Sample records for solvent extraction contactor

  1. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-09-19

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less

  2. Evaluation of the Hydraulic Capacity and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-cm-Diameter Centrifugal Contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen

    2002-09-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less

  3. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  4. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Scherman, Carl; Martin, David

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less

  5. Applying Separations Science to Waste Problems.

    DTIC Science & Technology

    1998-01-01

    inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the

  6. Computational and experimental analysis of the flow in an annular centrifugal contactor

    NASA Astrophysics Data System (ADS)

    Wardle, Kent E.

    The annular centrifugal contactor has been developed for solvent extraction processes for recycling used nuclear fuel. The compact size and high efficiency of these contactors have made them the choice for advanced reprocessing schemes and a key equipment for a proposed future advanced fuel cycle facility. While a sufficient base of experience exists to facilitate successful operation of current contactor technology, a more complete understanding of the fluid flow within the contactor would enable further advancements in design and operation of future units and greater confidence for use of such contactors in a variety of other solvent extraction applications. This research effort has coupled computational fluid dynamics modeling with a variety of experimental measurements and observations to provide a valid detailed analysis of the flow within the centrifugal contactor. CFD modeling of the free surface flow in the annular mixing zone using the Volume of Fluid (VOF) volume tracking method combined with Large Eddy Simulation (LES) of turbulence was found to have very good agreement with the experimental measurements and observations. A detailed study of the flow and mixing for different housing vane geometries was performed and it was found that the four straight mixing vane geometry had greater mixing for the flow rate simulated and more predictable operation over a range of low to moderate flow rates. The separation zone was also modeled providing a useful description of the flow in this region and identifying critical design features. It is anticipated that this work will form a foundation for additional efforts at improving the design and operation of centrifugal contactors and provide a framework for progress towards simulation of solvent extraction processes.

  7. Evaluation of a heat exchanger for use in the Integrated Equipment Test facility solvent-extraction system

    NASA Astrophysics Data System (ADS)

    Lewis, B. E.

    1982-12-01

    The primary decontamination extraction section product (HAP) heat exchanger will be located between the extracting section (HA) and scrubbing section (HS) of centrifugal solvent extraction contactors in the Integrated Equipment Test (IET) facility. The heat exchanger is required to raise the temperature of the organic product stream from the HA contactor from 40 to 500 C. Tests were conducted under prototypic IET operating conditions to determine the head requirements for gravity flow and the overall heat transfer coefficient for the heat exchanger. Results from the tests indicated that the specified heat exchanger would perform satisfactorily under normal operating conditions.

  8. Nuclear Weapons. National Nuclear Security Administration’s Plans for Its Uranium Processing Facility Should Better Reflect Funding Estimates and Technology Readiness

    DTIC Science & Technology

    2010-11-01

    metal. Recovery extraction centrifugal contactors A process that uses solvent to extract uranium for purposes of purification. Agile machining A...extraction centrifugal contactors 5 6 Yes 6 No Agile machining 5 5 No 6 No Chip management 5 6 Yes 6 No Special casting 3 6 Yes 6 No Source: GAO

  9. Identification And Characterization Of The Solids Found In Extraction Contactor SEP-401 In June 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Fink, S. D.

    2012-12-10

    The Modular Caustic-Side Solvent Extraction Unit (MCU) recently conducted an outage that included maintenance on the centrifugal contactors. Operations personnel observed solids or deposits in two contactors and attempted to collect samples for analyses by Savannah River National Laboratory (SRNL). The residues found in Extraction Contactor SEP-401 are a mixture of amorphous silica, aluminosilicate, titanium, and debris from low alloy steel. The solids contain low concentrations of plutonium and strontium. These isotopes are associated with the titanium that came from the monosodium titanate (MST) added in the Actinide Removal Process (ARP) most likely as leached Ti from the MST thatmore » precipitated subsequently in MCU. An attempt was also made to obtain samples from the contents of Wash Contactor SEP-702. However, sampling provide ineffective.« less

  10. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. G. Garn; D. H. Meikrantz

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitatesmore » brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.« less

  11. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. G. Garn; D. H. Meikrantz

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitatesmore » brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.« less

  12. Method for solvent extraction with near-equal density solutions

    DOEpatents

    Birdwell, Joseph F.; Randolph, John D.; Singh, S. Paul

    2001-01-01

    Disclosed is a modified centrifugal contactor for separating solutions of near equal density. The modified contactor has a pressure differential establishing means that allows the application of a pressure differential across fluid in the rotor of the contactor. The pressure differential is such that it causes the boundary between solutions of near-equal density to shift, thereby facilitating separation of the phases. Also disclosed is a method of separating solutions of near-equal density.

  13. Summer 2017 Microfluidics Research Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcculloch, Quinn

    Liquid-liquid Extraction (LLE), also known as solvent extraction, represents a large subset of chemistry where one or more solutes are transferred across an interface between two immiscible liquids. This type of chemistry is used in industrial scale processes to purify solvents, refine ore, process petroleum, treat wastewater, and much more. Although LLE has been successfully employed at the macroscale, where many liters/kgs of species are processed at large flow rates, LLE stands to benefit from lab-on-a-chip technology, where reactions take place quickly and efficiently at the microscale. A device, called a screen contactor, has been invented at Los Alamos Nationalmore » Laboratory (LANL) to perform solvent extraction at the microscale. This invention has been submitted to LANL’s Feynman Center for Innovation, and has been filed for provisional patent under U.S. Patent Application No. 62/483,107 1. The screen contactor consists of a housing that contains two different screen materials, flametreated stainless steel and polyether ether ketone (PEEK) thermoplastic, that are uniquely wetted by either an aqueous or an organic liquid phase, respectively. Liquids in this device flow longitudinally through the screens. The fine pore size of the screens (tens of microns) provide large capillary/adhesional forces while maintaining small hydraulic pressure drops. These physical characteristics are paramount to efficient microscale liquid phase separation. To demonstrate mass transfer using the screen contactor, a well-known chemical system 2 consisting of water and n-decane as solvents and trimethylamine (TEA) as a solute was selected. TEA is basic in water so its concentration can easily be quantified using a digital pH meter and an experimentally determined base dissociation constant. Characterization of this solvent system and its behavior in the screen contactor have been the focus of my research activities this summer. In the following sections, I have detailed experimental results that have been gathered.« less

  14. Am(VI) Extraction Final Report: FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce Jay; Grimes, Travis Shane; Tillotson, Richard Dean

    This report summarizes activities related to hexavalent Am extraction for FY16, in completion of FCR&D Milestone M3FT-16IN030103027. Activities concentrated on three areas of research: 1) centrifugal contactor hot testing, 2) Am(VI) stability studies, and 3) alternative oxidant studies. A brief summary of each task follows. Hot Testing: A new engineering-scale oxidation and solvent extraction test bed was built at Idaho National Laboratory to allow for solvent extraction testing of minor actinide separation concepts. The test bed consists of an oxidation vessel, filtration apparatus, four, 3D printed, 2-cm diameter centrifugal contactors, feed/product vessels, and sample ports. This system replaced the previousmore » 3 stage, 5-cm contactor test bed that was used for the initial testing in FY14. In the FY16 hot test, a feed simulant was spiked with 243Am and 139Ce and treated with 60 g/L sodium bismuthate for two hours to oxidize the Am(III) to Am(VI). This solution was then pumped through a filter and into the four-stage centrifugal contactor setup. The organic phase solvent formulation was 1 M diethylhexylbutyramide (DEHBA)/dodecane. The test showed that Am(VI) was produced by bismuthate oxidation and the residual oxidant was successfully filtered without back pressure buildup. Sixty-four percent of Am was extracted in the contactors using DEHBA. Both Am and Ce were quantitatively stripped by 0.1 M H2O2. Successful demonstration of the utility of small, printable contactors suggests that hot testing of separations concepts can now be conducted more often, since it is cheaper, generates less waste, and entails much less radcon risk than previous testing. Am(VI) stability: A rigorous examination of reagents was conducted to determine if contaminants could interfere with Am oxidation and extraction. An series of DAm measurements showed that bismuthate particle size, water source, acid quality, and DAAP batch or pre-treatment had little effect on extraction efficiency, with a mean distribution ratio of 3.74 ± 0.5, using 1 M DAAP extraction. Additionally, the purposeful addition of millimolar amounts of nitrite or H2O2 to bismuthate-treated Am solutions did not prevent oxidation, as long as residual solid bismuthate was present. Finally, a series of irradiation experiments using a Nordion Gammacell 220E 60Co source was performed, and kinetic data for the radiolytic reduction of Am(VI) were obtained. Unsurprisingly, it was found that radiolysis reduces Am(VI), but that the presence of Ce(IV) acts as a radioprotection agent, to scavenge radiolytically-produced reducing agents, thereby enhancing the stability of the higher Am oxidation state. Alternative oxidants: To date, sodium bismuthate is the only practical oxidant for Am with utility in solvent extraction. While successful oxidation has been demonstrated with sodium peroxydisulfate, it is impractical for solvent extraction because it is only useful in dilute acid and it introduces sulfate into the process. Oxidation has been demonstrated using silver and cobalt catalyzed ozone, however, reduction upon contact with an organic phase is instantaneous. Oxidation is successful using Cu(III) periodate, and marginally successful in initial testing using DAAP extraction. However, the distribution ratios for the oxidized Am are marginal, because Cu(III) is also rapidly reduced by the organic phase. The possibility may exist that this can be optimized.« less

  15. Demonstration of the TRUEX process for partitioning of actinides from actual ICPP tank waste using centrifugal contactors in a shielded cell facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.D.; Brewer, K.N.; Herbst, R.S.

    1996-09-01

    TRUEX is being evaluated at Idaho Chemical Processing Plant (ICPP) for separating actinides from acidic radioactive waste stored at ICPP; efforts have culminated in a recent demonstration with actual tank waste. A continuous countercurrent flowsheet test was successfully completed at ICPP using waste from tank WM-183. This demonstration was performed using 24 states of 2-cm dia centrifugal contactors in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet had 8 extraction stages, 5 scrub stages, 6 strip stages, 3 solvent wash stages, and 2 acid rinse stages. A centrifugal contactor stage in the scrub section was notmore » working during testing, and the scrub feed (aqueous) solution followed the solvent into the strip section, eliminating the scrub section in the flowsheet. An overall removal efficiency of 99.97% was obtained for the actinides, reducing the activity from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste.The 0.04 M HEDPA strip section back-extracted 99.9998% of the actinide from the TRUEX solvent. Removal efficiencies of >99. 90, 99.96, 99.98, >98.89, 93.3, and 89% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, {sup 238}U, and {sup 99}Tc. Fe was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Hg was also extracted by the TRUEX solvent (73%) and stripped from the solvent in the 0.25 M Na2CO3 wash section. Only 1.4% of the Hg exited with the high activity waste strip product.« less

  16. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05more » M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) predicted equivalent DF for MCU from this testing is greater than 3,500 assuming 95% efficiency during extraction and 80% efficiency during scrub and strip. Hydraulically, the system performed very well in all tests. Target flows were easily obtained and stable throughout testing. Though some issues were encountered with plugging in the coalescer, they were not related to the solvent. No hydraulic upsets due to the solvent were experienced during any of the tests conducted. The first extraction coalescer element used in testing developed high pressure drop that made it difficult to maintain the target flow rates. Analysis showed an accumulation of sodium aluminosilicate solids. The coalescer was replaced with one from the same manufacturer’s lot and pressure drop was no longer an issue. Concentrations of Isopar™ L and Modifier were measured using semi-volatile organic analysis (SVOA) and high performance liquid chromatography (HPLC) to determine the amount of solvent carryover. For low-flow (0.27 gpm aqueous) conditions in stripping, SVOA measured the Isopar™ L post-contactor concentration to be 25 mg/L, HPLC measured 39 mg/L of Modifier. For moderate-flow (0.54 gpm aqueous) conditions, SVOA measured the Isopar™ L postcontactor to be ~69 mg/L, while the HPLC measured 56 mg/L for Modifier. For high-flow (0.8 gpm aqueous) conditions, SVOA measured the Isopar™ L post-contactor to be 39 mg/L. The post-coalescer (pre-decanter) measurements by SVOA for Isopar™ L were all less than the analysis detection limit of 10 mg/L. The HPLC measured 18, 22 and 20 mg/L Modifier for the low, medium, and high-low rates respectively. In extraction, the quantity of pre-coalescer Isopar™ L carryover measured by SVOA was ~280-410 mg/L at low flow (4 gpm aqueous), ~400-450 mg/L at moderate flow (8 gpm aqueous), and ~480 mg/L at high flow (12 gpm aqueous). The amount of post coalescer (pre-decanter) Isopar™ L carryover measured by SVOA was less than 45 mg/L for all flow rates. HPLC results for Modifier were 182, 217 and 222 mg/L for the post-contactor low, medium and high flow rates. The post-coalescer (pre-decanter) samples were measured to contain 12, 10 and 22 mg/L Modifier for the low, medium, and high flow rates. The carryover results and droplet size measurements were used to determine the decanter performance utilizing the decanter model developed by the ARES Corporation. Results show for the targeted salt flow rate of approximately 8 gpm, that over 93% of the solvent carryover from stripping is predicted to be recovered and over 96% solvent carryover from extraction is predicted to be recovered. This translates to a predicted solvent carryover of <3 ppm from stripping and <20 ppm solvent carryover from extraction. This projected performance at MCU is expected to be well within the operating limits and the historical performance for the baseline BOBCalixC6 based solvent. Droplet-size data obtained by MicroTrac™ S3400 analyzer consistently shows that the droplet size post-oalescer is significantly greater than the post-contactor or pre-coalescer samples. Increased flow rates did not show a consistent impact to the droplet size results. For the extraction testing, droplet size analysis showed that the post-contactor and pre-coalescer samples were essentially the same. The mean droplet sizes post-coalescer were less than the mean droplet sizes pre-coalescer with a very slight upward trend in the mean droplet size as the flow rate was increased. This result is probably due to the method of sampling. The larger post-coalescer drops immediately rise to the surface after leaving the coalescer element. The downstream sampling point was horizontally in-line with the element and therefore would only capture those organic droplets well mixed in the flowing aqueous stream.« less

  17. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOEpatents

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  18. Centrifugal contactor modified for end stage operation in a multistage system

    DOEpatents

    Jubin, Robert T.

    1990-01-01

    A cascade formed of a plurality of centrifugal contactors useful for countercurrent solvent extraction processes such as utilizable for the reprocessing of nuclear reactor fuels is modified to permit operation in the event one or both end stages of the cascade become inoperative. Weir assemblies are connected to each of the two end stages by suitable conduits for separating liquids discharged from an inoperative end stage based upon the weight of the liquid phases uses in the solvent extraction process. The weir assembly at one end stage is constructed to separate and discharge the heaviest liquid phase while the weir assembly at the other end stage is constructed to separate and discharge the lightest liquid phase. These weir assemblies function to keep the liquid discharge from an inoperative end stages on the same weight phase a would occur from an operating end stage.

  19. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less

  20. Development of a Supported Emulsion Liquid Membrane System for Propionic Acid Separation in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Li, Jin; Hu, Shih-Yao B.; Wiencek, John M.

    2001-01-01

    Perstractive fermentation is a good way to increase the productivity of bioreactors. Using Propionibacteria as the model system, the feasibility of using supported emulsion liquid membrane (SELM) for perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for preparing the SELM. The more polar a solvent is, the higher the partition coefficient. However, toxicity of a solvent also increases with its polarity. CO-1055 (industrial decanol/octanol blend) has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity toward Propionibacteria. A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The result confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extraction, and allows the use of a non-toxic solvent with low partition coefficient.

  1. Extraction of phenol in wastewater with annular centrifugal contactors.

    PubMed

    Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen

    2006-04-17

    Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.

  2. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor aremore » reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.« less

  3. FLUID CONTACTOR APPARATUS

    DOEpatents

    Spence, R.; Streeton, R.J.W.

    1956-04-17

    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  4. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard; Zhou, S James; Ding, Yong

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separationmore » membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating solvents. GTI and PGC have developed a nanoporous and superhydrophobic PEEK-based hollow fiber membrane contactor tailored for the membrane contactor/solvent absorption application for syngas cleanup. The membrane contactor modules were scaled up to 8-inch diameter commercial size modules. We have performing extensive laboratory and bench testing using pure gases, simulated water-gas-shifted (WGS) syngas stream, and a slipstream from a gasification derived syngas from GTI's Flex-Fuel Test Facility (FFTF) gasification plant under commercially relevant conditions. The team have also carried out an engineering and economic analysis of the membrane contactor process to evaluate the economics of this technology and its commercial potential. Our test results have shown that 90% CO{sub 2} capture can be achieved with several physical solvents such as water and chilled methanol. The rate of CO{sub 2} removal by the membrane contactor is in the range of 1.5 to 2.0 kg/m{sup 2}/hr depending on the operating pressures and temperatures and depending on the solvents used. The final economic analysis has shown that the membrane contactor process will cause the cost of electricity to increase by 21% from the base plant without CO{sub 2} capture. The goal of 10% increase in levelized cost of electricity (LCOE) from base DOE Case 1(base plant without capture) is not achieved by using the membrane contactor. However, the 21% increase in LCOE is a substantial improvement as compared with the 31.6% increase in LCOE as in DOE Case 2(state of art capture technology using 2-stages of Selexol{TM}).« less

  5. Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; David H. Meikrantz; Nick R. Mann

    2008-09-01

    Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a widemore » range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.« less

  6. Higher Americium Oxidation State Research Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.; Law, Jack D.; Goff, George S.

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained undermore » the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non-solvent-extraction separations are also under investigation. The first would separate Am(VI) by co-crystallization with uranium and the other oxidizable actinides as their nitrate salts. This novel idea has been successful in lab scale testing, and merits further investigation. Similarly, success has been achieved in separations using inorganic or hybrid ion exchange materials to sorb the lanthanides and actinides, while allowing pentavalent americium to elute. This is the only technique currently investigating Am(V), despite the advantages of this oxidation state with regard to its higher stability. The ultimate destination for this roadmap is to develop an americium separation that can be applied under process conditions, preferably affording a co-separation of the actinyl (VI) ions. Toward that end, emphasis is given here to selection of a solvent extraction flowsheet for testing in the INL centrifugal contactor hot test bed during FY16. A solvent extraction process will be tested mainly because solvent extraction separations of Am(VI) are relatively mature and the test bed currently exists in a configuration to support them. Thus, a major goal of FY16 is to select the oxidant/ligand combination to run such a test using the contactors. The only ligands under consideration are DAAP and DEHBA. This is not to say that ion exchange and co-crystallization techniques are unimportant. They merit continued investigation, but are not mature enough for hot test bed testing at this time.« less

  7. Membrane-assisted extraction of monoterpenes: from in silico solvent screening towards biotechnological process application

    PubMed Central

    2018-01-01

    This work focuses on the process development of membrane-assisted solvent extraction of hydrophobic compounds such as monoterpenes. Beginning with the choice of suitable solvents, quantum chemical calculations with the simulation tool COSMO-RS were carried out to predict the partition coefficient (logP) of (S)-(+)-carvone and terpinen-4-ol in various solvent–water systems and validated afterwards with experimental data. COSMO-RS results show good prediction accuracy for non-polar solvents such as n-hexane, ethyl acetate and n-heptane even in the presence of salts and glycerol in an aqueous medium. Based on the high logP value, n-heptane was chosen for the extraction of (S)-(+)-carvone in a lab-scale hollow-fibre membrane contactor. Two operation modes are investigated where experimental and theoretical mass transfer values, based on their related partition coefficients, were compared. In addition, the process is evaluated in terms of extraction efficiency and overall product recovery, and its biotechnological application potential is discussed. Our work demonstrates that the combination of in silico prediction by COSMO-RS with membrane-assisted extraction is a promising approach for the recovery of hydrophobic compounds from aqueous solutions. PMID:29765654

  8. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, Charles D.; Petersen, James N.; Davison, Brian H.

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  9. Continuous fluidized-bed contactor with recycle of sorbent

    DOEpatents

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  10. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOEpatents

    Snyder, Seth W [Lincolnwood, IL; Lin, Yupo J [Naperville, IL; Hestekin', Jamie A [Fayetteville, AR; Henry, Michael P [Batavia, IL; Pujado, Peter [Kildeer, IL; Oroskar, Anil [Oak Brook, IL; Kulprathipanja, Santi [Inverness, IL; Randhava, Sarabjit [Evanston, IL

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  11. SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, A.; Aponte, C.

    A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During themore » process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar™ L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: • Improve understanding of oxalate equilibrium and kinetics in salt solutions • Reduction/elimination of oxalic acid cleaning in 512-S • Flowsheet optimization • Improving diagnostic capability The recommendations implemented prior to resumption of MCU operations provide a risk mitigation or detection function through additional sampling and observation. The longer term recommendations provide a framework to increase the basic process knowledge of both oxalate chemistry and filtration behavior and then facilitate decisions that improve the salt flowsheet as a system.« less

  12. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR)more » spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less

  13. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopymore » (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less

  14. Centrifugal contactor operations for UREX process flowsheet. An update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Candido; Vandegrift, George F.

    2014-08-01

    The uranium extraction (UREX) process separates uranium, technetium, and a fraction of the iodine from the other components of the irradiated fuel in nitric acid solution. In May 2012, the time, material, and footprint requirements for treatment of 260 L batches of a solution containing 130 g-U/L were evaluated for two commercial annular centrifugal contactors from CINC Industries. These calculated values were based on the expected volume and concentration of fuel arising from treatment of a single target solution vessel (TSV). The general conclusions of that report were that a CINC V-2 contactor would occupy a footprint of 3.2 mmore » 2 (0.25 m x 15 m) if each stage required twice the nominal footprint of an individual stage, and approximately 1,131 minutes or nearly 19 hours is required to process all of the feed solution. A CINC V-5 would require approximately 9.9 m 2 (0.4 m x 25 m) of floor space but would require only 182 minutes or ~ 3 hours to process the spent target solution. Subsequent comparison with the Modular Caustic Side Solvent Extraction Unit (MCU) at Savannah River Site (SRS) in October 2013 suggested that a more compact arrangement is feasible, and the linear dimension for the CINC V-5 may be reduced to about 8 m; a comparable reduction for the CINC V-2 yields a length of 5 m. That report also described an intermediate-scale (10 cm) contactor design developed by Argonne in the early 1980s that would better align with the SHINE operations as they stood in May 2012. In this report, we revisit the previous evaluation of contactor operations after discussions with CINC Industries and analysis of the SHINE process flow diagrams for the cleanup of the TSV, which were not available at the time of the first assessment.« less

  15. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, A. L. II; Peters, T. B.

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tankmore » 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or D Cs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction D Cs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.« less

  16. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Peters, T.; Crowder, M.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactivemore » waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as {approx}140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of {approx}81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of {approx}60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as {approx}3.5-5.0 for the first scrub stage and {approx}1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was {approx}7. It is expected that the pH of the second scrub stage would be {approx}12-13. Batch ESS tests measured D(Cs) values for the strip stages to be {approx}0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the analytical method. In the 2-cm contactor tests, the first four strip stages of the Tank 49H waste test and all five strip stages in the simulant waste test had higher values than the ESS tests. Only the fifth strip stage D(Cs) value of the Tank 49H waste test matched that of the ESS tests. It is speculated that the less-than-optimal performance of the strip section is caused by inefficiencies in the scrub section. Because strip is sensitive to pH, the elevated pH value in the second scrub stage may be the cause of strip performance. In spite of the D(Cs) values obtained in the scrub and strip sections, testing showed that the solvent system is robust. Average DFs for the process far exceeded targets even though the scrub and strip stages did not function optimally. Correction of the issue in the scrub and strip stages is expected to yield even higher waste DFs.« less

  17. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  18. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  19. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J [Naperville, IL; Snyder, Seth W [Lincolnwood, IL

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  20. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less

  1. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less

  2. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.; Birdwell, Joseph F.; Bonnesen, Peter V.

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilden, Andreas; Lumetta, Gregg J.; Sadowski, Fabian

    A solvent extraction system has been developed for separating trivalent actinides from lanthanides. This “Advanced TALSPEAK” system uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester to extract the lanthanides into a n-dodecane-based solvent phase, while the actinides are retained in a citrate-buffered aqueous phase by complexation to N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid. Batch distribution measurements indicate that the separation of americium from the light lanthanides decreases as the pH decreases. For example, the separation factor between La and Am increases from 2.5 at pH 2.0 to 19.3 at pH 3.0. However, previous investigations indicated that the extraction rates for the heavier lanthanides decrease with increasing pH.more » So, a balance between these two competing effects is required. An aqueous phase in which the pH was set at 2.6 was chosen for further process development because this offered optimal separation, with a minimum separation factor of ~8.4, based on the separation between La and Am. Centrifugal contactor single-stage efficiencies were measured to characterize the performance of the system under flow conditions.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less

  5. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity.

    PubMed

    Zhang, Fengyi; Ma, Yao; Liao, Jianshan; Breedveld, Victor; Lively, Ryan P

    2018-05-28

    Current additive manufacturing methods have significant limitations in the classes of compatible polymers. Many polymers of significant technological interest cannot currently be 3D printed. Here, a generalizable method for 3D printing of viscous tenary polymer solutions (polymer/solvent/nonsolvent) is applied to both "intrinsically porous" (a polymer of intrinsic microporosity, PIM-1) and "intrinsically nonporous" (cellulose acetate) polymers. Successful ternary ink formulations require balancing of solution thermodynamics (phase separation), mass transfer (solvent evaporation), and rheology. As a demonstration, a microporous polymer (PIM-1) incompatible with current additive manufacturing technologies is 3D printed into a high-efficiency mass transfer contactor exhibiting hierarchical porosity ranging from sub-nanometer to millimeter pores. Short contactors (1.27 cm) can fully purify (<1 ppm) toluene vapor (1000 ppm) in N 2 gas for 1.7 h, which is six times longer than PIM-1 in traditional structures, and more than 4000 times the residence time of gas in the contactor. This solution-based additive manufacturing approach greatly extends the range of 3D-printable materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Centrifugal Contactor Design to Facilitate Remote Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Jack. D. Law; Troy G. Garn

    2011-03-01

    Advanced designs of nuclear fuel recycling and radioactive waste treatment plants are expected to include more ambitious goals for solvent extraction based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. This work continues the development of remote designs for ACCs that can process the large throughputs needed for future nuclear fuel recycling and radioactive waste treatment plants. A three stage, 12.5 cm diameter rotor module has been constructed and ismore » being evaluated for use in highly radioactive environments. This prototype assembly employs three standard CINC V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance. Removal and replacement of the center position V-05R contactor in the three stage assembly was demonstrated using an overhead rail mounted PaR manipulator. Initial evaluation indicates a viable new design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment. Replacement of a single stage via remote manipulators and tools is estimated to take about 30 minutes, perhaps fast enough to support a contactor change without loss of process equilibrium. The design presented in this work is scalable to commercial ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute.« less

  7. CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.

    PubMed

    Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah

    2018-04-01

    This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.

  8. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational testsmore » were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a small amount of heat is added to the processed solution by the mechanical energy of the contactors. The temperature profiles match the ambient temperature of the laboratory but are nearly 10° C higher toward the middle of the cascade. Heated input solution testing provides temperature profiles with smaller temperature gradients and are more influenced by the temperature of the inlet solutions than the ambient laboratory temperature. The temperature effects of solution mixing, even at 4000 rpm, were insignificant in any of the studies conducted on lamp oil and water.« less

  9. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options, mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to researchmore » advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a noncomplexing aqueous solution and submission of this scientific breakthrough as a paper in Science; The first-ever co-crystallization of Am(VI) with UO 2(NO 3) 2 ∙ 6H 2O, opening the door to a new approach for separating hexavalent actinides as a group; Results showing that three potentially problematic metals will not present risk in ALSEP; Improvement in ALSEP contactor stripping kinetics to acceptable performance; A comparison of centrifugal contactors vs mixer-settlers showing the former performs better in ALSEP stripping; Synthesis of new mixed N,O-donor extractants with enhanced solubility and strength for selective trivalent actinide extraction; Development of computational methods showing promise in prediction of the selectivity of new extractants for trivalent actinides vs lanthanides; An order-of-magnitude improvement in aqueous Am/Eu complexation selectivity of an alternative macrocyclic stripping agent for ALSEP, potentially enabling an option for an Am product stream free from both Ln and Cm. An alternative aqueous combination of dipicolinate complexant and malonate buffer that may present options for ALSEP and TALSPEAK (Trivalent Actinide-Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) type separations. The ALSEP concept is advancing toward a benchtop flowsheet demonstration planned for FY 2016, and a bench-scale test bed at Idaho National Laboratory (INL) will be employed to demonstrate at least one tandem Am oxidation and separation concept. This report outlines the goals of the STAAR, significance of achieving these goals, STAAR organization around the above aims and questions, recent highlights, and future directions. The report also includes a listing of publications, reports, patents, and dissertations.« less

  10. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  11. Liquid–Liquid Mixing Studies in Annular Centrifugal Contactors Comparing Stationary Mixing Vane Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardle, Kent E.

    2015-11-10

    Comparative studies of multiphase operation of annular centrifugal contactors showing the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported with selected measurements in a lab-scale 5 cm contactor and 12.5 cm engineering-scale unit. Fewer straight vanes give greater mixingzone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction processmore » efficiency of annular centrifugal contactors.« less

  12. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    DOE PAGES

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugalmore » contactors.« less

  13. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  14. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  15. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    PubMed

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  16. Development of a SREX Flowsheet for the Separation of Strontium from Dissolved INEEL Zirconium Calcine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Jack Douglas; Wood, David James; Todd, Terry Allen

    1999-02-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run #64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4',4'(5')-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO3 wash section to remove degradation products from the solvent, and a 0.1 M HNO3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less

  17. Development of a SREX flowsheet for the separation of strontium from dissolved INEEL zirconium calcine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.D.; Wood, D.J.; Todd, T.A.

    1999-01-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with {sup 85}Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4{prime},4{prime}(5{prime})-di-(tert-butylcyclohexo)-18-crown-6 andmore » 1.5 M TBP in Isopar-L.), a 1.0 M NaNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO{sub 3} wash section to remove degradation products from the solvent, and a 0.1 M HNO{sub 3} rinse section. The behavior of {sup 85}Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted {sup 85}Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for {sup 85}Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO{sub 3} resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO{sub 3} scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable.« less

  18. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint tomore » meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here, though drawings are provided for the 9-cm unit for reference.« less

  19. Solvent-resistant microporous polymide membranes

    DOEpatents

    Miller, W.K.; McCray, S.B.; Friesen, D.T.

    1998-03-10

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  20. Solvent-resistant microporous polymide membranes

    DOEpatents

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  1. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.

  2. Development of a universal solvent for the decontamination of acidic liquid radioactive wastes

    NASA Astrophysics Data System (ADS)

    Todd, T. A.; Brewer, K. N.; Law, J. D.; Wood, D. J.; Herbest, R. S.; Romanovskiy, V. N.; Esimantovskiy, V. M.; Smirnov, I. V.; Babain, V. A.

    1999-01-01

    A teritiary solvent containing chlorinated cobalt dicarbollide, polyethylene glycol and diphenylcarbamoylmethylphosphine oxide was evaluated in different non-nitroaromatic diluents for the separation of cesium, strontium, actinides and rare earth elements from acidic liquid radioactive waste. Decontamination factors of >95% for Cs, 99.7% for Sr, and 99.99% for actinides were achieved in four successive batch contacts using actual radioactive waste. Pilot plant testing in centrifugal contactors using simulated wastes, has demonstrated removal of >99% of all targeted ions.

  3. Optimizing the recovery of copper from electroplating rinse bath solution by hollow fiber membrane.

    PubMed

    Oskay, Kürşad Oğuz; Kul, Mehmet

    2015-01-01

    This study aimed to recover and remove copper from industrial model wastewater solution by non-dispersive solvent extraction (NDSX). Two mathematical models were developed to simulate the performance of an integrated extraction-stripping process, based on the use of hollow fiber contactors using the response surface method. The models allow one to predict the time dependent efficiencies of the two phases involved in individual extraction or stripping processes. The optimal recovery efficiency parameters were determined as 227 g/L of H2SO4 concentration, 1.22 feed/strip ratio, 450 mL/min flow rate (115.9 cm/min. flow velocity) and 15 volume % LIX 84-I concentration in 270 min by central composite design (CCD). At these optimum conditions, the experimental value of recovery efficiency was 95.88%, which was in close agreement with the 97.75% efficiency value predicted by the model. At the end of the process, almost all the copper in the model wastewater solution was removed and recovered as CuSO4.5H2O salt, which can be reused in the copper electroplating industry.

  4. Fractional reactive extraction for symmetrical separation of 4-nitro-D,L-phenylalanine in centrifugal contactor separators: experiments and modeling.

    PubMed

    Tang, Kewen; Wen, Ping; Zhang, Panliang; Huang, Yan

    2015-01-01

    The enantioselective liquid-liquid extraction of 4-nitro-D,L-phenylalanine (D,L-Nphy) using PdCl2 {(s)-BINAP} as extractant in dichloroethane was studied experimentally in a countercurrent cascade of 10 centrifugal contactor separators (CCSs) at 5°C, involving flow ratio, extractant concentration, and Cl(-) concentration. The steady-state enantiomeric excess (ee) in both stream exits was 90.86% at a 93.29% yield. The predicted value was modeled using an equilibrium stage approach. The correlation between model and experiment was satisfactory. The model was applied to optimize the production of both enantiomers in >97% ee and >99% ee. 14 stages and 16 stages are required for 97% ee and 99% ee for both enantiomers, respectively. © 2014 Wiley Periodicals, Inc.

  5. TPE/REE separation with the use of zirconium salt of HDBP

    NASA Astrophysics Data System (ADS)

    Glekov, R. G.; Shmidt, O. V.; Palenik, Yu. V.; Goletsky, N. D.; Sukhareva, S. Yu.; Fedorov, Yu. S.; Zilberman, B. Ya.

    2003-01-01

    Partitioning of long-lived radionuclides (minor actinides, fission products) is considered as TBP-compatible ZEALEX-process for extraction separation of transplutonium elements (TPE) and rare-earth elements (REE), as well as Y, Mo, Fe and residual amounts of Np, Pu, U. Zirconium salt of dibutyl phosphoric acid (ZS-HDBP) dissolved in 30 % TBP is used as a solvent. The process was tested in multistage centrifugal contactors. Lanthanides, Y and TPE, as well as Mo, Fe were extracted from high-level Purex raffinate, Am and ceric subgroup of REE being separated from the polyvalent elements by stripping with HNO3. TPE/REE partitioning was achieved in the second cycle of the ZEALEX-process using DTPA in formic acid media. The integral decontamination factor of Am from La and Ce after both cycles is >200, from Pr and Nd 20-30 and from Sm and Eu 3.6; REE strips in both cycles contained <0,1% of the initial amount of TPE.

  6. Apparatus for supporting contactors used in extracting nuclear materials from liquids

    DOEpatents

    Leonard, Ralph A.; Frank, Robert C.

    1991-01-01

    Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.

  7. AM(VI) partitioning studies. FY14 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.

    2014-10-01

    The use of higher oxidation states of americium in partitioning from the lanthanides is under continued investigation by the sigma team. This is based on the hypothesis that Am(VI) can be produced and remain stable in irradiated first cycle raffinate solution long enough to perform solvent extraction for separations. The stability of Am(VI) to autoreduction was measured using millimolar americium concentrations in a 1-cm cell with a Cary 6000 UV/Vis spectrophotometer for data acquisition. At millimolar americium concentrations, Am(VI) is stable enough against its own autoreduction for separations purposes. A second major accomplishment during FY14 was the hot test. Americiummore » oxidation and extraction was performed using a centrifugal contactor-based test bed consisting of an extraction stage and two stripping stages. Sixty-three percent americium extraction was obtained in one extraction stage, in agreement with batch contacts. Promising electrochemical oxidation results have also been obtained, using terpyridine ligand derivatized electrodes for binding of Am(III). Approximately 50 % of the Am(III) was oxidized to Am(V) over the course of 1 hour. It is believed that this is the first demonstration of the electrolytic oxidation of americium in a non-complexing solution. Finally, an initial investigation of Am(VI) extraction using diethylhexylbutyramide (DEHBA) was performed.« less

  8. Extraction of dye from aqueous solution in rotating packed bed.

    PubMed

    Modak, Jayant B; Bhowal, Avijit; Datta, Siddhartha

    2016-03-05

    The influence of centrifugal acceleration on mass transfer rates in liquid-liquid extraction was investigated experimentally in rotating packed bed (RPB) contactor. The extraction of methyl red using xylene was studied in the equipment. The effect of rotational speed (300-900rpm), flow rate of the aqueous (4.17-20.8×10(-6)m(3)/s), and organic phase (0.83-2.5×10(-6)m(3)/s) on the mass transfer performance was examined. The maximum stage efficiency attained was ∼0.98 at aqueous to organic flow rate ratio of 10. The results suggest that contactor volume required to carry out a given separation can be reduced by an order of magnitude with RPB in comparison to conventional extractors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.

  10. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.

    PubMed

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2013-07-01

    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or 'slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (V(L)). Whilst the highest CO2 flux was recorded at high V(L), selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Combining Experiments and Simulations of Extraction Kinetics and Thermodynamics in Advanced Separation Processes for Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Mikael

    This 3-year project was a collaboration between University of California Irvine (UC Irvine), Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), Argonne National Laboratory (ANL) and with an international collaborator at ForschungZentrum Jülich (FZJ). The project was led from UC Irvine under the direction of Profs. Mikael Nilsson and Hung Nguyen. The leads at PNNL, INL, ANL and FZJ were Dr. Liem Dang, Dr. Peter Zalupski, Dr. Nathaniel Hoyt and Dr. Giuseppe Modolo, respectively. Involved in this project at UC Irvine were three full time PhD graduate students, Tro Babikian, Ted Yoo, and Quynh Vo, and one MS student,more » Alba Font Bosch. The overall objective of this project was to study how the kinetics and thermodynamics of metal ion extraction can be described by molecular dynamic (MD) simulations and how the simulations can be validated by experimental data. Furthermore, the project includes the applied separation by testing the extraction systems in a single stage annular centrifugal contactor and coupling the experimental data with computational fluid dynamic (CFD) simulations. Specific objectives of the proposed research were: Study and establish a rigorous connection between MD simulations based on polarizable force fields and extraction thermodynamic and kinetic data. Compare and validate CFD simulations of extraction processes for An/Ln separation using different sizes (and types) of annular centrifugal contactors. Provide a theoretical/simulation and experimental base for scale-up of batch-wise extraction to continuous contactors. We approached objective 1 and 2 in parallel. For objective 1 we started by studying a well established extraction system with a relatively simple extraction mechanism, namely tributyl phosphate. What we found was that well optimized simulations can inform experiments and new information on TBP behavior was presented in this project, as well be discussed below. The second objective proved a larger challenge and most of the efforts were devoted to experimental studies.« less

  12. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  13. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.

  14. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less

  15. An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Levitskaia, Tatiana G.; Wilden, Andreas

    A system is being developed to separate trivalent actinides from lanthanide fission product elements that uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester to extract the lanthanide ions into an organic phase, while the actinide ions are held in the citrate-buffered aqueous phase by complexation to N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA). Earlier investigations of this system using a 2-cm centrifugal contactor revealed that the relatively slow extraction of Sm3+, Eu3+, and Gd3+ resulted in low separation factors from Am3+. In the work reported here, adjustments to the aqueous phase chemistry were made to improve the extraction rates. The results suggest that increasing the concentration ofmore » the citric acid buffer from 0.2 to 0.6 mol/L, and lowering the pH from 3.1 to 2.6, significantly improved lanthanide extraction rates resulting in an actinide/lanthanide separation system suitable for deployment in centrifugal contactors. Experiments performed to evaluate whether the lanthanide extraction rates can be improved by replacing aqueous HEDTA with nitrilotriacetic acid (NTA) exhibited promising results. However, NTA exhibited an unsatisfactorily high distribution value for Am3+ under the extraction conditions examined.« less

  16. Centrifugal Contactor Efficiency Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce Jay; Tillotson, Richard Dean; Grimes, Travis Shane

    2017-01-01

    The contactor efficiency of a 2-cm acrylic centrifugal contactor, fabricated by ANL using 3D printer technology was measured by comparing a contactor test run to 5-min batch contacts. The aqueous phase was ~ 3 ppm depleted uranium in 3 M HNO3, and the organic phase was 1 M DAAP/dodecane. Sampling during the contactor run showed that equilibrium was achieved within < 3 minutes. The contactor efficiency at equilibrium was 95% to 100 %, depending on flowrate.

  17. Plasma contactor development for Space Station

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  18. Plasma contactor development for Space Station

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-12-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  19. Experimental and Model Studies on Continuous Separation of 2-Phenylpropionic Acid Enantiomers by Enantioselective Liquid-Liquid Extraction in Centrifugal Contactor Separators.

    PubMed

    Feng, Xiaofeng; Tang, Kewen; Zhang, Pangliang; Yin, Shuangfeng

    2016-03-01

    Multistage enantioselective liquid-liquid extraction (ELLE) of 2-phenylpropionic acid (2-PPA) enantiomers using hydroxypropyl-β-cyclodextrin (HP-β-CD) as extractant was studied experimentally in a counter-current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single-stage model for chiral extraction of 2-PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2-PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP-β-CD concentration of 0.1 mol L(-1) at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%. © 2016 Wiley Periodicals, Inc.

  20. Development of a Front Tracking Method for Two-Phase Micromixing of Incompressible Viscous Fluids with Interfacial Tension in Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yijie; Lim, Hyun-Kyung; de Almeida, Valmor F

    2012-06-01

    This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical developmentmore » and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.« less

  1. Plasma contactor technology for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy

    1993-01-01

    Hollow cathode plasma contactors have been baselined for Space Station Freedom to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities have been developed, and existing facilities have been augmented, to support characterizations and life testing of contactor components and systems. This paper discusses the magnitude, scope, and status of the plasma contactor hardware development program now under way and preliminary test results on system components.

  2. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  3. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  4. SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Levitskaia, Tatiana G.

    2013-09-29

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less

  5. Conventional and dense gas techniques for the production of liposomes: a review.

    PubMed

    Meure, Louise A; Foster, Neil R; Dehghani, Fariba

    2008-01-01

    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.

  6. A two-dimensional theory of plasma contactor clouds used in the ionosphere with an electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Hastings, D. E.; Gatsonis, N. A.; Rivas, D. A.

    1988-01-01

    Plasma contactors have been proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. A plasma contactor is a plasma source which emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors and it is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory of the motion of the cloud across the magnetic field is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1-100 Amperes. It is shown that small ion current contactors are more efficient than large ion current contactors. This suggests that if a plasma contactor is used on an electrodynamic tether then a miltiple tether array will be more efficient than a single tether.

  7. Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. H. Meikrantz; T. G. Garn; J. D. Law

    2008-09-01

    TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samplesmore » was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.« less

  8. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tande, Brian; Seames, Wayne; Benson, Steve

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO 2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO 2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO 2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be ablemore » to strip CO 2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO 2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO 2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO 2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.« less

  10. Hollow cathode plasma coupling study, 1986

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1986-01-01

    The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.

  11. A Scale for Rating Fire-Prevention Contactors

    Treesearch

    M.L. Doolittle

    1979-01-01

    A scale is constructed to help fire-prevention program administrators determine if an individual contactor is effective at influencing people. The 24 items in the scale indicate the qualities that an effective contactor should have.

  12. A 2.5 Gigawatt Liquid Dielectric Coaxial Pulse Forming Line

    DTIC Science & Technology

    1987-06-01

    operation. The fuses provide protection against long term faults. The 3 phase vacuum contactor is a convenient means of remotely applying or...is electronically sensed and the vacuum contactor opens thereby interrupting the input power. The opening time of the vacuum contactor is less than...less than 5 microseconds and at the same time a trigger signal is sent to the vacuum contactor which opens and interrupts the primary power. The PFL

  13. Fundamentals of Electrical Propulsion Plant Design,

    DTIC Science & Technology

    1982-04-06

    through connection of resonant filters or through use of multiphase conversion power circuits. Figure 9.25. Block Diagram of a Frequency Converter Control...first harmonic, active power Pa’ consumed by the converter at the point of application of this emf, is determined from expression P. = 3EM i cos i...armature shunting contactor K3 KDD diesel starting contactor K.U KZ protection contactor K3 KMM maximum power contactor KM KO compensating winding KO

  14. Plasma contactor technology for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy

    1993-01-01

    Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed.

  15. Microcomponent assembly for efficient contacting of fluid

    DOEpatents

    Drost, Monte K.; Wegeng, Robert S.; Friedrich, Michele; Hanna, William T.; Call, Charles J.; Kurath, Dean E.

    2000-01-01

    The present invention is a fundamental method and apparatus of a microcomponent assembly that overcomes the inherent limitations of state of the art chemical separations. The fundamental element enabling miniaturization is the porous contactor contained within a microcomponent assembly for mass transfer of a working compound from a first medium to a second medium. The porous contactor has a thickness, and a plurality of pores extending through the thickness. The pores are of a geometry cooperating with a boundary tension of one or the other or both of the media thereby preventing migration of one, other or both through the microporous contactor while permitting passage of the working compound. In the microcomponent assembly, the porous contactor is placed between a first laminate such that a first space or first microplenum is formed between the microporous contactor and the first laminate. Additionally, a cover sheet provides a second space or second plenum between the porous contactor and the cover sheet.

  16. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Astrophysics Data System (ADS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-07-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  17. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-01-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  18. Hybrid indirect/direct contactor for thermal management of counter-current processes

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  19. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    PubMed

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-09-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.

  20. Measuring Nitrous Oxide Mass Transfer into Non-Aqueous CO2BOL CO2 Capture Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whyatt, Greg A.; Freeman, Charles J.; Zwoster, Andy

    2016-03-28

    This paper investigates CO2 absorption behavior in CO2BOL solvents by decoupling the physical and chemical effects using N2O as a non-reactive mimic. Absorption measurements were performed using a wetted-wall contactor. Testing was performed using a “first generation” CO2 binding organic liquid (CO2BOL), comprised of an independent base and alcohol. Measurements were made with N2O at a lean (0.06 mol CO2/mol BOL) and rich (0.26 mol CO2/mol BOL) loading, each at three temperatures (35, 45 and 55 °C). Liquid-film mass transfer coefficients (kg') were calculated by subtracting the gas film resistance – determined from a correlation from literature – from themore » overall mass transfer measurement. The resulting kg' values for N2O in CO2BOLs were found to be higher than that of 5 M aqueous MEA under comparable conditions, which is supported by published measurements of Henry’s coefficients for N2O in various solvents. These results suggest that the physical solubility contribution for CO2 absorption in CO2BOLs is greater than that of aqueous amines, an effect that may pertain to other non-aqueous solvents.« less

  1. Isolation contactor state control system

    DOEpatents

    Bissontz, Jay E.

    2017-05-16

    A controller area network (CAN) installed on a hybrid electric vehicle provides one node with control of high voltage power distribution system isolation contactors and the capacity to energize a secondary electro-mechanical relay device. The output of the secondary relay provides a redundant and persistent backup signal to the output of the node. The secondary relay is relatively immune to CAN message traffic interruptions and, as a result, the high voltage isolation contactor(s) are less likely to transition open in the event that the intelligent output driver should fail.

  2. Evaluation of denitrification potential of rotating biological contactors for treatment of municipal wastewater.

    PubMed

    Hanhan, O; Orhon, D; Krauth, Kh; Günder, B

    2005-01-01

    In this study the effect of retention time and rotation speed in the denitrification process in two full-scale rotating biological contactors (RBC) which were operated parallel and fed with municipal wastewater is evaluated. Each rotating biological contactor was covered to prevent oxygen input. The discs were 40% submerged. On the axle of one of the rotating biological contactors lamellas were placed (RBC1). During the experiments the nitrate removal performance of the rotating biological contactor with lamellas was observed to be less than the other (RBC2) since the lamellas caused oxygen diffusion through their movement. The highest nitrate removal observed was 2.06 g/m2.d achieved by a contact time of 28.84 minutes and a recycle flow of 1 l/s. The rotation speed during this set had the constant value of 0.8 min(-1). Nitrate removal efficiency on RBC1 was decreasing with increasing rotation speed. On the rotating biological contactor without lamellas no effect on denitrification could be determined within a speed range from 0.67 to 2.1 min-1. If operated in proper conditions denitrification on RBC is a very suitable alternative for nitrogen removal that can easily fulfil the nutrient limitations in coastal areas due to the rotating biological contactors economical benefits and uncomplicated handling.

  3. Hierarchical micro- and nanofabrication by pattern-directed contact instabilities of thin viscoelastic films

    NASA Astrophysics Data System (ADS)

    Ghosh, Abir; Bandyopadhyay, Dipankar; Sarkar, Jayati; Sharma, Ashutosh

    2017-12-01

    A surface of a thin viscoelastic film forms spinodal patterns when brought in contact proximity of another surface due to the dominance of destabilizing intermolecular interaction over the stabilizing elastic and surface tension forces. In this study, we theoretically explore such contact instabilities of a thin viscoelastic film, wherein the patterns generated on the surface of the film is developed with the help of a contactor decorated with periodic physical, chemical, and physicochemical features on the surface. The nonlinear analysis shown here considers the movement of the patterned contactor during the adhesion and debonding processes, which is unlike most of the previous works where the contactor is considered to be stationary. The simulations reveal that the amplitude and periodicity of the patterns decorated on the contactor together with the contactor speed can be the key parameters to stimulate pattern formation on the film surface alongside causing changeover of the various modes of debonding of the surfaces. In particular, the ratio of the elastic to viscous compliances of the film is found to play a critical role to stimulate the changeover of the modes from catastrophic to peeling or coalescence. The study uncovers that a higher wettability contrast across the patterned contactor leads to the catastrophic collapse of the patterns decorated on the film surface when the contactor debonds at a moderate speed. In comparison, a moderately high wettability contrast alongside a faster withdrawal speed of the contactor results in the gradual peeling of columns during the debonding cycle. Remarkably, a higher withdrawal speed of the contactor from the film-proximity can increase the aspect ratio of the patterns fabricated on the film surface to about fourfold during the peeling mode of debonding. The results show the importance of the usage of patterned contactors, their controlled movement, and extent of elastic to viscous compliance ratio of the film for the improvement of the aspect ratio of the patterns developed using the elastic contact lithography of the thin viscoelastic films. The simulations also reveal the possibilities of the fabrication of biomimetic micro- or nanostructures such as columns, holes, cavities, or a combination of these patterns with large-area ordering employing the patterned contactors. A few example cases are shown to highlight the capacity of the proposed methodology for the fabrication of higher aspect ratio hierarchical micro- or nanostructures.

  4. A Computer Model for Teaching the Dynamic Behavior of AC Contactors

    ERIC Educational Resources Information Center

    Ruiz, J.-R. R.; Espinosa, A. G.; Romeral, L.

    2010-01-01

    Ac-powered contactors are extensively used in industry in applications such as automatic electrical devices, motor starters, and heaters. In this work, a practical session that allows students to model and simulate the dynamic behavior of ac-powered electromechanical contactors is presented. Simulation is carried out using a rigorous parametric…

  5. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    PubMed Central

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-01-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study. PMID:6639023

  6. Photovoltaic Plasma Interaction Test 2

    NASA Technical Reports Server (NTRS)

    Kaufman, Bradford A.; Chrulski, Daniel; Myers, Roger M.

    1996-01-01

    The International Space Station (ISS) program is developing a plasma contactor to mitigate the harmful effects of charge collection on the station's large photovoltaic arrays. The purpose of the present test was to examine the effects of charge collection on the solar array electrical circuit and to verify the effectiveness of the plasma contactor. The results showed that the plasma contactor was able to eliminate structure arcing for any array output voltage. However, the current requirements of the plasma contactor were higher than those for prior testing and predicted by analysis. Three possible causes for this excess current demand are discussed. The most likely appeared to be a high local pressure on or very near the surface of the array as a result of vacuum tank conditions. Therefore, in actual space conditions, the plasma contactor should work as predicted.

  7. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.

    PubMed

    Constantinou, Achilleas; Ghiotto, Francesco; Lam, Koon Fung; Gavriilidis, Asterios

    2014-01-07

    Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 μm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 μm and the microchannel depth 100 μm. The micropillars were wetted by the water/acetone solution and formed a 15 μm liquid film between them and the nearest channel wall, leaving a 195 μm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 μm and 200 μm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.

  8. Sample Results from MCU Solids Outage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.; Washington, A.; Oji, L.

    2014-09-22

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries: A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate; A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate; A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate;more » An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate; A solids sample from ; A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed. Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system; Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid; The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future; Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing; Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.« less

  9. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.

    PubMed

    Mansourizadeh, A; Ismail, A F

    2009-11-15

    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.

  10. Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline

    NASA Astrophysics Data System (ADS)

    Anggraini, Muthia

    2017-12-01

    Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.

  11. Biogas upgrading by chemical absorption using ammonia rich absorbents derived from wastewater.

    PubMed

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2014-12-15

    The use of ammonia (NH3) rich wastewaters as an ecological chemical absorption solvent for the selective extraction of carbon dioxide (CO2) during biogas upgrading to 'biomethane' has been studied. Aqueous ammonia absorbents of up to 10,000 gNH3 m(-3) demonstrated CO2 absorption rates higher than recorded in the literature for packed columns using 20,000-80,000 g NH3 m(-3) which can be ascribed to the process intensification provided by the hollow fibre membrane contactor used in this study to support absorption. Centrifuge return liquors (2325 g m(-3) ionised ammonium, NH4(+)) and a regenerant (477 gNH4(+) m(-3)) produced from a cationic ion exchanger used to harvest NH4(+) from crude wastewater were also tested. Carbon dioxide fluxes measured for both wastewaters compared reasonably with analogue ammonia absorption solvents of equivalent NH3 concentration. Importantly, this demonstrates that ammonia rich wastewaters can facilitate chemically enhanced CO2 separation which eliminates the need for costly exogenic chemicals or complex chemical handling which are critical barriers to implementation of chemical absorption. When testing NH3 analogues, the potential to recover the reaction product ammonium bicarbonate (NH4HCO3) in crystalline form was also illustrated. This is significant as it suggests a new pathway for ammonia separation which avoids biological nitrification and produces ammonia stabilised into a commercially viable fertiliser (NH4HCO3). However, in real ammonia rich wastewaters, sodium bicarbonate and calcium carbonate were preferentially formed over NH4HCO3 although it is proposed that NH4HCO3 can be preferentially formed by manipulating both ion exchange and absorbent chemistry. Copyright © 2014. Published by Elsevier Ltd.

  12. Laboratory experiments on plasma contactors

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Williams, John D.

    1990-01-01

    Experimental results describing the operation of hollow cathode plasma contactors collecting and emitting electrons from and to an ambient plasma at current levels of the order of one ampere are presented. The voltage drops induced between a contactor and an ambient plasma are shown to be a few tens of volts at such current levels. The development of a double sheath and the production of substantial numbers of ions by electrons streaming across it are associated with the electron collection process. The development of a complex potential structure including a high potential hill just downstream of the cathode orifice is shown to characterize typical contactor emitting electrons.

  13. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  14. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  15. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor.

    PubMed

    Lauterböck, B; Ortner, M; Haider, R; Fuchs, W

    2012-10-01

    The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Trickling Filter/Solids Contact Process: Application to Army Wastewater Plants

    DTIC Science & Technology

    1988-08-01

    technology (activated sludge and rotating biological contactors [RBC]). 3 7 For the study, the plant was to be sized at 10 mgd. Electricity purchased from...Project Costs* Estimated Cost** ($K) Trickling Rotating Filter/Solids Activated Biological Item Contact Sludge Contactor Preliminary treatment 1100 1100...basins 4500 - Rotating biological contactor reactors - 4520 Flocculator clarifiers 2000 - - Conventional secondary clarifiers 1770 1500 Dual-media

  17. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-05

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.

  18. Correlation of Hollow Cathode Assembly and Plasma Contactor Data from Ground Testing and In-Space Operation on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.

    2001-01-01

    Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.

  19. Membrane contactors in the beverage industry for controlling the water gas composition.

    PubMed

    Criscuoli, Alessandra; Drioli, Enrico; Moretti, Ugo

    2003-03-01

    In the work described here, membrane contactors are used for coupling the removal of species (oxygen and hydrogen sulfide) present in the water with the water carbonation process. We include both experiments and a theoretical study devoted to the analysis of the transport phenomena that occur in the membrane contactor. The main resistance to mass transport was located at the liquid side. Correlations between Sherwood and Reynolds numbers on the shell side that are suitable for the membrane contactor used to carry out our experiments have been determined. In particular, for Re > 1.6, the expression proposed by Yang and Cussler in 1986: Sh = 0.90 Re(0.40) Sc(0.33) describes the behavior of the system; whereas, for Re between 0.03 and 0.3, a new expression is proposed: Sh = 0.435 Re(1.2)Sc(0.33). A comparison with traditional equipment is also furnished. Membrane contactors offer reduced size, CO(2) consumption, and capital costs.

  20. Double layers in contactor plasmas

    NASA Technical Reports Server (NTRS)

    Cooke, David L.

    1990-01-01

    The concept of using a hollow cathode to establish a low impedance contact between a spacecraft and the ambient plasma continues to gain in popularity, and is often then referred to as a plasma contactor. A growing number of studies indicate that large contact currents can be supported with small potential difference between the contactor and the ambient plasma. Results will be presented from a simple one-dimensional spherical model that obtains potentials from the solution of Poisson's equation, and particle densities from a turning point formalism that includes particle angular momentum. The neglect of collisions and magnetic field limits the realism. However, the results illustrate the effect of double layers that can form at the interface between contactor and ambient plasmas, when there is any voltage differential between the contactor and the ambient. The I-V characteristic of this model shows the usual space charge depends upon collection when the contactor flux is lower than some threshold; independence of I from variation in V when the flux is slightly greater than that threshold, and (numerical ?) instability for excessive flux suggesting the possibility of negative resistance. Even if a real I-V characteristic does not exhibit negative resistance, flat spots or high resistance regions may still be troublesome (or useful) to the total circuit.

  1. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  2. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  3. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  4. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE PAGES

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.; ...

    2018-05-29

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  5. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  6. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  7. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  8. NEPTUNIUM SOLVENT EXTRACTION PROCESS

    DOEpatents

    Dawson, L.R.; Fields, P.R.

    1959-10-01

    The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.

  9. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    NASA Astrophysics Data System (ADS)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  10. Compressed air-assisted solvent extraction (CASX) for metal removal.

    PubMed

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  11. A vibration model for centrifugal contactors

    NASA Astrophysics Data System (ADS)

    Leonard, R. A.; Wasserman, M. O.; Wygmans, D. G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet 'Beam' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k(sub B)) of a motor after measuring the k(sub B) value for three different motors. The k(sub B) value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  12. Membrane contactors for CO2 capture processes - critical review

    NASA Astrophysics Data System (ADS)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  13. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  14. Energy performance of stripper configurations for CO{sub 2} capture by aqueous amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyenekan, B.A.; Rochelle, G.T.

    2006-04-12

    Aqueous absorption/stripping is the state-of-the-art technology for the capture of CO{sub 2} from coal-fired power plants. This technology is energy-intensive and has been applied to CO{sub 2} removal from natural gas, ammonia, and hydrogen gas streams. Energy requirements can be reduced by the use of a more-reactive solvent, operating the cross exchanger at a lower temperature, optimizing the stripper operation, and using innovative stripper configurations (vacuum and multipressure). This work calculates stripper performance with an algorithm in Aspen Custom Modeler (ACM) that incorporates thermodynamic studies, reaction rate measurements, physical properties, and contactor-specific information for three stripper configuration-a simple stripper operatingmore » at 160 kPa, a multipressure stripper operating at three pressures (330/230/160 kPa), and a vacuum stripper (30 kPa) for two solvents: 7m (30 wt %) monoethanolamine (MEA) and 5m K{sup +}/2.5m piperazine. The temperature approach is varied from 5 to 10{sup o}C. With some approximations, we predict the influence of using solvents with varying heats of desorption {Delta}H{sub des}) on the reboiler duty and the equivalent work for stripping (reboiler duty as equivalent Carnot work plus compression work). With a rich solution giving PCO{sub 2}{asterisk} = 2.5 kPa at 40{sup o}C, the vacuum stripper is favored for solvents with Delta H{sub des} {<=} 21 kcal/(gmol of CO{sub 2}) while the multipressure configuration is attractive for solvents with {Delta}(H{sub des} {>=} 21 kcal/(gmol of CO{sub 2}).« less

  15. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb.

    PubMed

    Zhang, Lijin; Wang, Maoshan

    2017-02-01

    In this study, deep eutectic solvents were proposed for the ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Several deep eutectic solvents were prepared for the extraction of polysaccharides, among which the deep eutectic solvent composed of choline chloride and 1,4-butanediol was proved to be suitable for the extraction. Based on the screening of single-factor experiment design and orthogonal experiment design, three experimental factors were optimized for the Box-Behnken experimental design combined with response surface methodology, which gave the optimal extraction conditions: water content of 32.89%(v/v), extraction temperature of 94.00°C, and the extraction time of 44.74min. The optimal extraction conditions could supply higher extraction yield than those of hot water extraction and water-based ultrasound-assisted extraction. Therefore, deep eutectic solvents were an excellent extraction solvent alternative to the extraction of polysaccharides from sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste.

    PubMed

    Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao

    2014-08-15

    High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Solvent extraction process for citric acid. 173..., Lubricants, Release Agents and Related Substances § 173.280 Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation...

  18. Plasma contactor design for electrodynamic tether applications

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Laupa, Thomas G.

    1988-01-01

    The plasma contacting process is described and experiments are discussed that suggest the key role that cold ions play in establishing a low impedance plasma bridge that can conduct current in either direction between a contactor electrode and a dilute plasma. A ring cusp contactor is shown to provide from 1000-mA of electron emission to 500-mA of electron collection as its bias relative to a simulated space plasma is varied through an 80-v range.

  19. Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng

    This paper investigates the CO 2 and N 2 O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO 2 and N 2 O at representative lean (0.04 mol CO 2/mol alkalinity), middle (0.13 mol CO 2 /mol alkalinity) and rich (0.46 mol CO 2 /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N 2 O at (0.08-0.09 molmore » CO 2 /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO 2 flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO 2 and N 2 O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO 2 were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO 2 in GAP-1/TEG is linked to the physical solubility of CO 2 , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO 2 capture in water-lean solvents.« less

  20. Temperature control in a 30 stage, 5-cm Centrifugal Contactor Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack D. Law; Troy G. Garn; David H. Meikrantz

    2009-09-01

    Temperature profile testing was performed using a 30 stage 5-cm centrifugal contactor pilot plant. These tests were performed to evaluate the ability to control process temperature by adjusting feed solution temperatures. This would eliminate the need for complex jacketed heat exchanger installation on the centrifugal contactors. Thermocouples were installed on the inlet and outlets of each stage, as well as directly in the mixing zone of several of the contactor stages. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 with nitric acid were the solution feeds for the temperaturemore » profile testing. Temperature data profiles for an array of total throughputs and contactor rpm values for both single-phase and two-phase systems were collected with selected profiles. The total throughput ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Inlet solution temperatures ranging from ambient up to 50 °C were tested. Results of the two-phase temperature profile testing are detailed« less

  1. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G. B.

    1980-12-16

    A process for solvent extraction of oil from oil bearing diatomite ore and an apparatus for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent, solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom, and solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure.

  2. Extended test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 4700 hours with small changes in operating parameters. The discharge experienced 4 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was reignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1A) xenon hollow cathode reported to date.

  3. Physical processes associated with current collection by plasma contactors

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  4. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  5. Remediating pesticide contaminated soils using solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L.

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the systemmore » reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.« less

  6. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  7. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  8. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  9. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  10. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  11. Compliance Testing of the Eglin AFB Asphalt Concrete Batch Plant, Eglin AFB, Florida

    DTIC Science & Technology

    1989-06-01

    the fan, contactor and separator. A schematic of the scrubber showing these components is presented in Figure 4. Particulate-laden air is blown into...the contactor at high speed by the scrubber fan. In the contactor , the gas stream passes through a fine water mist where particulates are wetted and...and wetted particulates are separated from the gas stream by centrifugal action and drain to the bottom of the separator. Water and sludge are drained

  12. Centrifugal pyrocontactor

    DOEpatents

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  13. Centrifugal pyrocontactor

    DOEpatents

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  14. Conventional and Accelerated-Solvent Extractions of Green Tea (Camellia sinensis) for Metabolomics-based Chemometrics

    PubMed Central

    Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.

    2018-01-01

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673

  15. Extraction, scrub, and strip test results for the salt waste processing facility caustic side solvent extraction solvent example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previousmore » ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less

  16. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  17. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE PAGES

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    2015-09-02

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  18. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    NASA Astrophysics Data System (ADS)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  19. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G.B.

    1979-09-11

    A process is described for solvent extraction of oil-bearing diatomite ore. An apparatus is provided for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent. The solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom. The solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure. 17 claims.

  20. Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design.

    PubMed

    Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko

    2012-12-01

    The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.

  1. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  3. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  4. ISS and Space Environment Interactions in Event of Plasma Contactor Failure

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2000-01-01

    The International Space Station (ISS), illustrated in Figure 1, will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, and similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur.

  5. Ultrasonic Removal of Mucilage for Pressurized Liquid Extraction of Omega-3 Rich Oil from Chia Seeds (Salvia hispanica L.).

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2017-03-29

    Chia (Salvia hispanica L.) seeds contain an important amount of edible oil rich in omega-3 fatty acids. Fast and alternative extraction techniques based on polar solvents, such as ethanol or water, have become relevant for oil extraction in recent years. However, chia seeds also contain a large amount of soluble fiber or mucilage, which makes difficult an oil extraction process with polar solvents. For that reason, the aim of this study was to develop a gentle extraction method for mucilage in order to extract chia oil with polar solvents using pressurized liquids and compare with organic solvent extraction. The proposed mucilage extraction method, using an ultrasonic probe and only water, was optimized at mild conditions (50 °C and sonication 3 min) to guarantee the omega-3 oil quality. Chia oil extraction was performed using pressurized liquid extraction (PLE) with different solvents and their mixtures at five different extraction temperatures (60, 90, 120, 150, and 200 °C). Optimal PLE conditions were achieved with ethyl acetate or hexane at 90 °C in only 10 min of static extraction time (chia oil yield up to 30.93%). In addition, chia oils extracted with nonpolar and polar solvents by PLE were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid composition at different extraction conditions. Chia oil contained ∼65% of α-linolenic acid regardless of mucilage extraction method, solvent, or temperature used. Furthermore, tocopherols and tocotrienols were also analyzed by HPLC in the extracted chia oils. The mucilage removal allowed the subsequent extraction of the chia oil with polar or nonpolar solvents by PLE producing chia oil with the same fatty acid and tocopherol composition as traditional extraction.

  6. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    PubMed

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cathodes Delivered for Space Station Plasma Contactor System

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1999-01-01

    The International Space Station's (ISS) power system is designed with high-voltage solar arrays that typically operate at output voltages of 140 to 160 volts (V). The ISS grounding scheme electrically ties the habitat modules, structure, and radiators to the negative tap of the solar arrays. Without some active charge control method, this electrical configuration and the plasma current balance would cause the habitat modules, structure, and radiators to float to voltages as large as -120 V with respect to the ambient space plasma. With such large negative floating potentials, the ISS could have deleterious interactions with the space plasma. These interactions could include arcing through insulating surfaces and sputtering of conductive surfaces as ions are accelerated by the spacecraft plasma sheath. A plasma contactor system was baselined on the ISS to prevent arcing and sputtering. The sole requirement for the system is contained within a single directive (SSP 30000, paragraph 3.1.3.2.1.8): "The Space Station structure floating potential at all points on the Space Station shall be controlled to within 40 V of the ionospheric plasma potential using a plasma contactor." NASA is developing this plasma contactor as part of the ISS electrical power system. For ISS, efficient and rapid emission of high electron currents is required from the plasma contactor system under conditions of variable and uncertain current demand. A hollow cathode plasma source is well suited for this application and was, therefore, selected as the design approach for the station plasma contactor system. In addition to the plasma source, which is referred to as a hollow cathode assembly, or HCA, the plasma contactor system includes two other subsystems. These are the power electronics unit and the xenon gas feed system. The Rocketdyne Division of Boeing North American is responsible for the design, fabrication, assembly, test, and integration of the plasma contactor system. Because of technical and schedule considerations, the NASA Lewis Research Center was asked to manufacture and deliver the engineering model, the qualification model, and the flight HCA units for the plasma contactor system as government furnished equipment. To date, multiple units have been built. One cathode has demonstrated approximately 28 000-hr lifetime, two development HCA units have demonstrated over 15 000-hr lifetime, and one HCA unit has demonstrated more than 38 000 ignitions. All eight flight HCA's have been manufactured, acceptance tested, and are ready for delivery to the flight contractor.

  8. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  9. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  10. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis.

    PubMed

    Boeing, Joana Schuelter; Barizão, Erica Oliveira; E Silva, Beatriz Costa; Montanher, Paula Fernandes; de Cinque Almeida, Vitor; Visentainer, Jesuí Vergilio

    2014-01-01

    This study evaluated the effect of the solvent on the extraction of antioxidant compounds from black mulberry (Morus nigra), blackberry (Rubus ulmifolius) and strawberry (Fragaria x ananassa). Different extracts of each berry were evaluated from the determination of total phenolic content, anthocyanin content and antioxidant capacity, and data were applied to the principal component analysis (PCA) to gain an overview of the effect of the solvent in extraction method. For all the berries analyzed, acetone/water (70/30, v/v) solvent mixture was more efficient solvent in the extracting of phenolic compounds, and methanol/water/acetic acid (70/29.5/0.5, v/v/v) showed the best values for anthocyanin content. Mixtures of ethanol/water (50/50, v/v), acetone water/acetic acid (70/29.5/0.5, v/v/v) and acetone/water (50/50, v/v) presented the highest antioxidant capacities for black mulberries, blackberries and strawberries, respectively. Antioxidants extractions are extremely affected by the solvent combination used. In addition, the obtained extracts with the organic solvent-water mixtures were distinguished from the extracts obtained with pure organic solvents, through the PCA analysis.

  11. Effect of extraction method on the yield of furanocoumarins from fruits of Archangelica officinalis Hoffm.

    PubMed

    Waksmundzka-Hajnos, M; Petruczynik, A; Dragan, A; Wianowska, D; Dawidowicz, A L

    2004-01-01

    Optimal conditions for the extraction and analysis of furanocoumarins from fruits of Archangelica officinalis Hoffm. have been determined. The following extraction methods were used: exhaustive extraction in a Soxhlet apparatus, ultrasonication at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed systems, and accelerated solvent extraction (ASE). In most cases the yields of furanocoumarins were highest using the ASE method. The effects of extracting solvent, temperature and time of extraction using this method were investigated. The highest yield of furanocoumarins by ASE was obtained with methanol at 100-130 degrees C for 10 min. The extraction yields of furanocoumarins from plant material by ultrasonication at 60 degrees C and microwave-assisted solvent extraction in an open system were comparable to the extraction yields obtained in the time- and solvent-consuming exhaustive process involving the Soxhlet apparatus.

  12. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    PubMed

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  13. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production.

    PubMed

    Boyd, Alaina R; Champagne, Pascale; McGinn, Patrick J; MacDougall, Karen M; Melanson, Jeremy E; Jessop, Philip G

    2012-08-01

    A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Terra-Kleen Response Group, Inc. Solvent Extraction Technology Rapid Commercialization Initiative Report

    EPA Science Inventory

    Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...

  15. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    PubMed

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  16. A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco.

    PubMed

    Shen, Jinchao; Shao, Xueguang

    2005-11-01

    The performance of accelerated solvent extraction in the analysis of terpenoids and sterols in tobacco samples was investigated and compared with those of Soxhlet extraction and ultrasonically assisted extraction with respect to yield, extraction time, reproducibility and solvent consumption. The results indicate that although the highest yield was achieved by Soxhlet extraction, ASE appears to be a promising alternative to classical methods since it is faster and uses less solvent, especially when applied to the investigation of large batch tobacco samples. However, Soxhlet extraction is still the preferred method for analyzing sterols since it gives a higher extraction efficiency than other methods.

  17. Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes.

    PubMed

    Gugliuzza, Annarosa; Aceto, Marianna Carmela; Macedonio, Francesca; Drioli, Enrico

    2008-08-28

    Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.

  18. [Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine].

    PubMed

    Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu

    2007-05-01

    Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.

  19. High-Current Rotating Contactor

    NASA Technical Reports Server (NTRS)

    Hagan, David W.; Wolff, Edwin D.

    1996-01-01

    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  20. Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants

    PubMed Central

    Lafka, Theodora-Ioanna; Lazou, Andriana E.; Sinanoglou, Vassilia J.; Lazos, Evangelos S.

    2013-01-01

    The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model). As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE) extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm. PMID:28239093

  1. Step-wise supercritical extraction of carbonaceous residua

    DOEpatents

    Warzinski, Robert P.

    1987-01-01

    A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

  2. Comparison of extraction methods for quantifying vitamin E from animal tissues.

    PubMed

    Xu, Zhimin

    2008-12-01

    Four extraction methods: (1) solvent (SOL), (2) ultrasound assisted solvent (UA), (3) saponification and solvent (SP), and (4) saponification and ultrasound assisted solvent (SP-UA), were used in sample preparation for quantifying vitamin E (tocopherols) in chicken liver and plasma samples. The extraction yields of SOL, UA, SP, and SP-UA methods obtained by adding delta-tocopherol as internal reference were 95%, 104%, 65%, and 62% for liver and 98%, 103%, 97%, and 94% for plasma, respectively. The methods with saponification significantly affected the stabilities of tocopherols in liver samples. The measured values of alpha- and gamma-tocopherols using the solvent only extraction (SOL) method were much lower than that using any of the other extraction methods. This indicated that less of the tocopherols in those samples were in a form that could be extracted directly by solvent. The measured value of alpha-tocopherol in the liver sample using the ultrasound assisted solvent (UA) method was 1.5-2.5 times of that obtained from the saponification and solvent (SP) method. The differences in measured values of tocopherols in the plasma samples by using the two methods were not significant. However, the measured value of the saponification and ultrasound assisted solvent (SP-UA) method was lower than either the saponification and solvent (SP) or the ultrasound assisted solvent (UA) method. Also, the reproducibility of the ultrasound assisted solvent (UA) method was greater than any of the saponification methods. Compared with the traditional saponification method, the ultrasound assisted solvent method could effectively extract tocopherols from sample matrix without any chemical degradation reactions, especially for complex animal tissue such as liver.

  3. ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS

    EPA Science Inventory

    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  4. Microfluidic Liquid-Liquid Contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcculloch, Quinn

    2017-07-25

    This report describes progress made on the microfluidic contactor. A model was developed to predict its failure, a surrogate chemical system was selected to demonstrate mass transfer, and an all-optical system has been invented and implemented to monitor carryover and flowrates.

  5. Extraction, Scrub, and Strip Test Results for the Salt Waste Processing Facility Caustic Side Solvent Extraction Solvent Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D( Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D( Cs) measured 12.5, exceeding the required value of 8. This value is consistent with resultsmore » from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D( Cs) results.« less

  6. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    PubMed

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  7. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review

    PubMed Central

    Miazek, Krystian; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Goffin, Dorothee

    2017-01-01

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted. PMID:28677659

  8. Green extraction of grape skin phenolics by using deep eutectic solvents.

    PubMed

    Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana

    2016-06-01

    Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations.more » The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less

  10. Extracting organic matter on Mars: A comparison of methods involving subcritical water, surfactant solutions and organic solvents

    NASA Astrophysics Data System (ADS)

    Luong, Duy; Court, Richard W.; Sims, Mark R.; Cullen, David C.; Sephton, Mark A.

    2014-09-01

    The first step in many life detection protocols on Mars involves attempts to extract or isolate organic matter from its mineral matrix. A number of extraction options are available and include heat and solvent assisted methods. Recent operations on Mars indicate that heating samples can cause the loss or obfuscation of organic signals from target materials, raising the importance of solvent-based systems for future missions. Several solvent types are available (e.g. organic solvents, surfactant based solvents and subcritical water extraction) but a comparison of their efficiencies in Mars relevant materials is missing. We have spiked the well characterised Mars analogue material JSC Mars-1 with a number of representative organic standards. Extraction of the spiked JSC Mars-1 with the three solvent methods provides insights into the relative efficiency of these methods and indicates how they may be used on future Mars missions.

  11. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    PubMed

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  12. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media.

    PubMed

    Jeong, Kyung Min; Zhao, Jing; Jin, Yan; Heo, Seong Rok; Han, Se Young; Yoo, Da Eun; Lee, Jeongmi

    2015-12-01

    Deep eutectic solvents (DESs) were investigated as tunable, environmentally benign, yet superior extraction media to enhance the extraction of anthocyanins from grape skin, which is usually discarded as waste. Ten DESs containing choline chloride as hydrogen bond acceptor combined with different hydrogen bond donors were screened for high extraction efficiencies based on the anthocyanin extraction yields. As a result, citric acid, D-(+)-maltose, and fructose were selected as the effective DES components, and the newly designed DES, CM-6 that is composed of citric acid and D-(+)-maltose at 4:1 molar ratio, exhibited significantly higher levels of anthocyanin extraction yields than conventional extraction solvents such as 80% aqueous methanol. The final extraction method was established based on the ultrasound-assisted extraction under conditions optimized using response surface methodology. Its extraction yields were double or even higher than those of conventional methods that are time-consuming and use volatile organic solvents. Our method is truly a green method for anthocyanin extraction with great extraction efficiency using a minimal amount of time and solvent. Moreover, this study suggested that grape skin, the by-products of grape juice processing, could serve as a valuable source for safe, natural colorants or antioxidants by use of the eco-friendly extraction solvent, CM-6.

  13. EXTRACTION AND DETECTION OF ARSENICALS IN SEAWEED VIA ACCELERATED SOLVENT EXTRACTION WITH ION CHROMATOGRAPHIC SEPARATION AND ICP-MS DETECTION

    EPA Science Inventory

    An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. Objective was to investigate effect of experimentally controllable ASE parameters (pressure, temperature, static time and solvent composition) on extr...

  14. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  15. Solvent selection in ultrasonic-assisted emulsification microextraction: Comparison between high- and low-density solvents by means of novel type of extraction vessel.

    PubMed

    Nojavan, Saeed; Gorji, Tayebeh; Davarani, Saied Saeed Hosseiny; Morteza-Najarian, Amin

    2014-08-01

    There are numerous published reports about dispersive liquid phase microextraction of the wide range of substances, however, till now no broadly accepted systematic and purpose oriented selection of extraction solvent has been proposed. Most works deal with the optimization of available solvents without adequate pre-consideration of properness. In this study, it is tried to compare the performances of low- and high-density solvents at the same conditions by means of novel type of extraction vessel with head and bottom conical shape. Extraction efficiencies of seven basic pharmaceutical compounds using eighteen common organic solvents were studied in this work. It was much easier to work with high-density solvents and they mostly showed better performances. This work shows that although exact predicting the performance of the solvents is multifaceted case but the pre-consideration of initial selection of solvents with attention to the physiochemical properties of the desired analytes is feasible and promising. Finally, the practicality of the method for extraction from urine and plasma samples was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Re-refining of waste petroleum by competing solubility characteristics

    NASA Astrophysics Data System (ADS)

    Byars, Michael Steven

    1998-11-01

    The United States produces over 1.3 billion gallons of used oil per year. Of the 1.3 billion gallons about 60% is used as fuel, nearly 20% is dumped into the environment, 13% is placed in landfills, 2% is re-refined into lube oil, and the remaining is either used for other purposes or incinerated. This is a great potential source of lubricating oil. The work presented here is a solvent extraction process using a solvent (highly miscible with the oil) and a co-solvent (slightly miscible with the oil). Extractions using isopropanol, ethanol, methyl tert-butylether and methanol are presented. The criteria used for evaluation of the extraction processes are yield, product viscosity index, and ash percent. The solvent/co-solvent combinations of MTBE and ethanol performed best and had the advantage of a common solvent/co-solvent in all extraction steps. The extraction process that provided the best results was a two step process using a combination solvent of MTBE and ethanol. The used oil was first extracted using MTBE/ethanol. The extracted oil was then contacted with a solvent combination composed of 80% ethanol. This solvent combination extracted the remaining additives from the oil. The recovered oil was nearly 60% by weight with a high viscosity index and no ash content. A preliminary battery limits design and economic analysis of the process was performed. A 500 bbl/day plant would have a capital cost of 1.9 million and an annual operation cost of 310,000. The plant as designed would produce 300 bbl/day of lube feedstock and have an ROI of 19%.

  17. Separation of Gadolinium (Gd) using Synergic Solvent Mixed Topo-D2EHPA with Extraction Method.

    NASA Astrophysics Data System (ADS)

    Effendy, N.; Basuki, K. T.; Biyantoro, D.; Perwira, N. K.

    2018-04-01

    The main problem to obtain Gd with high purity is the similarity of chemical properties and physical properties with the other rare earth elements (REE) such as Y and Dy, it is necessary to do separation by the extraction process. The purpose of this research to determine the best solvent type, amount of solvent, feed and solvent ratio in the Gd extraction process, to determine the rate order and the value of the rate constant of Gd concentration based on experimental data of aqueous phase concentration as a function of time and to know the effect of temperature on the reaction speed constant. This research was conducted on variation of solvent, amount of solvent, feed and solvent ratio in the extraction process of Gd separation, extraction time to determine the order value and the rate constant of Gd concentration in extraction process based on the aqueous phase concentration data as a function of time, to the rate constant of decreasing concentration of Gd. Based on the calculation results, the solvent composition was obtained with the best feed to separate the rare earth elements Gd in the extraction process is 1 : 4 with 15% concentration of TOPO and 10% concentration of D2EHPA. The separation process of Gd using extraction method by solvent TOPO-D2EHPA 2 : 1 comparison is better than single solvent D2EHPA / TOPO because of the synergistic effect. The rate order of separation process of Gd follows order 1. The Arrhenius Gd equation becomes k = 1.46 x 10-7 exp (-6.96 kcal / mol / RT).

  18. Terpenes as green solvents for extraction of oil from microalgae.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Ginies, Christian; Elmaataoui, Mohamed; Chemat, Farid

    2012-07-09

    Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  19. The Impact of Temperature on Anaerobic Biological Perchlorate Treatment

    EPA Science Inventory

    A 20-month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous micro-organisms. Influent temperatures...

  20. High-current plasma contactor neutralizer system

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.

    1989-01-01

    A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.

  1. Evaluation of the essential oil of Foeniculum vulgare Mill (fennel) fruits extracted by three different extraction methods by GC/MS.

    PubMed

    Hammouda, Faiza M; Saleh, Mahmoud A; Abdel-Azim, Nahla S; Shams, Khaled A; Ismail, Shams I; Shahat, Abdelaaty A; Saleh, Ibrahim A

    2014-01-01

    Hydrodistillation (HD) and steam-distillation, or solvent extraction methods of essential oils have some disadvantages like thermal decomposition of extracts, its contamination with solvent or solvent residues and the pollution of residual vegetal material with solvent which can be also an environmental problem. Thus, new green techniques, such as supercritical fluid extraction and microwave assisted techniques, are potential solutions to overcome these disadvantages. The aim of this study was to evaluate the essential oil of Foeniculum vulgare subsp. Piperitum fruits extracted by three different extraction methods viz. Supercritical fluid extraction (SFE) using CO2, microwave-assisted extraction (MAE) and hydro-distillation (HD) using gas chromatography-mass spectrometry (GC/MS). The results revealed that both MAE and SFE enhanced the extraction efficiency of the interested components. MAE gave the highest yield of oil as well as higher percentage of Fenchone (28%), whereas SFE gave the highest percentage of anethol (72%). Microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) not only enhanced the essential oil extraction but also saved time, reduced the solvents use and produced, ecologically, green technologies.

  2. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  3. Space plasma contactor research, 1987

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.

  4. Deep Eutectic Solvents as Efficient Media for the Extraction and Recovery of Cynaropicrin from Cynara cardunculus L. Leaves.

    PubMed

    de Faria, Emanuelle L P; do Carmo, Rafael S; Cláudio, Ana Filipa M; Freire, Carmen S R; Freire, Mara G; Silvestre, Armando J D

    2017-10-30

    In recent years a high demand for natural ingredients with nutraceutical properties has been witnessed, for which the development of more environmentally-friendly and cost-efficient extraction solvents and methods play a primary role. In this perspective, in this work, the application of deep eutectic solvents (DES), composed of quaternary ammonium salts and organic acids, as alternative solvents for the extraction of cynaropicrin from Cynara cardunculus L. leaves was studied. After selecting the most promising DES, their aqueous solutions were investigated, allowing to obtain a maximum cynaropicrin extraction yield of 6.20 wt %, using 70 wt % of water. The sustainability of the extraction process was further optimized by carrying out several extraction cycles, reusing either the biomass or the aqueous solutions of DES. A maximum cynaropicrin extraction yield of 7.76 wt % by reusing the solvent, and of 8.96 wt % by reusing the biomass, have been obtained. Taking advantage of the cynaropicrin solubility limit in aqueous solutions, water was added as an anti-solvent, allowing to recover 73.6 wt % of the extracted cynaropicrin. This work demonstrates the potential of aqueous solutions of DES for the extraction of value-added compounds from biomass and the possible recovery of both the target compounds and solvents.

  5. Comparison of extraction techniques and modeling of accelerated solvent extraction for the authentication of natural vanilla flavors.

    PubMed

    Cicchetti, Esmeralda; Chaintreau, Alain

    2009-06-01

    Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.

  6. Ultrasonic-assisted extraction of essential oil from Botryophora geniculate using different extracting solvents

    NASA Astrophysics Data System (ADS)

    Habibullah, Wilfred, Cecilia Devi

    2016-11-01

    This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.

  7. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil.

    PubMed

    Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro

    2018-04-15

    A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOEpatents

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  9. Solvent extraction of diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.

    1984-07-24

    There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.

  10. Improved Supercritical-Solvent Extraction of Coal

    NASA Technical Reports Server (NTRS)

    Compton, L.

    1982-01-01

    Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.

  11. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Solvent extraction process for citric acid. 173.280... extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  12. OZONE CONTACTOR FLOW VISUALIZATION AND CHARACTERIZATION USING 3-DIMENSIONAL LASER INDUCED FLUORESCENCE

    EPA Science Inventory

    Hydrodynamics of ozone contactors have a crucial impact on efficient inactivation of pathogens such as Cryptosporidium as well as control of disinfection byproducts such as bromate. Improper mixing behaviors including short-circuiting, internal recirculation and presence...

  13. Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide.

    PubMed

    Li, Hui; Hu, Jiangyu; Ouyang, Hui; Li, Yanan; Shi, Hui; Ma, Chengjin; Zhang, Yongkang

    2009-01-01

    Supercritical CO2 was used as solvent for the extraction of aucubin from the seeds of Eucommia ulmoides Oliv. The co-solvent composition was tested and extraction conditions were optimized. Results showed that the best co-solvent was a water-ethanol mixture (1 + 3, v/v), and the highest yield was obtained when the extraction was performed under 26 MPa at extraction and separation temperatures of 55 and 30 degrees C for 120 min, using 6 mL co-solvent/g material at a CO2 flow rate of 20 L/h. In a comparison of the supercritical CO2 and Soxhlet extraction methods, the Soxhlet method needed 3 h to extract 10 g material, whereas the supercritical CO2 extraction technique needed only 2 h to extract 100 g material, thus showing a high extraction capability. The supercritical CO2 extraction produced a higher yield, with a lower cost for the extraction. Owing to the advantages of low extraction temperature, high yield, and ease of separating the product from the solvent, supercritical CO2 extraction is likely to be developed into an ideal technique for the extraction of aucubin, a compound with thermal instability, from the seeds of this plant.

  14. Process for solvent refining of coal using a denitrogenated and dephenolated solvent

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1984-01-01

    A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

  15. Use of normal propyl bromide solvents for extraction and recovery of asphalt cements

    DOT National Transportation Integrated Search

    2000-11-01

    Four normal propyl bromide (nPB) solvents were evaluated for use as chlorinated solvent replacements in typical hot mix asphalt (HMA) extraction and recovery processes. The experimental design included one method of extraction (centrifuge), one metho...

  16. Semiautomated solid-phase extraction manifold with a solvent-level sensor.

    PubMed

    Orlando, R M; Rath, S; Rohwedder, J J R

    2013-11-15

    A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system.

    PubMed

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-11-01

    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  18. Plasma contactor research, 1990

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1991-01-01

    Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.

  19. Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion

    NASA Astrophysics Data System (ADS)

    Xie, Kan; Martinez, Rafael A.; Williams, John D.

    2014-04-01

    This paper focuses on the net electron-emission current as a function of bias voltage of a plasma source that is being used as the cathodic element in a bare electrodynamic tether system. An analysis is made that enables an understanding of the basic issues determining the current-voltage (C-V) behaviour. This is important for the efficiency of the electrodynamic tether and for low impedance performance without relying on the properties of space plasma for varying orbital altitudes, inclinations, day-night cycles or the position of the plasma contactor relative to the wake of the spacecraft. The cathodic plasma contactor considered has a cylindrical discharge chamber (10 cm in diameter and ˜11 cm in length) and is driven by a hollow cathode. Experiments and a 1D spherical model are both used to study the contactor's C-V curves. The experiments demonstrate how the cathodic contactor would emit electrons into space for anode voltages in the range of 25-40 V, discharge currents in the range of 1-2.5 A, and low xenon gas flows of 2-4 sccm. Plasma properties are measured and compared with (3 A) and without net electron emission. A study of the dependence of relevant parameters found that the C-V behaviour strongly depends on electron temperature, initial ion energy and ion emission current at the contactor exit. However, it depended only weakly on ambient plasma density. The error in the developed model compared with the experimental C-V curves is within 5% at low electron-emission currents (0-2 A). The external ionization processes and high ion production rate caused by the discharge chamber, which dominate the C-V behaviour at electron-emission currents over 2 A, are further highlighted and discussed.

  20. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas–liquid membrane contactor system

    PubMed Central

    Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-01-01

    The wetting of hollow fibre membranes decreases the performance of the liquid–gas membrane contactor for CO2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid–gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO2 concentration of 4.44 mg ml−1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid–gas membrane absorption. PMID:29291117

  1. Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Jon H.; Colburn, Heather A.

    2009-10-29

    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol inmore » pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.« less

  2. Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers.

    PubMed

    Ahmad, Iqbal; Sabah, Arif; Anwar, Zubair; Arif, Aysha; Arsalan, Adeel; Qadeer, Kiran

    2017-01-01

    A study of the extraction of polymeric material and dyes from the pharmaceutical plastic containers using various organic solvents was conducted to evaluate the effect of polarity on the extraction process. The plastic containers used included semi-opaque, opaque, transparent and amber colored and the solvent used were acetonitrile, methanol, ethanol, acetone, dichloroethane, chloroform and water. The determination of extractable material was carried out by gravimetric and spectrometric methods. The yield of extractable materials from containers in 60 h was 0.10-1.29% (w/w) and the first-order rate constant (kobs) for the extraction of polymeric material ranged from 0.52-1.50 × 10-3 min -1 and for the dyes 6.43- 6.74 x10-3min-1. The values of (k obs ) were found to be an inverse function of solvent dielectric constant and decreased linearly with the solvent acceptor number. The extractable polymeric materials exhibited absorption in the 200-400 nm region and the dyes in the 300-500nm region. The rates of extraction of polymeric material and dyes from plastic containers were dependent on the solvent dielectric constant. The solvents of low polarity were more effective in the extraction of material indicating that the extracted material were of low polarity or have non-polar character. The dyes were soluble in acetone and chloroform. No plastic material was found to be extracted from the containers in aqueous solution.

  3. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies).

    PubMed

    Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo

    2004-06-17

    A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.

  4. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    PubMed Central

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830

  5. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    PubMed

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  6. Modeling Cryptosporidium spp. Oocyst Inactivation in Bubble-Diffuser Ozone Contactors

    DTIC Science & Technology

    1998-07-01

    requirements for Giardia lamblia (G. lamblia) and viruses under the Surface Water Treatment Rule (SWTR). Minimum CT requirements include relatively...parvum and C. muris ) oocysts in ozone bubble-diffuser contactors. The model is calibrated with semi-batch kinetic data, verified with pilot-scale

  7. SOLVENT EXTRACTION OF URANIUM VALUES

    DOEpatents

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  8. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool.

    PubMed

    Mansour, Fotouh R; Danielson, Neil D

    2017-08-01

    Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Extraction of vitexin from binahong (Anredera cordifolia (Ten.) Steenis) leaves using betaine - 1,4 butanediol natural deep eutectic solvent (NADES)

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Muhammad, Fajri; Krisanti, Elsa

    2017-03-01

    The leaves of binahong (Anredera cordifolia (Ten) Steenis) contain flavonoids as bioactive substances that have efficacy to treat wounds and diseases caused by bacteria. One of the flavonoids contained in the leaves is 8-glucopyranosyl-4'5'7-trihydroxyflavone or vitexin. Conventional extraction of flavonoids from leaves of binahong has been developed and usually using non-friendly organic solvent. To overcome these problems, a Natural Deep Eutectic Solvent (NADES) is used to replace the conventional organic solvents, as it is an environmentally friendly, non-toxic and high boiling point solvent. In this study, a betaine-based NADES combined with 1,4-butanediol in 1:3 mole ratio was used as the extraction solvent. Vitexin in the extract was analyzed qualitatively and quantitatively using an HPLC. The extraction of vitexin from binahong leaves at room temperature (27 °C) for four hours give yield of 46 ppm, much lower than 200 ppm yield obtained after extraction at 55 °C for 90 minutes. This results showed that (a) NADES consisting of betaine and 1,4 butanediol is a promising green solvent for extraction of vitexin from binahong leaves, and, (b) the extraction can be performed above ambient temperature, as long as it does not exceed the degradation temperature of the bioactive compound extracted.

  10. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  11. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  12. Process for the removal of impurities from combustion fullerenes

    DOEpatents

    Alford, J. Michael; Bolskar, Robert

    2005-08-02

    The invention generally relates to purification of carbon nanomaterials, particularly fullerenes, by removal of PAHs and other hydrocarbon impurities. The inventive process involves extracting a sample containing carbon nanomaterials with a solvent in which the PAHs are substantially soluble but in which the carbon nanomaterials are not substantially soluble. The sample can be repeatedly or continuously extracted with one or more solvents to remove a greater amount of impurities. Preferred solvents include ethanol, diethyl ether, and acetone. The invention also provides a process for efficiently separating solvent extractable fullerenes from samples containing fullerenes and PAHs wherein the sample is extracted with a solvent in which both fullerenes and PAHs are substantially soluble and the sample extract then undergoes selective extraction to remove PAHs. Suitable solvents in which both fullerenes and PAHs are soluble include o-xylene, toluene, and o-dichlorobenzene. The purification process is capable of treating quantities of combustion soot in excess of one kilogram and can produce fullerenes or fullerenic soot of suitable purity for many applications.

  13. Extraction of Illegal Dyes from Red Chili Peppers with Cholinium-Based Deep Eutectic Solvents

    PubMed Central

    Zhu, Shuqiang; Zhu, Xinyue; Su, Along

    2017-01-01

    Deep eutectic solvents (DESs) as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD) DES for the extraction of chrysoidine G (COG), astrazon orange G (AOG), and astrazon orange R (AOR) in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v); the ratio of sample/DES, 1 : 10 (g/mL); extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL) were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods. PMID:28831327

  14. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy.

    PubMed

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-03-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability.

  15. Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii.

    PubMed

    Das, Arun Kumar; Sharma, Mukesh; Mondal, Dibyendu; Prasad, Kamalesh

    2016-01-20

    Three different deep eutectic solvents (DESs) prepared by the complexation of choline chloride with urea, ethylene glycol and glycerol along with their hydrated counterparts were used for the selective extraction of κ-carrageenan from Kappaphycus alvarezii. Upon comparison of the quality of the polysaccharide with the one obtained using water as extraction media as well as the one extracted using widely practiced conventional method, it was found that, the physicochemical as well as rheological properties of κ-carrageenan obtained using DESs as solvents was at par to the one obtained using conventional method and was superior in quality when compared to κ-carrageenan obtained using water as solvent. Considering the tedious nature of the extraction method employed in conventional extraction process, the DESs can be considered as suitable alternative solvents for the facile extraction of the polysaccharide directly from the seaweed. However, among the hydrated and non-hydrated DESs, the hydrated ones were found to be more effective in comparison to their non-hydrated counterparts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.

    PubMed

    Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos

    2017-01-01

    The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Using 3D LIF to Investigate and Improve Performance of a Multichamber Ozone Contactor

    EPA Science Inventory

    Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze hydrodynamics and mixing in a multi-chamber ozone contactor, the most widely used design for water disinfection. The results suggested that the mixing was characterized by ext...

  18. The Impact of Temperature on the Performance of Anaerobic Biological Treatment of Perchlorate in Drinking Water

    EPA Science Inventory

    A 20 month pilot-scale study was conducted to examine the impact of temperature on the performance of an anaerobic biological contactor used to treat perchlorate-contaminated water. The contactor was successfully acclimated with indigenous microorganisms. Influent temperatures ...

  19. Solvent extraction of gold using ionic liquid based process

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  20. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS

    DOEpatents

    Rainey, R.H.; Moore, J.G.

    1962-08-14

    A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

  2. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  3. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  4. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    PubMed Central

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  5. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil.

    PubMed

    Mahindrakar, A N; Chandra, S; Shinde, L P

    2014-01-01

    Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ionic liquid solutions as extractive solvents for value-added compounds from biomass

    PubMed Central

    Passos, Helena; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid–liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass–solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed. PMID:25516718

  7. Ionic liquid solutions as extractive solvents for value-added compounds from biomass.

    PubMed

    Passos, Helena; Freire, Mara G; Coutinho, João A P

    2014-12-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.

  8. Method of infusion extraction

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1989-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  9. 78 FR 8058 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... torque values of nuts on circuit breakers, contactors, and terminal blocks of the electrical power center... loose nuts, which could result in arcing and potentially an onboard fire, possibly resulting in damage... were issued, several operators reported finding loose nuts on contactors in the EPC of Fokker 50/60...

  10. 77 FR 36206 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... experienced smoke and heat damage from insulation blankets that smoldered after molten debris from a P200 ELMS power panel fell on the insulation blankets. When a contactor in the ELMS panel fails and overheats, the... ELMS contactor breakdown, consequent smoke and heat damage to airplane structure and equipment during...

  11. 77 FR 16486 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... values of nuts on circuit breakers, contactors and terminal blocks of the EPC and battery relay panel... battery relay panel]. The required actions include doing a general visual inspection to determine if... and circuit breakers, contactors, and terminal blocks of the EPC and battery relay panel, as...

  12. Continuous extraction of organic materials from water

    USGS Publications Warehouse

    Goldberg, M.C.; DeLong, L.; Kahn, L.

    1971-01-01

    A continuous liquid solvent extractor, designed to utilize organic solvents that are heavier than water, is described. The extractor is capable of handling input rates up to 2 liters per hour and has a 500-ml. extractant capacity. Extraction efficiency is dependent upon the p-value, the two solvent ratios, rate of flow of the aqueous phase, and rate of reflux of the organic phase. Extractors can be serially coupled to increase extraction efficiency and, when coupled with a lighter-than-water extractor, the system will allow the use of any immiscible solvent.

  13. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOEpatents

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  14. Microwave-assisted extraction (MAE) of bioactive saponin from mahogany seed (Swietenia mahogany Jacq)

    NASA Astrophysics Data System (ADS)

    Waziiroh, E.; Harijono; Kamilia, K.

    2018-03-01

    Mahogany is frequently used for medicines for cancer, tumor, and diabetes, as it contains saponin and flavonoid. Saponin is a complex glycosydic compound consisted of triterpenoids or steroids. Saponin can be extracted from a plant by using a solvent extraction. Microwave Assisted Extraction (MAE) is a non-conventional extraction method that use micro waves in the process. This research was conducted by a Complete Random Design with two factors which were extraction time (120, 150, and 180 seconds) and solvent ratio (10:1, 15:1, and 20:1 v/w). The best treatment of MAE were the solvent ratio 15:1 (v/w) for 180 seconds. The best treatment resulting crude saponin extract yield of 41.46%, containing 11.53% total saponins, and 49.17% of antioxidant activity. Meanwhile, the treatment of maceration method were the solvent ratio 20:1 (v/w) for 48 hours resulting 39.86% yield of saponin crude extract, 9.26% total saponins and 56.23% of antioxidant activity. The results showed MAE was more efficient (less time of extraction and solvent amount) than maceration method.

  15. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction.

    PubMed

    Vahidi, Ehsan; Zhao, Fu

    2017-12-01

    Over the past decade, Rare Earth Elements (REEs) have gained special interests due to their significance in many industrial applications, especially those related to clean energy. While REEs production is known to cause damage to the ecosystem, only a handful of Life Cycle Assessment (LCA) investigations have been conducted in recent years, mainly due to lack of data and information. This is especially true for the solvent extraction separation of REEs from aqueous solution which is a challenging step in the REEs production route. In the current investigation, an LCA is carried out on a typical REE solvent extraction process using P204/kerosene and the energy/material flows and emissions data were collected from two different solvent extraction facilities in Inner Mongolia and Fujian provinces in China. In order to develop life cycle inventories, Ecoinvent 3 and SimaPro 8 software together with energy/mass stoichiometry and balance were utilized. TRACI and ILCD were applied as impact assessment tools and LCA outcomes were employed to examine and determine ecological burdens of the REEs solvent extraction operation. Based on the results, in comparison with the production of generic organic solvent in the Ecoinvent dataset, P204 production has greater burdens on all TRACI impact categories. However, due to the small amount of consumption, the contribution of P204 remains minimal. Additionally, sodium hydroxide and hydrochloric acid are the two impactful chemicals on most environmental categories used in the solvent extraction operation. On average, the solvent extraction step accounts for 30% of the total environmental impacts associated with individual REOs. Finally, opportunities and challenges for an enhanced environmental performance of the REEs solvent extraction operation were investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy

    PubMed Central

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-01-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability. PMID:24804076

  17. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties.

    PubMed

    Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin

    2017-03-01

    Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size ( d =0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d =0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.

  19. Group extraction of organic compounds present in liquid samples

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor)

    1976-01-01

    An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

  20. EXTRACTION OF SEDIMENT-BOUND CHLORINATED ORGANIC COMPOUNDS: IMPLICATIONS ON FATE AND HAZARD ASSESSMENT. (R825513C007)

    EPA Science Inventory

    Five methods were used for the extraction of hexachlorobutadiene and chlorobenzenes from a contaminated estuarine sediment. The following extraction methods were used: Soxhlet extraction, sonication and solvent extraction, sequential solvent extraction, saponification and solv...

  1. Phenolic content and antioxidant activity of Hibiscus cannabinus L. seed extracts after sequential solvent extraction.

    PubMed

    Yusri, Noordin Mohd; Chan, Kim Wei; Iqbal, Shahid; Ismail, Maznah

    2012-10-25

    A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.

  2. Effects of pH changes in water-based solvents to isolate antibacterial activated extracts of natural products

    NASA Astrophysics Data System (ADS)

    Buang, Yohanes; Suwari, Ola, Antonius R. B.

    2017-12-01

    Effects of pH changes in solvents on isolation of antibacterial activities of natural product extracts were conducted in the present study. Sarang semut (M. pendens) tubers as the model material for the study was considered to be the strategic resource of natural products based on its biochemical and therapeutical effects. The water with pH 5, 7, 9, and 13 was used as the solvents. The antibacterial activities of the resulted extracts indicated that higher the working pH, higher activities of the resulted extracts. The extent activities of the resulted extracts followed the increasing pH of the maceration system. The study also found that higher pH of the working solvent, higher the amounts of the antibacterial extracts isolated from the sample matrix of the natural product. The higher pH of the water solvents plays essential roles to promote the antibacterial activities of the natural product extracts from M. pendens tubers.

  3. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae).

    PubMed

    Barrera Vázquez, M F; Comini, L R; Martini, R E; Núñez Montoya, S C; Bottini, S; Cabrera, J L

    2014-03-01

    This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Organosolv extraction of lignin from hydrolyzed almond shells and application of the delta-value theory.

    PubMed

    Quesada-Medina, Joaquín; López-Cremades, Francisco Javier; Olivares-Carrillo, Pilar

    2010-11-01

    The solubility of lignin from hydrolyzed almond (Prunus amygdalus) shells in different acetone, ethanol and dioxane-water mixtures and conditions (extraction time and temperature) was studied. The concept of the solubility parameter (delta-value) was applied to explain the effect of organic solvent concentration on lignin solubility. The organic solvent-water mixture that led to the highest lignin extraction was composed of a 75% vol. of organic solvent for all the solvent series investigated (acetone, ethanol and dioxane). Moreover, the best lignin extraction conditions were a temperature of 210 degrees C and an extraction time of 40 min for the acetone and ethanol series, and 25 min for the dioxane series. The delta-value of the hydrolyzed almond shell lignin [14.60 (cal/cm(3))(1/2)] and that of the organic solvent-water mixtures was calculated. The experimental delignification capacity of the aqueous organic solvents clearly reflected the proximity of their delta-value to that of lignin. The hydrogen-bonding capacity of the solvent-water mixtures was also taken into account. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  6. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  7. Extended residence time centrifugal contactor design modification and centrifugal contactor vane plate valving apparatus for extending mixing zone residence time

    DOEpatents

    Wardle, Kent E.

    2017-06-06

    The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.

  8. Hybrid Direct-Current Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)

    2017-01-01

    A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.

  9. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  10. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.

  11. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    PubMed

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains.

    PubMed

    Setyaningsih, W; Saputro, I E; Palma, M; Barroso, C G

    2015-02-15

    A new microwave-assisted extraction (MAE) method has been investigated for the extraction of phenolic compounds from rice grains. The experimental conditions studied included temperature (125-175°C), microwave power (500-1000W), time (5-15min), solvent (10-90% EtOAc in MeOH) and solvent-to-sample ratio (10:1 to 20:1). The extraction variables were optimised by the response surface methodology. Extraction temperature and solvent were found to have a highly significant effect on the response value (p<0.0005) and the extraction time also had a significant effect (p<0.05). The optimised MAE conditions were as follows: extraction temperature 185°C, microwave power 1000W, extraction time 20min, solvent 100% MeOH, and solvent-to-sample ratio 10:1. The developed method had a high precision (in terms of CV: 5.3% for repeatability and 5.5% for intermediate precision). Finally, the new method was applied to real samples in order to investigate the presence of phenolic compounds in a wide variety of rice grains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    PubMed Central

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  14. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  15. INACTIVATION OF CRYPTOSPORIDIUM OOCYSTS IN A PILOT-SCALE OZONE BUBBLE-DIFFUSER CONTACTOR - II: MODEL VALIDATION AND APPLICATION

    EPA Science Inventory

    The ADR model developed in Part I of this study was successfully validated with experimenta data obtained for the inactivation of C. parvum and C. muris oocysts with a pilot-scale ozone-bubble diffuser contactor operated with treated Ohio River water. Kinetic parameters, required...

  16. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; hide

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

  17. 78 FR 56601 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... torque values of nuts on circuit breakers, contactors, and terminal blocks of the EPC and battery relay... blocks of the EPC and battery relay panel, as applicable; and do all applicable adjustments of the torque... contacts and nuts on circuit breakers, contactors, and terminal blocks of the EPC and battery relay panel...

  18. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  19. Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.

    PubMed

    Philpott, Matthew; Summers, Ian R

    2015-01-01

    Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.

  20. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.

    PubMed

    Naim, R; Ismail, A F

    2013-04-15

    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Functional Testing of the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-01-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  2. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  3. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wai Kit, E-mail: kekyeung@ust.hk; Joueet, Justine; Heng, Samuel

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface chargesmore » from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.« less

  4. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    PubMed

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of Feed Gas Flow Rate on CO2 Absorption through Super Hydrophobic Hollow Fiber membrane Contactor

    NASA Astrophysics Data System (ADS)

    Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian

    2018-03-01

    Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.

  6. Theory of plasma contactors in ground-based experiments and low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.

    1990-01-01

    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.

  7. Effect of Piper betle L. and its extracts on the growth and aflatoxin production by Aspergillus parasiticus.

    PubMed

    Chou, C C; Yu, R C

    1984-01-01

    Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.

  8. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems.

    PubMed

    Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal

    2018-02-13

    This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  9. Design and evaluation of hydraulic baffled-channel PAC contactor for taste and odor removal from drinking water supplies.

    PubMed

    Kim, Young-Il; Bae, Byung-Uk

    2007-05-01

    Based on the concept of hydraulic flocculator, a baffled-channel powdered activated carbon (PAC) contactor, placed before the rapid-mixing basin, was designed and evaluated for removal of taste and odor (T&O) in drinking water. PAC adsorption kinetic tests for raw water samples were conducted for selection of design parameters related to contact time and degree of mixing. Within the tested range of velocity gradient (G) from 18 to 83s(-1), mixing had a relatively minor effect on the adsorption kinetics of the PAC. The hydrodynamic characteristics of the pilot-scale horizontally and vertically baffled-channel PAC contactor were investigated by tracer tests. It was found that the plug flow fractions of vertically baffled-channel PAC contactor (vBPC) were higher than those of the horizontally baffled-channel PAC contactor (hBPC) for the same bend width or bend height. However, the hBPC seems to be more appropriate than the vBPC in terms of construction and maintenance. The geosmin and MIB removal rate increased with the number of baffles, PAC dose and contact time increased regardless of bend width in the pilot-scale hBPC. The pair of full-scale hBPCs at Pohang water treatment plant, having a design capacity of 6.5x10(4)m(3)/d with 20min of hydraulic retention time with a safety factor of 2, was designed based on lab- and pilot-scale experimental results. Under a velocity gradient of 20s(-1), the number of baffles to be installed was calculated to be 20 with a space of about 2m between each baffle, resulting in a hydraulic head loss through the contactor of about 0.056m. The successful application of hBPC for T&O removal from drinking water supplies should provide momentum for developing more effective treatment methods.

  10. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties

    PubMed Central

    Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin

    2017-01-01

    Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737

  11. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  12. Effect of various solvent on the specific amino acids of black soybean (Glycine soja) sprout

    NASA Astrophysics Data System (ADS)

    Kanetro, B.; Slamet, A.; Wazyka, A.

    2018-01-01

    The objective of this research was to study the effect of various solvent extractions on the specific amino acids as small peptide or free amino acids that was contained in the extract after removal of the macromolecule protein of black soybean sprouts. The experimental design of this research was randomized complete design with one factor, which was the three various solvent, i.e. hexane, ethanol and water. The black soybean seed was germinated for 36 h. The small peptide and free amino acids of black soybean sprout were isolated at 3 various of solvents extraction, and then the macromolecule proteins in the extracts were precipitated at the pH 4. The extracts of black soybean sprout after removal of the macromolecule protein were analysed by HPLC to determine the profile of amino acids for stimulation of insulin secretion. The result of this research showed that the extracts contained the small peptide and free amino acid for stimulation of insulin secretion. The best solvent extraction was water that was due to the content of Leu, Arg, Ala, Phe, Ile, and Lys of water extract was higher than hexane and ethanol extracts.

  13. Alternative and Efficient Extraction Methods for Marine-Derived Compounds

    PubMed Central

    Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B.

    2015-01-01

    Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered. PMID:26006714

  14. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    PubMed

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  15. Infusion Extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1988-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  16. An interesting two-phase solvent system and its use in preparative isolation of aconitines from aconite roots by counter-current chromatography.

    PubMed

    Han, Quan-Bin; Tang, Wai-Lun; Dong, Cai-Xia; Xu, Hong-Xi; Jiang, Zhi-Hong

    2013-04-01

    Two-phase solvent system plays crucial role in successful separation of organic compounds using counter-current chromatography (CCC). An interesting two-phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  18. Extraction of organic compounds with room temperature ionic liquids.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2010-04-16

    Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Effectiveness of Forestry Agency Personnel as Fire Prevention Contactors

    Treesearch

    M.L. Doolittle

    1980-01-01

    A major responsibility of county forest rangers in North Carolina is fire prevention. Personal contact with the public is essential to the successful performance of this function. A survey of 50 North Carolina rangers revealed that the degree of success for each ranger was directly related to the specific effort put forth as a contactor.

  20. Carbon Dioxide Absorption in a Membrane Contactor with Color Change

    ERIC Educational Resources Information Center

    Pantaleao, Ines; Portugal, Ana F.; Mendes, Adelio; Gabriel, Joaquim

    2010-01-01

    A pedagogical experiment is described to examine the physical absorption of gases, in this case carbon dioxide, in a hollow fiber membrane contactor (HFMC) where the absorption concentration profile can be followed by a color change. The HFMC is used to teach important concepts and can be used in interesting applications for students, such as…

  1. Process for enhancing the value of hydrocabonaceous natural recources

    DOEpatents

    Bunger, James W.; Cogswell, Donald E.

    2005-04-05

    A process for upgrading hydrocarbonaceous oil containing heteroatom-containing compounds where the hydrocarbonaceous oil is contacted with a solvent system that is a mixture of a major portion of a polar solvent having a dipole moment greater than about 1 debye and a minor portion of water to selectively separate the constituents of the carbonaceous oil into a heteroatom-depleted raffinate fraction and heteroatom-enriched extract fraction. The polar solvent and the water-in-solvent system are formulated at a ratio where the water is an antisolvent in an amount to inhibit solubility of heteroatom-containing compounds and the polar solvent in the raffinate, and to inhibit solubility of non-heteroatom-containing compounds in the extract. The ratio of the hydrocarbonaceous oil to the solvent system is such that a coefficient of separation is at least 50%. The coefficient of separation is the mole percent of heteroatom-containing compounds from the carbonaceous oil that are recovered in the extract fraction minus the mole percent of non-heteroatom-containing compounds from the carbonaceous oil that are recovered in the extract fraction. The solvent-free extract and the raffinate concentrates may be used directly or processed to make valuable petroleum, chemical or industrial products.

  2. Optimisation of the recovery of carotenoids from tomato processing wastes: application on textile dyeing and assessment of its antioxidant activity.

    PubMed

    Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk

    2017-01-01

    The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.

  3. MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.

    PubMed

    Quoc, Le Pham Tan; Muoi, Nguyen Van

    2016-01-01

    The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.

  4. Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea.

    PubMed

    Staneva, Jordanka; Todorova, Milka; Neykov, Neyko; Evstatieva, Ljuba

    2009-07-01

    This work deals with ultrasonically assisted extraction (UAE) of biologically active compounds from rhizomes of Rhodiola rosea, a popular medicinal plant. The influence of temperature, type of solvent and solid/solvent ratio on the yield of total extracts, total phenols and flavonoids was established. The best extraction of total phenols and flavonoids was achieved by using 50% aqueous EtOH and MeOH, respectively. Five times increase of solid/solvent ratio (from 1:20 to 1:100 (w/v)) leads to slow increase of the yield of total phenols and flavonoids. The extraction effectiveness of conventional maceration with 50% EtOH and UAE performed for 1 h at 25 degrees C using the same solvent with respect of total phenols was comparable.

  5. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid

    2013-01-01

    A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Analysis of polycyclic aromatic hydrocarbons in water and beverages using membrane-assisted solvent extraction in combination with large volume injection-gas chromatography-mass spectrometric detection.

    PubMed

    Rodil, Rosario; Schellin, Manuela; Popp, Peter

    2007-09-07

    Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.

  7. Reactive extraction at liquid-liquid systems

    NASA Astrophysics Data System (ADS)

    Wieszczycka, Karolina

    2018-01-01

    The chapter summarizes the state of knowledge about a metal transport in two-phase system. The first part of this review focuses on the distribution law and main factors determination in classical solvent extraction (solubility and polarity of the solute, as well as inter- and intramolecules interaction. Next part of the chapter is devoted to the reactive solvent extraction and the molecular modeling requiring knowledge on type of extractants, complexation mechanisms, metals ions speciation and oxidation during complexes forming, and other parameters that enable to understand the extraction process. Also the kinetic data that is needed for proper modeling, simulation and design of processes needed for critical separations are discussed. Extraction at liquid-solid system using solvent impregnated resins is partially identical as in the case of the corresponding solvent extraction, therefore this subject was also presented in all aspects of separation process (equilibrium, mechanism, kinetics).

  8. A survey of extraction solvents in the forensic analysis of textile dyes.

    PubMed

    Groves, Ethan; Palenik, Christopher S; Palenik, Skip

    2016-11-01

    The characterization and identification of dyes in fibers can be used to provide investigative leads and strengthen associations between known and questioned items of evidence. The isolation of a dye from its matrix (e.g., a textile fiber) permits detailed characterization, comparison and, in some cases, identification using methods such as thin layer chromatography in conjunction with infrared and Raman spectroscopy. A survey of dye extraction publications reveals that pyridine:water (4:3) is among the most commonly cited extraction solvent across a range of fiber and dye chemistries. Here, the efficacy of this solvent system has been evaluated for the extraction of dyes from 172 commercially prevalent North American textile dyes. The evaluated population represents seven dye application classes, 18 chemical classes, and spans nine types of commercial textile fibers. The results of this survey indicate that ∼82% of the dyestuffs studied are extractable using this solvent system. The results presented here summarize the extraction efficacy by class and fiber type and illustrate that this solvent system is applicable to a wider variety of classes and fibers than previously indicated in the literature. While there is no universal solvent for fiber extraction, these results demonstrate that pyridine:water represents an excellent first step for extracting unknown dyes from questioned fibers in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of the type and level of hydration of alcoholic solvents on the simultaneous extraction of oil and chlorogenic acids from sunflower seed press cake.

    PubMed

    Scharlack, Nayara K; Aracava, Keila K; Rodrigues, Christianne Ec

    2017-10-01

    The present study aimed to evaluate the replacement of hexane by alcoholic solvents in oil extraction from sunflower seed press cake. The use of ethanol and isopropanol has important advantages, including low toxicity and good operational safety. Thus, in the present study, solid-liquid extractions were performed in a single stage from 60 to 90 °C and in consecutive extractions in three stages at 90 °C. Solvent hydration negatively affected the extraction of oil but favored the extraction of chlorogenic acids (CAs), especially when ethanol was used. Regarding oxidative stability, the oils extracted using ethanol presented long induction times, which could be related to the high levels of not only CAs and tocopherols, but also phospholipids. Alcoholic solvents can be used for extraction to produce sunflower seed oil containing minor compounds that give it greater oxidative stability. In addition, the results obtained using hydrous ethanol showed that this solvent can yield defatted sunflower seed meal with a low content of CAs, enabling future use of the protein fraction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    PubMed

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  12. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef

    2015-09-04

    A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Study on ultrafine vibration extraction technology of Rhizoma Chuanxiong].

    PubMed

    Dai, Long

    2009-04-01

    To explore the best ultrafine vibration extraction technology of Rhizoma Chuanxiong. Using the content of ligustrazine hydrochloride and ferulic acid as determination indexes, quadrature test was used to choose extraction times, time, solvent amount and to compare with the result of conventional extraction technology. The best condition of the Rhizoma chuanxiong was with 90% ethanol of 4 times volume, extracting 2 times in 25 degrees C, 15 minutes each time. Comparing with conventional extraction technology, extraction time of UVET was 1/6, solvent amount was 4/7, the extraction rate of marker components was 1.19 and 1.09 times, respectivley. UVET can improve the extracting rate of effective constituents, reduce the time and solvent amount and be used in industrialization.

  14. High-efficient extraction of principal medicinal components from fresh Phellodendron bark (cortex phellodendri).

    PubMed

    Xu, Keqin; He, Gongxiu; Qin, Jieming; Cheng, Xuexiang; He, Hanjie; Zhang, Dangquan; Peng, Wanxi

    2018-05-01

    There are three key medicinal components (phellodendrine, berberine and palmatine) in the extracts of Phellodendron bark, as one of the fundamental herbs of traditional Chinese medicine. Different extraction methods and solvent combinations were investigated to obtain the optimal technologies for high-efficient extraction of these medicinal components. The results showed that combined solvents have higher extracting effect of phellodendrine, berberine and palmatine than single solvent, and the effect of ultrasonic extraction is distinctly better than those of distillation and soxhlet extraction. The hydrochloric acid/methanol-ultrasonic extraction has the best effect for three medicinal components of fresh Phellodendron bark, providing an extraction yield of 103.12 mg/g berberine, 24.41 mg/g phellodendrine, 1.25 mg/g palmatine.

  15. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment.

    PubMed

    Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Meyer, Melissa; Carter, Jason; Nowack, Kirk; Huang, Ching-Hua

    2017-01-01

    A pilot study employing two parallel trains of two-stage biofiltration, i.e., a sand/anthracite (SA) biofilter followed by a biologically-active granular activated carbon (GAC) contactor, was conducted to test the efficiency, feasibility and stability of biofiltration for removing natural organic matter (NOM) after coagulation in a drinking water treatment plant. Results showed the biofiltration process could effectively remove turbidity (<0.1 NTU in all effluents) and NOM (>24% of dissolved organic carbon (DOC), >57% of UV 254 , and >44% of SUVA 254 ), where the SA biofilters showed a strong capacity for turbidity removal, while the GAC contactors played the dominant role in NOM removal. The vertical profile of water quality in the GAC contactors indicated the middle-upper portion was the critical zone for the removal of NOM, where relatively higher adsorption and enhanced biological removal were afforded. Fluorescence excitation-emission matrix (EEM) analysis of NOM showed that the GAC contactors effectively decreased the content of humic-like component, while protein-like component was refractory for the biofiltration process. Nutrients (NH 4 -N and PO 4 -P) supplementation applied upstream of one of the two-stage biofiltration trains (called engineered biofiltration) stimulated the growth of microorganisms, and showed a modest effect on promoting the biological removal of small non-aromatic compositions in NOM. Redundancy analysis (RDA) indicated influent UV 254 was the most explanatory water quality parameter for GAC contactors' treatment performance, and a high load of UV 254 would result in significantly reduced removals of UV 254 and SUVA 254 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products.

    PubMed

    Bajkacz, Sylwia; Adamek, Jakub

    2017-06-01

    Natural deep eutectic solvents (NADESs) are considered to be new, safe solvents in green chemistry that can be widely used in many chemical processes such as extraction or synthesis. In this study, a simple extraction method based on NADES was used for the isolation of isoflavones (daidzin, genistin, genistein, daidzein) from soy products. Seventeen different NADES systems each including two or three components were tested. Multivariate data analysis revealed that NADES based on a 30% solution of choline chloride: citric acid (molar ratio of 1:1) are the most effective systems for the extraction of isoflavones from soy products. After extraction, the analytes were detected and quantified using ultra-high performance liquid chromatography with ultraviolet detection (UHPLC-UV). The proposed NADES extraction procedure achieved enrichment factors up to 598 for isoflavones and the recoveries of the analytes were in the range 64.7-99.2%. The developed NADES extraction procedure and UHPLC-UV determination method was successfully applied for the analysis of isoflavones in soy-containing food samples. The obtained results indicated that new natural deep eutectic solvents could be an alternative to traditional solvents for the extraction of isoflavones and can be used as sustainable and safe extraction media for another applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Infusion extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1986-01-01

    This invention relates to an apparatus and method of removing desirable constituents from an infusible material by infusion extraction. A piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber. The method is applicable to operation in low or micro-gravity environments.

  18. Ultrasound-assisted extraction of three bufadienolides from Chinese medicine ChanSu.

    PubMed

    Sun, Yinshi; Bi, Jianjie; Zhang, Li; Ye, Baoxing

    2012-11-01

    In this study, the application of ultrasound-assisted extraction (UAE) method was shown to be more efficient in extracting anti-tumor bufadienolides (bufalin, cinobufagin and resibufogenin) from important animal medicine of ChanSu than the maceration extraction (ME) and soxhlet extraction (SE) method. The effects of ultrasonic variables including extraction solvent, solvent concentration, solvent to solid ratio, ultrasound power, temperature, extraction time and particle size on the yields of three bufadienolides were investigated. The optimum extraction conditions found were: 70% (v/v) methanol solution, solvent to solid ratio of 10ml/g, ultrasound power of 125W, temperature of 20°C, extraction time of 20min and particle size of 60-80 mesh. The extraction yields of bufalin, cinobufagin and resibufogenin were 43.17±0.85, 52.58±1.12, 137.70±2.65mg/g, respectively. In order to achieve a similar yield as UAE, soxhlet extraction required 6h and maceration extraction required much longer time of 18h. The results indicated that UAE is an alternative method for extracting bufadienolides from ChanSu. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    EPA Science Inventory

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  20. AN EVALUATION OF SAMPLE DISPERSION MEDIAS USED WITH ACCELERATED SOLVENT EXTRACTION FOR THE EXTRACTION AND RECOVERY OF ARSENICALS FROM LFB AND DORM-2

    EPA Science Inventory

    An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means for extracting arsenicals from quality control (QC) samples and DORM-2 [standard reference material (SRM)]. Unlike conventional extraction procedures, the ASE requires that the sample be dispe...

  1. Integration issues of a plasma contactor Power Electronics Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  2. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples.

    PubMed

    Yang, Zhi; Wu, Youqian; Wu, Shihua

    2016-01-29

    Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A comparison of certain extracting agents for extraction of adenosine triphosphate (ATP) from microorganisms for use in the firefly luciferase ATP assay

    NASA Technical Reports Server (NTRS)

    Knust, E. A.; Chappelle, E. W.; Picciolo, G. L.

    1975-01-01

    Firefly luciferase ATP assay is used in clinical and industrial applications, such as determination of urinary infection levels, microbial susceptibility testing, and monitoring of yeast levels in beverages. Three categories of extractants were investigated for their extracting efficiency. They were ionizing organic solvents, nonionizing organic solvents, and inorganic acids. Dimethylsulfoxide and formamide represented the ionizing organic solvents, while n-butanol, chloroform, ethanol, acetone, and methylene chloride were used for the nonionizing organic solvents. Nitric acid and perchloric acid were chosen for the inorganic acids category. Pathogens were tested with each solvent. They included: Saccharomyces carlsbergensis, E. coli, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter species, Proteus mirabilis, Proteus vulgaris, Staphylococcus epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. These results are shown in graphic representations.

  4. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    DOEpatents

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  5. Optimisation of Croton gratissimus Oil Extraction by n-Hexane and Ethyl Acetate Using Response Surface Methodology.

    PubMed

    Jiyane, Phiwe Charles; Tumba, Kaniki; Musonge, Paul

    2018-04-01

    The extraction of oil from Croton gratissimus seeds was studied using the three-factor five-level full-factorial central composite rotatable design (CCRD) of the response surface methodology (RSM). The effect of the three factors selected, viz., extraction time, extraction temperature and solvent-to-feed ratio on the extraction oil yield was investigated when n-hexane and ethyl acetate were used as extraction solvents. The coefficients of determination (R 2 ) of the models developed were 0.98 for n-hexane extraction and 0.97 for ethyl acetate extraction. These results demonstrated that the models developed adequately represented the processes they described. From the optimized model, maximum extraction yield obtained from n-hexane and ethyl acetate extraction were 23.88% and 23.25%, respectively. In both cases the extraction temperature and solvent-to-feed ratio were 35°C and 5 mL/g, respectively. In n-hexane extraction the maximum conditions were reached only after 6 min whereas in ethyl acetate extraction it took 20 min to get the maximum extraction oil yield. Oil extraction of Croton gratissimus seeds, in this work, favoured the use of n-hexane as an extraction solvent as it offered higher oil yields at low temperatures and reduced residence times.

  6. Simulation of Voltage SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Li, Yi-Jin

    2010-06-01

    A three-dimensional finite element model for phase change random access memory is established to simulate electric, thermal and phase state distribution during (SET) operation. The model is applied to simulate the SET behaviors of the heater addition structure (HS) and the ring-type contact in the bottom electrode (RIB) structure. The simulation results indicate that the small bottom electrode contactor (BEC) is beneficial for heat efficiency and reliability in the HS cell, and the bottom electrode contactor with size Fx = 80 nm is a good choice for the RIB cell. Also shown is that the appropriate SET pulse time is 100 ns for the low power consumption and fast operation.

  7. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  8. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  9. Extraction of basil leaves (ocimum canum) oleoresin with ethyl acetate solvent by using soxhletation method

    NASA Astrophysics Data System (ADS)

    Tambun, R.; Purba, R. R. H.; Ginting, H. K.

    2017-09-01

    The goal of this research is to produce oleoresin from basil leaves (Ocimum canum) by using soxhletation method and ethyl acetate as solvent. Basil commonly used in culinary as fresh vegetables. Basil contains essential oils and oleoresin that are used as flavouring agent in food, in cosmetic and ingredient in traditional medicine. The extraction method commonly used to obtain oleoresin is maceration. The problem of this method is many solvents necessary and need time to extract the raw material. To resolve the problem and to produce more oleoresin, we use soxhletation method with a combination of extraction time and ratio from the material with a solvent. The analysis consists of yield, density, refractive index, and essential oil content. The best treatment of basil leaves oleoresin extraction is at ratio of material and solvent 1:6 (w / v) for 6 hours extraction time. In this condition, the yield of basil oleoresin is 20.152%, 0.9688 g/cm3 of density, 1.502 of refractive index, 15.77% of essential oil content, and the colour of oleoresin product is dark-green.

  10. RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION

    DOEpatents

    Moore, R.L.

    1959-09-01

    An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.

  11. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE PAGES

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene; ...

    2016-02-06

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  12. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  13. Extraction of three bioactive diterpenoids from Andrographis paniculata: effect of the extraction techniques on extract composition and quantification of three andrographolides using high-performance liquid chromatography.

    PubMed

    Kumar, Satyanshu; Dhanani, Tushar; Shah, Sonal

    2014-10-01

    Andrographis paniculata (Burm.f.) wall.ex Nees (Acanthaceae) or Kalmegh is an important medicinal plant finding uses in many Ayurvedic formulations. Diterpenoid compounds andrographolides (APs) are the main bioactive phytochemicals present in leaves and herbage of A. paniculata. The efficiency of supercritical fluid extraction (SFE) using carbon dioxide was compared with the solid-liquid extraction techniques such as solvent extraction, ultrasound-assisted solvent extraction and microwave-assisted solvent extraction with methanol, water and methanol-water as solvents. Also a rapid and validated reverse-phase high-performance liquid chromatography-diode array detection method was developed for the simultaneous determination of the three biologically active compounds, AP, neoandrographolide and andrograpanin, in the extracts of A. paniculata. Under the best SFE conditions tested for diterpenoids, which involved extraction at 60°C and 100 bar, the extractive efficiencies were 132 and 22 µg/g for AP and neoandrographolide, respectively. The modifier percentage significantly affected the extraction efficiency. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    PubMed

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2017-10-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient ( k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient ( k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  16. LC-MS determination of steroidal glycosides from Dioscorea deltoidea Wall cell suspension culture: Optimization of pre-LC-MS procedure parameters by Latin Square design.

    PubMed

    Sarvin, Boris; Fedorova, Elizaveta; Shpigun, Oleg; Titova, Maria; Nikitin, Mikhail; Kochkin, Dmitry; Rodin, Igor; Stavrianidi, Andrey

    2018-03-30

    In this paper, the ultrasound assisted extraction method for isolation of steroidal glycosides from D. deltoidea plant cell suspension culture with a subsequent HPLC-MS determination was developed. After the organic solvent was selected via a two-factor experiment the optimization via Latin Square 4 × 4 experimental design was carried out for the following parameters: extraction time, organic solvent concentration in extraction solution and the ratio of solvent to sample. It was also shown that the ultrasound assisted extraction method is not suitable for isolation of steroidal glycosides from the D. deltoidea plant material. The results were double-checked using the multiple successive extraction method and refluxing extraction. Optimal conditions for the extraction of steroidal glycosides by the ultrasound assisted extraction method were: extraction time, 60 min; acetonitrile (water) concentration in extraction solution, 50%; the ratio of solvent to sample, 400 mL/g. Also, the developed method was tested on D. deltoidea cell suspension cultures of different terms and conditions of cultivation. The completeness of the extraction was confirmed using the multiple successive extraction method. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Complex investigation of extraction techniques applied for cyclitols and sugars isolation from different species of Solidago genus.

    PubMed

    Ratiu, Ileana-Andreea; Al-Suod, Hossam; Ligor, Magdalena; Ligor, Tomasz; Railean-Plugaru, Viorica; Buszewski, Bogusław

    2018-03-15

    Cyclitols are phytochemicals naturally occurring in plant material, which attracted an increasing interest due to multiple medicinal attributes, among which the most important are the antidiabetic, antioxidant, and anticancer properties. Due to their valuable properties, sugars are used in the food industry as sweeteners, preservatives, texture modifiers, fermentation substrates, and flavoring and coloring agents. In this study, we report for the first time the quantitative analysis of sugars and cyclitols isolated from Solidago virgaurea L., which was used for the selection of the optimal solvent and extraction technique that can provide the best possible yield. Moreover, the quantities of sugars and cyclitols extracted from two other species, Solidago canadensis and Solidago gigantea, were investigated using the best extraction method and the most appropriate solvent. Comparative analysis of natural plant extracts obtained using five different techniques-maceration, Soxhlet extraction, pressurized liquid extraction, ultrasound-assisted extraction, and supercritical fluid extraction-was performed in order to decide the most suitable, efficient, and economically convenient extraction method. Three different solvents were used. Analysis of samples has been performed by solid-phase extraction for purification and pre-concentration, followed by derivation and GC-MS analysis. Highest efficiency for the total amount of obtained compounds has been reached by PLE, when water was used as a solvent. d-pinitol amount was almost similar for every solvent and for all the extraction techniques involved. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents.

    PubMed

    Wang, Tong; Jiao, Jiao; Gai, Qing-Yan; Wang, Peng; Guo, Na; Niu, Li-Li; Fu, Yu-Jie

    2017-10-25

    Nowadays, green extraction of bioactive compounds from medicinal plants has gained increasing attention. As green solvent, deep eutectic solvent (DES) have been highly rated to replace toxic organic solvents in extraction process. In present study, to simultaneous extraction five main bioactive compounds from fig leaves, DES was tailor-made. The tailor-made DES composed of a 3:3:3 molar ratio of glycerol, xylitol and D-(-)-Fructose showed enhanced extraction yields for five target compounds simultaneously compared with traditional methanol and non-tailor DESs. Then, the tailor-made DES based extraction methods have compared and microwave-assisted extraction was selected and optimized due to its high extraction yields with lower time consumption. The influencing parameters including extraction temperature, liquid-solid ratio, and extraction time were optimized using response surface methodology (RSM). Under optimal conditions the extraction yield of caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten was 6.482mg/g, 16.34mg/g, 5.207mg/g, 15.22mg/g and 2.475mg/g, respectively. Macroporous resin D101 has been used to recovery target compounds with recovery yields of 79.2%, 83.4%, 85.5%, 81.2% and 75.3% for caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten, respectively. The present study suggests that DESs are truly designer and efficient solvents and the method we developed was efficient and sustainable for extraction main compounds from Fig leaves.mg/g. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Green procedure with a green solvent for fats and oils' determination. Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation.

    PubMed

    Virot, Matthieu; Tomao, Valérie; Ginies, Christian; Visinoni, Franco; Chemat, Farid

    2008-07-04

    Here is described a green and original alternative procedure for fats and oils' determination in oleaginous seeds. Extractions were carried out using a by-product of the citrus industry as extraction solvent, namely d-limonene, instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using microwave energy: at first, extractions are attained using microwave-integrated Soxhlet, followed by the elimination of the solvent from the medium using a microwave Clevenger distillation in the second step. Oils extracted from olive seeds were compared with both conventional Soxhlet and microwave-integrated Soxhlet extraction procedures performed with n-hexane in terms of qualitative and quantitative determination. No significant difference was obtained between each extract allowing us to conclude that the proposed method is effective and valuable.

  20. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    NASA Astrophysics Data System (ADS)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  1. Process analysis and modeling of a single-step lutein extraction method for wet microalgae.

    PubMed

    Gong, Mengyue; Wang, Yuruihan; Bassi, Amarjeet

    2017-11-01

    Lutein is a commercial carotenoid with potential health benefits. Microalgae are alternative sources for the lutein production in comparison to conventional approaches using marigold flowers. In this study, a process analysis of a single-step simultaneous extraction, saponification, and primary purification process for free lutein production from wet microalgae biomass was carried out. The feasibility of binary solvent mixtures for wet biomass extraction was successfully demonstrated, and the extraction kinetics of lutein from chloroplast in microalgae were first evaluated. The effects of types of organic solvent, solvent polarity, cell disruption method, and alkali and solvent usage on lutein yields were examined. A mathematical model based on Fick's second law of diffusion was applied to model the experimental data. The mass transfer coefficients were used to estimate the extraction rates. The extraction rate was found more significantly related with alkali ratio to solvent than to biomass. The best conditions for extraction efficiency were found to be pre-treatment with ultrasonication at 0.5 s working cycle per second, react 0.5 h in 0.27 L/g solvent to biomass ratio, and 1:3 ether/ethanol (v/v) with 1.25 g KOH/L. The entire process can be controlled within 1 h and yield over 8 mg/g lutein, which is more economical for scale-up.

  2. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    PubMed

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents.

    PubMed

    Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae

    2016-02-19

    Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid)

    USGS Publications Warehouse

    Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.

    1997-01-01

    Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.

  5. Modified extraction procedure for gas-liquid chromatography applied to the identification of anaerobic bacteria.

    PubMed Central

    Thomann, W R; Hill, G B

    1986-01-01

    Chloroform and ether commonly are used as solvents to extract metabolic organic acids for analysis by gas-liquid chromatography in the identification of anaerobic bacteria. Because these solvents are potentially hazardous to personnel, modified extraction procedures involving the use of a safer solvent, methyl tert-butyl ether were developed which remained both simple to perform and effective for organism identification. PMID:3700623

  6. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  7. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels.

    PubMed

    Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani

    2015-11-15

    Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  9. Interdisciplinary Chemistry Experiment: An Environmentally Friendly Extraction of Lycopene

    ERIC Educational Resources Information Center

    Zhu, Jie; Zhang, Mingjie; Liu, Qingwei

    2008-01-01

    A novel experiment for the extraction of lycopene from tomato paste without the use of an organic solvent is described. The experiment employs polymer, green, and analytical chemistry. This environmentally friendly extraction is more efficient and requires less time than the traditional approach using an organic solvent. The extraction is…

  10. Multiple Solvent Extraction System with Flow Injection Technology.

    DTIC Science & Technology

    1981-09-30

    encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction

  11. A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane.

    PubMed

    Cascant, Mari Merce; Breil, Cassandra; Garrigues, Salvador; de la Guardia, Miguel; Fabiano-Tixier, Anne Silvie; Chemat, Farid

    2017-05-01

    There is a great interest in finding alternatives and green solvents in extraction processes to replace petroleum based solvents. In order to investigate these possibilities, computational methods, as Hansen solubility parameters (HSP) and conductor-like screening model for real solvent (COSMO-RS), were used in this work to predict the solvation power of a series of solvents in salmon fish lipids. Additionally, experimental studies were used to evaluate the performance in lipids extraction using 2-methyltetrahydrofurane, cyclopentyl methyl ether, dimethyl carbonate, isopropanol, ethanol, ethyl acetate, p-cymene and d-limonene compared with hexane. Lipid classes of extracts were obtained by using high performance thin-layer chromatography (HPTLC), whereas gas chromatography with a flame ionization detector (GC/FID) technique was employed to obtain fatty acid profiles. Some differences between theoretical and experimental results were observed, especially regarding the behavior of p-cymene and d-limonene, which separate from the predicted capability. Results obtained from HPTLC indicated that p-cymene and d-limonene extract triglycerides (TAGs) and diglycerides (DAGs) at levels of 73 and 19%, respectively, whereas the other studied extracts contain between 75 and 76% of TAGs and between 16 and 17% of DAGs. Fatty acid profiles, obtained by using GC-FID, indicated that saturated fatty acids (SFAs) between 19.5 and 19.9% of extracted oil, monounsaturated fatty acids (MUFAs) in the range between 43.5 and 44.9%, and PUFAs between 31.2 and 34.6% were extracted. p-Cymene and limonene extracts contained lower percentages than the other studied solvents of some PUFAs due probably to the fact that these unsaturated fatty acids are more susceptible to oxidative degradation than MUFAs. Ethyl acetate has been found to be the best alternative solvent to hexane for the extraction of salmon oil lipids. Graphical Abstract ᅟ.

  12. Systematic assessment of different solvents for the extraction of drugs of abuse and pharmaceuticals from an authentic hair pool.

    PubMed

    Madry, Milena M; Kraemer, Thomas; Baumgartner, Markus R

    2018-01-01

    Hair analysis has been established as a prevalent tool for retrospective drug monitoring. In this study, different extraction solvents for the determination of drugs of abuse and pharmaceuticals in hair were evaluated for their efficiency. A pool of authentic hair from drug users was used for extraction experiments. Hair was pulverized and extracted in triplicate with seven different solvents in a one- or two-step extraction. Three one- (methanol, acetonitrile, and acetonitrile/water) and four two-step extractions (methanol two-fold, methanol and methanol/acetonitrile/formate buffer, methanol and methanol/formate buffer, and methanol and methanol/hydrochloric acid) were tested under accurately equal experimental conditions. The extracts were directly analyzed by liquid chromatography-tandem mass spectrometry for opiates/opioids, stimulants, ketamine, selected benzodiazepines, antidepressants, antipsychotics, and antihistamines using deuterated internal standards. For most analytes, a two-step extraction with methanol did not significantly improve the yield compared to a one-step extraction with methanol. Extraction with acetonitrile alone was least efficient for most analytes. Extraction yields of acetonitrile/water, methanol and methanol/acetonitrile/formate buffer, and methanol and methanol/formate buffer were significantly higher compared to methanol. Highest efficiencies were obtained by a two-step extraction with methanol and methanol/hydrochloric acid, particularly for morphine, 6-monoacetylmorphine, codeine, 6-acetylcodeine, MDMA, zopiclone, zolpidem, amitriptyline, nortriptyline, citalopram, and doxylamine. For some analytes (e.g., tramadol, fluoxetine, sertraline), all extraction solvents, except for acetonitrile, were comparably efficient. There was no significant correlation between extraction efficiency with an acidic solvent and the pka or log P of the analyte. However, there was a significant trend for the extraction efficiency with acetonitrile to the log P of the analyte. The study demonstrates that the choice of extraction solvent has a strong impact on hair analysis outcomes. Therefore, validation protocols should include the evaluation of extraction efficiency of drugs by using authentic rather than spiked hair. Different extraction procedures may contribute to the scatter of quantitative results in inter-laboratory comparisons. Harmonization of extraction protocols is recommended, when interpretation is based on same cut-off levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions.

    PubMed

    Damm, Markus; Kappe, C Oliver

    2011-11-30

    A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5-1.5 mL at a maximum temperature/pressure limit of 200°C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC-MS or LC-MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141±11 μg caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90±11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90°C, 10 min). In multiple extraction experiments a total of ~150 μg caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee extracts and the headspace volatiles was performed, placing special emphasis on headspace analysis using solid-phase microextraction (SPME) techniques. The miniaturized parallel extraction technique introduced herein allows solvent extractions to be performed at significantly expanded temperature/pressure limits and shortened extraction times, using standard HPLC autosampler vials as reaction vessels. Remarkable differences regarding peak pattern and main peaks were observed when low-temperature extraction (60°C) and high-temperature extraction (160°C) are compared prior to headspace-SPME-GC-MS performed in the same HPLC/GC vials. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach.

    PubMed

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne; Kristensen, Kasper; Xiao, Langtao; Xu, Xuebing

    2011-08-26

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Microwave-assisted extraction of total bioactive saponin fraction from Gymnema sylvestre with reference to gymnemagenin: a potential biomarker.

    PubMed

    Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C

    2009-01-01

    To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Several extraction parameters such as microwave power, extraction time, solvent composition, pre-leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction. The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre-leaching time and 25 : 1 (mL/g) as the solvent-to-material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism. Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature.

  16. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benker, Dennis; Delmau, Laetitia Helene; Dryman, Joshua Cory

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results ofmore » tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.« less

  17. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction.

    PubMed

    Kang, Jae-Hyun; Kim, Suna; Moon, BoKyung

    2016-08-15

    In this study, we used response surface methodology (RSM) to optimize the extraction conditions for recovering lutein from paprika leaves using accelerated solvent extraction (ASE). The lutein content was quantitatively analyzed using a UPLC equipped with a BEH C18 column. A central composite design (CCD) was employed for experimental design to obtain the optimized combination of extraction temperature (°C), static time (min), and solvent (EtOH, %). The experimental data obtained from a twenty sample set were fitted to a second-order polynomial equation using multiple regression analysis. The adjusted coefficient of determination (R(2)) for the lutein extraction model was 0.9518, and the probability value (p=0.0000) demonstrated a high significance for the regression model. The optimum extraction conditions for lutein were temperature: 93.26°C, static time: 5 min, and solvent: 79.63% EtOH. Under these conditions, the predicted extraction yield of lutein was 232.60 μg/g. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ultrasound-Assisted Extraction of Stilbenes from Grape Canes.

    PubMed

    Piñeiro, Zulema; Marrufo-Curtido, Almudena; Serrano, Maria Jose; Palma, Miguel

    2016-06-16

    An analytical ultrasound-assisted extraction (UAE) method has been optimized and validated for the rapid extraction of stilbenes from grape canes. The influence of sample pre-treatment (oven or freeze-drying) and several extraction variables (solvent, sample-solvent ratio and extraction time between others) on the extraction process were analyzed. The new method allowed the main stilbenes in grape canes to be extracted in just 10 min, with an extraction temperature of 75 °C and 60% ethanol in water as the extraction solvent. Validation of the extraction method was based on analytical properties. The resulting RSDs (n = 5) for interday/intraday precision were less than 10%. Furthermore, the method was successfully applied in the analysis of 20 different grape cane samples. The result showed that grape cane byproducts are potentially sources of bioactive compounds of interest for pharmaceutical and food industries.

  19. Liquefaction process wherein solvents derived from the material liquefied and containing increased concentrations of donor species are employed

    DOEpatents

    Fant, B. T.; Miller, John D.; Ryan, D. F.

    1982-01-01

    An improved process for the liquefaction of solid carbonaceous materials wherein a solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material and wherein the solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.

  20. The measurement of U(VI) and Np(IV) mass transfer in a single stage centrifugal contactor

    NASA Astrophysics Data System (ADS)

    May, I.; Birkett, E. J.; Denniss, I. S.; Gaubert, E. T.; Jobson, M.

    2000-07-01

    BNFL currently operates two reprocessing plants for the conversion of spent nuclear fuel into uranium and plutonium products for fabrication into uranium oxide and mixed uranium and plutonium oxide (MOX) fuels. To safeguard the future commercial viability of this process, BNFL is developing novel single cycle flowsheets that can be operated in conjunction with intensified centrifugal contactors.

  1. Experiment on the treatment of waste extraction solvent from the molybdenum-99 process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien

    2013-07-01

    In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from themore » waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)« less

  2. Changes in total phenol, flavonoid contents and anti-Lactobacillus activity of Callisia fragrans due to extraction solvent

    NASA Astrophysics Data System (ADS)

    Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien

    2018-04-01

    Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.

  3. Assessment of Multiple Solvents for Extraction and Direct GC-MS Determination of the Phytochemical Inventory of Sansevieria Extrafoliar Nectar Droplets.

    PubMed

    Gaylor, Michael O; Juntunen, Hope L; Hazelwood, Donna; Videau, Patrick

    2018-04-01

    Considerable effort has been devoted to analytical determinations of sugar and amino acid constituents of plant nectars, with the primary aim of understanding their ecological roles, yet few studies have reported more exhaustive organic compound inventories of plant nectars or extrafoliar nectars. This work evaluated the efficacy of four solvents (ethyl acetate, dichloromethane, toluene and hexane) to extract the greatest number of organic compound classes and unique compounds from extrafoliar nectar drops produced by Sansevieria spp. Aggregation of the results from each solvent revealed that 240 unique compounds were extracted in total, with 42.5% of those detected in multiple extracts. Aliphatic hydrocarbons dominated in all but the ethyl acetate extracts, with 44 unique aliphatic hydrocarbons detected in dichloromethane (DCM) extracts, followed by 41, 19 and 8 in hexane, toluene and ethyl acetate extracts, respectively. Hexane extracted the most unique compounds (79), followed by DCM (73), ethyl acetate (56) and toluene (32). Integrated total ion chromatographic peak areas of extracted compound classes were positively correlated with numbers of unique compounds detected within those classes. In addition to demonstrating that multi-solvent extraction with direct GC-MS detection is a suitable analytical approach for determining secondary nectar constituents, to the best of our knowledge, this study also represents: (i) the first attempt to inventory the secondary phytochemical constituents of Sansevieria spp. extrafoliar nectar secretions and (ii) the largest organic solvent extractable compound inventory reported for any plant matrix to date.

  4. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    PubMed

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p < 0.05) on the %yield of SB, with R(2) - 0.8989 which showed good fitness of a second-order model. Based on this model, optima operating variables for the extraction process were established as: sample weight of 30.04 g, solvent volume of 346.04 ml and extraction time of 40 min, which gave 66.90 % yield of SB. Furthermore, the result of the physico-chemical properties obtained for the shea butter extracted using traditional method (SBT) showed that it is a more suitable raw material for food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  5. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  6. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  7. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale.

    PubMed

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-12-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  8. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale

    PubMed Central

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-01-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis. PMID:24688522

  9. Microwave-assisted extraction of polycyclic aromatic compounds from coal.

    PubMed

    Kerst, M; Andersson, J T

    2001-08-01

    Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.

  10. CHLORINATED SOLVENT CONTAMINATED SOILS AND GROUNDWATER: FIELD APPLICATION OF THE SOLVENT EXTRACTION RESIDUAL BIOTREATMENT TECHNOLOGY

    EPA Science Inventory

    A pilot scale demonstration of the Solvent Extraction Residual Biotreatment (SERB) technology was conducted at the former Sage's Dry Cleaner site in Jacksonville, FL. The SERB technology is a treatment train approach to complete site restoration, which combines an active in situ...

  11. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    PubMed

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  12. Microwave-assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb.

    PubMed

    Zhang, Fan; Yang, Yi; Su, Ping; Guo, Zhenku

    2009-01-01

    Euonymus alatus (Thunb.) has been used as one of traditional Chinese medicines for several thousand years. Conventional methods for the extraction of rutin and quercetin from E. alatus, including solvent extraction, Soxhlet extraction and heat reflux extraction are characterised by long extraction times and consumption of large amounts of solvents. To develop a simple and rapid method for the extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb using microwave-assisted extraction (MAE) technique. MAE experiments were performed with a multimode microwave extraction system. The experimental variables that affect the MAE process, such as the concentration of ethanol solution, extractant volume, microwave power and extraction time were optimised. Yields were determined by HPLC. The results were compared with that obtained by classical Soxhlet and ultrasonic-assisted extraction (UAE). From the optimised conditions for MAE of rutin and quercetin it can be concluded that the solvent is 50% ethanol (v/v) solution, the extractant volume is 40 mL, microwave power is 170 W and irradiation time is 6 min. Compared with Soxhlet extraction and ultrasonic extraction, microwave extraction is a rapid method with a higher yield and lower solvent consumption. The results showed that MAE can be used as an efficient and rapid method for the extraction of the active components from plants.

  13. Recovery of catechin compounds from Korean tea by solvent extraction.

    PubMed

    Row, Kyung Ho; Jin, Yinzhe

    2006-03-01

    Catechin compounds from Korean green tea as potential sources of anticancer and antioxidant components were target materials in this work. The methodologies of solvent extraction and partition were utilized to recover catechin compounds from green tea. The optimum experimental condition was obtained by optimizing operating factors, such as, the extraction solvent, extraction time and operating temperature. After extracting the green tea with water at 80 degrees C for 40 min, the extract was partitioned with water/chloroform, which was best suited to remove caffeine impurity from the extract. Further, the resulting extract was partitioned water/ethyl acetate to deeply purify the catechin compounds of EGC, EC, EGCG and ECG. The experimental result in this work could be extended to preparative HPLC to obtain EGCG on commercial scale.

  14. Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.

    Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less

  15. Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis

    DOE PAGES

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; ...

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts frommore » the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. In conclusion, diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.« less

  16. Fast automated dual-syringe based dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee

    2016-03-18

    An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID

    DOEpatents

    Bailes, R.H.; Long, R.S.

    1958-11-01

    > A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.

  18. Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Second semiannual technical progress report, April 1, 1993--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate,more » and transport an amine plant and dehydration plant. Accomplishment for this period are presented.« less

  19. SOLVENT EXTRACTION PROCESSES: A SURVEY OF SYSTEMS IN THE SITE PROGRAM

    EPA Science Inventory

    Solvent extraction of contaminated soils, sludges and sediments has been successfully completed at a number ofSuperfund sites. Each commercialized process uses a unique operating system to extract organic contaminants from solids. These operating systems may be classified by the ...

  20. Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system.

    PubMed

    Fei, Tao; Cazeneuve, Stacy; Wen, Zhiyou; Wu, Lei; Wang, Tong

    2016-05-01

    This work demonstrates a significant advance in bioprocessing for a high-melting lipid polymer. A novel and environmental friendly solvent mixture, acetone/ethanol/propylene carbonate (A/E/P, 1:1:1 v/v/v) was identified for extracting poly-hydroxybutyrate (PHB), a high-value biopolymer, from Cupriavidus necator. A set of solubility curves of PHB in various solvents was established. PHB recovery of 85% and purity of 92% were obtained from defatted dry biomass (DDB) using A/E/P. This solvent mixture is compatible with water, and from non-defatted wet biomass, PHB recovery of 83% and purity of 90% were achieved. Water and hexane were evaluated as anti-solvents to assist PHB precipitation, and hexane improved recovery of PHB from biomass to 92% and the purity to 93%. A scale-up extraction and separation reactor was designed, built and successfully tested. Properties of PHB recovered were not significantly affected by the extraction solvent and conditions, as shown by average molecular weight (1.4 × 10(6) ) and melting point (175.2°C) not being different from PHB extracted using chloroform. Therefore, this biorenewable solvent system was effective and versatile for extracting PHB biopolymers. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:678-685, 2016. © 2016 American Institute of Chemical Engineers.

  1. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters.

    PubMed

    Shirsath, S R; Sable, S S; Gaikwad, S G; Sonawane, S H; Saini, D R; Gogate, P R

    2017-09-01

    Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1h under optimized conditions of 35°C temperature, solid to solvent ratio of 1:25, particle size of 0.09mm, ultrasonic power of 250W and ultrasound frequency of 22kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8h of treatment. Peleg's model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction. Copyright © 2017. Published by Elsevier B.V.

  2. Comparative Analysis of the Properties of Acid-Base Indicator of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) Flowers

    PubMed Central

    Okoduwa, Stanley I. R.; Mbora, Lovina O.; Adu, Matthew E.; Adeyi, Ameh A.

    2015-01-01

    The need to develop effective alternative for synthetic indicators is the demand of present-day chemistry. The acid-base indicator properties of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) flowers were examined. Colour pigments were extracted from the flowers via cold and solvent extraction using soxhlet extractor. The pH value of the extracts with wavelengths of absorption was determined using ultraviolet spectrophotometer. From the results obtained, all the extracts exhibited sharp contrast between their colours in acid and base. Their pH was found to be 5.5 for cold extract of Rose and 5.6 for solvent extraction, 5.24 for cold extract of a Hibiscus and 6.52 for solvent extraction, 5.35 for cold extract of Allamanda, and 5.45 for solvent extraction. The maximum wavelengths of absorption obtained for all the extract fall within the visible region of electromagnetic spectrum. These values are almost similar to that obtained from synthetic indicators. It is on these bases that we concluded that natural indicators could be an excellent replacement for synthetic indicators since they are cheap, readily available, simple to extract, not toxic, user and environmentally friendly. PMID:26819757

  3. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    PubMed Central

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  4. LPS-induced NO inhibition and antioxidant activities of ethanol extracts and their solvent partitioned fractions from four brown seaweeds

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Lae; Lee, Dong-Jin; Lee, Hyi-Seung; Lee, Yeon-Ju; You, Sang Guan

    2013-12-01

    The nitric oxide inhibitory (NOI) and antioxidant (ABTS and DPPH radical scavenging effects with reducing power) activities of the ethanol (EtOH) extracts and solvent partitioned fractions from Scytosiphon lomentaria, Chorda filum, Agarum cribrosum, and Desmarestia viridis were investigated, and the correlation between biological activity and total phenolic (TP) and phlorotannin (TPT) content was determined by PCA analysis. The yield of EtOH extracts from four brown seaweeds ranged from 2.6 to 6.6% with the highest yield from D. viridis, and the predominant compounds in their solvent partitioned fractions had medium and/or less polarity. The TP and TPT content of the EtOH extracts were in the ranges of 25.0-44.1 mg GAE/g sample and 0.2-4.6 mg PG/g sample, respectively, which were mostly included in the organic solvent partitioned fractions. Strong NOI activity was observed in the EtOH extracts and their solvent partitioned fractions from D. viridis and C. filum. In addition, the EtOH extract and its solvent partitioned fractions of D. viridis exhibited little cytotoxicity to Raw 264.7 cells. The most potent ABTS and DPPH radical scavenging capacity was shown in the EtOH extracts and their solvent partitioned fractions from S. lomentaria and C. filum, and both also exhibited strong reducing ability. In the PCA analysis the content of TPT had a good correlation with DPPH ( r = 0.62), ABTS ( r = 0.69) and reducing power ( r = 0.65), however, an unfair correlation was observed between the contents of TP and TPT and NOI, suggesting that the phlorotannins might be responsible for the DPPH and ABTS radical scavenging activities.

  5. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    PubMed

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  6. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    PubMed

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  8. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less

  9. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    DOE PAGES

    Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani; ...

    2017-07-11

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less

  10. Impact of quality parameters on the recovery of putrescine and cadaverine in fish using methanol-hydrochloric acid solvent extraction.

    PubMed

    Richard, Nicole L; Pivarnik, Lori F; Ellis, P Christopher; Lee, Chong M

    2011-01-01

    Methanol (MeOH) extraction by AOAC Official Method 996.07 has resulted in low amine recoveries in fresh fish tissue. Addition of 25% 0.4 M HCl to the 75% methanol-water extraction solvent resulted in higher recoveries of putrescine and cadaverine. Average putrescine recovery increased from 55 to 92% in flounder, scup, bluefish, and salmon; from 92 to 98% in mackerel; and from 83 to 107% in processed mackerel. Average cadaverine recovery increased from 57 to 95% in flounder, scup, bluefish, and salmon; from 91 to 97% in mackerel; and from 92 to 108% in processed mackerel. Fish stored on ice for 12 days also showed differences between background concentrations determined with the two solvents. However, the values decreased with storage time, indicating that degradation of the protein matrix may cause more comparable measurements between the two solvents. However, consistently higher putrescine and cadaverine measurements were determined using MeOH-HCl. Although significant differences in the extraction of amines from the high-fat fish tissue were not seen between MeOH and MeOH-HCl, it would be ideal to have one solvent for biogenic amine extraction. This study confirms that MeOH-HCl is a better solvent for complete extraction and recovery of putrescine and cadaverine in fresh and processed fish tissues.

  11. Trace elements retained in washed nuclear fuel reprocessing solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.W.; MacMurdo, K.W.

    1979-09-01

    Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally /sup 106/Ru, /sup 129/I, /sup 3/H, /sup 235/U, and /sup 239/Pu. The /sup 129/I concentration was aboutmore » 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, /sup 129/I concentration varied from about 0.1 to 0.5 ppM. Both /sup 129/I and /sup 3/H appear to be in the organic solvent as a result of exchange with hydrogen.« less

  12. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae.

    PubMed

    Chen, Jue; Liu, Mengjun; Wang, Qi; Du, Huizhi; Zhang, Liwei

    2016-10-17

    Deep eutectic solvents (DESs) have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae . The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio) as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL -1 . The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes ( r ² > 0.9997 over two orders of magnitude), precision (intra-day relative standard deviation (RSD) < 2.49 and inter-day RSD < 2.96), and accuracy (recoveries ranging from 95.04% to 99.93%). The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.

  13. Application of enzyme-linked immunosorbent assay for measurement of polychlorinated biphenyls from hydrophobic solutions: Extracts of fish and dialysates of semipermeable membrane devices: Chapter 26

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Huckins, James N.; Petty, Jimmie D.; Potts, Michael E.; Nardone, David A.

    1996-01-01

    Determination of PCBs in biological tissue extracts by enzyme-linked immunosorbent assays (ELISAs) can be problematic, since the hydrophobic solvents used for their extraction and isolation from interfering biochemicals have limited compatibility with the polar solvents (e.g. methanol/water) and the immunochemical reagents used in ELISA. Our studies of these solvent effects indicate that significant errors can occur when microliter volumes of PCB containing extracts, in hydrophobic solvents, are diluted directly into methanol/water diluents. Errors include low recovery and excess variability among sub-samples taken from the same sample dilution. These errors are associated with inhomogeneity of the dilution, which is readily visualized by the use of a hydrophobic dye, Solvent Blue 35. Solvent Blue 35 is also used to visualize the evaporative removal of hydrophobic solvent and the dissolution of the resulting PCB/dye residue by pure methanol and 50% (v/v) methanol/water, typical ELISA diluents. Evaporative removal of isooctane by an ambient temperature nitrogen purge with subsequent dissolution in 100% methanol gives near quantitative recovery of model PCB congeners. We also compare concentrations of total PCBs from ELISA (ePCB) to their corresponding concentrations determined from capillary gas chromatography (GC) in selected fish sample extracts and dialysates of semipermeable membrane device (SPMD) passive samplers using an optimized solvent exchange procedure. Based on Aroclor 1254 calibrations, ePCBs (ng/mL) determined in fish extracts are positively correlated with total PCB concentrations (ng/mL) determined by GC: ePCB = 1.16 * total-cPCB - 5.92. Measured ePCBs (ng/3 SPMDs) were also positively correlated (r2 = 0.999) with PCB totals (ng/3 SPMDs) measured by GC for dialysates of SPMDs: ePCB = 1.52 * total PCB - 212. Therefore, this ELISA system for PCBs can be a rapid alternative to traditional GC analyses for determination of PCBs in extracts of biota or in SPMD dialysates.

  14. The influence of extractable organic matter on vitrinite reflectance suppression: A survey of kerogen and coal types

    USGS Publications Warehouse

    Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J.

    2007-01-01

    The vitrinite reflectance suppression literature shows that while bitumen impregnation of the vitrinite group is often invoked as a significant contributor to suppression, its existence is not often supported by petrological evidence. This study examines bitumen impregnation as a factor in vitrinite suppression by comparing the vitrinite reflectance of source rock and coal samples before and after solvent-extraction. Bitumen, often defined as organic matter soluble or extractable in certain organic solvents, should be removed by Soxhlet method solvent extraction using chloroform. Removing the extractable bitumen should restore the suppressed reflectance to its true higher value. However, the solvent extracted samples averaged 0.014% Rv less than that of the unextracted samples. We conclude from these results and from other published data that reflectance suppression by bitumen impregnation in the vitrinite maceral group, above the huminite stage of gelification, is seemingly a rare phenomenon and whose effect on suppressing vitrinite reflectance is typically negligible. ?? 2006.

  15. Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.

    PubMed

    Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin

    2016-03-01

    Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.

  16. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  17. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants

    PubMed Central

    Doppler, Maria; Kluger, Bernhard; Bueschl, Christoph; Schneider, Christina; Krska, Rudolf; Delcambre, Sylvie; Hiller, Karsten; Lemmens, Marc; Schuhmacher, Rainer

    2016-01-01

    The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v) mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v)), with and without the addition of 0.1% (v/v) formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem) and 57% (ear) of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone. PMID:27367667

  18. Unique reversibility in extraction mechanism of U compared to solvent extraction for sorption of U(VI) and Pu(IV) by a novel solvent impregnated resin containing trialkyl phosphine oxide functionalized ionic liquid.

    PubMed

    Paramanik, M; Panja, S; Dhami, P S; Yadav, J S; Kaushik, C P; Ghosh, S K

    2018-07-15

    Novel Solvent Impregnated Resin (SIR) material was prepared by impregnating a trialkyl phosphine oxide functionalized ionic liquid (IL) into an inert polymeric material XAD-7. A series of SIR materials were prepared by varying the IL quantity. Sorption of both U(VI) and Pu(IV) were found to increase with increasing IL concentration in SIR up to an optimum IL concentration of 435 mg g -1 of SIR beyond which no effect of IL concentration was observed. A change of mechanism of sorption for U(VI) by SIR was observed in comparison to solvent extraction. The dependency of U(VI) sorption with nitric acid concentration showed a reverse trend compared to solvent extraction studies while for Pu(IV) the trend remained same as observed with solvent extraction. Sorption of both the radionuclides was found to follow pseudo second order mechanism and Langmuir adsorption isotherm. Distribution co-efficient measurements on IL impregnated SIR showed highly selective sorption of U(VI) and Pu(IV) over other trivalent f-elements and fission products from nitric acid medium. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  20. REMOVAL OF PCBS FROM A CONTAMINATED SOIL USING CF-SYSTEMS SOLVENT EXTRACTION PROCESS

    EPA Science Inventory

    The US EPA's START team in cooperation with EPA's SITE program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquified propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducte...

  1. RESOURCES CONSERVATIONS COMPANY - B.E.S.T. SOLVENT EXTRACTION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This document is an evaluation of the performance of the Resources Conservation Company (RCC) Basic Extractive Sludge Treatment (B.E.S.T.®) solvent extraction technology and its applicability as a treatment technique for soils, sediments, and sludges contaminated with organics. B...

  2. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  3. Investigation of the pharmaceutical and pharmacological equivalence of different Hawthorn extracts.

    PubMed

    Vierling, W; Brand, N; Gaedcke, F; Sensch, K H; Schneider, E; Scholz, M

    2003-01-01

    Seven Hawthorn extracts were tested in isolated guinea pig aorta rings. The effect on noradrenaline- (10 microM) induced contraction was investigated. The extracts were prepared using ethanol (40 to 70% v/v), methanol (40 to 70% v/v), and water as the extraction solvents. The aqueous-alcoholic extracts displayed similar spectra of constituents. They were characterised by similar procyanidin, flavonoid, total vitexin and total phenols content and by similar TLC fingerprint chromatograms. The aqueous extract, however, showed a different fingerprint and a noticeably lower concentration of procyanidins, flavonoids and total phenols but a similar total vitexin content. All 7 extracts had a relaxant effect on the aorta precontracted by noradrenaline and led to relaxations to 44 until 29% of the initial values. The EC50 values of the aqueous-alcoholic extracts varied between 4.16 and 9.8 mg/l. The aqueous extract produced a similarly strong maximal relaxation as the other extracts, but the EC50, at 22.39 mg/l, was markedly higher. The results show that Hawthorn extracts with comparable quality profiles were obtained by using aqueous-alcoholic extraction solvents (40 to 70% ethanol or methanol). The extracts exerted comparable pharmacological effects. When using water as the extraction solvent, both, the spectrum of constituents and the pharmacological effect, deviated remarkably. It is thus possible to obtain bioequivalent extracts with comparable effect profiles by using 40 to 70% ethanol or methanol as the extraction solvent.

  4. Solvent Selection for Extraction of Neodymium Concentrates of Monazite Sand Processed Product

    NASA Astrophysics Data System (ADS)

    Setyadji, Moch; Purwani, MV

    2018-02-01

    The extraction of neodymium concentrates of monazite sand processed product has been done. The objective of this investigation was to determine the best solvent to separate Nd from Nd concentrate. As an aqueous phase was Nd(OH)3 concentrated in HNO3 and as solvent or the organic phase was trioctylamine (TOA). tryibuthyl phosphate (TBP). trioctylphosphine oxyde (TOPO) and di-ethyl hexyl phosphoric acid (D2EHPA) in kerosene. The investigated variables were HNO3 concentration. feed concentration. solvent concentration or solvent in kerosene. time and stirring speeds. From the investigation on the selection of solvent for the extraction of Nd(OH)3 concentrate with various solvents. it was concluded that the extraction of Nd could be carried out by using TBP or TOA. Extraction of Nd using TOA at the optimum HNO3 concentration of 2M. feed concentration of 5 gram/10 mL. TOA in kerosene concentration of 6 %. stirring time of 15 minutes. stirring speed of 200 rpm was chosen if the Y concentration in Nd concentrate is small. In these condition DNd obtained was 0.65; extraction efficiency of Nd (ENd)=37.10%. the concentrations of Nd2(C2O4)3 = 67.14%. Ce2(C2O4)3 = 1.79%. La2(C2O4)3 = 1.37% and Y2(C2O4)3 = 24.70%. Extraction of Nd using TBP at the optimum HNO3 concentration of 1M. feed concentration of 5 gram/10 m. the TBP concentration in kerosene of 15%. stirring time of 15 minutes and stirring speed of 200 rpm was chosen if the Ce concentration in Nd concentrate is small. In these condition DNd obtained was 0.20. extraction efficiency of Nd (ENd)=17%. concentration of Nd2(C2O4)3 = 70.84%. Ce2(C2O4)3=15.53%. La2(C2O4)3 = 0.00% and Y2(C2O4)3 = 8.63%.

  5. Baseline tests of the Zagato Elcar electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.; Maslowski, E. A.; Slavick, R. J.; Soltis, R. F.

    1977-01-01

    The Elcar vehicle performance test results are presented. The Elcar Model 2000 is a two-passenger vehicle with a reinforced fiberglass body. It is powered by eight 12-volt batteries. The batteries are connected to the motor through an arrangement of contactors operated from a foot pedal in conjunction with a hand-operated switch. These contactors change the voltage applied to the 2-kilowatt motor. Acceleration tests, operating characteristics, and instrumentation are described.

  6. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  7. An air-liquid contactor for large-scale capture of CO2 from air.

    PubMed

    Holmes, Geoffrey; Keith, David W

    2012-09-13

    We present a conceptually simple method for optimizing the design of a gas-liquid contactor for capture of carbon dioxide from ambient air, or 'air capture'. We apply the method to a slab geometry contactor that uses components, design and fabrication methods derived from cooling towers. We use mass transfer data appropriate for capture using a strong NaOH solution, combined with engineering and cost data derived from engineering studies performed by Carbon Engineering Ltd, and find that the total costs for air contacting alone-no regeneration-can be of the order of $60 per tonne CO(2). We analyse the reasons why our cost estimate diverges from that of other recent reports and conclude that the divergence arises from fundamental design choices rather than from differences in costing methodology. Finally, we review the technology risks and conclude that they can be readily addressed by prototype testing.

  8. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum).

    PubMed

    Kuźma, Paula; Drużyńska, Beata; Obiedziński, Mieczysław

    2014-01-01

    Parsley leaf is a rich source of natural antioxidants, which serve a lot of functions in human body and prevent food from oxidation processes. The aim of the study was to investigate the influence of different extraction solvents and times of extraction on natural antioxidants content. Owing to the knowledge of the properties of extracted components and solvents, as well as their interactions, it is possible to achieve a high effectiveness of active compounds recovery. Three different extraction solvents (acetone 70% in water, methanol 80% in water and distilled water) and different times of extraction (30 and 60 minutes) were used to determine the efficiency of extraction of polyphenols and catechins, antioxidant activity against free radicals DPPH and ABTS and the ability to chelate ion Fe(2+) in dried parsley leaves. Other natural antioxidants contents in parsley leaves were also determined. In this study the best extraction solvent for polyphenols was acetone 70% and for catechins was distilled water. All extracts examined displayed the antioxidative activity, but water was the best solvent in the method of assaying the activity against ABTS(•+) and Fe(2+) ions chelating capability, whereas methanol turned out to be the least effective in this respect. Opposite results were observed in the case of determining the activity against DPPH(•). The prolongation of the extraction time enhanced or decreased antiradical activity in some cases. Additionally, important biologically active compounds in parsley leaves, such as vitamin C (248.31 mg/100 g dry matter), carotenoids (31.28 mg/100 g dry matter), chlorophyll (0.185 mg/g dry matter) were also analysed.

  9. Effect of different solvents extracts and mode of action of Loktanella spp. Gb03 on toxic dinoflagellate

    NASA Astrophysics Data System (ADS)

    Hameed, Anmar; Usup, Gires; Ahmad, Asmat

    2016-11-01

    This study was aimed to evaluate the algicidal activity of Loktanella sp. Gb-03 bacterial extracts against toxic dinoflagellate, using various polar and non-polar solvents. For this purpose, six different solvent extracts were prepared (i.e. methanol, ethyl acetate, hexane, chloroform, acetonitrile and water). Ratio of 1:100 (v:v) (extract to dinoflagellate culture) of each extract was used for preliminary algicidal activity screening against toxic dinoflagellate Coolia malaynesis. Dinoflagellate cells at the stationary phase (1.0 × 103 cells/ mL) were treated with 1% (v/v) of each extract by using 24-well microplate. The plates were then incubated for 24 hours at dinoflagellate culture condition (under a light intensity of 140 µmol m-2s-1 and 12:12 hours light:dark photoperiod). The result of algicidal activity screening showed that all 6 extracts from Loktanella sp. Gb-03 had different ranges of algicidal activity against the toxic dinoflagellates. Ethyl acetate extract showed the highest activity against C. malaynesis and also other harmful dinoflagellate (Alexandrium sp. Alexandrium leei, Alexandrium affine, Alexandrium tamiyavanichi, Alexandrium tamarense, Gambierdiscus belizeanus, and Ostreopsis). This study was the first to explore the algicidal activity of Loktanella sp. Gb-03 extracts against toxic dinoflagellate with ethyl acetate as the best solvent to extract algicidal active compounds.

  10. Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction

    NASA Technical Reports Server (NTRS)

    Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

    2001-01-01

    Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

  11. Interlaboratory comparison of mutagenesis testing of coal fly ash derived from differenct coal conversion technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrisp, C.; Hobbs, C.; Clark, R.

    1979-01-01

    This experiment showed that mutagenicity of fly ash derived from different coal conversion technologies, as determined by the Ames plate incorporation test, was similar in all three laboratories. The differences in mutagenic activity of each fly ash between laboratories with different solvent extraction methods were no greater than one order of magnitude. In addition, there were much smaller, but still significant differences in mutagenic activity between laboratories when the same solvent extract of a particular fly ash was tested in each laboratory. There were also significant differences in mutagenicity of the positive control mutagen (maximum of fivefold) between laboratories. Becausemore » of this difference in Ames test sensitivity between laboratories, the influence of the solvent extraction methods on differences in mutagenicity was not clear. However, the data suggested that either there were significant differences in the degree of sensitivity of Ames tests for different complex mixtures within each laboratory, or else there were differences in mutagen extraction efficiency between different solvent extraction methods. Both Ames test sensitivity and solvent extraction may be important. Further work would be necessary to separate the contribution of these two factors. An important aspect of further work would be to separate the contribution of the innate sensitivity of substrains of Ames tester strains in each laboratory from the possible effects of differences in Ames testing methodology. This could be done by testing the same extracts of fly ash and positive control mutagens with substrains of tester strains exchanged between laboratories. This work also implies that caution should be exercised in assuming that the same solvent would have the same efficiency for extraction of mutagens from different fly ashes even within the same laboratory.« less

  12. Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties.

    PubMed

    Dorta, Eva; Lobo, M Gloria; Gonzalez, Monica

    2012-01-01

    Mango biowastes, obtained after processing, contain large amounts of compounds with antioxidant activity that can be reused to reduce their environmental impact. The present study evaluates the effect of solvent (methanol, ethanol, acetone, water, methanol:water [1:1], ethanol:water [1:1], and acetone:water [1:1]), and temperature (25, 50, and 75 °C) on the efficiency of the extraction of antioxidants from mango peel and seed. Among the factors optimized, extraction solvent was the most important. The solvents that best obtained extracts with high antioxidant capacity were methanol, methanol:water, ethanol:water, and acetone:water (β-carotene test, antioxidant activity coefficient 173 to 926; thiobarbituric acid reactive substances test, inhibition ratio 15% to 89%; 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid ABTS(·+); and 2,2-diphenyl-1-picrylhydrazyl DPPH· scavenging, 7 to 22 and 8 to 28 g trolox equivalent antioxidant capacity [TE] per 100 g mango biowaste on a dry matter basis [DW]). Similarly, the flavonoid (0.21 to 1.4 g (+)-catechin equivalents per 100 g DW), tannin (3.8 to 14 g tannic acid equivalents per 100 g DW), and proanthocyanidin (0.23 to 7.8 g leucoanthocyanidin equivalents per 100 g DW) content was highest in the peel extracts obtained with methanol, ethanol:water, or acetone:water and in the seed extracts obtained with methanol or acetone:water. From the perspective of food security, it is advisable to choose ethanol (which also has a notable antioxidant content), ethanol:water, or acetone:water, as they are all solvents that can be used in compliance with good manufacturing practice. In general, increasing temperature improves the capacity of the extracts obtained from mango peel and seed to inhibit lipid peroxidation; however, its effect on the extraction of phytochemical compounds or on the capacity of the extracts to scavenge free radicals was negligible in comparison to that of the solvent. There are many antioxidant compounds in mango peel and seed, and they could be used as a natural and very inexpensive alternative to synthetic food additives. However, the conditions in which the antioxidants are extracted must be optimized. This work proves that conditions such as extraction solvent or temperature have a crucial impact on obtaining extracts rich in antioxidants from mango biowastes. © 2011 Institute of Food Technologists®

  13. Multi-response optimisation of ultrasound-assisted extraction for recovery of flavonoids from red grape skins using response surface methodology.

    PubMed

    Tomaz, Ivana; Maslov, Luna; Stupić, Domagoj; Preiner, Darko; Ašperger, Danijela; Karoglan Kontić, Jasminka

    2016-01-01

    For the characterisation of grape cultivars, the profile and content of flavonoids are important because these compounds impact grape and wine quality. To determine the correct profile and content of flavonoids, the use of robust, sensitive and reliable methods is necessary. The object of this research is to develop a new ultrasound-assisted extraction (UAE) method for the recovery of flavonoids from grape skins using response surface methodology. Optimisation of UAE was performed using a complementary study combining a Box-Behnken experimental design with qualitative analysis by high-performance liquid chromatography. Optimal extraction conditions were obtained using the extraction solvent composed of acetonitrile:water:formic acid (26:73:1, v/v/v) at an extraction temperature of 50 °C, an extraction time of 15 min in a single-extraction step and with a solid-to-solvent ratio of 1:80 g/mL. The calculated relative standard deviations for the optimal extraction method were very low, measuring less than 5%. This study demonstrates that numerous factors have strong effects on the extraction efficiency, including the type of organic modifier and its percentage in the extraction solvent, the number of extraction steps, the solid-to-solvent ratio, the extraction time and temperature and, finally, the particular nature of analyte and their position within the grape skin cell. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Optimization of extraction of polysaccharides from fruiting body of Cordyceps militaris (L.) link using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Chinh; Thi, Dinh Huynh Mong; Pham, Dinh Chuong

    2018-04-01

    Polysaccharides from fruiting body of Cordyceps militaris (L.) Link possess various pharmaceutical activities. In this study, polysaccharides from the fruiting body of C. militaris were extracted with different solvents. Of those solvents tested, distilled water was identified as the most efficient solvent for the extraction, resulting in a significant increase in polysaccharides yield. Response surface methodology was then used to optimize the extraction conditions and establish a reliable mathematical model for prediction. A maximum polysaccharides yield of 11.07% was reached at a ratio of water to raw material of 23.2:1 mL/g, an extraction time of 76 min, and a temperature of 93.6°C. This study indicates that the obtained optimal extraction conditions are an efficient method for extraction of polysaccharides from the fruiting body of C. militaris.

  15. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Navia, Rodrigo

    2016-02-01

    Non-polar and polar solvents as well as their mixtures were tested for the extraction of microalgae lipids and thus, to evaluate their effect on total and esterifiable lipids extraction yields with potential to be converted to biodiesel. The obtained results show an increase in lipids and esterifiable lipids extraction yields when non-polar and polar solvent mixtures were used. The higher esterifiable lipids extraction yield was 19.2%wt (based on dry biomass) using a chloroform-methanol mixture (75%v/v of methanol), corresponding to a 98.9%wt esterifiable lipids extraction. In addition, esterifiable lipids extraction yield of 18.9%wt (based on dry biomass) was obtained when a petroleum ether-methanol mixture (75%v/v of methanol) was used, corresponding to a 96.9%wt esterifiable lipids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    PubMed Central

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  17. Fluoro-alcohol phase modifiers and process for cesium solvent extraction

    DOEpatents

    Bonnesen, Peter V.; Moyer, Bruce A.; Sachleben, Richard A.

    2003-05-20

    The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: ##STR1## in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R.sup.2 -R.sup.6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.

  18. Design of experiment approach for the process optimisation of microwave assisted extraction of lupeol from Ficus racemosa leaves using response surface methodology.

    PubMed

    Das, Anup Kumar; Mandal, Vivekananda; Mandal, Subhash C

    2013-01-01

    Triterpenoids are a group of important phytocomponents from Ficus racemosa (syn. Ficus glomerata Roxb.) that are known to possess diverse pharmacological activities and which have prompted the development of various extraction techniques and strategies for its better utilisation. To develop an effective, rapid and ecofriendly microwave-assisted extraction (MAE) strategy to optimise the extraction of a potent bioactive triterpenoid compound, lupeol, from young leaves of Ficus racemosa using response surface methodology (RSM) for industrial scale-up. Initially a Plackett-Burman design matrix was applied to identify the most significant extraction variables amongst microwave power, irradiation time, particle size, solvent:sample ratio loading, varying solvent strength and pre-leaching time on lupeol extraction. Among the six variables tested, microwave power, irradiation time and solvent-sample/loading ratio were found to have a significant effect (P < 0.05) on lupeol extraction and were fitted to a Box-Behnken-design-generated quadratic polynomial equation to predict optimal extraction conditions as well as to locate operability regions with maximum yield. The optimal conditions were microwave power of 65.67% of 700 W, extraction time of 4.27 min and solvent-sample ratio loading of 21.33 mL/g. Confirmation trials under the optimal conditions gave an experimental yield (18.52 µg/g of dry leaves) close to the RSM predicted value of 18.71 µg/g. Under the optimal conditions the mathematical model was found to be well fitted with the experimental data. The MAE was found to be a more rapid, convenient and appropriate extraction method, with a higher yield and lower solvent consumption when compared with conventional extraction techniques. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Chemical composition and antibacterial activity of Cordia verbenacea extracts obtained by different methods.

    PubMed

    Michielin, Eliane M Z; Salvador, Ana A; Riehl, Carlos A S; Smânia, Artur; Smânia, Elza F A; Ferreira, Sandra R S

    2009-12-01

    The present study describes the chemical composition and the antibacterial activity of extracts from Cordia verbenacea DC (Borraginaceae), a traditional medicinal plant that grows widely along the southeastern coast of Brazil. The extracts were obtained using different extraction techniques: high-pressure operations and low-pressure methods. The high-pressure technique was applied to obtain C. verbenacea extracts using pure CO(2) and CO(2) with co-solvent at pressures up to 30MPa and temperatures of 30, 40 and 50 degrees C. Organic solvents such as n-hexane, ethyl acetate, ethanol, acetone and dichloromethane were used to obtain extracts by low-pressure processes. The antibacterial activity of the extracts was also subjected to screening against four strains of bacteria using the agar dilution method. The extraction yields were up to 5.0% w/w and up to 8.6% w/w for supercritical fluid extraction with pure CO(2) and with ethyl acetate as co-solvent, respectively, while the low-pressure extraction indicates yields up to 24.0% w/w in the soxhlet extraction using water and aqueous mixture with 50% ethanol as solvents. The inhibitory activity of the extracts in gram-positive bacteria was significantly higher than in gram-negative. The quantification and the identification of the extracts recovered were accomplished using GC/MS analysis. The most important components identified in the extract were artemetin, beta-sitosterol, alpha-humulene and beta-caryophyllene, among others.

  20. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    NASA Astrophysics Data System (ADS)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    2015-09-01

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, 1H-NMR and 13C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  1. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  2. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    PubMed

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  3. Evaluation of Rotating Biological Contactor Technology for Civil Works Recreational Areas.

    DTIC Science & Technology

    1982-04-01

    Engineers, Midland District Centre, United Kingdom , November 1972). This study investigated the diurnal variations in flow and their effect on RBC... Industrial Waste Conference (1975), p 675. With a six-stage bench-top RBC unit and a synthetic apple waste contain- ing approximately 900 mg/L of BOD, the...AO-AI16 759 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 13/2 EVALUATION OF ROTATING BIOLOGICAL CONTACTOR TECHNOLOGY FOR CIVI-ETC(U

  4. Accomplishing Equilibrium in ALSEP: Demonstrations of Modified Process Chemistry on 3-D Printed Enhanced Annular Centrifugal Contactors

    DOE PAGES

    Brown, M. Alex; Wardle, Kent E.; Lumetta, Gregg; ...

    2016-12-01

    Here, the major components of the modified ALSEP process have been demonstrated on a modified 2-cm annular centrifugal contactor with an enhanced mixing zone using stable fission products and radiotracers. The results show that by decreasing the pH of the minor actinide stripping solution, using HEDTA instead of DTPA, and increasing contact time, the process is very effective in separating americium from the lanthanides and the fission products.

  5. Investigating the effect of various extracting solvents on the potential use of red-apple skin (Malus domestica) as natural sensitizer for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Saputro, Aldhi; Mizan, Adlan; Sofyan, Nofrijon; Yuwono, Akhmad Herman

    2017-03-01

    In the current investigation, the natural dye extracted from red-apple (Malus domestica) skin was used as natural sensitizer for dye sensitized solar cell (DSSC) application. The present study was specifically aimed at observing the effect of different solvents, i.e. deionized water, ethanol, and acidified ethanol, on the performance of the natural dye and thus the DSSC. For synthesis purposes, red-apple skin was peeled off, dried, crushed and furthermore extracted with ratio red-apple skin powder to solvent 1:20 w/v for 2 hours at 50°C under mechanical stirring. Subsequently, the resulting natural dyes with different solvents were examined by Fourier transform infrared (FTIR) to analyze their functional groups, UV-Vis spectroscopy to observe their absorption spectra for a wide range of wavelength, while TiO2 nanoparticle used as the semiconductor oxide layer in the device was characterized by field emission scanning electron microscope (FESEM). The FTIR results showed that the red-apple skin has anthocyanin group which functions as the sensitizer agent for photon energy absorption from the sunlight. The UV-Vis spectroscopy results showed that ethanol solvent has higher absorption of sunlight wavelength as compared to those of deionized water and acidified ethanol solvents. The performance test of the fabricated DSSC showed the prototype made of the red apple skin dye extracted by ethanol solvent can provide the highest open circuit voltage (Voc) up to 324 mV and efficiency around 0.046%. On the basis of investigation, it has been found that ethanol was the best solvent to extract anthocyanin from the red-apple skin.

  6. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  7. Immunomodulatory activities of different solvent extracts from Tricholoma matsutake (S. Ito et S. Imai) singer (higher basidiomycetes) on normal mice.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai

    2012-01-01

    The immunomodulatory activities of different solvent extracts from the culinary-medicinal mushroom Tricholoma matsutake were studied in vivo in normal mice. The extracts were prepared using different solvents in an order of increasing polarity. The immunomodulatory activities were investigated by measuring the thymus and spleen index, phagocytic rate of macrophage phagocytosis, delayed-type hypersensitivity, plaque-forming cell, and proliferation of splenocytes. Results demonstrated that water extract (WE) and n-butyl alcohol extract (BAE) of T. matsutake could enhance the immunity of mice significantly compared with the control group. Main components of WE and BAE were polysaccharides, proteins, and flavonoids; we presume that these may be the main immunomodulating and immuno-enhancing agents in T. matsutake.

  8. Fundamental studies on the feasibility of deep eutectic solvents for the selective partition of glaucarubinone present in the roots of Simarouba glauca.

    PubMed

    Kholiya, Faisal; Bhatt, Nidhi; Rathod, Meena R; Meena, Ramavatar; Prasad, Kamalesh

    2015-07-14

    Several deep eutectic solvents prepared by the complexation of choline chloride as the hydrogen bond acceptor and hydrogen bond donors such as urea, thiourea, ethylene glycol, and glycerol were employed to partition glaucarubinone, an antimalarial compound present in roots of the plant, Simarouba glauca. Among all the solvents, the deep eutectic solvent consisting of the mixture of choline chloride and urea the most suitable to partition the antimalarial compound from the extract selectively. Analytical tools such as high-performance liquid chromatography and electrospray ionization mass spectrometry were used for characterizations, and glaucarubinone extracted from the roots of the plant by conventional solvent extraction method was used as a reference for comparison. The hydrogen and noncovalent bonds formed between glaucarubinone and the deep eutectic solvents could be responsible for the selective partition of the drug molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of HEH[EHP] impurities on the ALSEP solvent extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holfeltz, Vanessa E.; Campbell, Emily L.; Peterman, Dean R.

    In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalentmore » minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.« less

  10. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  11. Spectroscopic, calorimetric and structural analyses of the effects of hydrothermal treatment of rice beans and the extraction solvent on starch characteristics.

    PubMed

    González-Cruz, Leopoldo; Montañez-Soto, José Luis; Conde-Barajas, Eloy; Negrete-Rodríguez, María de la Luz Xochilt; Flores-Morales, Areli; Bernardino-Nicanor, Aurea

    2018-02-01

    The modification of the starches extracted from rice beans both with and without hydrothermal treatment was evaluated via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) and Raman spectroscopy. SEM indicated that the starch granules of rice beans exhibit wide variation in granule shape, showing the greatest size and modification of the surface when extracted with ethanol. It was found that the extraction solvent had no significant effect on the onset (T o ) and peak (T p ) temperatures of the starch, whereas hydrothermal treatment of rice beans decreased the T o , T p and ΔH of the starch. The modification of FT-IR spectra showed that hydrothermal treatment of rice beans and the solvent used in the extraction of starch affected starch crystallinity, mainly when ethanol was used. Raman spectroscopy revealed that the smaller changes in the starch bonds were due to the solvent used for starch extraction but that hydrothermal treatment disturbed all bonds in the starch. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dispersive liquid-liquid microextraction based on the solidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueous samples.

    PubMed

    Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai

    2010-08-03

    In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.

  13. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    PubMed

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  14. Deterred drug abuse using superabsorbent polymers.

    PubMed

    Mastropietro, David J; Muppalaneni, Srinath; Omidian, Hossein

    2016-11-01

    This study aimed to determine whether selected superabsorbent polymers (SAPs) could be used as a suitable alternative to thwart extraction, filtration, and syringeability attempts for abuse. Many abuse-deterrent formulations (ADFs) rely on high molecular weight polymers such as poly(ethylene oxide) to provide crush and extraction resistance. However, these polymers suffer from slow dissolution kinetics, and are susceptible to a variety of abuse conditions. Several commercially available SAPs were evaluated for swelling behavior in extraction solvents, and tableting properties. Post-compaction abuse properties were evaluated by recoverable volume and syringeability after solvent extraction. Drug release and percent drug extraction were conducted using tramadol HCl as a model drug. Certain SAPs had the ability to rapidly imbibe solvent and effectively stop extraction processes in a variety of solvents, including water and water/alcohol mixtures. Tablets containing SAP and drug showed no effect on drug release in vitro. SAPs possess adequate properties for tableting, and maintain their high and fast swelling properties after compaction. The fast and extensive interactions of SAPs with aqueous medium are a major advantage over non-crosslinked high molecular weight viscosifying agents such as poly(ethylene oxide).

  15. Gradient x Isocratic Elution CCC on the Isolation of Verbascoside and Other Phenylethanoids: Influence of the Complexity of the Matrix.

    PubMed

    Leitão, Gilda Guimarães; Pinto, Shaft Correa; de Oliveira, Danilo Ribeiro; Timoteo, Patrícia; Guimarães, Michelle Guedes; Cordova, Wilmer H Perera; Leitão, Suzana Guimarães

    2015-11-01

    Verbascoside is a phenylethanoid glycoside widely distributed in nature, especially among the order Lamiales, occurring in numerous plants that are constituents of folk medicine preparations. This natural compound, previously isolated by our group from the ethyl acetate extract of Lantana trifolia using the gradient approach in countercurrent chromatography, was now isolated from the butanol extract of the same plant and from Lippia alba f. intermedia (Verbenaceae) using countercurrent chromatography in either gradient or isocratic elution modes. The ethyl acetate extract of L. alba, rich in phenylethanoids and flavonoids, was fractionated using countercurrent chromatography in the step-gradient elution approach. The four-step solvent system was composed of n-hexane-ethyl acetate-n-butanol-water (4 : 10 : X : 10), where X = 1 (solvent system A), 3 (solvent system B), 5 (solvent system C), and 7 (solvent system D), and allowed for the isolation of verbascoside along with other phenylethanoids and flavonoids from both plants. Verbascoside and 2'-O-β-apiosylverbascoside were further isolated from the n-butanol extract of L. trifolia using the solvent system ethyl acetate-n-butanol-water 10 : 2 : 10 on an isocratic run. The difference in the complexity of the two plant extracts demanded different purification steps, which included a second high-speed countercurrent chromatography purification using the isocratic elution mode. Georg Thieme Verlag KG Stuttgart · New York.

  16. [Extraction of lambda-cyhalothrin from aqueous dioxan solutions].

    PubMed

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2011-01-01

    The results of extraction of lambda-cigalotrin from dioxan aqueous solutions by hydrophobic organic solvents are presented. It is shown that the degree of extraction depends on the nature of the extractant, the water to dioxan ratio, and saturation of the water-dioxan layer with the electrolyte. The highest efficiency of lambda-cigalotrin extraction was achieved using chlorophorm as a solvent under desalination conditions. The extraction factor was calculated necessary to obtain the desired amount of lambda-cigalotrin from the water-dioxan solution (4:1) with the help of the extractants being used.

  17. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  18. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  19. Solvent Extraction Separation of Trivalent Americium from Curium and the Lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Mark P.; Chiarizia, Renato; Ulicki, Joseph S.

    2015-02-27

    The sterically constrained, macrocyclic, aqueous soluble ligand N,N'-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2BP18C6) was investigated for separating americium from curium and all the lanthanides by solvent extraction. Pairing H2BP18C6, which favors complexation of larger f-element cations, with acidic organophosphorus extractants that favor extraction of smaller f-element cations, such as bis-(2-ethylhexyl)phosphoric acid (HDEHP) or (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]), created solvent extraction systems with good Cm/Am selectivity, excellent trans-lanthanide selectivity (Kex,Lu/Kex,La = 108), but poor selectivity for Am against the lightest lanthanides. However, using an organic phase containing both a neutral extractant, N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (TEHDGA), and HEH[EHP] enabled rejection of the lightest lanthanides during loading ofmore » the organic phase from aqueous nitric acid, eliminating their interference in the americium stripping stages. In addition, although it is a macrocyclic ligand, H2BP18C6 does not significantly impede the mass transfer kinetics of the HDEHP solvent extraction system« less

  20. Effect of solvent type and high pressure treatment on the extraction of Gomphrena globosa L. bioactive compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, L.; Ramalhosa, E.; Pereira, J. A.; Casal, S.; Saraiva, J. A.

    2017-10-01

    The present study aimed to compare the influence of different extraction solvents (water, methanol, water:acetone (6:4, v/v)), methods (heating (37 °C, 30 min) or high pressure (HP) (300 or 500 MPa) and extraction time (7.5 or 15 min)) on flavonoids, hydrolysable tannins and antioxidant activity (Total Reducing Capacity (TRC), DPPH Free Radical Scavenging Activity and Reducing Power) of Gomphrena globosa L. flower extracts. The water:acetone extracts obtained by heating had the highest values of flavonoids, hydrolysable tannins and antioxidant activity. When applying HP, variable results were obtained. Still, the application of HP to water allowed to extract more hydrolysable tannins, as well as to obtain extracts with higher antioxidant activity than with heating, but no significant alterations were observed with methanol. In conclusion, both solvent and extraction method influence the content of bioactive compounds, being HP treatment a promising method to obtain enriched aqueous extracts in line with the principles of green-chemistry.

  1. Selective Extraction of Flavonoids from Sophora flavescens Ait. by Mechanochemistry.

    PubMed

    Zhang, Qihong; Yu, Jingbo; Wang, Yingyao; Su, Weike

    2016-07-29

    Flavonoids from Sophora flavescens were selectively extracted by mechanochemical-promoted extraction technology (MPET) after using response surface methodology to determine the optimal extraction parameters. The highest yield of 35.17 mg/g was achieved by grinding the roots with Na₂CO₃ (15%) at 440 rpm/min for 17.0 min and water was used as the sole solvent with a ratio of solvent to solid material of 25 mL/g. Flavonoids prepared by MPET demonstrated relatively higher antioxidant activities in subsequent DPPH and hydroxyl radical scavenging assays. Main constituents in the extracts, including kurarinol, kushenol I/N and kurarinone, were characterized by HPLC-MS/MS, indicating good selective extraction by MPET. Physicochemical property changes of powder during mechanochemical milling were identified by scanning electron microscopy, X-ray powder diffraction, and UV-Vis diffuse-reflectance spectroscopy. Compared with traditional extraction methods, MPET possesses notable advantages of higher selectivity, lower extraction temperature, shorter extraction time, and organic solvent free properties.

  2. Effects of high-pressure process on kinetics of leaching oil from soybean powder using hexane in batch systems.

    PubMed

    Uhm, Joo Tae; Yoon, Won Byong

    2011-08-01

    Mass transfer models of leaching oil from soybean (Glycine max) flour with hexane after high-pressure process (HPP) treatment were developed. High pressure (450 MPa) was applied to the soybean flour (mean diameter of flour particle: 365 μm) for 30 min before leaching the oil components in the solvent. The ratio of solvent (volume, mL) to soybean flour (mass, g), such as 1:10 and 1:20, was employed to characterize the effect of solvent ratio on the leaching rate in the batch type of extraction process. Ultraviolet absorbance at 300 nm was used to monitor the extraction rate. Saturation solubility (C(AS)) was determined to be 21.73 kg/m³. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The 2nd kinetic model showed better fit. The HPP treatment showed a higher extraction rate and yield compared to the control, while the amount of solvent did not affect the extraction rate and yield. The scanning electron microscope showed that HPP-treated soybean particles included more pores than the untreated. The pores observed in the HPP-treated soybean flours might help increase the mass transfer rate of solvent and solute in the solid matrix. High-pressure processing can help increase the extraction rate of oil from the soybean flour operated in batch systems. The conventional solid to solvent ratio (1:20) used to extract oil composition from the plant seed did not help increase the amount of oil extracted from the soybean flour. © 2011 Institute of Food Technologists®

  3. Combination of Antioxidants from Different Sources Could Offer Synergistic Benefits: A Case Study of Tea and Ginger Blend.

    PubMed

    Makanjuola, Solomon A; Enujiugha, Victor N; Omoba, Olufunmilayo S; Sanni, David M

    2015-11-01

    Tea and ginger are plants with high antioxidant potential. Combinations of antioxidants from different sources could also produce synergistic antioxidant effects. This study investigated the influence of solvent on antioxidant content of tea, ginger, and tea + ginger blends. Under the investigated extraction conditions, water was the most effective extraction solvent to maximise peroxide scavenging and iron chelating activity of tea, ginger, and their blends. Aqueous ethanol was the most effective solvent to maximise ABTS radical scavenging activity and ethanol was the best solvent to maximise DPPH radical scavenging activity. A good multivariate regression model that explains the relationship between the total flavonoid content of the extracts and their antioxidant activities was obtained (R2 and Q2 of 0.93 and 0.83, respectively). Extracts of tea-ginger blends exhibited synergistic effects in their ABTS and DPPH radical scavenging activity.

  4. Microwave- and ultrasound-assisted extraction of vanillin and its quantification by high-performance liquid chromatography in Vanilla planifolia.

    PubMed

    Sharma, Anuj; Verma, Subash Chandra; Saxena, Nisha; Chadda, Neetu; Singh, Narendra Pratap; Sinha, Arun Kumar

    2006-03-01

    Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional extraction of vanillin and its quantification by HPLC in pods of Vanilla planifolia is described. A range of nonpolar to polar solvents were used for the extraction of vanillin employing MAE, UAE and conventional methods. Various extraction parameters such as nature of the solvent, solvent volume, time of irradiation, microwave and ultrasound energy inputs were optimized. HPLC was performed on RP ODS column (4.6 mm ID x 250 mm, 5 microm, Waters), a photodiode array detector (Waters 2996) using gradient solvent system of ACN and ortho-phosphoric acid in water (0.001:99.999 v/v) at 25 degrees C. Regression equation revealed a linear relationship (r2 > 0.9998) between the mass of vanillin injected and the peak areas. The detection limit (S/N = 3) and limit of quantification (S/N = 10) were 0.65 and 1.2 microg/g, respectively. Recovery was achieved in the range 98.5-99.6% for vanillin. Maximum yield of vanilla extract (29.81, 29.068 and 14.31% by conventional extraction, MAE and UAE, respectively) was found in a mixture of ethanol/water (40:60 v/v). Dehydrated ethanolic extract showed the highest amount of vanillin (1.8, 1.25 and 0.99% by MAE, conventional extraction and UAE, respectively).

  5. Selective extraction of high-value phenolic compounds from distillation wastewater of basil (Ocimum basilicum L.) by pressurized liquid extraction.

    PubMed

    Pagano, Imma; Sánchez-Camargo, Andrea Del Pilar; Mendiola, Jose Antonio; Campone, Luca; Cifuentes, Alejandro; Rastrelli, Luca; Ibañez, Elena

    2018-01-31

    During the essential oil steam distillation from aromatic herbs, huge amounts of distillation wastewaters (DWWs) are generated. These by-products represent an exceptionally rich source of phenolic compounds such as rosmarinic acid (RA) and caffeic acid (CA). Herein, the alternative use of dried basil DWWs (dDWWs) to perform a selective extraction of RA and CA by pressurized liquid extraction (PLE) employing bio-based solvent was studied. To select the most suitable solvent for PLE, the theoretical modelling of Hansen solubility parameters (HSP) was carried out. This approach allows reducing the list of candidate to two solvents: ethanol and ethyl lactate. Due to the composition of the sample, mixtures of water with those solvents were also tested. An enriched PLE extract in RA (23.90 ± 2.06 mg/g extract) with an extraction efficiency of 75.89 ± 16.03% employing a water-ethanol mixture 25:75 (% v/v) at 50°C was obtained. In the case of CA, a PLE extract with 2.42 ± 0.04 mg/g extract, having an extraction efficiency of 13.86 ± 4.96% using ethanol absolute at 50°C was achieved. DWWs are proposed as new promising sources of natural additives and/or functional ingredients for cosmetic, nutraceutical, and food applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimization of microwave-assisted extraction conditions for preparing lignan-rich extract from Saraca asoca bark using Box-Behnken design.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2016-07-01

    Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.

  7. Extraction and identification of bioactive compounds from agarwood leaves

    NASA Astrophysics Data System (ADS)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.

  8. Effect of solvent polarity levels on separation of xanthone and coumarin from Calophyllum inophyllum leaves extract

    NASA Astrophysics Data System (ADS)

    Susanto, D. F.; Hapsari, S.; Trilutfiani, Z.; Borhet, A.; Aparamarta, H. W.; Widjaja, A.; Gunawan, S.

    2018-03-01

    Calophyllum inophyllum has various benefits that can be utilized from root, stem, leaf, until seed. C. inophyllum leaves contain many bioactive compounds, such as xanthone and coumarin which are useful as antioxidant, and inhibitors of enzyme activity from HIV virus. The aim of this research was to investigate the effect of solvent polarity levels on the separation of xanthone and coumarin compounds contained in the crude extract of C. inophyllum leaves. Crude leaves extract was obtained by percolation method. Moreover, Liquid Liquid Extraction (LLE) was used for separating xanthone and coumarin compounds. It was performed by methanol (polar solvent) and hexane (non-polar solvent) with solvent ratio of 1. Methanol concentration in water used were 20%, 50%, 80%, and 100%. Each fraction obtained was tested qualitatively using Thin Layer Chromatography (TLC) and quantitatively using Gas Chromatography (GC) to analyze xanthone and coumarin. The best separation result was obtained by using 50% methanol. In this results, coumarin and xanthones were separated in methanol fraction (81.18% recovery) and in hexane fraction (81.91% recovery), respectively.

  9. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents.

    PubMed

    An, Jiwoo; Rahn, Kira L; Anderson, Jared L

    2017-05-15

    A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Determination of Parameters for the Supercritical Extraction of Antioxidant Compounds from Green Propolis Using Carbon Dioxide and Ethanol as Co-Solvent.

    PubMed

    Machado, Bruna Aparecida Souza; Barreto, Gabriele de Abreu; Costa, Aline Silva; Costa, Samantha Serra; Silva, Rejane Pina Dantas; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Nunes, Silmar Baptista; Umsza-Guez, Marcelo Andres; Padilha, Francine Ferreira

    2015-01-01

    The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition.

  11. Improving gas dehydrator efficiency; Glycol losses from dehydrator solved by mist eliminator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, S.; Neal, R.; Patel, K.

    1989-07-01

    Triethylene glycol losses from a natural gas dehydrator unit were costing Winnie Pipeline Co. well over $100/day. Several possible causes had been investigated, and a second, smaller unit had been added because insufficient capacity was thought to cause glycol carryover from the contactor. Eventually, glycol losses were virtually eliminated by replacing the standard mist eliminator pad in the top of the contactor tower with a higher-efficiency type. Use of this type of pad is discussed in this paper.

  12. Prediction of mass transfer coefficient in rotating bed contactor (Higee) using artificial neural network

    NASA Astrophysics Data System (ADS)

    Saha, Dipendu

    2009-02-01

    The feasibility of drastically reducing the contactor size in mass transfer processes utilizing centrifugal field has generated a lot of interest in rotating packed bed (Higee). Various investigators have proposed correlations to predict mass transfer coefficients in Higee, but, none of the correlations was more than 20-30% accurate. In this work, artificial neural network (ANN) is employed for predicting mass transfer coefficient data. Results show that ANN provides better estimation of mass transfer coefficient with accuracy 5-15%.

  13. Baseline tests of the EVA contractor electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Tryon, H. B.; Slavick, R. J.

    1977-01-01

    The EVA Contactor four door sedan, an electric passenger vehicle, was tested to characterize the state-of-the-art of electric vehicles. It is a four passenger sedan that was converted to an electric vehicle. It is powered by 16 series connected 6 volt electric vehicle batteries through a four step contactor controller actuated by a foot accelerator pedal. The controller changes the voltage applied to the separately excited DC motor. The braking system is a vacuum assisted hydraulic braking system. Regenerative braking was also provided.

  14. Water-saving liquid-gas conditioning system

    DOEpatents

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  15. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  16. Comparison of extraction techniques of robenidine from poultry feed samples.

    PubMed

    Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek

    2007-10-31

    In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.

  17. Selection of propolis Tetragonula sp. extract solvent with flavonoids and polyphenols concentration and antioxidant activity parameters

    NASA Astrophysics Data System (ADS)

    Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad; Pratami, Diah Kartika; Mun'im, Abdul

    2018-02-01

    Antioxidants are inhibitory compounds that can inhibit auto oxidation reaction by binding to free radicals and highly reactive molecules. The human body needs antioxidant. Antioxidants can be obtained from a variety of natural ingredients, including propolis. Propolis is the natural sap of the bees, obtained from the herbs around the honeycomb. Ethanol is the solvent that often used to extract propolis. Although it has many advantages, ethanol also has weaknesses such as intolerance to alcohol by some people. Therefore, this research was to extract propolis Tetragonula sp. coarse (C) and soft (S) using four varieties of organic solvent, i.e. olive oil (OO), virgin coconut oil (VCO), propylene glycol (PG), and lecithin (L). It was expected to get the best solvent in extracting propolis. The selection of the best solvent was determined by total flavonoids and polyphenols content assay and antioxidant activity. At each test, the absorbance value read by a microplate reader. Flavonoids content assay is using AlCl3 method with best result on rough-VCO propolis extract of 2509,767 ± 615,02 µg/mL. Polyphenols content assay was using Folin Ciocalteu method with the best results on soft-VCO propolis extract of 1391 ± 171.47 µg/mL. Antioxidant activity assay is using DPPH method with best result on soft-VCO propolis extract with IC50 value of 1,559 ± 0,222 µg/mL.

  18. Evaluation of the effect of extraction solvent and organ selection on the chemical profile of Astragalus spinosus using HPTLC- multivariate image analysis.

    PubMed

    Shawky, Eman; Selim, Dina A

    2017-09-01

    The evaluation of extraction protocols for untargeted and targeted metabolomics was implemented for root and aerial organs of Astragalus spinosus in this work. The efficiency and complementarity of commonly used extraction solvents, namely petroleum ether, methylene chloride, ethyl acetate and n-butanol were considered for method evaluation using chemometric techniques in conjunction with new, simple, and fast high performance thin layer chromatography (HPTLC) method for fingerprint analysis by extracting information from a digitalized HPTLC plate using ImageJ software. A targeted approach was furtherly implemented by developing and validating an HPTLC method allowing the quantification of three saponin glycosides. The results of untargeted and targeted principle component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that the apparent saponins profile seems to depend on a combined effect of matrix composition and the properties of the selected solvent for extraction, where both the biological matrix of the investigated plant organs, as well as the extraction solvent can influence the precision of metabolite abundances. Although, the aerial part is frequently discarded as waste, it is shown hereby that it has similar chemical profile compared to the medicinal part, roots, yet a different extraction solvents pattern is recognized between the two organs which can be attributed to the differences in the composition, permeability or accessibility of the sample matrix/organ tissues, rather than the chemical structures of the detected metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An Efficient Strategy Based on Liquid-Liquid Extraction with Three-Phase Solvent System and High Speed Counter-Current Chromatography for Rapid Enrichment and Separation of Epimers of Minor Bufadienolide from Toad Meat.

    PubMed

    Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang

    2018-01-31

    This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.

  20. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    PubMed

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial production of high quality tomato seed oil. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  1. Deep eutectic solvent based gas-assisted dispersive liquid-phase microextraction combined with gas chromatography and flame ionization detection for the determination of some pesticide residues in fruit and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh

    2017-05-01

    In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

  3. Silybum marianum pericarp yields enhanced silymarin products.

    PubMed

    AbouZid, Sameh F; Chen, Shao-Nong; McAlpine, James B; Friesen, J Brent; Pauli, Guido F

    2016-07-01

    An improved method for the purification of silymarin, the flavonolignan complex from the fruits of milk thistle, Silybum marianum, is reported. The method enables a more efficient extraction of silymarin from the pericarp after it has been separated mechanically from the rest of the fruits. Accelerated solvent extraction (ASE) was employed for each extraction procedure. Quantitation of the eight major silymarin components in the pericarp extract was compared to that of the whole fruit extract using two orthogonal analytical methods. The pericarp extract showed higher silymarin content (2.24-fold by HPLC and 2.12-fold by qHNMR) than whole fruit extract using acetone as an extraction solvent following defatting with hexane. Furthermore, the mg/g recovery of silymarin major components was not diminished by eliminating the hexane defatting step from the pericarp extraction procedure. The efficiencies of acetone, ethanol, and methanol as extraction solvents were compared. Methanol pericarp extract showed the highest content of the silymarin major components, 2.72-fold higher than an extract prepared from the whole fruits using acetone. Finally, all of the major silymarin components showed a higher w/w content in the pericarp extract than in a commercial extract. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Jason R; Boll, Rose Ann; Dai, Sheng

    2012-01-01

    The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less

  5. Compound Specific Extraction of Camptothecin from Nothapodytes nimmoniana and Piperine from Piper nigrum Using Accelerated Solvent Extractor

    PubMed Central

    Upadhya, Vinayak; Pai, Sandeep R.; Sharma, Ajay K.; Hegde, Harsha V.; Kholkute, Sanjiva D.; Joshi, Rajesh K.

    2014-01-01

    Effects of varying temperatures with constant pressure of solvent on extraction efficiency of two chemically different alkaloids were studied. Camptothecin (CPT) from stem of Nothapodytes nimmoniana (Grah.) Mabb. and piperine from the fruits of Piper nigrum L. were extracted using Accelerated Solvent Extractor (ASE). Three cycles of extraction for a particular sample cell at a given temperature assured complete extraction. CPT and piperine were determined and quantified by using a simple and efficient UFLC-PDA (245 and 343 nm) method. Temperature increased efficiency of extraction to yield higher amount of CPT, whereas temperature had diminutive effect on yield of piperine. Maximum yield for CPT was achieved at 80°C and for piperine at 40°C. Thus, the study determines compound specific extraction of CPT from N. nimmoniana and piperine from P. nigrum using ASE method. The present study indicates the use of this method for simple, fast, and accurate extraction of the compound of interest. PMID:24527258

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, G H; Thompson, M C

    Solvent extraction of /sup 237/Np and /sup 238/Pu from irradiated neptunium is being investigated as a possible replacement for the currently used anion exchange process at the Savannah River Plant. Solvent extraction would reduce separations costs and waste volume and increase the production rate. The major difficulty in solvent extraction processing is maintaining neptunium and plutonium in the extractable IV or VI valence states during initial extraction. This study investigated the stability of these states. Results show that: The extractable M(IV) valence states of neptunium and plutonium are mutually unstable in plant dissolver solution (2 g/l /sup 237/Np, 0.4 g/lmore » /sup 238/Pu, 1.2M Al/sup 3 +/, 4.6M NO/sub 3//sup -/, and 1M H/sup +/). The reaction rates producing inextractable species from extractable M(IV) or M(VI) are fast enough that greater than or equal to 99.9 percent extractable species in /sup 237/Np--/sup 238/Pu mixtures cannot be maintained for a practicable processing period (24 hours).« less

  7. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  8. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  9. Occupational exposure to complex mixtures of volatile organic compounds in ambient air: desorption from activated charcoal using accelerated solvent extraction can replace carbon disulfide?

    PubMed

    Fabrizi, Giovanni; Fioretti, Marzia; Rocca, Lucia Mainero

    2013-01-01

    A desorption study of 57 volatile organic compounds (VOCs) has been conducted by use of accelerated solvent extraction (ASE) and gas chromatography-mass spectrometry. Different solvents were tested to extract activated charcoal tubes with the objective of replacing carbon disulfide, used in official methods, because of its highly toxic health and environmental effects. Extraction conditions, for example temperature and number of cycles, were investigated and optimized. The definitive extraction procedure selected was use of acetone at 150 °C and two consecutive extraction cycles at a pressure of 1,500 psi. Considering a sample volume of 0.005 Nm(3), corresponding to a sampling time of 8 h at a flow rate of 0.01 L min(-1), the method was validated over the concentration range 65-26,300 μg Nm(-3). The lowest limit of quantification was 6 μg Nm(-3), and recovery for the 93 % of analytes ranged from 65 to 102 %. For most of the compounds, relative standard deviations were less than 15 % for inter and intra-day precision. Uncertainty of measurement was also determined: the relative expanded uncertainty was always below 29.6 %, except for dichlorodifluoromethane. This work shows that use of friendlier solvent, for example acetone, coupled with use of ASE, can replace use of CS(2) for chemical removal of VOCs from activated charcoal. ASE has several advantages over traditional solvent-extraction methods, including shorter extraction time, minimum sample manipulation, high reproducibility, and less extraction discrimination. No loss of sensitivity occurs and there is also a salutary effect on bench workers' health and on the smell of laboratory air.

  10. Integrated microwave processing system for the extraction of organophosphorus pesticides in fresh vegetables.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-03-01

    A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. [Study on new extraction technology of astragaloside IV].

    PubMed

    Sun, Haiyan; Guan, Su; Huang, Min

    2005-08-01

    To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.

  12. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. FIELD EVALUATION OF THE SOLVENT EXTRACTION RESIDUAL BIOTREATMENT (SERB) TECHNOLOGY

    EPA Science Inventory

    The Solvent Extraction Residual Biotreatment (SERB) technology was demonstrated at the former Sage's Dry Cleaner site in Jacksonville, FL where an area of PCE (tetrachloroethylene) contamination was identified. The SERB technology is a treatment train approach to complete site...

  14. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  15. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microwave-assisted extraction and mild saponification for determination of organochlorine pesticides in oyster samples.

    PubMed

    Carro, N; García, I; Ignacio, M-C; Llompart, M; Yebra, M-C; Mouteira, A

    2002-10-01

    A sample-preparation procedure (extraction and saponification) using microwave energy is proposed for determination of organochlorine pesticides in oyster samples. A Plackett-Burman factorial design has been used to optimize the microwave-assisted extraction and mild saponification on a freeze dried sample spiked with a mixture of aldrin, endrin, dieldrin, heptachlor, heptachorepoxide, isodrin, transnonachlor, p, p'-DDE, and p, p'-DDD. Six variables: solvent volume, extraction time, extraction temperature, amount of acetone (%) in the extractant solvent, amount of sample, and volume of NaOH solution were considered in the optimization process. The results show that the amount of sample is statistically significant for dieldrin, aldrin, p, p'-DDE, heptachlor, and transnonachlor and solvent volume for dieldrin, aldrin, and p, p'-DDE. The volume of NaOH solution is statistically significant for aldrin and p, p'-DDE only. Extraction temperature and extraction time seem to be the main factors determining the efficiency of extraction process for isodrin and p, p'-DDE, respectively. The optimized procedure was compared with conventional Soxhlet extraction.

  17. Extraction and GC determination of volatile aroma compounds from extracts of three plant species of the Apiaceae family

    NASA Astrophysics Data System (ADS)

    Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.

    2013-11-01

    Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.

  18. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    PubMed

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Measurement of Noise Produced by a Plasma Contactor Operating in Ground Based Facilities

    NASA Technical Reports Server (NTRS)

    Snyder, Steve

    1996-01-01

    Methods to measure electric field fluctuations accurately in a plasma with an active monopole antenna are described. It is shown that the conductive surfaces of the antenna must be adequately isolated from the ambient plasma and that the monopole must be sufficiently short to avoid antenna amplifier saturation. Experimental results illustrate that the noise produced by plasma contactor operation and sensed by the antenna is due to plasma phenomena and is not induced by laboratory power supplies. A good correlation is shown between the current fluctuations in the contactor electrical circuit and the noise detected by the antenna. A large body of experimental data support the conclusion that the majority of noise sensed by the antenna at frequencies less than 1 MHz is due to current fluctuations (electrostatic waves) in the plasma adjacent to the antenna and not to electromagnetic wave radiation. Caution is suggested when comparing antenna noise measurements to conventional specifications for radiated emissions.

  20. Virtual environment tactile system

    DOEpatents

    Renzi, Ronald

    1996-01-01

    A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters.

  1. Virtual environment tactile system

    DOEpatents

    Renzi, R.

    1996-12-10

    A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters. 28 figs.

  2. Radiolytic Treatment of the Next-Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process

    DOE PAGES

    Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.; ...

    2014-12-01

    We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less

  3. Radiolytic Treatment of the Next-Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.

    We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less

  4. Influence of sample processing on the analysis of carotenoids in maize.

    PubMed

    Rivera, Sol; Canela, Ramon

    2012-09-21

    We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol-ethyl acetate (6:4, v/v) and methanol-tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.

  5. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques.

    PubMed

    Wang, Wentao; Meng, Bingjun; Lu, Xiaoxia; Liu, Yu; Tao, Shu

    2007-10-29

    The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.

  6. Effects of carbonization and solvent-extraction on change in fuel characteristics of sewage sludge.

    PubMed

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-09-01

    Urban sewage sludge was carbonized at 300-500°C for 1h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360°C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300°C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm(-1) was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (T(i)) or maximum weight loss rate (DTG(max)) of coal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves.

    PubMed

    Dahmoune, Farid; Nayak, Balunkeswar; Moussi, Kamal; Remini, Hocine; Madani, Khodir

    2015-01-01

    Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. Maximum retention of these phytochemicals during extraction requires optimised process parameter conditions. A microwave-assisted extraction (MAE) method was investigated for extraction of total phenolics from Myrtus communis leaves. The total phenolic capacity (TPC) of leaf extracts at optimised MAE conditions was compared with ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE). The influence of extraction parameters including ethanol concentration, microwave power, irradiation time and solvent-to-solid ratio on the extraction of TPC was modeled by using a second-order regression equation. The optimal MAE conditions were 42% ethanol concentration, 500 W microwave power, 62 s irradiation time and 32 mL/g solvent to material ratio. Ethanol concentration and liquid-to-solid ratio were the significant parameters for the extraction process (p<0.01). Under the MAE optimised conditions, the recovery of TPC was 162.49 ± 16.95 mg gallic acidequivalent/gdry weight(DW), approximating the predicted content (166.13 mg GAE/g DW). When bioactive phytochemicals extracted from Myrtus leaves using MAE compared with UAE and CSE, it was also observed that tannins (32.65 ± 0.01 mg/g), total flavonoids (5.02 ± 0.05 mg QE/g) and antioxidant activities (38.20 ± 1.08 μg GAE/mL) in MAE extracts were higher than the other two extracts. These findings further illustrate that extraction of bioactive phytochemicals from plant materials using MAE method consumes less extraction solvent and saves time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass.

    PubMed

    Olmstead, Ian L D; Kentish, Sandra E; Scales, Peter J; Martin, Gregory J O

    2013-11-01

    An industrially relevant method for disrupting microalgal cells and preferentially extracting neutral lipids for large-scale biodiesel production was demonstrated on pastes (20-25% solids) of Nannochloropsis sp. The highly resistant Nannochloropsis sp. cells. were disrupted by incubation for 15 h at 37°C followed by high pressure homogenization at 1200 ± 100 bar. Lipid extraction was performed by twice contacting concentrated algal paste with minimal hexane (solvent:biomass ratios (w/w) of <2:1 and <1.3:1) in a stirred vessel at 35°C. Cell disruption prior to extraction increased lipid recovery 100-fold, with yields of 30-50% w/w obtained in the first hexane contact, and a further 6.5-20% in the second contact. The hexane preferentially extracted neutral lipids over glyco- and phospholipids, with up to 86% w/w of the neutral lipids recovered. The process was effective on wet concentrated paste, required minimal solvent and moderate temperature, and did not require difficult to recover polar solvents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  10. Optimization of extraction parameters of pentacyclic triterpenoids from Swertia chirata stem using response surface methodology.

    PubMed

    Pandey, Devendra Kumar; Kaur, Prabhjot

    2018-03-01

    In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p  < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).

  11. Identification and determination of the saikosaponins in Radix bupleuri by accelerated solvent extraction combined with rapid-resolution LC-MS.

    PubMed

    Yang, Yun-Yun; Tang, You-Zhi; Fan, Chun-Lin; Luo, Hui-Tai; Guo, Peng-Ran; Chen, Jian-Xin

    2010-07-01

    A method based on accelerated solvent extraction combined with rapid-resolution LC-MS for efficient extraction, rapid separation, online identification and accurate determination of the saikosaponins (SSs) in Radix bupleuri (RB) was developed. The RB samples were extracted by accelerated solvent extraction using 70% aqueous ethanol v/v as solvent, at a temperature of 120 degrees C and pressure of 100 bar, with 10 min of static extraction time and three extraction cycles. Rapid-resolution LC separation was performed by using a C(18) column at gradient elution of water (containing 0.5% formic acid) and acetonitrile, and the major constituents were well separated within 20 min. A TOF-MS and an IT-MS were used for online identification of the major constituents, and 27 SSs were identified or tentatively identified. Five major bioactive SSs (SSa, SSc, SSd, 6''-O-acetyl-SSa and 6''-O-acetyl-SSd) with obvious peak areas and good resolution were chosen as benchmark substances, and a triple quadrupole MS operating in multiple-reaction monitoring mode was used for their quantitative analysis. A total of 16 RB samples from different regions of China were analyzed. The results indicated that the method was rapid, efficient, accurate and suitable for use in the quality control of RB.

  12. Electro-driven extraction of inorganic anions from water samples and water miscible organic solvents and analysis by ion chromatography.

    PubMed

    Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila

    2014-09-01

    A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  14. Superfund Innovative Technology Evaluation: Demonstration Bulletin: Organic Extraction Utilizing Solvents

    EPA Science Inventory

    This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...

  15. Solvent Extraction for Vegetable Oil Production: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The EPA has identified solvent extraction for vegetable oil production processes as major sources of a single hazardous air pollutant (HAP), n-hexane. Learn more about the rule requirements and regulations, as well as find compliance help

  16. Pressurized solvent extraction of pure food grade starch

    USDA-ARS?s Scientific Manuscript database

    A commercial pressurized solvent extractor was used to remove lipid and non-lipid material from cornstarch using n-propanol/water and ethanol/water mixtures. Yields and chemical composition of the extract fractions were determined. Cornstarch samples were characterized using pasting properties and...

  17. METAL EXTRACTION PROCESS

    DOEpatents

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  18. Steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry for fast determination of volatile components in jujube (Ziziphus jujuba Mill.) extract.

    PubMed

    Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue

    2017-10-13

    Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2  ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.

  19. Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants.

    PubMed

    Okoduwa, Stanley Irobekhian Reuben; Umar, Ismaila A; James, Dorcas B; Inuwa, Hajara M; Habila, James D

    2016-12-15

    To examine the efficacy of three extraction techniques: Soxhlet-extraction (SE), cold-maceration (CM) and microwave-assisted-extraction (MAE) using 80% methanol as solvent. The study was performed on each of 50 g of Vernonia amygdalina (VA) and Occimum gratissimum (OG) leaves respectively. The percentage yield, duration of extraction, volume of solvent used, qualitative and quantitative phytoconstituents present was compared. The biological activities (hypoglycemic effect) were investigated using albino wistar rat model of diabetes mellitus ( n = 36) with a combined dose (1:1) of the two plants leaf extracts (250 mg/kg b.w.) from the three methods. The extracts were administered orally, once daily for 21 d. In this report, the percentage VA extract yield from MAE was highest (20.9% ± 1.05%) within 39 min using 250 mL of solvent, when compared to the CM (14.35% ± 0.28%) within 4320 min using 900 mL of solvent and SE (15.75% ± 0.71%) within 265 min using 500 mL of solvent. The percentage differences in OG extract yield between: MAE vs SE was 41.05%; MAE vs CM was 46.81% and SE vs CM was 9.77%. The qualitative chemical analysis of the two plants showed no difference in the various phytoconstituents tested, but differs quantitatively in the amount of the individual phytoconstituents, as MAE had significantly high yield ( P > 0.05) on phenolics, saponins and tannins. SE technique gave significantly high yield ( P > 0.05) on alkaloid, while CM gave significant high yield on flavonoids. The extracts from CM exhibited a significantly ( P > 0.05) better hypoglycemic activity within the first 14-d of treatment (43.3% ± 3.62%) when compared to MAE (36.5% ± 0.08%) and SE methods (33.3% ± 1.60%). However, the percentage hypoglycemic activity, 21 d post-treatment with 250 mg/kg b.w. extract from MAE was 72.6% ± 1.03% and it was more comparable to 10 mg/kg b.w. glibenclamide treated group (75.0% ± 0.73%), unlike the SE (69.5% ± 0.71%) and CM (69.1% ± 1.03%). CM technique produces extract with better hypoglycemic activity, whereas; MAE is a better option for high yield of phytoconstituents using less solvent within a short time.

  20. Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants

    PubMed Central

    Okoduwa, Stanley Irobekhian Reuben; Umar, Ismaila A; James, Dorcas B; Inuwa, Hajara M; Habila, James D

    2016-01-01

    AIM To examine the efficacy of three extraction techniques: Soxhlet-extraction (SE), cold-maceration (CM) and microwave-assisted-extraction (MAE) using 80% methanol as solvent. METHODS The study was performed on each of 50 g of Vernonia amygdalina (VA) and Occimum gratissimum (OG) leaves respectively. The percentage yield, duration of extraction, volume of solvent used, qualitative and quantitative phytoconstituents present was compared. The biological activities (hypoglycemic effect) were investigated using albino wistar rat model of diabetes mellitus (n = 36) with a combined dose (1:1) of the two plants leaf extracts (250 mg/kg b.w.) from the three methods. The extracts were administered orally, once daily for 21 d. RESULTS In this report, the percentage VA extract yield from MAE was highest (20.9% ± 1.05%) within 39 min using 250 mL of solvent, when compared to the CM (14.35% ± 0.28%) within 4320 min using 900 mL of solvent and SE (15.75% ± 0.71%) within 265 min using 500 mL of solvent. The percentage differences in OG extract yield between: MAE vs SE was 41.05%; MAE vs CM was 46.81% and SE vs CM was 9.77%. The qualitative chemical analysis of the two plants showed no difference in the various phytoconstituents tested, but differs quantitatively in the amount of the individual phytoconstituents, as MAE had significantly high yield (P > 0.05) on phenolics, saponins and tannins. SE technique gave significantly high yield (P > 0.05) on alkaloid, while CM gave significant high yield on flavonoids. The extracts from CM exhibited a significantly (P > 0.05) better hypoglycemic activity within the first 14-d of treatment (43.3% ± 3.62%) when compared to MAE (36.5% ± 0.08%) and SE methods (33.3% ± 1.60%). However, the percentage hypoglycemic activity, 21 d post-treatment with 250 mg/kg b.w. extract from MAE was 72.6% ± 1.03% and it was more comparable to 10 mg/kg b.w. glibenclamide treated group (75.0% ± 0.73%), unlike the SE (69.5% ± 0.71%) and CM (69.1% ± 1.03%). CONCLUSION CM technique produces extract with better hypoglycemic activity, whereas; MAE is a better option for high yield of phytoconstituents using less solvent within a short time. PMID:28031778

Top