low-Temperature Operation of Li-CFx Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah

    2009-01-01

    A report describes a study of electrolyte compositions selected as candidates for improving the low-temperature performances of primary electrochemical cells that contain lithium anodes and fluorinated carbonaceous (CFx) cathodes. This study complements the developments reported in Additive for Low-Temperature Operation of Li-(CF)n Cells (NPO- 43579) and Li/CFx Cells Optimized for Low-Temperature Operation (NPO- 43585), which appear elsewhere in this issue of NASA Tech Briefs. Similar to lithium-based electrolytes described in several previous NASA Tech Briefs articles, each of these electrolytes consisted of a lithium salt dissolved in a nonaqueous solvent mixture. Each such mixture consisted of two or more of the following ingredients: propylene carbonate (PC); 1,2-dimethoxyethane (DME); trifluoropropylene carbonate; bis(2,2,2-trifluoroethyl) ether; diethyl carbonate; dimethyl carbonate; and ethyl methyl carbonate. The report describes the physical and chemical principles underlying the selection of the compositions (which were not optimized) and presents results of preliminary tests made to determine effects of the compositions upon the low-temperature capabilities of Li-CFx cells, relative to a baseline composition of LiBF4 at a concentration of 1.0 M in a solvent comprising equal volume parts of PC and DME.

  1. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  2. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  3. Does Metal Ion Complexation Make Radical Clocks Run Fast? An Experimental Perspective.

    PubMed

    Abdel Latif, Marwa K; Spencer, Jared N; Paradzinsky, Mark; Tanko, James M

    2017-12-28

    The rate constant for the β-scission of the cumyloxyl radical (k β ) was measured in the presence of various added electrolytes in acetonitrile and DMSO solvent. The results show that in CH 3 CN, k β increases in the presence of added electrolyte, roughly paralleling the size of the cation: Li + > Mg 2+ ≈ Na + > n Bu 4 N + > no added electrolyte. As suggested by Bietti et al. earlier, this effect is attributable to stabilizing ion-dipole interactions in the transition state of the developing carbonyl group, a conclusion further amplified by MO calculations (gas phase) reported herein. Compared to the gas phase predictions, however, this effect is seriously attenuated in solution because complexation of the cation to the electrophilic alkoxyl radical (relative to the solvent, CH 3 CN) is very weak. Because the interaction of Li + and Na + is much stronger with DMSO than with CH 3 CN, addition of these ions has no effect on the rate of β-scission.

  4. Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg

    2015-04-23

    Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation ofmore » electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.« less

  5. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  6. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  7. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    DOEpatents

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  8. Understanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends.

    PubMed

    Oldiges, K; Diddens, D; Ebrahiminia, M; Hooper, J B; Cekic-Laskovic, I; Heuer, A; Bedrov, D; Winter, M; Brunklaus, G

    2018-06-20

    To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.

  9. Investigation of electrolytes utilized for high-voltage LiNi0.5Mn1.5O4 batteries

    NASA Astrophysics Data System (ADS)

    Qin, Yinping; Lin, Huan; Liu, Yang; Wang, Deyu

    2017-10-01

    The main challenge of high-voltage LiNi0.5Mn1.5O4 (LNMO), which is one of the most promising cathodes with the redox plateau of ˜4.75V vs Li+/Li, is the decomposition of electrolyte. In fact, our studies show that LNMO presents the good capacity retention ratio, higher than 80% after 300 cycles, in the electrolyte with the mixture of pure carbonate solvents. Even 92% of the initial capacity in the 300th cycle is remained in the optimal composition. Obviously, high-voltage LiNi0.5Mn1.5O4 can get excellent cycle performance without any special additives. In addition, we studied the electrochemical behavior of viny lene carbonate (VC) and ethylene sulfite (ES) in high potential. The results indicate that VC and ES can be electrochemically oxidized at 4.6 V and 4.05 V vs Li+/Li, respectively. In the cells with the electrolytes containing VC and ES respectively, the discharge capacities are significantly diminished. Also, the thick and high-resistance sediment layers are formed on the surface of LNMO. We concluded that the SEI-forming additives widely used in commercial batteries may firstly decompose on cathode side. Therefore, the electrolyte systems should be redesigned for graphite-LNMO batteries.

  10. Experimental and Theoretical Investigations of Charged Phospholipid Bilayers.

    NASA Astrophysics Data System (ADS)

    Graham, Ian Stanley

    1987-09-01

    Lipid systems containing charged species are examined by both experiment and theory. Experimental studies of the mixing of phosphatidylcholine or phosphatidylethanolamine with phosphatidic acid show that calcium induces fast ( <=q1s) phase separation of these otherwise miscible systems, and that this can occur in an isolated bilayer. Ionogenic behaviour is theoretically investigated using a new electrolyte model which explicitly includes both the solvent and particle sizes, and a binding model which uses Guggenheim combinatorics to treat non 1-1 binding stoichiometries. This work predicts a reduced dielectric constant near charged surfaces and strong repulsive forces between closely spaced (<15A) surfaces. A reanalysis of data from charged monolayers experiments indicates (1) that the new electrolyte model describes double layer behaviour at high surface charge densities better than the traditional Derjaguin - Landau - Verwey - Overbeek (DLVO) theory, (2) that calcium and magnesium bind to phosphatidylserine monolayers with a 1-1 stoichiometry.

  11. Simulation of electric double-layer capacitors: evaluation of constant potential method

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark

    2014-03-01

    Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.

  12. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Kimberly A.; Wu, Heng -Liang; Lau, Kah Chun

    Li-S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed "solvates" that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability; however, hydrofluoroether cosolvents, thought to be inert to the solvate structure itself, can bemore » introduced to reduce viscosity and enhance diffusion. Nazar and co-workers previously reported that addition of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to the LiTFSI in acetonitrile solvate, (MeCN) 2-LiTFSI, results in enhanced capacity retention compared to the neat solvate. Here, we evaluate the effect of TTE addition on both the electrochemical behavior of the Li-S cell and the solvation structure of the (MeCN) 2-LiTFSI electrolyte. Contrary to previous suggestions, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that TTE coordinates to Li + at the expense of MeCN coordination, thereby producing a higher content of free MeCN, a good polysulfide solvent, in the electrolyte. Furthermore, the electrolytes containing a higher free MeCN content facilitate faster polysulfide formation kinetics during the electrochemical reduction of S in a Li-S cell likely as a result of the solvation power of the free MeCN.« less

  13. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li–S Battery

    DOE PAGES

    See, Kimberly A.; Wu, Heng -Liang; Lau, Kah Chun; ...

    2016-11-16

    Li-S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed "solvates" that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability; however, hydrofluoroether cosolvents, thought to be inert to the solvate structure itself, can bemore » introduced to reduce viscosity and enhance diffusion. Nazar and co-workers previously reported that addition of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to the LiTFSI in acetonitrile solvate, (MeCN) 2-LiTFSI, results in enhanced capacity retention compared to the neat solvate. Here, we evaluate the effect of TTE addition on both the electrochemical behavior of the Li-S cell and the solvation structure of the (MeCN) 2-LiTFSI electrolyte. Contrary to previous suggestions, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that TTE coordinates to Li + at the expense of MeCN coordination, thereby producing a higher content of free MeCN, a good polysulfide solvent, in the electrolyte. Furthermore, the electrolytes containing a higher free MeCN content facilitate faster polysulfide formation kinetics during the electrochemical reduction of S in a Li-S cell likely as a result of the solvation power of the free MeCN.« less

  14. Effect of Hydrofluoroether Cosolvent Addition on Li Solvation in Acetonitrile-Based Solvate Electrolytes and Its Influence on S Reduction in a Li-S Battery.

    PubMed

    See, Kimberly A; Wu, Heng-Liang; Lau, Kah Chun; Shin, Minjeong; Cheng, Lei; Balasubramanian, Mahalingam; Gallagher, Kevin G; Curtiss, Larry A; Gewirth, Andrew A

    2016-12-21

    Li-S batteries are a promising next-generation battery technology. Due to the formation of soluble polysulfides during cell operation, the electrolyte composition of the cell plays an active role in directing the formation and speciation of the soluble lithium polysulfides. Recently, new classes of electrolytes termed "solvates" that contain stoichiometric quantities of salt and solvent and form a liquid at room temperature have been explored due to their sparingly solvating properties with respect to polysulfides. The viscosity of the solvate electrolytes is understandably high limiting their viability; however, hydrofluoroether cosolvents, thought to be inert to the solvate structure itself, can be introduced to reduce viscosity and enhance diffusion. Nazar and co-workers previously reported that addition of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) to the LiTFSI in acetonitrile solvate, (MeCN) 2 -LiTFSI, results in enhanced capacity retention compared to the neat solvate. Here, we evaluate the effect of TTE addition on both the electrochemical behavior of the Li-S cell and the solvation structure of the (MeCN) 2 -LiTFSI electrolyte. Contrary to previous suggestions, Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that TTE coordinates to Li + at the expense of MeCN coordination, thereby producing a higher content of free MeCN, a good polysulfide solvent, in the electrolyte. The electrolytes containing a higher free MeCN content facilitate faster polysulfide formation kinetics during the electrochemical reduction of S in a Li-S cell likely as a result of the solvation power of the free MeCN.

  15. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guowei; Baker, Nathan A.

    2016-11-11

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In thesemore » approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.« less

  16. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  17. Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).

    PubMed

    Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe

    2016-10-26

    Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.

  18. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  19. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple.

    PubMed

    Daeneke, Torben; Uemura, Yu; Duffy, Noel W; Mozer, Attila J; Koumura, Nagatoshi; Bach, Udo; Spiccia, Leone

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Functional electrolyte for lithium-ion batteries

    DOEpatents

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  1. Quantitative and Qualitative Determination of Polysulfide Species in the Electrolyte of a Lithium-Sulfur Battery using HPLC ESI/MS with One-Step Derivatization

    DOE PAGES

    Zheng, Dong; Qu, Deyu; Yang, Xiao-Qing; ...

    2015-01-29

    The polysulfide species dissolved in aprotic solvents can be separated and analyzed by reverse phase (RP) high performance liquid chromatography (HPLC) in tandem with electrospray-mass spectroscopy. The relative distribution of polysulfide species in the electrolyte recovered from Li-S batteries is quantitatively and reliably determined for the first time.

  2. Quantitative and Qualitative Determination of Polysulfide Species in the Electrolyte of a Lithium-Sulfur Battery using HPLC ESI/MS with One-Step Derivatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dong; Qu, Deyu; Yang, Xiao-Qing

    The polysulfide species dissolved in aprotic solvents can be separated and analyzed by reverse phase (RP) high performance liquid chromatography (HPLC) in tandem with electrospray-mass spectroscopy. The relative distribution of polysulfide species in the electrolyte recovered from Li-S batteries is quantitatively and reliably determined for the first time.

  3. Redox shuttles for overcharge protection of lithium batteries

    DOEpatents

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  4. Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries.

    PubMed

    Gomez-Ballesteros, Jose L; Balbuena, Perla B

    2017-07-20

    Surface modification of Si anodes in Li-ion batteries by deposition of a thin alucone coating has demonstrated an effective way to help maintain a stable anode/electrolyte interface and good battery performance. In this work, we investigate the interactions and reactivity of the film with electrolyte components using ab initio molecular dynamics simulations. Adsorption of solvent molecules (ethylene carbonate, EC) and salt (LiPF 6 ) and reduction by two mechanisms depending on the Li content of the film (yielding open EC adsorbed on the film or C 2 H 4 + CO 3 2- ) take place near the film/electrolyte and film/anode interfaces. Reaction products incorporate into the structure of the film and create a new kind of solid-electrolyte interphase layer.

  5. Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries

    DOE PAGES

    Gomez-Ballesteros, Jose L.; Balbuena, Perla B.

    2017-07-07

    Surface modification of Si anodes in Li-ion batteries by deposition of a thin alucone coating has demonstrated an effective way to help maintain a stable anode/electrolyte interface and good battery performance. In this paper, we investigate the interactions and reactivity of the film with electrolyte components using ab initio molecular dynamics simulations. Adsorption of solvent molecules (ethylene carbonate, EC) and salt (LiPF 6), and reduction by two mechanisms depending on the Li content of the film (yielding open EC adsorbed on the film or C 2H 4 + CO 3 2-) take place near the film/electrolyte and film/anode interfaces. Finally,more » reactions products incorporate to the structure of the film and create a new kind of solid-electrolyte interphase layer.« less

  6. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.

    PubMed

    Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D

    2014-07-01

    A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, Nasim; Xue, Zheng; Hu, Libo

    Lithium difluoro(oxalato) borate (LiDFOB) was investigated as an electrolyte additive for the Li-S battery. This additive was identified to be an efficient electrolyte additive to suppress the polysulfide shuttling effect existing in the conventional Li-S chemistry. To detect the positive impact of the new additive, oligo (ethylene glycol) functionalized silane was employed as the electrolyte solvent due to its high solvation capability with the lithium polysulfides. The electrochemical results and the SEM data of Li-S battery using the new electrolyte confirmed the role of the LiDFOB as a critical component to eliminate the shuttling of the dissolved polysulfides thus enablingmore » a high coulombic efficiency. (C) 2014 Elsevier Ltd. All rights reserved.« less

  8. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the disordered structure observed in diblock polymer melts near the order-disorder transition. In the resulting solid PEMs, the conductivity and modulus are both high, exceeding the 1 mS/cm and approaching the 1 GPa metrics, respectively, often cited for lithium-metal batteries. In the final chapter, an alternative synthetic route to generate nanostructured PEMs is presented. This strategy relies on the formation of a thermodynamically stable network morphology exhibited by a triblock terpolymer prepared with crosslinking moieties along the backbone. Although the mechanical properties of the resulting PEM are excellent, the conductivity is found to be somewhat limited by network defects that result from the solvent-casting procedure.

  9. Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen

    An alkaline polymer electrolyte film has been prepared by a solvent-casting method. Poly(vinyl alcohol), PVA is added to improve the ionic conductivity of the electrolyte. The ionic conductivity increases from 10 -7 to 10 -2 S cm -1 at room temperature when the weight percent ratio of poly(ethylene oxide), PEO to PVA is increased from 10:0 to 5:5. The activation energy of the ionic conductivity for the PEO-PVA-KOH polymer electrolyte is 3-8 kJ mol -1. The properties of the electrolyte film are characterized by a wide variety of techniques and it is found that the film exhibits good mechanical stability and high ionic conductivity at room temperature. The application of such electrolyte films to nickel-metal-hydride (Ni-MH) batteries is examined and the electrochemical characteristics of a polymer Ni-MH battery are obtained.

  10. Mechanistic insights into lithium ion battery electrolyte degradation - a quantitative NMR study.

    PubMed

    Wiemers-Meyer, S; Winter, M; Nowak, S

    2016-09-29

    The changes in electrolyte composition on the molecular level and the reaction mechanisms of electrolyte degradation upon thermal aging are monitored by quantitative NMR spectroscopy, revealing similar rates of degradation for pristine and already aged electrolytes. The data analysis is not in favor of an autocatalytic reaction mechanism based on OPF 3 but rather indicates that the degradation of LiPF 6 in carbonate based solvents proceeds via a complex sequence of "linear" reactions rather than a cyclic reaction pattern which is determined by the amount of water present in the samples. All investigated electrolytes are reasonably stable at temperatures of up to 60 °C in the presence of minor amounts or absence of water hence indicating that chemical instability of electrolyte components against water is decisive for degradation and an increase in temperature ("thermal aging") just accelerates the degradation impact of water.

  11. Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane.

    PubMed

    Chaban, Vitaly

    2015-07-01

    Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).

  12. Thermal and electrochemical properties of nonflammable electrolyte solutions containing fluorinated alkylphosphates for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Todorov, Yanko Marinov; Aoki, Masahiro; Mimura, Hideyuki; Fujii, Kenta; Yoshimoto, Nobuko; Morita, Masayuki

    2016-11-01

    Nonflammable organic electrolyte solutions containing fluorinated alkylphosphates (FAP) have been examined as safer electrolytes for lithium-ion batteries (LIB). Although the ionic conductivity of LiPF6 in neat tris(2,2,2-trifluoroethyl)phosphate (TFEP) solvent is very low, it increases upon the addition of alkyl carbonates such as ethylene carbonate (EC) and fluoroethylene carbonate (4-fluoro-2-oxo-1,3-dioxolane, FEC). A specific conductivity of 1 mS cm-1 or higher was obtained at room temperature for the system containing proper amounts of the carbonates and 0.5 M (mol dm-3) LiPF6. A conventional mixed alkylcarbonate-based solution containing LiPF6 showed a sign of considerable exothermic reactions on the differential scanning calorimetry (DSC) response below 300 °C. However, the LiPF6/TFEP solution showed no significant exothermic response up to 400 °C, even in the presence of charged LiCoO2 (LCO) positive electrode. The addition of an alkylcarbonate to the LiPF6/TFEP solution produced an exothermic response as a result of the thermal decomposition of the carbonate over the charged LCO. However, the temperature at which the exothermic reaction starts was significantly higher in the system containing FEC than that containing EC. The thermal analysis results suggested that the LiPF6/FEC + TFEP combination could work as a safer electrolyte system in LIB under severe conditions.

  13. Specific detection of membrane-toxic substances with a conductivity assay.

    PubMed

    Eich, J; Dürholt, H; Steger-Hartmann, T; Wagner, E

    2000-03-01

    A conductivity assay that represents a new biotest able to detect the effects of membrane-toxic compounds, e.g., detergents, organic solvents, and radical formers, on various organisms was previously described and developed. The conductivity assay measures ion leakage from cells, tissues, or whole plant and animal organisms whose membrane systems have been damaged by membrane-toxic compounds. In this study the specificity of the conductivity assay for membrane-toxic compounds was tested by comparing the electrolyte efflux from Elodea canadensis leaves during incubation with a well-known detergent (benzalkonium chloride) using different plant physiological and biochemical techniques (photochemical efficiency, plasmolysis capacity, NBT reduction, and electron microscopy of membranes of E. canadensis leaves). The comparison of the different methods proved that the electrolyte loss during benzalkonium chloride incubation determined in the conductivity assay is due to membrane impairment. The observed electrolyte loss correlated with a reduction of photochemical efficiency and a decrease in both plasmolysis and NBT reduction capacity. Furthermore, a disintegration of the plasmalemma could be seen in the electron micrographs. These results indicate that the measured electrolyte loss in the conductivity assay is a specific effect of membrane-toxic compounds. Copyright 2000 Academic Press.

  14. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Colò, Francesca; Bella, Federico; Nair, Jijeesh R.; Gerbaldi, Claudio

    2017-10-01

    In this work we present a very simple preparation procedure of a poly(ethylene oxide) (PEO)-based crosslinked polymer electrolyte (XPE) for application in sodium-ion batteries (NIBs). The polymer electrolyte, containing NaClO4 as Na+ source, is prepared by rapid, energy saving, solvent-free photopolymerization technique, in a single step. Thermal, mechanical, morphological and electrochemical properties of the resulting XPE are thoroughly investigated. The highly ionic conducting (>1 mS cm-1 at 25 °C) polymer electrolyte is used in a lab-scale sodium cell with nanostructured TiO2 working electrode. The obtained results in terms of ambient temperature cycling behaviour (stable specific capacity of about 250 mAh g-1 at 0.1 mA cm-2 and overall remarkable stability, for a quasi-solid state Na polymer cell, upon very long term cycling exceeding 1000 reversible cycles at 0.5 mA cm-2 corresponding to > 5000 h of continuous operation) demonstrate the promising prospects of this novel XPE to be implemented in the next-generation NIBs conceived for large-scale energy storage systems, such as those connected to photovoltaic and wind factories.

  15. Gas-liquid interface of room-temperature ionic liquids.

    PubMed

    Santos, Cherry S; Baldelli, Steven

    2010-06-01

    The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).

  16. Finite-size effects in simulations of electrolyte solutions under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey; Sanchez, Isaac

    The equilibrium properties of charged systems with periodic boundary conditions may exhibit pronounced system-size dependence due to the long range of the Coulomb force. As shown by others, the leading-order finite-size correction to the Coulomb energy of a charged fluid confined to a periodic box of volume V may be derived from sum rules satisfied by the charge-charge correlations in the thermodynamic limit V -> ∞ . In classical systems, the relevant sum rule is the Stillinger-Lovett second-moment (or perfect screening) condition. This constraint implies that for large V, periodicity induces a negative bias of -kB T(2 V) - 1 in the total Coulomb energy density of a homogeneous classical charged fluid of given density and temperature. We present a careful study of the impact of such finite-size effects on the calculation of solute chemical potentials from explicit-solvent molecular simulations of aqueous electrolyte solutions. National Science Foundation Graduate Research Fellowship Program, Grant No. DGE-1610403.

  17. Proposal of simple and novel method of capacity fading analysis using pseudo-reference electrode in lithium ion cells: Application to solvent-free lithium ion polymer batteries

    NASA Astrophysics Data System (ADS)

    Shono, Kumi; Kobayashi, Takeshi; Tabuchi, Masato; Ohno, Yasutaka; Miyashiro, Hajime; Kobayashi, Yo

    2014-02-01

    We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment of the operation range between the cathode and anode after cycle operation. The proposed procedure is applicable to lithium ion battery systems using a solid electrolyte to prepare two cells with a lithium counter electrode. We determined the capacity decrease of a solvent-free lithium ion polymer battery consisting of a LiNi1/3Mn1/3Co1/3O2 (NMC), a polyether-based solid polymer electrolyte (SPE), and a graphite (Gr) with the proposed PRE over 1000 cycles. The capacity retention of the [Gr|SPE|NMC] cell reached 50% at the 1000th cycle upon the optimization of cell preparation, and we found that the main factor of the capacity decrease was the continuous irreversible loss of active lithium at the graphite anode, not the oxidation of the SPE. Our findings suggest that we should reconsider combining a polyether-based SPE with a conventionally used 4 V class cathode and a graphite anode to develop an innovative, safe, and low-cost battery for the expected large lithium ion battery systems for stationary use.

  18. First-principles calculation of electronic energy level alignment at electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Azar, Yavar T.; Payami, Mahmoud

    2017-08-01

    Energy level alignment at solid-solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO2 and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.

  19. Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions.

    PubMed

    Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Kim, Huikyong; Jeong, Sangsik; Wu, Liming; Gachot, Gregory; Laruelle, Stephane; Armand, Michel; Passerini, Stefano

    2016-03-08

    We report a systematic investigation of Na-based electrolytes that comprise various NaX [X=hexafluorophosphate (PF6 ), perchlorate (ClO4 ), bis(trifluoromethanesulfonyl)imide (TFSI), fluorosulfonyl-(trifluoromethanesulfonyl)imide (FTFSI), and bis(fluorosulfonyl)imide (FSI)] salts and solvent mixtures [ethylene carbonate (EC)/dimethyl carbonate (DMC), EC/diethyl carbonate (DEC), and EC/propylene carbonate (PC)] with respect to the Al current collector stability, formation of soluble degradation compounds, reactivity towards sodiated hard carbon (Nax -HC), and solid-electrolyte interphase (SEI) layer formation. Cyclic voltammetry demonstrates that the stability of Al is highly influenced by the nature of the anions, solvents, and additives. GC-MS analysis reveals that the formation of SEI telltales depends on the nature of the linear alkyl carbonates and the battery chemistry (Li(+) vs. Na(+) ). FTIR spectroscopy shows that double alkyl carbonates are the main components of the SEI layer on Nax -HC. In the presence of Na salts, EC/DMC and EC/DEC presented a higher reactivity towards Nax -HC than EC/PC. For a fixed solvent mixture, the onset temperature follows the sequence NaClO4

  20. Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration

    PubMed Central

    Moreau, P.; De Vito, E.; Quazuguel, L.; Boniface, M.; Bordes, A.; Rudisch, C.; Bayle-Guillemaud, P.; Guyomard, D.

    2016-01-01

    The failure mechanism of silicon-based electrodes has been studied only in a half-cell configuration so far. Here, a combination of 7Li, 19F MAS NMR, XPS, TOF-SIMS, and STEM-EELS, provides an in-depth characterization of the solid electrolyte interphase (SEI) formation on the surface of silicon and its evolution upon aging and cycling with LiNi1/3Mn1/3Co1/3O2 as the positive electrode in a full Li-ion cell configuration. This multiprobe approach indicates that the electrolyte degradation process observed in the case of full Li-ion cells exhibits many similarities to what has been observed in the case of half-cells in previous works, in particular during the early stages of the cycling. Like in the case of Si/Li half-cells, the development of the inorganic part of the SEI mostly occurs during the early stage of cycling while an incessant degradation of the organic solvents of the electrolyte occurs upon cycling. However, for extended cycling, all the lithium available for cycling is consumed because of parasitic reactions and is either trapped in an intermediate part of the SEI or in the electrolyte. This nevertheless does not prevent the further degradation of the organic electrolyte solvents, leading to the formation of lithium-free organic degradation products at the extreme surface of the SEI. At this point, without any available lithium left, the cell cannot function properly anymore. Cycled positive and negative electrodes do not show any sign of particles disconnection or clogging of their porosity by electrolyte degradation products and can still function in half-cell configuration. The failure mechanism for full Li-ion cells appears then very different from that known for half-cells and is clearly due to a lack of cyclable lithium because of parasitic reactions occurring before the accumulation of electrolyte degradation products clogs the porosity of the composite electrode or disconnects the active material particles. PMID:27212791

  1. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations

    DOE PAGES

    Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...

    2015-04-13

    A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less

  2. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  3. New electrolytes for aluminum production: Ionic liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  4. Advanced Double Layer Capacitor

    DTIC Science & Technology

    1989-07-01

    Membrane and Electrode Assemblies The Nafion electrolyte was introduced into the electrode by two different methods: 1) mixing of the Nafion solution with... electroosmotic transport of water, allows some liquid electrolyte to permeate into the structure, which causes partial flooding. On the basis of these...solution of Nafion 117) was mixed with the RuO x powder. The solvent was then allowed to evaporate and the resulting composite powder was crushed and

  5. Novel, Solvent-Free, Single Ion-Conducting Polymer Electrolytes

    DTIC Science & Technology

    2007-10-31

    the selected polymer electrolyte membrane and a LiFePO4 -based composite cathode film. The latter was prepared by blending the LiFePO4 active...following: charge Li+ + FePO4 + e LiFePO4 [1] discharge to which is associate a maximum...as separator in a Li/ LiFePO4 battery. . 1.Experimental. Calixpyrrole (CP, provided by the University of Warsaw), LiBOB (Libby) and PEO

  6. Conductometry of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Safonova, Lyubov P.; Kolker, Arkadii M.

    1992-09-01

    A review is given of the theories of the electrical conductance of electrolyte solutions of different ionic strengths and concentrations, and of the models of ion association. An analysis is made of the methods for mathematical processing of experimental conductometric data. An account is provided of various theories describing the dependence of the limiting value of the ionic electrical conductance on the properties of the solute and solvent. The bibliography includes 115 references.

  7. Novel, Solvent Free, Single Ion Conductive Polymer Electrolytes (Warsaw-2001)

    DTIC Science & Technology

    2004-10-18

    application in lithium and lithium - ion batteries , characterized by limited participation of anions in the transport of electrical charge. Studies...with studies on novel chemical energy conversion and storage devices mainly lithium or lithium ion batteries and fuel cells [1]. Our work within...this part of the project dealt with these novel ideas in the field of lithium or lithium - ion batteries based on polymeric solid electrolytes. The solid

  8. Novel Paradigm Supercapacitors V: Significance of Organic Polar Solvents and Salt Identities

    DTIC Science & Technology

    2017-06-01

    CM/Baker.pdf. Accessed May 13, 2017. 156 [36] Lithium - ion battery . (n.d.). Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/ Lithium ...interested in the electrolytic components of lithium batteries and high performance non-nanotube SDM (NTSDM) capacitors. This is because these... lithium batteries and various commercial non- NTSDM capacitors. Table 3. List of Lithium Battery and Electrolytic Capacitors. Adapted from [34]–[36

  9. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOEpatents

    Nagasubramanian, Ganesan

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  10. Gas Evolution in Activated-Carbon-Based Supercapacitors with Protic Deep Eutectic Solvent as Electrolyte.

    PubMed

    Phadke, Satyajit; Amara, Samia; Anouti, Mérièm

    2017-09-06

    One of the primary causes of aging in supercapacitors are the irreversible faradaic reactions occurring near the operating-voltage limit that lead to the production of gases resulting in device swelling, increased resistance, and lowering of the capacitance. In this study, a protic deep eutectic solvent (DES) consisting of mixture of lithium bis(fluorosulfonyl)imide (LiFSI) with formamide (FMD) as H-bond donor (x LiFSI =0.25; C=2.5 m LiFSI) is investigated as electrolyte for activated carbon (AC)-based electrical double layer capacitors (EDLCs). Characterization of the viscosity, conductivity, and the ionicity of the electrolyte in a wide range of temperatures indicates >88 % salt dissociation. In situ pressure measurements are performed to understand the effect of cycling conditions on the rate of gas generation, quantified by the in operando pressure variation dP/dt. These measurements demonstrate that about 25 % of the faradaic reactions leading to gas generation are electrochemically reversible. Cell aging studies demonstrate promising potential of the LiFSI/FMD as a protic electrolyte for AC-based EDLCs and high energy density close to 30 Wh kg -1 at 2.4 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Long life lithium batteries with stabilized electrodes

    DOEpatents

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  12. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  13. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.

    PubMed

    Smirnov, Vladimir S; Kislenko, Sergey A

    2018-01-05

    The molecular life of intermediates, namely, O 2 - and Li + , produced during the discharge of aprotic Li-O 2 batteries was investigated by molecular dynamics simulation. This work is of potential interest in the development of new electrolytes for Li-air batteries. We present the results on the structure and stability of the Li + and O 2 - solvation shells and the thermodynamics and kinetics of the ion-association reaction in solvents such as dimethyl sulfoxide (DMSO), dimethoxyethane (DME), and acetonitrile (ACN). The residence time of solvent molecules in the Li + solvation shell increases with the solvent donor number and is 100 times larger in DMSO than in ACN. In DMSO and DME, the Li + ion diffuses with its solvation shell as a whole. On the contrary, in ACN it diffuses as a "bare" ion because of weak solvation. The rate constant for the association of the lithium ion with the superoxide anion in DMSO is two orders of magnitude slower than that in ACN due to fact that the free-energy barrier is 2.5 times larger in DMSO than in ACN. In addition, we show that despite the strong dependence of the Li + shell stability on donor number, the rate of association does not necessarily correlate with this solvent property. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conductivity and Thermal Studies on Plasticized Nano-Composite Solid Polymer Electrolyte, Peo: Ec: LiTf: Al2O3

    NASA Astrophysics Data System (ADS)

    Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.

    2006-06-01

    Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.

  15. Method of preparing electrolyte for use in fuel cells

    DOEpatents

    Kinoshita, Kimio; Ackerman, John P.

    1978-01-01

    An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, Artem; Prendergast, David

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  17. Assessing Electrolyte Transport Properties with Molecular Dynamics

    DOE PAGES

    Jones, R. E.; Ward, D. K.; Gittleson, F. S.; ...

    2017-04-15

    Here in this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF 4 and O 2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimationmore » techniques is necessary for a reliable ranking of a large set of electrolytes.« less

  18. Study of the H2O/Al2O3 Interface and the Acting Mechanism of Water in the Working Electrolyte

    NASA Astrophysics Data System (ADS)

    Jia, Ming; Li, Qiang; Li, Lixiang; Cao, Liang; Yang, Juan; Zhou, Xiangyang; Ai, Liang

    2018-04-01

    Using a working electrolyte containing mixed solvents of ethylene glycol and N,N-dimethylformamide, this paper presents a study of the reactions on the H2O/Al2O3 interface with sum frequency vibrational spectroscopy and the effects of different water content on the performance of the working electrolyte and an aluminum electrolytic capacitor and summarizes the rules of the variations in the performance parameters of the working electrolyte and aluminum electrolytic capacitor with respect to the water content. The results demonstrate that, when the water content is increased from 2.5 to 15%, the conductivity of the working electrolyte increased by 930 μS/cm, and the sparking voltage decreased by 27 V. Also, the increased water content causes lower oxidation efficiency and lower thermal stability. The leakage current of the aluminum electrolytic capacitor after high-temperature storage increases with an increase in the water content, and the attenuation rate of capacitor's the low-temperature capacitance decreases with an increase in the water content.

  19. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hiroe; Fujino, Yukiko; Kozono, Suguru; Katayama, Yoshihiro; Nukuda, Toshiyuki; Sakaebe, Hikari; Matsumoto, Hajime; Tatsumi, Kuniaki

    A mixture of flammable organic solvent and nonflammable room temperature ionic liquid (RTIL) has been investigated as a new concept electrolyte to improve the safety of lithium-ion cells. This study focused on the use of N-methyl- N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13-TFSI) as the RTIL for the flame-retardant additive. It was found that a carbon negative electrode, both graphite and hard carbon, could be used with the mixed electrolyte. A 383562-size lithium-ion trial cell made with the mixed electrolyte showed good discharge capacity, which was equivalent to a cell with conventional organic electrolyte up to a discharge current rate of complete discharge in 1 h. Moreover, the mixed electrolyte was observed to be nonflammable at ionic liquid contents of 40 mass% or more. Thus the mixed electrolyte was found to realize both nonflammability and the good discharge performance of lithium-ion cells with carbon negative electrodes. These results indicate that RTILs have potential as a flame-retardant additive for the organic electrolytes used in lithium-ion cells.

  20. Ion and gas chromatography mass spectrometry investigations of organophosphates in lithium ion battery electrolytes by electrochemical aging at elevated cathode potentials

    NASA Astrophysics Data System (ADS)

    Weber, Waldemar; Wagner, Ralf; Streipert, Benjamin; Kraft, Vadim; Winter, Martin; Nowak, Sascha

    2016-02-01

    The electrochemical aging of commercial non-aqueous lithium hexafluorophosphate (LiPF6)/organic carbonate solvent based lithium ion battery electrolyte has been investigated in view of the formation of ionic and non-ionic alkylated phosphates. Subject was a solvent mixture of ethylene carbonate/ethyl methyl carbonate EC:EMC (1:1, by wt.) with 1 M LiPF6 (LP50 Selectilyte™, BASF). The analysis was carried out by ion chromatography coupled with electrospray ionization mass spectrometry (ESI-MS) for ionic compounds and (headspace) gas chromatography mass spectrometry ((HS)-GC-MS) for non-ionic compounds. The electrochemical aging was performed by galvanostatic charge/discharge cycling and potentiostatic experiments with LiNi0.5Mn1.5O4 (LMNO) as cathode material at increased cut-off potentials (>4.5 V vs. Li/Li+). A strong dependence of the formation of organophosphates on the applied electrode potential was observed and investigated by quantitative analysis of the formed phosphates. In addition, new possible ;fingerprint; compounds for describing the electrolyte status were investigated and compared to existing compounds.

  1. Properties of nonaqueous electrolytes

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Hanson, D. C.; Hon, J. F.; Keller, R.; Muirhead, J. S.

    1970-01-01

    Physical property measurements and structural studies conducted in aprotic solvents using various solutes are applicable to the further development of lithum batteries. Structural studies utilize nuclear magnetic resonance and electron paramagnetic resonance techniques.

  2. Sang-Don Han | NREL

    Science.gov Websites

    between 1) electrolyte material structure (i.e., solvent/anion structure and solvation state of cations presence of organic foulants," Desalination (2009). "Influence of the heterogeneous structure on

  3. Thermal Coefficient of Redox Potential of Alkali Metals

    NASA Astrophysics Data System (ADS)

    Fukuzumi, Yuya; Hinuma, Yoyo; Moritomo, Yutaka

    2018-05-01

    The thermal coefficient (α) of redox potential (V) is a significant physical quantity that converts the thermal energy into electric energy. In this short note, we carefully determined α of alkali metals (A = Li and Na) against electrolyte solution. The obtained α is much larger than that expected from the specific heat (CpA) of solid A and depends on electrolyte solution. These observations indicate that the solvent has significant effect on α.

  4. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOEpatents

    Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  5. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE PAGES

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  6. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  7. Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Pilar, Kartik

    Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.

  8. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    NASA Astrophysics Data System (ADS)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  9. A molecular Debye-Hückel theory and its applications to electrolyte solutions: The size asymmetric case

    DOE PAGES

    Xiao, Tiejun; Song, Xueyu

    2017-03-28

    We developed a molecular Debye-Hückel theory for electrolyte solutions with size asymmetry, where the dielectric response of an electrolyte solution is described by a linear combination of Debye-Hückel-like response modes. Furthermore, as the size asymmetry of an electrolyte solution leads to a charge imbalanced border zone around a solute, the dielectric response to the solute is characterized by two types of charge sources, namely, a bare solute charge and a charge distribution due to size asymmetry. These two kinds of charge sources are screened by the solvent differently, our theory presents a method to calculate the mean electric potential asmore » well as the electrostatic contributions to thermodynamic properties. Finally, the theory was successfully applied to binary as well as multi-component primitive models of electrolyte solutions.« less

  10. Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yong, Tianqiao; Zhang, Lingzhi; Wang, Jinglun; Mai, Yongjin; Yan, Xiaodan; Zhao, Xinyue

    2016-10-01

    Three choline-based ionic liquids functionalized with trimethylsilyl, allyl, and cynoethyl groups are synthesized in an inexpensive route as safe electrolytes for high-voltage lithium-ion batteries. The thermal stabilities, viscosities, conductivities, and electrochemical windows of these ILs are reported. Hybrid electrolytes were formulated by doping with 0.6 M LiPF6/0.4 M lithium oxalydifluoroborate (LiODFB) as salts and dimethyl carbonate (DMC) as co-solvent. By using 0.6 M LiPF6/0.4 M LiODFB trimethylsilylated choline-based IL (SN1IL-TFSI)/DMC as electrolyte, LiCoO2/graphite full cell showed excellent cycling performance with a capacity of 152 mAh g-1 and 99% capacity retention over 90 cycles at a cut-off voltage of 4.4 V. The propagation rate of SN1IL-TFSI)/DMC electrolyte is only one quarter of the commercial electrolyte (1 M LiPF6 EC/DEC/DMC, v/v/v = 1/1/1), suggesting a better safety feature.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI) 2, acetonitrile Zn(CF 3SO 3) 2, and propylene carbonate Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates thatmore » the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less

  12. Ion-dipole interactions in concentrated organic electrolytes.

    PubMed

    Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel

    2003-06-16

    An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.

  13. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  14. Surface transformation by a “cocktail” solvent enables stable cathode materials for sodium ion batteries

    DOE PAGES

    Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan; ...

    2018-01-09

    Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less

  15. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along withmore » very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.« less

  16. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M.

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li2S limits sulfur utilization, increases polarization and decreases cycling stability. Dissolving Li2S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li2S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li2S by forming complex ligands with S2- anions coupled with themore » solvent’s solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li2S, therefore enables the direct use of Li2S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.« less

  17. Polyphase alloys as rechargeable electrodes in advanced battery systems

    NASA Technical Reports Server (NTRS)

    Huggins, Robert A.

    1987-01-01

    The rechargeability of electrochemical cells is often limited by negative electrode problems. These may include loss of capacity, increased impedance, macroscopic shape change, dendrite growth, or a tendency for filamentary or whisker growth. In principle, these problems can be reduced or eliminated by the use of alloys that undergo either displacement or insertion reactions at reactant species activities less than unity, rather than pure elements. The fundamental reasons for some of these problems with elemental electrodes, as well as the basic principles involved in the different behavior of alloys, are briefly discussed. More information is now available concerning the thermodynamic and kinetic properties of a number of alloys of potential interest for use as electrodes in elevated temperature lithium battery systems. Recent results have extended these results down to ambient temperatures, indicating that some such materials may be of interest for use with new low temperature molten salt electrolytes, or with organic solvent electrolytes. The all solid mixed conductor matrix concept is also reviewed.

  18. A Study of influence on sulfonated TiO2-Poly (Vinylidene fluoride-co-hexafluoropropylene) nano composite membranes for PEM Fuel cell application

    NASA Astrophysics Data System (ADS)

    kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh

    2017-10-01

    The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.

  19. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

    DOE PAGES

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; ...

    2016-01-14

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI) 2, acetonitrile Zn(CF 3SO 3) 2, and propylene carbonate Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates thatmore » the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less

  20. Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry.

    PubMed

    Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten

    2013-03-19

    Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.

  1. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery.

    PubMed

    Zheng, Shiyou; Han, Pan; Han, Zhuo; Zhang, Huijuan; Tang, Zhihong; Yang, Junhe

    2014-04-29

    High stable C/S composites are fabricated by a novel high-temperature sulfur infusion into micro-mesoporous carbon method following with solvent cleaning treatment. The C/S composite cathodes show high Coulombic efficiency, long cycling stability and good rate capability in the electrolyte of 1.0 M LiPF6 + EC/DEC (1:1 v/v), for instance, the reversible capacity of the treated C/S-50 (50% S) cathode retains around 860 mAh/g even after 500 cycles and the Coulombic efficiency is close to 100%, which demonstrates the best electrochemical performance of carbon-sulfur composite cathodes using the carbonate-based electrolyte reported to date. It is believed that the chemical bond of C-S is responsible for the superior electrochemical properties in Li-S battery, that is, the strong interaction between S and carbon matrix significantly improves the conductivity of S, effectively buffers the structural strain/stress caused by the large volume change during lithiation/delithiation, completely eliminates the formation of high-order polysulfide intermediates, and substantially avoids the shuttle reaction and the side reaction between polysulfide anions and carbonate solvent, and thus enables the C/S cathode to use conventional carbonate-based electrolytes and achieve outstanding electrochemical properties in Li-S battery. The results may substantially contribute to the progress of the Li-S battery technology.

  2. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  3. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics

    DOE PAGES

    Rajput, Nav Nidhi; Qu, Xiaohuui; Sa, Niya; ...

    2015-02-10

    Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectricmore » constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg 2+ -> Mg +), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg +. In contrast, BH 4 $-$ and BF 4 $-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.« less

  4. Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice?

    NASA Astrophysics Data System (ADS)

    Bella, Federico; Sacco, Adriano; Pugliese, Diego; Laurenti, Marco; Bianco, Stefano

    2014-10-01

    A multivariate chemometric approach is proposed for the first time for performance optimization of I-/I3- liquid electrolytes for dye-sensitized solar cells (DSSCs). Over the years the system composed by iodide/triiodide redox shuttle dissolved in organic solvent has been enriched with the addition of different specific cations and chemical compounds to improve the photoelectrochemical behavior of the cell. However, usually such additives act favorably with respect to some of the cell parameters and negatively to others. Moreover, the combined action of different compounds often yields contradictory results, and from the literature it is not possible to identify an optimal recipe. We report here a systematic work, based on a multivariate experimental design, to statistically and quantitatively evaluate the effect of different additives on the photovoltaic performances of the device. The effect of cation size in iodine salts, the iodine/iodide ratio in the electrolyte and the effect of type and concentration of additives are mutually evaluated by means of a Design of Experiment (DoE) approach. Through this statistical method, the optimization of the overall parameters is demonstrated with a limited number of experimental trials. A 25% improvement on the photovoltaic conversion efficiency compared with that obtained with a commercial electrolyte is demonstrated.

  5. Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous Li-O 2 batteries

    NASA Astrophysics Data System (ADS)

    Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian

    2017-09-01

    Polarization-induced renormalization of the frontier energy levels of interacting molecules and surfaces can cause significant shifts in the excitation and transport behavior of electrons. This phenomenon is crucial in determining the oxidative stability of nonaqueous electrolytes in high-energy density electrochemical systems such as the Li-O2 battery. On the basis of partially self-consistent first-principles Sc G W0 calculations, we systematically study how the electronic energy levels of four commonly used solvent molecules, namely, dimethylsulfoxide (DMSO), dimethoxyethane (DME), tetrahydrofuran (THF), and acetonitrile (ACN), renormalize when physisorbed on the different stable surfaces of Li2O2 , the main discharge product. Using band level alignment arguments, we propose that the difference between the solvent's highest occupied molecular orbital (HOMO) level and the surface's valence-band maximum (VBM) is a refined metric of oxidative stability. This metric and a previously used descriptor, solvent's gas phase HOMO level, agree quite well for physisorbed cases on pristine surfaces where ACN is oxidatively most stable followed by DME, THF, and DMSO. However, this effect is intrinsically linked to the surface chemistry of the solvent's interaction with the surface states and defects, and depends strongly on their nature. We conclusively show that the propensity of solvent molecules to oxidize will be significantly higher on Li2O2 surfaces with defects as compared to pristine surfaces. This suggests that the oxidative stability of a solvent is dynamic and is a strong function of surface electronic properties. Thus, while gas phase HOMO levels could be used for preliminary solvent candidate screening, a more refined picture of solvent stability requires mapping out the solvent stability as a function of the state of the surface under operating conditions.

  6. New Insights into the Electroreduction of Ethylene Sulfite as Electrolyte Additive for Facilitating Solid Electrolyte Interphase of Lithium Ion Battery

    PubMed Central

    Sun, Youmin; Wang, Yixuan

    2017-01-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIB) the supermolecular clusters [(ES)Li+(PC)m](PC)n (m=1–2; n=0, 6, and 9) were used to investigate the electroreductive decompositions of the electrolyte additive, ethylene sulfite (ES), as well as the solvent, propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has lower energy barrier than those of paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or the reduction potential dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A>C>D, which further signifies the importance of the concerted new path in facilitating the SEI. The hybrid models, the supermolecular cluster augmented by polarized continuum model, PCM-[(ES)Li+(PC)2](PC)n (n=0,6, and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li+ in [(ES)Li+(PC)2](PC)n (n=6, and 9) partially compensates the overestimation of solvent effects arising from the PCM model for the naked (ES)Li+(PC)2, and the theoretical reduction potential with PCM-[(ES)Li+(PC)2](PC)6 (1.90–1.93V) agrees very well with the experimental one (1.8–2.0V). PMID:28220165

  7. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating solid electrolyte interphase formation in lithium ion batteries.

    PubMed

    Sun, Youmin; Wang, Yixuan

    2017-03-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIBs) the supermolecular clusters [(ES)Li + (PC) m ](PC) n (m = 1-2; n = 0, 6 and 9) were used to investigate the electroreductive decompositions of the electrolyte additive ethylene sulfite (ES) as well as the solvent propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has a much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has a lower energy barrier than paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or reduction potential and dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A > C > D, which further signifies the importance of the concerted new path in facilitating the SEI formation. The hybrid models, the supermolecular clusters augmented by a polarized continuum model, PCM-[(ES)Li + (PC) 2 ](PC) n (n = 0, 6 and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li + in [(ES)Li + (PC) 2 ](PC) n (n = 6 and 9) partially compensates the overestimation of solvent effects arising from the PCM for the naked (ES)Li + (PC) 2 , and the theoretical reduction potential of PCM-[(ES)Li + (PC) 2 ](PC) 6 (1.90-1.93 V) agrees very well with the experimental one (1.8-2.0 V).

  8. Ionic Liquids in HPLC and CE: A Hope for Future.

    PubMed

    Ali, Imran; Suhail, Mohd; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2017-07-04

    The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.

  9. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    PubMed

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O systems. The main achievement of this work is the verified pathway for the estimation of the activity coefficients in the multicomponent aqueous electrolyte systems. The accurate Bromley electrolytes contributions obtained in this work for the entire series of lanthanide(III) nitrates (except Pm) can be applied for predicting activity coefficients and non-ideality effects for multi-component systems containing these species. This work also provides the proof-of-principle of extending the model to more complex multicomponent systems. Moreover, this approach can also be applied to actinide-containing electrolyte systems, for determination of the activity coefficients in concentrated radioactive solutions.« less

  11. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Chuan; Xu, Suochang; Hu, Mary Y.

    The composition of the solid electrolyte interphase (SEI) layers associated with a high performance Cu|Li cell using lithium bis(fluorosulfonyi)imide (LiFSI) in 1,2-dimethoxyethane (DME) as electrolyte is determined by a multinuclear (6Li, 19F, 13C and 1H) solid-state MAS NMR study at high magnetic field (850 MHz). This cell can be cycled at high rates (4 mA•cm-2) for more than 1000 cycles with no increase in the cell impedance at high Columbic efficiency (average of 98.4%) in a highly concentrated LiFSI-DME electrolyte (4 M). LiFSI, LiF, Li2O2 (and/or CH3OLi), LiOH, Li2S and Li2O are observed in the SEI and validated by comparingmore » with the spectra acquired on standard compounds and literature reports. To gain further insight into the role of the solute and its concentration dependence on the formation of SEIs while keeping the solvent of DME unchanged, the SEIs from different concentrations of LiFSI-DME and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-DME electrolyte are also investigated. It is found that LiF, a lithiated compound with superior mechanical strength and good Li+ ionic conductivity, is observed in the concentrated 4.0 M LiFSI-DME and the 3.0 M LiTFSI-DME systems but not in the diluted 1.0 M LiFSI-DME system. Li2O exists in both low and high concentration of LiFSI-DME while no Li2O is observed in the LiTFSI system. Furthermore, the dead metallic Li is reduced in the 4 M LiFSI-DME system compared with that in the 1 M LiFSI-DME system. Quantitative 6Li MAS results indicate that the SEI associated with the 4 M LiFSI-DEME is denser or thicker than that of the 1 M LiFSI-DME and the 3 M LiTFSI-DME systems. These findings are likely the reasons for explaining the high electrochemical performance associated with the high concentration LiFSI-DME system.« less

  12. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    DTIC Science & Technology

    2008-01-20

    liquid oligomeric analogue PEODME (ε = 8, dioxane:CH3CN mass ratio 48:7). The choice of the solvent mixture was a compromise between the...trifluoride – a derivative of Lewis acid properties. An increase in the degree of dissociation, decrease in the share of ionic associates and increase in...diphenylphosphinate this product is a solid, and in reaction with lithium diphenylphosphate the second fraction is a viscous, light-brown liquid , and

  13. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1990-08-30

    hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The

  14. Elucidating interactions of ionic liquids with polymer films using confocal Raman spectroscopy.

    PubMed

    Schäfer, Thomas; Di Paolo, Roberto E; Franco, Ricardo; Crespo, João G

    2005-05-28

    We report on the molecular interactions between room-temperature ionic liquids (RTILs) and Nafion and PDMS membranes, proving that in contact with these polymers RTILs behave like electrolytes rather than solvents.

  15. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    PubMed

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  16. Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Hiller, Martin M.; Seidel, Sarah M.; Grünebaum, Mariano; Wiemhöfer, Hans-Dieter

    2015-01-01

    Liquid disiloxanes functionalized with terminal nitrile groups are introduced as alternative non-volatile solvents for lithium-ion battery electrolytes in combination with LiTFSI as lithium salt. Two series of disiloxanes were investigated differing with respect to the attachment of the nitrile containing side group to silicon, i.e. via a Si-C or a Si-O bond. Total conductivities up to 1 mS cm-1 at 30 °C were measured by impedance spectroscopy. Electrochemical characterization was done on half cells using LiFePO4 cathodes by cyclic voltammetry and constant current cycling. Attractive issues and advantages of the investigated LiTFSI containing disiloxanes in comparison to current electrolyte solvents are: a) In spite of the presence of LiTFSI, the aluminum pitting corrosion is suppressed, b) the electrochemical stability window is extended on the cathode side up to 5.6 V vs. Li/Li+, for a LiTFSI concentration of 0.7 mol kg-1, c) the reported nitrile functionalized disiloxanes show excellent thermal stability with a boiling point up to 106 °C (0.1 mbar), a rather low glass transition temperature of -107 °C, while no melting/crystallization was observed.

  17. An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer

    NASA Astrophysics Data System (ADS)

    Beaulieu, L. Y.; Logan, E. R.; Gering, K. L.; Dahn, J. R.

    2017-09-01

    An automated system was developed to measure the viscosity of fluids as a function of temperature using image analysis tracking software. An Ostwald viscometer was placed in a three-wall dewar in which ethylene glycol was circulated using a thermal bath. The system collected continuous measurements during both heating and cooling cycles exhibiting no hysteresis. The use of video tracking analysis software greatly reduced the measurement errors associated with measuring the time required for the meniscus to pass through the markings on the viscometer. The stability of the system was assessed by performing 38 consecutive measurements of water at 42.50 ± 0.05 °C giving an average flow time of 87.7 ± 0.3 s. A device was also implemented to repeatedly deliver a constant volume of liquid of 11.00 ± 0.03 ml leading to an average error in the viscosity of 0.04%. As an application, the system was used to measure the viscosity of two Li-ion battery electrolyte solvents from approximately 10 to 40 °C with results showing excellent agreement with viscosity values calculated using Gering's Advanced Electrolyte Model (AEM).

  18. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Wan, Shun; Veith, Gabriel M.

    2016-11-07

    Here, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), as an additive in conventional electrolyte for LiNi 0.5Mn 1.5O 4, exhibits improved coulombic efficiencies and cycling stability. Cyclic voltammograms indicate the cells with additive form good SEIs during the first cycle whereas no additive cell needs more cycles to form a functional SEI. XPS reveals LiBMFMB could reduce the decomposition of LiPF 6 salt and solvents, resulting in thinner SEI.

  19. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.

    PubMed

    Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2018-04-18

    Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.

  20. Effects of electrolytes on redox potentials through ion pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  1. Effects of electrolytes on redox potentials through ion pairing

    DOE PAGES

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas; ...

    2017-09-21

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  2. Observable quantities for electrodiffusion processes in membranes.

    PubMed

    Garrido, Javier

    2008-03-13

    Electrically driven ion transport processes in a membrane system are analyzed in terms of observable quantities, such as the apparent volume flow, the time dependence of the electrolyte concentration in one cell compartment, and the electrical potential difference between the electrodes. The relations between the fluxes and these observable quantities are rigorously deduced from balances for constituent mass and solution volume. These relations improve the results for the transport coefficients up to 25% with respect to those obtained using simplified expressions common in the literature. Given the practical importance of ionic transport numbers and the solvent transference number in the phenomenological description of electrically driven processes, the transport equations are presented using the electrolyte concentration difference and the electric current as the drivers of the different constituents. Because various electric potential differences can be used in this traditional irreversible thermodynamics approach, the advantages of the formulation of the transport equations in terms of concentration difference and electric current are emphasized.

  3. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical Studies of Sulfur Oxychlorides.

    DTIC Science & Technology

    1988-03-28

    It had been proposed to study sulfuroxyhalides (1) as solutes in a non-aqueous solvent, (2) undiluted, employing lithium tetrachloroaluminate and (3...electrodes in N,N-dimethylforeamide (DNF) with tetra-butylammonium hexafluorophosphate (TBAPF6 ) as supporting electrolyte. Cyclic voltammetry showed

  5. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  6. Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up.

    PubMed

    Malhotra, Deepika; Koech, Phillip K; Heldebrant, David J; Cantu, David C; Zheng, Feng; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2017-02-08

    Anthropogenic CO 2 emissions from point sources (e.g., coal fired-power plants) account for the majority of the greenhouse gases in the atmosphere. Water-lean solvent systems such as CO 2 -binding organic liquids (CO 2 BOLs) are being developed to reduce the energy requirement for CO 2 capture. Many water-lean solvents such as CO 2 BOLs are currently limited by the high viscosities of concentrated electrolyte solvents, thus many of these solvents have yet to move toward commercialization. Conventional standard trial-and-error approaches for viscosity reduction, while effective, are time consuming and economically expensive. We rethink the metrics and design principles of low-viscosity CO 2 -capture solvents using a combined synthesis and computational modeling approach. We critically study the effects of viscosity reducing factors such as orientation of hydrogen bonding, introduction of higher degrees of freedom, and cation or anion charge solvation, and assess whether or how each factor affects viscosity of CO 2 BOL CO 2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is the predominant factor influencing the viscosity in CO 2 BOL solvents. With this knowledge, a new CO 2 BOL variant, 1-MEIPADM-2-BOL, was synthesized and tested, resulting in a solvent that is approximately 60 % less viscous at 25 mol % CO 2 loading than our base compound 1-IPADM-2-BOL. The insights gained from the current study redefine the fundamental concepts and understanding of what influences viscosity in concentrated organic CO 2 -capture solvents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode

    DOE PAGES

    Camacho-Forero, Luis E.; Balbuena, Perla B.

    2017-11-07

    The lithium metal anode is one of the key components of the lithium–sulfur (Li–S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid–electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements inmore » performance of the Li–S technology. Here, in this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ~0.9 |e| per molecule for a DME to decompose into CH 3O - and C 2H 4 2-via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. Lastly, in most cases, these reactions were shown to have low to moderate activation barriers.« less

  8. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camacho-Forero, Luis E.; Balbuena, Perla B.

    The lithium metal anode is one of the key components of the lithium–sulfur (Li–S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid–electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements inmore » performance of the Li–S technology. Here, in this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ~0.9 |e| per molecule for a DME to decompose into CH 3O - and C 2H 4 2-via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. Lastly, in most cases, these reactions were shown to have low to moderate activation barriers.« less

  9. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.

    PubMed

    Camacho-Forero, Luis E; Balbuena, Perla B

    2017-11-22

    The lithium metal anode is one of the key components of the lithium-sulfur (Li-S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid-electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements in performance of the Li-S technology. In this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ∼0.9 |e| per molecule for a DME to decompose into CH 3 O - and C 2 H 4 2- via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. In most cases, these reactions were shown to have low to moderate activation barriers.

  10. Preferential solvation of lithium cations and impacts on oxygen reduction in lithium–air batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dong; Qu, Deyu; Yang, Xiao -Qing

    2015-09-16

    The solvation of Li⁺ with eleven non-aqueous solvents commonly used as the electrolytes for Li batteries were studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li⁺ was determined. The Lewis acidity of the solvated Li⁺ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O₂⁻ depends on the relative Lewis acidity of the solvated Li⁺ ion. The impact of the solvated Li⁺ cation on the O₂ redoxmore » reaction was also investigated.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution andmore » may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.« less

  12. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    NASA Astrophysics Data System (ADS)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  13. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    PubMed

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  14. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunstrom, Joseph; Hendershot, Ron E.

    An evaluation of high voltage electrolytes which contain fluorochemicals as solvents/additive has been completed with the objective of formulating a safe, stable electrolyte capable of operation to 4.6 V. Stable cycle performance has been demonstrated in LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite cells to 4.5 V. The ability to operate at high voltage results in significant energy density gain (>30%) which would manifest as longer battery life resulting in higher range for electric vehicles. Alternatively, a higher energy density battery can be made smaller without sacrificing existing energy. In addition, the fluorinated electrolytes examined showed better safety performance when tested in abuse conditions. Themore » results are promising for future advanced battery development for vehicles as well as other applications.« less

  15. A critical overview of non-aqueous capillary electrophoresis. Part I: mobility and separation selectivity.

    PubMed

    Kenndler, Ernst

    2014-03-28

    This two-part review critically gives an overview on the theoretical and practical advances in non-aqueous capillary electrophoresis (NACE) achieved over the recent five years. Part I starts out by reviewing the aspects relevant to electromigration in organic solvents and evaluates potential advantages of the latter in comparison to aqueous solvent systems. The crucial role of solubility for the species involved in CE - analytes and back ground electrolyte constituents - is discussed both for ionic and neutral compounds. The impact of organic solvents on the electrophoretic and electroosmotic mobility and on the ionization (pKa values) of weak acids and bases is highlighted. Special emphasis is placed on methanol, acetonitrile and mixtures of these solvents, being the most frequent employed media for NACE applications. In addition, also solvents less commonly used in NACE will be covered, including other alcohols, amides (formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide), propylene carbonate, dimethylsulphoxide, and nitromethane. The discussions address the consequences of dramatic pKa shifts frequently seen for weak acids and bases, and the important contributions of medium-specific electroosmotic flow (EOF) to electromigration in nonaqueous media. Important for NACE, the role of the water content on pKa and mobility is analyzed. Finally, association phenomena rather specific to nonaqueous solvents (ion pairing, homo- and heteroconjugation) will be addressed, along with their potential advantages for the development of NACE separation protocols. It is pointed out that this review is not intended as a listing of all papers that have been published on NACE in the period mentioned above. It rather deals with general aspects of migration and selectivity in organic solvent systems, and discusses - critically - examples from the literature with particular interest to the topic. An analog discussion about the role of the solvent on efficiency will be presented in Part II. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Electrochemistry in supercritical fluids

    PubMed Central

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  17. Composite gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their electrochemical performance upon the enhancement of acidic properties of the CGPE, gaining the reversible specific capacity of 314 mAh.g-1 in acidic CGPE vs. 247 mAh.g-1 in basic CGPE C/20 after 33 cycles. The CGPE exhibited submicron pore size while the ionic conductivities were in order of 10-3 and 10-5 Scm-1 with and without modified nano-fillers respectively.

  18. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. High Voltage LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium Ion Cells at Elevated Temperatures: Carbonate- versus Ionic Liquid-Based Electrolytes.

    PubMed

    Cao, Xia; He, Xin; Wang, Jun; Liu, Haidong; Röser, Stephan; Rad, Babak Rezaei; Evertz, Marco; Streipert, Benjamin; Li, Jie; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2016-10-05

    Thanks to its high operating voltage, the LiNi 0.5 Mn 1.5 O 4 (LNMO) spinel represents a promising next-generation cathode material candidate for Lithium ion batteries. However, LNMO-based full-cells with organic carbonate solvent electrolytes suffer from severe capacity fading issues, associated with electrolyte decomposition and concurrent degradative reactions at the electrode/electrolyte interface, especially at elevated temperatures. As promising alternatives, two selected LiTFSI/pyrrolidinium bis(trifluoromethane-sulfonyl)imide room temperature ionic liquid (RTIL) based electrolytes with inherent thermal stability were investigated in this work. Linear sweep voltammetry (LSV) profiles of the investigated LiTFSI/RTIL electrolytes display much higher oxidative stability compared to the state-of-the-art LiPF 6 /organic carbonate based electrolyte at elevated temperatures. Cycling performance of the LNMO/Li 4 Ti 5 O 12 (LTO) full-cells with LiTFSI/RTIL electrolytes reveals remarkable improvements with respect to capacity retention and Coulombic efficiency. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns indicate maintained pristine morphology and structure of LNMO particles after 50 cycles at 0.5C. The investigated LiTFSI/RTIL based electrolytes outperform the LiPF 6 /organic carbonate-based electrolyte in terms of cycling performance in LNMO/LTO full-cells at elevated temperatures.

  20. Study on the effects of electrolytes and solvents in the determination of quaternary ammonium ions by nonaqueous capillary electrophoresis with contactless conductivity detection.

    PubMed

    Buglione, Lucia; See, Hong Heng; Hauser, Peter C

    2013-01-01

    A study on the separation of lipophilic quaternary ammonium cations in NACE coupled with contactless conductivity detection (NACE-C(4)D) is presented. The suitability of different salts dissolved in various organic solvents as running electrolytes in NACE-C(4)D was investigated. A solvent mixture of methanol/acetonitrile at a ratio of 90%:10% v/v showed the best results. Deoxycholic acid sodium salt as BGE was found to provide exceptional high stability with low baseline noise that leads to highest S/N ratios for the target analytes among all BGEs tested. Under the optimum conditions, capillaries with different internal diameters were examined and an id of 50 μm was found to give best detection sensitivity. The proposed method was validated and showed good linearity in the range from 2.5 to 200 μM, low limits of detection (0.1-0.7 μM) and acceptable reproducibility of peak area (intraday RSD 0.1-0.7%, n = 3; interday RSD 5.9-9.4%, n = 3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    PubMed

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?

    NASA Astrophysics Data System (ADS)

    Gzara, L.; Chagnes, A.; Carré, B.; Dhahbi, M.; Lemordant, D.

    3-Methyl-2-oxazolidinone (MeOx) has been mixed to ethylene carbonate (EC) or dimethyl carbonate (DMC) in presence of lithium tetrafluoroborate (LiBF 4) or lithium hexafluorophosphate (LiPF 6) for use as electrolyte in lithium batteries. The optimized electrolytes in term of conductivity and viscosity are MeOx:EC, x(MeOx) = 0.5 and MeOx:DMC, x(MeOx) = 0.4 in presence of LiBF 4 (1 M) or LiPF 6 (1 M). MeOx:EC electrolytes have a better thermal stability than MeOx:DMC electrolytes but the low wettability of the Celgard separator by MeOx:EC prevents its use in lithium batteries. No lithium insertion-deinsertion occurs when LiPF 6 is used as salt in MeOx-based electrolytes. MeOx:DMC, x(MeOx) = 0.4 + LiBF 4 (1 M) exhibits a good cycling ability at a graphite electrode but all the investigated electrolytes containing MeOx have a low stability in oxidation at a lithium cobalt oxide electrode (Li xCoO 2).

  3. Ion-Conductive and Thermal Properties of a Synergistic Poly(ethylene carbonate)/Poly(trimethylene carbonate) Blend Electrolyte.

    PubMed

    Li, Zhenguang; Mogensen, Ronnie; Mindemark, Jonas; Bowden, Tim; Brandell, Daniel; Tominaga, Yoichi

    2018-05-11

    Electrolytes comprising poly(ethylene carbonate) (PEC)/poly(trimethylene carbonate) (PTM C) with lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) are prepared by a simple solvent casting method. Although PEC and PTMC have similar chemical structures, they are immiscible and two glass transitions are present in the differential scanning calorimetry (DSC) measurements. Interestingly, these two polymers change to miscible blends with the addition of LiTFSI, and the ionic conductivity increases with increasing lithium salt concentration. The optimum composition of the blend electrolyte is achieved at PEC 6 PTMC 4 , with a conductivity as high as 10 -6 S cm -1 at 50 °C. This value is greater than that for single PEC- and PTMC-based electrolytes. Moreover, the thermal stability of the blend-based electrolytes is improved as compared to PEC-based electrolytes. It is clear that the interaction between CO groups and Li + gives rise to a compatible amorphous phase of PEC and PTMC. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  5. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  6. Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries

    NASA Astrophysics Data System (ADS)

    Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan

    2017-09-01

    Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.

  7. Synthesis of One-Dimensional and Hyperbranched Nanomaterials for Lithium-Ion Battery Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Ting

    Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.

  8. Underscreening in concentrated electrolytes.

    PubMed

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  9. Ethylene carbonate-free fluoroethylene carbonate-based electrolyte works better for freestanding Si-based composite paper anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Yao, K.; Zheng, J. P.; Liang, R.

    2018-03-01

    Fluoroethylene carbonate (FEC)-based electrolytes using FEC as the co-solvent (50 wt%) are investigated and compared with the electrolyte using FEC as the additive (10 wt%) for freestanding Si-carbon nanotubes (CNTs) composite paper anodes for Li-ion batteries. The ethylene carbonate (EC)-free FEC-based electrolyte is found to achieve higher specific capacity and better capacity retention in terms of long-term cycling. After 500 cycles, the capacity retention of the cell using diethyl carbonate (DEC)-FEC (1:1 w/w) is increased by 88% and 60% compared to the cells using EC-DEC-FEC (45:45:10 w/w/w) and EC-FEC (1:1 w/w), respectively. Through SEM-EDX and XPS analyses, a possible reaction route of formation of fluorinated semicarbonates and polyolefins from FEC is proposed. The inferior cell performance related to the EC-containing electrolytes is likely due to the formation of more polyolefins, which do not favor Li ion migration.

  10. Potential-specific structure at the hematite-electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe 2O 3) (110more » $$\\bar{2}$$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.« less

  11. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  12. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    PubMed

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  13. Reaction mechanisms for the limited reversibility of Li-O 2 chemistry in organic carbonate electrolytes

    NASA Astrophysics Data System (ADS)

    Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Ji-Guang

    The Li-O 2 chemistry in nonaqueous liquid carbonate electrolytes and the underlying reason for its limited reversibility was systematically investigated. X-ray diffraction data showed that regardless of discharge depth lithium alkylcarbonates (lithium propylenedicarbonate (LPDC), or lithium ethylenedicarbonate (LEDC), with other related derivatives) and lithium carbonate (Li 2CO 3) are constantly the main discharge products, while lithium peroxide (Li 2O 2) or lithium oxide (Li 2O) is hardly detected. These lithium alkylcarbonates are generated from the reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. More significantly, in situ gas chromatography/mass spectroscopy analysis revealed that Li 2CO 3 and Li 2O cannot be oxidized even when charged to 4.6 V vs. Li/Li +, while LPDC, LEDC and Li 2O 2 are readily oxidized, with CO 2 and CO released from LPDC and LEDC and O 2 evolved from Li 2O 2. Therefore, the apparent reversibility of Li-O 2 chemistry in an organic carbonate-based electrolyte is actually an unsustainable process that consists of (1) the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharging and (2) the subsequent oxidation of these same alkylcarbonates during charging. Therefore, a stable electrolyte that does not lead to an irreversible by-product formation during discharging and charging is necessary for truly rechargeable Li-O 2 batteries.

  14. Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wu; Xiao, Jie; Wang, Deyu

    2010-02-04

    The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacitymore » of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.« less

  15. Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells.

    PubMed

    Park, Se Jeong; Yoo, Kichoen; Kim, Jae-Yup; Kim, Jin Young; Lee, Doh-Kwon; Kim, Bongsoo; Kim, Honggon; Kim, Jong Hak; Cho, Jinhan; Ko, Min Jae

    2013-05-28

    For the practical application of dye-sensitized solar cells (DSSCs), it is important to replace the conventional organic solvents based electrolyte with environmentally friendly and stable ones, due to the toxicity and leakage problems. Here we report a noble water-based thixotropic polymer gel electrolyte containing xanthan gum, which satisfies both the environmentally friendliness and stability against leakage and water intrusion. For application in DSSCs, it was possible to infiltrate the prepared electrolyte into the mesoporous TiO2 electrode at the fluidic state, resulting in sufficient penetration. As a result, this electrolyte exhibited similar conversion efficiency (4.78% at 100 mW cm(-2)) and an enhanced long-term stability compared to a water-based liquid electrolyte. The effects of water on the photovoltaic properties were examined elaborately from the cyclic voltammetry curves and impedance spectra. Despite the positive shift in the conduction band potential of the TiO2 electrode, the open-circuit voltage was enhanced by addition of water in the electrolyte due to the greater positive shift in the I(-)/I3(-) redox potential. However, due to the dye desorption and decreased diffusion coefficient caused by the water content, the short-circuit photocurrent density was reduced. These results will provide great insight into the development of efficient and stable water-based electrolytes.

  16. Solvent effect on redox properties of hexanethiolate monolayer-protected gold nanoclusters.

    PubMed

    Su, Bin; Zhang, Meiqin; Shao, Yuanhua; Girault, Hubert H

    2006-11-02

    The capacitance of monolayer-protected gold nanoclusters (MPCs), C(MPC), in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to C(MPC) and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparing the redox properties of MPCs in four organic solvents: 1,2-dichloroethane (DCE), dichloromethane (DCM), chlorobenzene (CB), and toluene (TOL), in all of which MPCs have excellent solubility. Furthermore, this set of organic solvents features a dielectric constant in a range from 10.37 (DCE) to 2.38 (TOL), which is wide enough to probe the solvent effect. In these organic solvents, tetrahexylammonium bis(trifluoromethylsulfonyl)imide (THATf2N) is used as the supporting electrolyte. Cyclic and differential pulse voltammetric results provide concrete evidence that, despite the monolayer protection, the solvent plays a significant effect on the properties of MPCs in solution.

  17. [Evaluation of various renal function indices in a group of workers in the shoe industry].

    PubMed

    Caudarella, R; Malavolta, N; Maccaferri, M; Raffi, G B; Boari, C

    1981-05-26

    The possible chronic nephrotoxicity of solvents has been investigated in a group of workers in the footwear industry. A number of indices of renal function were assessed in all subjects and a qualitative study of proteinuria carried out. The noted reduction in VFG would appear to be proportional to exposure doses. The other parameters, particularly the electrolytic balance, do not lend themselves to pathogenetic interpretations. The existence of a chronic nephrotoxicity of solvents cannot, however, be excluded.

  18. DETERMINATION OF PESTICIDES AND PCB'S IN INDUSTRIAL AND MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Steps in the procedure for the analysis of 25 chlorinated pesticides and polychlorinated biphenyls were studied. Two gas chromatographic columns and two detectors (electron capture and Hall electrolytic conductivity) were evaluated. Extractions were performed with two solvents (d...

  19. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  20. Gel electrolytes and electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least onemore » polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.« less

  1. Ionic-liquid materials for the electrochemical challenges of the future.

    PubMed

    Armand, Michel; Endres, Frank; MacFarlane, Douglas R; Ohno, Hiroyuki; Scrosati, Bruno

    2009-08-01

    Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.

  2. Ionic-liquid materials for the electrochemical challenges of the future

    NASA Astrophysics Data System (ADS)

    Armand, Michel; Endres, Frank; Macfarlane, Douglas R.; Ohno, Hiroyuki; Scrosati, Bruno

    2009-08-01

    Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.

  3. Activity coefficients from molecular simulations using the OPAS method

    NASA Astrophysics Data System (ADS)

    Kohns, Maximilian; Horsch, Martin; Hasse, Hans

    2017-10-01

    A method for determining activity coefficients by molecular dynamics simulations is presented. It is an extension of the OPAS (osmotic pressure for the activity of the solvent) method in previous work for studying the solvent activity in electrolyte solutions. That method is extended here to study activities of all components in mixtures of molecular species. As an example, activity coefficients in liquid mixtures of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using molecular models from the literature. These dense and strongly interacting mixtures pose a significant challenge to existing methods for determining activity coefficients by molecular simulation. It is shown that the new method yields accurate results for the activity coefficients which are in agreement with results obtained with a thermodynamic integration technique. As the partial molar volumes are needed in the proposed method, the molar excess volume of the system water + methanol is also investigated.

  4. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  5. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE PAGES

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan; ...

    2017-02-16

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  6. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.

    PubMed

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H; Zapol, Peter; Curtiss, Larry A; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-03-02

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al 3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.

  7. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  8. Rational design of new electrolyte materials for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  9. Low Temperature Double-Layer Capacitors Using Asymmetric and Spiro-Type Quaternary Ammonium Salts

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Brandon, Erik J. (Inventor); West, William C. (Inventor)

    2014-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -80.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. A quaternary ammonium salt including at least one of triethylmethylammonium tetrafluoroborate (TEMATFB) and spiro-(1,1')-bipyrrolidium tetrafluoroborate (SBPBF.sub.4), is used in an optimized concentration (e.g., 0.10 M to 0.75 M), dissolved into the electrolyte solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  10. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Kah Chun; Lu, Jun; Low, John

    2014-03-13

    The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li2O2) in an aprotic Li-O2 cell is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during discharge of a Li-O2 cell. According to DFT calculations, the formation of lithium oxalate as the reaction product is exothermic, and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the Li-O2 cell, and therefore LiBOB is probably not suitable to be used as the salt in Li-O2 cell electrolytes.

  11. Passivation-free solid state battery

    DOEpatents

    Abraham, Kuzhikalail M.; Peramunage, Dharmasena

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  12. Solvent Effects on the Kinetics of Simple Electrochemical Reactions. I. Comparison of the Behavior of Co(III)/(II) Trisethylenediamine and Ammine Couples with the Predictions of Dielectric Continuum Theory.

    DTIC Science & Technology

    1981-01-08

    lithium perchlorate was dried at -180°C for several days. Tetraethylammonium perchlorate was recrystallized from water and dried in a vacuum oven at...cases the electrolyte composition p, was chosen to be 0.1 M lithium perchlorate or 0.1 M tetraethyl ammonium perchlorate (TEAP). These electrolytes...perchlorate specific adsorption is quite noticeable. Hexafluorophosphate adsorption is sufficiently weak so that small positive values of the potential across

  13. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.

    PubMed

    Leung, Kevin; Budzien, Joanne L

    2010-07-07

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  14. Electrolytes comprising metal amide and metal chlorides for multivalent battery

    DOEpatents

    Liao, Chen; Zhang, Zhengcheng; Burrell, Anthony; Vaughey, John T.

    2017-03-21

    An electrolyte includes compounds of formula M.sup.1X.sub.n and M.sup.2Z.sub.m; and a solvent wherein M.sup.1 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; M.sup.2 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; X is a group forming a covalent bond with M.sup.1; Z is a halogen or pseudo-halogen; n is 1, 2, 3, 4, 5, or 6; and m is 1, 2, 3, 4, 5, or 6.

  15. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems

    DOE PAGES

    Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; ...

    2016-03-18

    Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E ½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E ½ retention >95% in N 2- and O 2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less

  16. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  17. Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcheng; Dong, Jian; West, Robert; Amine, Khalil

    Functionalized disiloxane compounds were synthesized by attaching oligo(ethylene glycol) chains, -(CH 2CH 2O)- n, n = 2-7, via hydrosilation, dehydrocoupling, and nucleophilic substitution reactions and were examined as non-aqueous electrolyte solvents in lithium-ion cells. The compounds were fully characterized by 1H, 13C, and 29Si nuclear magnetic resonance (NMR) spectroscopy. Upon doping with lithium bis(oxalato)borate (LiBOB) or LiPF 6, the disiloxane electrolytes showed conductivities up to 6.2 × 10 -4 S cm -1 at room temperature. The thermal behavior of the electrolytes was studied by differential scanning calorimetry, which revealed very low glass transition temperatures before and after LiBOB doping and much higher thermal stability compared to organic carbonate electrolytes. Cyclic voltammetry measurements showed that disiloxane-based electrolytes with 0.8 M LiBOB salt concentration are stable to 4.7 V. The LiBOB/disiloxane combinations were found to be good electrolytes for lithium-ion cells; unlike LiPF 6, LiBOB can provide a good passivation film on the graphite anode. The LiPF 6/disiloxane electrolyte was enabled in lithium-ion cells by adding 1 wt% vinyl ethylene carbonate (VEC). Full cell performance tests with LiNi 0.80Co 0.15Al 0.05O 2 as the cathode and mesocarbon microbead (MCMB) graphite as the anode show stable cyclability. The results demonstrate that disiloxane-based electrolytes have considerable potential as electrolytes for use in lithium-ion batteries.

  18. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    NASA Astrophysics Data System (ADS)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid group and a poly(ether ether ketone) backbone showed the highest proton conductivity and proton diffusion coefficient among the three ionomers, demonstrating the effect of the perfluorinated side chains. The proton conductivity of the novel ionomer was comparable to that of Nafion over a wide humidity range and temperature. A lithium perfluorosulfonate ionomer based on aromatic poly(arylene ether)s with pendant lithium perfluoroethyl sulfonates was prepared by ion exchange of the perlfuorosulfonic acid ionomer, and subsequently incoroporated into a lithium-ion battery cell as a single-ion conducting electrolyte. The microporous polymer film saturated with organic carbonates exhibited a nearly unity Li + transfer number, high ionic conductivity (e.g. > 10-3 S m-1 at room temperature) over a wide range of temperatures, high electrochemical stability, and excellent mechanical properties. Excellent cyclability with almost identical charge and discharge capacities have been demonstrated at ambient temperature in the batteries assembled from the prepared single-ion conductors. The mechanical stability of the polymer film was attributed to the rigid polymer backbone which was largely unaffected by the presence of plasticizing organic solvents, while the porous channels with high concentration of the perfluorinated side chains resulted in high ionic conductivity. The expected high charge-rate performance was not achieved, however, due to the high interfacial impedance present between the polymer electrolyte and the electrodes. Several procedural modifications were employed in order to decrease the interfacial impedance of the battery cell. The poly(arylene ether) based ionomer was saturated with an ionic liquid mixture, in order to explore the possibility of its application as a safe, inflammable electrolyte. A low-viscosity ionic liquid with high ionic conductivity, 1-butyl-3-methylimidazolium thiocyanate which has never been successfully utilized as an electrolyte for lithium-ion batteries was incorporated into a battery cell as a solvent mixture with propylene carbonate and lithium bis(trifluoromethane)sulfonimide impregnated in a free-standing hybrid electrolyte film. Outstanding ionic conductivity was achieved and the lithium half cell comprising a LTO cathode and a lithium metal anode separated by the solid polymer electrolyte showed good cyclability at room temperature and even at 0°C. The presence of a sufficient amount of propylene carbonate, which resulted in flammability of the polymer electrolyte, was discovered to be critical in the electrochemical stability of the polymer electrolyte.

  19. Molecular physics of electrical double layers in electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Feng, Guang

    At present, electrochemical capacitors (ECs) are emerging as a novel type of energy storage devices and have attracted remarkable attention, due to their key characteristics, such as high power density and excellent durability. However, the moderate energy density of ECs restricts their widespread deployment in everyday technology. To surmount this limitation, four strategies are adopted: (1) to reduce the total system mass, (2) to increase the specific surface area of electrodes, (3) to enhance normalized capacitance, and (4) to expand the range of potentials applied on electrodes. The implementation of these approaches critically relies on the fundamental understanding of physical processes underlying the energy storage mechanisms hinging on the electrical double layers (EDLs) in ECs. In this dissertation, to gain the fundamentals of EDLs in ECs, based on the strategies described above, we studied the structure, capacitance, and dynamics of EDLs in different electrolytes near electrodes featuring different pores using atomistic simulations. The pores of electrodes are categorized into macropores, mesopores, and micropores, following the decreasing order of pore size. The chosen electrolytes fall into aqueous electrolytes, organic electrolytes, and ionic liquids (ILs), listed by the increasing order of their decomposition voltages. For the aqueous electrolytes, we explored the water and ion distributions inside electrified micropores (< 2nm) using molecular dynamics (MD) simulations. The results showed that the ion distribution differs qualitatively from that described by classical EDL theories. Based on such exceptional phenomenon, a new sandwich capacitance model was developed to describe the EDLs inside micropores, which is capable of predicting the sharp increase of capacitance that has been experimentally observed in micropores. For the organic electrolytes, we examined the ion solvation and the EDL structure, capacitance, and dynamics in the electrolyte of tetraethylammonium tetrafluoroborate (TEABF4) in the aprotic solvent of acetonitrile (ACN). Firstly, the solvation of TEA+ and BF4 - ions is found to be much weaker than that of small inorganic ions. This characteristic accounts for the rich structure of EDLs near the electrodes. In particular, near charged electrodes, the ion distribution cannot be explained by the traditional EDL models. Secondly, the computed capacitances of EDLs agree well with those inferred from experimental measurements. Finally, we probed the dynamics of EDLs in organic electrolytes by analyzing the rotational dynamics of solvent and the self diffusion coefficients of ion/solvent. For the ILs, we performed the MD simulations of EDLs at the interface between an IL of 1-butyl-3-methylimidazolium nitrate ([BMIM][NO3]) and planar electrodes. The results revealed that the structure of the EDL is significantly affected by the liquid nature of the IL, the short-range ion--electrode and ion--ion interactions, and the charge delocalization of ions. We showed that the differential capacitance is a quantitative measure of the response of the EDL structure to a change of electrode surface charge density, and the concave-shaped capacitance--potential (C--V ) curve is in good agreement with that in the literature. To further acquire the theoretical understanding of EDLs in ILs, we investigated the effects of ion size and electrode curvature on the EDLs in ILs of 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The results indicated that the ion size considerably affects the ion distribution and orientational structure of EDLs, and the EDL capacitances follow a certain order of the ion size. It was also found that the EDL capacitance increases as the electrode curvature increases. Based on the insights gained from the EDL structure and capacitance, a "Multiple Ion Layers with Overscreening" (MILO) model was proposed for EDLs in ILs. The capacitance predicted by the MILO model agrees well with that computed from the MD simulation.

  20. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.

    PubMed

    Hackemann, Eva; Hasse, Hans

    2017-10-27

    Using salt mixtures instead of single salts can be beneficial for hydrophobic interaction chromatography (HIC). The effect of electrolytes on the adsorption of proteins, however, depends on the pH. Little is known on that dependence for mixed electrolytes. Therefore, the effect of the pH on protein adsorption from aqueous solutions containing mixed salts is systematically studied in the present work for a model system: the adsorption of bovine serum albumin (BSA) on the mildly hydrophobic resin Toyopearl PPG-600M. The pH is adjusted to 4.0, 4.7 or 7.0 using 25mM sodium phosphate or sodium citrate buffer. Binary and ternary salt mixtures of sodium chloride, ammonium chloride, sodium sulfate and ammonium sulfate as well as the pure salts are used at overall ionic strengths between 1500 and 4200mM. The temperature is always 25°C. The influence of the mixed electrolytes on the adsorption behavior of BSA changes completely with varying pH. Positive as well as negative cooperative effects of the mixed electrolytes are observed. The results are analyzed using a mathematical model which was recently introduced by our group. In that model the influence of the electrolytes is described by a Taylor series expansion in the individual ion molarities. After suitable parametrization using a subset of the data determined in the present work, the model successfully predicts the influence of mixed electrolytes on the protein adsorption. Furthermore, results for BSA from the present study are compared to literature data for lysozyme, which are available for the same adsorbent, temperature and salts. By calculating the ratio of the loading of the adsorbent for both proteins particularly favorable separation conditions can be selected. Hence, a model-based optimization of solvents for protein separation is possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  2. Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions

    NASA Astrophysics Data System (ADS)

    Grishina, E. P.; Kudryakova, N. O.

    2017-10-01

    The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.

  3. Improved Low Temperature Performance of Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  4. Hypokalemic muscular paralysis causing acute respiratory failure due to rhabdomyolysis with renal tubular acidosis in a chronic glue sniffer.

    PubMed

    Kao, K C; Tsai, Y H; Lin, M C; Huang, C C; Tsao, C Y; Chen, Y C

    2000-01-01

    A 34-year-old male was admitted to the emergency department with the development of quadriparesis and respiratory failure due to hypokalemia after prolonged glue sniffing. The patient was subsequently given mechanical ventilatory support for respiratory failure. He was weaned from the ventilator 4 days later after potassium replacement. Toluene is an aromatic hydrocarbon found in glues, cements, and solvents. It is known to be toxic to the nervous system, hematopoietic system, and causes acid-base and electrolyte disorders. Acute respiratory failure with hypokalemia and rhabdomyolysis with acute renal failure should be considered as potential events in a protracted glue sniffing.

  5. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Yan, Pengfei

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbitalmore » energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.« less

  6. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  7. Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries.

    PubMed

    Lee, Sang-Young; Yong, Hyun Hang; Lee, Young Joo; Kim, Seok Koo; Ahn, Soonho

    2005-07-21

    It is a common observation that when ionic liquids are added to electrolytes the performances of lithium ion cells become poor, while the thermal safeties of the electrolytes might be improved. In this study, this behavior is investigated based on the kinetics of ionic diffusion. As a model ionic liquid, we chose butyldimethylimidazolium hexafluorophosphate (BDMIPF(6)). The common solvent was propylene carbonate (PC), and lithium hexafluorophosphate (LiPF(6)) was selected as the lithium conducting salt. Ionic diffusion coefficients are estimated by using a pulsed field gradient NMR technique. From a basic study on the model electrolytes (BDMIPF(6) in PC, LiPF(6) in PC, and BDMIPF(6) + LiPF(6) in PC), it was found that the BDMI(+) from BDMIPF(6) shows larger diffusion coefficients than the Li(+) from LiPF(6). However, the anionic (PF(6)(-)) diffusion coefficients present little difference between the model electrolytes. The higher diffusion coefficient of BDMI(+) than that of Li(+) suggests that the poor C-rate performance of lithium ion cells containing ionic liquids as an electrolyte component can be attributed to the two-cation competition between Li(+) and BDMI(+).

  8. Superior Performance of a Lithium-Sulfur Battery Enabled by a Dimethyl Trisulfide Containing Electrolyte

    DOE PAGES

    Chen, Shuru; Wang, Daiwei; Zhao, Yuming; ...

    2018-04-26

    The lithium-sulfur (Li-S) battery offers a high theoretical energy density of ≈2600 Wh/kg -1 and low cost, positioning it as a promising candidate for next-generation battery technology. However, problems including disastrous Li polysulfides dissolution and irreversible Li 2S deposition have severely retarded the development of Li-S batteries. To solve these issues, we recently reported a functional dimethyl disulfide (DMDS)-containing electrolyte that promoted an alternate electrochemical reaction pathway for sulfur cathodes by a formation of dimethyl polysulfides and Li organosulfides as intermediates and reduction products, leading to significantly boosted Li-S cell capacity with improved cycling reversibility and stability. Here in thismore » work, dimethyl trisulfide (DMTS), a primary discharge-charge intermediate in the DMDS-containing electrolyte, which is also a commercially available reagent, was further investigated as a co-solvent in functional electrolytes for Li-S batteries. Due to the higher theoretical capacity of DMTS and its better reactivity with Li 2S than DMDS, a 25 vol% DMTS-containing electrolyte enables Li-S batteries with even higher cell capacity and improved cycling performance than using previous optimal 50 vol% DMDS-containing electrolyte.« less

  9. Superior Performance of a Lithium-Sulfur Battery Enabled by a Dimethyl Trisulfide Containing Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuru; Wang, Daiwei; Zhao, Yuming

    The lithium-sulfur (Li-S) battery offers a high theoretical energy density of ≈2600 Wh/kg -1 and low cost, positioning it as a promising candidate for next-generation battery technology. However, problems including disastrous Li polysulfides dissolution and irreversible Li 2S deposition have severely retarded the development of Li-S batteries. To solve these issues, we recently reported a functional dimethyl disulfide (DMDS)-containing electrolyte that promoted an alternate electrochemical reaction pathway for sulfur cathodes by a formation of dimethyl polysulfides and Li organosulfides as intermediates and reduction products, leading to significantly boosted Li-S cell capacity with improved cycling reversibility and stability. Here in thismore » work, dimethyl trisulfide (DMTS), a primary discharge-charge intermediate in the DMDS-containing electrolyte, which is also a commercially available reagent, was further investigated as a co-solvent in functional electrolytes for Li-S batteries. Due to the higher theoretical capacity of DMTS and its better reactivity with Li 2S than DMDS, a 25 vol% DMTS-containing electrolyte enables Li-S batteries with even higher cell capacity and improved cycling performance than using previous optimal 50 vol% DMDS-containing electrolyte.« less

  10. Quadrupole terms in the Maxwell equations: Debye-Hückel theory in quadrupolarizable solvent and self-salting-out of electrolytes.

    PubMed

    Slavchov, Radomir I

    2014-04-28

    If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.

  11. Surface and interface engineering of anatase TiO2 anode for sodium-ion batteries through Al2O3 surface modification and wise electrolyte selection

    NASA Astrophysics Data System (ADS)

    Li, Tao; Gulzar, Umair; Bai, Xue; Monaco, Simone; Longoni, Gianluca; Prato, Mirko; Marras, Sergio; Dang, Zhiya; Capiglia, Claudio; Proietti Zaccaria, Remo

    2018-04-01

    In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g-1 at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na-Al-O.

  12. Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.

    PubMed

    Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun

    2018-04-23

    Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Towards understanding the effects of van der Waals strengths on the electric double-layer structures and capacitive behaviors

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Bo, Zheng; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2017-10-01

    Solid-liquid interactions are considered to play a crucial role in charge storage capability of electric double-layer capacitors (EDLCs). In this work, effects of van der Waals (VDW) strengths on the EDL structures and capacitive performances within two representative electrolytes of solvated aqueous solutions and solvent-free ionic liquids are illuminated by molecular dynamics simulations. Single crystalline metals with similar lattice constant but diverse VDW potentials are employed as electrodes. Upon enhancing VDW strengths, capacitance of aqueous electrolytes first increases conspicuously by ∼34.0% and then descends, manifesting a non-monotonic trend, which goes beyond traditional perspectives. Such unusual observation is interpreted by the excluded-volume effects stemmed from ion-solvent competitions. Stimulated by predominant coulombic interactions, more ions are aggregated at the interface despite of the increasing VDW potentials, facilitating superior screening efficiency and capacitance. However, further enhancing strengths preferentially attracts more solvents instead of ions to the electrified surface, which in turn strikingly repels ions from Helmholtz layers, deteriorating electrode capacitance. An essentially similar feather is also recognized for ionic liquids, while the corresponding mechanisms are prominently ascribed to the suppressed ionic separations issued from cation-anion competitions. We highlight that constructing electrode materials with a moderate-hydrophilicity could further advance the performances of EDLCs.

  14. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    PubMed

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  15. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    PubMed

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  16. A Highly Reversible Room-Temperature Sodium Metal Anode

    PubMed Central

    2015-01-01

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating–stripping cycles at 0.5 mA cm–2. The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies. PMID:27163006

  17. A Highly Reversible Room-Temperature Sodium Metal Anode.

    PubMed

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming; Cui, Yi

    2015-11-25

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating-stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating-stripping cycles at 0.5 mA cm(-2). The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium-sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved overmore » 300 plating–stripping cycles at 0.5 mA cm –2. In this study, the long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.« less

  19. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    PubMed

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  20. [Extraction of lambda-cyhalothrin from aqueous dioxan solutions].

    PubMed

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2011-01-01

    The results of extraction of lambda-cigalotrin from dioxan aqueous solutions by hydrophobic organic solvents are presented. It is shown that the degree of extraction depends on the nature of the extractant, the water to dioxan ratio, and saturation of the water-dioxan layer with the electrolyte. The highest efficiency of lambda-cigalotrin extraction was achieved using chlorophorm as a solvent under desalination conditions. The extraction factor was calculated necessary to obtain the desired amount of lambda-cigalotrin from the water-dioxan solution (4:1) with the help of the extractants being used.

Top