Science.gov

Sample records for solvent impregnated resins

  1. Synthesis and characterization of high-stability solvent-impregnated resins

    SciTech Connect

    Alexandratos, S.D.; Ripperger, K.P.

    1998-12-01

    A copolymer comprised of glycidyl methacrylate and N,N-methylenebis(acrylamide) has been defined that can be used to coat solvent-impregnated resins (SIRs). Vinyl groups on the surface of a cross-linked macroporous support were used to anchor the polar copolymer to the surface of the bead. The coated SIR containing di(2-ethylhexyl)phosphoric acid maintained a high level of metal ion complexation (96% Cu(II)) over five cycles while the uncoated SIR dropped from 93% to 11% Cu(II) complexed in three cycles.

  2. Solvent-impregnated resins as an in situ product recovery tool for phenol recovery from Pseudomonas putida S12TPL fermentations.

    PubMed

    van den Berg, Corjan; Wierckx, Nick; Vente, Johan; Bussmann, Paul; de Bont, Jan; van der Wielen, Luuk

    2008-06-15

    The sustainable production of fine/bulk chemicals is often hampered by product toxicity and inhibition to the producing micro-organisms. Consequently, the product must be removed from the micro-organisms' environment. To achieve this, so-called solvent-impregnated resins (SIRs) as well as commercial resins have been added to a Pseudomonas putida S12TPL fermentation that produces phenol as a model compound from glucose. The SIRs contained an ionic liquid which extracts phenol effectively. It was observed that the addition of these particles resulted in an increased phenol production of more than a fourfold while the commercial resin (XAD-4) which is widely used in aromatic removal from aqueous phases, only gave a 2.5-fold increase in volumetric production. (c) 2008 Wiley Periodicals, Inc.

  3. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  4. Low-density resin impregnated ceramic article and method for making the same

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Henline, William D. (Inventor); Hsu, Ming-ta S. (Inventor); Rasky, Daniel J. (Inventor); Riccitiello, Salvatore R. (Inventor)

    1997-01-01

    A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a matrix of ceramic fibers. The fibers of the ceramic matrix are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a matrix of ceramic fibers; immersing the matrix of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers.

  5. Resin impregnation of cellulose nanofibril films facilitated by water swelling

    Treesearch

    Yan Qing; Ronald Sabo; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying...

  6. REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REDFORD CORE MAKING MACHINE. RESIN IMPREGNATED SAND IS BLOWN INTO THE HEATED CORE BOX THAT SETS THE RESIN CREATING THE HARDENED CORE SHOWN HERE. - Southern Ductile Casting Company, Core Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  7. Low Density Resin Impregnated Ceramic Article Having an Average Density of 0.15 to 0.40 G/CC

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Henline, William D. (Inventor); Hsu, Ming-ta S. (Inventor); Rasky, Daniel J. (Inventor); Riccitiello, Salvatore R. (Inventor)

    1996-01-01

    A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a fired preform of ceramic fibers. The fibers of the ceramic preform are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a fired preform of ceramic fibers; immersing the preform of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers.

  8. Comparison of sorption behavior of Th(IV) and U(VI) on modified impregnated resin containing quinizarin with that conventional prepared impregnated resin.

    PubMed

    Hosseini, Mohammad Saeid; Hosseini-Bandegharaei, Ahmad

    2011-06-15

    This paper reports the results obtained by studying the ion-exchange properties of a new solvent impregnated resin (SIR), which was prepared by impregnation of quinizarin (1,4-dihydroxyanthraquinone, QNZ) on Amberlite XAD-16 after nitration of the benzene rings present in its structure. The sorption behavior of Th(IV) and U(VI) on/in the modified SIR was compared with that of the SIR prepared via the conventional method. It was observed that sorption capacity and sorption rate of the modified SIR are significantly greater than the conventional one. The modified SIR was then applied to the extraction of Th(IV) and U(VI) ions at the presence of many co-existence metal ions. The results obtained denote on successful application of this new SIR to analysis of natural water samples spiked to Th(IV) and U(VI) ions.

  9. Apparatus for coating and impregnating filament with resin

    DOEpatents

    Robinson, S.C.; Pollard, R.E.

    1986-12-17

    The present invention is directed to an apparatus for evenly coating and impregnating a filament with binder material. Dimension control and repeatability of the coating and impregnating characteristics are obtained with the apparatus.

  10. Effects of solvent on solution prepregging of the resin system LaRC{trademark}-IAX-2

    SciTech Connect

    Cano, R.J.; Massey, C.P.; St. Clair, T.L.

    1996-12-31

    This work assesses the feasibility of using an alternative solvent for the production of composites from polyimide resin systems via solution prepregging. Previous work on solution prepregging of polyimide systems at NASA Langley Research Center has concentrated on the use of the solvent N-methylpyrrolidinone. An alternative solvent with a similar boiling point, -{gamma}-Butyrolactone, was used to prepare the poly(amide acid) version of LaRC{trademark}-IAX-2. These solutions were subsequently used to prepare prepreg and graphite-reinforced composites. Mechanical properties are presented for the resin system LaRC{trademark}-IAX-2 (4% and 5% offset in stoichiometry and endcapped with phthalic anhydride) impregnated onto Hercules IM7 carbon fiber. Results from this work were compared to data obtained on the same resin system which had been solution prepregged with the solvent N-methylpyrrolidinone.

  11. Stability of the mechanical properties of bulk RE-Ba-Cu-O with resin impregnation

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Murakami, M.

    2001-05-01

    Large single-grain bulk RE-Ba-Cu-O (RE: rare earth elements) superconductors can trap large fields exceeding several teslas and thus can function as very strong quasi-permanent magnets. However, for large grain materials, either the thermal stress or the electromagnetic stress sometimes causes cracking. We have recently found that epoxy resin can penetrate into the bulk superconductors when they are immersed in liquefied resin under low pressures. Dispersing quartz filler can control the thermal expansion coefficient of the resin. With this process, the cracks that are prone to be generated on the large-diameter bulk superconductors can be effectively prevented. In order to reinforce the resin, we also employed the process to cover the bulk surface with the glass fiber fabric followed by resin impregnation. It has been confirmed that both the stability and field-trapping capability are greatly improved with such resin impregnation.

  12. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    DOE PAGES

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less

  13. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    SciTech Connect

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shown to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.

  14. Modification of fast-growing Chinese Fir wood with unsaturated polyester resin: Impregnation technology and efficiency

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Zhao, Zijian; Yi, Songlin; Wang, Tianlong

    In this study, Chinese Fir was impregnated with unsaturated polyester resin to enhance its properties. Samples 20 mm × 20 mm × 20 mm in size were split into different sections with epoxy resin and tinfoil and subjected to an impregnation experiment under various parameters. Vacuum degree was -0.04 MPa, -0.06 MPa or -0.08 MPa and vacuum duration was 15 min, 30 min, or 45 min. The results indicated that impregnation weight percent gain is linearly dependent on curing weight percent gain. Vacuum duration appears to have less influence on the curing weight percent gain than vacuum degree, and impregnation was most successful at the transverse section compared to other sections. The optimal impregnation parameters were 30 min modification under -0.08 MPa vacuum followed by 120 min at atmospheric pressure for samples 200 mm × 100 mm × 20 mm in size. Uneven distribution of weight percent gain and cracking during the curing process suggested that 30 min post-processing at -0.09 MPa vacuum was the most effective way to complete the impregnation process. The sample's bending strength and modulus of elasticity increased after impregnation treatment. Bending strength after impregnation without post-processing reached 112.85%, but reached 71.65% with vacuum-processing; modulus of elasticity improved 67.13% and 58.28% without and with post-processing, respectively.

  15. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  16. Sulfinylcalix[4]arene-impregnated amberlite XAD-7 resin for the separation of niobium(V) from tantalum(V).

    PubMed

    Matsumiya, Hiroaki; Yasuno, Shizu; Iki, Nobuhiko; Miyano, Sotaro

    2005-10-07

    Amberlite XAD-7 resin was impregnated with p-tert-butylsulfinylcalix[4]arene. Niobium(V) was collected on the impregnated resin in yields of more than 90% around pH 5.4, whereas tantalum(V) was negligibly collected. The collected niobium(V) was desorbed with 9 M sulfuric acid nearly quantitatively, hence the separation of niobium(V) from tantalum(V) was successfully achieved.

  17. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  18. Solvent-impregnated agarose gel liquid phase microextraction of polycyclic aromatic hydrocarbons in water.

    PubMed

    Loh, Saw Hong; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2013-08-09

    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.

  19. Mechanical properties of composites made of hybrid fabric impregnated with silica nanoparticles and epoxy resin

    NASA Astrophysics Data System (ADS)

    Kordani, N.; Alizadeh, M.; Lohrasby, F.; Khajavi, R.; Baharvandi, H. R.; Rezanejad, M.; Ahmadzadeh, M.

    2017-09-01

    In this study, the mechanical properties of composites will be examined which were made from Kenaf and hybrid fabric with a simple structure that was coated with epoxy resin and nano silica particles. This fabric cotton has a different situation in terms of yarn score and the type of fiber that is used in textiles. Nano silica particles of 200 nm, polyethylene glycol with 200 molecular weights and ethanol with mechanical weight molecular with ratio of 6:1 will be mixed. Suspension of 60% was chosen according to the silica particles. The D6264 standard test for concentrated force was carried out through the cone edge to determine the strength of each of the samples. Increasing of resistance against penetration in the Kenaf samples from the raw until impregnated with the shear thickening fluid is less than the hybrid samples. Slippage of the fibers with the change of round edge indenter to cone edge indenter has changed. Penetration by cone edge to the cloth is done with lower force and it shows the effect of slippage of fibers on the resistance of the penetration. Samples impregnated with the shear thickening fluid in comparison with epoxy resin have lower resistance. Slippage of natural fibers in comparison with synthetic fibers is lower and on the other hand the average of friction between fibers in the natural fibers is more than synthetic fibers.

  20. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples.

  1. Bond strength of Epiphany sealer prepared with resinous solvent.

    PubMed

    Rached-Junior, Fuad Jacob Abi; Souza-Gabriel, Aline Evangelista; Alfredo, Edson; Miranda, Carlos Eduardo Saraiva; Silva-Sousa, Yara Teresinha Correa; Sousa-Neto, Manoel Damião

    2009-02-01

    This study evaluated in vitro the bond strength of Epiphany sealer prepared with resinous solvent of Epiphany system (Thinning resin) by using a push-out test. Forty maxillary canines were sectioned transversally below the cementoenamel junction to provide 4-mm-thick dentin disks that were centered in aluminum rings and embedded in acrylic resin. Root canals were prepared with tapered diamond bur. Intraradicular dentin was treated with 1% NaOCl for 30 minutes, 17% ethylenediaminetetraacetic acid for 5 minutes, and flushed with distilled water for 1 minute. The specimens were randomly distributed into 4 groups (n = 10) according to the filling material: GI, Epiphany without photoactivation; GII, Epiphany prepared with solvent without photoactivation; GIII, Epiphany followed by photoactivation; and GIV, Epiphany prepared with solvent followed by photoactivation. After the setting time, the specimens were submitted to the push-out test. The highest mean value (14.91 +/- 2.82 MPa) was obtained with Epiphany prepared with solvent followed by photoactivation (GIV), which was statistically different (P < .01) from the other groups. Groups I (8.15 +/- 2.47 MPa), II (9.46 +/- 2.38 MPa), and III (9.80 +/- 2.51 MPa) had inferior bond strength values and were statistically similar among themselves (P > .01). The resinous solvent of Epiphany system increased the bond strength of Epiphany sealer to dentin walls when followed by photoactivation.

  2. Separation of Technetium in Nitric Acid Solution With an Extractant Impregnated Resin

    SciTech Connect

    Jei Kwon Moon; Eil Hee Lee; Chong-Hun Jung; Byung Chul Lee

    2006-07-01

    An extractant impregnated resin (EIR) was prepared by impregnation of Aliquat 336 into Amberlite XAD-4 for separation of technetium from rhodium in nitric acid solution. The prepared EIR showed high preference for rhenium (chemical analogue of technetium) over rhodium. The adsorption isotherms for rhenium were described well by Langmuir equation in both the single and multi-component systems. Maximum adsorption capacities obtained by modelling the isotherms of rhenium were 2.01 meq g{sup -1} and 1.97 meq g{sup -1} for the single and the multi-component systems, respectively. Column tests were also performed to confirm the separation efficiency of rhenium using a jacketed glass column (diam. 11 x L 150). The EIR column showed successful separation of rhenium with the breakthrough volume of about 122 BV for the breakthrough concentration of 0.08. Also the breakthrough data were modelled successfully by assuming a homogeneous diffusion model in the particle phase. The diffusivities obtained from the modelling were in the order of 10{sup -7} cm{sup 2} min{sup -1} for a rhenium. The rhenium adsorbed on the bed could be eluted with a high purity by using a nitric acid solution. (authors)

  3. Effect of intermediate adhesive resin and flowable resin application on the interfacial adhesion of resin composite to pre-impregnated unidirectional S2-glass fiber bundles.

    PubMed

    Polacek, Petr; Pavelka, Vladimir; Özcan, Mutlu

    2014-04-01

    This study evaluated the effect of either an intermediate application of adhesive resin or flowable resin application on the adhesion of particulate filler composite (PFC) to glass fiber-reinforced composite (FRC). Unidirectional, pre-impregnated S2-glass fiber bundles (Dentapreg) (length: 40 mm; thickness: 0.5 mm) were obtained (N = 30, n = 10 per group) and secured in translucent silicone material with the adhesion surface exposed and photopolymerized. They were randomly divided into 3 groups for the following adhesion sequence: A) FRC+PFC, B) FRC+intermediate adhesive resin+PFC, C) FRC+flowable resin+PFC. The PFC was applied in a polyethylene mold onto the FRC and photopolymerized. PFCs were debonded from the FRC surface using shear bond test in a universal testing machine (1 mm/min). After debonding, all specimens were analyzed using scanning electron microscopy to categorize the failure modes. The data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). A significant difference was observed between the groups (p < 0.05). The highest mean bond strength value was obtained with the application of an intermediate layer of adhesive resin (group B: 19.4 ± 1.1 MPa) (p < 0.05) followed by group A (14.1 ± 0.6 MPa) and group C (10.4 ± 0.8 MPa), which were also significantly different from one another (p < 0.05). Group A exclusively presented a combination of partial cohesive failure in the PFC and adhesive failure between the FRC and PFC. While group B showed large cohesive defects in the FRC, in group C, only small cohesive failures were observed in the FRC. Based on the highest mean bond strength and the large cohesive failures within the FRC, application of an intermediate layer of adhesive resin on the S2-glass FRC surface prior to incremental build up of the PFC seems to be compulsory.

  4. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  5. Quantitation of buried contamination by use of solvents. Part 1: Solvent degradation of amine cured epoxy resins

    NASA Technical Reports Server (NTRS)

    Rheineck, A. E.; Heskin, R. A.; Hill, L. W.

    1972-01-01

    The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.

  6. Multi-podant diglycolamides and room temperature ionic liquid impregnated resins: An excellent combination for extraction chromatography of actinides.

    PubMed

    Gujar, R B; Ansari, S A; Verboom, W; Mohapatra, P K

    2016-05-27

    Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (RTIL: C4mimTf2N) on Chromosorb-W (an inert solid support), gave excellent results for the removal of trivalent actinides from acidic waste solutions. Distribution coefficient measurements on several metal ions showed selective sorption of Am(III) over hexavalent uranyl ions and other fission product elements such as strontium and cesium. The sorbed metal ions could be efficiently desorbed with a complexing solution containing guanidine carbonate and EDTA buffer. The sorption of Am(III) on both resins followed pseudo-second order rate kinetics with rate constants of 1.37×10(-6) and 6.88×10(-7)g/cpmmin for T-DGA and C4DGA resins, respectively. The metal sorption on both resins indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) sorption capacities of 4.83±0.21 and 0.52±0.05mg per g of T-DGA and C4DGA resins, respectively. The results of column studies show that these resins are of interest for a possible application for the recovery of hazardous trivalent actinides from dilute aqueous solutions.

  7. Improving the properties of GdBCO magnetic lenses by adopting a new design and resin impregnation

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Y.; Matsumoto, S.; Teranishi, R.; Kiyoshi, T.

    2013-04-01

    High field concentration and magnetothermal stability are critical considerations when designing and fabricating magnetic lenses made from a stack of bulk high-temperature superconducting (HTS) material. In a previous study, we investigated a GdBCO magnetic lens for use as a compact high-field superconducting magnet, but it cracked due to a high flux jump. In the present study, we investigate the magnetic performance of an improved GdBCO lens. This new lens had almost the same dimensions as the previous one, but it was impregnated with epoxy resin to prevent it breaking. The impregnated lens exhibited superior stability and magnetic properties, making it promising for use in a compact magnet system. A maximum field of 13 T was obtained at 20 K with no flux jump.

  8. Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zheng, Y. P.; Kang, F.; Shen, W. C.

    2006-05-01

    Exfoliated graphite-based carbon/carbon composites were prepared using sequence processes of phenolic resin alcohol solution impregnation, carbonization and carbon dioxide (or steam) activation. The textural/structural characteristics of the composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption and mercury porosimetry. The results indicated that the composites were composed of graphite and amorphous carbon. On the surface, the worm-like particles were covered by pyrolytic carbon, which also penetrated into parts of the interior pores of the particles. Macropores still remained in the composite, whereas micropores which were formed by the activation of pyrolytic carbon contributed to most of the pore volume.

  9. Direct measurement of elastic modulus of Nb 3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    NASA Astrophysics Data System (ADS)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-10-01

    Young's modulus of Nb3Sn filaments in Nb3Sn/Cu superconducting composite wire was investigated in detail. Nb3Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb3Sn/Nb barrier and bronze. Then, Nb3Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb3Sn filament modulus. The ratio of Nb3Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb3Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values.

  10. Tunable aqueous polymer-phase impregnated resins-technology-a novel approach to aqueous two-phase extraction.

    PubMed

    van Winssen, F A; Merz, J; Schembecker, G

    2014-02-14

    Aqueous Two-Phase Extraction (ATPE) represents a promising unit operation for downstream processing of biotechnological products. The technique provides several advantages such as a biocompatible environment for the extraction of sensitive and biologically active compounds. However, the tendency of some aqueous two-phase systems to form intensive and stable emulsions can lead to long phase separation times causing an increased footprint for the required mixer-settler devices or the need for additional equipment such as centrifuges. In this work, a novel approach to improve ATPE for downstream processing applications called 'Tunable Aqueous Polymer-Phase Impregnated Resins' (TAPPIR(®))-Technology is presented. The technology is based on the immobilization of one aqueous phase inside the pores of a solid support. The second aqueous phase forms the bulk liquid around the impregnated solids. Due to the immobilization of one phase, phase emulsification and phase separation of ATPE are realized in a single step. In this study, a biodegradable and sustainable aqueous two-phase system consisting of aqueous polyethylene glycol/sodiumcitrate solutions was chosen. The impregnation of different macroporous glass and ceramic solids was investigated and could be proven to be stable. Additionally, the separation of the dye Patent blue V was successfully performed with the TAPPIR(®)-Technology. Thus, the "proof of principle" of this technology is presented.

  11. Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses.

    PubMed

    Braga, Mara E M; Costa, Viviana P; Pereira, Mário J T; Fiadeiro, Paulo T; Gomes, Ana Paula A R; Duarte, Catarina M M; de Sousa, Hermínio C

    2011-11-28

    In this work we employed a supercritical solvent impregnation (SSI) process using a scCO(2)+EtOH (5% molar) solvent mixture to impregnate acetazolamide (ACZ) into commercially available silicone-based soft contact lenses (Balafilcon A, Pure Vision, Bausch & Lomb). Contact lenses (SCLs) drug-loading was studied at 40°C and 50°C, and from 15 MPa up to 20 MPa, and using low depressurization rates in order to avoid any harm to SCLs. The effect of impregnation processing time on the loaded ACZ amounts was also studied (1, 2 and 3h). In vitro drug release kinetics studies were performed and the released ACZ was quantified spectrophotometrically. Several analytical techniques were employed in order to characterize the processed and non-processed SCLs in terms of some of their important functional properties. Obtained results demonstrated that ACZ-loaded therapeutic Balafilcon A SCLs can be successfully prepared using the employed SSI process. Furthermore, it was possible to control ACZ loaded amounts and, consequently, to adjust the final ACZ release levels into the desired therapeutic limits, just by changing the employed operational conditions (P, T, processing time and depressurization rate) and without change some of their most important thermomechanical, surface/wettability and optical properties. Obtained soft contact lenses can be potentially employed as combined biomedical devices for simultaneous therapeutic and correction of refractive deficiencies purposes.

  12. Evaluation of the solvent ability for coal liquefaction using a phenolic resin coal model

    SciTech Connect

    Tagaya, H.; Ono, T.; Chiba, K.

    1988-05-01

    Evaluation of the solvent ability for coal liquefaction was carried out using a phenolic resin coal model. The formation of product phenol increased a resin decomposition progressed. Yallourn coal conversion was correlated very well with phenol yield at 440C for 13 model liquefaction solvents. Phenol yield is found in this study to be one of the most important indicators of the quality of a coal liquefaction solvent. Furthermore, Yallourn coal conversions using a hydrogenated anthracene oil and recycle solvent were predicted from the regression line.

  13. Evaluation of flexural strength of resin interim restorations impregnated with various types of silane treated and untreated glass fibres

    PubMed Central

    Naveen, K.S.; Singh, J.P.; Viswambaran, M.; Dhiman, R.K.

    2015-01-01

    Background Flexural strength is an important mechanical property that determines the long-term prognosis of interim restorations. Studies are lacking regarding the effect of silanation of the various types of glass fibre impregnation on the flexural strength of resin interim restorations. Methods A customized metal die was milled to simulate the prepared abutments of a three-unit fixed dental prosthesis. A total of seventy five samples of interim fixed dental prostheses were prepared using autopolymerizing tooth colour acrylic resin. Unidirectional and woven forms of glass fibres (Stick and Stick Net), which were silane treated and untreated were used to reinforce the resin matrix. Fifteen samples were prepared for each group along with unreinforced group serving as control. The flexural strength was evaluated with universal testing machine. Results The means and standard deviations of flexural strength for different groups were 13.90 ± 2.96 (control), 61.58 ± 5.26 (unidirectional fibres), 30.89 ± 3.60 (woven fibres), 112.05 ± 5.51 (silane treated unidirectional fibres) and 73.85 ± 4.10 (silane treated woven fibres) respectively. The mean flexural strength of silane treated unidirectional fibres (112.05 MPa) was highest and statistically highly significant (P < 0.0001) compared to all other groups. Conclusions Within the limitations of the current study, flexural strength of the reinforced PMMA interim fixed dental prosthesis was significantly higher (P < 0.0001) when compared to the unreinforced PMMA interim fixed dental prosthesis. The use of silane treated unidirectional glass fibres is an effective method of reinforcing interim fixed restorations made of PMMA resins. PMID:26843742

  14. Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography.

    PubMed

    Attallah, M F; Borai, E H; Hilal, M A; Shehata, F A; Abo-Aly, M M

    2011-11-15

    The main goal of this study was to find a novel impregnated resin as an alternative for the conventional resin (KY-2 and AN-31) used for low and intermediate level liquid radioactive waste treatment. Novel impregnated ion exchangers namely, poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenedi-acrylamide-4,4'(5')di-t-butylbenzo 18 crown 6 [P(AM-AA-AN)-DAM/DtBB18C6], poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-dibenzo 18 crown 6 [P(AM-AA-AN)-DAM/DB18C6], and poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-18 crown 6 [P(AM-AA-AN)-DAM/18C6] were prepared and their removal efficiency of some radionuclides was investigated. Preliminary batch experiments were performed in order to study the influence of the different derivatives of 18 crown 6 on the characteristic removal performance. Separation of (134)Cs, (60)Co, (65)Zn and ((152+154))Eu radionuclides from low level liquid radioactive waste was investigated by using column chromatography with P(AM-AA-AN)-DAM/DtBB18C6 and metal salt solutions traced with the corresponding radionuclides. Breakthrough data was obtained in a fixed bed column at room temperature (298K) using different bed heights and flow rates. The breakthrough capacities were found to be 94.7, 83.3, 58.7, 43.1 (mg/g) for (60)Co, (65)Zn, (134)Cs, and ((152+154))Eu, respectively. Pre-concentration and separation of all radionuclides under study have been carried out using different concentration of nitric and/or oxalic acids.

  15. Sorption Characteristics of Aqueous Co(II) on Preformed Iron Ferrite Impregnated into Phenolsulphonic Formaldehyde Resin

    SciTech Connect

    Lee, K. J.; Kim, Y. K.

    2002-02-26

    A series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenolsulphonicformaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. The composite resin prepared by the above method shows stably high removal efficiency (maximally over 3.1 meq./gresin) to Co(II) species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i.e. pH 4.09 to 10.32) implies that the composite resin overcomes the limitations of the conventional ferrite process that is practically applicable only to alkaline conditions. It has been found that both ion exchange (by the organic resin constituent) and surface adsorption (by the inorganic adsorbent constituent) are major reaction mechanisms for removing Co(II) from wastewater, but surface precipitation results in the high sorption capacity to Co(II) beyond normal ion exchange capacity of the phenolsulphonic-formaldehyde resin. Standard enthalpy change derived from van't Hoff equation is 32.0 kJ{center_dot}mol-1 conforming to the typical range for chemisorption or ion exchange. In a wide range of equilibrium Co(II) concentration, the overall isotherm is qualitatively explained by the generalized adsorption isotherm concept proposed by McKinley. At the experimental conditions where the composite resin shows equivalent selectivity to Co(II) and other competing reagents (i.e. EDTA and Na), the ratios of Co(II) to other chemicals turn out to be 2:1 and 1:221, respectively. In addition, the selectivity of the PSF-F to Co(II) species is very high (about 72% of Co(II)-removal efficiency) even when the molar ratio of Co(II) to Ca(II) is 1:30. It is anticipated that the composite resin can also be used for column-operation with process-control by applying external magnetic field, since the rigid bead-type composite resin shows

  16. Method and solvent composition for regenerating an ion exchange resin

    SciTech Connect

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  17. Heatshield material selection for advanced ballistic reentry vehicles. [rayon fiber cloth impregnated with phenolic resin

    NASA Technical Reports Server (NTRS)

    Legendre, P. J.; Holtz, T.; Sikra, J. C.

    1980-01-01

    The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance.

  18. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.

    PubMed

    Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong

    2011-09-27

    Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system.

  19. Flow injection online spectrophotometric determination of uranium after preconcentration on XAD-4 resin impregnated with nalidixic acid.

    PubMed

    Shahida, Shabnam; Ali, Akbar; Khan, Muhammad Haleem; Saeed, Muhammad Mufazzal

    2013-02-01

    In this work, spectrophotometer was used as a detector for the determination of uranium from water, biological, and ore samples with a flow injection system coupled with solid phase extraction. In order to promote the online preconcentration of uranium, a minicolumn packed with XAD-4 resin impregnated with nalidixic acid was utilized. The system operation was based on U(VI) ion retention at pH 6 in the minicolumn at flow rate of 15.2 mL min(-1). The uranium complex was removed from the resin by 0.1 mol dm(-3) HCl at flow rate of 3.2 mL min(-1) and was mixed with arsenazo III solution (0.05 % solution in 0.1 mol dm(-3) HCl, 3.2 mL min(-1)) and driven to flow through cell of spectrophotometer where its absorbance was measured at 651 nm. The influence of chemical (pH and HCl (as eluent and reagent medium) concentration) and flow (sample and eluent flow rate and preconcentration time) parameters that could affect the performance of the system as well as the possible interferents was investigated. At the optimum conditions for 60 s preconcentration time (15.2 mL of sample volume), the method presented a detection limit of 1.1 μg L(-1), a relative standard deviation (RSD) of 0.8 % at 100 μg L(-1), enrichment factor of 30, and a sample throughput of 42 h(-1), whereas for 300 s of the preconcentration time (76 mL of sample volume), a detection limit of 0.22 μg L(-1), a RSD of 1.32 % at 10 μg L(-1), enrichment factor of 150, and a sampling frequency of 11 h(-1) were reported.

  20. Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin.

    PubMed

    Shehata, F A; Attallah, M F; Borai, E H; Hilal, M A; Abo-Aly, M M

    2010-02-01

    A novel impregnated polymeric resin was practically tested as adsorbent material for removal of some hazardous radionuclides from radioactive liquid waste. The applicability for the treatment of low-level liquid radioactive waste was investigated. The material was prepared by loading 4,4'(5')di-t-butylbenzo 18 crown 6 (DtBB18C6) onto poly(acrylamide-acrylic acid-acrylonitril)-N, N'-methylenediacrylamide (P(AM-AA-AN)-DAM). The removal of (134)Cs, (60)Co, (65)Zn , and ((152+154))Eu onto P(AM-AA-AN)-DAM/DtBB18C6 was investigated using a batch equilibrium technique with respect to the pH, contact time, and temperature. Kinetic models are used to determine the rate of sorption and to investigate the mechanism of sorption process. Five kinetics models, pseudo-first-order, pseudo-second-order, intra-particle diffusion, homogeneous particle diffusion (HPDM), and Elovich models, were used to investigate the sorption process. The obtained results of kinetic models predicted that, pseudo-second-order is applicable; the sorption is controlled by particle diffusion mechanism and the process is chemisorption. The obtained values of thermodynamics parameters, DeltaH degrees , DeltaS degrees , and DeltaG degrees indicated that the endothermic nature, increased randomness at the solid/solution interface and the spontaneous nature of the sorption processes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. [Study on interface compatibility and fracture resistance of polyglycidyl methacrylate pre-impregnated quartz fiber reinforced polymethyl methacrylate denture base resin].

    PubMed

    Xu, Ming-ming; Yan, Xu; Deng, Xu-ling

    2015-02-18

    To explore the reinforcement of polyglycidyl methacrylate (PGMA) pre-impregnated quartz fiber mesh in denture base materials by investigation of interface compatibility and fracture resistance. 1-layer, 2-layer, 3-layer PGMA pre-impregnated quartz fiber meshes, electrolyzed cobalt-chromium alloy mesh and cobalt-chromium alloy mesh conditioned by metal primer were integrated in polymethyl methacrylate (PMMA) resin by sandwich embedding method. Block samples of 5 groups were prepared (40 mm×15 mm×2 mm). Fracture resistance was determined in a 3-point bending test at 2 mm/min. Scanning electron microscope (SEM), micrographs were taken from the fractured surfaces to analyze the bonding interface compatibility. The group of 3-layer PGMA pre-impregnated quartz fiber mesh presented the highest elastic modulus of 6 406 MPa and flexural strength of 227 MPa among the five groups, while the 1-layer and 2-layer expressed the similar elastic modulus and flexural strength to the pure PMMA group. The metal groups demonstrated better mechanical properties, while the metal surface conditioner played much better. The metal surface conditioner pre-impregnated cobalt-chromium alloy and PGMA pre-impregnated quartz fiber mesh showed compatible interface with PMMA. The mechanical properties were improved by the increasing of the fiber by adding the more meshed. Although the benign interface did help the compatibility, the quantity of the fibers played an important role in the strength.

  2. Epiphany root canal sealer prepared with resinous solvent is irritating to rat subcutaneous tissues

    PubMed Central

    Daleffe, Élcio; Vieira-Ozório, José E.; Sousa-Neto, Manoel D

    2012-01-01

    Objective: This study assessed the biocompatibility of the Epiphany endodontic sealer prepared with resinous solvent of Epiphany system (Thinning resin) in rat subcutaneous tissues. Study Design: Polyethylene tubes were filled with the sealer and 4 groups were established: GI, Epiphany prepared with 1 drop of resinous solvent (RS); GII, Epiphany prepared with 1 drop of RS and photoactivated; GIII, Epiphany associated with self-etch primer and prepared with 1 drop of RS; GIV, Epiphany associated with self-etch primer, prepared with 1 drop of RS and photoactivated. The filled tubes were implanted into 4 different regions of the dorsum of 20 adult male rats. Results: After 7, 14 and 21 days, all groups presented a moderate to severe chronic inflammation, necrosis and foreign-body giant cells. At 42 days, although the intensity of chronic inflammatory reaction decreased, the other features still were observed. Conclusion: The Epiphany sealer prepared with the RS was irritating to rat subcutaneous tissues. Key words:Biocompatibility, Epiphany, methacrylate resin sealer, resinous solvent, root canal sealer. PMID:22322512

  3. Effects of polar solvents and adhesive resin on the denaturation temperatures of demineralised dentine matrices

    PubMed Central

    Armstrong, Steven R.; Jessop, Julie L.P.; Winn, Erik; Tay, Franklin R.; Pashley, David H.

    2010-01-01

    SUMMARY Objectives To measure the denaturation temperature (Td) of demineralised dentine matrix as a function of infiltration with water vs polar solvents vs adhesive resins. Methods Small disks of normal dentine were completely demineralised in 0.5 M EDTA. Dried demineralised specimens were placed in water, methanol, ethanol, acetone, η-butanol or HEMA. Additional specimens were infiltrated with Prime & Bond NT and polymerised. All specimens sealed in high pressure pans and scanned using differential scanning calorimetry (DSC). Results Demineralised dentine saturated with water showed a Td of 65.6°C that increased with saturation by methanol, ethanol, acetone, η-butanol or HEMA to 148.5°C. These increases in Td were inversely related to the molar concentration of the solvents and to their Hoy’s solubility parameter for hydrogen bonding (δh, p<0.01), as well as directly related to the cube root of their molecular weights (p<0.001). The presence of adhesive resins also increased the Td of demineralised matrices to even higher values depending if the resin bonded dentine was measured after 24 h of water storage (166.8°C) or dry (172.7°C) storage. Conclusions Solvents and monomers with low δh values (i.e. 100% HEMA) increase the Td of demineralized dentin above that produced by solvents with higher δh values such as methanol and water. PMID:18022750

  4. The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent.

    PubMed

    Zhu, P; Chen, Y; Wang, L Y; Zhou, M; Zhou, J

    2013-02-01

    Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm(2) at 145°C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively.

  5. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    PubMed

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  6. Resin-Supported Catalysts for CuAAC Click Reactions in Aqueous or Organic Solvents

    PubMed Central

    Presolski, Stanislav I.; Mamidyala, Sreeman K.; Manzenrieder, Florian

    2012-01-01

    The copper-catalyzed azide-alkyne cycloaddition click reaction is a valuable process for the synthesis of libraries of drug candidates, derivatized polymers and materials, and a wide variety of other functional molecules. In some circumstances, the removal of the copper catalyst is both necessary and inconvenient. We describe here two immobilized forms of a Cu-binding ligand that has been shown to accelerate triazole formation under many different conditions, using different resin supports that are appropriate for aqueous or organic solvents. Copper leaching from these resins was modest, allowing them to be reused in many reaction/filtration cycles without recharging with metal ion. The utility of this catalyst form was demonstrated in the convenient synthesis of 20 N-acetylgalactosamine derivatives for biological testing. PMID:22946559

  7. Resin-supported catalysts for CuAAC click reactions in aqueous or organic solvents.

    PubMed

    Presolski, Stanislav I; Mamidyala, Sreeman K; Manzenrieder, Florian; Finn, M G

    2012-10-08

    The copper-catalyzed azide-alkyne cycloaddition click reaction is a valuable process for the synthesis of libraries of drug candidates, derivatized polymers and materials, and a wide variety of other functional molecules. In some circumstances, the removal of the copper catalyst is both necessary and inconvenient. We describe here two immobilized forms of a Cu-binding ligand that has been shown to accelerate triazole formation under many different conditions, using different resin supports that are appropriate for aqueous or organic solvents. Copper leaching from these resins was modest, allowing them to be reused in many reaction/filtration cycles without recharging with metal ion. The utility of this catalyst form was demonstrated in the convenient synthesis of 20 N-acetylgalactosamine derivatives for biological testing.

  8. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    PubMed

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  9. Color stability of bulk-fill and incremental-fill resin-based composites polished with aluminum-oxide impregnated disks.

    PubMed

    Koc-Vural, Uzay; Baltacioglu, Ismail; Altinci, Pinar

    2017-05-01

    This study aimed to evaluate the color stability of bulk-fill and nanohybrid resin-based composites polished with 3 different, multistep, aluminum-oxide impregnated finishing and polishing disks. Disk-shaped specimens (8 mm in diameter and 4 mm in thickness) were light-cured between two glass slabs using one nanohybid bulk-fill (Tetric EvoCeram, Ivoclar Vivadent), one micro-hybrid bulk-fill (Quixfil, Dentsply), and two nanohybrid incremental-fill (Filtek Ultimate, 3M ESPE; Herculite XRV Ultra, Kerr) resin-based composites, and aged by thermocycling (between 5 - 55℃, 3,000 cycles). Then, they were divided into subgroups according to the polishing procedure as SwissFlex (Coltène/Whaledent), Optidisc (Kerr), and Praxis TDV (TDV Dental) (n = 12 per subgroup). One surface of each specimen was left unpolished. All specimens were immersed in coffee solution at 37℃. The color differences (ΔE) were measured after 1 and 7 days of storage using a colorimeter based on CIE Lab system. The data were analyzed by univariate ANOVA, Mann-Whitney U test, and Friedmann tests (α = 0.05). Univariate ANOVA detected significant interactions between polishing procedure and composite resin and polishing procedure and storage time (p < 0.05). Significant color changes were detected after 1 day storage in coffee solution (p < 0.05), except Quixfil/Optidisc which was color-stable after 7 days (p > 0.05). Polishing reduced the discoloration resistance of Tetric EvoCeram/SwissFlex, Tetric EvoCeram/Praxis TDV, Quixfil-SwissFlex, and all Herculite XRV Ultra groups after 7 days storage (p < 0.05). Discoloration resistance of bulk-fill resin-based composites can be significantly affected by the polishing procedures.

  10. Color stability of bulk-fill and incremental-fill resin-based composites polished with aluminum-oxide impregnated disks

    PubMed Central

    Koc-Vural, Uzay; Baltacioglu, Ismail

    2017-01-01

    Objectives This study aimed to evaluate the color stability of bulk-fill and nanohybrid resin-based composites polished with 3 different, multistep, aluminum-oxide impregnated finishing and polishing disks. Materials and Methods Disk-shaped specimens (8 mm in diameter and 4 mm in thickness) were light-cured between two glass slabs using one nanohybid bulk-fill (Tetric EvoCeram, Ivoclar Vivadent), one micro-hybrid bulk-fill (Quixfil, Dentsply), and two nanohybrid incremental-fill (Filtek Ultimate, 3M ESPE; Herculite XRV Ultra, Kerr) resin-based composites, and aged by thermocycling (between 5 - 55℃, 3,000 cycles). Then, they were divided into subgroups according to the polishing procedure as SwissFlex (Coltène/Whaledent), Optidisc (Kerr), and Praxis TDV (TDV Dental) (n = 12 per subgroup). One surface of each specimen was left unpolished. All specimens were immersed in coffee solution at 37℃. The color differences (ΔE) were measured after 1 and 7 days of storage using a colorimeter based on CIE Lab system. The data were analyzed by univariate ANOVA, Mann-Whitney U test, and Friedmann tests (α = 0.05). Results Univariate ANOVA detected significant interactions between polishing procedure and composite resin and polishing procedure and storage time (p < 0.05). Significant color changes were detected after 1 day storage in coffee solution (p < 0.05), except Quixfil/Optidisc which was color-stable after 7 days (p > 0.05). Polishing reduced the discoloration resistance of Tetric EvoCeram/SwissFlex, Tetric EvoCeram/Praxis TDV, Quixfil-SwissFlex, and all Herculite XRV Ultra groups after 7 days storage (p < 0.05). Conclusions Discoloration resistance of bulk-fill resin-based composites can be significantly affected by the polishing procedures. PMID:28503477

  11. Viscoelastic stability of resin-composites aged in food-simulating solvents.

    PubMed

    Marghalani, Hanadi Y; Watts, David C

    2013-09-01

    To study time-dependent viscoelastic deformation (creep and recovery) of resin-composites, after conditioning in food-simulating solvents, under a compressive stress at 37°C. Five dimethacrylate-based composites: (Spectrum TPH, Premise Body, Tetric Ceram HB, Filtek P60, X-tra fil), and two Ormocers (Experimental Ormocer V 28407, Admira) were studied. Three groups of cylindrical specimens (4mm×6mm) were prepared and then conditioned in 3 solvents: methyl ethyl ketone (MEK), ethanol, and water for 1 month at 37°C. The compressive creep-strain under 35MPa in 37°C water was recorded continuously for 2h and then the unloaded recovery-strain was monitored for another 2h. The data were analyzed by one-way ANOVA and Bonferroni's test. The materials all exhibited classic creep and recovery curves, with most parameters being significantly different (p<0.0001) for each solvent condition. All materials showed lower creep-strain in water than in ethanol or MEK solvents. Maximum creep-strain and permanent-set gave negative linear-regression (r(2)>0.98) with logarithm of the solvent solubility-parameter. The % mean (SD) creep-strain ranged from a minimum of 0.82 (0.01) for the Exp. Ormocer in water to the maximum of 4.19 (0.30) for Admira in MEK. Similar trends were found for permanent-set. The dimethacrylate-based composites behaved as an intermediate group, apart from X-tra fil that had similar stability to the Exp. Ormocer. The viscoelastic stability (low creep and permanent-set) of the Exp. Ormocer, compared to many dimethacrylate-based composites, in food-simulating solvents may be due to its diluent-free formulation. This was closely matched by a highly-filled dimethacrylate material (X-tra fil). Copyright © 2013 Academy of Dental Materials. All rights reserved.

  12. Food Simulating Organic Solvents for Evaluating Crosslink Density of Bulk Fill Composite Resin

    PubMed Central

    Bahgat, Hala A.; Al Kaba, Eman Hussain; Buholayka, Maryam Hussain

    2017-01-01

    Objectives. To evaluate crosslink densities of two bulk fill composite resins and determine if the used Food Simulating Organic Solvent (FSOS) affected them. Methods. Forty specimens were prepared from SureFill and SonicFill bulk fill composite resins, 20 each. All specimens were stored dry for 24 h. Each group was divided into 2 subgroups: stored in ethanol (E) 75% or in methyl ethyl ketone (MEK) 100% for 24 h. Crosslink density was evaluated by calculating the difference between the Vickers hardness numbers of the specimens stored dry and after their storage in FSOS. The data were statistically analyzed using t-test. Results. The means of crosslink density in E and MEK were 6.99% and 9.44% for SureFill and 10.54% and 11.92% for SonicFill, respectively. t-test displayed significant differences between crosslink densities of SureFill and SonicFill: (P < 0.0001) in E and (P = 0.02) in MEK and between crosslink densities of SureFill in E and MEK (P = 0.02). Conclusions. Crosslink density of bulk fill composite resin can be evaluated using E or MEK. SureFill has higher crosslink density than SonicFill in both E and MEK. PMID:28487739

  13. Chemical affinities between the solvent extractable and the bulk organic matter of fossil resin associated with an extinct podocarpaceae

    USGS Publications Warehouse

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.

    1989-01-01

    Analyses by GC-MS and GC-IR of resin associated to Dacridiumites mawsonii deposits, an extinct species of Podocarpaceae occurring on the South Island of New Zealand during the Bortonian (Middle Eocene), have revealed that dehydroabietic acid is the predominant component of the solvent soluble fraction. Accordingly, this diterpenoid has been selected as the principal component material for spectroscopic comparison with the bulk resin using IR and CP/MAS 13C NMR. ?? 1989.

  14. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions.

  15. Effect of resin impregnation on the prevention of crack propagation for bulk Y-Ba-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Murakami, M.

    2003-10-01

    We studied the mechanical properties of bulk Y-Ba-Cu-O superconductors by applying cyclic loads using a three-point bending test setup. X-ray tomography was used to monitor the presence of cracks inside the sample. We also evaluated the adhesive forces between the epoxy resins and bulk Y-Ba-Cu-O superconductors using the tensile test. X-ray tomographic observations showed that cracking was mainly formed along the cleavage plane, although the stress was applied perpendicular to this plane. We confirmed that a strong adhesive force between the resin and bulk materials was responsible for the improvement of the mechanical properties of bulk materials.

  16. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    NASA Technical Reports Server (NTRS)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  17. Determination of V, Cr, Cu, As, and Pb Ions in Water and Biological Samples by Combining ICP-MS with Online Preconcentration Using Impregnated Resin.

    PubMed

    Wang, Shuo; Dong, Xv; Dai, Bingye; Pan, Mingfei; He, Shaoyuan; Wang, Junping

    2015-01-01

    A method was developed for detection of V, Cr, Cu, As, and Pb in water and biological samples by combining online flow injection and preconcentration with inductively coupled plasma-MS. The 2-nitroso-1-naphthol-4-sulfonic acid (Nitroso-S) impregnated MCI GEL CHP20P resin was prepared as an enrichment sorbent. Some parameters affecting the efficiency of the preconcentration process were investigated in the experiment, including the pH and volume of sample solution, the flow rate for sample loading, the type and concentration of eluent, and the influence of co-existing ions. Under the optimal experimental conditions, the enrichment factor and LOD (3s) of chosen metal ions V, Cr, Cu, As, and Pb were in the ranges of 71-268 and 4.89-23.76 ng/L, respectively. Based on 11 repeated measurements of standard solutions (1.0 μg/L), the RSD of the ions ranged from 1.2 to 2.9%. The detection procedure was also performed for analyzing two certified reference materials, GBW 08607 (water) and GBW 10052 (green tea), as well as environmental water and biological samples. Good agreement with certified values and high recoveries have demonstrated improved accuracy of the proposed method.

  18. Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model.

    PubMed

    Brisbois, Elizabeth J; Major, Terry C; Goudie, Marcus J; Bartlett, Robert H; Meyerhoff, Mark E; Handa, Hitesh

    2016-06-01

    Blood-contacting devices, including extracorporeal circulation (ECC) circuits, can suffer from complications due to platelet activation and thrombus formation. Development of nitric oxide (NO) releasing polymers is one method to improve hemocompatibility, taking advantage of the ability of low levels of NO to prevent platelet activation/adhesion. In this study a novel solvent swelling method is used to load the walls of silicone rubber tubing with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). This SNAP-silicone rubber tubing exhibits an NO flux of ca. 1×10(-10)molcm(-2)min(-1), which mimics the range of NO release from the normal endothelium, which is stable for at least 4h. Images of the tubing before and after swelling, obtained via scanning electron microscopy, demonstrate that this swelling method has little effect on the surface properties of the tubing. The SNAP-loaded silicone rubber and silicone rubber control tubing are used to fabricate ECC circuits that are evaluated in a rabbit model of thrombogenicity. After 4h of blood flow, the SNAP-loaded silicone rubber circuits were able to preserve the blood platelet count at 64% of baseline (vs. 12% for silicone rubber control). A 67% reduction in the degree of thrombus formation within the thrombogenicity chamber was also observed. This study demonstrates the ability to improve the hemocompatibility of existing/commercial silicone rubber tubing via a simple solvent swelling-impregnation technique, which may also be applicable to other silicone-based blood-contacting devices. Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent

  19. Onium salt reduces the inhibitory polymerization effect from an organic solvent in a model dental adhesive resin.

    PubMed

    Ogliari, Fabrício A; Ely, Caroline; Lima, Giana S; Conde, Marcus C M; Petzhold, Cesar L; Demarco, Flávio F; Piva, Evandro

    2008-07-01

    This study evaluated the effect of organic solvent concentration on the polymerization kinetics for a model dental adhesive resin containing a ternary photoinitiator system. A monomer blend based on the bis-GMA, TEGDMA, and HEMA was used as a model dental adhesive resin, which was polymerized using a binary system [camphorquinone (CQ) and ethyl 4-dimethylamine benzoate (EDAB)] and a ternary system [CQ, EDAB, and diphenyliodonium hexafluorphosphate (DPIHFP)]. Additionally, these blends had 0, 10, 20, 30, and 40 wt % ethanol added. Real-time Fourier transform infrared spectroscopy was used to investigate the polymerization reaction over photoactivation time. Data were plotted, and Hill's three-parameter nonlinear regression was performed for curve fitting. The addition of a solvent to the monomer blends decreased the polymerization kinetics, directly affecting the rate of polymerization, delaying vitrification, and attenuating the Trommsdorf effect. The introduction of DPIHFP displayed a strong increase in reaction kinetics, reducing the solvent inhibition effect. After 10 s of photoactivation, the binary system obtained in 0, 10, 20, 30, and 40% of ethanol, a degree of conversion of 44.6, 26.3, 13.4, 1.15, and 0.0%, respectively, whereas when a ternary system was used, the values were 54.6, 40.5, 27.4, 14.5, and 3.4%. An improvement was observed in the polymerization kinetics of a model dental adhesive resin when using a ternary photoinitiation system, making the material less sensitive to the residual presence of a solvent before photoactivation.

  20. Bismaleimide resins for flame resistant honeycomb sandwich panels

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H. D.

    1978-01-01

    Bismaleimide resins are prime candidates for nonflammable aircraft interior panels. Three resin types with different structures and processing characteristics were formulated. Resin M 751 was used to fabricate 100 kg of glass fabric prepregs which were used for the preparation of face sheets for honeycomb sandwich panels. Prepreg characteristics and curing cycles for laminate fabrication are provided. In order to advance beyond the current solvent resin technology for fibre and fabric impregnation, a hot melt solvent-less resin system was prepared and characterized. Preliminary tests were performed to develop a wet bonding process for the fabrication of advanced sandwich honeycomb panels by use of polybismaleimide glass fabric face sheets and polybismaleimide Nomex honeycomb core. B-stage material was used for both the core and the face sheet, providing flatwise tensile properties equivalent to those obtained by the state-of-the-art 3-step process which includes an epoxy adhesive resin.

  1. Apparatus Impregnates Weak Fibers

    NASA Technical Reports Server (NTRS)

    Stanfield, Clarence E.; Wilson, Maywood L.

    1989-01-01

    Low-cost apparatus developed for use in conventional drum winding machine to impregnate fibrous materials having very low tensile strengths. Fiber fitted onto freely-spinning unwinding creel. Unwinds from creel between two tension bars onto guide spools, aligns fiber so properly enters sealed reservoir of resin. Stainless-steel metering die at entrance to reservoir aligns fiber and seals reservoir. Beneficial results obtained by use of reservoir made of polyethylene. Composite material made from resin matrices reinforced by fibers have great potential for solving challenging and often critical problems in design of spacecraft, space structures, and terrestrial structures.

  2. Highly porous nanostructured copper foam fiber impregnated with an organic solvent for headspace liquid-phase microextraction.

    PubMed

    Saraji, Mohammad; Ghani, Milad; Rezaei, Behzad; Mokhtarianpour, Maryam

    2016-10-21

    A new headspace liquid-phase microextraction technique based on using a copper foam nanostructure substrate followed by gas chromatography-flame ionization detection was developed for the determination of volatile organic compounds in water and wastewater samples. The copper foam with highly porous nanostructured walls was fabricated on the surface of a copper wire by a rapid and facile electrochemical process and used as the extractant solvent holder. Propyl benzoate was immobilized in the pores of the copper foam coating and used for the microextraction of benzene, toluene, ethylbenzene and xylenes. The experimental parameters such as the type of organic solvent, desorption temperature, desorption time, salt concentration, sample temperature, equilibrium time and extraction time, were investigated and optimized. Under the optimum conditions, the method detection limit was between 0.06 and 0.25μgL(-1). The relative standard deviation of the method for the analytes at 4-8μgL(-1) concentration level ranged from 7.9 to 11%. The fiber-to-fiber reproducibility for three fibers prepared under the same condition was 9.3-12%. The enrichment factor was in the range of 615-744. Different water samples were analyzed for the evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and wastewater samples were in the range of 85-94%. Finally, the extraction efficiency of the method was compared with those of headspace single drop microextraction and headspace SPME with the commercial fibers.

  3. Separation of uranium on polyurethane foam impregnated with trioctylphosphine oxide

    SciTech Connect

    Korkisch, J.; Steffan, I.

    1983-01-01

    A method is described for the quantitative separation of uranium from practically all other elements in 1M hydrochloric acid solution containing ascorbic acid. From such a solution uranium is retained selectively by a column containing open-cell polyurethane foam impregnated with tri-n-octylphosphine oxide (TOPO). The uranium together with TOPO is eluted with ethanol and then it is adsorbed on a column of Dowex 1 anion exchange resin from a HCl-organic solvent system. Uranium is eluted with 1M hydrochloric acid. 5 tables.

  4. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  5. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    PubMed

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  7. The bond strength of adhesive resins to AH plus contaminated dentin cleaned by various gutta-percha solvents.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Demirbuga, Sezer; Pala, Kansad; Cayabatmaz, Muhammed; Topçuoğlu, Gamze

    2015-01-01

    The optimal bonding of adhesives to dentin requires the sealer to be completely removed from dentinal walls. The aim of this study was to investigate the effect of different cleaning procedures using gutta-percha solvents on bond strength of adhesive resins to AH Plus contaminated dentin (APCD). The pulp chamber dentin surfaces were contaminated with AH Plus and cleaned with five different techniques (dry cotton, chloroform, orange oil, eucalyptol, and ethanol). Then, Clearfil SE Bond (CSE) (Kuraray), and Tetric N Bond (TNB) (Ivoclar Vivadent) were applied and filled with a composite resin. The serial sticks (1 × 1 mm) were obtained and tested for microtensile bond strength. Scanning electron microscopy (SEM) was used for analysis of debonded surfaces. Ethanol exhibited the highest bond strength to APCD followed by dry cotton. There was no statistically significant difference between ethanol and dry cotton (p > 0.05). Eucalyptol showed the lowest bond strength to APCD and statistically significant differences (p < 0.05) in comparison with other groups. APCD reduced the bond strength of all adhesive resins. Dry cotton, ethanol, and chloroform were the most suitable techniques when used with CSE together, whereas ethanol was best with TNB.

  8. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  9. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  10. Vacuum-powered bubble-assisted solvent extraction followed by macroporous resin enrichment for isolation of podophyllotoxin from Sinopodophyllum emodi.

    PubMed

    Liu, Tingting; Yang, Lei; Sui, Xiaoyu; Zhang, Jie; Li, Li; Fu, Shuang; Li, Wenjing; Liang, Xin

    2015-10-01

    A vacuum-powered bubble-assisted solvent extraction (VBE) technique was used to extract podophyllotoxin from the root of Sinopodophyllum emodi. We optimized the VBE procedure and showed it had the highest efficiency of extraction compared to other conventional extraction techniques. Based upon the results of single-factor experiments, a three-factor, three-level experiment design was developed by application of a Box-Behnken design. The method was validated by stability, repeatability and recovery experiments. The optimal conditions were: solvent, 60% (v/v) ethanol; particle size of the sample, 60-80 mesh; soak time, 2h; liquid/solid ratio, 21L/kg; air flow, 32mL/min; vacuum-powered bubble extraction time, 65min. The VBE method we developed achieved efficient extraction of podophyllotoxin from S. emodi. The podophyllotoxin extracted can be enriched and separated by an HPD300 macroporous resin adsorption and desorption process. The results indicated that VBE is a convenient, rapid and efficient sample preparation technique.

  11. Influence of solvents on the bond strength of resin sealer to intraradicular dentin after retreatment.

    PubMed

    Palhais, Marcelo; Sousa-Neto, Manoel Damião; Rached-Junior, Fuad Jacob Abi; Amaral, Mariana Carvalho de Andrade; Alfredo, Edson; Miranda, Carlos Eduardo Saraiva; Silva-Sousa, Yara Teresinha Corrêa

    2017-01-26

    This study evaluated the removal of filling material with ProTaper Universal Rotary Retreatment system (PTR) combined with solvents and the influence of solvents on the bond strength (PBS) of sealer to intraradicular dentin after canal reobturation. Roots were endodontically treated and distributed to five groups (n = 12). The control group was not retreated. In the four experimental groups, canals were retreated with PTR alone or in combination with xylol, orange oil, and eucalyptol. After filling material removal, two specimens of each group were analysed by SEM and µCT to verify the presence of filling remnants on root canal walls. The other roots were reobturated and sectioned in 1-mm-thick dentin slices that were subjected to the push-out test. Data were analysed by two-way ANOVA and Tukey's test (α = 0.05). SEM and µCT analysis revealed that all retreatment techniques left filling remnants on canal walls. The control group (3.47 ± 1.21) presented significantly higher (p < 0.05) PBS than the experimental groups. The groups retreated with PTR alone (2.59 ± 0.99) or combined with xylol (2.54 ± 0.77) and orange oil (2.32 ± 0.93) presented similar bond strength (p > 0.05), and differed significantly from the group with eucalyptol (1.89 ± 0.63). The solvents reduced the PBS of the sealer to dentin and no retreatment technique promoted complete removal of filling material.

  12. The pH effect of solvent in silanization on fluoride released and mechanical properties of heat-cured acrylic resin containing fluoride-releasing filler.

    PubMed

    Nakornchai, Natha; Arksornnukit, Mansuang; Kamonkhantikul, Krid; Takahashi, Hidekazu

    2016-01-01

    This study aimed to evaluate the effect of an acidic-adjusted pH of solvent in silanization on the amount of fluoride released and mechanical properties of heat-cured acrylic resin containing a silanized fluoride-releasing filler. The experimental groups were divided into 4 groups; non-silanized, acidic-adjusted pH, non-adjusted pH, and no filler as control. For fluoride measurement, each specimen was placed in deionized water which was changed every day for 7 days, every week for 7 weeks and measured. The flexural strength and flexural modulus were evaluated after aging for 48 h, 1, and 2 months. Two-way ANOVA indicated significant differences among groups, storage times, and its interaction in fluoride measurement and flexural modulus. For flexural strength, there was significant difference only among groups. Acidic-adjusted pH of solvent in silanization enhanced the amount of fluoride released from acrylic resin, while non-adjusted pH of solvent exhibited better flexural strength of acrylic resin.

  13. Bond Strength of Experimental Low-viscosity Resin Materials to Early Enamel Caries Lesions: Effect of Diluent/Solvent Addition.

    PubMed

    Araújo, Tatiany Gabrielle Freire; Sfalcin, Ravana Angelini; de Araújo, Giovana Spagnolo Albamonte; Alonso, Roberta Caroline Brusch; Puppin-Rontani, Regina Maria

    2015-04-01

    To evaluate the effect of different concentrations of monomers and solvents/diluents on the microtensile bond strength (μTBS) bond strength of experimental low-viscosity resins (infiltrants) to enamel caries-like lesions (ECLL). Flat enamel blocks obtained from sound human third molars were submitted to ECLL formation and randomly distributed into 9 groups (n = 10): G1: TEG-DMA 100%; G2: TEG-DMA 80%, ethanol 20%; G3; TEG-DMA 80%, HEMA 20%; G4: TEG-DMA 75%, UDMA 25%; G5: TEG-DMA 60%, UDMA 20%, ethanol 20%; G6: TEG-DMA 60%, UDMA 20%, HEMA 20%; G7: TEG-DMA 75%, bis-EMA 25%; G8: TEG-DMA 60%, bis-EMA 20%, ethanol 20%; G9: TEG-DMA 60%, bis-EMA 20%, HEMA 20%. After etching with 37% phosphoric acid for 60 s, experimental infiltrants were actively applied and photocured for 60 s, then stored in 100% humidity (24 h, 37°C). Hourglass-shaped specimens were obtained and the μTBS test performed (MPa). The fracture patterns were assessed by SEM. Data were submitted to two way-ANOVA and Tukey's tests (α = 0.05). The highest μTBS value was observed for G4 (TEG-DMA/UDMA, 19.18 MPa) and the lowest for G5 (TEG-DMA/UDMA/ethanol, 9.00 MPa). A significant decrease in μTBS was observed for all groups containing ethanol (G2, G5, and G8). The addition of HEMA did not affect μTBS values. Most groups showed a high frequency of mixed failure between infiltrant and enamel. The addition of bis-EMA or UDMA to TEG-DMA-based infiltrants did not improve bond strength to carious enamel. The ethanol addition negatively affected the bonding strength of infiltrants to enamel caries-like lesions, regardless of the resin matrix composition of the infiltrant.

  14. Preparation of codeine-resinate and chlorpheniramine-resinate sustained-release suspension and its pharmacokinetic evaluation in beagle dogs.

    PubMed

    Zeng, Huan-Xiang; Cheng, Gang; Pan, Wei-San; Zhong, Guo-Ping; Huang, Min

    2007-06-01

    Using ion exchange resins (IERs) as carriers, a dual-drug sustained release suspension containing codeine, and chlorpheniramine had been prepared to elevate drug safety, effectiveness and conformance. The codeine resinate and chlorpheniramine resinate beads were prepared by a batch process and then impregnated with Polyethylene glycol 4000 (PEG 4000), respectively. The PEG impregnated drug resinate beads were coated with ethylcellulose as the coating polymer and di-n-butyl-phthalate as plasticizer in ethanol and methylene chloride mixture by the Wurster process. The coated PEG impregnated drug resinate beads were dispersed in an aqueous suspending vehicle containing 0.5% w/w xanthan gum and 0.5% w/w of hydroxypropylmethylcellulose of nominal viscosity of 4000 cps, obtaining codeine resinate and chlorpheniramine resinate sustained-release suspension (CCSS). Codeine phosphate and chlorpheniramine maleate were respectively loaded onto AMBERLITE IRP 69, and PEG 4000 was used to impregnate drug resinate beads to maintain their geometry. Ethylcellulose with di-n-butyl-phthalate in ethanol and methylene chloride mixture for the coating of drug resinate beads was performed in Glatt fluidized bed coater, where the coating solution flow rate was 8-12 g/min, the inlet air temperature was 50-60 degrees C, the outlet air temperature was 32-38 degrees C, the atomizing air pressure was 2.0 bar and the fluidized air pressure was adjusted as required. Few significant agglomeration of circulating drug resinate beads was observed during the operation. The film weight gained 20% w/w and 15% w/w were suitable for the PEG impregnated codeine resinate and chlorpheniramine resinate beads, respectively. Residual solvent content increased with coating level, but inprocess drying could reduce residual solvent content. In the present study, the rates of drug release from both drug resinate beads were measured in 0.05 M and 0.5M KCl solutions. The increased ionic strength generally accelerated

  15. Optimization of the rheological properties of epoxy resins for glass and carbon reinforced plastics

    NASA Astrophysics Data System (ADS)

    Phyo Maung, Pyi; Malysheva, G.; Romanova, I.

    2016-10-01

    Vacuum assisted resin transfer moulding (VARTM) offers advantages such as simplicity, low cost of consumables, and the ability to carry out the impregnation process and curing without using expensive equipment and tooling. In the VARTM process, rheological properties of resin have a critical impact on the impregnation and curing process. In this article, the experimental results of viscosity are presented, including the glass transition temperature, and the tensile and bending strength of the epoxy binders with the amine hardener, which depend on the quantity of its active solvent composition. The active solvent used is diethylene glycol. It shows that for an increase in the content of the active solvent, a reduction in the viscosity and a reduction of the glass transition temperature and strength occurs. The optimum composition of the binder is selected by using the Pareto optimization criteria and the Cayley - Smorodinskaya method. By using the epoxy binder, the active solvent should not exceed 10-15% by weight. This approach helps to optimize the amount of active solvent added to the epoxy resins for the criterion of viscosity, strength, and heat resistance.

  16. Solvents in novolak synthesis

    NASA Astrophysics Data System (ADS)

    Sobodacha, Chet J.; Lynch, Thomas J.; Durham, Dana L.; Paradis, Valerie R.

    1993-09-01

    Novolac resins may be prepared with or without a solvent present. We have found that solvent power greatly affects the properties of the finished resin and thus gives the resist chemist another variable with which to `fine-tune' resist properties. Using designed experiments, we investigated the effect of solvent power, as measured by Hansen's Solubility Parameters, of a number of solvents and solvent mixtures on the final properties of the novolac resin. We found that the relative molecular weight (RMW) and dissolution rate of a novolac resin can be varied by selection of a solvent or solvent mixture with the appropriate polarity and hydrogen- bonding characteristics. The solvent polarity and hydrogen-bonding characteristics may affect the stability of the cresol/formaldehyde transition state, thus causing the observed changes in RMW and dissolution rate.

  17. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  18. Molecularly imprinted phloroglucinol-formaldehyde-melamine resin prepared in a deep eutectic solvent for selective recognition of clorprenaline and bambuterol in urine.

    PubMed

    Liang, Shiru; Yan, Hongyuan; Cao, Jiankun; Han, Yehong; Shen, Shigang; Bai, Ligai

    2017-01-25

    A new molecularly imprinted phloroglucinol-formaldehyde-melamine resin (MIPFMR) was synthesized in a deep eutectic solvent (DES) using phenylephrine as a dummy template. The MIPFMR was used as a solid phase extraction (SPE) sorbent for the selective isolation and recognition of clorprenaline (CLP) and bambuterol (BAM) in urine. Phloroglucinol and melamine were used as double functional monomers that introduced abundant hydrophilic groups (such as hydroxyl groups, imino groups, and ether linkages) into the MIPFMR, making it compatible with aqueous solvents. In addition, the formation of DES by combining the quaternary ammonium salt of choline chloride with ethylene glycol as a hydrogen bond donor was an environmentally safe alternative to toxic organic solvents such as chloroform and dimethylsulfoxide that are typically used in the preparation of most molecularly imprinted polymers (MIPs). Moreover, MIPFMR-based SPE of CLP and BAM in urine resulted in higher recoveries and purer extracts than those obtained by using other SPE materials (e.g., SCX, C18, HLB, and non-imprinted phloroglucinol-formaldehyde-melamine resin (NIPFMR)). The optimized MIPFMR-SPE-HPLC-UV method had good linearity (r(2) ≥ 0.9996) ranging from 15.0 to 3000.0 ng mL(-1) for CLP and BAM, and the recoveries at three spiked levels ranged from 91.7% to 100.1% with RSDs ≤7.6%. The novel MIPFMR-SPE-HPLC-UV method is simple, selective, and accurate, and can be used for the determination of CLP and BAM in urine samples.

  19. Liquefaction of coal impregnated with catalyst during preswelling

    SciTech Connect

    Brannan, C.J.; Curtis, C.W.; Cronauer, D.C.

    1994-12-31

    The effect of impregnating coal with slurry phase catalysts during solvent preswelling on coal conversion was investigated. Black Thunder subbituminous coal which was either untreated or pretreated with aqueous SO{sub 2} was used. The coal was placed into the swelling solvents, THF, methanol or isopropanol, for 96 hr prior to liquefaction. Slurry phase catalysts, Mo naphthenate, Molyvan L and Ni octoate, were introduced into the swelling solvents; catalyst uptake by coal was 90 to 95% of the catalyst introduced. Coal conversions of these impregnated coals were obtained at 410{degrees}C in reaction solvents of 1-methylnaphthalene, coal-derived V1074, and dihydroanthracene, and were compared to those obtained with swelled and nonswelled coals. The swelling solvent and the SO{sub 2} pretreatment affected the amount of coal conversion obtained. Coal conversions achieved with impregnated coals were somewhat less than those achieved when the catalyst was added directly to the reactor.

  20. The National Shipbuilding Research Program. Development of Non-Polluting, Solvent-Free, Liquid Resin Coating Systems For Ships

    DTIC Science & Technology

    1974-01-01

    form coatings; in one case a styrenated polyster coating which was applied 30 to 50 roils thick and set in less than one minute, and in another...to cure this resin with peroxides and catalysts were unsuccessful. It is believed that nonvolatile, unsaturated polyesters, or acrylics might be

  1. Degradation free epoxy impregnation of REBCO coils and cables

    NASA Astrophysics Data System (ADS)

    Barth, C.; Bagrets, N.; Weiss, K.-P.; Bayer, C. M.; Bast, T.

    2013-05-01

    In applications utilizing high-temperature superconductors (HTS) under high mechanical loads as high-field magnets or rotors of generators and motors, the rare-earth-barium-copper-oxide (REBCO) tapes have to be stabilized mechanically. This is achieved using support structures of structural materials and filling the voids in the support through the impregnation of the tapes. The impregnation prevents movement of the tapes and distributes mechanical loads evenly. With high mechanical strengths and low sensitivities to rapid temperature changes, epoxy resins are desired materials for the impregnation of superconductor tapes. However, a strong decrease of the current-carrying capabilities was observed in previous epoxy-impregnated REBCO coils. In this work the thermal expansion mismatches between epoxy resins and REBCO tapes are identified as the cause of these degradations. Fillers are used to reduce the thermal expansions of glues and resins. Mixtures with varying filler contents are analyzed systematically. Their thermal expansions and the corresponding degradations of short REBCO tape samples are measured. A mixture of epoxy resin and filler is found which allows degradation-free impregnation of REBCO tapes. This mixture is validated on a 1.2 m long 15 × 5 Roebel-assembled-coated-conductor (RACC) cable from Industrial Research Limited (IRL).

  2. Drug loading of foldable commercial intraocular lenses using supercritical impregnation.

    PubMed

    Bouledjouidja, A; Masmoudi, Y; Sergent, M; Trivedi, V; Meniai, A; Badens, E

    2016-03-16

    The drug delivery through intraocular lenses (IOLs) allows the combination of cataract surgery act and postoperative treatment in a single procedure. In order to prepare such systems, "clean" supercritical CO2 processes are studied for loading commercial IOLs with ophthalmic drugs. Ciprofloxacin (CIP, an antibiotic) and dexamethasone 21-phosphate disodium (DXP, an anti-inflammatory drug) were impregnated into foldable IOLs made from poly-2-hydroxyethyl methacrylate (P-HEMA). A first pre-treatment step was conducted in order to remove absorbed conditioning physiological solution. Supercritical impregnations were then performed by varying the experimental conditions. In order to obtain transparent IOLs and avoid the appearance of undesirable foaming, it was necessary to couple slow pressurization and depressurization phases during supercritical treatments. The impregnation yields were determined through drug release studies. For both drugs, release studies show deep and reproducible impregnation for different diopters. For the system P-HEMA/CIP, a series of impregnations was performed to delimit the experimental range at two pressures (80 and 200 bar) in the presence or absence of ethanol as a co-solvent for two diopters (+5.0 D and +21.0 D). Increase in pressure in the absence of a co-solvent resulted in improved CIP impregnation. The addition of ethanol (5 mol%) produced impregnation yields comparable to those obtained at 200 bar without co-solvent. A response surface methodology based on experimental designs was used to study the influence of operating conditions on impregnation of IOLs (+21.0 D) in the absence of co-solvent. Two input variables with 5 levels each were considered; the pressure (80-200 bar) and the impregnation duration (30-240 min). CIP impregnation yields ranging between 0.92 and 3.83 μg CIP/mg IOL were obtained from these experiments and response surface indicated the pressure as a key factor in the process. The DXP impregnation in P-HEMA was

  3. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Van Speybroeck, Michiel; Schueller, Laurent; Badens, Elisabeth

    2016-02-29

    Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation.

  4. Evaluation of the Shear Bond Strength of Composite Resin to Wet and Dry Enamel Using Dentin Bonding Agents Containing Various Solvents

    PubMed Central

    Ramarao, Sathyanarayanan; John, Bindu Meera; Rajesh, Praveen; Swatha, S

    2017-01-01

    Introduction Bonding of composite resin to dentin mandates a wet substrate whereas, enamel should be dry. This may not be easily achievable in intracoronal preparations where enamel and dentin are closely placed to each other. Therefore, Dentin Bonding Agents (DBA) are recommended for enamel and dentinal bonding, where enamel is also left moist. A research question was raised if the “enamel-only” preparations will also benefit from wet enamel bonding and contemporary DBA. Aim The aim of this study was to compare the shear bond strengths of composite resin, bonded to dry and wet enamel using fifth generation DBA (etch and rinse system) containing various solvents such as ethanol/water, acetone and ethanol. Materials and Methods The crowns of 120 maxillary premolars were split into buccal and lingual halves. They were randomly allocated into four groups of DBA: Group 1-water/ethanol based, Group 2-acetone based, Group 3-ethanol based, Group 4-universal bonding agent (control group). The buccal halves and lingual halves were bonded using the wet bonding and dry bonding technique respectively. After application of the DBAs and composite resin build up, shear bond strength testing was done. Results Group 1 (ethanol/water based ESPE 3M, Adper Single Bond) showed highest bond strength of (23.15 MPa) in dry enamel. Group 2 (acetone based Denstply, Prime and Bond NT, showed equal bond strength in wet and dry enamel condition (18.87 MPa and 18.02 MPa respectively). Conclusion Dry enamel bonding and ethanol/water based etch and rinse DBA can be recommended for “enamel-only” tooth preparations. PMID:28274042

  5. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  6. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  7. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  8. A Modeling Approach to Fiber Fracture in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong

    2017-02-01

    The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

  9. ODC-Free Solvent Implementation for Phenolics Cleaning

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Biegert, Lydia; Lamont, DT; McCool, Alex (Technical Monitor)

    2001-01-01

    During phenolic liner manufacture, resin-impregnated (pre-preg) bias tape of silica, glass, or carbon cloth is tape-wrapped, cured, machined, and then wiped with 1,1,1 tri-chloroethane (TCA) to remove contaminants that may have been introduced during machining and handling. Following the TCA wipe, the machined surface is given a resin wet-coat and over-wrapped with more prepreg and cured. A TCA replacement solvent for these wiping operations must effectively remove both surface contaminants, and sub-surface oils and greases while not compromising the integrity of this interface. Selection of a TCA replacement solvent for phenolic over-wrap interface cleaning began with sub-scale compatibility tests with cured phenolics. Additional compatibility tests included assessment of solvent retention in machined phenolic surfaces. Results from these tests showed that, while the candidate solvent did not degrade the cured phenolics, it was retained in higher concentrations than TCA in phenolic surfaces. This effect was most pronounced with glass and silica cloth phenolics with steep ply angles relative to the wiped surfaces.

  10. Dry PMR-15 Resin Powders

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  11. Bath impregnation of carbon anodes

    SciTech Connect

    Perruchoud, R.C.; Meier, M.W.; Fischer, W.K.

    1996-10-01

    A rapid bath impregnation in anode butts set in contact with the cathodic metal has been observed. The sodium content of the butts is raised by 0.2% per minute of contact. Slower rates of impregnation have been measured in cases of pot current interruptions. The impact of the impregnated butts on the anode reactivity is so dramatic that sorting of these butts is absolutely needed. Critical electrolysis conditions which may lead to impregnation are reviewed and the mechanism of impregnation is examined.

  12. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  13. GRAPHITE IMPREGNATION METHOD

    DOEpatents

    Kertesz, F.; Buttram, H.J.

    1962-04-24

    ABS>A method for impregnating a refractory material by filling its pores with a first salt having a high melting temperature is described. The salt is mixed with another, more volatile salt, giving the mixture a much lower melting temperature than that of the first salt. The material is coated with the mixture, then heated to drive off the volatile salt, leaving the first salt in place. (AEC)

  14. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  15. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  16. Phenoxy resins containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    As part of an effort on tougher/solvent resistant matrix resins for composites, research was directed towards exploring methods to improve the solvent resistance of linear amorphous thermoplastics. Ethyl reactive groups were placed on the ends of oligomers and pendent along the polymer chain and subsequently thermally reacted to provide crosslinking and thus improvement in solvent resistance. This concept is extended to another thermoplastic, a phenoxy resin. A commercially available phenoxy resin (PKHH) was systematically modified by reaction of the pendent hydroxyl groups on the phenoxy resin with various amounts of 4-ethynylbenzoyl chloride. As the pendent ethynyl group content in the phenoxy resin increased, the cured resin exhibited a higher glass transition temperature, better solvent resistance and less flexibility. The solvent resistance was further improved by correcting a low molecular weight diethynyl compound, 2,2-bis(4-ethynylbenzoyloxy-4'-phenyl)propane, with a phenoxy resin containing pendent ethynyl groups.

  17. Differential scanning calorimetry of the effects of temperature and humidity on phenol-formaldehyde resin cure

    Treesearch

    X.-M. Wang; B. Riedl; A.W. Christiansen; R.L. Geimer

    1994-01-01

    Phenol-formaldehyde (PF) resin is a widely used adhesive in the manufacture of wood composites. However, curing behaviour of the resin under various environmental conditions is not well known. A differential scanning calorimeter was employed to characterize the degree of resin cure in this study. Resin-impregnated glass cloth samples with varied moisture contents (0,31...

  18. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergia odorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography.

    PubMed

    Li, Lu; Liu, Ju-Zhao; Luo, Meng; Wang, Wei; Huang, Yu-Yan; Efferth, Thomas; Wang, Hui-Mei; Fu, Yu-Jie

    2016-10-15

    In this study, green and efficient deep eutectic solvent-based negative pressure cavitation-assisted extraction (DES-NPCE) followed by macroporous resin column chromatography was developed to extract and separate four main isoflavonoids, i.e. prunetin, tectorigenin, genistein and biochanin A from Dalbergia odorifera T. Chen leaves. The extraction procedure was optimized systematically by single-factor experiments and a Box-Behnken experimental design combined with response surface methodology. The maximum extraction yields of prunetin, tectorigenin, genistein and biochanin A reached 1.204, 1.057, 0.911 and 2.448mg/g dry weight, respectively. Moreover, the direct enrichment and separation of four isoflavonoids in DES extraction solution was successfully achieved by macroporous resin AB-8 with recovery yields of more than 80%. The present study provides a convenient and efficient method for the green extraction and preparative separation of active compounds from plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  20. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  1. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  2. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  3. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, D.W.

    1984-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including means for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  4. Machine for applying a two component resin to a roadway surface

    DOEpatents

    Huszagh, Donald W.

    1985-01-01

    A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including apparatus for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.

  5. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOEpatents

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  6. A Model for Tow Impregnation and Consolidation for Partially Impregnated Thermoset Prepregs

    SciTech Connect

    John J. Gangloff Jr; Shatil Sinha; Suresh G. Advani

    2011-05-23

    The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presented that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.

  7. A Model for Tow Impregnation and Consolidation for Partially Impregnated Thermoset Prepregs

    SciTech Connect

    John J. Gangloff Jr; Shatil Sinha; Suresh G. Advani

    2011-05-23

    The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presented that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.

  8. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  9. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  10. Separation, preconcentration and inductively coupled plasma-mass spectrometric (ICP-MS) determination of thorium(IV), titanium(IV), iron(III), lead(II) and chromium(III) on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin.

    PubMed

    Aydin, Funda Armagan; Soylak, Mustafa

    2010-01-15

    A simple and effective method is presented for the separation and preconcentration of Th(IV), Ti(IV), Fe(III), Pb(II) and Cr(III) by solid phase extraction on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin prior to their inductively coupled plasma-mass spectrometric determinations. The influence of analytical parameters including pH of the aqueous solution, flow rates of sample and eluent solutions and sample volume on the quantitative recoveries of analyte ions was investigated. Matrix effects caused by the presence of alkali, earth alkali and some metal ions in the analyzed solutions were investigated. The presented solid phase extraction method was applied to BCR-144R Sewage Sludge (domestic origin), BCR-141R Calcareous Loam Soil, NIST 1568a Rice Flour and NIST 1577b Bovine Liver certified reference materials (CRMs) for the determination of analyte ions and the results were in good agreement with the certified values. The separation procedure presented was also applied to the various natural water samples collected from Turkey with satisfactory results.

  11. Ion-exchange chromatographic separation of anions on hydrated bismuth oxide impregnated papers

    SciTech Connect

    Dabral, S.K.; Muktawat, K.P.S.; Rawat, J.P.

    1988-04-01

    A comparative study of the chromatographic behavior of anions, iodide, sulfide, phosphate, arsenate, arsenite, vanadate, chromate, dichromate, thiosulfate, thiocyanate, ferricyanide and ferrocyanide on papers impregnated with hydrated bismuth oxide and untreated Whatman no.1 paper has been made by employing identical aqueous, non-aqueous and mixed solvent system. Sharp and compact spots were obtained with impregnated papers whereas the opposite applied to plain papers. Various analytically important binary and ternary separations are reported.

  12. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  13. Properties of powder-impregnated graphite/PEKK

    NASA Technical Reports Server (NTRS)

    Bucher, R. A.; Hinkley, J. A.

    1992-01-01

    Poly Ether Ketone Ketone (PEKK) powders were prepregged on AS4 (12K), IM7 (12K), and G30-500 (12K) carbon fibers and consolidated into unidirectional laminates. The preferred formulation of PEKK for the dry powder process was identified. Mechanical test data on panels prepared via the powder process agreed well with flex, short beam shear, and double cantilever beam values obtained previously on melt-impregnated material. IM7/PEKK composites showed superior mechanical properties to AS4/PEKK and G30-500/PEKK composites. Transverse flexural strength and fiber/resin contact angle correlated well as measures of the fiber/matrix interfacial strength.

  14. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    SciTech Connect

    J.G. Hubrig; G.H. Biallas

    2005-05-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  15. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  16. Pyrolysis of phenolic impregnated carbon ablator (PICA).

    PubMed

    Bessire, Brody K; Lahankar, Sridhar A; Minton, Timothy K

    2015-01-28

    Molar yields of the pyrolysis products of thermal protection systems (TPSs) are needed in order to improve high fidelity material response models. The volatile chemical species evolved during the pyrolysis of a TPS composite, phenolic impregnated carbon ablator (PICA), have been probed in situ by mass spectrometry in the temperature range 100 to 935 °C. The relative molar yields of the desorbing species as a function of temperature were derived by fitting the mass spectra, and the observed trends are interpreted in light of the results of earlier mechanistic studies on the pyrolysis of phenolic resins. The temperature-dependent product evolution was consistent with earlier descriptions of three stages of pyrolysis, with each stage corresponding to a temperature range. The two main products observed were H2O and CO, with their maximum yields occurring at ∼350 °C and ∼450 °C, respectively. Other significant products were CH4, CO2, and phenol and its methylated derivatives; these products tended to desorb concurrently with H2O and CO, over the range from about 200 to 600 °C. H2 is presumed to be the main product, especially at the highest pyrolysis temperatures used, but the relative molar yield of H2 was not quantified. The observation of a much higher yield of CO than CH4 suggests the presence of significant hydroxyl group substitution on phenol prior to the synthesis of the phenolic resin used in PICA. The detection of CH4 in combination with the methylated derivatives of phenol suggests that the phenol also has some degree of methyl substitution. The methodology developed is suitable for real-time measurements of PICA pyrolysis and should lend itself well to the validation of nonequilibrium models whose aim is to simulate the response of TPS materials during atmospheric entry of spacecraft.

  17. Refractory-metal compound impregnation of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.

    1969-01-01

    Process impregnates polytetrafluoroethylene /PTFE/ with rhenium or molybdenum compounds. The refractory metals impregnated PTFE combines chemical inertness with electrical conductivity. They are useful for electro-chemical cells, chemical processing equipment, catalysts, electrostatic charge removal, RF gasketing, and cable shielding.

  18. Dynamic Impregnator Reactor System (Poster)

    SciTech Connect

    Not Available

    2012-09-01

    IBRF poster developed for the IBRF showcase. Describes the multifarious system designed for complex feedstock impregnation and processing. IBRF feedstock system has several unit operations combined into one robust system that provides for flexible and staged process configurations, such as spraying, soaking, low-severity pretreatment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation.

  19. Antifungal activity of antimicrobial-impregnated devices.

    PubMed

    Darouiche, R O; Mansouri, M D; Kojic, E M

    2006-04-01

    The in-vitro and in-vivo efficacy against Candida albicans and Candida krusei of devices impregnated with chlorhexidine and chloroxylenol was examined. The impregnated devices produced large zones of inhibition against both organisms (mean size, 39 mm and 38 mm, respectively). In a rabbit model in which segments of silicone catheters were placed percutaneously, non-impregnated devices were twice as likely as impregnated devices to become colonised with either C. albicans or C. krusei. Impregnated devices also had significantly lower colony counts of C. albicans (58 vs. 1361 CFU; p 0.008) and C. krusei (19 vs. 764 CFU; p 0.008).

  20. Beneficiation of natural aggregates by polymer impregnation

    SciTech Connect

    Webster, R.P.; Fontana, J.J.

    1980-09-01

    The use of polymer impregnation as a means of upgrading natural aggregates has been investigated. The effect of polymer impregnation on the physical and mechanical properties was evaluated in a series of tests performed using four aggregates of varying quality. The strength of concrete cast with polymer impregnated coarse aggregate was also tested. Two monomer systems were used in the investigation; a methyl methacrylate-based system and a styrene-based system. In general, significant improvements in the physical and mechanical properties of each of the four aggregates resulted from polymer impregnation. The strength of concrete cast with impregnated aggregates varied, being increased in some cases and decreased in others.

  1. A Method for Characterizing PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Roberts, G. D.; Lauver, R. W.

    1986-01-01

    Quantitative analysis technique based on reverse-phase, highperformance liquid chromatography (HPLC) and paired-ion chromatography (PIC) developed for PMR-15 resins. In reverse-phase HPLC experiment, polar solvent containing material to be analyzed passed through column packed with nonpolar substrate. Composition of PMR-15 Resin of 50 weight percent changes as resin ages at room temperature. Verification of proper resin formulation and analysis of changes in resin composition during storage important to manufacturers of PMR-15 polymer matrix composite parts. Technique especially suitable for commercial use by manufacturers of high-performance composite components.

  2. Impregnation transition in a powder

    NASA Astrophysics Data System (ADS)

    Raux, Pascal; Cockenpot, Heloise; Quere, David; Clanet, Christophe

    2011-11-01

    When an initially dry pile of micrometrical grains comes into contact with a liquid, one can observe different behaviors, function of the wetting properties. If the contact angle with the solid is low, the liquid will invade the pile (impregnation), while for higher contact angles, the grains will stay dry. We present an experimental study of this phenomenon: a dry pile of glass beads is deposed on the liquid surface, and we vary the contact angle of the liquid on the grains. We report a critical contact angle below which impregnation always occurs, and develop a model to explain its value. Different parameters modifying this critical contact angle are also investigated. Collaboration with Marco Ramaioli, Nestle Research Center, Lausanne, Switzerland.

  3. Resin Characterization

    DTIC Science & Technology

    2015-06-01

    resin system. 2.0 Scope This standard process description (SPD) provides a general guideline for evaluating and understanding composite resins in the...to all personnel developing and evaluating resins technology for composites applications in the Coatings, Corrosion, and Engineered Polymers Branch...relevant work within the branch. 5.0 Requirements All researchers performing composite resins development and evaluation work in the Coatings

  4. Effect of PF impregnation and surface densification on the mechanical properties of small-scale wood laminated poles

    Treesearch

    Huaqiang Yu; Chung Y. Hse; Zehui Jiang

    2009-01-01

    The wood poles in the United States are from high-valued trees that are becoming more expensive and less available. Wood laminated composite poles (LCP) are a kind of alternative to solid poles. Considerable interest has developed in last century in the resin impregnation and wood surface densification to improve its physical and mechanical properties. In this...

  5. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... boiling 4.2N HC1 Viscosity No.(mL/g) Maximum extractable fractionin selected solvents (expressed in percent by weight of resin) Water 95percent ethyl alcohol Ethyl acetate Benzene 1. Nylon 66 resins 1.14... determined by weighing a 1-gram to 5-gram sample first in air and then in freshly boiled distilled water...

  6. Liquid-impregnated porous polypropylene surfaces for liquid repellency.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2017-02-01

    Polypropylene is a popular plastic material used in consumer packaging. It would be desirable if such plastic containers were liquid repellent and not so easily fouled by their contents. Superomniphobic surfaces typically work by keeping the fouling liquid in a metastable state, with trapped pockets of air between the substrate and the liquid. An alternative method with greater long-term stability utilizes liquid-impregnated surfaces, where the liquid being repelled slides over an immiscible liquid immobilized on a porous surface. Here, we report a method for creating porous polypropylene surfaces amenable to liquid-impregnation. A solvent-nonsolvent polypropylene solution was deposited at high temperature to achieve the necessary porosity. Such surfaces were further functionalized with fluorosilane and dipped in the lubricating liquid to result in a durable, liquid-repellent surface. It is believed these liquid-impregnated surfaces will be more industrially viable than previous examples due to the ease of fabrication and their durability. These surfaces were found to exhibit repellency towards water, oils, shampoo, and laundry detergent with extremely low tilt angles due to the smooth liquid-liquid contact between the lubricating liquid and the liquid being repelled.

  7. Sealing of thermal spray coatings by impregnation

    NASA Astrophysics Data System (ADS)

    Knuuttila, J.; Sorsa, P.; Mäntylä, T.; Knuuttila, J.; Sorsa, P.

    1999-06-01

    Results from the sealing of porosity by impregnation show that below a certain wetting angle of the sealant, high penetration depths are achieved. However, only sealants with very low curing shrinkages can prevent the transport of electrolyte through the coating. Various sealant types and impregnation methods are discussed, and factors influencing impregnation and sealing ability of sealants are reviewed. Experimental results from the sealing of plasma-sprayed aluminum-oxide coatings are presented.

  8. Exposure to creosote in the impregnation and handling of impregnated wood.

    PubMed

    Heikkilä, P R; Hämeilä, M; Pyy, L; Raunu, P

    1987-10-01

    The major components of vapors and polycyclic aromatic hydrocarbons in particulate matter were identified and quantified in two creosote impregnation plants and in the handling of treated wood. The vapors were collected on XAD-2 resin (recovery in the range of 82-102%) and analyzed by gas chromatography. Particulate polycyclic aromatic hydrocarbons were collected on glass fiber filters and analyzed with high-pressure liquid chromatography with a fluorescence detector. The main components of the vapors were naphthalene, methyl naphthalenes, indene, phenol, and its methyl homologues, benzothiophene, diphenyl, acenaphthene and fluorene. The exposure of the workers to vapors varied between 0.1 and 11 mg/m3. The concentrations of particulate polycyclic aromatic hydrocarbons varied between 0.2 and 46 micrograms/m3. The benzo(a)pyrene concentration was under 0.03 micrograms/m3, except in manual metal-arc welding and in the boring of railroad ties, where it was 0.24-0.89 micrograms/m3. In the measurement of creosote vapors, naphthalene could be used as an indicator agent.

  9. Coupling Agents - HME Resin System.

    DTIC Science & Technology

    1977-12-01

    and test results of the sized fiber impregnated with lIME 5803—53 resin and laminated are shown in Table 2. The slig htl y improved SBS strength of...inherent in the 9 - - -~~~~ . ~~~~~~~~~~~~~~~~ ~~- % . - ~, - • - - - ~~~~~~~~~~~~ — — ~~~~~~~~ free radical—induced crosslink cures. As this shrinkage

  10. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  11. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, Gene W.; Roybal, Herman E.

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  12. Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.

    2001-01-01

    The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.

  13. Fire- and Heat-Resistant Laminating Resins

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Mikroyannidis, John A.

    1987-01-01

    Imide compounds containing phosphourus thermally polymerized. New maleimido- or citraconimido-end-capped monomers, have relatively low melting temperatures, polymerized at moderate temperatures to rigid bisimide resins without elimination of volatiles. Monomers dissolve in such solvents as methyl ethyl ketone, acetone, and tetrahydrofuran, suitable and perferred as "varnish solvents" for composite fabrication. Low melting points of these componds allow use as adhesives without addition of solvents.

  14. Fire- and Heat-Resistant Laminating Resins

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Mikroyannidis, John A.

    1987-01-01

    Imide compounds containing phosphourus thermally polymerized. New maleimido- or citraconimido-end-capped monomers, have relatively low melting temperatures, polymerized at moderate temperatures to rigid bisimide resins without elimination of volatiles. Monomers dissolve in such solvents as methyl ethyl ketone, acetone, and tetrahydrofuran, suitable and perferred as "varnish solvents" for composite fabrication. Low melting points of these componds allow use as adhesives without addition of solvents.

  15. Fabrication and Evaluation of Graphite Fiber-Reinforced Polyimide Composite Tube Forms Using Modified Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob

    1997-01-01

    The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.

  16. Ultrastructural detection of kinetochores by silver impregnation.

    PubMed

    Rufas, J S; Mazzella, C; García de la Vega, C; Suja, J A

    1994-09-01

    We describe a simple silver impregnation method for the ultrastructural detection of kinetochores on meiotic chromosomes of the grasshopper Eyprepocnemis plorans. Testes were fixed with glutaraldehyde and silver-impregnated. After Epon 812 embedding, ultrathin cutting and counterstaining with uranyl acetate, sections were studied by transmission electron microscopy. The meiotic chromosomes showed differentially silver-impregnated 'ball and cup' kinetochores. Some pericentriolar material also showed silver deposits. These observations are discussed in the light of previous results obtained by light microscopy of silver-stained spermatocytes in which both kinetochores and pericentriolar material were also preferentially stained. These results suggest a role for acidic proteins in the composition of these structures.

  17. An in vitro method for predicting inhalation toxicity of impregnation spray products.

    PubMed

    Sørli, Jorid B; Hansen, Jitka S; Nørgaard, Asger W; Levin, Marcus; Larsen, Søren T

    2015-01-01

    Impregnation spray products are used for making surfaces water and dirt repellent. The products are composed of one or more active film-forming components dissolved or suspended in an appropriate solvent mixture. Exposure to impregnation spray products may cause respiratory distress and new cases are reported frequently. The toxicity appears to be driven by a disruption of the pulmonary surfactant film, which coats the inside of the lungs. Due to the complex chemistry of impregnation spray products, it is impossible to predict if inhalation of an aerosolized product is toxic in vivo. The aim of this study was to evaluate whether disruption of the pulmonary surfactant film can be used as a predictor of the toxic effects in vivo. Nine impregnation products with various chemical compositions were selected for testing and the main constituents of each product, e.g., solvents, co-solvents and film-forming compounds, were identified by mass spectrometry. We used a capillary surfactometry method to assess disruption of pulmonary surfactant function in vitro and a mouse model to evaluate acute respiratory toxicity during inhalation. Concentration-response relationships were successfully determined both in vitro and in vivo. The true positive rate of the in vitro method was 100%, i.e. the test could correctly identify all products with toxic effects in vivo, the true negative rate was 40%. Investigation of inhibition of the pulmonary surfactant system, e.g. by capillary surfactometry, was found useful for evaluation of the inhalation toxicity of impregnation spray products and thus may reduce the need for animal testing.

  18. Batch extracting process using magneticparticle held solvents

    DOEpatents

    Nunez, Luis; Vandergrift, George F.

    1995-01-01

    A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.

  19. Polytetrafluoroethylene-Impregnated Anodization For Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1990-01-01

    Technical memorandum describes experiments on ability of two commercial coatings and of standard hard anodization to protect aluminum against corrosion. Both commercial coatings, Polylube and Tufram, polytetrafluoroethylene-impregnated anodizations. Standard hard-anodized coating found to provide greatest protection.

  20. Curing of Furfuryl Alcohol-Impregnated Parts

    NASA Technical Reports Server (NTRS)

    Lawton, J. W.; Brayden, T. H.

    1983-01-01

    Delamination problem in reinforced carbon/carbon parts impregnated with oxalic acid-catalyzed furfuryl alcohol overcome by instituting two additional quality-control tests on alcohol and by changing curing conditions.

  1. Phenoxy resins containing pendent ethynyl groups and cured resins obtained therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1985-01-01

    Phenoxy resins containing pendent ethynyl groups, the process for preparing the same, and the cured resin products obtained therefrom are disclosed. Upon the application of heat, the ethynyl groups react to provide branching and crosslinking with the cure temperature being lowered by using a catalyst if desired but not required. The cured phenoxy resins containing pendent ethynyl groups have improved solvent resistance and higher use temperature than linear uncrosslinked phenoxy resins and are applicable for use as coatings, films, adhesives, composited matrices and molding compounds.

  2. Analysis of the dentin-resin interface by use of laser Raman spectroscopy.

    PubMed

    Miyazaki, M; Onose, H; Moore, B K

    2002-12-01

    Adhesion of resin-bonding agents to dentin is currently believed to result from impregnation of adhesive resin into superficially demineralized dentin. The purpose of this study was to investigate the chemical composition of the resin-impregnated dentin (hybrid) layer using a micro-Raman spectroscopy. Resin composites were bonded to bovine dentin with the two-step bonding systems, and specimens were sectioned parallel to dentinal tubules. These surfaces were then polished down to 1 microm diamond pastes. Raman spectra were successively recorded along a line perpendicular to the dentin-adhesive interface by steps of 0.2 microm on a computer controlled X-Y stage. The relative amounts of hydroxyapatite (960 cm(-1), P-O), adhesive resin (640 cm(-1), aromatic ring), and organic substrate (1450 cm(-1), C-H) in the dentin-adhesive bonding area were calculated. From the Raman spectroscopy results, the hybrid layer represents a gradual transition in the relative amount of adhesive from the resin side to dentin side. Evidence of poor saturation of the adhesive resin in the demineralized dentin with the one-bottle adhesive system was detected. From the results of this study, inhomogeneity of the hybrid layer composition was detected, and the degree of resin impregnation was found to be different between the bonding systems tested.

  3. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  4. Thermoplastic composite matrices with improved solvent resistance

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    In order to improve solvent resistance of aromatic thermoplastic polymers, ethynyl-terminated aromatic sulfone polymers (ETS), sulfone/ester polymers (SEPE) containing pendent ethynyl groups, and phenoxy resin containing pendent ethynyl groups are synthesized. Cured polysulfones and phenoxy resins containing ethynyl groups on the ends or pendent on the molecules exhibited systematic behavior in solvent resistance, film flexibility, and toughness as a function of crosslink density. The film and composite properties of a cured solvent-resistant ETS were better than those of a commercially available solvent sensitive polysulfone. The study was part of a NASA program to better understand the trade-offs between solvent resistance, processability and mechanical properties which may be useful in designing composite structures for aerospace vehicles.

  5. Thermoplastic composite matrices with improved solvent resistance

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    In order to improve solvent resistance of aromatic thermoplastic polymers, ethynyl-terminated aromatic sulfone polymers (ETS), sulfone/ester polymers (SEPE) containing pendent ethynyl groups, and phenoxy resin containing pendent ethynyl groups are synthesized. Cured polysulfones and phenoxy resins containing ethynyl groups on the ends or pendent on the molecules exhibited systematic behavior in solvent resistance, film flexibility, and toughness as a function of crosslink density. The film and composite properties of a cured solvent-resistant ETS were better than those of a commercially available solvent sensitive polysulfone. The study was part of a NASA program to better understand the trade-offs between solvent resistance, processability and mechanical properties which may be useful in designing composite structures for aerospace vehicles.

  6. Feasibility and Manufacturing Considerations of Hemp Textile Fabric Utilized in Pre-Impregnated Composites

    NASA Astrophysics Data System (ADS)

    Osusky, Gregory

    This study investigates the fabrication and mechanical properties of semicontinuous, hemp fiber reinforced thermoset composites. This research determines if off-the-shelf refined woven hemp fabric is suitable as composite reinforcement using resin pre-impregnated method. Industrial hemp was chosen for its low cost, low resource input as a crop, supply chain from raw product to refined textile and biodegradability potential. Detail is placed on specimen fabrication considerations. Lab testing of tension and compression is conducted and optimization considerations are examined. The resulting composite is limited in mechanical properties as tested. This research shows it is possible to use woven hemp reinforcement in pre-impregnated processed composites, but optimization in mechanical properties is required to make the process commercially practical outside niche markets.

  7. Solvent permits solid curing agents to be used at room temperatures

    NASA Technical Reports Server (NTRS)

    St. Cyr, M. C.

    1967-01-01

    Solvent system dissolves the solid curing agents used with polyurethane resins in adhesive systems. The system developed yields bond strengths comparable to 100 percent solid formulations. The optimum solvent chosen was a 55.5 percent solution in anhydrous tetrahydrofuran.

  8. Thermo-chemical, mechanical and resin flow integrated analysis in pultrusion

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Rubino, Felice; Palazzo, Gaetano S.

    2016-10-01

    The present work discusses some numerical outcomes provided by an integrated analysis of impregnation, thermo-chemical and stress/strain aspects in a conventional pultrusion process. The impregnation models describes resin flow and pressure distribution in the initial portion of the die, solving a non-homogeneous non-isothermal/reactive multiphase problem, using a finite volume scheme. The thermochemical model describes the heat transfer and degree of cure evolution of the processing resin. Finally, the stress/strain model computes the part distortion and in process stresses due to thermal, chemical, mechanical strains. An applicative case study is presented, simulating the impregnation step of the pultrusion process of a fiberglass-epoxy resin composite rod.

  9. Effect of impregnation pressure and time on the porosity, structure and properties of polyacrylonitrile-fiber based carbon composites

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Roy, Mainak; Thomas, Susy; Patra, A. K.; Sathiyamoorthy, D.; Tyagi, A. K.

    2013-02-01

    Carbon-carbon composites may find applications in critical parts of advanced nuclear reactors. A series of carbon-carbon composites were prepared using polyacrylonitrile (PAN) based carbon fibers. The materials were densified by impregnating two-dimensional (2D) preforms with liquid phenol formaldehyde resin at different pressures and for different periods of time and then carbonizing those by slowly heating at 1000 °C. Effects of the processing parameters on the structure of the composites were extensively studied. The study showed conclusively that open porosity decreased with increasing impregnation pressure, whereas impregnation time had lesser effect. Matrix-resin bonding also improved at higher pressure. d002 spacing decreased and ordering along c-axis increased with concomitant increase in sp2-carbon fraction at higher impregnation pressures. The fiber reinforced composites exhibited short range ordering of carbon atoms and satisfied structural conditions (d002 values) of amorphous carbon according to the turbostratic model for non-graphitic carbon materials. The composites had pellet-density of ˜85% of the theoretical value, low thermal expansion and negligible neutron-poisoning. They maintained structural integrity and retained disordered nature even on heat-treatment at ca. 1800 °C.

  10. Comparison of depth of dentin etching and resin infiltration with single-step adhesive systems.

    PubMed

    Sato, Mitsuo; Miyazaki, Masashi

    2005-07-01

    Adhesion of resin composites to dentin is currently believed to result from impregnation of adhesive resin into superficially demineralized dentin. The purpose of this study was to use micro-Raman spectroscopy and scanning electron microscopy (SEM) to investigate the extent of resin penetration into etched dentin with single-step adhesive systems. Adhesive systems used were One-Up Bond F (Tokuyama Dental) and Reactmer Bond (Shofu, Inc.). A self-etching primer system Mac Bond II (Tokuyama Dental) was employed as a control. Resin composites were bonded to bovine dentin with the adhesive systems, and specimens were sectioned parallel to dentinal tubules. Raman spectra were successively recorded along a line perpendicular to the dentin-adhesive interface in steps of 0.2 microm and the spectra were obtained. SEM observations of the resin-dentin interface were also conducted. The dentin-resin interface of single-step adhesive systems showed a gradual transition in the relative amount of adhesive from the resin side to dentin side. The widths of resin penetration into demineralized dentin detected by Raman microscopy were greater than those obtained by the morphological analysis using SEM. From the results of this study, a gradual variation in the composition of the dentin-resin interface was detected, and the degree of resin impregnation observed with SEM observation was less than that detected with the Raman microscopy.

  11. Resin flow monitoring in vacuum-assisted resin transfer molding using optical fiber distributed sensor

    NASA Astrophysics Data System (ADS)

    Eum, Soohyun; Kageyama, Kazuro; Murayama, Hideaki; Ohsawa, Isamu; Uzawa, Kiyoshi; Kanai, Makoto; Igawa, Hirotaka

    2007-04-01

    In this study, we implemented resin flow monitoring by using an optical fiber sensor during vacuum assisted resin transfer molding (VaRTM).We employed optical frequency domain reflectometry (OFDR) and fiber Bragg grating (FBG) sensor for distributed sensing. Especially, long gauge FBGs (about 100mm) which are 10 times longer than an ordinary FBG were employed for more effective distributed sensing. A long gauge FBG was embedded in GFRP laminates, and other two ones were located out of laminate for wavelength reference and temperature compensation, respectively. During VaRTM, the embedded FBG could measure how the preform affected the sensor with vacuum pressure and resin was flowed into the preform. In this study, we intended to detect the gradient of compressive strain between impregnated part and umimpregnated one within long gauge FBG. If resin is infused to preform, compressive strain which is generated on FBG is released by volume of resin. We could get the wavelength shift due to the change of compressive strain along gauge length of FBG by using short-time Fourier transformation for signal acquired from FBG. Therefore, we could know the resin flow front with the gradient of compressive strain of FBG. In this study, we used silicon oil which has same viscosity with resin substitute for resin in order to reuse FBG. In order to monitor resin flow, the silicon oil was infused from one edge of preform, the silicon oil was flowed from right to left. Then, we made dry spot within gauge length by infusing silicon oil to both sides of preform to prove the ability of dry spot monitoring with FBG. We could monitor resin flow condition and dry spot formation successfully using by FBG based on OFDR.

  12. Resin characterization

    Treesearch

    Robert L. Geimer; Robert A. Follensbee; Alfred W. Christiansen; James A. Koutsky; George E. Myers

    1990-01-01

    Currently, thermosetting adhesives are characterized by physical andchemical features such as viscosity, solids content, pH, and molecular distribution, and their reaction in simple gel tests. Synthesis of a new resin for a particular application is usually accompanied by a series of empirical laboratory and plant trials. The purpose of the research outlined in this...

  13. Effects of Weathering on Impregnated Charcoal Performance.

    DTIC Science & Technology

    1981-09-01

    4 A mixture of elemental iodine (0.5 wt.%) and an S" activated carbon (BC Type 177) from coconut shells was heated (6.70 C/min) in a flow of purified...Penetration of 1 3 1 ICH3 at 21°C for new (not used) Coconut Shell Commercial Carbons (impregnated) With and Without Prehumidification...Mixture of Elemental Iodine and Non-impregnated Coconut Activated Carbon . (Note: Y coordinate is logarithmic)... 87 29. Formation of Organic Iodides

  14. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  15. 21 CFR 177.2415 - Poly(aryletherketone) resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... calorimetry. (b) Optional adjuvant substances. The basic resins identified in paragraph (a) may contain... percent by weight as a residual solvent in the finished basic resin. (c) Extractive limitations. The... milligrams per square inch of food contact surface: Distilled water, 50 percent (by volume) ethanol...

  16. 21 CFR 177.2415 - Poly(aryletherketone) resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... calorimetry. (b) Optional adjuvant substances. The basic resins identified in paragraph (a) may contain... percent by weight as a residual solvent in the finished basic resin. (c) Extractive limitations. The... milligrams per square inch of food contact surface: Distilled water, 50 percent (by volume) ethanol...

  17. 21 CFR 177.2415 - Poly(aryletherketone) resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... calorimetry. (b) Optional adjuvant substances. The basic resins identified in paragraph (a) may contain... percent by weight as a residual solvent in the finished basic resin. (c) Extractive limitations. The... milligrams per square inch of food contact surface: Distilled water, 50 percent (by volume) ethanol...

  18. Flammability studies of impregnated paper sheets

    Treesearch

    Ivan Simkovic; Anne Fuller; Robert White

    2011-01-01

    Paper sheets impregnated with flame retardants made from agricultural residues and other additives were studied with the cone calorimeter. The use of sugar beet ethanol eluent (SBE), CaCl2, and ZnCl2 lowered the peak rate of heat release (PRHR) the most in comparison to water treated material. The average effective heat of...

  19. Synthesis of the supported catalysts by co-impregnation and sequential impregnation methods

    NASA Astrophysics Data System (ADS)

    Dwi Nugrahaningtyas, Khoirina; Hidayat, Yuniawan; Patiha; Prihastuti, Nina; Yelvi, Brigitta; Umami Nur Kalimah, Riza

    2017-02-01

    The non-sulfide catalysts Co-Mo/USY were prepared with three different methods, i.e. co-impregnation and two sequential impregnation procedures. The phases of the synthesized materials and their composition were characterized with X-ray diffraction. Furthermore, the X-ray diffraction patterns were analyzed using Le Bail methods with Rietica software. Finally, an overview of the substitution effect of cobalt and molybdenum on the metal content and acidity of the catalyst were also investigated.

  20. Fabrication and Characterization of Polycarbonate Polyurethane (PCPU) Nanofibers Impregnated with Nanofillers

    NASA Astrophysics Data System (ADS)

    Katakam, Hruday chand

    Polycarbonate polyurethane (PCPU) has been studied as a novel polymer impregnated with nanoparticles for improved mechanical, thermal and adhesion properties. This study investigates the synthesis of polycarbonate polyurethane (PCPU) polymeric nanofiber membranes by the process of electrospinning. This study further examines all the parameters associated with electrospinning a novel PCPU polymeric solution impregnated with nanofillers, such as nanoparticles, to produce fiber membranes. Tetrahydrofuran (THF) and N, N dimethylformamide (DMF) are used as solvents to dissolve PCPU polymer. One percent (1%) of nanofillers like silver and silica nanoparticles are added to PCPU polymer solution to investigate the impact on polymer solution properties, which in turn affects the fiber formation. Process parameters are studied by evaluating the impact each parameter has on the fiber formation. PCPU polymer concentrations of three polymer solutions (PCPU, PCPU + 1% silver and PCPU + 1% silica) with the appropriate solvent mixture ratio are achieved to produce polymeric fiber membranes with minimal bead formation. Polymeric nanofiber membranes of PCPU, PCPU + 1% silver and PCPU + 1% silica are produced using THF/DMF: 70/30 (V/V) solvent mixture. The polymeric nanofiber membranes obtained are characterized by using a scanning electron microscopy, rotational viscometer, tensiometer, contact angle measurement device, fourier transform infrared spectroscopy (FTIR). A comparative life cycle assessment (LCA) is performed to evaluate environmental impacts associated with solvents in the process of producing PCPU polymeric nanofiber membranes. The LCA is completed to gauge the potential impacts PCPU nanofiber membranes may have when utilized for various applications. This study discusses the successful production and characterization of good quality (no beading) polymeric nanofiber membranes of PCPU and novel composites of PCPU + 1% silver and PCPU + 1% silica. This two dimensional

  1. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  2. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xiong, X.; Xiao, P.

    2009-11-01

    Multi-walled nanotubes were added into furan resin. Unidirectional carbon/carbon preforms were densified with the nanotube-doped furan resin by impregnation-carbonization cycle. The effects of Multi-walled nanotubes on the microstructure of resin carbon and thermal conductivity of carbon/carbon composites were investigated. The results show that Multi-walled nanotubes can induce the ordered arrangement of planar carbon microlites in resin carbon during high-temperature treatment and enhance the graphitization degree of resin carbon. Small amount of Multi-walled nanotubes in resin carbon can enhance the thermal conductivity of C/C composites evidently, especially the thermal conductivity vertical to the direction of fiber axis, due to the improvement of microstructure of resin carbon. Excess Multi-walled nanotubes in resin are disadvantageous to the enhancement of thermal conductivity instead, because they are difficult to disperse and easy to agglomerate, resulting thermal resistances in carbon matrix.

  3. Extraction chromatography of neodymium by an organophosphorous extractant supported on various polymeric resins

    SciTech Connect

    Takigawa, D.Y.

    1993-04-01

    Fifteen resins coated with dihexyl-N,N-diethylcarbamoylmethyl phosphonate (CMP) were studied for their extraction of neodymium (Nd) in 4.0 and 7.0 M nitric acid. Resin properties, such as chemical composition and physical morphology, which can influence Nd extraction as well as subsequent resin regeneration (Nd stripping), were identified. Hydrophilic or polar resins coated with CMP efficiently extracted the Nd. Resins initially washed free of residual monomer and solvent before CMP coating outperformed their untreated counterparts. The macroporous styrene-divinylbenzene hydrophobic resins that were high in surface area were less effective supports compared with hydrophilic microporous Aurorez, polybenzimidazole (PBI) and macroporous Amberlite polyacrylic resins. Only one resin, Duolite C-467, showed no measurable improvement in Nd extraction with CMP coating. CMP-coated Aurorez PBI, a microporous and hydrophilic polymeric resin with an average surface area, showed the best overall efficiency for Nd removal and resin regeneration.

  4. Epoxy resins produce improved plastic scintillators

    NASA Technical Reports Server (NTRS)

    Markley, F. W.

    1967-01-01

    Plastic scintillator produced by the substitution of epoxy resins for the commonly used polystyrene is easy to cast, stable at room temperature, and has the desirable properties of a thermoset or cross-linked system. Such scintillators can be immersed directly in strong solvents, an advantage in many chemical and biological experiments.

  5. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CAS Reg. No. 25154-01-2) consisting of basic resins produced when the disodium salt of 4,4... with the solvents—distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid in distilled water, and n-heptane, yield total extractives in each extracting solvent not to...

  6. Impregnation of glass fibres with polymethylmethacrylate using a powder-coating method

    NASA Astrophysics Data System (ADS)

    Vallittu, Pekka K.

    1995-01-01

    The aim of this study was to evaluate the usefulness of a powder-coating method to impregnate glass fibres with polymethylmethacrylate (PMMA) for dental purposes. The continuous unidirectional E-glass fibres, the surface of which had been treated with precured silane, were powder-coated with spherical PMMA particles. Before the powder-coated prepregs were used, the incorporated PMMA powder was dissolved with methylmethacrylate monomer. The degree of impregnation of the polymerized composite was determined with a scanning electron microscope. The results revealed that the mean degree of impregnation varied from 0.87 to 0.92, being lower in the heat-cured PMMA group (which simulated fabrication of a new denture), and higher in the autopolymerizing group (which simulated the repair of a fractured denture). The means between the two groups did not, however, differ significantly ( p=0.249). The results suggest that, even though the method has some shortcomings in terms of dental laboratory technology, the powder-coating method can be used to fabricate or repair acrylic resin-based dentures.

  7. Composition and method for making polyimide resin-reinforced fabric

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1981-01-01

    A composition for making polyimide resin reinforced fibers or fabric is discussed. The composition includes a polyfunctional ester, a polyfunctional amine, and an end capping agent. The composition is impregnated into fibers or fabric and heated to form prepreg material. The tack retention characteristics of this prepreg material are improved by incorporating into the composition a liquid olefinic material compatible with the other ingredients of the composition. The prepreg material is heated at a higher temperature to effect formation of the polyimide resin and the monomeric additive is incorporated in the polyimide polymer structure.

  8. The Use of Microdielectrometry in Monitoring the Cure of Resins and Composites.

    DTIC Science & Technology

    1984-09-01

    aromatic amine cured epoxy resin and a dicyandiamide .," "*’ cured epoxy resin prepreg are presented in this report., The data obtained. - -""" . by...resins with dicyandiamide as a curative catalyzed by Registered trademark of E.I. DuPont de Nemours & Co. * , 5 - -7 ’L , _,I ; . .’ 2...Epoxy Resin DER 661-30, dicyandiamide -3, benzyldimethylamine- 0 0.25. The prepreg was made by dissolving the mix in methyl cellosolve/ acetone solvent

  9. Impregnating magnetic components with MDA free epoxy

    SciTech Connect

    Sanchez, R.O.; Domeier, L.; Gunewardena, S.

    1995-08-01

    This paper describes the use of {open_quotes}Formula 456{close_quotes} an aliphatic amine cured epoxy for impregnating coils. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA.

  10. Impregnated Netting Slows Infestation by Triatoma infestans

    PubMed Central

    Levy, Michael Z.; Quíspe-Machaca, Victor R.; Ylla-Velasquez, Jose L.; Waller, Lance A.; Richards, Jean M.; Rath, Bruno; Borrini-Mayori, Katty; del Carpio, Juan G. Cornejo; Cordova-Benzaquen, Eleazar; McKenzie, F. Ellis; Wirtz, Robert A.; Maguire, James H.; Gilman, Robert H.; Bern, Caryn

    2008-01-01

    We used sentinel animal enclosures to measure the rate of infestation by the Chagas disease vector, Triatoma infestans, in an urban community of Arequipa, Peru, and to evaluate the effect of deltamethrin-impregnated netting on that rate. Impregnated netting decreased the rate of infestation of sentinel enclosures (rate ratio, 0.23; 95% confidence interval, 0.13–0.38; P < 0.001), controlling for the density of surrounding vector populations and the distance of these to the sentinel enclosures. Most migrant insects were early-stage nymphs, which are less likely to carry the parasitic agent of Chagas disease, Trypanosoma cruzi. Spread of the vector in the city therefore likely precedes spread of the parasite. Netting was particularly effective against adult insects and late-stage nymphs; taking into account population structure, netting decreased the reproductive value of migrant populations from 443.6 to 40.5. Impregnated netting can slow the spread of T. infestans and is a potentially valuable tool in the control of Chagas disease. PMID:18840739

  11. Impregnated netting slows infestation by Triatoma infestans.

    PubMed

    Levy, Michael Z; Quíspe-Machaca, Victor R; Ylla-Velasquez, Jose L; Waller, Lance A; Richards, Jean M; Rath, Bruno; Borrini-Mayori, Katty; del Carpio, Juan G Cornejo; Cordova-Benzaquen, Eleazar; McKenzie, F Ellis; Wirtz, Robert A; Maguire, James H; Gilman, Robert H; Bern, Caryn

    2008-10-01

    We used sentinel animal enclosures to measure the rate of infestation by the Chagas disease vector, Triatoma infestans, in an urban community of Arequipa, Peru, and to evaluate the effect of deltamethrin-impregnated netting on that rate. Impregnated netting decreased the rate of infestation of sentinel enclosures (rate ratio, 0.23; 95% confidence interval, 0.13-0.38; P < 0.001), controlling for the density of surrounding vector populations and the distance of these to the sentinel enclosures. Most migrant insects were early-stage nymphs, which are less likely to carry the parasitic agent of Chagas disease, Trypanosoma cruzi. Spread of the vector in the city therefore likely precedes spread of the parasite. Netting was particularly effective against adult insects and late-stage nymphs; taking into account population structure, netting decreased the reproductive value of migrant populations from 443.6 to 40.5. Impregnated netting can slow the spread of T. infestans and is a potentially valuable tool in the control of Chagas disease.

  12. Acetylene-chromene terminated resins as high temperature thermosets

    NASA Technical Reports Server (NTRS)

    Godschalx, J. P.; Inbasekaran, M. N.; Bartos, B. R.; Scheck, D. M.; Laman, S. A.

    1990-01-01

    A novel phase transfer catalyzed process for the preparation of propargyl ethers has been developed. The propargyl ethers serve as precursors to a new class of thermosetting resins called acetylene-chromene terminated (ACT) resins. Heat treatment of a solution of propargyl ethers with various catalysts, followed by removal of solvent leads to the ACT resins via partial conversion of the propargyl ether groups to chromenes. This process reduces the energy content of the resin systems and reduces the amount of shrinkage found during cure. Due to the presence of the solvent the process is safe and gives rise to low viscosity products suitable for resin transfer molding and filament winding type applications. Due to the high glass transition temperature, high modulus, and low moisture uptake the cured resins display better than 232 C/wet performance. The thermal stability of the ACT resins in air at 204 C is superior to that of conventional bismaleimide resins. The resins also display excellent electrical properties.

  13. Acetylene-chromene terminated resins as high temperature thermosets

    NASA Technical Reports Server (NTRS)

    Godschalx, J. P.; Inbasekaran, M. N.; Bartos, B. R.; Scheck, D. M.; Laman, S. A.

    1990-01-01

    A novel phase transfer catalyzed process for the preparation of propargyl ethers has been developed. The propargyl ethers serve as precursors to a new class of thermosetting resins called acetylene-chromene terminated (ACT) resins. Heat treatment of a solution of propargyl ethers with various catalysts, followed by removal of solvent leads to the ACT resins via partial conversion of the propargyl ether groups to chromenes. This process reduces the energy content of the resin systems and reduces the amount of shrinkage found during cure. Due to the presence of the solvent the process is safe and gives rise to low viscosity products suitable for resin transfer molding and filament winding type applications. Due to the high glass transition temperature, high modulus, and low moisture uptake the cured resins display better than 232 C/wet performance. The thermal stability of the ACT resins in air at 204 C is superior to that of conventional bismaleimide resins. The resins also display excellent electrical properties.

  14. Synthesis and characterizations of melamine-based epoxy resins.

    PubMed

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-09-05

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.

  15. Synthesis and Characterizations of Melamine-Based Epoxy Resins

    PubMed Central

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-01-01

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials. PMID:24013372

  16. A rapid impregnation method for loading desired amounts of extractant on prepacked reversed-phase columns for high performance liquid chromatographic separation of metal ions.

    PubMed

    Ramzan, Muhammad; Kifle, Dejene; Wibetoe, Grethe

    2017-06-02

    A time-efficient impregnation method for loading extractant onto reversed-phase columns was developed, using di-(2-ethylhexyl) phosphoric acid (HDEHP) as a model extractant. The optimal loading conditions for the impregnation process of a standard analytical scale column was achieved by dissolving an appropriate amount of HDEHP (per void volume) in n-pentane, flushing the column with two void volumes (5mL) of impregnation solution and heating the column for a short time to remove the solvent. The process takes about one hour, a significant time reduction compared to commonly used impregnation methods (17-23h). The chromatographic traits for separation of the lighter lanthanides (La-Gd) using columns impregnated under different conditions were evaluated; heating for short period of time gave improved column performance most likely due to the presence of n-pentane in the pores of the support material. A linear relation was found (R(2)=0.9934) for the amount of HDEHP loaded as a function of HDEHP concentration in the impregnation solution. The coated amounts of HDEHP were in the range of 0.29-2.25mmol per column by flushing with 5mL of impregnation solution containing 0.3-5.0mmol of HDEHP per void volume. This 'flush-evaporate' impregnation method allowed for loading a pre-determined amount of extractant and produces very small amounts of organic waste. An overview of the various impregnation approaches previously used for extractant coating on prepacked columns and bulk support materials is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fabrication and Evaluation of Bis-GMA/TEGDMA Dental Resins/Composites Containing Nano Fibrillar Silicate

    PubMed Central

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E.; Fong, Hao

    2008-01-01

    Objective To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Methods Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work of fracture) of the nano FS reinforced resins/composites were tested, and Analysis of Variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Results Impregnation of small mass fractions (1 % and 2.5 %) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5 %), however, did not further improve the mechanical properties (one way ANOVA, P > 0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Significance Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites. PMID:17572485

  18. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate.

    PubMed

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E; Fong, Hao

    2008-02-01

    To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work-of-fracture) of the nano FS reinforced resins/composites were tested, and analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Impregnation of small mass fractions (1% and 2.5%) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5%), however, did not further improve the mechanical properties (one way ANOVA, P>0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites.

  19. Batch extracting process using magnetic particle held solvents

    DOEpatents

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  20. An in situ study of resin-assisted solvothermal metal-organic framework synthesis

    NASA Astrophysics Data System (ADS)

    Moorhouse, Saul J.; Wu, Yue; O'Hare, Dermot

    2016-04-01

    A newly developed in situ monochromatic high-energy X-ray diffraction setup was used to investigate the synthesis of MOFs using cation-impregnated polymer resin beads as a ion source. The Co-NDC-DMF (NDC=2,6-naphthalenedicarboxylate; DMF=dimethylformamide) system was investigated, a system which is known to produce at least three distinct frameworks. It was found that the resin-assisted synthesis results in the preferential formation of a topology previously impossible to synthesise in bulk, while the comparable nitrate-salt synthesis appeared to form an alternative phases. It was also found that the resin-assisted synthesis is highly diffusion-controlled.

  1. Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation.

    PubMed

    Tang, Chuan; Guan, Yi-Xin; Yao, Shan-Jing; Zhu, Zi-Qiang

    2014-10-01

    Drug-loaded chitosan films suitable for oral mucosal drug delivery were prepared using supercritical solution impregnation (SSI) technology. Firstly, chitosan films were obtained via casting method, and the film properties including water-uptake, erosion and mucoadhesive were characterized. SSI process was then employed to load the drug of ibuprofen onto the prepared chitosan films, and the effects of impregnation pressure and temperature on morphologies of the ibuprofen-loaded chitosan films and drug loading capacity (DLC) were studied. The SEM and X-ray diffraction patterns suggested that distinct ibuprofen shapes such as microparticles, flake, rod-like and needle-like occurred after impregnation at different pressures, and DLC varied from 7.9% to 130.4% during the SSI process. The ex vivo release profiles showed that ibuprofen-loaded chitosan films could deliver the drug across the rabbit buccal mucosa, and up to 70% of the ibuprofen was released from the matrix in 460 min. SSI process is a promising method to prepare drug-loaded film formulations for oral mucosal drug delivery, which provides the advantages of low solvent residual and sustained- and controlled- release behavior.

  2. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  3. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  4. Thermocapillary motion on lubricant-impregnated surfaces

    NASA Astrophysics Data System (ADS)

    Bjelobrk, Nada; Girard, Henri-Louis; Bengaluru Subramanyam, Srinivas; Kwon, Hyuk-Min; Quéré, David; Varanasi, Kripa K.

    2016-10-01

    We show that thermocapillary-induced droplet motion is markedly enhanced when using lubricant-impregnated surfaces as compared to solid substrates. These surfaces provide weak pinning, which makes them ideal for droplet transportation and specifically for water transportation. Using a lubricant with viscosity comparable to that of water and temperature gradients as low as 2 K/mm, we observe that drops can propel at 6.5 mm/s, that is, at least 5 times quicker than reported on conventional substrates. Also in contrast with solids, the liquid nature of the different interfaces makes it possible to predict quantitatively the thermocapillary Marangoni force (and velocity) responsible for the propulsion.

  5. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  6. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes

    PubMed Central

    Chen, Qi; Zhao, Yong; Wu, Weidong; Xu, Tao; Fong, Hao

    2012-01-01

    Objective To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and the corresponding composites (with conventional glass filler)containing vari ed mass fractions of halloysite nanotubes (HNTs). Methods Three dispersion methods were studied to separate the silanized halloysite as individual HNTs and to uniformly distribute them into dental matrices. Photopolymerization induced volumetric shrinkage was measured by using a mercury dilatometer. Real time near infrared spectroscopy was adopted to study the degree of vinyl double bond conversion and the photopolymerization rate. Mechanical properties of the composites were tested by a universal mechanical testing machine. Analysis of Variance (ANOVA) was used for the statistical analysis of the acquired data. Morphologies of halloysite/HNTs and representative fracture surfaces of the reinforced dental resins/composites were examined by SEM and TEM. Results Impregnation of small mass fractions (e.g., 1% and 2.5%) of the silanized HNTs in Bis-GMA/TEGDMA dental resins/composites improved mechanical properties significantly; however; large mass fractions (e.g., 5%) of impregnation did not further improve the mechanical properties. The impregnation of HNTs into dental resins/composites could result in two opposite effects: the reinforcing effect due to the highly separated and uniformly distributed HNTs, and the weakening effect due to the formation of HNT agglomerates/particles. Significance Uniform distribution of a small amount of well-separated silanized HNTs into Bis-GMA/TEGDMA dental resins/composites could result in substantial improvements on mechanical properties. PMID:22796038

  7. Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils

    NASA Astrophysics Data System (ADS)

    Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.

    2014-05-01

    Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.

  8. Design Rules for Fluorocarbon-Free Omniphobic Solvent Barriers in Paper-Based Devices.

    PubMed

    Jahanshahi-Anbuhi, Sana; Pennings, Kevin; Leung, Vincent; Kannan, Balamurali; Brennan, John D; Filipe, Carlos D M; Pelton, Robert H

    2015-11-18

    The utility of hydrophobic wax barriers in paper-based lateral flow and multiwell devices for containment of aqueous solvents was extended to organic solvents and challenging aqueous surfactant solutions by preparation of a three layer barrier, consisting of internal pullulan impregnated paper barriers surrounded by external wax barriers. When paper impregnated with pullulan solution dries, the polymer forms solvent blocking lenses in the paper structure. Lens formation was illustrated by forming pullulan lenses in glass capillaries. The lens shapes were less curved compared to the predictions of a model based upon minimizing surface area. For barriers on Whatman # 1 filter paper, the pullulan molecular weight must be greater than ∼70 kDa, the mass fraction of pullulan in the barrier zone must be at least 32%, and there are restrictions on the minimum width of the pullulan impregnated zone.

  9. Development and Characterization of Novel Polyurethane Films Impregnated with Tolfenamic Acid for Therapeutic Applications

    PubMed Central

    Sheraz, Muhammad Ali; Rehman, Ihtesham ur

    2013-01-01

    The present study deals with the preparation of polyurethane (PU) films impregnated with a nonsteroidal anti-inflammatory drug, tolfenamic acid (TA). Solvent evaporation technique has been employed for the preparation of TA-PU films in two different ratios of 1 : 2 and 1 : 5 in Tetrahydrofuran (THF) or THF-ethanol mixtures. The prepared films were characterized using X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and release studies. The results indicate transformation of crystalline TA to its amorphous form. The degree of crystallinity changes both by increasing the polymer concentration and solvent used for the film preparations. The release profiles of TA were also found to be affected, showing a decrease from approximately 50% to 25% from 1 : 2 to 1 : 5 ratios, respectively. PMID:24073394

  10. Dental fiber-post resin base material: a review

    PubMed Central

    Xu, Chun; Zhang, Fu-qiang

    2014-01-01

    Teeth that have short clinical crown, which are not alone enough to support the definitive restoration can be best treated using the post and core system. The advantages of fiber post over conventional metallic post materials have led to its wide acceptance. In addition to that the combination of aesthetic and mechanical benefits of fiber post has provided it with a rise in the field of dentistry. Also the results obtained from some clinical trials have encouraged the clinicians to use the fiber posts confidently. Fiber posts are manufactured from pre-stretched fibers impregnated within a resin matrix. The fibers could that be of carbon, glass/silica, and quartz, whereas Epoxy and bis-GMA are the most widely used resin bases. But recently studies are also found to be going on for polyimide as possible material for the fiber post resin base as a substitute for the conventional materials. PMID:24605208

  11. Boron impregnation treatment of Eucalyptus grandis wood.

    PubMed

    Dhamodaran, T K; Gnanaharan, R

    2007-08-01

    Eucalyptus grandis is suitable for small timber purposes, but its wood is reported to be non-durable and difficult to treat. Boron compounds being diffusible, and the vacuum-pressure impregnation (VPI) method being more suitable for industrial-scale treatment, the possibility of boron impregnation of partially dry to green timber was investigated using a 6% boric acid equivalent (BAE) solution of boric acid and borax in the ratio 1:1.5 under different treatment schedules. It was found that E. grandis wood, even in green condition, could be pressure treated to desired chemical dry salt retention (DSR) and penetration levels using 6% BAE solution. Up to a thickness of 50mm, in order to achieve a DSR of 5 kg/m(3) boron compounds, the desired DSR level as per the Indian Standard for perishable timbers for indoor use, it was found that neither the moisture content of wood nor the treatment schedule posed any problem as far as the treatability of E. grandis wood was concerned.

  12. Polyimide resins

    DOEpatents

    Tesoro, Giuliana C.; Sastri, Vinod R.

    1993-01-01

    A method for the preparation of a polyimide containing reversible crosslinks comprising the step of curing a monomer having the formula ##STR1## wherein R and R' may be the same or different and each is H or lower alkyl having 1-5 carbon atoms under conditions conducive to the formation of a polyimide and thereby forming a polyimide having the formula ##STR2## R and R' are as defined above and n is an integer from 10 to 100. The polyimide may be converted to a soluble polymer by cleaving the disulfide bond in the presence of a solvent and a reducing agent. The reduced polymer may be reformed into the polymer in an oxidation step or into a modified polyimide in other reaction steps. Copolymerization processes are also disclosed.

  13. Review: Resin Composite Filling

    PubMed Central

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  14. Histological changes in nontumoral liver secondary to radioembolization of hepatocellular carcinoma with yttrium 90-impregnated microspheres: report of two cases.

    PubMed

    Dhingra, Sadhna; Schwartz, Myron; Kim, Edward; Mabel Ko, Huaibin; Ward, Stephen C; Fiel, M Isabel; Thung, Swan N

    2014-11-01

    Transarterial radioembolization (TARE) with yttrium-90 is a minimally invasive locoregional therapy for hepatocellular carcinoma (HCC), and involves selective delivery of glass or resin microspheres impregnated with radioactive yttrium-90 into small arteries preferentially supplying the tumor for tumoricidal effect thus sparing the nontumoral liver, or into lobar artery to induce atrophy and contralateral hypertrophy. Clinically, post-TARE a small proportion of cases develop radioembolization-induced liver disease. Histological changes of TARE on nontumoral liver parenchyma have not been well characterized. Herein, we report two cases of liver resections for HCC post-TARE, and describe the histological changes in nontumoral liver parenchyma.

  15. Processing and properties of SiCf/SiBOC ceramic matrix composites by polyborosiloxane impregnation and pyrolysis

    NASA Astrophysics Data System (ADS)

    Vijay, Vipin; Prabhakaran, P. V.; Devasia, Renjith

    2013-06-01

    SiCf/SiBOC Ceramic Matrix Composites (CMCs) were fabricated using polyborosiloxane as the matrix resin and Nicalon™ NL-202 silicon carbide fiber as the reinforcement via polymer infiltration/impregnation and pyrolysis process (PIP). Repeated PIP cycles resulted in CMCs with a density value of ≈ 2 g/cc and a maximum average flexural strength value of 108 MPa. Oxidation resistance of SiCf/SiBOC was compared with Cf/C and Cf/SiBOC at 1000°C. SiCf/SiBOC composite shows a better oxidation resistance due to the formation of a protective layer of amorphous borosilicate glass on oxidation.

  16. Refining of fossil resin flotation concentrate from western coal. Final report

    SciTech Connect

    Jensen, G.F.; Miller, J.D.

    1995-02-16

    During the past several years, significant research efforts have been made to develop process technology for the selective flotation of fossil resin from western coals. As a result of these efforts, several new flotation technologies have been developed. Operation of a proof-of-concept continuous flotation circuit showed the selective flotation process to be sufficiently profitable to justify the development of a fossil resin industry. However, little attention has been given to the refining of the fossil resin flotation concentrate although solvent refining is a critical step for the fossil resin to become a marketable product. In view of this situation, DOE funded this two-year project to evaluate the following aspects of the fossil resin refining technology: 1) Characterization of the fossil resin flotation concentrate and its refined products; 2) Kinetics of fossil resin extraction; 3) Effects of operating variables on solvent extraction; 4) Extraction solvents; 5) Proof-of-concept continuous refining tests; and 6) Technical and economic analysis. The results from this research effort have led to the following conclusions: Hexane- or heptane-refined fossil resin has a light-yellow color, a melting point of 140 - 142{degrees}C, a density of 1.034 gram/cm, and good solubility in nonpolar solvents. Among the four solvents evaluated (hexane, heptane, toluene and ethyl acetate), hexane is the most appropriate solvent based on overall technical and economic considerations. Batch extraction tests and kinetic studies suggest that the main interaction between the resin and the solvent is expected to be the forces associated with solvation phenomena. Temperature has the most significant effect on extraction rate. With hexane as the solvent, a recovery of 90% cam be achieved at 50{degrees}C and 10% solids concentration with moderate agitation for 1 hour.

  17. A Two-layer Model for the Simulation of the VARTM Process with Resin Distribution Layer

    NASA Astrophysics Data System (ADS)

    Young, Wen-Bin

    2013-12-01

    Vacuum assisted resin transfer molding (VARTM) is one of the important processes to fabricate high performance composites. In this process, resin is drawn into the mold to impregnate the fiber reinforcement to a form composite. A resin distribution layer with high permeability was often introduced on top of the fiber reinforcement to accelerate the filling speed. Due to the difference of the flow resistance in the resin distribution layer and the reinforcement as well as the resulting through thickness transverse flow, the filling flow field is intrinsically three-dimensional. This study developed a two-layer model with two-dimensional formulation to simulate the filling flow of the VARTM process with a resin distribution layer. Two-dimensional flow was considered in each layer and a transverse flow in the thickness direction was estimated between the two layers. Thermal analysis including the transverse convection was also performed to better simulate the temperature distribution.

  18. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics

    DOEpatents

    Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.

    2000-01-01

    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  19. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics

    SciTech Connect

    Alexandratos, S.D.; Brown, G.M.; Bonnesen, P.V.; Moyer, B.A.

    2000-05-09

    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium as pertechnetate anion, TcO{sub 4}{sup {minus}}. The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  20. Thermochemical tests on resins: Char resistance of selected phenolic cured epoxides

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1982-01-01

    Curing epoxy resins with novalac phenolic resins is a feasible approach for increasing intact char of the resin system. Char yields above 40% at 700 C were achieved with epoxy novalac (DEN 438)/novalac phenolic (BRWE 5833) resin systems with or without catalyst such as ethyl tri-phenyl phosphonium iodide. These char yields are comparable to commercially used epoxy resin systems like MY-720/DDS/BF3. Stable prepregs are easily made from a solvent solution of the epoxy/phenolic system and this provides a feasible process for fabrication of same into commercial laminates.

  1. A Preliminary Evaluation of the Phosphazene Resin PPZ

    DTIC Science & Technology

    1993-10-01

    hardcoating for various substrates such as poly (ethylene terephthalate) (PET), poly(vinyl chloride) (PVC), poly(methylmethacryate) ( PMMA ), polycarbonate...resin is observed to be harder and more abrasion resistant than PMMA and PC. The phosphazene resin is also reported to be chemically resistant to...detergents, bleach, solvents, dilute acid, and alkaline solutions (1,2). PC is widely used in the Army for transparent armor applications such as lenses and

  2. Plasma impregnation of wood with fire retardants

    NASA Astrophysics Data System (ADS)

    Pabeliña, Karel G.; Lumban, Carmencita O.; Ramos, Henry J.

    2012-02-01

    The efficacy of chemical and plasma treatments with phosphate and boric compounds, and nitrogen as flame retardants on wood are compared in this study. The chemical treatment involved the conventional method of spraying the solution over the wood surface at atmospheric condition and chemical vapor deposition in a vacuum chamber. The plasma treatment utilized a dielectric barrier discharge ionizing and decomposing the flame retardants into innocuous simple compounds. Wood samples are immersed in either phosphoric acid, boric acid, hydrogen or nitrogen plasmas or a plasma admixture of two or three compounds at various concentrations and impregnated by the ionized chemical reactants. Chemical changes on the wood samples were analyzed by Fourier transform infrared spectroscopy (FTIR) while the thermal changes through thermo gravimetric analysis (TGA). Plasma-treated samples exhibit superior thermal stability and fire retardant properties in terms of highest onset temperature, temperature of maximum pyrolysis, highest residual char percentage and comparably low total percentage weight loss.

  3. Tobramycin-impregnated methylmethacrylate for mandible reconstruction.

    PubMed

    Goode, R L; Reynolds, B N

    1992-02-01

    Reconstruction of the mandible to restore continuity following resection is described in four cases using a tobramycin-impregnated methylmethacrylate implant fabricated at the time of surgery. Methylmethacrylate has excellent biocompatibility and strength and has been used in surgery for over 20 years. The technique uses readily available materials and is similar in concept to reconstruction with a metal plate. Potential advantages are: (1) the presence of a potent antibiotic within the implant that is released over a period of months to minimize postoperative infection and (2) the capability of the material to accurately fit any defect, either when used alone or in combination with a plate or rod. Three of the four patients whom we present are doing well; one implant became exposed following postoperative radiotherapy and had to be removed.

  4. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  5. Ethynyl terminated imidothioethers and resins therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Bass, R. Gerald (Inventor)

    1991-01-01

    Ethynyl terminated imidothioethers (ETIs) are prepared by the reaction of a dimercaptan, such as 4,4'-dimercaptodiphenyl ether, and an ethynyl containing maleimide, such as N-(3-ethynylphenyl)maleimide. Blends of these ETIs and ethynyl terminated polymeric materials, such as ethynyl terminated sulfones and ethynyl terminated arylene ethers, are also prepared. These resin blends exhibit excellent processability, and the cured blends show excellent fracture toughness and solvent resistance, as well as excellent adhesive and composite properties.

  6. Ethynyl terminated imidothioethers and resins therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Bass, R. Gerald (Inventor)

    1989-01-01

    Ethynyl terminated imidothioethers (ETIs) are prepared by the reaction of a dimercaptan, such as 4,4'-dimercaptodiphenyl ether, and an ethynyl containing maleimide, such as N-(3-ethynylphenyl)maleimide. Blends of thse ETIs and ethynyl terminated polymeric materials, such as ethynyl terminated sulfones and ethynyl terminated arylene ethers, are also prepared. These resin blends exhibit excellent processability, and the cured blends show excellent fracture toughness and solvent resistance, as well as excellent adhesive and composite properties.

  7. Polymer-Based Nanofibers Impregnated with Drug Infused Plant Virus Particles as a Responsive Fabric for Therapeutic Delivery

    NASA Astrophysics Data System (ADS)

    Honarbakhsh, Sara

    A biodegradable and controlled drug delivery system has been developed herein composed of electrospun polymeric nanofibers impregnated with cargo loaded Red clover necrotic mosaic virus (RCNMV)---a robust plant virus---as the drug carrier nanoparticle. In this system, controlled drug release is achieved by altering the porosity of the biodegradable matrix as well as controlling the position and distribution of the cargo loaded nanocarriers in the matrix. Solution electrospinning as well as dipping method are used to create and to impregnate the matrix (the fibers of which possess uniformly distributed nano-size surface pores) with cargo loaded nanocarriers. Prior to the impregnation stage of cargo loaded nanocarriers into the matrix, compatibility of a group of candidate cargos (Ampicillin, Novanthrone, Doxorubicin and Ethidium Bromide) and RCNMV functionality with potential electrospinning solvents were investigated and a solvent with the least degradative effect was selected. In order to achieve both sustained and immediate drug release profiles, cargo loaded nanocarriers were embedded into the matrix---through co-spinning process---as well as on the surface of matrix fibers---through dipping method. SEM, TEM and Fluorescent Light Microscopy images of the medicated structures suggested that the nanocarriers were incorporated into/on the matrix. In vitro release assays were also carried out the results of which confirmed having obtained sustained release in the co-spun medicated structures where as dipped samples showed an immediate release profile.

  8. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  9. Performance of 2G-HTS REBCO undulator coils impregnated epoxies mixed with different fillers

    DOE PAGES

    Kesgin, Ibrahim; Hasse, Quentin; Ivanyushenkov, Yury; ...

    2016-12-12

    The use of second-generation high-temperature superconducting-coated conductors enables an enhancement of the performance of undulator magnets. However, preventing the motion of the wire and providing sufficient conduction cooling to the winding stacks have remained challenges. In this study, we have evaluated epoxy impregnation techniques to address these issues. Epoxy resin was prepared with different nanopowders and the effect on the performance of the undulator coil pack was investigated. All epoxy impregnated coils showed smaller n values and some degree of deterioration of the critical current Ic. The Ic degradation was most pronounced for epoxy mixed with high aspect ratio multiwalledmore » carbon nanotubes (MWCNTs). It has been found that the crack formation in the epoxy results in plastic deformation of the copper stabilizer layer, which causes the underlying ceramic REBCO superconducting layer to crack resulting in degradation of the superconducting tape performance. As a result, careful adjustment of epoxy thickness surrounding the superconductor and the powder ratio in the epoxy eliminate the performance degradation.« less

  10. Performance of 2G-HTS REBCO undulator coils impregnated epoxies mixed with different fillers

    SciTech Connect

    Kesgin, Ibrahim; Hasse, Quentin; Ivanyushenkov, Yury; Welp, Ulrich

    2016-12-12

    The use of second-generation high-temperature superconducting-coated conductors enables an enhancement of the performance of undulator magnets. However, preventing the motion of the wire and providing sufficient conduction cooling to the winding stacks have remained challenges. In this study, we have evaluated epoxy impregnation techniques to address these issues. Epoxy resin was prepared with different nanopowders and the effect on the performance of the undulator coil pack was investigated. All epoxy impregnated coils showed smaller n values and some degree of deterioration of the critical current Ic. The Ic degradation was most pronounced for epoxy mixed with high aspect ratio multiwalled carbon nanotubes (MWCNTs). It has been found that the crack formation in the epoxy results in plastic deformation of the copper stabilizer layer, which causes the underlying ceramic REBCO superconducting layer to crack resulting in degradation of the superconducting tape performance. As a result, careful adjustment of epoxy thickness surrounding the superconductor and the powder ratio in the epoxy eliminate the performance degradation.

  11. N-benzoyl-n-phenylhydroxylamine impregnated Amberlite XAD-4 beads for selective removal of thorium.

    PubMed

    Chandramouleeswaran, S; Ramkumar, Jayshree

    2014-09-15

    n-Benzoyl-n-phenylhydroxylamine impregnated Amberlite XAD-4 beads were used for the removal of Th(IV) from a mixture of ions. The impregnated XAD was characterized using different techniques like weight and colour change, IR spectra, surface area and pore size measurements to confirm the presence of n-BPHA within the macroreticular resin structure. The experimental conditions were optimized to make the separation fast and selective. It was seen that the maximum sorption was achieved in the pH range of 3-7.5 and uptake was nearly complete within half an hour. The results obtained in the present study were subjected to extensive modelling in order to get a complete understanding of the sorption process. It is seen that the maximum uptake was calculated to be 500 mg/g and has very fast kinetics it was seen that the process is chemisorption. It was further deduced from the modelling that the overall sorption process was controlled dominantly by external mass transfer. Considering the simplicity this procedure, the present study has a possible application for the removal of thorium from different mixtures.

  12. Deasphalted oil -- A natural asphaltene solvent

    SciTech Connect

    Jamaluddin, A.K.M.; Nazarko, T.W.; Sills, S.; Fuhr, B.J.

    1995-11-01

    Asphaltene deposition in the near-wellbore region can block pore throats, change wettability characteristics and relative-permeability relationships, and therefore, reduce oil production. Conventional aromatic solvents (e.g., toluene, xylene) alone or in combination with various dispersants are used to remove asphaltene damage from the near-wellbore region. However, these aromatic solvents are expensive and are not environmentally friendly. The objective of this work was to systematically evaluate the asphaltene-solvating power of various non conventional solvents, including deasphalted oil, using a light-scattering technique. Experimental results suggest that deasphalted oil is a strong asphaltene solvent presumably because of its native resin and aromatic contents. Addition of asphaltene dispersants also increases the solubilizing power of the deasphalted oil. Furthermore, various refinery and heavy oil upgrader streams show strong ability to solubilize asphaltenes.

  13. Deasphalted oil: A natural asphaltene solvent

    SciTech Connect

    Jamaluddin, A.K.M.; Nazarko, T.W.; Sills, S.; Fuhr, B.J.

    1996-08-01

    Asphaltene deposition in the near-wellbore region can block pore throats, change wettability characteristics and relative-permeability relationships, and therefore, reduce oil production. Conventional aromatic solvents (e.g., toluene and xylene) alone or in combination with various dispersants are used to remove asphaltene damage from the near-wellbore region. However, these aromatic solvents are expensive and are not environmentally friendly. The objective of this work was to systematically evaluate the asphaltene-solvating power of various nonconventional solvents, including deasphalted oil, using a light-scattering technique. Experimental results suggest that deasphalted oil is a strong asphaltene solvent presumably because of its native resin and aromatic contents. Addition of asphaltene dispersants also increases the solubilizing power of the deasphalted oil. Furthermore, various refinery and heavy oil upgrader streams show strong ability to solubilize asphaltenes.

  14. Cobalt dicarbollide containing polymer resins for cesium and strontium uptake

    SciTech Connect

    Steckle, W.P. Jr.; Duke, J.R. Jr.; Jorgensen, B.S.

    1994-04-01

    Cobalt(III) dicarbollide [(C{sub 2}B{sub 9}H{sub 11}){sub 2}Co]{sup {minus}} (CB{sub 2}) is being investigated for Cs and Sr extraction from nuclear waste. Because organic solvents should be avoided, bonding of CB{sub 2} to resins were investigated. CB{sub 2} was successfully covalently bonded to polystyrene and polybenzimidazole resins. Tetrahydrofuran was the most efficient solvent for grafting. Analysis is being performed, and separation coefficients are also being determined. 3 figs, 8 refs.

  15. Review of glycol ether and glycol ether ester solvents used in the coating industry.

    PubMed Central

    Smith, R L

    1984-01-01

    Ethylene oxide-based glycol ether and glycol ether ester solvents have been used in the coatings industry for the past fifty years. Because of their excellent performance properties (evaporation rate, blush resistance, flow-out and leveling properties, solubility for coating resins, solvent activity, mild odor, good coupling ability, good solvent release) a complete line of ethylene oxide-based solvents of various molecular weights has been developed. These glycol ether and glycol ether ester solvents have better solvent activity for coating resin than ester or ketone solvents in their evaporation rate range. The gloss, flow and leveling, and general performance properties of many coating systems are dependent on the use of these products in the coating formula. Because of the concern about the toxicity of certain ethylene oxide-based solvents, other products are being evaluated as replacements in coating formulas. PMID:6499793

  16. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites.

    PubMed

    Sideridou, Irini D; Achilias, Dimitris S; Karabela, Maria M

    2007-04-01

    In the present investigation the sorption-desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption-desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion-relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported

  17. Flexural properties of glass fibre reinforced acrylic resin polymers.

    PubMed

    Tacir, I H; Kama, J D; Zortuk, M; Eskimez, S

    2006-03-01

    In recent years, glass fibres have been used to strengthen denture base resins. A major difficulty in using reinforcing fibres with multiphase acrylic resins, such as powder liquid resins, is inadequate impregnation of the fibres with the resin. This investigation examined the reinforcing effect of glass fibres on the fracture resistance and flexural strength of acrylic denture base resins. Eighty identical specimens were formed in specially designed moulds in accordance with the manufacturer's recommendations. The four experimental groups were prepared and these consisted of conventional acrylic resin and the same resin reinforced with glass fibres. Ten specimens were fabricated in a standardized fashion for each experimental group. Flexural strength was tested using a 3-point universal testing machine. In this study, statistically significant differences were found in the flexural strength of the specimens (P < 0.05). The injection-moulded, fibre-reinforced group had significantly lower flexural strength than the injection-moulded group (P < 0.001), strength than the microwave-moulded, fibre-reinforced group (P < 0.001), and the microwave-moulded, fibre-reinforced group had lower flexural strength than the microwave-moulded group. The fracture resistance was significantly higher in the injection-moulded, fibre-reinforced group than in the injection-moulded group (P < 0.05), and the fracture resistance was significantly higher in the microwave-moulded, fibre-reinforced group than in the microwave-moulded group. Within the limitations of this study, the flexural strength of heat-polymerized PMMA denture resin was improved after reinforcement with glass fibres. It may be possible to apply these results to distal extension partial and complete denture bases.

  18. Electrochemically triggered release of acetylcholine from scCO2 impregnated conductive polymer films evokes intracellular Ca(2+) signaling in neurotypic SH-SY5Y cells.

    PubMed

    Löffler, Susanne; Seyock, Silke; Nybom, Rolf; Jacobson, Gunilla B; Richter-Dahlfors, Agneta

    2016-12-10

    Implantable devices for electronically triggered drug release are attractive to achieve spatial and temporal control over drug concentrations in patients. Realization of such devices is, however, associated with technical and biological challenges. Among these are containment of drug reservoirs, lack of precise control cues, as well as the charge and size of the drug. Here, we present a method for electronically triggered release of the quaternary ammonium cation acetylcholine (ACh) from an impregnated conductive polymer film. Using supercritical carbon dioxide (scCO2), a film of PEDOT/PSS (poly(3,4)-ethylenedioxythiophene doped with poly(styrenesulfonate)) is impregnated with the neurotransmitter acetylcholine. The gentle scCO2 process generated a dry, drug-impregnated surface, well suited for interaction with biological material, while maintaining normal electrochemical properties of the polymer. Electrochemical switching of impregnated PEDOT/PSS films stimulated release of ACh from the polymer matrix, likely due to swelling mediated by the influx and efflux of charged and solvated ions. Triggered release of ACh did not affect the biological activity of the drug. This was shown by real-time monitoring of intracellular Ca(2+) signaling in neurotypic cells growing on the impregnated polymer surface. Collectively, scCO2 impregnation of conducting polymers offers the first one-step, dopant-independent drug impregnation process, potentially facilitating loading of both anionic and cationic drugs that can be dissolved in scCO2 on its own or by using a co-solvent. We foresee that scCO2-loaded devices for electronically triggered drug release will create novel opportunities when generating active bio-coatings, tunable for specific needs, in a variety of medical settings.

  19. Picture frame experiment and analytical model of the pre-impregnated woven fabric composite

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Liping

    2009-12-01

    Pre-impregnated woven fabric composite (PWFC) is a kind of visco-elastic material which requires picture frame experiment, a sort of useful material characterization methodology, to test the shear properties. The PWFC specimen used in the experiment is 165mm×165mm minus a 25mm×25mm square at each corner in order to allow free motion of the frame. The screw Instron is applied to provide a constant displacement rate. Thus, load-displacement curve is obtained. Through analysis of every constituent mutual interaction and deformation mechanism of the PWFC, the shear deformation is divided by shear and compaction phases and a picture frame analytical model is developed to account for large shear deformation, as well as to calculate the stress and stiffness of the fabric according to different phases. The model includes the resin damping function and the crossover friction of the warp and weft tows in the shearing phase. In the compaction phase, resin will be driven from the inter-tow region and the tows are interacted. Consequently, a lateral compaction shear resistance moment is occurred. The picture frame experiment curve is used to verify the analytical model curve and the two curves are in good agreement.

  20. Picture frame experiment and analytical model of the pre-impregnated woven fabric composite

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Liping

    2010-03-01

    Pre-impregnated woven fabric composite (PWFC) is a kind of visco-elastic material which requires picture frame experiment, a sort of useful material characterization methodology, to test the shear properties. The PWFC specimen used in the experiment is 165mm×165mm minus a 25mm×25mm square at each corner in order to allow free motion of the frame. The screw Instron is applied to provide a constant displacement rate. Thus, load-displacement curve is obtained. Through analysis of every constituent mutual interaction and deformation mechanism of the PWFC, the shear deformation is divided by shear and compaction phases and a picture frame analytical model is developed to account for large shear deformation, as well as to calculate the stress and stiffness of the fabric according to different phases. The model includes the resin damping function and the crossover friction of the warp and weft tows in the shearing phase. In the compaction phase, resin will be driven from the inter-tow region and the tows are interacted. Consequently, a lateral compaction shear resistance moment is occurred. The picture frame experiment curve is used to verify the analytical model curve and the two curves are in good agreement.

  1. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  2. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric reentry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside the thermal protection material, Phenolic Impregnated Carbon Ablator (PICA). PICA has successfully flown on the Stardust spacecraft and was the TPS material chosen for the Mars Science Laboratory (MSL), that will fly in 2011. Although PICA has good thermal properties, structurally, it is a weak material. To thoroughly understand failure in PICA, experiments were performed using FiberForm(Registered TradeMark) (precursor of PICA), virgin and furnace-charred PICA. Several small samples were tested inside an electron microscope to investigate the failure mechanisms. Micrographs were obtained before and after the failure in order to study crack initiation and growth. Videos were obtained to capture failure mechanisms in real time. Stress-strain data was obtained simultaneously for all the samples with the help of a data acquisition system, integrated to the mechanical stages. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  3. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric entry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of research is Phenolic Impregnated Carbon Ablator (PICA). It has successfully flown on the Stardust spacecraft and is the TPS material chosen for the Mars Science Laboratory (MSL) and Dragon spacecraft. Although PICA has good thermal properties, structurally, it is a weak material. In order to thoroughly understand failure in PICA, fracture tests were performed on FiberForm* (precursor of PICA), virgin and charred PICA materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the fracture toughness. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  4. Wood impregnation of yeast lees for winemaking.

    PubMed

    Palomero, Felipe; Bertani, Paolo; Fernández de Simón, Brígida; Cadahía, Estrella; Benito, Santiago; Morata, Antonio; Suárez-Lepe, José A

    2015-03-15

    This study develops a new method to produce more complex wines by means of an indirect diffusion of wood aromas from yeast cell-walls. An exogenous lyophilized biomass was macerated with an ethanol wood extract solution and subsequently dried. Different times were used for the adsorption of polyphenols and volatile compounds to the yeast cell-walls. The analysis of polyphenols and volatile compounds (by HPLC/DAD and GC-MS, respectively) demonstrate that the adsorption/diffusion of these compounds from the wood to the yeast takes place. Red wines were also aged with Saccharomyces cerevisiae lees that had been impregnated with wood aromas and subsequently dried. Four different types of wood were used: chestnut, cherry, acacia and oak. Large differences were observed between the woods studied with regards to their volatile and polyphenolic profiles. Sensory evaluations confirmed large differences even with short-term contact between the wines and the lees, showing that the method could be of interest for red wine making. In addition, the results demonstrate the potential of using woods other than oak in cooperage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Development of new and improved polymer matrix resin systems, phase 1

    NASA Technical Reports Server (NTRS)

    Hsu, M. S.

    1983-01-01

    Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.

  6. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (Inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  7. Ice adhesion on lubricant-impregnated textured surfaces.

    PubMed

    Subramanyam, Srinivas Bengaluru; Rykaczewski, Konrad; Varanasi, Kripa K

    2013-11-05

    Ice accretion is an important problem and passive approaches for reducing ice-adhesion are of great interest in various systems such as aircrafts, power lines, wind turbines, and oil platforms. Here, we study the ice-adhesion properties of lubricant-impregnated textured surfaces. Force measurements show ice adhesion strength on textured surfaces impregnated with thermodynamically stable lubricant films to be higher than that on surfaces with excess lubricant. Systematic ice-adhesion measurements indicate that the ice-adhesion strength is dependent on texture and decreases with increasing texture density. Direct cryogenic SEM imaging of the fractured ice surface and the interface between ice and lubricant-impregnated textured surface reveal stress concentrators and crack initiation sites that can increase with texture density and result in lowering adhesion strength. Thus, lubricant-impregnated surfaces have to be optimized to outperform state-of-the-art icephobic treatments.

  8. Reducing Sliding Friction with Liquid-Impregnated Surfaces

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad; Collier, C. Patrick; Boreyko, Jonathan; Nature Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Liquid-impregnated surfaces are fabricated by infusing a lubricating liquid into the micro/nano roughness of a textured substrate, such that the surface is slippery for any deposited liquid immiscible with the lubricant. To date, liquid-impregnated surfaces have almost exclusively focused on repelling liquids by minimizing the contact angle hysteresis. Here, we demonstrate that liquid-impregnated surfaces are also capable of reducing sliding friction for solid objects. Ordered arrays of silicon micropillars were infused with lubricating liquids varying in viscosity by two orders of magnitude. Five test surfaces were used: two different micropillared surfaces with and without liquid infusion and a smooth, dry control surface. The static and kinetic coefficients of friction were measured using a polished aluminum cube as the sliding object. Compared to the smooth control surface, the sliding friction was reduced by at least a factor of two on the liquid-impregnated surfaces.

  9. Stoddard solvent poisoning

    MedlinePlus

    These products contain Stoddard solvent: Dry cleaning fluids Paints Paint thinner Stoddard solvent ( mineral spirits ) Toners used in copy machines This list may not include all products containing Stoddard solvent.

  10. Water sorption/solubility of dental adhesive resins.

    PubMed

    Malacarne, Juliana; Carvalho, Ricardo M; de Goes, Mario F; Svizero, Nadia; Pashley, David H; Tay, Franklin R; Yiu, Cynthia K; Carrilho, Marcela Rocha de Oliveira; de Oliveira Carrilho, Marcela Rocha

    2006-10-01

    This study evaluated the water sorption, solubility and kinetics of water diffusion in commercial and experimental resins that are formulated to be used as dentin and enamel bonding agents. Four commercial adhesives were selected along with their solvent-monomer combination: the bonding resins were of Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) systems, and the "one-bottle" systems, Adper Single Bond (SB) and Excite (EX). Five experimental methacrylate-based resins of known hydrophilicities (R1, R2, R3, R4 and R5) were used as reference materials. Specimen disks were prepared by dispensing the uncured resin into a mould (5.8mm x 0.8mm). After desiccation, the cured specimens were weighed and then stored in distilled water for evaluation of the water diffusion kinetics over a 28-day period. Resin composition and hydrophilicity (ranked by their Hoy's solubility parameters) influenced water sorption, solubility and water diffusion in both commercial and experimental dental resins. The most hydrophilic experimental resin, R5, showed the highest water sorption, solubility and water diffusion coefficient. Among the commercial adhesives, the solvated systems, SB and EX, showed water sorption, solubility and water diffusion coefficients significantly greater than those observed for the non-solvated systems, MP and SE (p<0.05). In general, the extent and rate of water sorption increased with the hydrophilicity of the resin blends. The extensive amount of water sorption in the current hydrophilic dental resins is a cause of concern. This may affect the mechanical stability of these resins and favor the rapid and catastrophic degradation of resin-dentin bonds.

  11. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  12. Void minimization in the manufacture of carbon fiber composites by resin transfer molding

    SciTech Connect

    Stabler, W.R.; Tatterson, G.B.; Sadler, R.L. ); El-Shiekh, A.H.M. )

    1992-01-01

    Manufacture of carbon fiber composites by resin transfer molding involves the impregnation of a carbon fiber preform, held in a mold, with resin. In this process, voids are formed which detract from the physical appearance of the composite, adversely affect the physical properties of the composite, increase the failure modes for the composite part and cause waste in manufacturing. In this study, different conditions of surface waxing of the mold, initial bubble content of the epoxy resin and the vibration of mold during filling were shown to affect void formation. For conditions of light surface waxing with buffing, low initial bubble content and mold vibration frequency of 10Hz, void formation was minimized. Conditions of a heavily waxed surface without buffing, high feed bubble content in the resin feed and mold vibration frequencies other than 10 Hz permitted substantial void formation. Fill time and fill pressure in the ranges studied did not affect void formation.

  13. Carbon dioxide adsorption on polyacrylamide-impregnated silica gel and breakthrough modeling

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Shen, Yanmei; Bai, Lu; Ni, Shiqing

    2012-11-01

    Polyacrylamide-impregnated silica gel was prepared to capture CO2 from flue gas. The polymerization of acrylamide was carried out in AN solvent using AIBN as initiator and EGDMA as crosslinker. The adsorbents were characterized by N2 adsorption, FTIR analysis, SEM analysis, and thermal gravimetric analysis. The results showed that the polymer was not only occupying the porosity of the silica, but necessarily surrounding silica particles, and the amide groups was successfully loaded on the support silica. The impregnated silica displayed good thermal-stability at 250 °C. The CO2 adsorption isotherms were measured to examine CO2 adsorption on adsorbents, and the results showed that the capacity was increased significantly after modification. The CO2 isosteric adsorption heats calculated from the isotherms showed that the adsorption interaction of CO2 with the functionalized material may be mainly an intermolecular force or hydrogen bond. Fixed-bed breakthrough model of CO2 adsorption on functionalized silica was successfully developed to describe the breakthrough curves under different adsorption temperature, CO2 concentration, and gas flow rate. The mass transfer coefficients of CO2 were calculated from the breakthrough model, the results showed that adsorption rate could be promoted by increasing temperature, flow rate and CO2 concentration, among which the effect of gas flow rate is the most obvious.

  14. Demonstration of contact sensitizers in resins and products based on phenol-formaldehyde.

    PubMed

    Bruze, M; Persson, L; Trulsson, L; Zimerson, E

    1986-03-01

    12 phenol-formaldehyde resins were investigated with regard to the presence of 14 contact sensitizers by using high-pressure liquid chromatography. The allergens consisted of simple methylol phenols, dihydroxydiphenyl methanes, 4,4(1)-dihydroxy-(hydroxymethyl)-diphenyl methanes and 2,4(1)-dihydroxy-(hydroxymethyl)-diphenyl methanes. Four substances, 2,4-dimethylol phenol, 2,6-dimethylol phenol, 4,4(1)-dihydroxydiphenyl methane and 2,4(1)-dihydroxydiphenyl methane, were isolated from a resol resin and identified by mass-spectrometry and nuclear magnetic resonance spectrometry. The highest concentrations (up to 15% w/w) of allergens were noted for methylol phenols in resol resins based on phenol and formaldehyde. The corresponding novolak resins showed a high content of dihydroxydiphenyl methanes. There was great variation in concentration of the sensitizers between the resins. None of these sensitizers were demonstrated in the resin based on paratertiary-butyl phenol. Products based on phenol-formaldehyde resins were also investigated for the presence of allergens. Uncured impregnated paper for laminate production and uncured mineral wool contained the same concentrations of the sensitizers as some of the resins studied. The curing process decreased the content of all the allergens investigated in all products, but the sensitizers did not disappear, and they may thus be present in finished products.

  15. Ultrasound promoted selective synthesis of 1,1'-binaphthyls catalyzed by Fe impregnated pillared Montmorillonite K10 in presence of TBHP as an oxidant.

    PubMed

    Bhor, Malhari D; Nandurkar, Nitin S; Bhanushali, Mayur J; Bhanage, Bhalchandra M

    2008-03-01

    Naphthols were selectively coupled under sonication using Fe(+3) impregnated pillared Montmorillonite K10 and TBHP as an oxidant. Considerable enhancement in the reaction rate was observed under sonication as compared to the reaction performed under silent condition. The activity of catalyst was compared with other Fe clay catalysts. Various parameters like solvent, catalyst and TBHP concentration has been studied. The heterogeneous active catalyst K10-FePLS120 was recycled without loss in activity and selectivity performance.

  16. Relative efficiency of solvents used in endodontics.

    PubMed

    Hansen, M G

    1998-01-01

    A root canal model was used to test the relative efficiency of various commonly used endodontic solvents including eucalyptol, eucalyptus oil, orange oil, chloroform, and xylene to dissolve or soften gutta-percha and several different types of sealers (Proco-Sol, AH26, and Sealapex). There was no significant difference in the ability of the solvents to dissolve gutta-percha and the zinc oxide-eugenol-based sealer Proco-Sol. The resin-based sealer, AH26, was only dissolved in chloroform and took considerable time (> 30 min). The calcium hydroxide-based sealer, Sealapex, could not be tested because it was found not to set at all unless in contact with air. All of the solvents for both Proco-Sol and gutta-percha produced clinically acceptable dissolving times.

  17. Electrical Insulation Characteristics of Glass Fiber Reinforced Resins

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R

    2009-01-01

    Non-metallic structural materials that act as an electrical insulation are needed for cryogenic power applications. One of the extensively utilized materials is glass fiber reinforced resins (GFRR) and may also be known as GFRP and FRP. They are created from glass fiber cloth that are impregnated with an epoxy resin under pressure and heat. Although the materials based on GFRR have been employed extensively, reports about their dielectric properties at cryogenic temperatures and larger thicknesses are generally lacking in the literature. Therefore to guide electrical apparatus designers for cryogenic applications, GFRR samples with different thicknesses are tested in a liquid nitrogen bath. Scaling relation between the dielectric breakdown strength and the GFFR thickness is established. Their loss tangents are also reported at various frequencies.

  18. Bonded Orthodontic Retainer and Fixed Partial Denture Made with Fiber Reinforced Composite Resin

    PubMed Central

    Kumbuloglu, Ovul; Saracoglu, Ahmet; Cura, Cenk; User, Atilla

    2011-01-01

    Retention is the phase of orthodontic treatment which maintains teeth in their orthodontically corrected positions, following the cessation of active orthodontic tooth movement. Development of resin-impregnated, fiber-reinforced composite materials has provided the potential to develop new approaches for stabilizing teeth and replacing teeth conservatively. This case report describes the rehabilitation of a patient with orthodontic and prosthetic problems. The long-term behavior of glass fibers splint must be evaluated in clinical studies. PMID:21494395

  19. Synthesis and Characterization of AlCl3 Impregnated Molybdenum Oxide as Heterogeneous Nano-Catalyst for the Friedel-Crafts Acylation Reaction in Ambient Condition.

    PubMed

    Jadhav, Arvind H; Chinnappan, Amutha; Hiremath, Vishwanath; Seo, Jeong Gil

    2015-10-01

    Aluminum trichloride (AlCl3) impregnated molybdenum oxide heterogeneous nano-catalyst was prepared by using simple impregnation method. The prepared heterogeneous catalyst was characterized by powder X-ray diffraction, FT-IR spectroscopy, solid-state NMR spectroscopy, SEM imaging, and EDX mapping. The catalytic activity of this protocol was evaluated as heterogeneous catalyst for the Friedel-Crafts acylation reaction at room temperature. The impregnated MoO4(AlCl2)2 catalyst showed tremendous catalytic activity in Friedel-Crafts acylation reaction under solvent-free and mild reaction condition. As a result, 84.0% yield of acyl product with 100% consumption of reactants in 18 h reaction time at room temperature was achieved. The effects of different solvents system with MoO4(AlCl2)2 catalyst in acylation reaction was also investigated. By using optimized reaction condition various acylated derivatives were prepared. In addition, the catalyst was separated by simple filtration process after the reaction and reused several times. Therefore, heterogeneous MoO4(AlCl2)2 catalyst was found environmentally benign catalyst, very convenient, high yielding, and clean method for the Friedel-Crafts acylation reaction under solvent-free and ambient reaction condition.

  20. Solventless LARC-160 Polyimide Matrix Resin. [applied for use in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Stclair, T. L.; Jewell, R. A.

    1978-01-01

    The addition polyimide, LARC-160, which was originally synthesized from low cost liquid monomers as a laminating resin in ethanol, was prepared as a solventless, high viscosity, neat liquid resin. The resin was processed by hot-melt coating techniques into graphite prepreg with excellent tack and drape. Comparable data on graphite reinforced laminates made from solvent-coated and various hot-melt coated prepreg were generated. LARC-160, because of its liquid nature, can be easily autoclave processed to produce low void laminates. Liquid chromatographic fingerprints indicate good reaction control on resin scale ups. Minor changes in monomer ratios were also made to improve the thermal aging performance of graphite laminates.

  1. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  2. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  3. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  4. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  5. Effect of impregnation protocol on physical characteristics and adsorptive properties of sulfur impregnated carbon for vapor-phase mercury

    SciTech Connect

    Liu, W.; Korpiel, J.A.; Vidic, R.D.

    1997-12-31

    Removal efficiency of commercially available sulfur-impregnated carbon (HGR) and bituminous coal-based activated carbon impregnated with sulfur at 250 C, 400 C and 600 C (BPL-S) for vapor-phase elemental mercury was evaluated under various process conditions. Based on the fixed-bed breakthrough experiments, both HGR and BPL-S carbon exhibited improved mercury removal efficiency compared to the virgin carbon (BPL). However, the BPL-S series had higher mercury uptake capacity than that of HGR for the influent mercury concentration of 55 g/m{sup 3} and at the operating temperature of 140 C. For the BPL-S series, impregnation temperature was an important factor which affected the capacity for mercury uptake. BPL-S impregnated at 600 C (BPL-S-600) had the highest removal capacity, while BPL-S-400 exhibited slightly lower capacity. BPL-S-250 exhibited significantly lower capacity when compared to BPL-S-600 and BPL-S-400. The actual sulfur content for HGR and BPL-S series were almost the same (10%), except BPL-S-250 which had much higher sulfur content of 36%. Specific surface area, as determined by the BET method, and bonding between sulfur and carbon, as determined by thermogravimetric analysis (TGA), were also dependent on the impregnation procedure. Higher impregnation temperatures promote more uniform distribution of low molecular weight sulfur allotropes on the carbon surface. Pore size distribution study showed the detailed micro-structure of these activated carbons. Most of the pores of HGR carbon have radius between 15--24 , while the radius of BPL-S pores was between 15--35 . As the impregnation temperature decreases, the portion of larger pores also decreases from BPL-S-600 to BPL-S-250.

  6. The bactericidal activity of glutaraldehyde-impregnated polyurethane.

    PubMed

    Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan

    2016-10-01

    Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple "swell-encapsulation-shrink" method (hereafter referred to as "glutaraldehyde-impregnated polyurethane"), or simply applied to the polymer surface (hereafter referred to as "glutaraldehyde-coated polyurethane"). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Silicone Resin Applications for Ceramic Precursors and Composites

    PubMed Central

    Narisawa, Masaki

    2010-01-01

    This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  8. Morphology control in mesoporous carbon films using solvent vapor annealing.

    PubMed

    Qiang, Zhe; Xue, Jiachen; Cavicchi, Kevin A; Vogt, Bryan D

    2013-03-12

    Ordered mesoporous (2-50 nm) carbon films were fabricated using cooperative self-assembly of a phenolic resin oligomer with a novel block copolymer template (poly(styrene-block-N,N-dimethyl-n-octadecylamine p-styrenesulfonate), (PS-b-PSS-DMODA)) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Due to the high Tg of the PS segment and the strong interactions between the phenolic resin and the PSS-DMODA, the segmental rearrangement is kinetically hindered relative to the cross-linking rate of the phenolic resin, which inhibits long-range ordering and yields a poorly ordered mesoporous carbon with a broad pore size distribution. However, relatively short exposure (2 h) to controlled vapor pressures of methyl ethyl ketone (MEK) yields significant improvements in the long-range ordering and narrows the pore size distribution. The average pore size increases as the solvent vapor pressure during annealing increases, but an upper limit of p/p0 = 0.85 exists above which the films dewet rapidly during solvent vapor annealing. This approach can be extended using mesityl oxide, which has similar solvent qualities to MEK, but is not easily removed by ambient air drying after solvent annealing. This residual solvent can impact the morphology that develops during cross-linking of the films. These results illustrate the ability to fine-tune the mesostructure of ordered mesoporous carbon films through simple changes in the processing without any compositional changes in the initial cast film.

  9. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes.

    PubMed

    Chen, Qi; Zhao, Yong; Wu, Weidong; Xu, Tao; Fong, Hao

    2012-10-01

    To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and the corresponding composites (with conventional glass filler) containing varied mass fractions of halloysite nanotubes (HNTs). Three dispersion methods were studied to separate the silanized halloysite as individual HNTs and to uniformly distribute them into dental matrices. Photopolymerization induced volumetric shrinkage was measured by using a mercury dilatometer. Real time near infrared spectroscopy was adopted to study the degree of vinyl double bond conversion and the photopolymerization rate. Mechanical properties of the composites were tested by a universal mechanical testing machine. Analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. Morphologies of halloysite/HNTs and representative fracture surfaces of the reinforced dental resins/composites were examined by SEM and TEM. Impregnation of small mass fractions (e.g., 1% and 2.5%) of the silanized HNTs in Bis-GMA/TEGDMA dental resins/composites improved mechanical properties significantly; however; large mass fractions (e.g., 5%) of impregnation did not further improve the mechanical properties. The impregnation of HNTs into dental resins/composites could result in two opposite effects: the reinforcing effect due to the highly separated and uniformly distributed HNTs, and the weakening effect due to the formation of HNT agglomerates/particles. Uniform distribution of a small amount of well-separated silanized HNTs into Bis-GMA/TEGDMA dental resins/composites could result in substantial improvements on mechanical properties. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Starch-modified magnetite nanoparticles for impregnation into cartilage

    NASA Astrophysics Data System (ADS)

    Soshnikova, Yulia M.; Roman, Svetlana G.; Chebotareva, Natalia A.; Baum, Olga I.; Obrezkova, Mariya V.; Gillis, Richard B.; Harding, Stephen E.; Sobol, Emil N.; Lunin, Valeriy V.

    2013-11-01

    The paper presents preparation and characterization of starch-modified Fe3O4 nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non-stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  11. Fog-harvesting potential of lubricant-impregnated electrospun nanomats.

    PubMed

    Lalia, Boor Singh; Anand, Sushant; Varanasi, Kripa K; Hashaikeh, Raed

    2013-10-22

    Hydrophobic PVDF-HFP nanowebs were fabricated by a facile electrospinning method and proposed for harvesting fog from the atmosphere. A strong adhesive force between the surface and a water droplet has been observed, which resists the water being shed from the surface. The water droplets on the inhomogeneous nanomats showed high contact angle hysteresis. The impregnation of nanomats with lubricants (total quartz oil and Krytox 1506) decreased the contact angle hysteresis and hence improved the roll off of water droplets on the nanomat surface. It was found that water droplets of 5 μL size (diameter = 2.1 mm) and larger roll down on an oil-impregnated surface, held vertically, compared to 38 μL (diameter = 4.2 mm) on a plain nanoweb. The contact angle hysteresis decreased from ~95 to ~23° with the Krytox 1506 impregnation.

  12. Nitric acid vapor removal by activated, impregnated carbons

    SciTech Connect

    Wood, G.O.

    1996-12-31

    Laboratory and industrial workers can be exposed to vapors of nitric acid, especially in accidents, such as spills. Nitric acid can also be a product of incineration for energy production or waste (e.g., CW agent) disposal. Activated carbons containing impregnants for enhancing vapor and gas removal have been tested for effectiveness in removing vapors of nitric acid from air. The nitric acid vapor was generated from concentrated acid solutions and detected by trapping in a water bubbler for pH measurements. Both low and moderate relative humidity conditions were used. All carbons were effective at vapor contact times representative of air-purifying respirator use. One surprising observation was the desorption of low levels of ammonia from impregnated carbons. This was apparently due to residual ammonia from the impregnation processes.

  13. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  14. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  15. Field evaluation of bednets impregnated with deltamethrin for malaria control.

    PubMed

    Wu, N; Qin, L; Liao, G; Zhou, W; Geng, W; Shi, Y; Tan, Y; Zhao, K

    1993-12-01

    Trials were undertaken in a hypoendemic area of malaria in an area bordering Vietnam, in Napo County of Guangxi Zhuang Autonomous Region, China. The aim was to compare the relative cost effectiveness of DDT residual spraying and of bednets impregnated with deltamethrin in the malaria control program. The trials were divided into three subgroups: (1) two farming areas and one coal mining area with a total population > 20,000, where the trial consisted of mass bednets impregnated with deltamethrin 15 mg/m2 net surface once a year, (2) one farming area with a population of approximately 3,600 where DDT residual spraying at 2g/m2 was carried out twice a year in May and August; (3) one farming area and one coal mining village with a population of > 4,000 were used as a control. The malaria vector population consisted mainly of Anopheles minimus and An. anthropophagus with a small contribution from An. sinensis. After bednets were impregnated with deltamethrin the mosquitos resting on the surface of the bednets decreased significantly, although there was less effect on the total vector population. The results showed that malaria incidence decreased significantly both in areas where impregnated bednets were used and in areas where residual spraying was undertaken. The positive IFAT rates of residents who slept under impregnated bednets decreased significantly in farming areas, especially in that area where bednet impregnation as a vector control measure had been undertaken for two years, but there was no change in the IFAT rate in DDT sprayed or control areas.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  17. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  18. Gallocyanin-chrome alum counterstaining of Golgi-Kopsch impregnations.

    PubMed

    Tieman, S B

    1983-05-01

    A simple technique is described for counterstaining Golgi-Kopsch impregnations. The sections are first stabilized by the method of Geisert and Updyke and then stained in 0.15% gallocyanin and 5% chromium potassium sulfate for 45 minutes at 55-60 C. The sections are then rinsed, dehydrated to 70% ethanol, cleared in terpineol, mounted and coverslipped. This procedure results in a light to medium blue stain of those cells not impregnated by the silver chromate. The major advantages of this procedure over earlier methods are: (1) the counterstain does not fade and (2) since no differentiation is required, many sections may be stained simultaneously.

  19. Preparation and properties of polytetrafluoroethylene impregnated with rhenium oxides

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Easter, R. W.

    1973-01-01

    The results of tests carried out to determine the properties of polytetrafluorethylene (PTFE) impregnated with rhenium oxides are presented. The tests included measurement of physical properties of the impregnated material and investigation of the effects of preparation process variables. Based on the latter tests a mechanism to describe the permeation process is postulated which identifies the rate controlling step to be diffusion of ReF6 molecules into the solid during the initial ReF6 soak. Physical property tests indicated that the electronic conductance is increased by many orders of magnitude while the desirable properties of the PTFE remain virtually unchanged.

  20. Miscellaneous hydrocarbon solvents.

    PubMed

    Bebarta, Vikhyat; DeWitt, Christopher

    2004-08-01

    The solvents discussed in this article are common solvents not categorized as halogenated, aromatic, or botanical. The solvents discussed are categorized into two groups: hydrocarbon mixtures and single agents. The hydrocarbon mixtures discussed are Stoddard solvent, naphtha, and kerosene. The remaining solvents described are n-hexane, methyl n-butyl ketone, dimethylformamide, dimethyl sulfoxide, and butyl mercaptans. Effects common to this group of agents and their unique effects are characterized. Treatment of exposures and toxic effects of these solvents is described, and physiochemical properties and occupational exposure levels are listed.

  1. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  2. Phenolic Resin for Refractories

    NASA Astrophysics Data System (ADS)

    Irie, Shunsuke; Rappolt, James

    Refractories are used in furnaces and boilers that process steel, cement, or glass as well as incinerators that operate at high temperatures. A variety of binders is used when refractories are manufactured. In this chapter, the use of phenolic resin as a binder for refractories is described. There are several factors that support the use of phenolic resins in comparison to other refractory binders. These include the following: 1. Both adhesion and green body strength are high.

  3. Radon emanation from fresh, altered and disturbed granitic rock characterized by (14)C-PMMA impregnation and autoradiography.

    PubMed

    Hellmuth, Karl-Heinz; Siitari-Kauppi, Marja; Arvela, Hannu; Lindberg, Antero; Fonteneau, Lionel; Sardini, Paul

    2017-09-01

    Radon emanation from intact samples of fresh ("BG"), altered ("Fract") and disturbed ("EDZ") Finnish granitic rock from Kuru (Finland) and its dependence on humidity and rock structural factors was studied. The pore network of the rock was characterized by microscopy and impregnation with (14)C-PMMA (polymethylmethacrylate) resin and autoradiography. The radon emanation factor was increasing linearly with the relative humidity. (14)C-PMMA autoradiography of the altered zones and the EDZ indicated significant, mineral-specific increase of porosity and porosity gradients towards the fracture surfaces (Fract) and microcracks within the EDZ. For small samples in the cm-scale emanation was not diffusion, but source term controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  5. NEPTUNIUM SOLVENT EXTRACTION PROCESS

    DOEpatents

    Dawson, L.R.; Fields, P.R.

    1959-10-01

    The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.

  6. Solvent Recycling for Shipyards

    DTIC Science & Technology

    1993-05-01

    alternatives to solvent cleaning. Typical equipment types that can be effectively cleaned with recycled solvents include spray guns paint hoses pumps...in place of solvent-based coatings; or equipment changes, such as the use of airless or HVLP systems to reduce paint consumption and overspray...Using mechanical cleaning methods instead of solvent cleaning Change from conventional painting to solventless processes such as thermal spray or powder

  7. Leaching of Silver from Silver-Impregnated Food Storage Containers

    ERIC Educational Resources Information Center

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  8. Leaching of Silver from Silver-Impregnated Food Storage Containers

    ERIC Educational Resources Information Center

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  9. Optical Imaging of Water Condensation on Lubricant Impregnated Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2015-11-01

    We explored the condensation of water drops on a lubricant-impregnated surface, i.e., a micropillar patterned surface impregnated with a ionic liquid. Growing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. On a lubricant-impregnated hydrophobic micropillar array, different stages of condensation can be discriminated: - Nucleation on a lubricant surface. - Regular alignement between micropillars and formation of a three-phase contact line on a bottom of the substrate. - Deformation and bridging by coalescence, leading to a detachment of the drops from the bottom substrate to pillars'top faces. However, on a lubricant-impregnated hydrophilic micropillar array, the condensed water covers the micropillars by dewetting the lubricant. As a result, the surface loses its slippery property. Our results provide fundamental concepts how these solid/liquid hybrid surfaces can be applied for facile removal of condensed water, as well as necessity of the appropriate surface treatment. Financial support from ERC for the advanced grant 340391-SUPRO is gratefully acknowledged.

  10. X-ray initiated polymerization of wood impregnants

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.; Galloway, Richard A.; Berejka, Anthony J.; Montoney, Daniel; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2009-07-01

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  11. Improved method facilitates debulking and curing of phenolic impregnated asbestos

    NASA Technical Reports Server (NTRS)

    Gaines, P.

    1966-01-01

    Workpieces covered with phenolic impregnated asbestos tape and then wrapped with a specified thickness of nylon yarn under pressure, are debulked and cured in a standard oven. This method of debulking and curing is used in the fabrication of ablative chambers for the Gemini and Apollo attitude control engines.

  12. Effect of impregnating agent and relative humidity on surface characteristics of sorbents determined by inverse gas chromatography.

    PubMed

    Kasperkowiak, M; Kołodziejek, J; Strzemiecka, B; Voelkel, A

    2013-05-03

    Sorbents that potentially can be used for separation of the products of biotechnological conversion of glycerol were examined. Properties of Zeolite 5A, resins: Amberlite, Diaion and their samples impregnated with an aqueous solutions of 1,2,3-propanetriol, 1,3-propanediol, 2,3-butanediol, acetic acid, succinic acid and model fermentation broth were investigated. Because surface properties will probably depend on the ambient humidity the IGC experiments were carried out under different conditions of relative humidity RH=0, 40 and 80%. Activity of the sorbents surface was expressed by the value of the dispersive component of the free surface energy. Inverse gas chromatography was also used to express acid-base properties of materials described by KA and KD parameters. The changes in the activity of investigated sorbents significantly varied depending on the type of impregnating agent. Moreover, the obtained results demonstrate that humidity can strongly influence, in some cases, the dispersive component of the free surface energy and the ability to specific interactions (KA and KD).

  13. Hollow cathodes with BaO impregnated, porous tungsten inserts and tips

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.

    1973-01-01

    The technology of impregnated materials is described and some inherently advantageous characteristics of impregnated cathodes are discussed. Thermionic emission measurements are presented for oxide coated and impregnated cathodes. Five cathode configurations with barium oxide impregnated porous tungsten inserts and/or tips have been fabricated and tested. Reliability, durability, and stability of operation are characterized. One of the cathodes has accumulated over 9000 operational hours, another has been cycled on and off more than 900 times.

  14. An X-Ray Photoelectron Spectroscopy (XPS) Study of Activated Carbons Impregnated with some Organocopper Complexes,

    DTIC Science & Technology

    1993-10-01

    AD-A282 721 l lllllll a Dfene Defence nationals AN X.RAY PHOTOELECTRON SPECTROSCOPY (XPS) STUDY OF ACTIVATED CARBONS IMPREGNATED WITH SOME... ammoniacal solution as a carrier into which all impregnants (except TEDA) were dissolved. Without a suitable carrier, and with the inherent low vapor...and will not be repeated here. All five complexes were synthesized at DREO using known methods. 2 2.2 IMPREGNATING PROCEDURES Two impregnating

  15. Hollow cathodes with BaO impregnated, porous tungsten inserts and tips

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.

    1973-01-01

    The technology of impregnated materials is described and some inherently advantageous characteristics of impregnated cathodes are discussed. Thermionic emission measurements are presented for oxide coated and impregnated cathodes. Five cathode configurations with barium oxide impregnated porous tungsten inserts and/or tips have been fabricated and tested. Reliability, durability, and stability of operation are characterized. One of the cathodes has accumulated over 9000 operational hours, another has been cycled on and off more than 800 times.

  16. Heterofunctionality interaction with donor solvent coal liquefaction. Final progress report, August 1982-April 1984

    SciTech Connect

    Cronauer, D.C.

    1984-05-01

    This project was undertaken to understand the role of the coal liquefaction solvent through a study of the interaction between the hydrogen donor solvent characteristics and the heterofunctionality of the solvent. Specifically, hydroxyl- and nitrogen-containing solvents were studied and characterized. A series of coal liquefaction experiments were carried out at 450/sup 0/C in a continuous feed stirred-tank reactor (CSTR) to observe the effect of adding phenolics to anthracene oil (AO) and SRC-II recycle solvents. The addition of phenol to AO at a ratio of 5/65 resulted in a nominal increase in coal conversion to THF solubles, but the amount of asphaltenes more than doubled resulting in a sizable net loss of solvent. The addition of m-cresol to both AO and SRC-II solvents had a positive effect on coal conversion to both THF and pentane solubles (oils). The partial removal of an OH-concentrate from SRC-II solvent was carried out using Amberlyst IRA-904 ion exchange resin. The resin-treated oil was only marginally better than raw SRC-II recycle solvent for coal liquefaction. Hydroaromatics having nitrogen functionality should be good solvents for coal liquefaction considering their effective solvent power, ability to penetrate and swell coal, and their ability to readily transfer hydrogen, particularly in the presence of oxygen functionality. However, these benefits are overshadowed by the strong tendency of the nitrogen-containing species to adduct with themselves and coal-derived materials.

  17. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde.

    PubMed

    García Gavin, Juan; Loureiro Martinez, Manuel; Fernandez-Redondo, Virginia; Seoane, Maria-José; Toribio, Jaime

    2008-01-01

    Melamine paper is a basic material used in the furniture industry for home and office interiors. Contact allergic dermatitis from melamine formaldehyde resins (MFRs) should be considered in patients who work on melamine paper impregnation lines. We report a case of a 28-year-old female plywood worker who developed eczema on the dorsal side of her hands and wrists after 2 years of working on the melamine paper impregnation line. She had a relevant positive patch-test reaction to MFR, with a negative reaction to formaldehyde. Contact dermatitis due to MFR is not common, and it is usually related to products that are not fully cured or to close contact with intermediate products on the assembly line. Formaldehyde release from MFR can explain most of the positive responses. To our knowledge, this is the first report of MFR contact allergic dermatitis in a worker on a melamine paper impregnation line.

  18. The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

    PubMed Central

    Parkhedkar, Rambhau D.; Mowade, Tushar Krishnarao

    2012-01-01

    PURPOSE The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins. PMID:22439093

  19. Modification of oil palm wood using acetylation and impregnation process

    NASA Astrophysics Data System (ADS)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  20. Chemically modified polymeric resins for solid-phase extraction and group separation prior to analysis by liquid or gas chromatography

    SciTech Connect

    Schmidt, L.W.

    1993-07-01

    Polystyrene divinylbenzene was modified by acetyl, sulfonic acid, and quaternary ammonium groups. A resin functionalized with an acetyl group was impregnated in a PTFE membrane and used to extract and concentrate phenolic compounds from aqueous samples. The acetyl group created a surface easily wetted, making it an efficient adsorbent for polar compounds in water. The membrane stabilized the resin bed. Partially sulfonated high surface area resins are used to extract and group separate an aqueous mixture of neutral and basic organics; the bases are adsorbed electrostatically to the sulfonic acid groups, while the neutraons are adsorbed hydrophobically. A two-step elution is then used to separate the two fractions. A partially functionalized anion exchange resin is used to separate organic acids and phenols from neutrals in a similar way. Carboxylic acids are analyzed by HPLC and phenols by GC.

  1. Optimal Composite Material for Low Cost Fabrication of Large Composite Aerospace Structures using NASA Resins or POSS Nanoparticle Modifications

    NASA Technical Reports Server (NTRS)

    Lamontia, Mark A.; Gruber, Mark B.; Jensen, Brian J.

    2006-01-01

    Thermoplastic laminates in situ consolidated via tape or tow placement require full mechanical properties. Realizing full properties requires resin crystallinity to be controlled - partial crystallinity leads to unacceptably low laminate compression properties. There are two approaches: utilize an amorphous matrix resin; or place material made from a semi-crystalline resin featuring kinetics faster than the process. In this paper, a matrix resin evaluation and trade study was completed with commercial and NASA amorphous polyimides on the one hand, and with PEKK mixed with POSS nanoparticles for accelerated crystallinity growth on the other. A new thermoplastic impregnated material, 6 mm wide (0.25-in) AS-4 carbon/LaRC(TradeMark)8515 dry polyimide tow, was fabricated. Since LaRC(TradeMark)8515 is fully amorphous, it attains full properties following in situ consolidation, with no post processing required to build crystallinity. The tow in situ processing was demonstrated via in situ thermoplastic filament winding it into rings.

  2. Solvents and sustainable chemistry

    PubMed Central

    Welton, Tom

    2015-01-01

    Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217

  3. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  4. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  5. Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Johnson, Christine E.; Rasky, Daniel J.; Hui, Frank C. L.; Hsu, Ming-Ta; Chen, Timothy; Chen, Y. K.; Paragas, Daniel; Kobayashi, Loreen

    1997-01-01

    This paper presents the development of the light weight Phenolic Impregnated Carbon Ablators (PICA) and its thermal performance in a simulated heating environment for planetary entry vehicles. The PICA material was developed as a member of the Light Weight Ceramic Ablators (LCA's), and the manufacturing process of this material has since been significantly improved. The density of PICA material ranges from 14 to 20 lbm/ft(exp 3), having uniform resin distribution with and without a densified top surface. The thermal performance of PICA was evaluated in the Ames arc-jet facility at cold wall heat fluxes from 375 to 2,960 BtU/ft(exp 2)-s and surface pressures of 0.1 to 0.43 atm. Heat loads used in these tests varied from 5,500 to 29,600 BtU/ft(exp 2) and are representative of the entry conditions of the proposed Discovery Class Missions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was also measured by using a template and a height gage. The ablation characteristics and efficiency of PICA are quantified by using the effective heat of ablation, and the thermal penetration response is evaluated from the thermal soak data. In addition, a comparison of thermal performance of standard and surface densified PICA is also discussed.

  6. Method for recovering and using lignin in adhesive resins

    DOEpatents

    Schroeder, Herbert A.

    1993-01-01

    Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.

  7. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    1981-02-24

    Primary diamines are disclosed of the formula shown in a diagram wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzomethane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  8. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, James A. [Livermore, CA; Newey, Herbert A. [Lafayette, CA

    1981-02-24

    Primary diamines of the formula ##STR1## wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzo methane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  9. An in situ study of resin-assisted solvothermal metal-organic framework synthesis

    SciTech Connect

    Moorhouse, Saul J.; Wu, Yue; O’Hare, Dermot

    2016-04-15

    A newly developed in situ monochromatic high-energy X-ray diffraction setup was used to investigate the synthesis of MOFs using cation-impregnated polymer resin beads as a ion source. The Co–NDC–DMF (NDC=2,6-naphthalenedicarboxylate; DMF=dimethylformamide) system was investigated, a system which is known to produce at least three distinct frameworks. It was found that the resin-assisted synthesis results in the preferential formation of a topology previously impossible to synthesise in bulk, while the comparable nitrate-salt synthesis appeared to form an alternative phases. It was also found that the resin-assisted synthesis is highly diffusion-controlled. - Graphical abstract: In situ monochromatic high-energy X-ray diffraction study of a MOF synthesis. - Highlights: • Resin-assisted solvothermal MOF synthesis was studied using in situ diffraction. • Full kinetics of reaction can be obtained from in situ data. • Kinetics show that this resin-assisted synthesis is diffusion controlled. • Resin-assisted synthesis enables the production of an alternative bulk phase.

  10. Occupational contact dermatitis caused by aniline epoxy resins in the aircraft industry.

    PubMed

    Pesonen, Maria; Suuronen, Katri; Jolanki, Riitta; Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Valtanen, Ilona; Alanko, Kristiina

    2015-08-01

    Tetraglycidyl-4,4'-methylenedianiline (TGMDA) is an aniline epoxy resin used in, for example, resin systems of pre-impregnated composite materials (prepregs) of the aircraft industry. Allergic contact dermatitis caused by TGMDA in prepregs has been described previously. To report on 9 patients with occupational allergic contact dermatitis caused by TGMDA in epoxy glues used in helicopter assembly. The patients were examined with patch testing at the Finnish Institute of Occupational Health in 2004-2009. The first patient was diagnosed by testing both components of two epoxy glues from the workplace, and was also tested with glue ingredients, including TGMDA. The following patients were tested with the glues and TGMDA. The resin parts of the glues were analysed for their epoxy compounds, including TGMDA. All of the patients had a patch test reaction to one or both of the resin parts of the TGMDA-containing glues. Eight of them had a strong allergic reaction to TGMDA, and one had a doubtful reaction to TGMDA. Two of the patients also had an allergic reaction to triglycidyl-p-aminophenol (TGPAP), another aniline epoxy resin, which was not present in the TGMDA-containing glues. In aircraft industry workers with suspected occupational dermatitis, aniline epoxy resins should be considered and patch tested as possible contact allergens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Gastroprotective activity of the resin from Virola oleifera.

    PubMed

    Pereira, Ana Claudia Hertel; Lenz, Dominik; Nogueira, Breno Valentim; Scherer, Rodrigo; Andrade, Tadeu Uggere; Costa, Helber Barcellos da; Romão, Wanderson; Pereira, Thiago Melo Costa; Endringer, Denise Coutinho

    2017-12-01

    The resin from the trunk wood of Virola oleifera (Schott) A. C. Smith (Myristicaceae) is used in folk medicine to hasten wound repair and to treat pain and inflammatory conditions, and our previous report indicated the anti-oxidative properties in other oxidative stress model. To investigate the protective effects of resin from V. oleifera in two experimental models of gastric ulcer oxidative-stress dependent. Plant material was collected and the resin was subjected to partitioning with organic solvents. The buthanol fraction was subjected to chromatographic and spectrometric methods for isolation and structural elucidation. The resin was quantified for polyphenols and flavonoids by colorimetric methods. Furthermore, the antioxidant activity of resin was determined by three different methods. The ulcers were induced acutely in Swiss male mice with ethanol/HCl and indomethacin using single-doses of 10 and 100 mg/kg. The gastroprotection of the experimental groups was comparable to reference control lansoprazole (3 mg/kg). The high content of polyphenols (∼82%) and the presence of epicatechin and eriodictyol were determined. The LD50 was estimated at 2500 mg/kg. At minimum (10 mg/kg) and maximum (100 mg/kg) dosage of resin, both in ethanol/HCl as indomethacin ulcer induction models demonstrate reduction of lesions (minimum: ∼97% and ∼66%; maximum: ∼95% and ∼59%). The gastroprotection might be related to tannins, phenolic acids and flavonoids present in the resin by antioxidant properties. The results indicate that this resin has gastroprotective activity probably associated with the presence of phenolic antioxidant substances.

  12. An exploration of experimental parameters in the analysis of epoxy resin by reverse phase liquid chromatography.

    PubMed

    Twichell, J E; Walker, J Q; Maynard, J B

    1979-05-01

    Reverse phase liquid chromatographic methods have been developed for the quality control of epoxy resin formulations. The results show that different formulations require different instrumental parameters for optimun separation and detection. Operating parameters required for the analysis of complex mixtures of epoxy resins, which include curing agents and diluents, are described in this paper. Parameters found to be critical are column temperature, solvent flow rate and gradient, and detector wavelength. Microprocessor parameters required to obtain reproducible data are also discussed.

  13. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given.

  14. Reduction of Thrombosis and Bacterial Infection via Controlled Nitric Oxide (NO) Release from S-Nitroso-N-acetylpenicillamine (SNAP) Impregnated CarboSil Intravascular Catheters.

    PubMed

    Wo, Yaqi; Brisbois, Elizabeth J; Wu, Jianfeng; Li, Zi; Major, Terry C; Mohammed, Azmath; Wang, Xianglong; Colletta, Alessandro; Bull, Joseph L; Matzger, Adam J; Xi, Chuanwu; Bartlett, Robert H; Meyerhoff, Mark E

    2017-03-13

    Nitric oxide (NO) has many important physiological functions, including its ability to inhibit platelet activation and serve as potent antimicrobial agent. The multiple roles of NO in vivo have led to great interest in the development of biomaterials that can deliver NO for specific biomedical applications. Herein, we report a simple solvent impregnation technique to incorporate a nontoxic NO donor, S-nitroso-N-acetylpenicillamine (SNAP), into a more biocompatible biomedical grade polymer, CarboSil 20 80A. The resulting polymer-crystal composite material yields a very stable, long-term NO release biomaterial. The SNAP impregnation process is carefully characterized and optimized, and it is shown that SNAP crystal formation occurs in the bulk of the polymer after solvent evaporation. LC-MS results demonstrate that more than 70% of NO release from this new composite material originates from the SNAP embedded CarboSil phase, and not from the SNAP species leaching out into the soaking solution. Catheters prepared with CarboSil and then impregnated with 15 wt % SNAP provide a controlled NO release over a 14 d period at physiologically relevant fluxes and are shown to significantly reduce long-term (14 day) bacterial biofilm formation against Staphylococcus epidermidis and Pseudonomas aeruginosa in a CDC bioreactor model. After 7 h of catheter implantation in the jugular veins of rabbit, the SNAP CarboSil catheters exhibit a 96% reduction in thrombus area (0.03 ± 0.01 cm(2)/catheter) compared to the controls (0.84 ± 0.19 cm(2)/catheter) (n = 3). These results suggest that SNAP impregnated CarboSil can become an attractive new biomaterial for use in preparing intravascular catheters and other implanted medical devices.

  15. Research on the melt impregnation of continuous carbon fiber reinforced nylon 66 composites

    NASA Astrophysics Data System (ADS)

    Jia, M. Y.; Li, C. X.; Xue, P.; Chen, K.; Chen, T. H.

    2016-07-01

    Impregnation mold of continuous carbon fiber reinforced thermoplastic composites was designed and built in the article. Based on the theory of fluid mechanics and Darcy's law, a model of the melt impregnation was also established. The influences of fiber bundle width and impregnation pins’ diameter on the impregnation degree were studied by numerical simulation. Continuous carbon fiber reinforced nylon 66 composites were prepared. The effects of coated angle and impregnation mold temperature on the mechanical properties of the composites were also described.The agreement between the experimental data and prediction by the model was found to be satisfactory.

  16. Free-standing films based on silicone resins

    NASA Astrophysics Data System (ADS)

    Katsoulis, Dimitris E.; Suto, Michitaka; Kushibiki, Nobuo

    2003-07-01

    We report here the preparation of transparent, flexible films from silicone resins by solvent casting techniques. The films exhibit no birefringence, higher than 90% transparency between 350 to 1700 nm and average surface roughness below 1 nm. Thermal analysis shows that the films are stable at temperatures greater than 200 °C (depending upon the starting resin composition). The films are suitable substrates for deposition of various coatings including indium tin oxide (ITO). Transparent conducting ITO electrodes were prepared with ion plating and RF sputtering methods and characterized by microscopy, XPS, absorption spectroscopy and electrical conductivity measurements. Potential applications for silicone resin films exist in the market areas of displays, electronics and energy.

  17. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  18. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  19. Resin binders in ramming paste

    SciTech Connect

    Kvam, K.R.; Oeye, H.A.; Johansen, J.A.; Ugland, R.

    1996-10-01

    Resin bonded carbon refractories avoid the emission of PAH associated with tar based binders. Six prototype novolak resins were tested as binders in ramming paste for aluminum electrolysis cells. The resins were compared with two reference binders, one tar based and one resin based. The resins were tested in the laboratory as well as in actual operation. The mixing and ramming properties were satisfactory. The baking shrinkage was low and the mechanical strength was reasonably high. Even if resin binders are baked to a glassy structure, the sodium resistance was good. The viscosity of the resin binders can be adjusted to provide the desired range of temperature of use for the ramming paste. Elkem Aluminum installed the first cell of resin bonded ramming paste in September 1991.

  20. Electrochemical impregnation of nickel hydroxide in porous electrodes

    NASA Technical Reports Server (NTRS)

    Ho, Kuo-Chuan; Jorne, Jacob

    1987-01-01

    The electrochemical impregnation of nickel hydroxide in porous electrode was investigated both experimentally and theoretically. The loading level and plaque expansion were the most important parameters to be considered. The effects of applied current density, stirring, ratio of solution to electrode volume and pH were identified. A novel flow through electrochemical impregnation is proposed in which the electrolyte is forced through the porous nickel plaque. The thickening of the plaque can be reduced while maintaining high loading capacity. A mathematical model is presented which describes the transport of the nitrate, nickel and hydroxyl ions and the consecutive heterogeneous electrochemical reduction of nitrate and the homogeneous precipitation reaction of nickel hydroxide. The distributions of precipitation rate and active material within the porous electrode are obtained. A semiempirical model is also proposed which takes into account the plugging of the pores.

  1. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  2. Low solids content, coal tar based impregnating pitch

    SciTech Connect

    Chu, A.S.; Bart, E.F.; Cook, G.R.; Horbachewski, D.M.

    1987-05-12

    A method is described of obtaining a coal tar based impregnant pitch characterized by having a sulfur content of less than 0.5 weight percent and a quinoline insoluble, QI, content of less than about 0.5 percent and enhanced impregnation property. This method comprises: selecting coal tar oil feedstock having: (1) a distillation residue at 355/sup 0/C > 30 weight percent; and (2) a QI < 0.5 weight percent; heating the feedstock to a temperature of between about 150/sup 0/C and 390/sup 0/C; and oxidizing and stripping the feedstock until: an ASTM D-3104-77 softening point between about 90/sup 0/C and 150/sup 0/C; a coking value of at least 45 weight percent according to ASTM D-2416-73; and a flashpoint of at least 200/sup 0/C according to ASTM D92-72 are obtained.

  3. Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads.

    PubMed

    Yamani, Jamila S; Miller, Sarah M; Spaulding, Matthew L; Zimmerman, Julie B

    2012-09-15

    Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al₂O₃ and nanocrystalline TiO₂ were successfully developed. This adsorbent exploits the high capacity of Al₂O₃ for arsenate and the photocatalytic activity of TiO₂ to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO₂ oxidizes arsenite to arsenate which is then removed from solution by Al₂O₃. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO₂-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs.

  4. Mechanism of frost formation on lubricant-impregnated surfaces.

    PubMed

    Rykaczewski, Konrad; Anand, Sushant; Subramanyam, Srinivas Bengaluru; Varanasi, Kripa K

    2013-04-30

    Frost formation is a major problem affecting a variety of industries including transportation, power generation, construction, and agriculture. Currently used active chemical, thermal, and mechanical techniques of ice removal are time-consuming and costly. The use of nanotextured coatings infused with perfluorinated oil has recently been proposed as a simple passive antifrosting and anti-icing method. However, we demonstrate that the process of freezing subcooled condensate and frost formation on such lubricant-impregnated surfaces is accompanied by the migration of the lubricant from the wetting ridge and from within the textured substrate to the surface of frozen droplets. For practical applications, this mechanism can comprise the self-healing and frost-repelling characteristics of lubricant impregnated-surfaces, regardless of the underlying substrate's topography. Thus, further research is necessary to develop liquid-texture pairs that will provide a sustainable frost suppression method.

  5. The effect of different organic solvents on the degradation of restorative materials

    PubMed Central

    Martos, Josué; Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; de Castro, Luis Antonio Suita; Ferrer-Luque, Carmen María

    2013-01-01

    Objective: To evaluate the solubility of three restorative materials exposed to the different endodontic solvents. Materials and Methods: The organic solvents eucalyptus oil, xylol, chloroform, and orange oil, with distilled water as the control group was utilized. The restorative materials light-cured resin (Filtek Z250/3M ESPE), light-cured-resin-reinforced glass ionomer (Riva Light Cure LC/Southern Dental Industries SDI]) and resin-modified glass ionomer (Vitremer/3M ESPE) were analyzed. A total of 50 disks containing specimens (2 mm × 8 mm Ø) were prepared for each of the three classes of restorative materials, which were divided into 10 groups (n = 5) for immersion in eucalyptus oil, xylol, chloroform, orange oil or distilled water for periods of either 2 min or 10 min. The means of restorative material disintegration in solvents were obtained by the difference between the original preimmersion weight and the postimmersion weight in a digital analytical scale. Data were statistically analyzed by two-way analysis of variance while the difference between the materials was analyzed by Student-Newman-Keuls test. The significance level set at 0.05. Results: Vitremer showed the highest solubility, followed by Riva LC, and these were statistically different from eucalyptus oil, xylol, chloroform, and distilled water (P < 0.05). Regarding the immersion time in solvents, there were no significant differences between the two tested periods (P > 0.05). Conclusions: The solvents minimally degraded the composite resin, although they did influence the degradation of both resin-modified glass ionomer resin and resin reinforced with glass ionomer. PMID:24926215

  6. Effectiveness of Commercially-Available Antibiotic-Impregnated Implants

    DTIC Science & Technology

    2006-08-01

    Staph aureus-R from the cultures. The threshold for infection was set at 10 4 CFU/g of marrow. 8 The cultures that had bacteria...impregnated implants in the prevention of bone infection . We used a model of contaminated fracture in goats to evaluate four treatment groups: no...Staphylococcus aureus tissue cultures showed no evidence of infection in any of the antibiotic-treated groups. All of the cultures were positive in

  7. The Application of Perfluorocarbons as Impregnants for Plastic Film Capacitors

    NASA Technical Reports Server (NTRS)

    Mauldin, G. H.

    1981-01-01

    A liquid impregnated, plastic film (wet) capacitor was developed that is thought to be the most reliable and space efficient capacitor of any type ever produced for high voltage, pulse discharge service. The initial design stores five times the energy of a premium quality dry capacitor of equivalent energy and reliability. The technology, as well as a production capacitor design using this technology are described.

  8. Surrogate nits impregnated with white piedra--a case report.

    PubMed

    Ghorpade, A

    2004-07-01

    White piedral spores packed inside empty pedicular nits were accidentally found on microscopic examination in a 42-year-old Indian woman who presented with hair loss. The diagnosis of piedra was confirmed on culture. She responded to topical 2% miconazole nitrate solution and manual removal of the nits. This is the first case report of pedicular nits found to be impregnated with spores of white piedra.

  9. Review of electrochemical impregnation for nickel cadmium cells. [aerospace applications

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1977-01-01

    A method of loading active material within the electrodes of nickel cadmium cells is examined. The basic process of electrochemical impregnation of these electrodes is detailed, citing the principle that when current is applied reactions occur which remove hydrogen ions from solution, making the interior of the plaque less acidic. Electrodes result which are superior in energy density, stability, and life. The technology is reviewed and illustrated with typical performance data. Recommendations are made for additional research and development.

  10. Application of Silver Impregnated Iodine Adsorbent to Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Fukasawa, Tetsuo; Nakamura, Tomotaka; Kondo, Yoshikazu; Funabashi, Kiyomi

    Radioactive iodine is one of the most important nuclides to be prevented for release from nuclear facilities and many facilities have off-gas treatment systems to minimize the volatile nuclides dispersion to the environment. Silver impregnated inorganic adsorbents were known as inflammable and stable fixing materials for iodine and the authors started to develop 25 years ago a kind of inorganic adsorbent that has better capability compared with conventional ones. Aluminum oxide (Alumina) was selected as a carrier material and silver nitrate as an impregnated one. Pore diameters were optimized to avoid the influence of impurities such as humidity in the off-gas stream at lower temperatures. Experiments and improvements were alternately conducted for the new adsorbent. The tests were carried out in various conditions to confirm the performance of the developed adsorbent, which clarified its good ability to remove iodine. Silver nitrate impregnated alumina adsorbent (AgA) has about twice the capacity for iodine adsorption and higher iodine removal efficiency at relatively high humidity than conventional ones. The AgA chemically and stably fixes radioactive iodine and fits the storage and disposal of used adsorbent. AgA is now and will be applied to nuclear power plants, reprocessing plants, and research facilities.

  11. Hydrogel-impregnated dressings for graft fixation: a case series.

    PubMed

    Choi, J-S; Lee, J-H; Kim, S-M; Kim, Y-J; Choi, J-Y; Jun, Y-J

    2015-07-01

    Infection is the second most common cause of graft loss after skin grafting. Cutimed Sorbact is a range of dressings coated with a hydrophobic fatty acid that irreversibly binds to the bacterial surface and mechanically removes bacteria from the wound. The dressing is a hydrogel-impregnated material, which prevents wounds from drying. Here, we report on cases in which we used the gel instead of the widely used petrolatum gauze or paraffin gauze in a tie-over dressing for the fixation of grafted skin. Patients treated for skin grafting between March 2013 and July 2013 were treated with the hydrogel-impregnated dressings and a tie over dressing. The wounds were opened five days after treatment. In total seven patients were treated with an age range of 23-86 years old. No infections were seen and the method was effective regardless of wound size, the thickness of the skin harvested and condition of the defect. Using this hydrogel-impregnated dressings, provide antibacterial and moisturising effects simultaneously, which a petrolatum or paraffin gauze cannot provide. There were no external sources of funding for this study. The authors have no conflicts of interest to declare.

  12. Stannic chloride impregnated chitosan for defluoridation of water.

    PubMed

    Kahu, Shashikant; Shekhawat, Anita; Saravanan, D; Jugade, Ravin

    2017-03-01

    Chitosan, a potent amino polysaccharide, has been impregnated with Sn(IV) chloride for effective adsorption of fluoride from water. The Sn(IV) chloride impregnated chitosan was synthesized using microwave assisted technique. The material was thoroughly characterized using FTIR, SEM, EDX and XRD. The increase in surface area and pore volume has been revealed from BET studies. Enhanced thermal stability of this material was ascertained by TGA-DTA studies. This Sn(IV) chloride impregnated chitosan(Sn-Ch) has been exploited for its defluoridation property. Various parameters like pH, amount of adsorbent, adsorption time etc have been optimized to achieve maximum defluoridation efficiency. Under optimum conditions, Sn-Ch was found to have adsorption capacity of 17. 63mg/g. The equilibrium studies showed that the data fits well with Freundlich isotherm model. Thermodynamics and kinetics parameters have been evaluated. The material has been applied for the defluoridation of real water sample. It was found to be recyclable material and can be regenerated and reused multiple times adding a greener dimension.

  13. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  14. New Low Cost Resin Systems

    DTIC Science & Technology

    2006-05-31

    difference between resins 1 and 2 was the type of phosphorous containing compound, where resin 3 was the same as resin 1 with the addition of melamine ...SBIR N03-120 New Low Cost Resin Systems Applied Poleramic, Inc. Final Report Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Feb 2004 4. TITLE AND SUBTITLE New Low Cost Resin Systems 5a. CONTRACT NUMBER N00014-03-M-0304 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  15. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  16. Recovery of uranium from 30 vol % tributyl phosphate solvents containing dibutyl phosphate

    SciTech Connect

    Mailen, J.C.; Tallent, O.K.

    1986-01-01

    A number of solid sorbents were tested for the removal of uranium and dibutyl phosphate (DBP) from 30% tributyl phosphate (TBP) solvent. The desired clean uranium product can be obtained either by removing the DBP, leaving the uranium in the solvent for subsequent stripping, or by removing the uranium, leaving the DBP in the solvent for subsequent treatment. The tests performed show that it is relatively easy to preferentially remove uranium from solvents containing uranium and DBP, but quite difficult to remove DBP preferentially. The current methods could be used by removing the uranium (as by a cation exchange resin) and then using either an anion exchange resin in the hydroxyl form or a conventional treatment with a basic solution to remove the DBP. Treatment of a solvent with a cation exchange resin could be useful for recovery of valuable metals from solvents containing DBP and might be used to remove cations before scrubbing a solvent with a basic solution to minimize emulsion formation. 6 refs., 9 figs.

  17. Nano Clinoptilolite: Highly Efficient Catalyst for the Synthesis of Chromene Derivatives Under Solvent-Free Conditions.

    PubMed

    Hallajian, Sara; Khalilzadeh, Mohammad A; Tajbakhsh, Mahgol; Alipour, Eskandar; Safaei, Zahra

    2015-01-01

    An efficient and selective synthesis of substituted chromene derivatives via three-component reaction of 4-hydroxycoumarin or 1,3-dicarbonyl compounds, activated acetylenic compounds and N-nucleophiles is described. The reaction was conducted under solvent-free conditions at 70°C using potassium fluoride impregnated on natural zeolite as a cheap and available solid base. The procedure has several advantages involving selectivity, excellent yields and a convenient work-up method.

  18. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong; Peden. Charles H. F.; Choi. Saemin

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  19. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOEpatents

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  20. Porous Copolymer Resins: Tuning Pore Structure and Surface Area with Non Reactive Porogens

    PubMed Central

    Mohamed, Mohamed H.; Wilson, Lee D.

    2012-01-01

    In this review, the preparation of porous copolymer resin (PCR) materials via suspension polymerization with variable properties are described by tuning the polymerization reaction, using solvents which act as porogens, to yield microporous, mesoporous, and macroporous materials. The porogenic properties of solvents are related to traditional solubility parameters which yield significant changes in the surface area, porosity, pore volume, and morphology of the polymeric materials. The mutual solubility characteristics of the solvents, monomer units, and the polymeric resins contribute to the formation of porous materials with tunable pore structures and surface areas. The importance of the initiator solubility, surface effects, the temporal variation of solvent composition during polymerization, and temperature effects contribute to the variable physicochemical properties of the PCR materials. An improved understanding of the factors governing the mechanism of formation for PCR materials will contribute to the development and design of versatile materials with tunable properties for a wide range of technical applications. PMID:28348302

  1. Effect of solvents on bonding to root canal dentin.

    PubMed

    Erdemir, Ali; Eldeniz, Ayce Unverdi; Belli, Sema; Pashley, David H

    2004-08-01

    The long-term success of resin cementation of post/cores is likely increased with improvement in resin-root canal dentin bonding. The adverse effect of some irrigation constituents (NaOCl, H2O2) or medications (eugenol) on the bond strengths of resins to dentin have been reported. The purpose of this in vitro study was to evaluate the effect of two gutta-percha solvents (chloroform versus halothane) on microtensile bond strength to root canal dentin. Thirty, extracted, human, single-rooted teeth were instrumented to a #70 file and randomly divided into 3 groups of 10 each. The root canals were treated with water, chloroform, or halothane for 60 s. All root canals were obturated using C&B Metabond. After 24 h of storage in distilled water, serial 1-mm-thick cross-sections were cut and trimmed. Microtensile bond strength to apical, middle, and coronal root canal dentin were measured using an Instron machine. Using pooled data, the results indicated that water-treated roots had significantly higher resin-dentin bond strengths compared with chloroform or halothane treatment groups (control: 23.9 MPa; chloroform: 18.3 MPa; halothane: 17 MPa; p < 0.05). Gutta-percha solvents have an adverse effect on bond strengths of adhesive cements to root canal dentin.

  2. Multi-walled carbon nanotube-impregnated agarose film microextraction of polycyclic aromatic hydrocarbons in green tea beverage.

    PubMed

    Loh, Saw Hong; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2013-03-15

    A new microextraction procedure termed multi-walled carbon nanotube-impregnated agarose film microextraction (MWCNT-AFME) has been developed. The method utilized multi-walled carbon nanotubes (MWCNTs) immobilized in agarose film to serve as adsorbent in solid phase microextraction (SPME). The film was prepared by mixing the MWCNTs in agarose solution and drying the mixture in oven. Extraction of selected polycyclic aromatic hydrocarbons was performed by inserting a needle through circular MWCNT-impregnated agarose films (5 mm diameter) and the assembly was dipped into an agitated sample solution prior to micro high performance liquid chromatography-ultraviolet analysis. Back extraction was then performed using ultrasonication of the films in 100 μL of solvent. The film was discarded after single use, thus avoiding any analyte carry-over effect. Due to the mesoporous nature of the agarose film, the MWCNTs were immobilized easily within the film and thus allowing for close contact between adsorbent and analytes. Under the optimized extraction conditions, the technique achieved trace LODs in the range of 0.1 to 50 ng L(-1) for the targeted analytes, namely fluoranthene, phenanthrene and benzo[a]pyrene. The method was successfully applied to the analysis of spiked green tea beverage samples with good relative recoveries in the range of 91.1 to 107.2%. The results supported the feasibility of agarose to serve as adsorbent holder in SPME which then minimizes the consumption of chemicals and disposal cost of organic wastes.

  3. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography.

    PubMed

    Moore, J S; Xantheas, S S; Grate, J W; Wietsma, T W; Gratton, E; Vasdekis, A E

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL's impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 2-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a substantially high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL's modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  4. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    SciTech Connect

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.; Wietsma, Thomas W.; Gratton, Enrico; Vasdekis, Andreas

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  5. Refining of fossil resin flotation concentrates from Western coal. Final fifth quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect

    Jensen, G.F.; Miller, J.D.

    1994-05-07

    Fossil resins occurring in the Wasatch Plateau coal field are composed mainly of aliphatic components, partially aromatized multi-cyclic terpenoids and a few oxygen functional groups (such as {minus}OH and {minus}COOH). The solvent extracted resins show the presence of a relatively large number of methyl groups when compared to the methylene groups, and this indicates the presence of extensive tertiary carbon and/or highly branching chains. In contrast coal consists primarily of aromatic ring structures, various oxygen functional groups ({minus}OH, >C=O, {minus}C{minus}O) and few aliphatic chains. The color difference observed among the four resin types is explained by the presence of chromophores (aromatized polyterpenoid) and also by the presence of finely dispersed coal particle inclusions in the resin matrix. The hexane soluble resin fraction has few aromatic compounds when compared to the hexane insoluble but toluene soluble resin fraction.

  6. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  7. The size-controlled synthesis of Pd/C catalysts by different solvents for formic acid electrooxidation.

    PubMed

    Huang, Yunjie; Liao, Jianhui; Liu, Changpeng; Lu, Tianhong; Xing, Wei

    2009-03-11

    The size-controlled synthesis of Pd/C catalyst for formic acid electrooxidation is reported in this study. By using alcohol solvents with different chain length in the impregnation method, the sizes of Pd nanoparticles can be facilely tuned; this is attributed to the different viscosities of the solvents. The results show that a desired Pd/C catalyst with an average size of about 3 nm and a narrow size distribution is obtained when the solvent is n-butanol. The catalyst exhibits large electrochemically active surface area and high catalytic activity for formic acid electrooxidation.

  8. SOLVENT EXTRACTION OF NEPTUNIUM

    DOEpatents

    Butler, J.P.

    1958-08-12

    A process is described for the recovery of neptuniunn from dissolver solutions by solvent extraction. The neptunium containing solution should be about 5N, in nitric acid.and about 0.1 M in ferrous ion. The organic extracting agent is tributyl phosphate, and the neptuniunn is recovered from the organic solvent phase by washing with water.

  9. Solvent-free synthesis

    EPA Science Inventory

    This chapter gives a brief introduction about solvent-free reactions whose importance can be gauged by the increasing number of publications every year during the last decade. The mechanistic aspects of the reactions under solvent-free conditions have been highlighted. Our observ...

  10. Solvent-free synthesis

    EPA Science Inventory

    This chapter gives a brief introduction about solvent-free reactions whose importance can be gauged by the increasing number of publications every year during the last decade. The mechanistic aspects of the reactions under solvent-free conditions have been highlighted. Our observ...

  11. Alternative Green Solvents Project

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.

    2012-01-01

    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  12. An Improved Impregnated-filter Method for Measuring Low-levelConcentrations of Toluene

    SciTech Connect

    Mahanama, K.R.R.; Hodgson, A.T.

    1995-02-01

    An improved method was developed and validated for measuring low-level concentrations of toluene diisocyanates (TDls) in air. The method is based on OSHA Method 42 for industrial applications. Airborne TDls were trapped on a 25-mm glass-fiber filter impregnated with 50 pg of 1-(2-pyridy1)piperazine. A filter holder was constructed to minimize contamination and losses of the analytes. The derivatized TDls were extracted by immersion of the filter in a small volume of solvent. The analysis was performed with a high performance liquid chromatograph equipped with a fluorescence detector and a CIB base-deactivated silica column. The modified method has a lower limit of quantitation of 0.02 ppb in 15 L of air for both 2,4-toluene diisocyanate (2,4-TDI) and 2,6-toluene diisocyanate (2,6-TDI), which is about a fifteen-fold enhancement over Method 42. The recovery efficiencies and 95% confidence intervals for vapor-spiked filters were 77 {+-} 6 percent for 2,4-TDI and 69 {+-} 10 percent for 2,6-TDI. The precision of replicate analyses was ten percent or better. The method was used to screen flexible polyurethane foam for emissions of unreacted TDls.

  13. Preparation and in vitro characterization of gentamycin-impregnated biodegradable beads suitable for treatment of osteomyelitis.

    PubMed

    Meyer, J D; Falk, R F; Kelly, R M; Shively, J E; Withrow, S J; Dernell, W S; Kroll, D J; Randolph, T W; Manning, M C

    1998-09-01

    A new method for preparing poly(L-lactide) (PLA) biodegradable beads impregnated with an ionic aminoglycoside, gentamycin, is described. The process employs hydrophobic ion pairing to solubilize gentamycin in a solvent compatible with PLA, followed by precipitation with a compressed antisolvent (supercritical carbon dioxide). The resulting precipitate is a homogeneous dispersion of the ion-paired drug in PLA microspheres. The microspheres are approximately 1 microm in diameter and can be compressed into beads (3-6 mm in diameter) strung on surgical sutures for implantation. The bead strings exhibit no significant change in release kinetics upon sterilization with a hydrogen peroxide plasma (Ster-Rad). The kinetics of gentamycin release from the PLA beads are consistent with a matrix-controlled diffusion mechanism. While nonbiodegradable poly(methyl methacrylate) (PMMA) beads initially release gentamycin in a similar manner, the drug release from PMMA ceases after 8 or 9 weeks, while the PLA beads continue to release drug for over 4 months. Moreover, only 10% of the gentamycin is released from the PMMA beads, while PLA beads release more than 60% of their load, if serum is present in the release medium. The PLA system displays improved release kinetics relative to PMMA, is biodegradable, is unaltered by gas sterilization, can be used for a range of antibiotics, and can be manipulated without disintegration. These are all desirable properties for an implantable drug delivery system for the prevention or treatment of osteomyelitis.

  14. Continuous-fiber preform reinforcement of dental resin composite restorations.

    PubMed

    Xu, H H K; Schumacher, G E; Eichmiller, F C; Peterson, R C; Antonucci, J M; Mueller, H J

    2003-09-01

    Direct-filling resin composites are used in relatively small restorations and are not recommended for large restorations with severe occlusal-stresses. The aim of this study was to reinforce composites with fiber preforms, and to investigate the effects of layer thickness and configurations on composite properties. It was hypothesized that fiber preforms would significantly increase the composite's flexural strength, work-of-fracture (toughness) and elastic modulus. Glass fibers were silanized, impregnated with a resin, cured, and cut to form inserts for tooth cavity restorations. Also fabricated were three groups of specimens of 2mm x 2mm x 25 mm: a fiber preform rod in the center of a hybrid composite; a thin fiber layer on the tensile side of the specimens; and a thin fiber layer sandwiched in between layers of a hybrid composite. These specimens were tested in three-point flexure to measure strength, work-of-fracture and modulus. Optical and scanning electron microscopy were used to examine the restorations and the fiber distributions. Microscopic examinations of insert-filled tooth cavities showed that the fibers were relatively uniform in distribution within the preform, and the inserts were well bonded with the surrounding hybrid composite. Specimens consisting of a fiber preform rod in the center of a hybrid composite had a flexural strength (mean (SD); n=6) of 313 (19)MPa, significantly higher than 120 (16)MPa of the hybrid composite without fibers (Tukey's at family confidence of 0.95). The work-of-fracture was increased by nearly seven times, and the modulus was doubled, due to fiber preform reinforcement. Similar improvements were obtained for the other two groups of specimens. Substantial improvements in flexural strength, toughness and stiffness were achieved for dental resin composites reinforced with fiber preforms. The method of embedding a fiber preform insert imparts superior reinforcement to restorations and should improve the performance of

  15. Fabrication and Mechanical Characterization of Water-Soluble Resin-Coated Natural Fiber Green Composites

    NASA Astrophysics Data System (ADS)

    Manabe, Ken-Ichi; Hayakawa, Tomoyuki

    In this study, water-soluble biodegradable resin was introduced as a coating agent to improve the interfacial strength and then to fabricate a high-performance green composite with polylactic acid (PLA) and hemp yarn. Dip coating was carried out for hemp yarn and the green composites were fabricated by hot processing. The coated green composite achieves a high tensile strength of 117 MPa even though the fiber volume fraction is less than 30%. Interfacial shear strength (IFSS) was measured by a single fiber pull-out test, and the effect of water-soluble resin on the tensile properties of the composites was evaluated. As a result, when using coated natural bundles, the IFSS value is smaller than when using noncoated natural bundles. On the basis of observations of the fractured surface of composites and initial yarns using a scanning electron microscope (SEM), the effect of the impregnation of water-soluble resin into the natural bundles on the tensile strength is discussed in detail. It is found that water-soluble resin is effective in improving the mechanical properties of the composite, although the interfacial strength between PLA and water-soluble resin was decreased, and as a result, the tensile strength of green composites increases by almost 20%.

  16. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments.

    PubMed

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention.

  17. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  18. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips.

    PubMed

    Xu, Ningpan; Liu, Wei; Hou, Qingxi; Wang, Peiyun; Yao, Zhirong

    2016-09-01

    Autohydrolysis with different severity factors was performed on poplar wood chips prior to pulping, and the wettability, absorbility and the following impregnation of NaOH solution for the poplar wood chips were then investigated. The results showed that after autohydrolysis pretreatment the porosity, shrinkage and fiber saturation point (FSP) of the poplar wood chips were increased, while the surface contact angle decreased as the severity factor was increased. The autohydrolyzed chips absorbed more NaOH in impregnation that resulted in a low NaOH concentration in the bulk impregnation liquor (i.e., the impregnation liquor outside wood chips), while the concentration in the entrapped liquor (i.e., the impregnation liquor inside wood chips) was increased. Autohydrolysis substantially improved the effectiveness of alkali impregnation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. S-Nitroso-N-acetylpenicillamine (SNAP) Impregnated Silicone Foley Catheters: A Potential Biomaterial/Device To Prevent Catheter-Associated Urinary Tract Infections

    PubMed Central

    2016-01-01

    Urinary Foley catheters are utilized for management of hospitalized patients and are associated with high rates of urinary tract infections (UTIs). Nitric oxide (NO) potently inhibits microbial biofilm formation, which is the primary cause of catheter associated UTIs (CAUTIs). Herein, commercial silicone Foley catheters are impregnated via a solvent swelling method with S-nitroso-N-acetyl-D-penicillamine (SNAP), a synthetic NO donor that exhibits long-term NO release and stability when incorporated into low water-uptake polymers. The proposed catheters generate NO surface-fluxes >0.7 × 10–10 mol min–1 cm–2 for over one month under physiological conditions, with minimal SNAP leaching. These biomedical devices are demonstrated to significantly decrease formation of biofilm on the surface of the catheter tubings over 3, 7, and 14 day periods by microbial species (Staphylococcus epidermidis and Proteus mirabilis) commonly causing CAUTIs. Toxicity assessment demonstrates that the SNAP-impregnated catheters are fully biocompatible, as extracts of the catheter tubings score 0 on a 3-point grading scale using an accepted mouse fibroblast cell-line toxicity model. Consequently, SNAP-impregnated silicone Foley catheters can likely provide an efficient strategy to greatly reduce the occurrence of nosocomial CAUTIs. PMID:26462294

  20. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  1. Effect of calcination on Co-impregnated active carbon

    SciTech Connect

    Bekyarova, E.; Mehandjiev, D. . Inst. of General and Inorganic Chemistry)

    1993-11-01

    Active carbon (AC) from apricot shells with known characteristics has been impregnated with a 9.88% Co(NO[sub 3])[sub 2] [center dot] 6H[sub 2]O solution. The samples are destroyed in air at 200, 300, 400, and 550 C. The processes accompanying the thermal treatment are studied by DTA. Two processes are established during calcination of Co-impregnated active carbon: (i) destruction of the support as a result of oxidation catalyzed by the impregnated cobalt and (ii) interaction of the active phase (Co[sub 3]O[sub 4]) with the support (AC), during which Co[sub 3]O[sub 4] is reduced to CoO and Co. The presence of Co[sub 3]O[sub 4], and CoO phases is proved by X-ray measurements, while that of metal Co is established by magnetic measurements. The porous structure changes are investigated by adsorption studies. The characterization of the samples is performed by physical adsorption of N[sub 2] (77.4 K) and CO[sub 2] (273 K). The poresize distribution curves are plotted over the range 0.4--10 nm by the methods of Pierce (for the mesopores) and Medek (for the micropores). The micropore volume is determined by two independent methods: t/F method and D-R plot. The results from adsorption studies indicate a decrease of S[sub BET], V[sub mi], and, especially, the supermicropores of the samples.

  2. Solvent alternatives guide

    SciTech Connect

    Elion, J.M.; Monroe, K.R.; Hill, E.A.

    1996-06-01

    It is no longer legal to manufacture or import chlorofluorocarbon 113 or methyl chloroform solvents, and companies that currently clean their parts with either material are now required to implement environmentally safe substitutes. To help find alternative methods, Research Triangle Institute`s Surface Cleaning Technology Program has designed a Solvent Alternatives Guide (SAGE), an online tool that enables access to practical information and recommendations for acceptable solvents. Developed in partnership with the US Environmental Protection Agency, SAGE is available free of charge on the Internet`s World Wide Web.

  3. Pressure Venting Tests of Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Knutson, Jeffrey R.

    2015-01-01

    A series of tests was devised to investigate the pressure venting behavior of one of the candidate ablators for the Orion capsule heat shield. Three different specimens of phenolic impregnated carbon ablator (PICA) were instrumented with internal pressure taps and subjected to rapid pressure changes from near vacuum to one atmosphere and simulated Orion ascent pressure histories. The specimens vented rapidly to ambient pressure and sustained no detectable damage during testing. Peak pressure differences through the thickness of a 3-inch-thick specimen were less than 1 psi during a simulated ascent pressure history.

  4. Marking excision margins of surgical specimens by silver impregnation.

    PubMed

    Feit, J

    2005-07-01

    Marking excision margins of surgical specimens by silver impregnation has several advantages over commonly used Indian ink: during the slicing the tissue preserves its natural color, the staining is permanent, and the pigment does not smudge over cutting surfaces. The pigment is clearly visible in tissue sections. The tissue specimen is shortly dipped into a 10% water solution of argent nitrate (AgNO3 with HNO3). After slicing, the tissue specimens are developed in common black & white developer for several seconds and paraffin processed as usual. The method is suitable for formaldehyde fixed as well as fresh tissue specimens.

  5. Implant infections and antibiotic-impregnated silicone rubber coating.

    PubMed Central

    Rushton, D N; Brindley, G S; Polkey, C E; Browning, G V

    1989-01-01

    A method is described for coating silicone rubber-encapsulated implant devices with an outer layer of silicone rubber impregnated with a mixture of gentamicin sulphate and diethanolamine fusidate. A coating of this sort provides bactericidal activity lasting for a few days in the film of fluid surrounding such an implant. When used for coating our implants, the retrospective rate of implant infections believed to have been introduced at the time of surgery was reduced to 0.7% (coated), compared with 10.0% (uncoated), a highly significant difference (p less than 0.001). Systemic perioperative antibiotic prophylaxis was not shown to confer any such benefit. PMID:2649641

  6. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers.

    PubMed

    Vallittu, P K

    1999-03-01

    Fiber-reinforced plastics for dental applications have been under development for some time. A major difficulty in using reinforcing fibers with multiphase acrylic resins, such as powderliquid resins, has been improper impregnation of fibers with the resin. The aim of this study was to describe and test a novel system to use polymer-preimpregnated reinforcing fibers with commonly used multiphase acrylic resins. Continuous unidirectional and woven preimpregnated glass fiber reinforcements (Stick and Stick Net) were used to reinforce heat-curing denture base and autopolymerizing denture base polymers. A temporary fixed partial denture polymer was also reinforced with Stick reinforcement material. Five test specimens were fabricated for unreinforced control groups and for Stick- and Stick Net-reinforced groups. A 3-point loading test was used to measure transverse strength and flexural modulus of the materials and ultimate strain at fracture was calculated. Cross-sections of test specimens were examined with a SEM to evaluate degree of impregnation of fibers with polymer matrix. Quantity of fibers in test specimens was determined by combustion analysis. Transverse strength of heat-curing denture base polymer was 76 MPa, Stick reinforcement increased it to 341 MPa, and flexural modulus increased from 2550 to 19086 MPa. Stick Net reinforcement increased transverse strength of heat-curing denture base polymer to 99 MPa and flexural modulus to 3530 MPa. Transverse strength of autopolymerizing denture base polymer was 71 MPa; Stick increased it to 466 MPa; and flexural modulus increased from 2418 to 16749 MPa. Stick Net increased the transverse strength of autopolymerizing denture base polymer to 96 MPa and flexural modulus to 3573 MPa. Transverse strength of temporary fixed partial denture polymer increased from 58 to 241 MPa and flexural modulus from 1711 to 7227 MPa. ANOVA showed that reinforcement type and polymer brand affected transverse strength and modulus (P <.001

  7. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  8. Alkali impregnated teflon as a filter for atmospheric SO 2 PIXE analysis

    NASA Astrophysics Data System (ADS)

    Matsuda, Yatsuka; Cahill, Thomas A.

    1985-02-01

    In order to collect SO 2 gas on a stretched Teflon filter impregnated with an alkali solution for a PIXE analysis, an impregnation method has been developed. In this article, the following points are presented. a) It has been found to be necessary to replace the air trapped in filter pores by methanol, and then to replace the methanol by an alkali solution, b) The resistance for air flow through an impregnated Teflon filter is not high and it has been checked that an ordinary pump can be used for the air sampling with the impregnated filter, with the usual flow rate aerosol sampling, c) The impurity levels of the reagents used for impregnants were small enough for sulfur analysis, d) The collection efficiencies of the impregnants, 20%NaOH + 10%glycerin and 20%NaOH + 10%TEA, which are the most suitable ones, did not decrease with flow rate in the range of 0-10 {1}/{min} per filter of 25 mm in diameter. A cross check experiment on the collection of ambient SO 2 gas with the three kinds of filter (A: 5%NaOH + 5%glycerin impregnated Whatman-41 filter, B: 20%NaOH + 10%TEA coated Nuclepore filter, C: 20%NaOH + 10%TEA impregnated stretched Teflon filter) was done. The results showed a satisfactory tolerance for the practical use of Teflon impregnated filter.

  9. An in vitro investigation of bond strength of veneering composite resin to glass fibre veil reinforced composite.

    PubMed

    Keski-Nikkola, M S; Lassila, L V J; Vallittu, P K

    2004-06-01

    Experimental light-curing polymer-monomer-gel-impregnated E-glass-fibre veil reinforced composite (i.e. a composite with randomly oriented fibres) was used as an adhesional substrate for veneering composite resin (VCR). Continuous unidirectional glass fibre composite was used as a control substrate. Both the fibre-reinforced composite substrate surfaces were ground or, optionally, the substrate surface was left untreated (containing oxygen-inhibited resin layer) before attaching to the VCR. No adhesive resin was used between the composites. Shear bond strength of VCR to the substrate was determined for dry and thermocycled specimens. The results of this study suggested that the VCR can better be bonded to the randomly oriented veil fibre-reinforced composite substrate than to the continuous unidirectional fibre-reinforced composite substrate.

  10. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  11. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  12. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  13. Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers.

    PubMed

    Genualdi, Susie; Lee, Sum Chi; Shoeib, Mahiba; Gawor, Anya; Ahrens, Lutz; Harner, Tom

    2010-07-15

    Sorbent-impregnated polyurethane foam (SIP) disk passive air samplers were deployed alongside polyurethane foam (PUF) disk samplers at 20 sites during the 2009 spring sampling period of the Global Atmospheric Passive Sampling (GAPS) Network. The SIP disk samplers consisted of PUF disks impregnated with finely ground XAD-4 resin. The addition of XAD-4 greatly improves the sorptive capacity of the PUF disk samplers for more volatile and polar chemicals, and allows for linear-phase sampling over several weeks for these compounds. The SIP and PUF disks were analyzed for polychlorinated biphenyls (PCBs), neutral polyfluoroalkyl compounds (PFCs), and ionic PFCs. Correlations between sampler-derived air concentrations for PCBs in the PUF and SIP disks samplers were significant (p < 0.05). The SIP disks effectively captured 4-50% more of the low molecular weight PCBs than the PUF disks samplers, and the PUF disks also had limitations for time-weighted passive sampling of neutral PFCs in air. Theoretical uptake curves for PUF disks showed rapid equilibration occurring in just hours for 8:2 FTOH and in a few days for MeFOSE, while theoretical curves for SIP disks showed superior sampling profiles for the neutral PFCs. PFCs were measured on SIP disks at all sites with 8:2 FTOH being the dominant compound detected and urban centers (n = 3) having the highest total neutral PFC concentrations ranging from 51.7 to 248 pg/m(3). A positive correlation was found between the FTOHs and FOSAs/FOSEs (p < 0.001, Pearson correlation) indicating similar contamination sources. The SIP disk appears to be a promising passive air sampler for measuring both emerging and legacy POPs on a global scale. They can also be used as a complement to the PUF disk sampler for capturing broader classes of compounds, or as a replacement for PUF disks entirely, especially when longer than quarterly deployment periods are desired.

  14. Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly(L-lactic acid) fiber.

    PubMed

    Su, Shih-Horng; Nguyen, Kytai Truong; Satasiya, Pankaj; Greilich, Philip E; Tang, Liping; Eberhart, Robert C

    2005-01-01

    We investigated poly(L-lactic acid) (PLLA) fibers and coils, simulating stents and the influence of impregnation with curcumin, a non-steroidal anti-inflammatory drug, intended to reduce the pro-inflammatory property of these implants. Fibers obtained by melt extrusion of 137 kDa PLLA resin containing 10% curcumin (C-PLLA) exhibited a stable curcumin release rate for periods up to 36 days. Curcumin increased the fiber tensile strength at break and decreased embrittlement vs. controls in 36 day 37 degrees C saline incubation. A mouse peritoneal phagocyte model was employed to test the anti-inflammatory properties of C-PLLA fibers in vitro. Myeloperoxidase and non-specific esterase activity assays were performed for adherent cells (polymorphonuclear leukocytes (PMN) and macrophages (MPhi), respectively). PMN and MPhi adhesion to C-PLLA fibers were significantly reduced compared to control PLLA fibers (2.6 +/- 0.91) x 10(5) vs. (5.6 +/- 0.67) x 10(5) PMN/cm2 and (3.9 +/- 0.23) x 10(3) vs. (9.1 +/- 0.7) x 10(3) MPhi/cm2 (P < 0.05), respectively. In addition, superoxide release in the phagocyte pool contacting C-PLLA fibers was 97% less than that for PLLA controls. A fresh human whole blood recirculation system was employed to analyze cell adhesion under flow conditions, employing scanning electron microscopy (SEM). Reduced adhesion of cells on C-PLLA fiber coils vs. controls was observed. These in vitro studies demonstrate that bulk curcumin impregnation can reduce the inflammatory response to bioresorbable PLLA fibers, whilst improving mechanical properties, thereby suggesting curcumin loading may benefit PLLA-based implants.

  15. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  16. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  17. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  18. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  19. Evaluation of New Resin Systems.

    DTIC Science & Technology

    1985-05-01

    Thermogravimetric behavior of HR600P resin in nitrogen ........ 15 Fig. 9 The effect of environment on the thermogravimetric behavior of HR600P resin postcured 4 h...at 371°C (700°F) in air ........ 16 Fig. 10 The effect of postcure environment on the thermogravimetric behavior of HR600P resin in air...o........ 17 Fig. 11 The effect of postcure time at 371*C (700*F) in air on the thermogravimetric behavior of HR600P resin in alr............ 17

  20. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  1. Cleaning without chlorinated solvents

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  2. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Ali, Attarad; Ambreen, Sidra; Maqbool, Qaisar; Naz, Sania; Shams, Muhammad Fahad; Ahmad, Madiha; Phull, Abdul Rehman; Zia, Muhammad

    2016-11-01

    Nanocomposite materials have broad applicability due to synergistic effect of combined components. In present investigation, cellulose isolated from citrus peel waste is used as a supporting material; impregnation of zinc oxide nanoparticles via co-precipitation method. The characterization of nano composite is carried out through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and Thermo-gravimetric analysis (TGA) resulting less than 10 μm cellulose fiber and approx. 50 nm ZnO NPs. Zinc oxide impregnated cellulose (ZnO-Cel) exhibited significant bacterial devastation property when compared to ZnO NPs or Cellulose via disc diffusion and colony forming unit methods. In addition, the ZnO-Cel exhibited significant total antioxidant, and minor DPPH free radical scavenging and total reducing power activities. The nano composite also showed time dependent increase in photocatalytic by effectively degrading methylene blue dye up to 69.5% under sunlight irradiation within 90 min. The results suggest effective utilization of cellulose obtained from citrus waste and synthesis of pharmacologically important nano-composites that can be exploited in wound dressing; defence against microbial attack and healing due to antioxidative property, furthermore can also be used for waste water treatment.

  3. Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge

    2017-08-01

    The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.

  4. Impact properties of shear thickening fluid impregnated foams

    NASA Astrophysics Data System (ADS)

    Soutrenon, M.; Michaud, V.

    2014-03-01

    Concentrated colloidal suspensions of silica particles in polyethylene glycol exhibit a shear thickening behavior: above a critical shear rate in a confined environment, they show a steep increase of viscosity. This reversible transition from a low to a high viscosity state is associated with a large energy absorption that could be harnessed for impact protection. As these suspensions are liquid at rest, however, shear thickening fluids (STFs) are difficult to use in practical applications. Furthermore, their specific rheological properties exist within a narrow range of concentration, so they tend to disappear when the material is in contact with air and humidity. In this work, a soft foam scaffold was impregnated with STF to provide a three-dimensional shape to the assembly at rest, while a silicone was cast around it to serve as a physical barrier to the external environment. A method to quickly impregnate the foam was proposed. Impact tests were carried out on the STF/foam/silicone composite pads using a free fall impact tower. Compared to rubber or pure silicone, larger energy absorptions, up to 85%, were observed, which could be repeated for multiple impacts. The transmitted shock waves were also reduced, showing the potential of this system for impact protection of structures.

  5. Treatment of osteomyelitis by antibiotic impregnated porous hydroxyapatite block.

    PubMed

    Itokazu, M; Matsunaga, T; Kumazawa, S; Oka, M

    1994-01-01

    A novel drug delivery system was developed for osteomyelitis using porous hydroxyapatite blocks (HA-b) that were impregnated with antibiotics by a centrifuge method. For the experimental study, a 10 mm3 HA-b was placed in a container, mixed with an antibiotic solution and centrifuged at 1500 rpm for 15 min for the purpose of impregnating antibiotics into the pores. The slow release activity of antibiotic (Arbekacin sulfate [1-N-(S)-4 amino-2-hydroxybutyryl dibekacin]) from the HA-b was tested. An evaluation was made of the slow-releasing capabilities of the ABK from HA-b which was still maintained at 0.5 microgram/ml within 21 exchanges of PBS after 42 days. Consequently, seven patients with osteomyelitis, including one with tuberculosis and two with infected hip arthroplasty, have been treated. On a follow-up study, all of the foci had completely healed by the end of the follow-up period without complications. This new method is simple and can be performed safety as a one-stage operation.

  6. Impregnation of tubular self-assemblies into dextran hydrogels.

    PubMed

    Sun, Guoming; Chu, Chih-Chang

    2010-02-16

    Amine groups are the building units of proteins. The incorporation of amine groups into polyethylene glycol diacrylate (PEGDA) hydrogel through dextran-allyl isocyanate-ethylamine (Dex-AE) enhances sustained protein release by introducing effective interactions. To investigate such an interaction effect and to improve protein release, we impregnated self-assembled tubular structures from dextran-bromoethylamine (Dex-BH) and dextran-chloroacetic acid (Dex-CA) into Dex-AE/PEGDA hydrogel. The morphology data obtained from scanning electron microscopy (SEM) reveal that pure PEGDA hydrogel had no effect on the distribution of the self-assembled tubules; the introduction of Dex-AE brought about the dispersion of these tubules, and an increase in Dex-AE content led to more evenly distributed structures. Moreover, the implantation of the self-assembled tubules had no distinct effect on the swelling capacity of the hybrid self-assembly embedded hydrogels. The in vitro albumin release study was carried out in a pH 7.4 buffer solution; the results show that the implantation of the self-assembly into the hydrogels reduced the burst release and prolonged the protein release time. These findings demonstrate that the impregnation of tubular self-assembly into hydrogel makes the hybrid hydrogel an excellent protein delivery system.

  7. Phenylethynyl Containing Polyarylene Ethers/Polyimides Resin Infiltration of Composites

    NASA Technical Reports Server (NTRS)

    Dunn, DeRome O.

    1998-01-01

    The following tasks were performed at NCA&TSU during the second year in performance of the grant. LaRC-LV-1 13 resin was synthesized at NCA&TSU. In order to perform the synthesis, glassware and needed apparatus were purchased with grant funds along with the appropriate monomers. It was found that the LaRC-LV-1 13 resin was easily synthesized by the NMP solvent/toluene imminization/distilled water precipitation process. However, in use this resin exhibited a bubbling/foaming behavior during cure that was detrimental leading to the production of composite panels having a high void content. Composite panels were fabricated using compression molding and resin transfer molding (RTM) techniques. Initial fiber volume determinations were computed at NCA&TSU along with NASA-Langley measured c-scans on the panels produced. The initial results indicated a unsatisfactory level of approximately 20% by volume of voids. Testing of uniaxial coupons in compression to failure also agreed with these results. The uniaxial coupons delaminated as the major mode of failure indicative of an unacceptably low level of resin and to much void content in the final composites produced. In discussions with Dr. Brian Jensen, it was suggested the void fraction needs to be reduced to at least 2% by volume for a useful composite. The panels produced used both resin synthesized at NASA-Langley and NCA&TSU. In reviewing our progress over the past year, it was noted that the resin as formulated by the current synthesis process bubbled at elevated temperature. This was especially observed in neat resin slugs cured at the recommended one, four and eight hour cure temperatures. Pressurized cures where then performed with pressures up to 200 psi and simultaneously the lowest eight hour cure temperatures. Although this procedure reduced the amount of bubbles to some extent in the neat resin slugs it did not completely eliminate them. The cure reaction appears to be very energetic even at the lowest

  8. Method of tracing contour patterns for use in making gradual contour resin matrix composites

    NASA Technical Reports Server (NTRS)

    Fontes, M. J. (Inventor)

    1983-01-01

    The invention relates to methods for making alminate patterns for a resin matrix composite structural component. A sheet of paper is temporarily adhered to a model of the structrual component. A pen is positioned on the paper with a spindle touching the model surface opposite the pen. The pen and spindle are moved along the path that maintains the aforementioned contacts. The resulting line traced on paper is a model constant-thickness locus and provides a pattern for a single lamination of resin-impregnated fabric. The steps are repeated to make other patterns and each time the steps are repeated the distance between the tracer and the spindle is changed to correspond to the thickness of a lamination.

  9. Delamination on GFRP laminates impacted at room and lower temperatures: Comparison between epoxy and vinylester resins

    NASA Astrophysics Data System (ADS)

    Lopresto, Valentina; Langella, Antonio; Papa, Ilaria

    2016-10-01

    Low velocity impact tests at three different impact energy values and three different temperatures, were performed on glass fibre composite laminates made by infusion technology. Two different resins, epoxy and vinylester, were considered to impregnate the fibres: the first is mainly of aeronautical interest whereas the second one is mainly applied in Naval field. The specimens were first completely destroyed to obtain the complete load-displacement curve. The latter allowed the evaluation of the increasing impact energies, 5, 10 and 20J, used to investigate about the start and propagation of the damage inside the laminates. The delamination was investigated by the very commonly used Ultra Sound technique and the results obtained on the different materials at different temperatures were compared. A general better behaviour of vinylester resin was noted.

  10. NASA/aircraft industry standard specification for graphite fiber toughened thermoset resin composite material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A standard specification for a selected class of graphite fiber/toughened thermoset resin matrix material was developed through joint NASA/Aircraft Industry effort. This specification was compiled to provide uniform requirements and tests for qualifying prepreg systems and for acceptance of prepreg batches. The specification applies specifically to a class of composite prepreg consisting of unidirectional graphite fibers impregnated with a toughened thermoset resin that produce laminates with service temperatures from -65 F to 200 F when cured at temperatures below or equal to 350 F. The specified prepreg has a fiber areal weight of 145 g sq m. The specified tests are limited to those required to set minimum standards for the uncured prepreg and cured laminates, and are not intended to provide design allowable properties.

  11. Petroleum resins adsorption onto quartz sand: near infrared (NIR) spectroscopy study.

    PubMed

    Balabin, Roman M; Syunyaev, Rustem Z

    2008-02-15

    In this paper we have tried to evaluate adsorption parameters of petroleum resins. Near infrared (NIR) spectroscopy is applied for resins bulk concentration evaluation during adsorption process. NIR experimental scheme and parameters are provided. NIR spectra range of 9000-13,000 cm(-1) is chosen. Quartz sand (0.2-0.8 mm fraction) is used as adsorbent; benzene is used as solvent. Different approaches of "NIR spectra-resins concentration" calibration model building are discussed. Partial least squares (PLS) regression method is used. Langmuir model is chosen for experimental data fitting. Combined usage of kinetic and isothermic data gives us ability to evaluate the maximal adsorbed mass density, the equilibrium constant of adsorption, and the rate constants of adsorption (and desorption). The rate constants of resins adsorption and desorption are found to be concentration independent.

  12. Cure shrinkage in casting resins

    SciTech Connect

    Spencer, J. Brock

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  13. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  14. Kl-impregnated Oyster Shells as a Solid Catalyst for Soybean Oil Transesterificaton

    USDA-ARS?s Scientific Manuscript database

    Research on inexpensive and green catalysts is needed for economical production of biodiesel. The goal of the research was to test KI-impregnated oyster shell as a solid catalyst for transesterification of soybean oil. Specific objectives were to characterize KI-impregnated oyster shell, determine t...

  15. Impregnation of bio-oil from small diameter pine into wood for moisture resistance

    Treesearch

    Thomas J. Robinson; Brian K. Via; Oladiran Fasina; Sushil Adhikari; Emily Carter

    2011-01-01

    Wood pyrolysis oil consists of hundreds of complex compounds, many of which are phenolic-based and exhibit hydrophobic properties. Southern yellow pine was impregnated with a pyrolysis oil-based penetrant using both a high pressure and vacuum impregnation systems, with no significant differences in retention levels. Penetrant concentrations ranging from 5-50% pyrolysis...

  16. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  17. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  18. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  19. Preparation of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process.

    PubMed

    Yuan, Chung-Shin; Lin, Hsun-Yu; Wu, Chun-Hsin; Liu, Ming-Han; Hung, Chung-Hsuang

    2004-07-01

    The objective of this study is to develop an innovative compositive impregnation process for preparing sulfurized powdered activated carbon (PAC) from waste tires. An experimental apparatus, including a pyrolysis and activation system and a sulfur (S) impregnation system, was designed and applied to produce sulfurized PAC with a high specific surface area. Experimental tests involved the pyrolysis, activation, and sulfurization of waste tires. Waste-tire-derived PAC (WPAC) was initially produced in the pyrolysis and activation system. Experimental results indicated that the Brunauer-Emmett-Teller (BET) surface area of WPAC increased, and the average pore radius of WPAC decreased, as water feed rate and activation time increased. In this study, a conventional direct impregnation process was used to prepare the sulfurized PAC by impregnating WPAC with sodium sulfide (Na2S) solution. Furthermore, an innovative compositive impregnation process was developed and then compared with the conventional direct impregnation process. Experimental results showed that the compositive impregnation process produced the sulfurized WPAC with high BET surface area and a high S content. A maximum BET surface area of 886 m2/g and the S content of 2.61% by mass were obtained at 900 degrees C and at the S feed ratio of 2160 mg Na2S/g C. However, the direct impregnation process led to a BET surface area of sulfurized WPAC that decreased significantly as the S content increased.

  20. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  1. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis.

    PubMed

    Hu, Xin; Ding, Zhuhong; Zimmerman, Andrew R; Wang, Shengsen; Gao, Bin

    2015-01-01

    Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g⁻¹) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe₂p, As₃d, O₁s and C₁s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L⁻¹ NaHCO₃ solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.

  2. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    PubMed

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  3. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  4. Impregnating unconsolidated pyroclastic sequences: A tool for detailed facies analysis

    NASA Astrophysics Data System (ADS)

    Klapper, Daniel; Kueppers, Ulrich; Castro, Jon M.; Pacheco, Jose M. R.; Dingwell, Donald B.

    2010-05-01

    The interpretation of volcanic eruptions is usually derived from direct observation and the thorough analysis of the deposits. Processes in vent-proximal areas are usually not directly accessible or likely to be obscured. Hence, our understanding of proximal deposits is often limited as they were produced by the simultaneous events stemming from primary eruptive, transportative, and meteorological conditions. Here we present a method that permits for a direct and detailed quasi in-situ investigation of loose pyroclastic units that are usually analysed in the laboratory for their 1) grain-size distribution, 2) componentry, and 3) grain morphology. As the clast assembly is altered during sampling, the genesis of a stratigraphic unit and the relative importance of the above mentioned deposit characteristics is hard to achieve. In an attempt to overcome the possible loss of information during conventional sampling techniques, we impregnated the cleaned surfaces of proximal, unconsolidated units of the 1957-58 Capelinhos eruption on Faial, Azores. During this basaltic, emergent eruption, fluxes in magma rise rate led to a repeated build-up and collapse of tuff cones and consequently to a shift between phreatomagmatic and magmatic eruptive style. The deposits are a succession of generally parallel bedded, cm- to dm-thick layers with a predominantly ashy matrix. The lapilli content is varying gradually; the content of bombs is enriched in discrete layers without clear bomb sags. The sample areas have been cleaned and impregnated with two-component glue (EPOTEK 301). For approx. 10 * 10 cm, a volume of mixed glue of 20 ml was required. Using a syringe, this low-viscosity, transparent glue could be easily applied on the target area. We found that the glue permeated the deposit as deep as 5 mm. After > 24 h, the glue was sufficiently dry to enable the sample to be laid open. This impregnation method renders it possible to cut and polish the sample and investigate grain

  5. Impregnating unconsolidated pyroclastic sequences: A tool for detailed facies analysis

    NASA Astrophysics Data System (ADS)

    Klapper, D.; Kueppers, U.; Castro, J. M.

    2009-12-01

    The interpretation of volcanic eruptions is usually derived from direct observation and the thorough analysis of the deposits. Processes in vent-proximal areas are usually not directly accessible or likely to be obscured. Hence, our understanding of proximal deposits is often limited as they were produced by the simultaneous events stemming from primary eruptive, transportative, and meteorological conditions. Here we present a method that permits for a direct and detailed quasi in-situ investigation of loose pyroclastic units that are usually analysed in the laboratory for their 1) grain-size distribution, 2) componentry, and 3) grain morphology. As the clast assembly is altered during sampling, the genesis of a stratigraphic unit and the relative importance of the above mentioned deposit characteristics is hard to achieve. In an attempt to overcome the possible loss of information during conventional sampling techniques, we impregnated the cleaned surfaces of proximal, unconsolidated units of the 1957-58 Capelinhos eruption on Faial, Azores. During this basaltic, emergent eruption, fluxes in magma rise rate led to a repeated build-up and collapse of tuff cones and consequently to a shift between phreatomagmatic and magmatic eruptive style. The deposits are a succession of generally parallel bedded, cm- to dm-thick layers with a predominantly ashy matrix. The lapilli content is varying gradually; the content of bombs is enriched in discrete layers without clear bomb sags. The sample areas have been cleaned and impregnated with a two-component glue (EPOTEK 301). For approx. 10 * 10 cm, a volume of mixed glue of 20 ml was required. This low-viscosity, transparent glue allowed for an easy application on the target area by means of a syringe and permeated the deposit as deep as 5 mm. After > 24 h, the glue was sufficiently dry to enable the sample to be laid open. This impregnation method renders it possible to cut and polish the sample and investigate grain

  6. [Study of amount of evaporation residue in extracts from plastic kitchen utensils into four food-simulating solvents].

    PubMed

    Ohno, Hiroyuki; Suzuki, Masako; Kawamura, Yoko

    2011-01-01

    The amount of evaporation residue was investigated as an index of total amount of non-volatile substances that migrated from plastic kitchen utensils into four food-simulating solvents (water, 4% acetic acid, 20% ethanol and heptane). The samples were 71 products made of 12 types of plastics for food contact use. The amount was determined in accordance with the Japanese testing method. The quantitation limit was 5 µg/mL. In the cases of polyethylene, polypropylene, polystyrene, acrylonitrile styrene resin, acrylonitrile butadiene styrene resin, polyvinyl chloride, polyvinylidene chloride, polymethylpentene, polymethylmethacrylate and polyethylene terephthalate samples, the amount was highest for heptane and very low for the other solvents. On the other hand, in the cases of melamine resin and polyamide samples, the amount was highest for 4% acetic acid or 20% ethanol and lowest for heptane. These results enabled the selection of the most suitable solvent, and the rapid and efficient determination of evaporation residue.

  7. High performance phenolic pultrusion resin

    SciTech Connect

    Qureshi, S.P.; Ingram, W.H.; Smith, C.

    1996-11-01

    Today, Phenol-Formaldehyde (PF) resins are the materials of choice for aerospace interior applications, primarily due to low FST (flame, smoke and toxicity). Since 1990, growth of PF resins has been steadily increasing in non-aerospace applications (which include mass transit, construction, marine, mine ducting and offshore oil) due to low FST and reasonable cost. This paper describes one component phenol-formaldehyde resin that was jointly developed with Morrison Molded Fiber Glass for their pultrusion process. Physical properties of the resin with flame/smoke/toxicity, chemical resistance and mechanical performance of the pultruded RP are discussed. Neat resin screening tests to identify high-temperature formulations are explored. Research continues at Georgia-Pacific to investigate the effect of formulation variables on processing and mechanical properties.

  8. A Mathematical Model for Continuous Fiber Reinforced Thermoplastic Composite in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Yu, Yang; Yang, Jianjun; Xin, Chunling; He, Yadong

    2017-06-01

    Through the combination of Reynolds equation and Darcy's law, a mathematical model was established to calculate the pressure distribution in wedge area, which contributed to the forecast effect of processing parameters on impregnation degree of the fiber bundle. The experiments were conducted to verify the capacity of the proposed model with satisfactory results, which means that the model is effective in predicting the influence of processing parameters on impregnation. From the mathematical model, it was known that the impregnation degree of the fiber bundle would be improved by increasing the processing temperature, number and radius of pins, or decreasing the pulling speed and the center distance of pins, which provided a possible solution to the difficulty of melt with high viscosity in melt impregnation and optimization of impregnation processing.

  9. A Mathematical Model for Continuous Fiber Reinforced Thermoplastic Composite in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Yu, Yang; Yang, Jianjun; Xin, Chunling; He, Yadong

    2016-10-01

    Through the combination of Reynolds equation and Darcy's law, a mathematical model was established to calculate the pressure distribution in wedge area, which contributed to the forecast effect of processing parameters on impregnation degree of the fiber bundle. The experiments were conducted to verify the capacity of the proposed model with satisfactory results, which means that the model is effective in predicting the influence of processing parameters on impregnation. From the mathematical model, it was known that the impregnation degree of the fiber bundle would be improved by increasing the processing temperature, number and radius of pins, or decreasing the pulling speed and the center distance of pins, which provided a possible solution to the difficulty of melt with high viscosity in melt impregnation and optimization of impregnation processing.

  10. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  11. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  12. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  13. Solvent resistant copolyimide

    NASA Technical Reports Server (NTRS)

    Chang, Alice C. (Inventor); St. Clair, Terry L. (Inventor)

    1995-01-01

    A solvent resistant copolyimide was prepared by reacting 4,4'-oxydiphthalic anhydride with a diaimine blend comprising, based on the total amount of the diamine blend, about 75 to 90 mole percent of 3,4'-oxydianiline and about 10 to 25 mole percent p-phenylene diamine. The solvent resistant copolyimide had a higher glass transition temperature when cured at 350.degree. , 371.degree. and 400.degree. C. than LaRC.TM.-IA. The composite prepared from the copolyimide had similar mechanical properties to LaRC.TM.-IA. Films prepared from the copolyimide were resistant to immediate breakage when exposed to solvents such as dimethylacetamide and chloroform. The adhesive properties of the copolyimide were maintained even after testing at 23.degree., 150.degree., 177.degree. and 204.degree. C.

  14. Safe battery solvents

    DOEpatents

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  15. Solvent immersion imprint lithography.

    PubMed

    Vasdekis, A E; Wilkins, M J; Grate, J W; Kelly, R T; Konopka, A E; Xantheas, S S; Chang, T-M

    2014-06-21

    We present Solvent Immersion Imprint Lithography (SIIL), a technique for polymer functionalization and microsystem prototyping. SIIL is based on polymer immersion in commonly available solvents. This was experimentally and computationally analyzed, uniquely enabling two practical aspects. The first is imprinting and bonding deep features that span the 1 to 100 μm range, which are unattainable with existing solvent-based methods. The second is a functionalization scheme characterized by a well-controlled, 3D distribution of chemical moieties. SIIL is validated by developing microfluidics with embedded 3D oxygen sensors and microbioreactors for quantitative metabolic studies of a thermophile anaerobe microbial culture. Polystyrene (PS) was employed in the aforementioned applications; however all soluble polymers - including inorganic ones - can be employed with SIIL under no instrumentation requirements and typical processing times of less than two minutes.

  16. Aromatic resin characterisation by gas chromatography-mass spectrometry. Raw and archaeological materials.

    PubMed

    Modugno, Francesca; Ribechini, Erika; Colombini, Maria Perla

    2006-11-17

    An analytical procedure based on alkaline hydrolysis, solvent extraction and trimethyl-silylation followed by gas chromatography-mass spectrometry (GC-MS) analysis was used to study the chemical composition of benzoe and storax resins, water-insoluble exudates of trees of the Styrax and Liquidambar genus. They are chemically characterised by having aromatic acids, alcohols and esters as their main components and are thus known as aromatic and/or balsamic resins. This analytical procedure allowed us to characterise the main components of the two resins and, even though cinnamic acid is the main component of both the resins, the presence of other characteristic aromatic compounds and triterpenes permitted us to distinguish between the two materials. All the compounds identified in benzoe resin were detected in an archaeological organic residue from an Egyptian ceramic censer (fifth to seventh centuries a.d.), thus proving that this resin was used as one of the components of the mixture of organic materials burned as incense. These results provide the first chemical evidence of the presence of benzoe resin in an archaeological material from Mediterranean area.

  17. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  18. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  19. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  20. Investigation of Performance Envelope for Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Prabhu, Dinesh; Milos, Frank S.; Stackpoole, Mairead

    2016-01-01

    The present work provides the results of a short exploratory study on the performance of Phenolic Impregnated Carbon Ablator, or PICA, at high heat flux and pressure in an arcjet facility at NASA Ames Research Center. The primary objective of the study was to explore the thermal response of PICA at cold-wall heat fluxes well in excess of 1500 W/cm (exp 2). Based on the results of a series of flow simulations, multiple PICA samples were tested at an estimated cold wall heat flux and stagnation pressure of 1800 W/cm (exp 2) and 130 kPa, respectively. All samples survived the test, and no failure was observed either during or after the exposure. The results indicate that PICA has a potential to perform well at environments with significantly higher heat flux and pressure than it has currently been flown.

  1. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  2. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1991-03-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent tc the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  3. SILVER IMPREGNATION OF ULTRATHIN SECTIONS FOR ELECTRON MICROSCOPY

    PubMed Central

    Marinozzi, Vittorio

    1961-01-01

    A new procedure is described for silver impregnation of thin sections for electron microscopy. Sections of various tissues, fixed in OsO4 and embedded in methacrylate, were treated with an ammoniacal silver solution, directly or after oxidation with periodic acid or hydrogen peroxide. After OsO4 fixation all cellular membranous systems exhibit a primary argentaffinity probably due to the reduction of ammoniacal silver solution by the reduced osmium bound to unsaturated lipids. Bleaching the sections with hydrogen peroxide removes the argentaffinity of protoplasmic structures. Treatment of the sections with periodic acid results in decreased argentaffinity of protoplasmic components while the argentaffinity of metaplasmic structures is greatly enhanced. The latter procedure appears particularly useful for enhancing the contrast of basement membranes. PMID:13766855

  4. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  5. Development of metal oxide impregnated stilbite thick film ethanol sensor

    SciTech Connect

    Mahabole, M. P. Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-06

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO{sub 2} and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  6. Surface cooled, vacuum impregnated superconducting magnet systems: Design, construction, applications

    NASA Astrophysics Data System (ADS)

    Dam, Jacobus Adrianus Maria; Pieterman, Karel

    The design and construction of three superconducting magnet systems for applications in the fields of medical imaging, plasma physics and nuclear physics are described. All three systems have vacuum impregnated, intrinsically stable coils with cooling at the outer surfaces of the winding package with liquid helium, and are all coupled in some way to closed cycle cooling systems. General theories are discussed. The techniques used in both the design and the construction of the different magnet systems, are given. The use of numerical methods for the calculation of thermal and mechanical properties of superconducting coil systems, is emphasized. The experimental results obtained with the Delft magnetic resonance imaging system are described and examples of images showing sagittal sections of the human head, successfully produced with this system, are given.

  7. Plastination of decalcified bone by a new resin technique

    PubMed Central

    Rabiei, Abbas Ali; Esfandiary, Ebrahim; Hajian, Morteza; Shamosi, Atefe; Mardani, Mohammad; Rashidi, Bahman; Setayeshmehr, Mohsen

    2014-01-01

    Background: The scope of this study was to preserve whole detailed structure of dissected and decalcified bones, taken from used cadavers, by a new plastination technique. Materials and Methods: Specimens we used in this study were sheep femurs and human bones including pelvis, femur, tibia, and fibula. Bones, at first, fixed with 5% formalin and were decalcified with 5% nitric acid, and then were fixed again and washed under the tap water. The resulted flexible bones were dehydrated in −25°C acetone and degreased them in +25°C acetone. Then, the experimental and control specimen were placed in the vacuum chamber for forced impregnation with our new flexible unsaturated polyester resin (UP89 method) and silicon resin (S10 method), respectively. Finally, the strength and flexibility of plastinated decalcified specimens were investigated by tensometer, and the weight diversity was measured by digital balance. Results: Plastinated bones prepared by this technique were found to be dried, non-fragile, durable, odorless, non-greasy, and demonstrating all detailed structures of the bones. Tensile and weight tests results indicated that plastinated decalcified femurs have owned higher flexibility and strength but lesser weight than plastinated undecalcified femurs. The characteristics of both experimental and control groups of plastinated decalcified specimens were found to have no significant difference. Conclusions: Our synthesized resin found to be much more economical than conventional plastination method. In more details, properties of these new products were the same as, S10 method, from points of strength, flexibility and weight, but, since the money cost for producing them was about one fifth that of S10 method. PMID:24592368

  8. Mechanical behavior of silica nanoparticle-impregnated Kevlar fabrics

    NASA Astrophysics Data System (ADS)

    Dong, Zhaoxu

    Plain woven Kevlar fabrics are widely used as body protection materials. The present study investigated the impact performance of five styles of Kevlar fabrics K310, K706, K720, K745 and K779 from Hexcel. The fabrics are different in many aspects, i.e., weight per square meter, yarn counts, yarn size, Kevlar fiber type, friction and breaking strength. Silica nanoparticles were impregnated into the fabric to enhance the ballistic impact performance. The fabric impregnated with nanoparticles exhibit significant enhancement in impact performance over their neat counterparts. Fabrics experience large deformation under impact. More or less yarn pull-out was observed on all the fabrics. The in-plane yarn pull-out force has good correlation to the impact performance: fabrics with higher pull-out force performed better in impact tests. A two-dimensional finite element model was proposed to simulate the single yarn pull-out procedure and predict the maximum pull-out force. The most important fabric features are included in this model: yarn count, yarn size, fabric thickness, yarn waviness, fiber modulus, fiber diameter and coefficients of friction et al. The numerical results show good agreement with the experimentally measured pull-out forces. To understand the impact process, a constitutive model was developed to characterize the nonlinear anisotropic properties of the fabric in large deformation. The nanoparticles largely increase the shear stiffness, while only slightly affect the tension behavior along warp and weft yarn directions. This constitutive model was incorporated in the commercial FEA software ABAQUS through the user-defined material subroutine and used to simulate deformations with various loads. Finally the out-of-plane yarn pull-out force was predicted from the in-plane yarn pull-out results using finite element method and the proposed constitutive model.

  9. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  10. The reinforcement effect of polyethylene fibre and composite impregnated glass fibre on fracture resistance of endodontically treated teeth: An in vitro study

    PubMed Central

    Luthria, Archana; Srirekha, A; Hegde, Jayshree; Karale, Rupali; Tyagi, Sanjana; Bhaskaran, Sajeev

    2012-01-01

    Aim: The aim of this study was to evaluate the fracture resistance of endodontically treated maxillary premolars with wide mesio-occluso-distal (MOD) cavities restored with either composite resin, or composite resin reinforced with different types of fibres. Materials and Methods: Fifty human maxillary premolars were selected. Five intact teeth served as positive controls. Endodontic therapy was carried out in the remaining forty-five teeth. Standardized MOD cavities were prepared in all the teeth. The teeth were restored with a nanocomposite using an incremental technique. These forty five teeth were randomly divided into three experimental groups (Group A, B and C) (n = 15). The teeth in Group A did not undergo any further procedures. The teeth in Group B and C were reinforced with composite impregnated glass fibre and polyethylene fibre, respectively. Fracture resistance was measured in Newtons (N). Results: The positive controls showed the highest mean fracture resistance (811.90 N), followed by Group B (600.49N), Group A (516.96N) and Group C (514.64N), respectively. One Way analysis of variance (ANOVA) test revealed a statistically significant difference between all the groups (P = 0.001). Post-hoc Tukey test revealed a moderately significant difference (P = 0.034) between Control and Group B, and a strongly significant difference between Control and Group A (P = 0.002), and Control and Group C (P = 0.001). Conclusions: Endodontic therapy and MOD cavity preparation significantly reduced the fracture resistance of endodontically treated maxillary premolars (P = 0.001). No statistically significant difference was found between the experimental groups (Group A, B and C) (P > 0.1). However, the fracture resistance of the composite impregnated glass fibre reinforced group was much higher than the others. PMID:23112487

  11. The reinforcement effect of polyethylene fibre and composite impregnated glass fibre on fracture resistance of endodontically treated teeth: An in vitro study.

    PubMed

    Luthria, Archana; Srirekha, A; Hegde, Jayshree; Karale, Rupali; Tyagi, Sanjana; Bhaskaran, Sajeev

    2012-10-01

    The aim of this study was to evaluate the fracture resistance of endodontically treated maxillary premolars with wide mesio-occluso-distal (MOD) cavities restored with either composite resin, or composite resin reinforced with different types of fibres. Fifty human maxillary premolars were selected. Five intact teeth served as positive controls. Endodontic therapy was carried out in the remaining forty-five teeth. Standardized MOD cavities were prepared in all the teeth. The teeth were restored with a nanocomposite using an incremental technique. These forty five teeth were randomly divided into three experimental groups (Group A, B and C) (n = 15). The teeth in Group A did not undergo any further procedures. The teeth in Group B and C were reinforced with composite impregnated glass fibre and polyethylene fibre, respectively. Fracture resistance was measured in Newtons (N). The positive controls showed the highest mean fracture resistance (811.90 N), followed by Group B (600.49N), Group A (516.96N) and Group C (514.64N), respectively. One Way analysis of variance (ANOVA) test revealed a statistically significant difference between all the groups (P = 0.001). Post-hoc Tukey test revealed a moderately significant difference (P = 0.034) between Control and Group B, and a strongly significant difference between Control and Group A (P = 0.002), and Control and Group C (P = 0.001). Endodontic therapy and MOD cavity preparation significantly reduced the fracture resistance of endodontically treated maxillary premolars (P = 0.001). No statistically significant difference was found between the experimental groups (Group A, B and C) (P > 0.1). However, the fracture resistance of the composite impregnated glass fibre reinforced group was much higher than the others.

  12. Selecting the Best Materials Compositions of Resin Based Bioasphalt

    NASA Astrophysics Data System (ADS)

    Setyawan, Ary; Widiharjo, Budi; Djumari

    2017-07-01

    Damar asphalt is one type of bioaspal which is a mixture with the main ingredient is a resin as a binder and cooking oil as a solvent. One major drawback of this damar asphalt is the low ductility. To improve the ductility values, then use the added material Filler. Filler serves as a divider between the impurities with damar asphalt, increases ductility and increase the ability of cohesion or bonding between the particles of material damar asphalt. The purpose of this study was to determine damar asphalt modifications to the properties in accordance with the properties of damar asphalt test specifications based on the value of penetration. This method uses some variant on material such as powder bricks and fly ash as a binder. Solvent in constituent used oil and used cooking oil. It also added the polymer latex up to 10% at intervals of 2%. The best composition of damar asphalt materials were obtained with gum rosin, Fly Ash, Oil and Latex. Damar asphalt modification damar asphalt optimum mix of resin (100g pure resin or resin chunk + 350g powder), Fly Ash powder (150g), cooking oil (205g), and latex 4%, ductility increased from 63.5 cm to 119.5 cm, the value of the flash point was originally at temperature of 240 °C to 260 °C, damar asphalt penetration of 68.2 dmm to 43 dmm, and the value of density decreases from 1.01 g / cm3 to 0.99 g / cm3. Damar asphalt at these modifications meet the specifications in terms of solubility in trichlore ethylene is equal to 99.5%, and also meet the affinity of damar asphalt at 99%. With the optimum value, damar asphalt could be categorized as bitumen 40/60 penetration.

  13. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    PubMed

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  14. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  15. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  16. DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    Computer-aided design of chemicals and chemical mixtures provides a powerful tool to help engineers identify cleaner process designs and more-benign alternatives to toxic industrial solvents. Three software programs are discussed: (1) PARIS II (Program for Assisting the Replaceme...

  17. Organic solvent topical report

    SciTech Connect

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  18. Organic solvent topical report

    SciTech Connect

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  19. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  20. DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    Computer-aided design of chemicals and chemical mixtures provides a powerful tool to help engineers identify cleaner process designs and more-benign alternatives to toxic industrial solvents. Three software programs are discussed: (1) PARIS II (Program for Assisting the Replaceme...

  1. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  2. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polysulfone resins. 177.1655 Section 177.1655 Food... of Single and Repeated Use Food Contact Surfaces § 177.1655 Polysulfone resins. Polysulfone resins... purpose of this section, polysulfone resins are: (1) Poly(oxy-p-phenylenesulfonyl-p-phenyleneoxy-p...

  3. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polysulfone resins. 177.1655 Section 177.1655 Food... of Single and Repeated Use Food Contact Surfaces § 177.1655 Polysulfone resins. Polysulfone resins... purpose of this section, polysulfone resins are: (1) Poly(oxy-p-phenylenesulfonyl-p-phenyleneoxy-p...

  4. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-08-07

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Polymer electrolytes with multiple conductive channels prepared from NBR/SBR latex films impregnated with lithium salt and plasticizer

    SciTech Connect

    Matsumoto, Morihiko; Rutt, J.S.; Nishi, Shiro

    1995-09-01

    Polymer electrolytes, composed of a polar polymer acting as a host matrix for lithium-salt solutions, have high ionic conductivity and have been studied for application in advanced electronic devices such as the rechargeable lithium battery. Polymer electrolytes with high ionic conductivity (> 10{sup {minus}3} S/cm) and good tensile strength were prepared by swelling poly(acrylonitrile-co-butadiene) (NBR)/poly(styrene-co-butadiene) (SBR)/LiClO{sub 4} latex films with {gamma}-butyrolactone ({gamma}-BL) or LiClO{sub 4}/{gamma}-BL plasticizer. Before swelling, the LiClO{sub 4} phase is formed at the particle interface. After politicization, two ion-conductive channels are present: the LiClO{sub 4} phase is present at the interface of the latex particles, and the NBR phase is formed from NBR latex particles. These regions are polar and impregnated selectively with polar {gamma}-BL solvent or LiClO{sub 4}/{gamma}-BL solution, building primary and secondary ion-conductive channels, respectively. The SBR phase (formed from SBR latex particles) is nonpolar and not impregnated, providing a mechanically supportive matrix. High ionic conductivity on the order of 10{sup {minus}3} S/cm is achieved when NBR/SBR(50/50)/LiClO{sub 4} latex film was saturated on 0.2 to 0.4M LiClO{sub 4}/{gamma}-BL solutions. Various microscopic and macroscopic analyses suggest that two types of ion-conductive channels exist in the polymer electrolyte film.

  6. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger.

    PubMed

    Valsala, T P; Roy, S C; J G Shah; Gabriel, J; Raj, Kanwar; Venugopal, V

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l(-1) of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  7. The impact of resin-coating on sub-critical crack extension in a porcelain laminate veneer material.

    PubMed

    Cao, Xu; Fleming, Garry J P; Addison, Owen

    2017-05-01

    Characterisation of the interaction between crack extension, crack stabilisation and stress/strain relaxation in the polymeric matrix, the interplay between stress corrosion cracking and the mechanical response of a resin-based luting adhesive within a surface defect population could extend PLV restoration longevity by optimising cementation protocols. The aim was to investigate the influence of stress corrosion cracking and the viscoelastic behaviour of a resin-based luting adhesive independently by controlling the environmental conditions operative during test specimen fabrication. The effects of stress corrosion at ceramic crack tips and potential viscoelastic responses to loading of the resin-coated impregnating cracks were isolated. Resin-coated feldspathic ceramic test specimens were fabricated in ambient humidity or following moisture exclusion. Bi-axial flexure strengths of groups (n = 20) were determined at constant loading rates of 2.5, 10, 40, 160 or 640 N/min and data was compared with uncoated controls. Fractographic analyses were performed on all fractured test specimens. Resin-cement coating resulted in significant ceramic strengthening in all conditions tested (p < 0.01). A two-way ANOVA demonstrated that the exclusion of moisture during resin- coating significantly increased mean BFS (p<0.01) but post-hoc Tukey tests identified that moisture exclusion resulted in significant increases in BFS values only at intermediate loading rates with no significant differences observed at either the fastest or slowest loading rates (640 and 2.5 N/min, respectively). Mechanical reinforcement of PLV materials by resin-cement systems is yet to be optimized. The viscoelastic behavior of the resin-cement itself can influence the magnitude of reinforcement observed and sub-critical crack growth. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Design of controlled release systems for THEDES-Therapeutic deep eutectic solvents, using supercritical fluid technology.

    PubMed

    Aroso, Ivo M; Craveiro, Rita; Rocha, Ângelo; Dionísio, Madalena; Barreiros, Susana; Reis, Rui L; Paiva, Alexandre; Duarte, Ana Rita C

    2015-08-15

    Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-ϵ-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt%), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  10. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  11. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  12. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  13. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  14. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  15. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  16. N-bromo-dimethylhydantoin polystyrene resin for water microbial decontamination.

    PubMed

    Aviv, Oren; Farah, Shady; Amir, Nir; Laout, Natalia; Ratner, Stanislav; Domb, Abraham J

    2015-04-13

    N-bromo-dimethylhydantoin polystyrene beads were synthesized and tested as antimicrobial agents for water microbial decontamination. Optimization of synthetic process was thoroughly investigated, including solvents used, ratio of reactants and reaction conditions, kilogram scale production, and detailed spectral analysis. The microbial inactivation efficiency was studied according to the NSF-231 Guide Standard and Protocol for Testing Microbiological Water Purifiers against Escherichia coli and MS2 phage. The tested resins maintained their activity for 550 L. Thus, N-bromo-dimethylhydantoin-polystyrene beads synthesized under optimized conditions at kilogram quantities have a potential use in water purification filters.

  17. Solvent-Ion Interactions in Salt Water: A Simple Experiment.

    ERIC Educational Resources Information Center

    Willey, Joan D.

    1984-01-01

    Describes a procedurally quick, simple, and inexpensive experiment which illustrates the magnitude and some effects of solvent-ion interactions in aqueous solutions. Theoretical information, procedures, and examples of temperature, volume and hydration number calculations are provided. (JN)

  18. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  19. Experience Using Kaolin-Impregnated Sponge to Minimize Perioperative Bleeding in Norwood Operation.

    PubMed

    Shinkawa, Takeshi; Holloway, Jessica; Tang, Xinyu; Gossett, Jeffrey M; Imamura, Michiaki

    2017-07-01

    A kaolin-impregnated hemostatic sponge (QuikClot) is reported to reduce intraoperative blood loss in trauma and noncardiac surgery. The purpose of this study was to assess if this sponge was effective for hemostasis during Norwood operation. We conducted a retrospective review of patients undergoing Norwood operation in infancy between 2011 and 2016 at our institution. Of 31 identified Norwood operations, a kaolin-impregnated sponge was used intraoperatively in 15 (48%) patients. The preoperative profiles and cardiopulmonary bypass status were similar between the operations with or without kaolin-impregnated sponge. The comparison on each operative outcome between operations with or without kaolin-impregnated sponge showed that the intraoperative platelets, cryoprecipitate, and factor VII dosage were significantly less in the operations with kaolin-impregnated sponge (55 mL, 10 mL, 0 µg/kg vs 72 mL, 15 mL, 45 µg/kg; P = .03, .021, .019), as well as the incidence of perioperative bleeding complications (second cardiopulmonary bypass for hemostasis or postoperative mediastinal exploration, 0% vs 31%, P = .043). A logistic regression model showed that the nonuse of kaolin-impregnated sponge and longer aortic cross clamp time were associated with perioperative bleeding complication in univariable model ( P = .02 and .005). Use of kaolin-impregnated hemostatic sponge was associated with reduced blood product use and perioperative bleeding complications in Norwood operation at a single institution.

  20. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-chi

    2010-12-15

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  1. Allergic contact dermatitis from formaldehyde textile resins.

    PubMed

    Reich, Hilary C; Warshaw, Erin M

    2010-01-01

    Formaldehyde-based resins have been used to create permanent-press finishes on fabrics since the 1920s. These resins have been shown to be potent sensitizers in some patients, leading to allergic contact dermatitis. This review summarizes the history of formaldehyde textile resin use, the diagnosis and management of allergic contact dermatitis from these resins, and current regulation of formaldehyde resins in textiles.

  2. A green solvent holder in electro-mediated microextraction for the extraction of phenols in water.

    PubMed

    Chong, Yu Ting; Mohd Ariffin, Marinah; Mohd Tahir, Norhayati; Loh, Saw Hong

    2018-01-01

    Electro-mediated microextraction (EMM) combined with micro-high performance liquid chromatography-ultraviolet detection was successfully developed for the determination of selected phenols, namely 4-chlorophenol (4CP), 2-nitrophenol (2NP) and 2,4-dichlorophenols (2,4 DCP) in water. A solvent-impregnated agarose gel disc was utilized as a solvent holder in this study. Under optimum extraction conditions, the method showed good linearity in the range of 0.1-250µgL(-1), 0.3-250µgL(-1) and 0.2-500µgL(-1) for 4CP, 2NP and 2,4 DCP, respectively with correlation coefficients of ≥ 0.9975, ultra-trace LODs (0.03-0.1µgL(-1)) and satisfactory relative recovery average (85.0-114.1%) for the analysis of selected phenols. The proposed method was rapid and eco-friendly as the solvent holder was constructed using minute amounts of extraction solvent immobilized within the biodegradable agarose gel disc. A comparative microextraction technique termed solvent-impregnated agarose gel liquid phase microextraction (AG-LPME) was re-optimized and validated for the extraction of phenols in water. The method offered good linearity, ultra-trace LODs ranging 0.1-0.5µgL(-1) and satisfactory average of relative recovery (86.1-114.1%). The EMM was superior in terms of sensitivity and time-effectiveness compared to AG-LPME. Both techniques combine extraction and pre-concentration in mini-scaled approaches using an eco-friendly solvent holder that fulfil the green chemistry concept. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  4. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  5. Epoxy hydantoins as matrix resins

    NASA Technical Reports Server (NTRS)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  6. Phthalonitrile Resins and Preparation Thereof.

    DTIC Science & Technology

    The present invention pertains generally to organic synthesis and in particular to a rapid synthesis of a diether-linked polyphthalonitrile resin by polymerizing a phthalonitrile monomer with a primary amine.

  7. Iron-impregnated granular activated carbon for arsenic removal from drinking water

    NASA Astrophysics Data System (ADS)

    Chang, Qigang

    A new multi-step iron impregnation method was developed in this study to impregnate GAC with a high amount of iron that possesses desired characteristics: stable, even distribution, and high arsenic adsorption capacity. Research was carried out to investigate the impact of the amount of impregnated iron on arsenic adsorption properties: capacity, affinity, and kinetics. Fe-GACs were characterized in terms of the amount, stability, distribution, morphology, and species of impregnated iron. It was found that a high amount of iron was stably impregnated in GAC. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was evenly distributed on the internal surface of GAC. Impregnated iron formed nano-size particles and existed in both crystalline (akaganeite) and amorphous iron. Arsenic adsorption tests were conducted using Fe-GACs with iron content of 1.64--28.90% in a low arsenic concentration that is typical for drinking water treatment. The amount of impregnated iron affects arsenic maximum adsorption capacity (qm) but has little impact on the Langmuir constant h (the affinity of adsorbent for adsorbate). The qm for both As(V) and As(III) adsorptions increased significantly with increase of the amount of impregnated iron up to 13.59%. Further increase of iron amounts caused a gradual decrease of qm for As(V). BET analysis indicated impregnated iron possesses the highest surface area at iron content of 13.59%. A new second-order kinetic model was developed to investigate the impact of the amounts of impregnated iron on arsenic adsorption kinetics. With iron content increased from 1.64% to 28.90%, the intrinsic adsorption rate constants reduced from 4.6x10-2 1/hr to 1.18x10 -3 1/hr, which indicates that impregnated iron slows arsenic intraparticle diffusion rate in Fe-GAC. The decreased arsenic intraparticle diffusion rate was most likely caused by reduced pore size of Fe-GACs. Column tests were

  8. Effect of nanoparticles on charge transport in nanofluid-impregnated pressboard

    NASA Astrophysics Data System (ADS)

    Du, Yuefan; Lv, Yuzhen; Li, Chengrong; Chen, Mutian; Zhong, Yuxiang; Zhang, Shengnan; Zhou, You

    2012-06-01

    Transformer pressboard impregnated in mineral oil modified by nanoparticles (nanofluid) exhibits substantially higher AC and DC breakdown voltage than that of the pure oil-impregnated pressboard (OP). Charge transport and decay characteristics of both pressboards were measured by pulse electroacoustic technique. It reveals that nanofluid-impregnated pressboard (NP) has a more uniform internal electric field and a higher charge decay rate compared to OP, which is caused by an increase of shallow trap density in NP related to the difference of internal structures, based on the test results of thermally stimulated current and Fourier transformed infra-red spectroscopy.

  9. A silver impregnation method for nervous tissue suitable for routine use with mounted sections.

    PubMed

    Loots, J M; Loots, G P; Joubert, W S

    1977-03-01

    A simple, reliable silver impregnation method for nervous tissue is described for tissues fixed in various fixatives including formalin, Bouin, and Susa. Sections are impregnated in a solution containing 1 g Protargol, 2 ml of a 1% Cu(NO3)2 solution, 2 ml of a 1% AgNO3 solution, and 2-4 drops 30% H2O2 in 100 ml distilled water. Sections are impregnated 2-5 days at 37 C and thereafter reduced in a hydroquinone-formalin solution. This is followed by gold toning and subsequent reduction, dehydration and mounting. This method has been found to be very reliable and selective.

  10. Adsorption of saponin compound in Carica papaya leaves extract using weakly basic ion exchanger resin

    NASA Astrophysics Data System (ADS)

    Abidin, Noraziani Zainal; Janam, Anathasia; Zubairi, Saiful Irwan

    2016-11-01

    Adsorption of saponin compound in papaya leaves juice extract using Amberlite® IRA-67 resin was not reported in previous studies. In this research, Amberlite® IRA-67 was used to determine the amount of saponin that can be adsorbed using different weights of dry resin (0.1 g and 0.5 g). Peleg model was used to determine the maximum yield of saponin (43.67 mg) and the exhaustive time (5.7 days) prior to a preliminary resin-saponin adsorption study. After adsorption process, there was no significant difference (p>0.05) in total saponin content (mg) for sample treated with 0.1 g (3.79 ± 0.55 mg) and sample treated with 0.5 g (3.43 ± 0.51 mg) dry weight resin. Long-term kinetic adsorption of resin-saponin method (>24 hours) should be conducted to obtain optimum freed saponin extract. Besides that, sample treated with 0.1 g dry weight resin had high free radical scavenging value of 50.33 ± 2.74% compared to sample treated with 0.5 g dry weight resin that had low free radical scavenging value of 24.54 ± 1.66% dry weights. Total saponin content (mg), total phenolic content (mg GAE) and free radical scavenging activity (%) was investigated to determine the interaction of those compounds with Amberlite® IRA-67. The RP-HPLC analysis using ursolic acid as standard at 203 nm showed no peak even though ursolic acid was one of the saponin components that was ubiquitous in plant kingdom. The absence of peak was due to weak solubility of ursolic acid in water and since it was only soluble in solvent with moderate polarity. The Pearson's correlation coefficient for total saponin content (mg) versus total phenolic content (mg GAE) and radical scavenging activity (%) were +0.959 and +0.807. Positive values showed that whenever there was an increase in saponin content (mg), the phenolic content (mg GAE) and radical scavenging activity (%) would also increase. However, as the resin-saponin adsorption was carried out, there was a significant decrease of radical scavenging activity

  11. Two novel extraction chromatography resins containing multiple diglycolamide-functionalized ligands: preparation, characterization and actinide uptake properties.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem

    2014-03-21

    Two extraction chromatography resins were prepared for the first time by impregnating multiple diglycolamide-functionalized ligands such as diglycolamide-calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) on Chromosorb-W, an inert solid support, for the removal of hazardous actinides like Am(III) from radioactive waste solutions at 3M nitric acid. The resins were characterized by SEM, thermal and surface area (BET) analyses. The sorption of Am(III) on the two resins followed pseudo-second order sorption rate kinetics and was exothermic in nature. The sorption of trivalent f-elements proceeded through a chemisorption monolayer phenomenon as analyzed by using several isotherm models. The negative free energy change (ΔG) values of -34.46 and -28.45kJ/mol for T-DGA and C4DGA, respectively, indicate a chemical interaction between the metal ions and the ligands on the surface of the resins. Distribution coefficient measurements of various metal ions showed a selective sorption of trivalent f-elements over hexavalent uranyl ions and other fission product elements. Column studies on breakthrough indicated 0.76 and 0.37mg/g as the breakthrough capacities of the T-DGA and the C4DGA resins, respectively. It was possible to quantitatively elute the loaded metal ion using EDTA solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Poly(arylene ether-co-imidazole)s as toughness modifiers for epoxy resins

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Patricia D. (Inventor); Connell, John W. (Inventor)

    1994-01-01

    A toughened epoxy was prepared by reacting an epoxy resin with a poly(arylene ether-co-imidazole)s (PAEI). The epoxy resin comprises N,N,N',N'tetraglycidyl-4,4'- methylenebisbenzenamine and 4-aminophenyl sulfone. The PAEI was prepared by reacting an aromatic bisphenol, a bisphenol imidazole, and an activated aromatic dihalide or dinitro compound in the presence of potassium carbonate in a polar aprotic solvent at an elevated temperature. The epoxies which were modified with these particular PAEI's showed a significant increase in toughness with only a 10 weight percent loading of the PAEI into the epoxy. These toughened epoxies were used to prepare composites and molded parts.

  13. Use of cation-exchange resin for the detection of alkylpyridines in beer.

    PubMed

    Peppard, T L; Halsey, S A

    1980-12-19

    A method has been devised whereby trace amounts of certain basic compounds, such as pyridines, may be detected and semi-quantified in beer in the presence of an excess of other flavour constituents including pyrazines. The method involves steam distillation of beer under reduced pressure and subsequent passage of the distillate through a column of weakly acidic Zerolit cation-exchange resin. The resin is eluted with aqueous sodium chloride, the eluate extracted with organic solvent and the concentrated extract analysed by gas chromatography coupled with mass spectrometry. Using this technique with multiple ion detection, a series of alkylpyridines was readily detectable in beers and worts at levels below 1 ppb.

  14. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  15. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  16. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  17. Solvent Immersion Imprint Lithography

    SciTech Connect

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  18. Polyimides Based on Asymmetric Dianhydrides (II) (a-BPDA vs a-BTDA) for Resin Transfer Molding (RTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2010-01-01

    A new series of low-melt viscosity imide resins (10-20 poise at 280 C) were formulated from asymmetric 2,3,3',4' -benzophenone dianhydride (a-BTDA) and 4-phenylethynylphthalic endcaps, along with 3,4' -oxydianiline, 3,3' -methylenedianiline and 3,3'- diaminobenzophenone, using a solvent-free melt process. a-BTDA RTM resins exhibited higher glass transition temperatures (Tg's = 330-400 C) compared to those prepared by asymmetric 2,3,3',4' -biphenyl dianhydride, (a-BPDA, Tg's = 320-370 C). These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fiber composites by a RTM process. Composites properties of a-BTDA resins, such as open-hole compression and short-beam shear strength, are compared to those of composites made from a-BPDA based resin at room temperature, 288 C and 315 C. These novel, high temperature RTM imide resins exhibit outstanding properties beyond the performance of conventional RTM resins, such as epoxy and BMI resins which have use-temperatures around 177 C and 232 C for aerospace applications.

  19. Synthesis and application of monodisperse oligo(oxyethylene)-grafted polystyrene resins for solid-phase organic synthesis.

    PubMed

    Lumpi, Daniel; Braunshier, Christian; Horkel, Ernst; Hametner, Christian; Fröhlich, Johannes

    2014-07-14

    In a preliminary investigation by our group, we found that poly(styrene-oxyethylene) graft copolymers (PS-PEG), for example, TentaGel resins, are advantageous for gel-phase (13)C NMR spectroscopy. Because of the solution-like environment provided by the PS-PEG resins, good spectral quality of the attached moiety can be achieved, which is useful for nondestructive on-resin analysis. The general drawbacks of such resins are low loading capacities and the intense signal in the spectra resulting from the PEG linker (>50 units). Here, we describe the characterization of solvent-dependent swelling and reaction kinetics on a new type of resin for solid-phase organic synthesis (SPOS) that allows an accurate monitoring by gel-phase NMR without the above disadvantages. A series of polystyrene-oligo(oxyethylene) graft copolymers containing monodisperse PEG units (n = 2-12) was synthesized. A strong correlation between the linker (PEG) length and the line widths in the (13)C gel-phase spectra was observed, with a grafted PEG chain of 8 units giving similar results in terms of reactivity and gel-phase NMR monitoring to TentaGel resin. Multistep on-resin reaction sequences were performed to prove the applicability of the resins in solid-phase organic synthesis.

  20. PARIS II: DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  1. PARIS II: DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  2. The effect of co-impregnated acids on the performance of Zn-based broad spectrum respirator carbons.

    PubMed

    Smith, J W H; Romero, J V; Dahn, T R; Dunphy, K; Croll, L M; Dahn, J R

    2012-10-15

    Impregnated activated carbons (IACs) that are used in multi-gas respirator applications usually contain copper and/or zinc impregnants. Co-impregnating with properly selected acids can improve the distribution of the metallic impregnant on the carbon and improve the gas adsorption capacity of the IAC. In this work a comparative study of some common acids co-impregnated with a zinc nitrate (Zn(NO(3))(2)) precursor is performed. The IACs were heated in an inert atmosphere at temperatures which promoted the thermal decomposition of Zn(NO(3))(2) to zinc oxide (ZnO). The gas adsorption properties of the IACs were tested using ammonia (NH(3)), sulphur dioxide (SO(2)) and hydrogen cyanide (HCN) challenge gases. Powder X-ray diffraction (XRD) was used to identify the impregnant species present after heating and to study impregnant distribution. Gravimetric analysis was used to determine the impregnant loading, and help to identify the impregnant species after heating. The interactions between the co-impregnated acid and Zn(NO(3))(2) precursor during heating are discussed. The relationship between impregnant species and gas adsorption capacity is discussed.

  3. Quantitation of buried contamination by use of solvents

    NASA Technical Reports Server (NTRS)

    Pappas, S. P.; Hsiao, P.; Hill, L. W.

    1972-01-01

    An investigation was made to determine (1) sporicidal properties of amine solvents that solubilize silicon resins, (2) recovery properties of a silicon potting compound (RTV 41) used in spacecraft, and (3) viability of spores during chemical curing of the potting compound. Results show that: (1) spores do remain viable during RTV 41 silicon potting chemical curing, and (2) spore recovery from cured silicon potting compound RTV 41 is very high when silicon rubber is dissolved in butylamine and series dilution with benzene prior to plate curing.

  4. Hazardous solvent substitution

    SciTech Connect

    Twitchell, K.E.

    1995-11-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is `What can we use as replacements for hazardous solvents?`You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product`s constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace.

  5. High activity redox catalysts synthesized by chemical vapor impregnation.

    PubMed

    Forde, Michael M; Kesavan, Lokesh; Bin Saiman, Mohd Izham; He, Qian; Dimitratos, Nikolaos; Lopez-Sanchez, Jose Antonio; Jenkins, Robert L; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J

    2014-01-28

    The use of precious metals in heterogeneous catalysis relies on the preparation of small nanoparticles that are stable under reaction conditions. To date, most conventional routes used to prepare noble metal nanoparticles have drawbacks related to surface contamination, particle agglomeration, and reproducibility restraints. We have prepared titania-supported palladium (Pd) and platinum (Pt) catalysts using a simplified vapor deposition technique termed chemical vapor impregnation (CVI) that can be performed in any standard chemical laboratory. These materials, composed of nanoparticles typically below 3 nm in size, show remarkable activity under mild conditions for oxidation and hydrogenation reactions of industrial importance. We demonstrate the preparation of bimetallic Pd-Pt homogeneous alloy nanoparticles by this new CVI method, which show synergistic effects in toluene oxidation. The versatility of our CVI methodology to be able to tailor the composition and morphology of supported nanoparticles in an easily accessible and scalable manner is further demonstrated by the synthesis of Pdshell-Aucore nanoparticles using CVI deposition of Pd onto preformed Au nanoparticles supported on titania (prepared by sol immobilization) in addition to the presence of monometallic Au and Pd nanoparticles.

  6. Auger spectroscopy investigations of various types of impregnated cathodes

    NASA Astrophysics Data System (ADS)

    Brion, D.; Tonnerre, J. C.; Shroff, A. M.

    The formation of a complete oxygen and barium monolayer on a tungsten surface has been followed by Auger spectroscopy. At 1300 K, the coverage for an S-type cathode is approximatively half of a monolayer. The surface composition and the state of oxidation of barium are studied and their variations are also observed as a function of the temperature on new cathodes and on cathodes after long operation time. The decrease of surface barium concentration and the important increase in the oxidation of barium lead to an increase of the work function. Between 1100 and 1500 K, the activation energy for the rate of coverage variation of barium is relatively low (0.15 eV). It has been found that when aluminum is present at the surface of impregnated cathodes, it modifies the chemical environment of the barium atoms and leads frequently to the increase of barium coverage. During activation of M-type cathodes, tungsten diffuses towards the surface. For osmium films having a thickness between 3000 and 15000 Å, the surface composition after activation is near to 35% tungsten. The barium concentration is 20% higher compared to an S-type cathode while the oxygen concentration is slightly lower. The oxidation state of barium is about the same for both cathode types.

  7. Impregnated-electrode-type liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  8. Alcohol-impregnated wipes as an alternative in hand hygiene.

    PubMed

    Butz, A M; Laughon, B E; Gullette, D L; Larson, E L

    1990-04-01

    The antimicrobial effectiveness of four hand-wash products for health care personnel included three liquid soaps that contained 4% chlorhexidine gluconate, 1% triclosan, or no antiseptic ingredient, respectively, and a 30% w/w ethyl alcohol-impregnated hand wipe. These products were evaluated for reduction in bacterial counts on hands after extended use of 15 handwashes per day for 5 consecutive days. The order of greatest to least log reduction among products at the end of the 5-day test period was chlorhexidine gluconate (2.01), triclosan (1.52), alcohol wipe (0.04), and control soap (0.03). Skin condition before and after handwash was assessed for each treatment group. Subjects reported less skin irritation with alcohol wipes than with the two antiseptic products. Repeated washing with alcohol wipes results in reductions in bacterial colony counts comparable with nonmedicated soap, sufficient to prevent transmission of pathogens by the hands in most situations that arise in nonacute health care settings. This evidence, in addition to increased user acceptability reported by the subjects who used alcohol wipes, suggests that alcohol wipes are an acceptable alternative to soap-and-water handwashing in nonacute health care settings.

  9. Enhanced condensation on lubricant-impregnated nanotextured surfaces.

    PubMed

    Anand, Sushant; Paxson, Adam T; Dhiman, Rajeev; Smith, J David; Varanasi, Kripa K

    2012-11-27

    Nanotextured superhydrophobic surfaces have received significant attention due to their ability to easily shed liquid drops. However, water droplets have been shown to condense within the textures of superhydrophobic surfaces, impale the vapor pockets, and strongly pin to the surface. This results in poor droplet mobility and degrades condensation performance. In this paper, we show that pinning of condensate droplets can be drastically reduced by designing a hierarchical micro-nanoscale texture on a surface and impregnating it with an appropriate lubricant. The choice of lubricant must take into account the surface energies of all phases present. A lubricant will cloak the condensate and inhibit growth if the spreading coefficient is positive. If the lubricant does not fully wet the solid, we show how condensate-solid pinning can be reduced by proper implementation of nanotexture. On such a surface, condensate droplets as small as 100 μm become highly mobile and move continuously at speeds that are several orders of magnitude higher than those on identically textured superhydrophobic surfaces. This remarkable mobility produces a continuous sweeping effect that clears the surface for fresh nucleation and results in enhanced condensation.

  10. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation.

    PubMed

    Andrikopoulos, Nikolaos K; Kaliora, Andriana C; Assimopoulou, Andreana N; Papapeorgiou, Vassilios P

    2003-05-01

    Naturally occurring gums and resins with beneficial pharmaceutical and nutraceutical properties were tested for their possible protective effect against copper-induced LDL oxidation in vitro. Chiosmastic gum (CMG) (Pistacia lentiscus var. Chia resin) was the most effective in protecting human LDL from oxidation. The minimum and maximum doses for the saturation phenomena of inhibition of LDL oxidation were 2.5 mg and 50 mg CMG (75.3% and 99.9%, respectively). The methanol/water extract of CMG was the most effective compared with other solvent combinations. CMG when fractionated in order to determine a structure-activity relationship showed that the total mastic essential oil, collofonium-like residue and acidic fractions of CMG exhibited a high protective activity ranging from 65.0% to 77.8%. The other natural gums and resins (CMG resin 'liquid collection', P. terebinthus var. Chia resin, dammar resin, acacia gum, tragacanth gum, storax gum) also tested as above, showed 27.0%-78.8% of the maximum LDL protection. The other naturally occurring substances, i.e. triterpenes (amyrin, oleanolic acid, ursolic acid, lupeol, 18-a-glycyrrhetinic acid) and hydroxynaphthoquinones (naphthazarin, shikonin and alkannin) showed 53.5%-78.8% and 27.0%-64.1% LDL protective activity, respectively. The combination effects (68.7%-76.2% LDL protection) of ursolic-, oleanolic- and ursodeoxycholic- acids were almost equal to the effect (75.3%) of the CMG extract in comparable doses.

  11. Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins

    SciTech Connect

    Kabay, N.; Demircioglu, M.; Yayh, S.; Guenay, E.; Yueksel, M.; Saglam, M.; Streat, M.

    1998-05-01

    In fertilizer manufacture, calcium phosphate in phosphate rock is rendered soluble by sulfuric acid attack. The phosphoric acid obtained in this way usually contains 26%--28% P{sub 2}O{sub 5}. Several novel processes have been developed for the recovery of uranium from wet-process phosphoric acid. Experimental measurements have been made on the batch extraction of uranium from phosphoric acid solutions using various chelating ion-exchange resins (RSPO, Diaion-CRP200, Diphonix, Purolite S940, Duolite ES467, and Lewatit OC 1060) and a solvent containing ion-exchange resins (Actinide-CU). The kinetic performance of ion-exchange resins was compared, and the effect of Fe(II) and Ca(II) ions on the sorption and elution performance has also been examined. The results showed that the resin Actinide-CU containing a diphosphonate extractant was very effective for removing uranium from phosphoric acid solution. However, the elution performance of this resin with both acid and carbonate eluants was poor. It is concluded that the chelating resins Diphonix, Duolite ES467, Lewatit OC 1060, and Purolite S940 give reasonable sorption of uranium in the presence of Fe(II) ions in batch sorption trials. The desorption of uranium has been performed quantitatively using carbonate eluants. Purolite S940 was used in small-scale column extractions of uranium from phosphoric acid solutions, and promising loading/elution profiles were obtained.

  12. Preparative Separation and Enrichment of Syringopicroside from Folium syringae Leaves with Macroporous Resins

    PubMed Central

    Liu, Xin; Wang, Jianming; Zhou, Changxin; Gan, Lishe

    2010-01-01

    Syringopicroside is the major constituent in Folium syringae leaves with known pharmacological activities. In this study, a simple method for preparative separation of syringopicroside from F. syringae leaves with macroporous resins was developed. Adsorption characteristics of syringopicroside on six types of macroporous resins, including ADS-8, ADS-17, D141, NKA-9, HPD450, and HPD600, have been compared, among which D141 resin showed the best adsorption and desorption capacities for syringopicroside. Adsorption isotherms were used to D141 resin at different temperatures and fitted well to Langmuir and Freundlich equations. Dynamic adsorption and desorption tests were performed on D141 resin-packed column to optimize the separation process of syringopicroside. After one run with D141 resin, the content of syringopicroside was increased 24-fold from 2.32% to 55.74% with a recovery yield of 92.16%. The chromatographic process optimized in this work avoids toxic organic solvent and, thus, is a promising basis for large-scale preparation of syringopicroside. PMID:21234415

  13. Preparative separation and enrichment of syringopicroside from Folium syringae leaves with macroporous resins.

    PubMed

    Liu, Xin; Wang, Jianming; Zhou, Changxin; Gan, Lishe

    2010-01-01

    Syringopicroside is the major constituent in Folium syringae leaves with known pharmacological activities. In this study, a simple method for preparative separation of syringopicroside from F. syringae leaves with macroporous resins was developed. Adsorption characteristics of syringopicroside on six types of macroporous resins, including ADS-8, ADS-17, D141, NKA-9, HPD450, and HPD600, have been compared, among which D141 resin showed the best adsorption and desorption capacities for syringopicroside. Adsorption isotherms were used to D141 resin at different temperatures and fitted well to Langmuir and Freundlich equations. Dynamic adsorption and desorption tests were performed on D141 resin-packed column to optimize the separation process of syringopicroside. After one run with D141 resin, the content of syringopicroside was increased 24-fold from 2.32% to 55.74% with a recovery yield of 92.16%. The chromatographic process optimized in this work avoids toxic organic solvent and, thus, is a promising basis for large-scale preparation of syringopicroside.

  14. Study of use of ultrasound technology to prepare polymer-impregnated concrete

    SciTech Connect

    Han Wu; Brooman, E.W. )

    1993-05-01

    Low intensity ultrasound waves (20 kHz, 0.19 to 0.57 W/cm[sup 2] based on concrete area) have been applied to enhance the efficiency of impregnating a monomer into hardened concrete, without prior drying, for subsequent in situ polymerization. It was found that methyl methacrylate could be impregnated into partly air-dried Portland cement concrete, without removing the free water in the specimen, to approximately 80% of the depth of that into a similar, previously oven-dried specimen. A systematic study has been carried out to assess the relationship between impregnation depth and the following parameters: ultrasound energy density, impregnation time, gap distance between the ultrasound horn and the specimen surface, and the applied DC voltage gradient. The results of the experiments and a proposed mechanism for the ultrasound enhancement are presented in this paper.

  15. Multistep impregnation method for incorporation of high amount of titania into SBA-15

    SciTech Connect

    Wang Wei; Song Mo . E-mail: m.song@lboro.ac.uk

    2006-02-02

    A multistep impregnation method was employed to incorporate high amount of titania into the mesoporous SBA-15 silica. No damage to the SBA-15 silica mesostructures was caused by the loading of titania in every cycle. The existence of titania small nanodomains were confirmed to be present by Raman spectra and UV-vis DRS measurements. High dispersion of them was realized via this method according to the results of low-angle X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} sorption measurements. Importantly, no blockage of mesostructures was acknowledged with titania content up to 24.4 wt.%. In comparison, normally used one-step impregnation method led to serious blockage of mesopores as the results of formation of bulk titania particles in the mesochannels. Photo-activity test for the removal of oestrogen showed the superiority of the materials synthesized by multistep impregnation method to one-step impregnation method.

  16. Investigation of alternative materials for impregnation of Nb3Sn accelerator magnets

    SciTech Connect

    Deepak Reddy Chichili, Jay Hoffman and Alexander Zlobin

    2003-11-17

    Insulation is one of the most important elements of magnet design, which determines the electrical, mechanical, and thermal performance as well as lifetime of the magnet. The exposure to high radiation loads especially for the proposed LHC second-generation interaction region Nb{sub 3}Sn quadrupoles further limits the choices of the insulation materials. Traditionally Nb{sub 3}Sn magnets were impregnated with epoxy to improve both the mechanical and electrical properties. However, the acceptable radiation limit for epoxy is low which reduces the lifetime of the magnet. The paper presents the results of the feasibility study to replace epoxy with high radiation-resistant material during vacuum impregnation. The mechanical, thermal and electrical properties of samples impregnated with Matrimid were measured and compared with epoxy-impregnated samples.

  17. Cost/benefit analysis of chlorhexidine-silver sulfadiazine-impregnated venous catheters for femoral access.

    PubMed

    Lorente, Leonardo; Lecuona, María; Jiménez, Alejandro; Lorenzo, Lisset; Diosdado, Sara; Marca, Lucía; Mora, María L

    2014-10-01

    Sixty-four patients with chlorhexidine-silver sulfadiazine-impregnated catheters had a lower rate of catheter-related bloodstream infection and lower central venous catheter-related costs per catheter day than 190 patients with a standard catheter.

  18. Malaria control using deltamethrin impregnated mosquito nets/ insecticide treated bed nets: experience in armed forces.

    PubMed

    Deswal, B S; Bhatnagar, D; Tilak, R; Basannar, D R

    2005-12-01

    The study was undertaken to evaluate the impact of deltamethrin-impregnated mosquito nets on malaria incidence, mosquito density, any adverse side effect among users. A field trial was carried out over a period of three years in two adjacent military stations at Allahabad (UP), keeping one as a trial and other as a control station. During first year, baseline data were collected and during next two years residual spray was replaced with use of deltamethrin impregnated mosquito nets in trial station. The use of deltamethrin-impregnated mosquito nets/insecticide treated bed nets resulted in a significant decline in malaria incidence and Annual Parasite Index (API). The average mosquito density of Anopheline mosquitoes decreased by 67.8% and Culex by 49.7%. The insecticide was found safe for use amongst troops. Use of deltamethrin-impregnated mosquito nets has beneficial impact on integrated control of malaria.

  19. Fabrication of Impregnated-Electrode-Type Polyatomic Ion Source with Ionic Liquid

    SciTech Connect

    Takeuchi, Mitsuaki; Ryuto, Hiromichi; Takaoka, Gikan H.

    2011-01-07

    Three types of ionic liquid ion source characterized by needle-type, capillary-needle-type and impregnated-electrode-type emitters were fabricated and demonstrated. The ion emission of a pure ionic liquid was demonstrated for the capillary-needle- and impregnated-electrode-type emitters. The emission stability of the impregnated-electrode-type emitter is currently insufficient for the shallow implantation of carbon due to occasional discharge. However, the impregnated-electrode-type emitter showed the largest emission current of 14 {mu}A at 6 kV among these emitters. This was considered to be caused by the relatively high feedability of the ionic liquid obtained from the emitter tip made of porous copper.

  20. Polishing is made cheaper by disposable diamond-impregnated abrasive cloth

    NASA Technical Reports Server (NTRS)

    Harper, F. J.

    1972-01-01

    Diamond impregnated abrasive cloth eliminated expensive diamond pastes and was economically disposed of to avoid contamination. Cloth was spunbonded nylon, but any napless fabric could be used. Cloth was sprayed with diamond abrasive gel.

  1. Solvent replacement for green processing.

    PubMed Central

    Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A

    1998-01-01

    The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018

  2. SOLVENT FIRE BY-PRODUCTS

    SciTech Connect

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  3. Maleimide Functionalized Siloxane Resins

    SciTech Connect

    Loy, D.A.; Shaltout, R.M.

    1999-04-01

    Polyorganosiloxanes are a commercially important class of compounds. They exhibit many important properties, including very low glass transition temperatures, making them useful over a wide temperature range. In practice, the polysiloxane polymer is often mixed with a filler material to help improve its mechanical properties. An alternative method for increasing polymer mechanical strength is through the incorporation of certain substituents on the polymer backbone. Hard substituents such as carbonates and imides generally result in improved mechanical properties of polysiloxanes. In this paper, we present the preparation of novel polysiloxane resins modified with hard maleimide substituents. Protected ethoxysilyl-substituted propyl-maleimides were prepared. The maleimide substituent was protected with a furanyl group and the monomer polymerized under aqueous acidic conditions. At elevated temperatures (>120 C), the polymer undergoes retro Diels-Alder reaction with release of foran (Equation 1). The deprotected polymer can then be selectively crosslinked by a forward Diels-Alder reaction (in the presence of a co-reactant having two or more dime functionalities).

  4. Bonding of resin composites to resin-modified glass ionomers.

    PubMed

    Fortin, D; Vargas, M A; Swift, E J

    1995-08-01

    To evaluate the bonding between resin composites and resin-modified glass ionomer restorative materials. Bar-shaped specimens of Fuji II LC, Photac-Fil, and Vitremer were fabricated in a mold. After application of unfilled resin, resin composite (either Silux Plus or Restorative Z100) was condensed into the mold against the glass ionomer substrate and was light-cured. These bonded specimens, as well as intact specimens of each material, were placed on a three-point bending apparatus and were loaded until failure using a Zwick testing machine. The transverse strength of each specimen was calculated. Mean transverse strengths of bonded specimens ranged from 50% to 78% of the transverse strength of the intact glass ionomer materials. The lowest transverse strength was 18.1 MPa, for Photac-Fil/Z100, and the highest was 29.6 MPa, for Fuji II LC/Silux. Statistical analysis indicated that the type of composite used had no significant effect on transverse strength. However, the type of resin-modified glass ionomer used was significant. Although there was much overlap between materials, bonded specimens made with Fuji II LC had the highest absolute strength, and those made with Photac-Fil had the lowest absolute strength. Bonded Vitremer specimens had the highest transverse strength relative to the cohesive strength of the material.

  5. Ketoprofen-eluting biodegradable ureteral stents by CO2 impregnation: In vitro study.

    PubMed

    Barros, Alexandre A; Oliveira, Carlos; Reis, Rui L; Lima, Estevão; Duarte, Ana Rita C

    2015-11-30

    Ureteral stents are indispensable tools in urologic practice. The main complications associated with ureteral stents are dislocation, infection, pain and encrustation. Biodegradable ureteral stents are one of the most attractive designs with the potential to eliminate several complications associated with the stenting procedure. In this work we hypothesize the impregnation of ketoprofen, by CO2-impregnation in a patented biodegradable ureteral stent previously developed in our group. The biodegradable ureteral stents with each formulation: alginate-based, gellan gum-based were impregnated with ketoprofen and the impregnation conditions tested were 100 bar, 2 h and three different temperatures (35 °C, 40 °C and 50 °C). The impregnation was confirmed by FTIR and DSC demonstrated the amorphization of the drug upon impregnation. The in vitro elution profile in artificial urine solution (AUS) during degradation of a biodegradable ureteral stent loaded with ketoprofen was evaluated. According to the kinetics results these systems have shown to be very promising for the release ketoprofen in the first 72 h, which is the necessary time for anti-inflammatory delivery after the surgical procedure. The in vitro release studied revealed an influence of the temperature on the impregnation yield, with a higher impregnation yield at 40 °C. Higher yields were also obtained for gellan gum-based stents. The non-cytotoxicity characteristic of the developed ketoprofen-eluting biodegradable ureteral stents was evaluated in L929 cell line by MTS assay which demonstrated the feasibility of this product as a medical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Impregnated Metal-Organic Frameworks for the Removal of Toxic Industrial Chemicals

    DTIC Science & Technology

    2008-11-01

    on a nanotechnology approach to sorbent development for air purification applications. Metal-organic frameworks ( MOFs ) are a novel class of materials...that allow for specific functionalities to be designed directly into a porous framework. This report summarizes the evaluation of MOFs impregnated...with various chemicals for enhanced reactivity. Specifically, MOF -5 (IRMOF-l) was impregnated with citric acid, copper acetate, copper oxide, and

  7. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer`s specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  8. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer's specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  9. Shielding properties of composite materials based on epoxy resin with graphene nanoplates in the microwave frequency range

    NASA Astrophysics Data System (ADS)

    Volynets, N. I.; Bychenok, D. S.; Lyubimov, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Baturkin, S. A.; Klochkov, A. Ya.; Mastrucci, M.; Micciulla, F.; Bellucci, S.

    2016-12-01

    Analysis of the electromagnetic properties of composite materials based on epoxy resin with the addition of 0.5 wt % graphene nanoplates in the frequency range of 26-37 GHz is performed. The influence of types of epoxy resin with different viscosities and the type of solvent used (ethanol, acetone) on the electromagnetic response in this frequency range are determined. It is established that the least viscous epoxy resin, Epikote 828, and solvent ethanol are most effective for creation of a shielding covering in the microwave range. Composite materials with optimal composition provide attenuation of the electromagnetic signal at a level at least 10 dB in power for a film thickness of 1.1 mm.

  10. The effect of silver impregnation of surgical scrub suits on surface bacterial contamination.

    PubMed

    Freeman, A I; Halladay, L J; Cripps, P

    2012-06-01

    Silver-impregnated fabrics are widely used for their antibacterial and antifungal effects, including for clinical clothing such as surgical scrub suits (scrubs). This study investigated whether silver impregnation reduces surface bacterial contamination of surgical scrubs during use in a veterinary hospital. Using agar contact plates, abdominal and lumbar areas of silver-impregnated nylon or polyester/cotton scrubs were sampled for surface bacterial contamination before (0 h) and after 4 and 8h of use. The number of bacterial colonies on each contact plate was counted after 24 and 48 h incubation at 37°C. Standard basic descriptive statistics and mixed-effects linear regression were used to investigate the association of possible predictors of the level of bacterial contamination of the scrubs with surface bacterial counts. Silver-impregnated scrubs had significantly lowered bacterial colony counts (BCC) at 0 h compared with polyester/cotton scrubs. However, after 4 and 8h of wear, silver impregnation had no effect on BCC. Scrub tops with higher BCC at 0 h had significantly higher BCC at 4 and 8h, suggesting that contamination present at 0 h persisted during wear. Sampling from the lumbar area was associated with lower BCC at all three time points. Other factors (contamination of the scrub top with a medication/drug, restraint of patients, working in the anaesthesia recovery area) also affected BCC at some time points. Silver impregnation appeared to be ineffective in reducing bacterial contamination of scrubs during use in a veterinary hospital.

  11. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    PubMed

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  12. Preparation of functionalized and metal-impregnated activated carbon by a single-step activation method

    NASA Astrophysics Data System (ADS)

    Dastgheib, Seyed A.; Ren, Jianli; Rostam-Abadi, Massoud; Chang, Ramsay

    2014-01-01

    A rapid method to prepare functionalized and metal-impregnated activated carbon from coal is described in this paper. A mixture of ferric chloride and a sub-bituminous coal was used to demonstrate simultaneous coal activation, chlorine functionalization, and iron/iron oxides impregnation in the resulting porous carbon products. The FeCl3 concentration in the mixture, the method to prepare the FeCl3-coal mixture (solid mixing or liquid impregnation), and activation atmosphere and temperature impacted the surface area and porosity development, Cl functionalization, and iron species impregnation and dispersion in the carbon products. Samples activated in nitrogen or a simulated flue gas at 600 or 1000 °C for 1-2 min had surface areas up to ∼800 m2/g, bulk iron contents up to 18 wt%, and surface chlorine contents up to 27 wt%. Potential catalytic and adsorption application of the carbon materials was explored in catalytic wet air oxidation (CWAO) of phenol and adsorption of ionic mercury from aqueous solutions. Results indicated that impregnated activated carbons outperformed their non-impregnated counterparts in both the CWAO and adsorption tests.

  13. Replica mold for nanoimprint lithography from a novel hybrid resin.

    PubMed

    Lee, Bong Kuk; Hong, Lan-Young; Lee, Hea Yeon; Kim, Dong-Pyo; Kawai, Tomoji

    2009-10-06

    The use of durable replica molds with high feature resolution has been proposed as an inexpensive and convenient route for manufacturing nanostructured materials. A simple and fast duplication method, involving the use of a master mold to create durable polymer replicas as imprinting molds, has been demonstrated using both UV- and thermal nanoimprinting lithography (NIL). To obtain a high-durability replicating material, a dual UV/thermal-curable, organic-inorganic hybrid resin was synthesized using a sol-gel-based combinatorial method. The cross-linked hybrid resin exhibited high transparency to UV light and resistance to organic solvents. Molds made of this material showed good mechanical properties (Young's modulus=1.76 GPa) and gas permeability. The low viscosity of the hybrid resin (approximately 29 cP) allowed it to be easily transferred to relief nanostructures on transparent glass substrates using UV-NIL at room temperature and low pressure (0.2 MPa) over a relatively short time (80 s). A low surface energy release agent was successfully coated onto the hybrid mold surface without destroying the imprinted nanostructures, even after O2 plasma treatment. Nanostructures with feature sizes down to 80 nm were successfully reproduced using these molds in both UV- and thermal-NIL processes. After repeating 10 imprinting cycles at relatively high temperature and pressure, no detectable collapse or contamination of the replica surface was observed. These results indicate that the hybrid molds could tolerate repeated UV- and thermal-NIL processes.

  14. Method for recovering and using lignin in adhesive resins by extracting demethylated lignin

    DOEpatents

    Schroeder, Herbert A.

    1991-01-01

    Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.

  15. Solvent Fractionation of Lignin

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2014-01-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. The major issues for the commercial production of value added high performance lignin products are lignin s physical and chemical heterogenities. To overcome these problems, a variety of procedures have been developed to produce pure lignin suitable for high performace applications such as lignin-derived carbon materials. However, most of the isolation procedures affect lignin s properties and structure. In this chapter, a short review of the effect of solvent fractionation on lignin s properties and structure is presented.

  16. Basic Characteristics of Bis(2-ethylhexyl)phosphate-impregnated Adsorbent Used for Separation of Minor Actinides from FBR-Spent Fuel

    NASA Astrophysics Data System (ADS)

    Oda, Ryohei; Arai, Tsuyoshi; Nagayama, Katsuhisa; Watanabe, Sou; Sano, Yuichi; Myouchin, Munetaka

    FBR-spent nuclear fuel includes a great deal of minor actinides (MA: Am and Cm), which become febrile. Radioactive wastes including MA require a large area of ground for dumping and result in high cost. In Fast Reactor Cycel System Technology Development Project (FaCT) in Japan, we have been investigating extraction chromatography for separation of long-lived MA and specific fission products (FP) from high-level liquid wastes (HLLW). This method is expected to allow us to reduce an organic solvent use and to realize compact equipment. In this work, we have studied the static and dynamic adsorption behavior of representative FP contained in HLLW, Mo(VI), Zr(IV), Nd(III) and EU(III), on a bis(2-ethylhexyl)phosphate (HDEHP)-impregnated adsorbent. Such fundamental data should facilitate the efficient design of efficient MA recovery processes. Column adsorption experiments with the HDEHP-impregnated adsorbent have revealed that an increase in a flow rate results in a short breakthrough time and reduces the adsorption capacity of the column for all the elements tested. These results strongly suggest that a lower flow rate is preferable to enhance the adsorption capacity of the adsorbent.

  17. Elucidation of electrochemical properties of electrolyte-impregnated micro-porous ceramic films as framework supports in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Hseng Shao; Lue, Shingjiang Jessie; Tung, Yung Liang; Cheng, Kong Wei; Huang, Fu Yuan; Ho, Kuo Chuan

    This study investigates the electrochemical properties of electrolyte-impregnated micro-porous ceramic (Al 2O 3) films as framework supports in dye-sensitized solar cells (DSSCs). A field-emission scanning electron microscope (FE-SEM) is used to characterize the morphology on both surfaces of the ceramic membranes, which exhibit high porosity (41-66%) and an open cylindrical pore structure. Electrochemical impedance analysis reveals that the conductivity of the electrolyte-impregnated ceramic membrane is lower (6.24-9.39 mS cm -1) than the conductivity of the liquid electrolyte (25 mS cm -1), with an Archie's relationship by a power of 1.81 to the porosity value. The diffusivity of tri-iodide ions (I3-) is slowed from 1.95 × 10 -5 to 0.68 × 10 -5 cm 2 s -1 in the ceramic-containing cells. The exchange current density at the Pt-electrolyte interface decreases slightly (less than 5%) when the Al 2O 3 membranes were used in the symmetric cells, implies that the contact of the denser ceramic top structure on the Pt electrode does not interfere with the I3- charge transfer. The ceramic films can prevent solvent evaporation and maintain conductivity. The long-term cell efficiencies are evaluated up to 1248 h under alternating light soaking and darkness (3 days/4 days) cycles. The cells containing the ceramic films outperform the control cells.

  18. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  19. Drug Resinates an Attractive Approach of Solubility Enhancement of Atorvastatin Calcium

    PubMed Central

    Kulthe, V. V.; Chaudhari, P. D.

    2013-01-01

    A substantial number of new chemical entities and marketed drugs show poor solubility characteristics and amorphisation is one of the favorable approaches to enhance solubility characteristics of such poorly soluble drugs. Formulation efforts in the present study were devoted to investigate amorphisation of a model poorly soluble drug, atorvastatin calcium by molecular complexation with anion exchange resin, Duolite®AP 143/1093 and hence enhancement in its solubility characteristics. Drug resinates in 1:1, 1:2, and 1:4 weight ratios were prepared by simple batch operation and subsequently studied for drug content, residual solvent content, molecular interactions, solid state characterisation and solubility characteristics. During initial characterisation, all the proportions of drug resinates, except 1:1 proportion showed partial amorphisation of the drug, whereas 1:1 proportion showed complete amorphisation of the drug. This proportion reported distinctly enhanced solubility characteristics over pure drug and other proportions. Such amorphisation and solubility enhancement could be attributed to the binding of individual drug molecules to the functional sites of the resin molecules, either partially or completely, resulting in reduction of crystal lattice energy, a main barrier to dissolution. Hydrophilic nature of ion exchange resin matrices also assisted in enhancing dissolution of the drug from the resinates. During accelerated stability study, there was an insignificant decrease in solubility characteristics of the drug and its amorphous form was also found to be stable in 1:1 proportion. Atorvastatin resinates formed in 1:1 weight ratio were in stoichiometric proportion and such drug resinates in stoichiometric proportion showed to have tremendous potential in conversion of crystalline form of drug substances to its amorphous form and subsequent stabilisation. It hence proved to be a very effective, yet simple approach for improving solubility

  20. Synthesis and characterization of aluminosilicate catalyst impregnated by nickel oxide

    NASA Astrophysics Data System (ADS)

    Maulida, Iffana Dani; Sriatun, Taslimah

    2015-09-01

    Aluminosilicate as a catalyst has been synthesized by pore-engineering using CetylTrimethylAmmonium-Bromide (CTAB) as templating agent. It can produce bigger aluminosilicate pore therefore it will be more suitable for bulky molecule. The aims of this research are to synthesize aluminosilicate supported by Nickel, using CTAB surfactant as templating agent for larger pore radius than natural zeolite and characterize the synthesis product, consist of total acid sites and surface area characteristic. This research has been done with following steps. First, making sodium silicate and sodium aluminate. Second, aluminosilicate was synthesized by direct methods, calcined at 550, 650 and 750°C variation temperature, characterized product by X-RD and FTIR spectrometer. Third, NiCl2 was impregnated to the aluminosilicate that has the best cristallinity and main TO4 functional groups product (550 sample). Variation of NiCl2:aluminosilicate (w/w) ratio were 25%:75%, 50%:50% and 75%:25%. Last but not least characterization of catalytic properties was performed. It comprised total acidity test (gravimetric method) and Surface Area Analyzer. The result shows that the product synthesized by direct method at 550oC calcination temperature has the best cristallinity and main functional groups of TO4. The highest total acid sites was 31.6 mmole/g (Imp-A sample). Surface Area Analyzer shows that Imp-B sample has the best pore distribution and highest total pore volume and specific surface area with value 32.424 cc/g and 46.8287 m2/g respectively. We can draw the conclusion that the most potential catalyst is Imp-A sample compared to Imp-B and Imp-C because it has the highest total acid sites. However the most effective catalyst used for product selectivity was Imp-B sample among all samples.