Science.gov

Sample records for solving complex problems

  1. Quantum Computing: Solving Complex Problems

    ScienceCinema

    DiVincenzo, David [IBM Watson Research Center

    2016-07-12

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  2. The Process of Solving Complex Problems

    ERIC Educational Resources Information Center

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  3. Complex Problem Solving in a Workplace Setting.

    ERIC Educational Resources Information Center

    Middleton, Howard

    2002-01-01

    Studied complex problem solving in the hospitality industry through interviews with six office staff members and managers. Findings show it is possible to construct a taxonomy of problem types and that the most common approach can be termed "trial and error." (SLD)

  4. Complex Problem Solving--More than Reasoning?

    ERIC Educational Resources Information Center

    Wustenberg, Sascha; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This study investigates the internal structure and construct validity of Complex Problem Solving (CPS), which is measured by a "Multiple-Item-Approach." It is tested, if (a) three facets of CPS--"rule identification" (adequateness of strategies), "rule knowledge" (generated knowledge) and "rule application" (ability to control a system)--can be…

  5. Team-Based Complex Problem Solving: A Collective Cognition Perspective

    ERIC Educational Resources Information Center

    Hung, Woei

    2013-01-01

    Today, much problem solving is performed by teams, rather than individuals. The complexity of these problems has exceeded the cognitive capacity of any individual and requires a team of members to solve them. The success of solving these complex problems not only relies on individual team members who possess different but complementary expertise,…

  6. Analyzing the many skills involved in solving complex physics problems

    NASA Astrophysics Data System (ADS)

    Adams, Wendy K.; Wieman, Carl E.

    2015-05-01

    We have empirically identified over 40 distinct sub-skills that affect a person's ability to solve complex problems in many different contexts. The identification of so many sub-skills explains why it has been so difficult to teach or assess problem solving as a single skill. The existence of these sub-skills is supported by several studies comparing a wide range of individuals' strengths and weaknesses in these sub-skills, their "problem solving fingerprint," while solving different types of problems including a classical mechanics problem, quantum mechanics problems, and a complex trip-planning problem with no physics. We see clear differences in the problem solving fingerprint of physics and engineering majors compared to the elementary education majors that we tested. The implications of these findings for guiding the teaching and assessing of problem solving in physics instruction are discussed.

  7. Complex Mathematical Problem Solving by Individuals and Dyads.

    ERIC Educational Resources Information Center

    Vye, Nancy J.; Goldman, Susan R.; Voss, James F.; Hmelo, Cindy; Williams, Susan; Cognition and Technology Group at Vanderbilt University

    1997-01-01

    Describes two studies of mathematical problem solving using an episode from "The Adventures of Jasper Woodbury," a set of curriculum materials that afford complex problem-solving opportunities. Discussion focuses on characteristics of problems that make solutions difficult, kinds of reasoning that dyadic interactions support, and considerations of…

  8. Solving Problems.

    ERIC Educational Resources Information Center

    Hale, Norman; Lindelow, John

    Chapter 12 in a volume on school leadership, this chapter cites the work of several authorities concerning problem-solving or decision-making techniques based on the belief that group problem-solving effort is preferable to individual effort. The first technique, force-field analysis, is described as a means of dissecting complex problems into…

  9. Solving the Inverse-Square Problem with Complex Variables

    ERIC Educational Resources Information Center

    Gauthier, N.

    2005-01-01

    The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…

  10. Olae: A Bayesian Performance Assessment for Complex Problem Solving.

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    Olae is a computer system for assessing student knowledge of physics, and Newtonian mechanics in particular, using performance data collected while students solve complex problems. Although originally designed as a stand-alone system, it has also been used as part of the Andes intelligent tutoring system. Like many other performance assessment…

  11. What Do Employers Pay for Employees' Complex Problem Solving Skills?

    ERIC Educational Resources Information Center

    Ederer, Peer; Nedelkoska, Ljubica; Patt, Alexander; Castellazzi, Silvia

    2015-01-01

    We estimate the market value that employers assign to the complex problem solving (CPS) skills of their employees, using individual-level Mincer-style wage regressions. For the purpose of the study, we collected new and unique data using psychometric measures of CPS and an extensive background questionnaire on employees' personal and work history.…

  12. Coordinating complex problem-solving among distributed intelligent agents

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1992-01-01

    A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.

  13. Human opinion dynamics: an inspiration to solve complex optimization problems.

    PubMed

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P; Kapur, Pawan

    2013-01-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795

  14. Human opinion dynamics: An inspiration to solve complex optimization problems

    PubMed Central

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan

    2013-01-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making. PMID:24141795

  15. Human opinion dynamics: An inspiration to solve complex optimization problems

    NASA Astrophysics Data System (ADS)

    Kaur, Rishemjit; Kumar, Ritesh; Bhondekar, Amol P.; Kapur, Pawan

    2013-10-01

    Human interactions give rise to the formation of different kinds of opinions in a society. The study of formations and dynamics of opinions has been one of the most important areas in social physics. The opinion dynamics and associated social structure leads to decision making or so called opinion consensus. Opinion formation is a process of collective intelligence evolving from the integrative tendencies of social influence with the disintegrative effects of individualisation, and therefore could be exploited for developing search strategies. Here, we demonstrate that human opinion dynamics can be utilised to solve complex mathematical optimization problems. The results have been compared with a standard algorithm inspired from bird flocking behaviour and the comparison proves the efficacy of the proposed approach in general. Our investigation may open new avenues towards understanding the collective decision making.

  16. Teaching Problem Solving; the Effect of Algorithmic and Heuristic Problem Solving Training in Relation to Task Complexity and Relevant Aptitudes.

    ERIC Educational Resources Information Center

    de Leeuw, L.

    Sixty-four fifth and sixth-grade pupils were taught number series extrapolation by either an algorithm, fully prescribed problem-solving method or a heuristic, less prescribed method. The trained problems were within categories of two degrees of complexity. There were 16 subjects in each cell of the 2 by 2 design used. Aptitude Treatment…

  17. The Influence of Prior Experience and Process Utilization in Solving Complex Problems.

    ERIC Educational Resources Information Center

    Sterner, Paula; Wedman, John

    By using ill-structured problems and examining problem- solving processes, this study was conducted to explore the nature of solving complex, multistep problems, focusing on how prior knowledge, problem-solving process utilization, and analogical problem solving are related to success. Twenty-four college students qualified to participate by…

  18. Technologically Mediated Complex Problem-Solving on a Statistics Task

    ERIC Educational Resources Information Center

    Scanlon, Eileen; Blake, Canan; Joiner, Richard; O'Shea, Tim

    2005-01-01

    Simulations on computers can allow many experiments to be conducted quickly to help students develop an understanding of statistical topics. We used a simulation of a challenging problem in statistics as the focus of an exploration of situations where members of a problem-solving group are physically separated then reconnected via combinations of…

  19. Clinical Problem Analysis (CPA): A Systematic Approach To Teaching Complex Medical Problem Solving.

    ERIC Educational Resources Information Center

    Custers, Eugene J. F. M.; Robbe, Peter F. De Vries; Stuyt, Paul M. J.

    2000-01-01

    Discusses clinical problem analysis (CPA) in medical education, an approach to solving complex clinical problems. Outlines the five step CPA model and examines the value of CPA's content-independent (methodical) approach. Argues that teaching students to use CPA will enable them to avoid common diagnostic reasoning errors and pitfalls. Compares…

  20. Emergent Science: Solving complex science problems via collaborations

    NASA Astrophysics Data System (ADS)

    Li, X.; Ramachandran, R.; Wilson, B. D.; Lynnes, C.; Conover, H.

    2009-12-01

    The recent advances in Cyberinfrastructure have democratized the use of computational and data resources. These resources together with new social networking and collaboration technologies, present an unprecedented opportunity to impact the science process. These advances can move the science process from “circumspect science” -- where scientists publish only when the project is complete, publish only the final results, seldom publish things that did not work, and communicate results with each other using paper technology -- to “open science” -- where scientists can share and publish every element in their research, from the data used as input, workflows used to analyze these data sets, possibly failed experiments, and the final results. Open science can foster novel ways of social collaboration in science. We are already seeing the impact of social collaboration in our daily lives. A simple example is the use of reviews posted online by other consumers while evaluating whether to buy a product or not. This phenomenon has been well documented and is referred by many names such as Smart Mobs, Wisdom of Crowds, Wikinomics, Crowd sourcing, We-Think and swarm collaboration. Similar social collaborations during the science process can lead to “emergent science”. We define "emergent science" as way complex science problems can be solved and new research directions forged out of a multiplicity of relatively simple collaborative interactions. There are, however, barriers that prevent social collaboration within the science process. Some of these barriers are technical such as lack of science collaboration platforms and the others are social. The success of any collaborative platform has to take into account the incentives or motivation for the scientists to participate. This presentation will address obstacles facing emergent science and will suggest possible solutions required to build a critical mass.

  1. Games that Enlist Collective Intelligence to Solve Complex Scientific Problems.

    PubMed

    Burnett, Stephen; Furlong, Michelle; Melvin, Paul Guy; Singiser, Richard

    2016-03-01

    There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article. PMID:27047610

  2. Games that Enlist Collective Intelligence to Solve Complex Scientific Problems.

    PubMed

    Burnett, Stephen; Furlong, Michelle; Melvin, Paul Guy; Singiser, Richard

    2016-03-01

    There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article.

  3. Games that Enlist Collective Intelligence to Solve Complex Scientific Problems

    PubMed Central

    Burnett, Stephen; Furlong, Michelle; Melvin, Paul Guy; Singiser, Richard

    2016-01-01

    There is great value in employing the collective problem-solving power of large groups of people. Technological advances have allowed computer games to be utilized by a diverse population to solve problems. Science games are becoming more popular and cover various areas such as sequence alignments, DNA base-pairing, and protein and RNA folding. While these tools have been developed for the general population, they can also be used effectively in the classroom to teach students about various topics. Many games also employ a social component that entices students to continue playing and thereby to continue learning. The basic functions of game play and the potential of game play as a tool in the classroom are discussed in this article. PMID:27047610

  4. The Complex Route to Success: Complex Problem-Solving Skills in the Prediction of University Success

    ERIC Educational Resources Information Center

    Stadler, Matthias J.; Becker, Nicolas; Greiff, Samuel; Spinath, Frank M.

    2016-01-01

    Successful completion of a university degree is a complex matter. Based on considerations regarding the demands of acquiring a university degree, the aim of this paper was to investigate the utility of complex problem-solving (CPS) skills in the prediction of objective and subjective university success (SUS). The key finding of this study was that…

  5. How Humans Solve Complex Problems: The Case of the Knapsack Problem

    PubMed Central

    Murawski, Carsten; Bossaerts, Peter

    2016-01-01

    Life presents us with problems of varying complexity. Yet, complexity is not accounted for in theories of human decision-making. Here we study instances of the knapsack problem, a discrete optimisation problem commonly encountered at all levels of cognition, from attention gating to intellectual discovery. Complexity of this problem is well understood from the perspective of a mechanical device like a computer. We show experimentally that human performance too decreased with complexity as defined in computer science. Defying traditional economic principles, participants spent effort way beyond the point where marginal gain was positive, and economic performance increased with instance difficulty. Human attempts at solving the instances exhibited commonalities with algorithms developed for computers, although biological resource constraints–limited working and episodic memories–had noticeable impact. Consistent with the very nature of the knapsack problem, only a minority of participants found the solution–often quickly–but the ones who did appeared not to realise. Substantial heterogeneity emerged, suggesting why prizes and patents, schemes that incentivise intellectual discovery but discourage information sharing, have been found to be less effective than mechanisms that reveal private information, such as markets. PMID:27713516

  6. Conceptual and procedural knowledge community college students use when solving a complex science problem

    NASA Astrophysics Data System (ADS)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  7. Assessing Complex Problem-Solving Skills and Knowledge Assembly Using Web-Based Hypermedia Design.

    ERIC Educational Resources Information Center

    Dabbagh, Nada

    This research project studied the effects of hierarchical versus heterarchical hypermedia structures of Web-based case representations on complex problem-solving skills and knowledge assembly in problem-centered learning environments in order to develop a system or model that informs the design of Web-based cases for ill-structured problems across…

  8. Analogy as a strategy for supporting complex problem solving under uncertainty.

    PubMed

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving. PMID:22815065

  9. Individual Differences in Students' Complex Problem Solving Skills: How They Evolve and What They Imply

    ERIC Educational Resources Information Center

    Wüstenberg, Sascha; Greiff, Samuel; Vainikainen, Mari-Pauliina; Murphy, Kevin

    2016-01-01

    Changes in the demands posed by increasingly complex workplaces in the 21st century have raised the importance of nonroutine skills such as complex problem solving (CPS). However, little is known about the antecedents and outcomes of CPS, especially with regard to malleable external factors such as classroom climate. To investigate the relations…

  10. Calculating Probabilistic Distance to Solution in a Complex Problem Solving Domain

    ERIC Educational Resources Information Center

    Sudol, Leigh Ann; Rivers, Kelly; Harris, Thomas K.

    2012-01-01

    In complex problem solving domains, correct solutions are often comprised of a combination of individual components. Students usually go through several attempts, each attempt reflecting an individual solution state that can be observed during practice. Classic metrics to measure student performance over time rely on counting the number of…

  11. Application of NASA management approach to solve complex problems on earth

    NASA Technical Reports Server (NTRS)

    Potate, J. S.

    1972-01-01

    The application of NASA management approach to solving complex problems on earth is discussed. The management of the Apollo program is presented as an example of effective management techniques. Four key elements of effective management are analyzed. Photographs of the Cape Kennedy launch sites and supporting equipment are included to support the discussions.

  12. Assessment of Complex Problem Solving: What We Know and What We Don't Know

    ERIC Educational Resources Information Center

    Herde, Christoph Nils; Wüstenberg, Sascha; Greiff, Samuel

    2016-01-01

    Complex Problem Solving (CPS) is seen as a cross-curricular 21st century skill that has attracted interest in large-scale-assessments. In the Programme for International Student Assessment (PISA) 2012, CPS was assessed all over the world to gain information on students' skills to acquire and apply knowledge while dealing with nontransparent…

  13. Computer-Based Assessment of Complex Problem Solving: Concept, Implementation, and Application

    ERIC Educational Resources Information Center

    Greiff, Samuel; Wustenberg, Sascha; Holt, Daniel V.; Goldhammer, Frank; Funke, Joachim

    2013-01-01

    Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate…

  14. Differential Relations between Facets of Complex Problem Solving and Students' Immigration Background

    ERIC Educational Resources Information Center

    Sonnleitner, Philipp; Brunner, Martin; Keller, Ulrich; Martin, Romain

    2014-01-01

    Whereas the assessment of complex problem solving (CPS) has received increasing attention in the context of international large-scale assessments, its fairness in regard to students' cultural background has gone largely unexplored. On the basis of a student sample of 9th-graders (N = 299), including a representative number of immigrant students (N…

  15. The Development of Complex Problem Solving in Adolescence: A Latent Growth Curve Analysis

    ERIC Educational Resources Information Center

    Frischkorn, Gidon T.; Greiff, Samuel; Wüstenberg, Sascha

    2014-01-01

    Complex problem solving (CPS) as a cross-curricular competence has recently attracted more attention in educational psychology as indicated by its implementation in international educational large-scale assessments such as the Programme for International Student Assessment. However, research on the development of CPS is scarce, and the few…

  16. Understanding the determinants of problem-solving behavior in a complex environment

    NASA Technical Reports Server (NTRS)

    Casner, Stephen A.

    1994-01-01

    It is often argued that problem-solving behavior in a complex environment is determined as much by the features of the environment as by the goals of the problem solver. This article explores a technique to determine the extent to which measured features of a complex environment influence problem-solving behavior observed within that environment. In this study, the technique is used to determine how complex flight deck and air traffic control environment influences the strategies used by airline pilots when controlling the flight path of a modern jetliner. Data collected aboard 16 commercial flights are used to measure selected features of the task environment. A record of the pilots' problem-solving behavior is analyzed to determine to what extent behavior is adapted to the environmental features that were measured. The results suggest that the measured features of the environment account for as much as half of the variability in the pilots' problem-solving behavior and provide estimates on the probable effects of each environmental feature.

  17. Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving.

    PubMed

    Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni

    2015-03-01

    It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load.

  18. Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving

    PubMed Central

    Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni

    2015-01-01

    It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load. PMID:25652466

  19. Dirac's formalism combined with complex Fourier operational matrices to solve initial and boundary value problems

    NASA Astrophysics Data System (ADS)

    Labecca, William; Guimarães, Osvaldo; Piqueira, José Roberto C.

    2014-08-01

    Approximations of functions in terms of orthogonal polynomials have been used to develop and implement numerical approaches to solve spectrally initial and boundary value problems. The main idea behind these approaches is to express differential and integral operators by using matrices, and this, in turn, makes the numerical implementation easier to be expressed in computational algebraic languages. In this paper, the application of the methodology is enlarged by using Dirac's formalism, combined with complex Fourier series.

  20. Problem Solving in the Professions.

    ERIC Educational Resources Information Center

    Jackling, Noel; And Others

    1990-01-01

    It is proposed that algorithms and heuristics are useful in improving professional problem-solving abilities when contextualized within the academic discipline. A basic algorithm applied to problem solving in undergraduate engineering education and a similar algorithm applicable to legal problems are used as examples. Problem complexity and…

  1. Statistical physics analysis of the computational complexity of solving random satisfiability problems using backtrack algorithms

    NASA Astrophysics Data System (ADS)

    Cocco, S.; Monasson, R.

    2001-08-01

    The computational complexity of solving random 3-Satisfiability (3-SAT) problems is investigated using statistical physics concepts and techniques related to phase transitions, growth processes and (real-space) renormalization flows. 3-SAT is a representative example of hard computational tasks; it consists in knowing whether a set of αN randomly drawn logical constraints involving N Boolean variables can be satisfied altogether or not. Widely used solving procedures, as the Davis-Putnam-Loveland-Logemann (DPLL) algorithm, perform a systematic search for a solution, through a sequence of trials and errors represented by a search tree. The size of the search tree accounts for the computational complexity, i.e. the amount of computational efforts, required to achieve resolution. In the present study, we identify, using theory and numerical experiments, easy (size of the search tree scaling polynomially with N) and hard (exponential scaling) regimes as a function of the ratio α of constraints per variable. The typical complexity is explicitly calculated in the different regimes, in very good agreement with numerical simulations. Our theoretical approach is based on the analysis of the growth of the branches in the search tree under the operation of DPLL. On each branch, the initial 3-SAT problem is dynamically turned into a more generic 2+p-SAT problem, where p and 1 - p are the fractions of constraints involving three and two variables respectively. The growth of each branch is monitored by the dynamical evolution of α and p and is represented by a trajectory in the static phase diagram of the random 2+p-SAT problem. Depending on whether or not the trajectories cross the boundary between satisfiable and unsatisfiable phases, single branches or full trees are generated by DPLL, resulting in easy or hard resolutions. Our picture for the origin of complexity can be applied to other computational problems solved by branch and bound algorithms.

  2. How to solve complex problems in foundry plants - future of casting simulation -

    NASA Astrophysics Data System (ADS)

    Ohnaka, I.

    2015-06-01

    Although the computer simulation of casting has progressed dramatically over the last decades, there are still many challenges and problems. This paper discusses how to solve complex engineering problems in foundry plants and what we should do in the future, in particular, for casting simulation. First, problem solving procedures including application of computer simulation are demonstrated and various difficulties are pointed-out exemplifying mainly porosity defects in sand castings of spheroidal graphite cast irons. Next, looking back conventional scientific and engineering research to understand casting phenomena, challenges and problems are discussed from problem solving view point, followed by discussion on the issues we should challenge such as how to integrate huge amount of dispersed knowledge in various disciplines, differentiation of science-oriented and engineering-oriented models, professional ethics, how to handle fluctuating materials, initial and boundary conditions, error accumulation, simulation codes as black-box, etc. Finally some suggestions are made on how to challenge the issues such as promotion of research on the simulation based on the science- oriented model and publication of reliable data of casting phenomena in complicated-shaped castings including reconsideration of the evaluation system.

  3. You Need to Know: There Is a Causal Relationship between Structural Knowledge and Control Performance in Complex Problem Solving Tasks

    ERIC Educational Resources Information Center

    Goode, Natassia; Beckmann, Jens F.

    2010-01-01

    This study investigates the relationships between structural knowledge, control performance and fluid intelligence in a complex problem solving (CPS) task. 75 participants received either complete, partial or no information regarding the underlying structure of a complex problem solving task, and controlled the task to reach specific goals.…

  4. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    NASA Astrophysics Data System (ADS)

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-12-01

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  5. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    SciTech Connect

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-12-10

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  6. Group Problem Solving.

    ERIC Educational Resources Information Center

    King, James C.

    1988-01-01

    This pamphlet discusses group problem solving in schools. Its point of departure is that teachers go at problems from a number of different directions and that principals need to capitalize on those differences and bring a whole range of skills and perceptions to the problem-solving process. Rather than trying to get everyone to think alike,…

  7. Techniques of Problem Solving.

    ERIC Educational Resources Information Center

    Krantz, Steven G.

    The purpose of this book is to teach the basic principles of problem solving in both mathematical and non-mathematical problems. The major components of the book consist of learning to translate verbal discussion into analytical data, learning problem solving methods for attacking collections of analytical questions or data, and building a…

  8. Using Educational Data Mining Methods to Assess Field-Dependent and Field-Independent Learners' Complex Problem Solving

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos

    2013-01-01

    The present study investigated the problem-solving performance of 101 university students and their interactions with a computer modeling tool in order to solve a complex problem. Based on their performance on the hidden figures test, students were assigned to three groups of field-dependent (FD), field-mixed (FM), and field-independent (FI)…

  9. Knowledge to action for solving complex problems: insights from a review of nine international cases

    PubMed Central

    Riley, B. L.; Robinson, K. L.; Gamble, J.; Finegood, D. T.; Sheppard, D.; Penney, T. L.; Best, A.

    2015-01-01

    Introduction: Solving complex problems such as preventing chronic diseases introduces unique challenges for the creation and application of knowledge, or knowledge to action (KTA). KTA approaches that apply principles of systems thinking are thought to hold promise, but practical strategies for their application are not well understood. In this paper we report the results of a scan of systems approaches to KTA with a goal to identify how to optimize their implementation and impact. Methods: A 5-person advisory group purposefully selected 9 initiatives to achieve diversity on issues addressed and organizational forms. Information on each case was gathered from documents and through telephone interviews with primary contacts within each organization. Following verification of case descriptions, an inductive analysis was conducted within and across cases. Results: The cases revealed 5 guidelines for moving from conceiving KTA systems to implementing them: 1) establish and nurture relationships, 2) co-produce and curate knowledge, 3) create feedback loops, 4) frame as systems interventions rather than projects, and 5) consider variations across time and place. Conclusion: Results from the environmental scan are a modest start to translating systems concepts for KTA into practice. Use of the strategies revealed in the scan may improve KTA for solving complex public health problems. The strategies themselves will benefit from the development of a science that aims to understand adaptation and ongoing learning from policy and practice interventions, strengthens enduring relationships, and fills system gaps in addition to evidence gaps. Systems approaches to KTA will also benefit from robust evaluations. PMID:25970804

  10. The Future Problem Solving Program.

    ERIC Educational Resources Information Center

    Crabbe, Anne B.

    1989-01-01

    Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…

  11. Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Fi, Cos D.; Degner, Katherine M.

    2012-01-01

    Teaching through Problem Solving (TtPS) is an effective way to teach mathematics "for" understanding. It also provides students with a way to learn mathematics "with" understanding. In this article, the authors present a definition of what it means to teach through problem solving. They also describe a professional development vignette that…

  12. Attentional bias induced by solving simple and complex addition and subtraction problems.

    PubMed

    Masson, Nicolas; Pesenti, Mauro

    2014-01-01

    The processing of numbers has been shown to induce shifts of spatial attention in simple probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. Recently, the investigation of this spatial-numerical association has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems may induce attentional displacements (to the right and to the left, respectively) along a mental number line onto which the magnitude of the numbers would range from left to right, from small to large numbers. Here we investigated such attentional shifts using a target detection task primed by arithmetic problems in healthy participants. The constituents of the addition and subtraction problems (first operand; operator; second operand) were flashed sequentially in the centre of a screen, then followed by a target on the left or the right side of the screen, which the participants had to detect. This paradigm was employed with arithmetic facts (Experiment 1) and with more complex arithmetic problems (Experiment 2) in order to assess the effects of the operation, the magnitude of the operands, the magnitude of the results, and the presence or absence of a requirement for the participants to carry or borrow numbers. The results showed that arithmetic operations induce some spatial shifts of attention, possibly through a semantic link between the operation and space. PMID:24833320

  13. Attentional bias induced by solving simple and complex addition and subtraction problems.

    PubMed

    Masson, Nicolas; Pesenti, Mauro

    2014-01-01

    The processing of numbers has been shown to induce shifts of spatial attention in simple probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. Recently, the investigation of this spatial-numerical association has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems may induce attentional displacements (to the right and to the left, respectively) along a mental number line onto which the magnitude of the numbers would range from left to right, from small to large numbers. Here we investigated such attentional shifts using a target detection task primed by arithmetic problems in healthy participants. The constituents of the addition and subtraction problems (first operand; operator; second operand) were flashed sequentially in the centre of a screen, then followed by a target on the left or the right side of the screen, which the participants had to detect. This paradigm was employed with arithmetic facts (Experiment 1) and with more complex arithmetic problems (Experiment 2) in order to assess the effects of the operation, the magnitude of the operands, the magnitude of the results, and the presence or absence of a requirement for the participants to carry or borrow numbers. The results showed that arithmetic operations induce some spatial shifts of attention, possibly through a semantic link between the operation and space.

  14. Problem Solving and Learning

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  15. Problem Solving by Design

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Tyrie, Nancy

    2009-01-01

    In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…

  16. Mathematics as Problem Solving.

    ERIC Educational Resources Information Center

    Soifer, Alexander

    This book contains about 200 problems. It is suggested that it be used by students, teachers or anyone interested in exploring mathematics. In addition to a general discussion on problem solving, there are problems concerned with number theory, algebra, geometry, and combinatorics. (PK)

  17. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  18. NAEP Note: Problem Solving.

    ERIC Educational Resources Information Center

    Carpenter, Thomas P.; And Others

    1980-01-01

    Student weaknesses on problem-solving portions of the NAEP mathematics assessment are discussed using Polya's heuristics as a framework. Recommendations for classroom instruction are discussed. (MP) Aspect of National Assessment (NAEP) dealt with in this document: Results (Interpretation).

  19. Complex Problem Solving in Radiologic Technology: Understanding the Roles of Experience, Reflective Judgment, and Workplace Culture

    ERIC Educational Resources Information Center

    Yates, Jennifer L.

    2011-01-01

    The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…

  20. What Is Problem Solving?

    ERIC Educational Resources Information Center

    Martinez, Michael E.

    1998-01-01

    Many important human activities involve accomplishing goals without a script. There is no formula for true problem-solving. Heuristic, cognitive "rules of thumb" are the problem-solver's best guide. Learners should understand heuristic tools such as means-end analysis, working backwards, successive approximation, and external representation. Since…

  1. Problem Solving in Electricity.

    ERIC Educational Resources Information Center

    Caillot, Michel; Chalouhi, Elias

    Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…

  2. Inquiry and Problem Solving.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    1999-01-01

    This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High School); (3) "Project…

  3. Problem-Solving Software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    CBR Express software solves problems by adapting sorted solutions to new problems specified by a user. It is applicable to a wide range of situations. The technology was originally developed by Inference Corporation for Johnson Space Center's Advanced Software Development Workstation. The project focused on the reuse of software designs, and Inference used CBR as part of the ACCESS prototype software. The commercial CBR Express is used as a "help desk" for customer support, enabling reuse of existing information when necessary. It has been adopted by several companies, among them American Airlines, which uses it to solve reservation system software problems.

  4. An Investigation of the Interrelationships between Motivation, Engagement, and Complex Problem Solving in Game-Based Learning

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Law, Victor; Ifenthaler, Dirk; Ge, Xun; Miller, Raymond

    2014-01-01

    Digital game-based learning, especially massively multiplayer online games, has been touted for its potential to promote student motivation and complex problem-solving competency development. However, current evidence is limited to anecdotal studies. The purpose of this empirical investigation is to examine the complex interplay between…

  5. Increasing Student Effort in Complex Problem Solving through Cooperative Learning and Self-Recording Techniques

    ERIC Educational Resources Information Center

    Brahmer, Kelly; Harmatys, Jennifer

    2009-01-01

    In recent years, teachers have noticed a drop in student effort on complex problems in math and science. The purpose of this study was to determine if incorporating cooperative learning and self-recording strategies had an impact upon student effort on complex problems. A total of 38 9th through 11th grade math and science students at two…

  6. Solving Common Mathematical Problems

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.

  7. Solving Problems in Genetics

    ERIC Educational Resources Information Center

    Aznar, Mercedes Martinez; Orcajo, Teresa Ibanez

    2005-01-01

    A teaching unit on genetics and human inheritance using problem-solving methodology was undertaken with fourth-level Spanish Secondary Education students (15 year olds). The goal was to study certain aspects of the students' learning process (concepts, procedures and attitude) when using this methodology in the school environment. The change…

  8. Universal Design Problem Solving

    ERIC Educational Resources Information Center

    Sterling, Mary C.

    2004-01-01

    Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…

  9. Problem Solving with Patents

    ERIC Educational Resources Information Center

    Moore, Jerilou; Sumrall, William J.

    2008-01-01

    Exploring our patent system is a great way to engage students in creative problem solving. As a result, the authors designed a teaching unit that uses the study of patents to explore one avenue in which scientists and engineers do science. Specifically, through the development of an idea, students learn how science and technology are connected.…

  10. Preparing for Problem Solving

    ERIC Educational Resources Information Center

    Holden, Becky

    2007-01-01

    Seeking more effective mathematics instruction, this author decided to incorporate Cognitively Guided Instruction (CGI) into first-grade classroom lessons. Students in CGI mathematics classrooms are prompted to use their prior knowledge to solve new problems, establish cognitive structures to which new learning can be connected, and be driven by…

  11. Solving Problems through Circles

    ERIC Educational Resources Information Center

    Grahamslaw, Laura; Henson, Lisa H.

    2015-01-01

    Several problem-solving interventions that utilise a "circle" approach have been applied within the field of educational psychology, for example, Circle Time, Circle of Friends, Sharing Circles, Circle of Adults and Solution Circles. This research explored two interventions, Solution Circles and Circle of Adults, and used thematic…

  12. Circumference and Problem Solving.

    ERIC Educational Resources Information Center

    Blackburn, Katie; White, David

    The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to the…

  13. Introspection in Problem Solving

    ERIC Educational Resources Information Center

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  14. [Problem Solving Activities.

    ERIC Educational Resources Information Center

    Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.

    The teacher directed problem solving activities package contains 17 units: Future Community Design, Let's Build an Elevator, Let's Construct a Catapult, Let's Design a Recreational Game, Let's Make a Hand Fishing Reel, Let's Make a Wall Hanging, Let's Make a Yo-Yo, Marooned in the Past, Metrication, Mousetrap Vehicles, The Multi System…

  15. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.

    1972-01-01

    The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.

  16. Studying PubMed usages in the field for complex problem solving: Implications for tool design.

    PubMed

    Mirel, Barbara; Song, Jean; Tonks, Jennifer Steiner; Meng, Fan; Xuan, Weijian; Ameziane, Rafiqa

    2013-05-01

    Many recent studies on MEDLINE-based information seeking have shed light on scientists' behaviors and associated tool innovations that may improve efficiency and effectiveness. Few if any studies, however, examine scientists' problem-solving uses of PubMed in actual contexts of work and corresponding needs for better tool support. Addressing this gap, we conducted a field study of novice scientists (14 upper level undergraduate majors in molecular biology) as they engaged in a problem solving activity with PubMed in a laboratory setting. Findings reveal many common stages and patterns of information seeking across users as well as variations, especially variations in cognitive search styles. Based on findings, we suggest tool improvements that both confirm and qualify many results found in other recent studies. Our findings highlight the need to use results from context-rich studies to inform decisions in tool design about when to offer improved features to users. PMID:24376375

  17. Studying PubMed usages in the field for complex problem solving: Implications for tool design

    PubMed Central

    Song, Jean; Tonks, Jennifer Steiner; Meng, Fan; Xuan, Weijian; Ameziane, Rafiqa

    2012-01-01

    Many recent studies on MEDLINE-based information seeking have shed light on scientists’ behaviors and associated tool innovations that may improve efficiency and effectiveness. Few if any studies, however, examine scientists’ problem-solving uses of PubMed in actual contexts of work and corresponding needs for better tool support. Addressing this gap, we conducted a field study of novice scientists (14 upper level undergraduate majors in molecular biology) as they engaged in a problem solving activity with PubMed in a laboratory setting. Findings reveal many common stages and patterns of information seeking across users as well as variations, especially variations in cognitive search styles. Based on findings, we suggest tool improvements that both confirm and qualify many results found in other recent studies. Our findings highlight the need to use results from context-rich studies to inform decisions in tool design about when to offer improved features to users. PMID:24376375

  18. Learning by Preparing to Teach: Fostering Self-Regulatory Processes and Achievement during Complex Mathematics Problem Solving

    ERIC Educational Resources Information Center

    Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.

    2016-01-01

    We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…

  19. Complex Problem Solving in Educational Contexts--Something beyond "g": Concept, Assessment, Measurement Invariance, and Construct Validity

    ERIC Educational Resources Information Center

    Greiff, Samuel; Wustenberg, Sascha; Molnar, Gyongyver; Fischer, Andreas; Funke, Joachim; Csapo, Beno

    2013-01-01

    Innovative assessments of cross-curricular competencies such as complex problem solving (CPS) have currently received considerable attention in large-scale educational studies. This study investigated the nature of CPS by applying a state-of-the-art approach to assess CPS in high school. We analyzed whether two processes derived from cognitive…

  20. Linking Complex Problem Solving and General Mental Ability to Career Advancement: Does a Transversal Skill Reveal Incremental Predictive Validity?

    ERIC Educational Resources Information Center

    Mainert, Jakob; Kretzschmar, André; Neubert, Jonas C.; Greiff, Samuel

    2015-01-01

    Transversal skills, such as complex problem solving (CPS) are viewed as central twenty-first-century skills. Recent empirical findings have already supported the importance of CPS for early academic advancement. We wanted to determine whether CPS could also contribute to the understanding of career advancement later in life. Towards this end, we…

  1. Validity of the MicroDYN Approach: Complex Problem Solving Predicts School Grades beyond Working Memory Capacity

    ERIC Educational Resources Information Center

    Schweizer, Fabian; Wustenberg, Sascha; Greiff, Samuel

    2013-01-01

    This study examines the validity of the complex problem solving (CPS) test MicroDYN by investigating a) the relation between its dimensions--rule identification (exploration strategy), rule knowledge (acquired knowledge), rule application (control performance)--and working memory capacity (WMC), and b) whether CPS predicts school grades in…

  2. Criteria for assessing problem solving and decision making in complex environments

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    1993-01-01

    Training crews to cope with unanticipated problems in high-risk, high-stress environments requires models of effective problem solving and decision making. Existing decision theories use the criteria of logical consistency and mathematical optimality to evaluate decision quality. While these approaches are useful under some circumstances, the assumptions underlying these models frequently are not met in dynamic time-pressured operational environments. Also, applying formal decision models is both labor and time intensive, a luxury often lacking in operational environments. Alternate approaches and criteria are needed. Given that operational problem solving and decision making are embedded in ongoing tasks, evaluation criteria must address the relation between those activities and satisfaction of broader task goals. Effectiveness and efficiency become relevant for judging reasoning performance in operational environments. New questions must be addressed: What is the relation between the quality of decisions and overall performance by crews engaged in critical high risk tasks? Are different strategies most effective for different types of decisions? How can various decision types be characterized? A preliminary model of decision types found in air transport environments will be described along with a preliminary performance model based on an analysis of 30 flight crews. The performance analysis examined behaviors that distinguish more and less effective crews (based on performance errors). Implications for training and system design will be discussed.

  3. Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    PubMed Central

    Martín H., José Antonio

    2013-01-01

    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways. In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present if and only if it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to “efficiently” solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter . Nevertheless, here it is proved that the probability of requiring a value of to obtain a solution for a random graph decreases exponentially: , making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results. PMID:23349711

  4. Solving the three-body Coulomb breakup problem using exterior complex scaling

    SciTech Connect

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  5. Toward a Design Theory of Problem Solving.

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2000-01-01

    Proposes a metatheory of problem solving. Describes differences among problems in terms of their structured ness, domain specificity (abstractness), and complexity; describes individual differences that affect problem solving; and presents a typology of problems, each of which engages different cognitive, affective, and conative process and…

  6. Computer Problem-Solving Coaches

    NASA Astrophysics Data System (ADS)

    Hsu, Leon; Heller, Kenneth

    2005-09-01

    Computers might be able to play an important role in physics instruction by coaching students to develop good problem-solving skills. Building on previous research on student problem solving and on designing computer programs to teach cognitive skills, we are developing a prototype computer coach to provide students with guided practice in solving problems. In addition to helping students become better problem solvers, such programs can be useful in studying how students learn to solve problems and how and if problem-solving skills can be transferred from a computer to a pencil-and-paper environment.

  7. Problem Solving and Beginning Programming.

    ERIC Educational Resources Information Center

    McAllister, Alan

    Based on current models of problem solving within cognitive psychology, this study focused on the spontaneous problem solving strategies used by children as they first learned LOGO computer programming, and on strategy transformations that took place during the problem solving process. The research consisted of a six weeks programming training…

  8. Dynamic Modeling as a Cognitive Regulation Scaffold for Developing Complex Problem-Solving Skills in an Educational Massively Multiplayer Online Game Environment

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Ge, Xun; Ifenthaler, Dirk; Law, Victor

    2011-01-01

    Following a design-based research framework, this article reports two empirical studies with an educational MMOG, called "McLarin's Adventures," on facilitating 9th-grade students' complex problem-solving skill acquisition in interdisciplinary STEM education. The article discusses the nature of complex and ill-structured problem solving and,…

  9. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  10. Problem Solving Style, Creative Thinking, and Problem Solving Confidence

    ERIC Educational Resources Information Center

    Houtz, John C.; Selby, Edwin C.

    2009-01-01

    Forty-two undergraduate and graduate students completed VIEW: An Assessment of Problem Solving Style, the non-verbal Torrance Test Thinking Creatively with Pictures, and the Problem Solving Inventory (PSI). VIEW assesses individuals' orientation to change, manner of processing, and ways of deciding, while the Torrance test measures several…

  11. Parent Problem Solving: Analysis of Problem Solving in Parenthood Transition.

    ERIC Educational Resources Information Center

    Alpert, Judith L.; And Others

    The general purpose of this study was to explore the possibility of adapting the Means-Ends Problem-Solving procedure (MEPS) to the investigation of the individual's transition to parenthood. Specific purposes were to determine (1) the internal consistency of the Parent Problem-Solving Scale (PPSS), of its subclasses, and of a combined subscale;…

  12. The Problem with Word Problems: Solving Word Problems in Math Requires a Complex Web of Skills. But There's No Reason Why it Can't Be Fun

    ERIC Educational Resources Information Center

    Forsten, Char

    2004-01-01

    Children need to combine reading, thinking, and computational skills to solve math word problems. The author provides some strategies that principals can share with their teachers to help students become proficient and advanced problem-solvers. They include creating a conducive classroom environment, providing daily mental math activities, making…

  13. Training Preschool Children to Use Visual Imagining as a Problem-Solving Strategy for Complex Categorization Tasks

    ERIC Educational Resources Information Center

    Kisamore, April N.; Carr, James E.; LeBlanc, Linda A.

    2011-01-01

    It has been suggested that verbally sophisticated individuals engage in a series of precurrent behaviors (e.g., covert intraverbal behavior, grouping stimuli, visual imagining) to solve problems such as answering questions (Palmer, 1991; Skinner, 1953). We examined the effects of one problem solving strategy--visual imagining--on increasing…

  14. Individual versus Collaborative Problem Solving: Divergent Outcomes Depending on Task Complexity

    ERIC Educational Resources Information Center

    Sears, David A.; Reagin, James Michael

    2013-01-01

    Many studies have tested external supports for promoting productive collaboration, but relatively few have examined what features characterize naturally productive collaborative tasks. Two lines of research have come to distinct conclusions on the primary task feature associated with productive collaboration: demonstrability versus complexity.…

  15. Contextual Problem Solving Model Origination

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.

    2009-01-01

    Problem solving has become a central focus of instructional activity in technology education classrooms at all levels (Boser, 1993). Impact assessment considerations incorporating society, culture, and economics are factors that require high-level deliberation involving critical thinking and the implementation of problem solving strategy. The…

  16. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  17. Learning Impasses in Problem Solving

    NASA Technical Reports Server (NTRS)

    Hodgson, J. P. E.

    1992-01-01

    Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.

  18. Difficulties in Genetics Problem Solving.

    ERIC Educational Resources Information Center

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  19. Adolescent Problem-Solving Thinking

    ERIC Educational Resources Information Center

    Platt, Jerome J.; And Others

    1974-01-01

    The hypothesis that adolescent psychiatric patients would be deficient with respect to normal controls in their interpersonal problem-solving skills was tested by comparing the patient and control groups on seven tasks ref lecting different aspects of problem solving. (Author)

  20. Creative Thinking and Problem Solving.

    ERIC Educational Resources Information Center

    Lacy, Grace

    The booklet considers the nature of creativity in children and examines classroom implications. Among the topics addressed are the following: theories about creativity; research; developments in brain research; the creative process; creative problem solving; the Structure of Intellect Problem Solving (SIPS) model; a rationale for creativity in the…

  1. Schema and Problem-Solving.

    ERIC Educational Resources Information Center

    Callison, Daniel

    1998-01-01

    Presents a revised working definition of schema, lists four types of knowledge that individuals have (i.e., identification, elaboration, planning, and execution), and outlines issues in schema theory. The usefulness of schema in problem solving and information problem solving is discussed, and implications for teachers of information literacy are…

  2. Problem Solving vis Soap Bubbles

    ERIC Educational Resources Information Center

    Bader, William A.

    1975-01-01

    Describes the use of a scientific phenomenon related to the concept of surface tension as an intriguing vehicle to direct attention to useful problem solving techniques. The need for a definite building process in attempts to solve mathematical problems is stressed. (EB)

  3. Children Solve Problems.

    ERIC Educational Resources Information Center

    De Bono, Edward

    A group of children were presented with several tasks, including the invention of a sleep machine and a machine to weigh elephants. The tasks were chosen to involve the children in coping with problems of a distinct character. A study of the children's drawings and interpretations shows that children's thinking ability is not very different from…

  4. Solving A Corrosion Problem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

  5. An unstructured-grid software system for solving complex aerodynamic problems

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar; Parikh, Paresh

    1995-01-01

    A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.

  6. Irrelevance in Problem Solving

    NASA Technical Reports Server (NTRS)

    Levy, Alon Y.

    1992-01-01

    The notion of irrelevance underlies many different works in AI, such as detecting redundant facts, creating abstraction hierarchies and reformulation and modeling physical devices. However, in order to design problem solvers that exploit the notion of irrelevance, either by automatically detecting irrelevance or by being given knowledge about irrelevance, a formal treatment of the notion is required. In this paper we present a general framework for analyzing irrelevance. We discuss several properties of irrelevance and show how they vary in a space of definitions outlined by the framework. We show how irrelevance claims can be used to justify the creation of abstractions thereby suggesting a new view on the work on abstraction.

  7. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    NASA Astrophysics Data System (ADS)

    Zhang, Dongmei; Shen, Ji

    2015-10-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we conducted an interview study with 16 graduate students coming from a variety of disciplinary backgrounds. During the interviews, we asked participants to solve two interdisciplinary science problems on the topic of osmosis. We investigated participants' problem reasoning processes and probed in their attitudes toward general interdisciplinary approach and specific interdisciplinary problems. Through a careful inductive content analysis of their responses, we studied how disciplinary, cognitive, and affective factors influenced their interdisciplinary problems-solving. We found that participants' prior discipline-based science learning experiences had both positive and negative influences on their interdisciplinary problem-solving. These influences were embodied in their conceptualization of the interdisciplinary problems, the strategies they used to integrate different disciplinary knowledge, and the attitudes they had toward interdisciplinary approach in general and specific interdisciplinary problems. This study sheds light on interdisciplinary science education by revealing the complex relationship between disciplinary learning and interdisciplinary problem-solving.

  8. Supporting Problem Solving in PBL

    ERIC Educational Resources Information Center

    Jonassen, David

    2011-01-01

    Although the characteristics of PBL (problem focused, student centered, self-directed, etc.) are well known, the components of a problem-based learning environment (PBLE) and the cognitive scaffolds necessary to support learning to solve different kinds of problems with different learners is less clear. This paper identifies the different…

  9. Problem Solving with General Semantics.

    ERIC Educational Resources Information Center

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  10. Problem-Solving Errors of Educational Leaders.

    ERIC Educational Resources Information Center

    Hart, Ann W.; And Others

    Problem solving is one of the most important skills that new and developing professionals must learn. The process is complex, involving information scanning, problem identification, and feedback processes requiring synthesis, interim assessments, problem error recognition and rectification, and timely and appropriate conclusions. This study used…

  11. Making Visible the Complexities of Problem Solving: An Ethnographic Study of a General Chemistry Course in a Studio Learning Environment

    NASA Astrophysics Data System (ADS)

    Kalainoff, Melinda Zapata

    Studio classrooms, designed such that laboratory and lecture functions can occur in the same physical space, have been recognized as a promising contributing factor in promoting collaborative learning in the sciences (NRC, 2011). Moreover, in designing for instruction, a critical goal, especially in the sciences and engineering, is to foster an environment where students have opportunities for learning problem solving practices (NRC, 2012a). However, few studies show how this type of innovative learning environment shapes opportunities for learning in the sciences, which is critical to informing future curricular and instructional designs for these environments. Even fewer studies show how studio environments shape opportunities to develop problem solving practices specifically. In order to make visible how the learning environment promotes problem solving practices, this study explores problem solving phenomena in the daily life of an undergraduate General Chemistry studio class using an ethnographic perspective. By exploring problem solving as a sociocultural process, this study shows how the instructor and students co-construct opportunities for learning in whole class and small group interactional spaces afforded in this studio environment and how the differential demands on students in doing problems requires re-conceptualizing what it means to "apply a concept".

  12. Students' Problem Solving and Justification

    ERIC Educational Resources Information Center

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  13. Sex Differences in Problem Solving.

    ERIC Educational Resources Information Center

    Johnson, Edward S.

    1984-01-01

    Nine experiments were performed to verify and extend studies on sex differences in problem solving conducted in the 1950s by Sweeney, Carey, Milton, Nakamura, and Berry. A 20-item problem set was administered to over 1,000 college students. Results indicated a male advantage, averaging 35 percent, virtually identical with 1950s results. (Author/BS)

  14. Problem Solving through Paper Folding

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  15. Promote Problem-Solving Discourse

    ERIC Educational Resources Information Center

    Bostic, Jonathan; Jacobbe, Tim

    2010-01-01

    Fourteen fifth-grade students gather at the front of the classroom as their summer school instructor introduces Jonathan Bostic as the mathematics teacher for the week. Before examining any math problems, Bostic sits at eye level with the students and informs them that they will solve problems over the next four days by working individually as…

  16. Aging and skilled problem solving.

    PubMed

    Charness, N

    1981-03-01

    Information-processing models of problem solving too often are based on restrictive age ranges. On the other hand, gerontologists have investigated few problem-solving tasks and have rarely generated explicit models. As this article demonstrates, both fields can benefit by closer collaboration. One major issue in gerontology is whether aging is associated with irreversible decrement or developmental plasticity. If both processes occur, then an appropriate strategy for investigating aging is to equate age groups for molar problem-solving performance and search for differences in the underlying components. This strategy was adopted to examine the relation of age and skill to problem solving in chess. Chess players were selected to vary widely in age and skill such that these variables were uncorrelated. Problem-solving and memory tasks were administered. Skill level was the only significant predictor for accuracy in both a choose-a-move task and a speeded end-game evaluation task. Age (negatively) and skill (positively) jointly determined performance in an unexpected recall task. Efficient chunking in recall was positively related to skill, though negatively related to age. Recognition confidence, though not accuracy, was negatively related to age. Thus despite age-related declines in encoding and retrieval of information, older players match the problem-solving performance of equivalently skilled younger players. Apparently, they can search the problem space more efficiently, as evidenced by taking less time to select an equally good move. Models of chess skill that stress that role of encoding efficiency, as indexed by chunking in recall, need to be modified to account for performance over the life span.

  17. Problem? "No Problem!" Solving Technical Contradictions

    ERIC Educational Resources Information Center

    Kutz, K. Scott; Stefan, Victor

    2007-01-01

    TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…

  18. Environmental problem-solving: Psychosocial factors

    NASA Astrophysics Data System (ADS)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  19. Lesion mapping of social problem solving.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease.

  20. Lesion mapping of social problem solving

    PubMed Central

    Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.

    2014-01-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  1. Lesion mapping of social problem solving.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  2. The Management of Cognitive Load During Complex Cognitive Skill Acquisition by Means of Computer-Simulated Problem Solving

    ERIC Educational Resources Information Center

    Kester, Liesbeth; Kirschner, Paul A.; van Merrienboer, Jeroen J.G.

    2005-01-01

    This study compared the effects of two information presentation formats on learning to solve problems in electrical circuits. In one condition, the split-source format, information relating to procedural aspects of the functioning of an electrical circuit was not integrated in a circuit diagram, while information in the integrated format condition…

  3. Principles for Teaching Problem Solving. Technical Paper.

    ERIC Educational Resources Information Center

    Foshay, Rob; Kirkley, Jamie

    This Technical Paper focuses on principles for teaching problem solving. Part 1 addresses the need to teach problem solving. Part 2 defines problem solving skills, and describes: general problem solving models of the 1960s and 1970s, current problem solving models, declarative knowledge, mental models, expert versus novice knowledge, procedural…

  4. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.

  5. Gender and Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Duffy, Jim; Gunther, Georg; Walters, Lloyd

    1997-01-01

    Studied the relationship between gender and mathematical problem solving in 83 male and 76 female high achieving Canadian 12-year-olds. Gender differences were found on the Canadian Test of Basic Skills but not on the GAUSS assessment. Implications for the discussion of the origin of gender differences in mathematics are discussed. (SLD)

  6. Customer Service & Team Problem Solving.

    ERIC Educational Resources Information Center

    Martin, Sabrina Budasi

    This curriculum guide provides materials for a six-session, site-specific training course in customer service and team problem solving for the Claretian Medical Center. The course outline is followed the six lesson plans. Components of each lesson plan include a list of objectives, an outline of activities and discussion topics for the lesson,…

  7. Human Problem Solving in 2006

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt

    2007-01-01

    This paper presents a bibliography of a little more than 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Compendex databases. Only journal papers, books and dissertations are included. The topics include human development, education, neuroscience, research in applied…

  8. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.

  9. Teaching through Collaborative Problem Solving.

    ERIC Educational Resources Information Center

    Blandford, A. E.

    1994-01-01

    Discussion of a prototype intelligent education system called WOMBAT (Weighted Objectives Method by Arguing with the Tutor) focuses on dialogue and negotiation in collaborative problem solving. The results of a formative evaluation, in which the system was used by 10 subjects who commented on various aspects of the design, are presented. (Contains…

  10. Time Out for Problem Solving.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    Teachers in elementary schools, supervisors of instruction, and other educational practitioners are the primary audience for this publication. The paper presents philosophical, psychological, and practical reasons for including a problem-solving approach in elementary school instruction. It draws on the writings of John Dewey, Jean Piaget, James…

  11. The management of cognitive load during complex cognitive skill acquisition by means of computer-simulated problem solving.

    PubMed

    Kester, Liesbeth; Kirschner, Paul A; van Merriënboer, Jeroen J G

    2005-03-01

    This study compared the effects of two information presentation formats on learning to solve problems in electrical circuits. In one condition, the split-source format, information relating to procedural aspects of the functioning of an electrical circuit was not integrated in a circuit diagram, while information in the integrated format condition was integrated in the circuit diagram. It was hypothesized that learners in the integrated format would achieve better test results than the learners in the split-source format. Equivalent-test problem and transfer-test problem performance were studied. Transfertest scores confirmed the hypothesis, though no differences were found on the equivalent-test scores.

  12. Validation Study of a Method for Assessing Complex Ill-Structured Problem Solving by Using Causal Representations

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Ifenthaler, Dirk; Ge, Xun

    2013-01-01

    The important but little understood problem that motivated this study was the lack of research on valid assessment methods to determine progress in higher-order learning in situations involving complex and ill-structured problems. Without a valid assessment method, little progress can occur in instructional design research with regard to designing…

  13. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1973-01-01

    The TENEX computer system, the ARPA network, and computer language design technology was applied to support the complex system programs. By combining the pragmatic and theoretical aspects of robot development, an approach is created which is grounded in realism, but which also has at its disposal the power that comes from looking at complex problems from an abstract analytical point of view.

  14. Anticipating Student Responses to Improve Problem Solving

    ERIC Educational Resources Information Center

    Wallace, Ann H.

    2007-01-01

    This article illustrates how problem solving can be enhanced through careful planning and problem presentation. Often, students shut down or are turned off when presented with a problem to solve. The author describes how to motivate students to embrace a problem to be solved and provides helpful prompts to further the problem-solving process.…

  15. The ESPAT tool: a general-purpose DSS shell for solving stochastic optimization problems in complex river-aquifer systems

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Tilmant, Amaury

    2015-04-01

    Stochastic programming methods are better suited to deal with the inherent uncertainty of inflow time series in water resource management. However, one of the most important hurdles in their use in practical implementations is the lack of generalized Decision Support System (DSS) shells, usually based on a deterministic approach. The purpose of this contribution is to present a general-purpose DSS shell, named Explicit Stochastic Programming Advanced Tool (ESPAT), able to build and solve stochastic programming problems for most water resource systems. It implements a hydro-economic approach, optimizing the total system benefits as the sum of the benefits obtained by each user. It has been coded using GAMS, and implements a Microsoft Excel interface with a GAMS-Excel link that allows the user to introduce the required data and recover the results. Therefore, no GAMS skills are required to run the program. The tool is divided into four modules according to its capabilities: 1) the ESPATR module, which performs stochastic optimization procedures in surface water systems using a Stochastic Dual Dynamic Programming (SDDP) approach; 2) the ESPAT_RA module, which optimizes coupled surface-groundwater systems using a modified SDDP approach; 3) the ESPAT_SDP module, capable of performing stochastic optimization procedures in small-size surface systems using a standard SDP approach; and 4) the ESPAT_DET module, which implements a deterministic programming procedure using non-linear programming, able to solve deterministic optimization problems in complex surface-groundwater river basins. The case study of the Mijares river basin (Spain) is used to illustrate the method. It consists in two reservoirs in series, one aquifer and four agricultural demand sites currently managed using historical (XIV century) rights, which give priority to the most traditional irrigation district over the XX century agricultural developments. Its size makes it possible to use either the SDP or

  16. The Computer-Based Assessment of Complex Problem Solving and How It Is Influenced by Students' Information and Communication Technology Literacy

    ERIC Educational Resources Information Center

    Greiff, Samuel; Kretzschmar, André; Müller, Jonas C.; Spinath, Birgit; Martin, Romain

    2014-01-01

    The 21st-century work environment places strong emphasis on nonroutine transversal skills. In an educational context, complex problem solving (CPS) is generally considered an important transversal skill that includes knowledge acquisition and its application in new and interactive situations. The dynamic and interactive nature of CPS requires a…

  17. How Instructional Designers Solve Workplace Problems

    ERIC Educational Resources Information Center

    Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.

    2013-01-01

    This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…

  18. Instruction Emphasizing Effort Improves Physics Problem Solving

    ERIC Educational Resources Information Center

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  19. Promoting Experimental Problem-Solving Ability in Sixth-Grade Students through Problem-Oriented Teaching of Ecology: Findings of an Intervention Study in a Complex Domain

    ERIC Educational Resources Information Center

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-01-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…

  20. Journey toward Teaching Mathematics through Problem Solving

    ERIC Educational Resources Information Center

    Sakshaug, Lynae E.; Wohlhuter, Kay A.

    2010-01-01

    Teaching mathematics through problem solving is a challenge for teachers who learned mathematics by doing exercises. How do teachers develop their own problem solving abilities as well as their abilities to teach mathematics through problem solving? A group of teachers began the journey of learning to teach through problem solving while taking a…

  1. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving

  2. Does Visualization Enhance Complex Problem Solving? The Effect of Causal Mapping on Performance in the Computer-Based Microworld Tailorshop

    ERIC Educational Resources Information Center

    Öllinger, Michael; Hammon, Stephanie; von Grundherr, Michael; Funke, Joachim

    2015-01-01

    Causal mapping is often recognized as a technique to support strategic decisions and actions in complex problem situations. Such drawing of causal structures is supposed to particularly foster the understanding of the interaction of the various system elements and to further encourage holistic thinking. It builds on the idea that humans make use…

  3. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2016-07-12

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  4. Structured problem solving for materiel managers.

    PubMed

    Samelson, Q B

    1998-05-01

    A structured approach to problem solving and solution documentation is one of the keys to continuous improvement. Without it, it is quite possible to solve the wrong problem, to solve the right problem in the wrong way, or (maybe worst of all) to solve the same problem over and over again. Companies that have figured out how to solve the right problems in the right way, once and for all, will ultimately move forward much faster than their competitors.

  5. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  6. Theoretical and Philosophical Perspectives to Problem Solving.

    ERIC Educational Resources Information Center

    Sherman, Thomas M.; And Others

    1988-01-01

    Five articles explore various theoretical aspects of problems and problem solving skills. Highlights include strategies to learn problem solving skills; knowledge structures; metacognition; behavioral processes and cognitive psychology; erotetic logic; creativity as an aspect of computer problem solving; and programing as a problem-solving…

  7. Problem solving stages in the five square problem

    PubMed Central

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794

  8. Problem solving stages in the five square problem.

    PubMed

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  9. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  10. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and applying…

  11. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    pioneering LA solutions to this problem, unequivocally demonstrates that LA can play an important role in solving complex combinatorial and integer optimization problems. PMID:19884057

  12. Community-powered problem solving.

    PubMed

    Gouillart, Francis; Billings, Douglas

    2013-04-01

    Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.

  13. Community-powered problem solving.

    PubMed

    Gouillart, Francis; Billings, Douglas

    2013-04-01

    Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections. PMID:23593769

  14. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  15. Problem Solving in the General Mathematics Classroom

    ERIC Educational Resources Information Center

    Troutman, Andria Price; Lichtenberg, Betty Plunkett

    1974-01-01

    Five steps common to different problem solving models are listed. Next, seven specific abilities related to solving problems are discussed and examples given. Sample activities, appropriate to help in developing these specific abilities, are suggested. (LS)

  16. The Important Thing about Teaching Problem Solving

    ERIC Educational Resources Information Center

    Roberts, Sally K.

    2010-01-01

    The author teaches a content course in problem solving for middle school teachers. During the course, teacher candidates have the opportunity to confront their insecurities as they actively engage in solving math problems using a variety of strategies. As the semester progresses, they add new strategies to their problem-solving arsenal and…

  17. Developing Creativity through Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Albert, Lillie R.; Kim, Rina

    2013-01-01

    This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

  18. Problem Solving Appraisal of Delinquent Adolescents.

    ERIC Educational Resources Information Center

    Perez, Ruperto M.; And Others

    The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…

  19. Perspectives on Problem Solving and Instruction

    ERIC Educational Resources Information Center

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  20. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  1. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  2. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  3. Models of Problem Solving Processes and Abilities.

    ERIC Educational Resources Information Center

    Feldhusen, John F.; Guthrie, Virginia A.

    1979-01-01

    This paper reviews current models of problem solving to identify results relevant to teachers or instructional developers. Four areas are covered: information processing models, approaches stressing human abilities and factors, creative problem solving models, and other aspects of problem solving. Part of a theme issue on intelligence. (Author/SJL)

  4. Fibonacci's Triangle: A Vehicle for Problem Solving.

    ERIC Educational Resources Information Center

    Ouellette, Hugh

    1979-01-01

    A method for solving certain types of problems is illustrated by problems related to Fibonacci's triangle. The method involves pattern recognition, generalizing, algebraic manipulation, and mathematical induction. (MP)

  5. Optimal Planning and Problem-Solving

    NASA Technical Reports Server (NTRS)

    Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

    2008-01-01

    CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

  6. Solving radar detection problems using simulation

    NASA Astrophysics Data System (ADS)

    Curtis Schleher, D.

    1995-04-01

    Simulation is a well-known but often misunderstood method for predicting the detection range of radars. Recent advances in computer software and hardware have made simulation easier to apply and use. Users are putting increased reliance on computer simulation in lieu of more expensive test and evaluation. In this paper, a simulation example is given of a complex radar detection problem which is not solvable using conventional procedures. It is shown how this problem is easily solved using a MATLAB simulation on a personal computer (PC).

  7. Optimization neural network for solving flow problems.

    PubMed

    Perfetti, R

    1995-01-01

    This paper describes a neural network for solving flow problems, which are of interest in many areas of application as in fuel, hydro, and electric power scheduling. The neural network consist of two layers: a hidden layer and an output layer. The hidden units correspond to the nodes of the flow graph. The output units represent the branch variables. The network has a linear order of complexity, it is easily programmable, and it is suited for analog very large scale integration (VLSI) realization. The functionality of the proposed network is illustrated by a simulation example concerning the maximal flow problem. PMID:18263420

  8. Promoting Experimental Problem-solving Ability in Sixth-grade Students Through Problem-oriented Teaching of Ecology: Findings of an intervention study in a complex domain

    NASA Astrophysics Data System (ADS)

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-03-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of experimental problem-solving ability better than conventional lessons in science. We used a paper-and-pencil test to assess students' abilities in a quasi-experimental intervention study utilizing a pretest/posttest control-group design (N = 340; average performing sixth-grade students). The treatment group received lessons on forest ecosystems consistent with the principle of education for sustainable development. This learning environment was expected to help students enhance their ecological knowledge and their theoretical and methodological experimental competencies. Two control groups received either the teachers' usual lessons on forest ecosystems or non-specific lessons on other science topics. We found that the treatment promoted specific components of experimental problem-solving ability (generating epistemic questions, planning two-factorial experiments, and identifying correct experimental controls). However, the observed effects were small, and awareness for aspects of higher ecological experimental validity was not promoted by the treatment.

  9. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  10. Strengthening Programs through Problem Solving.

    ERIC Educational Resources Information Center

    Dyer, Jim

    1993-01-01

    Describes a secondary agricultural education program that was a dumping ground for academically disadvantaged students. Discusses how such a program can be improved by identifying problems and symptoms, treating problems, and goal setting. (JOW)

  11. Analyzing and Solving Productivity Problems.

    ERIC Educational Resources Information Center

    Walsh, David S.; Johnson, Thomas J.

    1980-01-01

    The authors discuss ways to define a company's position on productivity, and explain productivity concepts. They describe a problem cause/solution set matrix with which to identify accurately the most probable cause of productivity problems. (SK)

  12. Distributed problem solving by pilots and dispatchers

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Wich, Mike; Fischer, Ute; Jobe, Kim; Mccoy, Elaine; Beatty, Roger; Smith, Phil

    1993-01-01

    The study addressed the following question: Are flight planning problems solved differently by PILOTS and DISPATCHERS when they work alone versus when they work together? Aspect of their performance that were of interest include the following: Problem perception and definition; Problem solving strategies and information use; Options considered; Solution and rational; and errors.

  13. New Perspectives on Human Problem Solving

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Pizlo, Zygmunt

    2009-01-01

    In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…

  14. General Description of Human Problem Solving.

    ERIC Educational Resources Information Center

    Klein, Gary A.; Weitzenfeld, Julian

    A theoretical model relating problem identification to problem solving is presented. The main purpose of the study is to increase understanding of decision making among Air Force educators. The problem-solving process is defined as the generation and evaluation of alternatives that will accomplish what is needed and the reidentification of what is…

  15. Teaching Effective Problem Solving Strategies for Interns

    ERIC Educational Resources Information Center

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  16. Learning to Solve Problems in Primary Grades

    ERIC Educational Resources Information Center

    Whitin, Phyllis; Whitin, David J.

    2008-01-01

    Problem solving lies at the heart of mathematical learning. Children need opportunities to write, discuss, and solve problems on a regular basis. The problems must incorporate grade-appropriate content and be "accessible and engaging to the students, building on what they know and can do." Teachers also play a key role in establishing a classroom…

  17. Common Core: Solve Math Problems

    ERIC Educational Resources Information Center

    Strom, Erich

    2012-01-01

    The new common core standards for mathematics demand that students (and teachers!) exhibit deeper conceptual understanding. That's music to the ears of education professor John Tapper, who says teachers have overemphasized teaching procedures--and getting right answers. In his new book, "Solving for Why," he makes a powerful case for moving beyond…

  18. Problem-Solving Test: Pyrosequencing

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2013-01-01

    Terms to be familiar with before you start to solve the test: Maxam-Gilbert sequencing, Sanger sequencing, gel electrophoresis, DNA synthesis reaction, polymerase chain reaction, template, primer, DNA polymerase, deoxyribonucleoside triphosphates, orthophosphate, pyrophosphate, nucleoside monophosphates, luminescence, acid anhydride bond,…

  19. Problem Solving Skills for Children.

    ERIC Educational Resources Information Center

    Youngs, Bettie B.

    This guide was written for children, to help them handle problems they might encounter, learn about other children and how they have handled similar problems, and learn what to do when things go wrong or when they feel misunderstood. In the introduction, children are assured that, even when they have problems, they can be happy again. The body of…

  20. Modal preferences in creative problem solving.

    PubMed

    Deininger, Gina; Loudon, Gareth; Norman, Stefanie

    2012-08-01

    Embodied cognitive science appeals to the idea that cognition depends on the body as well as on the brain. This study looks at whether we are more likely to engage just the brain or enlist the body for complex cognitive functioning such as creative problem solving. Participants were presented with a puzzle based on De Bono's lateral thinking puzzles. The puzzle consisted of rotating and joining two-dimensional shapes to make a three-dimensional one. In one condition, participants were given the choice of either solving the puzzle mentally or through manipulation of the images on a computer screen. In another condition, the subjects had to solve the puzzle first mentally and then report which mode they would have preferred to solve the puzzle. Two more conditions were applied with slight variations. In all conditions, an overwhelming majority of participants chose to solve the puzzle by manipulation, even though there was not a significant increase on performance. It appeared that participants were making a conscious choice for the body to play a feedback-driven role in creative cognitive processing. This strong preference for manual manipulation over just mental representation, regardless of the impact on performance, would seem to suggest that it is our natural tendency to involve the body in complex cognitive functioning. This would support the theory that cognition may be more than just a neural process, and that it is a dynamic interplay between body, brain and world. The experiential feedback of the body moving through space and time may be an inherently important factor in creative cognition.

  1. Mobile serious games for collaborative problem solving.

    PubMed

    Sanchez, Jaime; Mendoza, Claudia; Salinas, Alvaro

    2009-01-01

    This paper presents the results obtained from the implementation of a series of learning activities based on mobile serious games (MSG) for the development of problem-solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students, who had to solve the problems posed by the game collaboratively. The data shows that the experimental group had a higher perception of their own skills of collaboration and of the plan execution dimension of problem solving than the control group, providing empirical evidence regarding the contribution of MSGs to the development of collaborative problem-solving skills.

  2. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  3. Solving optimization problems on computational grids.

    SciTech Connect

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms have become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software

  4. Pen Pals: Practicing Problem Solving

    ERIC Educational Resources Information Center

    Lampe, Kristen A.; Uselmann, Linda

    2008-01-01

    This article describes a semester-long pen-pal project in which preservice teachers composed mathematical problems and the middle school students worked for solutions. The college students assessed the solution and the middle school students provided feedback regarding the problem itself. (Contains 6 figures.)

  5. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    PubMed

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings. PMID:23366983

  6. High School Students' Use of Meiosis When Solving Genetics Problems.

    ERIC Educational Resources Information Center

    Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy

    2001-01-01

    Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

  7. Toward Group Problem Solving Guidelines for 21st Century Teams

    ERIC Educational Resources Information Center

    Ranieri, Kathryn L.

    2004-01-01

    Effective problem-solving skills are critical in dealing with ambiguous and often complex issues in the present-day leaner and globally diverse organizations. Yet respected, well-established problem-solving models may be misaligned within the current work environment, particularly within a team context. Models learned from a more bureaucratic,…

  8. Neural Network Solves "Traveling-Salesman" Problem

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P.; Moopenn, Alexander W.

    1990-01-01

    Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.

  9. Solving global optimization problems on GPU cluster

    NASA Astrophysics Data System (ADS)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya

    2016-06-01

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  10. Could HPS Improve Problem-Solving?

    ERIC Educational Resources Information Center

    Coelho, Ricardo Lopes

    2013-01-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…

  11. Solving Problems in Genetics II: Conceptual Restructuring

    ERIC Educational Resources Information Center

    Orcajo, Teresa Ibanez; Aznar, Mercedes Martinez

    2005-01-01

    This paper presents the results of part of an investigation carried out with fourth-level Spanish secondary education students (15 years old), in which we implemented a teaching unit based on problem-solving methodology as an investigation to teach genetics and human inheritance curricular contents. By solving open problems, the students…

  12. Measuring Problem Solving Skills in "Portal 2"

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  13. Problem Solving and Technology. ACESIA Monograph 2.

    ERIC Educational Resources Information Center

    Lomon, Earle L.; And Others

    1977-01-01

    The two articles dealing with problem solving and technology in this publication should be useful to those developing the kinds of materials, experiences, and thinking that elementary school industrial arts offers children. The first article accepts problem solving as an educational goal and reports a timely and universally acceptable approach.…

  14. Mathematical Problem Solving through Sequential Process Analysis

    ERIC Educational Resources Information Center

    Codina, A.; Cañadas, M. C.; Castro, E.

    2015-01-01

    Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…

  15. Problem Solving Software for Math Classes.

    ERIC Educational Resources Information Center

    Troutner, Joanne

    1987-01-01

    Described are 10 computer software programs for problem solving related to mathematics. Programs described are: (1) Box Solves Story Problems; (2) Safari Search; (3) Puzzle Tanks; (4) The King's Rule; (5) The Factory; (6) The Royal Rules; (7) The Enchanted Forest; (8) Gears; (9) The Super Factory; and (10) Creativity Unlimited. (RH)

  16. Student Modeling Based on Problem Solving Times

    ERIC Educational Resources Information Center

    Pelánek, Radek; Jarušek, Petr

    2015-01-01

    Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…

  17. Children Solving Problems. The Developing Child Series.

    ERIC Educational Resources Information Center

    Thornton, Stephanie

    The developmental increase in the ability to solve problems is a puzzle. Does it come from basic changes in mental skills, or is it a matter of practice? This book from the Developing Child series synthesizes recent research examining children's problem-solving skills development. Chapter 1 presents the major themes: (1) there is increasing…

  18. Problem Solving Interactions on Electronic Networks.

    ERIC Educational Resources Information Center

    Waugh, Michael; And Others

    Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…

  19. Taking "From Scratch" out of Problem Solving

    ERIC Educational Resources Information Center

    Brown, Wayne

    2007-01-01

    Solving problems and creating processes and procedures from the ground up has long been part of the IT department's way of operating. IT staffs will continue to encounter new problems to solve and new technologies to be implemented. They also must involve their constituents in the creation of solutions. Nonetheless, for many issues they no longer…

  20. Dynamic Problem Solving: A New Assessment Perspective

    ERIC Educational Resources Information Center

    Greiff, Samuel; Wustenberg, Sascha; Funke, Joachim

    2012-01-01

    This article addresses two unsolved measurement issues in dynamic problem solving (DPS) research: (a) unsystematic construction of DPS tests making a comparison of results obtained in different studies difficult and (b) use of time-intensive single tasks leading to severe reliability problems. To solve these issues, the MicroDYN approach is…

  1. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  2. Teaching and Learning through Problem Solving

    ERIC Educational Resources Information Center

    Ollerton, Mike

    2007-01-01

    In this article, the author relates some problem solving work with primary schools to Department for Children, Schools, and Families (DfES) support. In four primary schools in the West Midlands, the focus was teaching mathematics through problem solving, based on materials published on the DfES "standards" website. The author noticed the way…

  3. Developing Legal Problem-Solving Skills.

    ERIC Educational Resources Information Center

    Nathanson, Stephen

    1994-01-01

    A law professor explains how he came to view legal problem solving as the driving concept in law school curriculum design and draws on personal experience and a survey of students concerning teaching methods in a commercial law course. He outlines six curriculum design principles for teaching legal problem solving. (MSE)

  4. Metacognition: Student Reflections on Problem Solving

    ERIC Educational Resources Information Center

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  5. Conceptual Problem Solving in High School Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  6. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  7. Solving the wrong hierarchy problem

    NASA Astrophysics Data System (ADS)

    Blinov, Nikita; Hook, Anson

    2016-06-01

    Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z_2 -symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z_2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs mass by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. We show this mechanism postdicts the top Yukawa to be within 1 σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.

  8. Solving the wrong hierarchy problem

    DOE PAGESBeta

    Blinov, Nikita; Hook, Anson

    2016-06-29

    Many theories require augmenting the Standard Model with additional scalar fields with large order one couplings. We present a new solution to the hierarchy problem for these scalar fields. We explore parity- and Z2-symmetric theories where the Standard Model Higgs potential has two vacua. The parity or Z2 copy of the Higgs lives in the minimum far from the origin while our Higgs occupies the minimum near the origin of the potential. This approach results in a theory with multiple light scalar fields but with only a single hierarchy problem, since the bare mass is tied to the Higgs massmore » by a discrete symmetry. The new scalar does not have a new hierarchy problem associated with it because its expectation value and mass are generated by dimensional transmutation of the scalar quartic coupling. The location of the second Higgs minimum is not a free parameter, but is rather a function of the matter content of the theory. As a result, these theories are extremely predictive. We develop this idea in the context of a solution to the strong CP problem. Lastly, we show this mechanism postdicts the top Yukawa to be within 1σ of the currently measured value and predicts scalar color octets with masses in the range 9-200 TeV.« less

  9. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  10. A longitudinal study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence

    PubMed Central

    Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H.

    2015-01-01

    Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students’ CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence. PMID:26283992

  11. A longitudinal study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence.

    PubMed

    Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H

    2015-01-01

    Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students' CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence.

  12. Teaching Clinical Problem Solving in a Preclinical Operative Dentistry Course.

    ERIC Educational Resources Information Center

    Silvestri, Anthony R., Jr.; Cohen, Steven N.

    1981-01-01

    A method developed at Tufts University School of Dental Medicine for teaching modification of cavity design to large numbers of preclinical students in operative dentistry is reported. It standardizes the learning process for this complex problem-solving skill. (MLW)

  13. Modelling to solve odour problems.

    PubMed

    Childs, P S; Dunn, A J

    2001-01-01

    The use of dispersion modelling is a powerful tool to establish levels of treatment required to remove odour complaints. Odour is an extremely sensitive issue and is key to the public perception of wastewater environmental protection. This paper describes a case study of the successful resolution of long-standing odour problems at the East Worthing Wastewater Treatment Works (WTW), on the South Coast of England, utilising modelling and appropriate treatment technologies. A number of odour surveys have been conducted on the site to identify the major sources on the works, which were found to be the sludge press house and the primary settlement tanks, situated only 10 metres from the nearest properties. As a result attempts to resolve the odour problem have been made including the covering of identified sources, treating extract using activated carbon filters and installing perfume sprays. During the site development all sources were contained and ventilated to a 60,000 m3/hr Jones & Attwood ODORGARD unit. Its requirement was to ensure that no receptor was exposed to a concentration in excess of 4 ouEm3 (Odour units), in accordance with the odour planning condition. Dispersal modelling was performed to determine the maximum permissible outlet concentration. The results of the modelling exercise established that emissions from the odour control plant should not exceed 675 ouEm3 to ensure that the receptor standard was attained. An optimisation programme was conducted to ensure that the unit was providing the optimum level of treatment prior to taking the olfactometry samples. Following the plant's optimisation the results of the olfactometry analysis confirmed that the discharge levels were below the required 670 ouEm3. Since completion of the sludge treatment centre scheme there have been no registered odour complaints directed at the East Worthing WTW, and the local air quality has been greatly improved for the residents surrounding the works.

  14. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  15. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  16. The relationship between students' problem solving frames and epistemological beliefs

    NASA Astrophysics Data System (ADS)

    Wampler, Wendi N.

    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. Matter and Interactions [M&I] is a curriculum that focuses on a restructuring of physics content knowledge and emphasizes a systematic approach to problem solving, called modeling, which involves the application physical principles to carefully defined systems of objects and interactions (Chabay and Sherwood, 2007a). Because the M&I approach to problem solving is different from many students' previous physics experience, efforts need to be made to attend to their epistemological beliefs and expectations about not only learning physics content knowledge, but problem solving as well. If a student frames solving physics problems as a `plug and chug' type activity, then they are going continue practicing this strategy. Thus, it is important to address students' epistemological beliefs and monitor how they frame the activity of problem solving within the M&I course. This study aims to investigate how students frame problem solving within the context of a large scale implementation of the M&I curriculum, and how, if at all, those frames shift through the semester. By investigating how students frame the act of problem solving in the M&I context, I was able to examine the connection between student beliefs and expectations about problem solving in physics and the skills and strategies used while solving problems in class. To accomplish these goals, I recruited student volunteers from Purdue's introductory, calculus-based physics course and assessed their problem solving approach and espoused epistemological beliefs over the course of a semester. I obtained data through video recordings of the students engaged in small group problem solving during recitation activities

  17. Styles of problem solving in suicidal individuals.

    PubMed

    Orbach, I; Bar-Joseph, H; Dror, N

    1990-01-01

    This study compared qualitative aspects of problem solving among suicide attempters, suicide ideators, and nonsuicidal patients. The subjects completed a suicidal intent scale and a problem-solving task involving three dilemmas. Problem solving was analyzed along eight qualitative categories: versatility of the various solutions, reliance on self versus others, activity versus passivity, confrontation versus avoidance, relevance of the solution to the problem, positive versus negative affect, reference to the future, and extremity of the solution. The statistical analysis yielded differences among the three groups. In general, the solutions of suicidal patients showed less versatility, more avoidance, less relevance, more negative affect, and less reference to the future than the solutions of the nonsuicidal patients. The suicide attempters and nonsuicidal patients offered more active solutions than did the suicide ideators. Our findings emphasize the importance of general coping styles, as well as energetic/motivational aspects and affective aspects of the problem-solving process. Some applications to therapy are discussed.

  18. Could HPS Improve Problem-Solving?

    NASA Astrophysics Data System (ADS)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  19. Problem Solving through an Optimization Problem in Geometry

    ERIC Educational Resources Information Center

    Poon, Kin Keung; Wong, Hang-Chi

    2011-01-01

    This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…

  20. Solving Problems with the Percentage Bar

    ERIC Educational Resources Information Center

    van Galen, Frans; van Eerde, Dolly

    2013-01-01

    At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

  1. Task Variables in Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Goldin, Gerald A., Ed.; McClintock, C. Edwin, Ed.

    A framework for research in problem solving is provided by categorizing and defining variables describing problem tasks. A model is presented in an article by Kulm for the classification of task variables into broad categories. The model attempts to draw realtionships between these categories of task variables and the stages of problem solving…

  2. Problem Solving: Can Anybody Do It?

    ERIC Educational Resources Information Center

    Bennett, Stuart W.

    2008-01-01

    This paper examines the definition of a problem and at the process of problem solving. An analysis of a number of first and third year chemistry examination papers from English universities revealed that over ninety per cent of the "problems" fell into the "algorithm" category. Using Bloom's taxonomy and the same examination papers, we found that…

  3. Problem-Solving with the Computer.

    ERIC Educational Resources Information Center

    Sage, Edwin R.

    Intended to be used in conjunction with a traditional curriculum, this book demonstrates the use of the computer, especially the on-line, interactive type of computer, to solve a variety of problems studied in secondary school mathematics. Each chapter presents several problems, and each problem introduces one or two concepts that must be…

  4. Collaborative Problem Solving in Shared Space

    ERIC Educational Resources Information Center

    Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk

    2015-01-01

    The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…

  5. Word Problem Solving with the Apple II.

    ERIC Educational Resources Information Center

    Ignatz, Mila E.

    The aim of this project was to develop computer programs that will provide training in the use of a strategy for solving word problems in everyday mathematics. The strategy includes (1) classifying the problem by type, according to problem characteristics such as symbols, diagrams, relevant formulas, and arithmetic operations; (2) identifying the…

  6. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  7. Photoreactors for Solving Problems of Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Sokolova, I. V.

    2015-04-01

    Designs and physical aspects of photoreactors, their capabilities for a study of kinetics and mechanisms of processes proceeding under illumination with light, as well as application of photoreactors for solving various applied problem are discussed.

  8. Teaching: The Problem-Solving Approach.

    ERIC Educational Resources Information Center

    Amonashvili, Shalva

    1979-01-01

    Describes experiments in the Soviet Union intended to develop scholastic activities which encourage young children to develop their motivation for cognitive learning. All experiments were based on the problem-solving approach. (DB)

  9. Research: A Five Faceted Problem Solving Process.

    ERIC Educational Resources Information Center

    Gephart, William J.

    1980-01-01

    Five concepts are discussed in order to explain that research is a multifacted problem-solving process: (1) analysis of a concept, its context, and data analysis; (2) treatment or experience; (3) representativeness; (4) measurement, and (5) logic. (GDC)

  10. An Alternate Path To Stoichiometric Problem Solving.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen

    1997-01-01

    Discusses an alternate path to teaching introductory stoichiometry based on research findings. The recommendation is to use problems that can be solved easily by rapid mental calculation as well as by pure logic. (AIM)

  11. Physics: Quantum problems solved through games

    NASA Astrophysics Data System (ADS)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  12. Problem-solving test: Tryptophan operon mutants.

    PubMed

    Szeberényi, József

    2010-09-01

    Terms to be familiar with before you start to solve the test: tryptophan, operon, operator, repressor, inducer, corepressor, promoter, RNA polymerase, chromosome-polysome complex, regulatory gene, cis-acting element, trans-acting element, plasmid, transformation. PMID:21567855

  13. Arithmetic Word-Problem-Solving in Huntington's Disease

    ERIC Educational Resources Information Center

    Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.

    2005-01-01

    The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…

  14. Innovative problem solving by wild spotted hyenas.

    PubMed

    Benson-Amram, Sarah; Holekamp, Kay E

    2012-10-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  15. Innovative problem solving by wild spotted hyenas.

    PubMed

    Benson-Amram, Sarah; Holekamp, Kay E

    2012-10-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals.

  16. Innovative problem solving by wild spotted hyenas

    PubMed Central

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  17. Assessment of Problem-Solving Ability

    ERIC Educational Resources Information Center

    Marshall, J.

    1977-01-01

    Problem-solving ability has been assessed within the Royal Australian College of General Practitioners through the use of patient management problems (PMPs) in both medical and surgical areas. It is shown that the highest marks in PMPs are being achieved by students who arrive at the correct diagnosis without accumulating excessive information and…

  18. Solving Geometry Problems via Mechanical Principles

    ERIC Educational Resources Information Center

    Man, Yiu Kwong

    2004-01-01

    The application of physical principles in solving mathematics problems have often been neglected in the teaching of physics or mathematics, especially at the secondary school level. This paper discusses how to apply the mechanical principles to geometry problems via concrete examples, which aims at providing insight and inspirations to physics or…

  19. Pose and Solve Varignon Converse Problems

    ERIC Educational Resources Information Center

    Contreras, José N.

    2014-01-01

    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  20. Using CAS to Solve Classical Mathematics Problems

    ERIC Educational Resources Information Center

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  1. Problem-Solving: Scaling the "Brick Wall"

    ERIC Educational Resources Information Center

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  2. Reinventing the Wheel: Design and Problem Solving

    ERIC Educational Resources Information Center

    Blasetti, Sean M.

    2010-01-01

    This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…

  3. GIS Live and Web Problem Solving

    ERIC Educational Resources Information Center

    Hagevik, R.; Hales, D.; Harrell, J.

    2007-01-01

    GIS Live is a live, interactive, web problem-solving (WPS) program that partners Geographic Information Systems (GIS) professionals with educators to implement geospatial technologies as curriculum-learning tools. It is a collaborative effort of many government agencies, educational institutions, and professional organizations. Problem-based…

  4. Personality, Problem Solving, and Adolescent Substance Use

    ERIC Educational Resources Information Center

    Jaffee, William B.; D'Zurilla, Thomas J.

    2009-01-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving…

  5. The Functional Equivalence of Problem Solving Skills

    ERIC Educational Resources Information Center

    Simon, Herbert A.

    1975-01-01

    This analysis of solutions to the Tower of Hanoi Problem underscores the importance of subject-by-subject analysis of "What is learned" in understanding human behavior in problem-solving situations, and provides a technique for describing subjects' task performance programs in detail. (Author/BJG)

  6. Problem-Solving Exercises and Evolution Teaching

    ERIC Educational Resources Information Center

    Angseesing, J. P. A.

    1978-01-01

    It is suggested that the work of Kammerer provides suitable material, in the form of case studies on which to base discussions of Lamarckism versus Darwinism. A set of structured problems is described as an example of possible problem-solving exercises, and further experiments to extend Kammerer's work are outlined. (Author/MA)

  7. Spatial Visualization in Physics Problem Solving

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary

    2007-01-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…

  8. Model Formulation for Physics Problem Solving. Draft.

    ERIC Educational Resources Information Center

    Novak, Gordon S., Jr.

    The major task in solving a physics problem is to construct an appropriate model of the problem in terms of physical principles. The functions performed by such a model, the information which needs to be represented, and the knowledge used in selecting and instantiating an appropriate model are discussed. An example of a model for a mechanics…

  9. Problem solving and decisionmaking: An integration

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    An attempt was made to redress a critical fault of decisionmaking and problem solving research-a lack of a standard method to classify problem or decision states or conditions. A basic model was identified and expanded to indicate a possible taxonomy of conditions which may be used in reviewing previous research or for systematically pursuing new research designs. A generalization of the basic conditions was then made to indicate that the conditions are essentially the same for both concepts, problem solving and decisionmaking.

  10. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  11. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  12. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  13. Internet computer coaches for introductory physics problem solving

    NASA Astrophysics Data System (ADS)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  14. Why students still can't solve physics problems after solving over 2000 problems

    NASA Astrophysics Data System (ADS)

    Byun, Taejin; Lee, Gyoungho

    2014-09-01

    This study investigates the belief that solving a large number of physics problems helps students better learn physics. We investigated the number of problems solved, student confidence in solving these problems, academic achievement, and the level of conceptual understanding of 49 science high school students enrolled in upper-level physics classes from Spring 2010 to Summer 2011. The participants solved an average of 2200 physics problems before entering high school. Despite having solved so many problems, no statistically significant correlation was found between the number of problems solved and academic achievement on either a mid-term or physics competition examination. In addition, no significant correlation was found between the number of physics problems solved and performance on the Force Concept Inventory (FCI). Lastly, four students were selected from the 49 participants with varying levels of experience and FCI scores for a case study. We determined that their problem solving and learning strategies was more influential in their success than the number of problems they had solved.

  15. AI tools in computer based problem solving

    NASA Technical Reports Server (NTRS)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  16. Problem solving in a distributed environment

    NASA Technical Reports Server (NTRS)

    Rashid, R. F.

    1980-01-01

    Distributed problem solving is anayzed as a blend of two disciplines: (1) problem solving and ai; and (2) distributed systems (monitoring). It may be necessary to distribute because the application itself is one of managing distributed resources (e.g., distributed sensor net) and communication delays preclude centralized processing, or it may be desirable to distribute because a single computational engine may not satisfy the needs of a given task. In addition, considerations of reliability may dictate distribution. Examples of multi-process language environment are given.

  17. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  18. Insightful problem solving in an Asian elephant.

    PubMed

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food. PMID:21876741

  19. Insightful Problem Solving in an Asian Elephant

    PubMed Central

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E.; Reiss, Diana

    2011-01-01

    The “aha” moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food. PMID:21876741

  20. Solving the hard problem of Bertrand's paradox

    SciTech Connect

    Aerts, Diederik; Sassoli de Bianchi, Massimiliano

    2014-08-15

    Bertrand's paradox is a famous problem of probability theory, pointing to a possible inconsistency in Laplace's principle of insufficient reason. In this article, we show that Bertrand's paradox contains two different problems: an “easy” problem and a “hard” problem. The easy problem can be solved by formulating Bertrand's question in sufficiently precise terms, so allowing for a non-ambiguous modelization of the entity subjected to the randomization. We then show that once the easy problem is settled, also the hard problem becomes solvable, provided Laplace's principle of insufficient reason is applied not to the outcomes of the experiment, but to the different possible “ways of selecting” an interaction between the entity under investigation and that producing the randomization. This consists in evaluating a huge average over all possible “ways of selecting” an interaction, which we call a universal average. Following a strategy similar to that used in the definition of the Wiener measure, we calculate such universal average and therefore solve the hard problem of Bertrand's paradox. The link between Bertrand's problem of probability theory and the measurement problem of quantum mechanics is also briefly discussed.

  1. Preservice teachers' problem-solving processes

    NASA Astrophysics Data System (ADS)

    Taplin, Margaret

    1998-12-01

    The purpose of the study reported in this paper is to explore some of the common difficulties with mathematical word problems experienced by preservice primary teachers. It examines weaknesses in students' content and procedural knowledge, with a particular focus on how they apply these aspects of knowledge to solving closed word problems. The SOLO Taxonomy (Biggs & Collis, 1982, 1991) is used to classify the processes used by students who attempted to solve a group of word problems of varying difficulty. Other characteristics of the students' processes that are analysed include the way they used the cues provided in the problem, the way they brought in additional concepts or processes, and the types of errors they made.

  2. Problem-Solving Strategies for Career Planning.

    ERIC Educational Resources Information Center

    McBryde, Merry J.; Karr-Kidwell, PJ

    The need for new expertise in problem solving in the work setting has emerged as a woman's issue because work outside the home has become a primary means for personal goal attainment for about half the women in the United States and because traditional career patterns and norms are ineffective. Career planning is the process of individual career…

  3. Abortion: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Campbell, Lloyd P.

    1977-01-01

    The purpose of this article is to use the vehicle of a controversial issue--abortion--as a means of illustrating the advantages of teaching such issues through a problem-solving method. Discussion ideas and resources are presented. (Author/JR)

  4. Computer Enhanced Problem Solving Skill Acquisition.

    ERIC Educational Resources Information Center

    Slotnick, Robert S.

    1989-01-01

    Discusses the implementation of interactive educational software that was designed to enhance critical thinking, scientific reasoning, and problem solving in a university psychology course. Piagetian and computer learning perspectives are explained; the courseware package, PsychWare, is described; and the use of heuristics and algorithms in…

  5. Mathematics Knowledge for Understanding and Problem Solving.

    ERIC Educational Resources Information Center

    Putnam, Ralph T.

    1987-01-01

    Two important aspects of transfer in mathematics learning are the application of mathematical knowledge (MK) to problem solving and the acquisition of more advanced concepts. General assumptions and themes of current cognitive research on mathematics learning in schoolchildren are discussed, focusing on issues facilitating the transfer of MK. (TJH)

  6. Assessing Mathematical Problem Solving Using Comparative Judgement

    ERIC Educational Resources Information Center

    Jones, Ian; Swan, Malcolm; Pollitt, Alastair

    2015-01-01

    There is an increasing demand from employers and universities for school leavers to be able to apply their mathematical knowledge to problem solving in varied and unfamiliar contexts. These aspects are however neglected in most examinations of mathematics and, consequentially, in classroom teaching. One barrier to the inclusion of mathematical…

  7. ADHD and Problem-Solving in Play

    ERIC Educational Resources Information Center

    Borg, Suzanne

    2009-01-01

    This paper reports a small-scale study to determine whether there is a difference in problem-solving abilities, from a play perspective, between individuals who are diagnosed as ADHD and are on medication and those not on medication. Ten children, five of whom where on medication and five not, diagnosed as ADHD predominantly inattentive type, were…

  8. Design and Problem Solving in Technology Education.

    ERIC Educational Resources Information Center

    Custer, Rodney L.

    1999-01-01

    Collectively, technological literacy embraces everything from intelligent consumerism to concerns about environmental degradation, ethics, and elitism. Technological problem solving can have social, ecological, or technological goals and may be categorized by four types: invention, design, trouble shooting, and procedures. Every citizen should be…

  9. Facilitating problem solving in high school chemistry

    NASA Astrophysics Data System (ADS)

    Gabel, Dorothy L.; Sherwood, Robert D.

    The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

  10. Teaching, Learning and Assessing Statistical Problem Solving

    ERIC Educational Resources Information Center

    Marriott, John; Davies, Neville; Gibson, Liz

    2009-01-01

    In this paper we report the results from a major UK government-funded project, started in 2005, to review statistics and handling data within the school mathematics curriculum for students up to age 16. As a result of a survey of teachers we developed new teaching materials that explicitly use a problem-solving approach for the teaching and…

  11. Mental Imagery in Creative Problem Solving.

    ERIC Educational Resources Information Center

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  12. ARPACK: Solving large scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Lehoucq, Rich; Maschhoff, Kristi; Sorensen, Danny; Yang, Chao

    2013-11-01

    ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w

  13. Solving Wicked Problems through Action Learning

    ERIC Educational Resources Information Center

    Crul, Liselore

    2014-01-01

    This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…

  14. Effective Practices (Part 4): Problem Solving.

    ERIC Educational Resources Information Center

    Moursund, Dave

    1996-01-01

    Discusses the use of computers to help with problem solving. Topics include information science, including effective procedure and procedural thinking; templates; artificially intelligent agents and expert systems; and applications in education, including the goal of computer literacy for all students, and integrated software packages such as…

  15. Collaborative Problem Solving Methods towards Critical Thinking

    ERIC Educational Resources Information Center

    Yin, Khoo Yin; Abdullah, Abdul Ghani Kanesan; Alazidiyeen, Naser Jamil

    2011-01-01

    This research attempts to examine the collaborative problem solving methods towards critical thinking based on economy (AE) and non economy (TE) in the SPM level among students in the lower sixth form. The quasi experiment method that uses the modal of 3X2 factorial is applied. 294 lower sixth form students from ten schools are distributed…

  16. Problem Solving in Biology: A Methodology

    ERIC Educational Resources Information Center

    Wisehart, Gary; Mandell, Mark

    2008-01-01

    A methodology is described that teaches science process by combining informal logic and a heuristic for rating factual reliability. This system facilitates student hypothesis formation, testing, and evaluation of results. After problem solving with this scheme, students are asked to examine and evaluate arguments for the underlying principles of…

  17. Should Children Learn to Solve Problems?

    ERIC Educational Resources Information Center

    Watras, Joseph

    2011-01-01

    In this comparative essay, the author discusses the opposing educational theories of John Dewey and Gregory Bateson. While Dewey believed that the scientific method was the dominant method of solving problems and thereby acquiring knowledge that mattered, Bateson warned that this one-sided approach would lead to actions that could destroy the…

  18. Making Problem-Solving Simulations More Realistic.

    ERIC Educational Resources Information Center

    Cotton, Samuel E.

    2002-01-01

    Many problem-solving activities include mathematical principles but students do not use them during the design and experimentation phases before creating a prototype or product. Restricting the amount and/or type of materials available to students will require them to calculate and requisition the materials needed. (JOW)

  19. Raise the Bar on Problem Solving

    ERIC Educational Resources Information Center

    Englard, Lisa

    2010-01-01

    In a 1981 diagnostic test, the Ministry of Education in Singapore found its country facing a challenge: Only 46 percent of students in grades 2-4 could solve word problems that were presented without such key words as "altogether" or "left." Yet today, according to results from the Trends in International Mathematics and Science Study (TIMSS…

  20. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  1. Nanomedicine: Problem Solving to Treat Cancer

    ERIC Educational Resources Information Center

    Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.

    2006-01-01

    Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…

  2. Everyday Problem Solving: Dollar Wise, Penny Foolish.

    ERIC Educational Resources Information Center

    Brenner, Mary E.

    Research on everyday learning has begun to illuminate some of the relations between activity and knowledge, and thus can help educators reconceptualize classroom activities. For example, how and what children learn about money epitomize many of the differences between everyday and school-based problem solving. The general goals of this paper are…

  3. Student Problem Solving in High School Genetics.

    ERIC Educational Resources Information Center

    Stewart, James

    1983-01-01

    Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)

  4. Appendix M. Research Utilization and Problem Solving

    ERIC Educational Resources Information Center

    Jung, Charles

    The Research Utilization and Problem Solving (RUPS) Model--an instructional system designed to provide the needed competencies for an entire staff to engage in systems analysis and systems synthesis procedures prior to assessing educational needs and developing curriculum to meet the needs identified--is intended to facilitate the development of…

  5. Problem-solving for better health.

    PubMed

    Smith, B; Barnett, S; Collado, D; Connor, M; DePasquale, J; Gross, L; McDermott, V; Sykes, A

    1994-01-01

    An outline is given of an approach to the health-for-all goals which involves optimizing resource use, prioritizing people's well-being, achieving excellence and a measurable impact at all levels of care, and solving health problems in a broad developmental context. PMID:8141991

  6. The Problem-Solving Nemesis: Mindless Manipulation.

    ERIC Educational Resources Information Center

    Hawkins, Vincent J.

    1987-01-01

    Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)

  7. Problem-Framing: A perspective on environmental problem-solving

    NASA Astrophysics Data System (ADS)

    Bardwell, Lisa V.

    1991-09-01

    The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.

  8. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

    ERIC Educational Resources Information Center

    Ramani, Geetha B.; Brownell, Celia A.

    2014-01-01

    Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

  9. Understanding Individual Problem-Solving Style: A Key to Learning and Applying Creative Problem Solving

    ERIC Educational Resources Information Center

    Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.

    2008-01-01

    More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…

  10. Writing about the Problem-Solving Process To Improve Problem-Solving Performance.

    ERIC Educational Resources Information Center

    Williams, Kenneth M.

    2003-01-01

    Concludes that writing about the executive processes of problem solving, difficulties encountered, alternative strategies that might have been used, and the problem solving process in general helped students in the treatment group learn to use executive processes more quickly and more effectively than students in the control group. (Author/NB)

  11. Assessing Affect after Mathematical Problem Solving Tasks: Validating the Chamberlin Affective Instrument for Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Chamberlin, Scott A.; Powers, Robert A.

    2013-01-01

    The focus of the article is the validation of an instrument to assess gifted students' affect after mathematical problem solving tasks. Participants were 225 students identified by their district as gifted in grades four to six. The Chamberlin Affective Instrument for Mathematical Problem Solving was used to assess feelings, emotions, and…

  12. Teaching problem-solving skills to nuclear engineering students

    NASA Astrophysics Data System (ADS)

    Waller, E.; Kaye, M. H.

    2012-08-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and accurate analysis of the problems, design of solutions (focusing on public safety, environmental stewardship and ethics), solution execution and monitoring results. A three-month course in problem solving, modelling and simulation was designed and a collaborative approach was undertaken with instructors from both industry and academia. Training was optimised for the laptop-based pedagogy, which provided unique advantages for a course that includes modelling and simulation components. The concepts and tools learned as part of the training were observed to be utilised throughout the duration of student university studies and interviews with students who have entered the workforce indicate that the approaches learned and practised are retained long term.

  13. Application of Performance Problem-Solving to Educational Problems

    ERIC Educational Resources Information Center

    Bullock, Donald H.

    1973-01-01

    The relevance of performance problem-solving for education is discussed in terms of its effect on the marketability of graduates, the cost-effectiveness of educational programs, and the drop/push/failout rate. (Author)

  14. Discovering the structure of mathematical problem solving.

    PubMed

    Anderson, John R; Lee, Hee Seung; Fincham, Jon M

    2014-08-15

    The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning. PMID:24746954

  15. Discovering the structure of mathematical problem solving.

    PubMed

    Anderson, John R; Lee, Hee Seung; Fincham, Jon M

    2014-08-15

    The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the duration of these stages, and how these stages are related to the learning of a new mathematical competence. Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found that participants went through 5 major phases in solving a class of problems: A Define Phase where they identified the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase where they performed the necessary arithmetic calculations, a Transform Phase where they performed any mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is characterized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions, the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in mathematical and response regions, and the Respond phase by activity in motor regions. The duration of the Compute and Transform Phases were the only ones that varied with condition. Two features distinguished the mastery trials on which participants came to understand a new problem type. First, the duration of late phases of the problem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and angular gyrus (AG), regions associated with metacognition. This indicates the importance of reflection to successful learning.

  16. Predicting Positive Self-Efficacy in Group Problem Solving.

    ERIC Educational Resources Information Center

    Wolf, Kay N.

    1997-01-01

    A study of 288 hospital employees engaged in problem-solving groups found that previous group problem-solving experience, educational level, work expertise, and problem-solving confidence were the best predictors of self-efficacy. (SK)

  17. Geogebra for Solving Problems of Physics

    NASA Astrophysics Data System (ADS)

    Kllogjeri, Pellumb; Kllogjeri, Adrian

    Today is highly speed progressing the computer-based education, which allowes educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. In this paper we will be concentrated on the use of GeoGebra programme for solving problems of physics. We have brought an example from physics of how can be used GeoGebra for finding the center of mass(centroid) of a picture(or system of polygons). After the problem is solved graphically, there is an application of finding the center of a real object(a plate)by firstly, scanning the object and secondly, by inserting its scanned picture into the drawing pad of GeoGebra window and lastly, by finding its centroid. GeoGebra serve as effective tool in problem-solving. There are many other applications of GeoGebra in the problems of physics, and many more in different fields of mathematics.

  18. A connectionist model for diagnostic problem solving

    NASA Technical Reports Server (NTRS)

    Peng, Yun; Reggia, James A.

    1989-01-01

    A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.

  19. Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems.

    PubMed

    Juhás, Pavol; Farrow, Christopher L; Yang, Xiaohao; Knox, Kevin R; Billinge, Simon J L

    2015-11-01

    A strategy is described for regularizing ill posed structure and nanostructure scattering inverse problems (i.e. structure solution) from complex material structures. This paper describes both the philosophy and strategy of the approach, and a software implementation, DiffPy Complex Modeling Infrastructure (DiffPy-CMI). PMID:26522405

  20. Students' Images of Problem Contexts when Solving Applied Problems

    ERIC Educational Resources Information Center

    Moore, Kevin C.; Carlson, Marilyn P.

    2012-01-01

    This article reports findings from an investigation of precalculus students' approaches to solving novel problems. We characterize the images that students constructed during their solution attempts and describe the degree to which they were successful in imagining how the quantities in a problem's context change together. Our analyses revealed…

  1. Interactive Problem Solving Tutorials Through Visual Programming

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  2. Psychosocial dimensions of solving an indoor air problem.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems. PMID:11951709

  3. Reflection on problem solving in introductory and advanced physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.

    developed to further evaluate students' attitudes and approaches towards problem solving. The survey responses suggest that introductory students and even graduate students have different attitudes and approaches to problem solving on several important measures compared to physics faculty members. Furthermore, responses to individual survey questions suggest that expert and novice attitudes and approaches to problem solving may be more complex than naively considered.

  4. Development of analogical problem-solving skill.

    PubMed

    Holyoak, K J; Junn, E N; Billman, D O

    1984-12-01

    3 experiments were performed to assess children's ability to solve a problem by analogy to a superficially dissimilar situation. Preschoolers and fifth and sixth graders were asked to solve a problem that allowed multiple solutions. Some subjects were first read a story that included an analogous problem and its solution. When the mapping between the relations involved in the corresponding solutions was relatively simple, and the corresponding instruments were perceptually and functionally similar, even preschoolers were able to use the analogy to derive a solution to the transfer problem (Experiment 1). Furthermore, salient similarity of the instruments was neither sufficient (Experiment 2) nor necessary (Experiment 3) for success by preschool subjects. When the story analog mapped well onto the transfer problem, 4-year-olds were often able to generate a solution that required transformation of an object with little perceptual or semantic similarity to the instrument used in the base analog (Experiment 3). The older children used analogies in a manner qualitatively similar to that observed in comparable studies with adults (Experiment 1), whereas the younger children exhibited different limitations.

  5. Comprehension and computation in Bayesian problem solving

    PubMed Central

    Johnson, Eric D.; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976

  6. Comprehension and computation in Bayesian problem solving.

    PubMed

    Johnson, Eric D; Tubau, Elisabet

    2015-01-01

    Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on "transparent" Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point.

  7. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  8. A Collaborative Problem-Solving Process through Environmental Field Studies

    ERIC Educational Resources Information Center

    Kim, Mijung; Tan, Hoe Teck

    2013-01-01

    This study explored and documented students' responses to opportunities for collective knowledge building and collaboration in a problem-solving process within complex environmental challenges and pressing issues with various dimensions of knowledge and skills. Middle-school students ("n" =?16; age 14) and high-school students…

  9. Play and Divergent Problem Solving: Evidence Supporting a Reciprocal Relationship.

    ERIC Educational Resources Information Center

    Wyver, Shirley R.; Spence, Susan H.

    1999-01-01

    Three studies examined the relationship between specific forms of preschoolers' social and pretend play and divergent/convergent problem solving. Naturalistic and experimental designs were used to provide clearer account of relationship and to challenge assumption of single direction of influence. Results support complex reciprocal causality model…

  10. Solving the Swath Segment Selection Problem

    NASA Technical Reports Server (NTRS)

    Knight, Russell; Smith, Benjamin

    2006-01-01

    Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).

  11. A Flipped Pedagogy for Expert Problem Solving

    NASA Astrophysics Data System (ADS)

    Pritchard, David

    The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

  12. An investigation into problem solving in education: a problem-solving curricular framework.

    PubMed

    Arand, J U; Harding, C G

    1987-02-01

    The purpose of this study was to examine how two aspects of teaching, mastery of content and problem solving, could be linked in a curricular framework. A professional educational program in physical therapy which had been developed to teach both content and problem solving was evaluated. The subjects for the study were 81 students in a baccalaureate program in a Midwestern medical school who participated in this problem-solving curriculum. The primary assessment instrument used was the Watson-Glaser Critical Thinking Appraisal. Findings indicated that performance on a test of critical thinking was affected by the curriculum. Regression analysis indicated that one course designed as an introduction to problem solving was significantly related to changes in problem-solving skill scores. Although significant change in the test scores did occur, these changes were not evident until the completion of the year-long program. Differing effects for lecture and field experience (or patient care) courses were not observed, and traditional measures such as grade point averages had no statistical relationship to problem-solving skill scores.

  13. Insight and analysis problem solving in microbes to machines.

    PubMed

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. PMID

  14. Insight and analysis problem solving in microbes to machines.

    PubMed

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices.

  15. How do college students solve proportion problems?

    NASA Astrophysics Data System (ADS)

    Thornton, Melvin C.; Fuller, Robert G.

    Problems which could be solved using proportional reasoning were administered nationwide by college faculty to their own science classes during a three year period. The reasoning of more than 8000 students covering three sections of the country was classified as concrete, transitional, or formal using Piagetian categories. Data from the West closely replicated that from the Midwest on similar metric conversion tasks. Student performance changed noticeably with a different problem format. The percentages of students using a ratio formula, ratio attempt, or intuitive methods of solution held approximately constant over time, task, and section of the country. The data shows the use of additive and conversion methods of solution depends upon the problem presentation.

  16. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  17. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  18. Harmony Theory: Problem Solving, Parallel Cognitive Models, and Thermal Physics.

    ERIC Educational Resources Information Center

    Smolensky, Paul; Riley, Mary S.

    This document consists of three papers. The first, "A Parallel Model of (Sequential) Problem Solving," describes a parallel model designed to solve a class of relatively simple problems from elementary physics and discusses implications for models of problem-solving in general. It is shown that one of the most salient features of problem solving,…

  19. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  20. Acquisition and performance of a problem-solving skill.

    NASA Technical Reports Server (NTRS)

    Morgan, B. B., Jr.; Alluisi, E. A.

    1971-01-01

    The acquisition of skill in the performance of a three-phase code transformation task (3P-COTRAN) was studied with 20 subjects who solved 27 3P-COTRAN problems during each of 8 successive sessions. The purpose of the study was to determine the changes in the 3P-COTRAN factor structure resulting from practice, the distribution of practice-related gains in performance over the nine measures of the five 3P-COTRAN factors, and the effects of transformation complexities on the 3P-COTRAN performance of subjects. A significant performance gain due to practice was observed, with improvements in speed continuing even when accuracy reached asymptotic levels. Transformation complexity showed no effect on early performances but the 3- and 4-element transformations were solved quicker than the 5-element transformation in the problem-solving Phase III of later skilled performances.

  1. On two particular cases of solving the normal Hankel problem

    NASA Astrophysics Data System (ADS)

    Chugunov, V. N.

    2009-06-01

    The normal Hankel problem is one of characterizing all the complex matrices that are normal and Hankel at the same time. The matrix classes that can contain normal Hankel matrices admit a parameterization by real 2 × 2 matrices with determinant one. Here, the normal Hankel problem is solved in the case where the characteristic matrix of a given class is an order two Jordan block for the eigenvalue 1 or -1.

  2. Can compactifications solve the cosmological constant problem?

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Masoumi, Ali

    2016-06-01

    Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.

  3. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  4. Bigger brains may make better problem-solving carnivores.

    PubMed

    Vonk, Jennifer

    2016-06-01

    Benson-Amram, Dantzer, Stricker, Swanson, & Holekamp's (Proceedings of the National Academy of Sciences, 113, 25321-25376, 2016) recent demonstration that larger-brained carnivores were more successful in a single problem-solving task, relative to smaller-brained carnivores, irrespective of social complexity, poses a challenge to proponents of the social intelligence hypothesis (Humphrey, 1976) and provides some support for the idea that larger relative brain sizes have evolved to support greater problem-solving abilities. However, an important question, neglected by the authors, is the extent to which foraging ecology, rather than social environment, more accurately predicts problem solving, and whether this relationship would be observed in noncarnivore, noncaptive animals across a range of tasks.

  5. Multitasking-Pascal extensions solve concurrency problems

    SciTech Connect

    Mackie, P.H.

    1982-09-29

    To avoid deadlock (one process waiting for a resource than another process can't release) and indefinite postponement (one process being continually denied a resource request) in a multitasking-system application, it is possible to use a high-level development language with built-in concurrency handlers. Parallel Pascal is one such language; it extends standard Pascal via special task synchronizers: a new data type called signal, new system procedures called wait and send and a Boolean function termed awaited. To understand the language's use the author examines the problems it helps solve.

  6. The Benefit of Being Naïve and Knowing It: The Unfavourable Impact of Perceived Context Familiarity on Learning in Complex Problem Solving Tasks

    ERIC Educational Resources Information Center

    Beckmann, Jens F.; Goode, Natassia

    2014-01-01

    Previous research has found that embedding a problem into a familiar context does not necessarily confer an advantage over a novel context in the acquisition of new knowledge about a complex, dynamic system. In fact, it has been shown that a semantically familiar context can be detrimental to knowledge acquisition. This has been described as the…

  7. The Problem of Assessing Problem Solving: Can Comparative Judgement Help?

    ERIC Educational Resources Information Center

    Jones, Ian; Inglis, Matthew

    2015-01-01

    School mathematics examination papers are typically dominated by short, structured items that fail to assess sustained reasoning or problem solving. A contributory factor to this situation is the need for student work to be marked reliably by a large number of markers of varied experience and competence. We report a study that tested an…

  8. Solving Optimization Problems with Dynamic Geometry Software: The Airport Problem

    ERIC Educational Resources Information Center

    Contreras, José

    2014-01-01

    This paper describes how the author's students (in-service and pre-service secondary mathematics teachers) enrolled in college geometry courses use the Geometers' Sketchpad (GSP) to gain insight to formulate, confirm, test, and refine conjectures to solve the classical airport problem for triangles. The students are then provided with strategic…

  9. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  10. A Process Analysis of Engineering Problem Solving and Assessment of Problem Solving Skills

    ERIC Educational Resources Information Center

    Grigg, Sarah J.

    2012-01-01

    In the engineering profession, one of the most critical skills to possess is accurate and efficient problem solving. Thus, engineering educators should strive to help students develop skills needed to become competent problem solvers. In order to measure the development of skills, it is necessary to assess student performance, identify any…

  11. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    ERIC Educational Resources Information Center

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  12. Problem-Solving Appraisal and Human Adjustment: A Review of 20 Years of Research Using the Problem Solving Inventory

    ERIC Educational Resources Information Center

    Heppner, P. Paul; Witty, Thomas E.; Dixon, Wayne A.

    2004-01-01

    This article reviews and synthesizes more than 120 studies from 20 years (1982-2002) of research that has examined problem-solving appraisal as measured by the Problem Solving Inventory (PSI). The goals of the article are fourfold: (a) introduce the construct of problem-solving appraisal and the PSI within the applied problem-solving literature,…

  13. Conceptual and Procedural Knowledge Community College Students Use when Solving Science Problems

    ERIC Educational Resources Information Center

    Eibensteiner, Janice L.

    2012-01-01

    Successful science students have mastered their field of study by being able to apply their learned knowledge and problem solving skills on tests. Problem solving skills must be used to figure out the answer to many classes of questions. What this study is trying to determine is how students solve complex science problems in an academic setting in…

  14. Solving large sparse eigenvalue problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef

    1988-01-01

    An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.

  15. Incubation and Intuition in Creative Problem Solving

    PubMed Central

    Gilhooly, Kenneth J.

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

  16. Incubation and Intuition in Creative Problem Solving.

    PubMed

    Gilhooly, Kenneth J

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

  17. Solving Math Problems Approximately: A Developmental Perspective

    PubMed Central

    Ganor-Stern, Dana

    2016-01-01

    Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224

  18. Functional reasoning in diagnostic problem solving

    NASA Technical Reports Server (NTRS)

    Sticklen, Jon; Bond, W. E.; Stclair, D. C.

    1988-01-01

    This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.

  19. Assessing Cognitive Learning of Analytical Problem Solving

    NASA Astrophysics Data System (ADS)

    Billionniere, Elodie V.

    Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.

  20. Improve Problem Solving Skills through Adapting Programming Tools

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  1. Problem Solving Interventions: Impact on Young Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Diamond, Lindsay Lile

    2012-01-01

    Problem-solving skills are imperative to a child's growth and success across multiple environments, including general and special education. Problem solving is comprised of: (a) attention to the critical aspects of a problem, (b) generation of solution(s) to solve the problem, (c) application of a solution(s) to the identified problem, and…

  2. Guidance for modeling causes and effects in environmental problem solving

    USGS Publications Warehouse

    Armour, Carl L.; Williamson, Samuel C.

    1988-01-01

    Environmental problems are difficult to solve because their causes and effects are not easily understood. When attempts are made to analyze causes and effects, the principal challenge is organization of information into a framework that is logical, technically defensible, and easy to understand and communicate. When decisionmakers attempt to solve complex problems before an adequate cause and effect analysis is performed there are serious risks. These risks include: greater reliance on subjective reasoning, lessened chance for scoping an effective problem solving approach, impaired recognition of the need for supplemental information to attain understanding, increased chance for making unsound decisions, and lessened chance for gaining approval and financial support for a program/ Cause and effect relationships can be modeled. This type of modeling has been applied to various environmental problems, including cumulative impact assessment (Dames and Moore 1981; Meehan and Weber 1985; Williamson et al. 1987; Raley et al. 1988) and evaluation of effects of quarrying (Sheate 1986). This guidance for field users was written because of the current interest in documenting cause-effect logic as a part of ecological problem solving. Principal literature sources relating to the modeling approach are: Riggs and Inouye (1975a, b), Erickson (1981), and United States Office of Personnel Management (1986).

  3. Use of EPR to Solve Biochemical Problems

    PubMed Central

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  4. Autonomy and Mathematical Problem-Solving: The Early Years

    ERIC Educational Resources Information Center

    Rogers, Jennifer

    2004-01-01

    Problem solving is seen to lie at the "heart" of mathematics (Cockcroft, 1982). Problem solving is also of great importance to industry that claims many young people leave school and take up jobs without the skills needed to sort out difficulties and problems (Smith Report, 2004). So is problem solving at the heart of mathematics teaching in…

  5. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  6. Novice Use of Qualitative versus Quantitative Problem Solving in Electrostatics.

    ERIC Educational Resources Information Center

    McMillan, Claude, III; Swadener, Marc

    1991-01-01

    Describes the problem-solving behaviors of six novice subjects attempting to solve an electrostatics problem in calculus-based college physics. The level of qualitative thinking exhibited by these novices was determined. Sound procedural knowledge and problem representation were suggested as an integral part of skilled problem solving in physics.…

  7. Building problem solving environments with the arches framework

    SciTech Connect

    Debardeleben, Nathan; Sass, Ron; Stanzione, Jr., Daniel; Ligon, Ill, Walter

    2009-01-01

    The computational problems that scientists face are rapidly escalating in size and scope. Moreover, the computer systems used to solve these problems are becoming significantly more complex than the familiar, well-understood sequential model on their desktops. While it is possible to re-train scientists to use emerging high-performance computing (HPC) models, it is much more effective to provide them with a higher-level programming environment that has been specialized to their particular domain. By fostering interaction between HPC specialists and the domain scientists, problem-solving environments (PSEs) provide a collaborative environment. A PSE environment allows scientists to focus on expressing their computational problem while the PSE and associated tools support mapping that domain-specific problem to a high-performance computing system. This article describes Arches, an object-oriented framework for building domain-specific PSEs. The framework was designed to support a wide range of problem domains and to be extensible to support very different high-performance computing targets. To demonstrate this flexibility, two PSEs have been developed from the Arches framework to solve problem in two different domains and target very different computing platforms. The Coven PSE supports parallel applications that require large-scale parallelism found in cost-effective Beowulf clusters. In contrast, RCADE targets FPGA-based reconfigurable computing and was originally designed to aid NASA Earth scientists studying satellite instrument data.

  8. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  9. Children use salience to solve coordination problems.

    PubMed

    Grueneisen, Sebastian; Wyman, Emily; Tomasello, Michael

    2015-05-01

    Humans are routinely required to coordinate with others. When communication is not possible, adults often achieve this by using salient cues in the environment (e.g. going to the Eiffel Tower, as an obvious meeting point). To explore the development of this capacity, we presented dyads of 3-, 5-, and 8-year-olds (N = 144) with a coordination problem: Two balls had to be inserted into the same of four boxes to obtain a reward. Identical pictures were attached to three boxes whereas a unique--and thus salient--picture was attached to the fourth. Children either received one ball each, and so had to choose the same box (experimental condition), or they received both balls and could get the reward independently (control condition). In all cases, children could neither communicate nor see each other's choices. Children were significantly more likely to choose the salient option in the experimental condition than in the control condition. However, only the two older age groups chose the salient box above chance levels. This study is the first to show that children from at least age 5 can solve coordination problems by converging on a salient solution.

  10. Unsupervised neural networks for solving Troesch's problem

    NASA Astrophysics Data System (ADS)

    Muhammad, Asif Zahoor Raja

    2014-01-01

    In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.

  11. Structured Collaboration versus Individual Learning in Solving Physics Problems

    NASA Astrophysics Data System (ADS)

    Harskamp, Egbert; Ding, Ning

    2006-11-01

    The research issue in this study is how to structure collaborative learning so that it improves solving physics problems more than individual learning. Structured collaborative learning has been compared with individual learning environments with Schoenfeld’s problem-solving episodes. Students took a pre-test and a post-test and had the opportunity to solve six physics problems. Ninety-nine students from a secondary school in Shanghai participated in the study. Students who learnt to solve problems in collaboration and students who learnt to solve problems individually with hints improved their problem-solving skills compared with those who learnt to solve the problems individually without hints. However, it was hard to discern an extra effect for students working collaboratively with hints—although we observed these students working in a more structured way than those in the other groups. We discuss ways to further investigate effective collaborative processes for solving physics problems.

  12. Positive Transfer and Negative Transfer/Antilearning of Problem-Solving Skills

    ERIC Educational Resources Information Center

    Osman, Magda

    2008-01-01

    In problem-solving research, insights into the relationship between monitoring and control in the transfer of complex skills remain impoverished. To address this, in 4 experiments, the authors had participants solve 2 complex control tasks that were identical in structure but that varied in presentation format. Participants learned to solve the…

  13. Dynamics of students’ epistemological framing in group problem solving

    NASA Astrophysics Data System (ADS)

    Nguyen, Hai D.; Chari, Deepa N.; Sayre, Eleanor C.

    2016-11-01

    Many studies have investigated students’ epistemological framing when solving physics problems. Framing supports students’ problem solving as they decide what knowledge to employ and the necessary steps to solve the problem. Students may frame the same problem differently and take alternative paths to a correct solution. When students work in group settings, they share and discuss their framing to decide how to proceed in problem solving as a whole group. In this study, we investigate how groups of students negotiate their framing and frame shifts in group problem solving.

  14. Interpersonal and Emotional Problem Solving among Narcotic Drug Abusers.

    ERIC Educational Resources Information Center

    Appel, Philip W.; Kaestner, Elisabeth

    1979-01-01

    Measured problem-solving abilities of narcotics abusers using the modified means-ends problem-solving procedure. Good subjects had more total relevent means (RMs) for solving problems, used more introspective and emotional RMs, and were better at RM recognition, but did not have more sufficient narratives than poor subjects. (Author/BEF)

  15. Teaching Problem Solving in Secondary School Mathematics Classrooms

    ERIC Educational Resources Information Center

    Lam, Toh Tin; Guan, Tay Eng; Seng, Quek Khiok; Hoong, Leong Yew; Choon, Toh Pee; Him, Ho Foo; Jaguthsing, Dindyal

    2014-01-01

    This paper reports an innovative approach to teaching problem solving in secondary school mathematics classrooms based on a specifically designed problem-solving module.This approach adopts the science practical paradigm and rides on the works of Polya and Schoenfeld in order to give greater emphasis to the problem solving processes. We report the…

  16. Teaching Young Children Interpersonal Problem-Solving Skills

    ERIC Educational Resources Information Center

    Joseph, Gail E.; Strain, Phillip S.

    2010-01-01

    Learning how to problem solve is one of the key developmental milestones in early childhood. Children's problem-solving skills represent a key feature in the development of social competence. Problem solving allows children to stay calm during difficult situations, repair social relations quickly, and get their needs met in ways that are safe and…

  17. Teacher Practices with Toddlers during Social Problem Solving Opportunities

    ERIC Educational Resources Information Center

    Gloeckler, Lissy; Cassell, Jennifer

    2012-01-01

    This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

  18. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  19. Capturing Problem-Solving Processes Using Critical Rationalism

    ERIC Educational Resources Information Center

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  20. Problem Solving and Creativity; In Individuals and Groups.

    ERIC Educational Resources Information Center

    Maier, Norman R. F.

    Studies on individual and group problem solving from the past 15 years are brought together in this volume. Four sections of the book consider individual problem solving and the search for a possible unique factor in creativity. The next four sections concern themselves with the various aspects of group problem solving, and a final part of the…

  1. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  2. Personal Problem-Solving Activities of Black University Students.

    ERIC Educational Resources Information Center

    Reeder, Bonita Lynne; Heppner, P. Paul

    1985-01-01

    Examined personal problem solving activities of Black undergraduates (N=84) using three measures: Problem Solving Inventory; Level of Problem Solving Skills Estimate Form; and Ways of Coping Scale. Results indicated no racial (Black versus White) or geographic (urban versus rural) differences in responses. (BL)

  3. The Influence of Cognitive Diversity on Group Problem Solving Strategy

    ERIC Educational Resources Information Center

    Lamm, Alexa J.; Shoulders, Catherine; Roberts, T. Grady; Irani, Tracy A.; Snyder, Lori J. Unruh; Brendemuhl, Joel

    2012-01-01

    Collaborative group problem solving allows students to wrestle with different interpretations and solutions brought forth by group members, enhancing both critical thinking and problem solving skills. Since problem solving in groups is a common practice in agricultural education, instructors are often put in the position of organizing student…

  4. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  5. Development of a Content Coding System for Marital Problem Solving.

    ERIC Educational Resources Information Center

    Winemiller, David R.; Mitchell, M. Ellen

    While much research has focused on the processes of marital problem solving, the content of marital problem solving has received considerably less attention. This study examined the initial efforts to develop a method for assessing marital problem solving content. Married individuals (N=36) completed a demographic information sheet, the Dyadic…

  6. Perceived Problem Solving, Stress, and Health among College Students

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

    2005-01-01

    Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

  7. Maximum/Minimum Problems Solved Using an Algebraic Way

    ERIC Educational Resources Information Center

    Modica, Erasmo

    2010-01-01

    This article describes some problems of the maximum/minimum type, which are generally solved using calculus at secondary school, but which here are solved algebraically. We prove six algebraic properties and then apply them to this kind of problem. This didactic approach allows pupils to solve these problems even at the beginning of secondary…

  8. Russian Doll Search for solving Constraint Optimization problems

    SciTech Connect

    Verfaillie, G.; Lemaitre, M.

    1996-12-31

    If the Constraint Satisfaction framework has been extended to deal with Constraint Optimization problems, it appears that optimization is far more complex than satisfaction. One of the causes of the inefficiency of complete tree search methods, like Depth First Branch and Bound, lies in the poor quality of the lower bound on the global valuation of a partial assignment, even when using Forward Checking techniques. In this paper, we introduce the Russian Doll Search algorithm which replaces one search by n successive searches on nested subproblems (n being the number of problem variables), records the results of each search and uses them later, when solving larger subproblems, in order to improve the lower bound on the global valuation of any partial assignment. On small random problems and on large real scheduling problems, this algorithm yields surprisingly good results, which greatly improve as the problems get more constrained and the bandwidth of the used variable ordering diminishes.

  9. Young children's analogical problem solving: gaining insights from video displays.

    PubMed

    Chen, Zhe; Siegler, Robert S

    2013-12-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. The sample of 2- and 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older, but not younger, toddlers extracted the problem-solving strategy depicted in the video and spontaneously transferred the strategy to solve isomorphic problems. Transfer by analogy from the video was evident only when the video illustrated the complete problem goal structure, including the character's intention and the action needed to achieve a goal. The same action isolated from the problem-solving context did not serve as an effective source analogue. These results illuminate the development of early representation and processes involved in analogical problem solving. Theoretical and educational implications are discussed.

  10. A Cognitive Tutor for Genetics Problem Solving: Learning Gains and Student Modeling

    ERIC Educational Resources Information Center

    Corbett, Albert; Kauffman, Linda; Maclaren, Ben; Wagner, Angela; Jones, Elizabeth

    2010-01-01

    Genetics is a unifying theme of biology that poses a major challenge for students across a wide range of post-secondary institutions, because it entails complex problem solving. This article reports a new intelligent learning environment called the Genetics Cognitive Tutor, which supports genetics problem solving. The tutor presents complex,…

  11. Elliptic interface problem solved using the mixed finite element method

    NASA Astrophysics Data System (ADS)

    Wang, Shuqiang

    2007-05-01

    The elliptic boundary value/interface problem is very important in many applications, for example, in incompressible flow and MHD. Many methods are used to solve these problems in a complex domain, including the finite volume method, the finite element method and the boundary element method. For a complex computational domain, the better choice of the partition of the computational domain is to use an unstructured grid. However, it is not a straight forward task to implement a mesh generation program. Such a program requires extra computing time and resources (such as computer memory). Thus people like to use a structured mesh if possible, especially a cartesian mesh. Popular methods using structured cartesian grids for the elliptic boundary value/interface problem include the immersed boundary method, the immersed interface method, the ghost fluid method, and the embedded boundary method. This thesis solves the elliptic problem using several versions of the mixed nite element method on an unstructured mesh. The results are compared for speed and accuracy to the embedded boundary method. A ghost fluid method for elliptic boundary value/interface problems is also investigated. Finally, a simple test of the 2D Rayleigh-Taylor instability is performed using the FronTier-Lite package. Key Words. Elliptic Boundary Value, Interface, Mesh Generation, Quadtree, Octree, Front Tracking.

  12. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  13. Individual and Dyadic Problem Solving on a Computer Based Task as a Function of Mental Ability.

    ERIC Educational Resources Information Center

    Berkowitz, Melissa S.; Szabo, Michael

    This study examined the effects of mental ability upon problem-solving processes of individuals and dyads confronted by complex science problems. A 2 X 3 design was used, with two levels of grouping: individuals and dyads, and with three levels of mental ability: high (H), high plus low (HL), and low (L). The experimental problem was to solve the…

  14. Moving beyond Formulas and Fixations: Solving Open-Ended Engineering Problems

    ERIC Educational Resources Information Center

    Douglas, Elliot P.; Koro-Ljungberg, Mirka; McNeill, Nathan J.; Malcolm, Zaria T.; Therriault, David J.

    2012-01-01

    Open-ended problem solving is a central skill in engineering practice; consequently, it is imperative for engineering students to develop expertise in solving these types of problems. The complexity of open-ended problems requires a unique set of skills. The purpose of this qualitative study was to investigate the approaches used by engineering…

  15. Investigating Pre-Service Chemistry Teachers' Problem Solving Strategies: Towards Developing a Framework in Teaching Stoichiometry

    ERIC Educational Resources Information Center

    Espinosa, Allen A.; Nueva España, Rebecca C.; Marasigan, Arlyne C.

    2016-01-01

    The present study investigated pre-service chemistry teachers' problem solving strategies and alternative conceptions in solving stoichiometric problems and later on formulate a teaching framework based from the result of the study. The pre-service chemistry teachers were given four stoichiometric problems with increasing complexity and they need…

  16. The Design Process in the Art Classroom: Building Problem Solving Skills for Life and Careers

    ERIC Educational Resources Information Center

    Vande Zande, Robin; Warnock, Lauren; Nikoomanesh, Barbara; Van Dexter, Kurt

    2014-01-01

    Problem solving is essential to everyone's life. People survive if they are nourished, sheltered, and protected--and they construct ways to obtain nourishment, shelter, and protection through problem solving. Though problems vary in complexity--survival at the one end and the pursuit of comfort at the other--we are reliant on our ability to…

  17. Individual differences: A third component in problem-solving instruction

    NASA Astrophysics Data System (ADS)

    Ronning, Royce R.; McCurdy, Donald; Ballinger, Ruth

    Present research in problem solving appears to be primarily concerned with problem-solving methods and with degree of knowledge acquisition. A brief argument is advanced that this conceptualization is incomplete because of failure to consider individual differences among problem solvers (other than in problem-solving methods and extent of knowledge). A viable theory of problem-solving instruction must take into account all three areas. Evidence for the argument is presented in the form of data on problem-solving success in junior high school students with extreme scores on Witkin's field independence-field dependence measure of cognitive style. Problem-solving protocols are examined as a second source of data. Field independent students significantly out-performed field dependent students on the problems. Examination of protocols revealed consistent performance patterns favoring field independent students.

  18. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    PubMed

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  19. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge.

  20. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training.

    PubMed

    Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.

  1. Word Problem Solving in Contemporary Math Education: A Plea for Reading Comprehension Skills Training

    PubMed Central

    Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno

    2016-01-01

    Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012

  2. Problem-Solving Therapy in the Elderly.

    PubMed

    Kiosses, Dimitris N; Alexopoulos, George S

    2014-03-01

    We systematically reviewed randomized clinical trials of problem-solving therapy (PST) in older adults. Our results indicate that PST led to greater reduction in depressive symptoms of late-life major depression than supportive therapy (ST) and reminiscence therapy. PST resulted in reductions in depression comparable with those of paroxetine and placebo in patients with minor depression and dysthymia, although paroxetine led to greater reductions than placebo. In home health care, PST was more effective than usual care in reducing symptoms of depression in undiagnosed patients. PST reduced disability more than ST in patients with major depression and executive dysfunction. Preliminary data suggest that a home-delivered adaptation of PST that includes environmental adaptations and caregiver involvement is efficacious in reducing disability in depressed patients with advanced cognitive impairment or early dementia. In patients with macular degeneration, PST led to improvement in vision-related disability comparable to that of ST, but PST led to greater improvement in measures of vision-related quality of life. Among stroke patients, PST participants were less likely to develop a major or minor depressive episode than those receiving placebo treatment, although the results were not sustained in a more conservative statistical analysis. Among patients with macular degeneration, PST participants had significantly lower 2-month incidence rates of major depression than usual care participants and were less likely to suffer persistent depression at 6 months. Finally, among stroke patients, PST participants were less likely to develop apathy than those receiving placebo treatment. PST also has been delivered via phone, Internet, and videophone, and there is evidence of feasibility and acceptability. Further, preliminary data indicate that PST delivered through the Internet resulted in a reduction in depression comparable with that of in-person PST in home-care patients. PST

  3. A Problem Solving Framework for Managing Poor Readers in Classrooms.

    ERIC Educational Resources Information Center

    Beck, Judith S.

    1988-01-01

    Points out that poor readers may exhibit behavioral, cognitive, and emotional problems. Offers a problem-solving framework for intervention in poor readers' nonacademic problems, and describes several possible types of intervention. (ARH)

  4. Solving microscopic flow problems using Stokes equations in SPH

    NASA Astrophysics Data System (ADS)

    Van Liedekerke, P.; Smeets, B.; Odenthal, T.; Tijskens, E.; Ramon, H.

    2013-07-01

    Starting from the Smoothed Particle Hydrodynamics method (SPH), we propose an alternative way to solve flow problems at a very low Reynolds number. The method is based on an explicit drop out of the inertial terms in the normal SPH equations, and solves the coupled system to find the velocities of the particles using the conjugate gradient method. The method will be called NSPH which refers to the non-inertial character of the equations. Whereas the time-step in standard SPH formulations for low Reynolds numbers is linearly restricted by the inverse of the viscosity and quadratically by the particle resolution, the stability of the NSPH solution benefits from a higher viscosity and is independent of the particle resolution. Since this method allows for a much higher time-step, it solves creeping flow problems with a high resolution and a long timescale up to three orders of magnitude faster than SPH. In this paper, we compare the accuracy and capabilities of the new NSPH method to canonical SPH solutions considering a number of standard problems in fluid dynamics. In addition, we show that NSPH is capable of modeling more complex physical phenomena such as the motion of a red blood cell in plasma.

  5. Exercises are problems too: implications for teaching problem-solving in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Zuza, Kristina; Garmendia, Mikel; Barragués, José-Ignacio; Guisasola, Jenaro

    2016-09-01

    Frequently, in university-level general physics courses, after explaining the theory, exercises are set based on examples that illustrate the application of concepts and laws. Traditionally formulated numerical exercises are usually solved by the teacher and students through direct replacement of data in formulae. It is our contention that such strategies can lead to the superficial and erroneous resolution of such exercises. In this paper, we provide an example that illustrates that students tend to solve problems in a superficial manner, without applying fundamental problem-solving strategies such as qualitative analysis, hypothesis-forming and analysis of results, which prevents them from arriving at a correct solution. We provide evidence of the complexity of an a priori simple exercise in physics, although the theory involved may seem elementary at first sight. Our aim is to stimulate reflection among instructors to follow these results when using examples and solving exercises with students.

  6. Solving Fluid Flow Problems on Moving and Adaptive Overlapping Grids

    SciTech Connect

    Henshaw, W

    2005-07-28

    Solution of fluid dynamics problems on overlapping grids will be discussed. An overlapping grid consists of a set of structured component grids that cover a domain and overlap where they meet. Overlapping grids provide an effective approach for developing efficient and accurate approximations for complex, possibly moving geometry. Topics to be addressed include the reactive Euler equations, the incompressible Navier-Stokes equations and elliptic equations solved with a multigrid algorithm. Recent developments coupling moving grids and adaptive mesh refinement and preliminary parallel results will also be presented.

  7. Supporting operator problem solving through ecological interface design

    SciTech Connect

    Vicente, K.J.; Christoffersen, K.; Pereklita, A.

    1995-04-01

    Two experiments are described evaluating ecological interface design (EID), a novel theoretical framework for the design of interfaces for complex human-machine systems. The findings of experiment one are consistent with the claim that an interface based on an abstraction hierarchy representation can provide more support for problem solving than an interface based on physical variable alone, thereby providing some initial support for the EID framework. The findings of experiment two indicate that subjects that exhibited effective diagnosis performance using the P + F interface tended to start their search at a high level of abstraction and gradually work their way down to more detailed levels, as predicted. 28 refs.

  8. The Strength of the Strongest Ties in Collaborative Problem Solving

    PubMed Central

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-01-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems. PMID:24946798

  9. The Strength of the Strongest Ties in Collaborative Problem Solving

    NASA Astrophysics Data System (ADS)

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-06-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.

  10. The strength of the strongest ties in collaborative problem solving.

    PubMed

    de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune

    2014-01-01

    Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems. PMID:24946798

  11. Formulating and Solving Problems in Computational Chemistry.

    ERIC Educational Resources Information Center

    Norris, A. C.

    1980-01-01

    Considered are the main elements of computational chemistry problems and how these elements can be used to formulate the problems mathematically. Techniques that are useful in devising an appropriate solution are also considered. (Author/TG)

  12. Facilitating Students' Problem Solving across Multiple Representations in Introductory Mechanics

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai; Gire, Elizabeth; Rebello, N. Sanjay

    2010-10-01

    Solving problems presented in multiple representations is an important skill for future physicists and engineers. However, such a task is not easy for most students taking introductory physics courses. We conducted teaching/learning interviews with 20 students in a first-semester calculus-based physics course on several topics in introductory mechanics. These interviews helped identify the common difficulties students encountered when solving physics problems posed in multiple representations as well as the hints that help students overcome those difficulties. We found that most representational difficulties arise due to the lack of students' ability to associate physics knowledge with corresponding mathematical knowledge. Based on those findings, we developed, tested and refined a set of problem-solving exercises to help students learn to solve problems in graphical and equational representations. We present our findings on students' common difficulties with graphical and equational representations, the problem-solving exercises and their impact on students' problem solving abilities.

  13. Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students

    ERIC Educational Resources Information Center

    Budak, Ibrahim

    2012-01-01

    Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…

  14. Problem-Solving Support for English Language Learners

    ERIC Educational Resources Information Center

    Wiest, Lynda R.

    2008-01-01

    Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…

  15. From Example Study to Problem Solving: Smooth Transitions Help Learning.

    ERIC Educational Resources Information Center

    Renkl, Alexander; Atkinson, Robert K.; Maier, Uwe H.; Staley, Richard

    2002-01-01

    Proposed a successive integration of problem-solving elements into example study until learners solved problems on their own and tested the effectiveness of this "fading" method against a traditional method of using example-problem pairs. Results with 20 ninth graders in Germany, 54 U.S. college students, and 45 U.S. college students show that the…

  16. A Computer Based Problem Solving Environment in Chemistry

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Karakirik, Erol

    2005-01-01

    The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves students' problem solving skills on mole concept. The system has three distinct modes that: (1) find step by step solutions to the word problems on the mole concept; (2) enable students to solve word problems on their own by…

  17. A Computer Based Problem Solving Environment in Chemistry

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Karakirik, Erol

    2005-01-01

    The purpose of this study was to introduce the Mole Solver, a computer based system that facilitates monitors and improves the students' problems solving skills on mole concept. The system has three distinct modes that: i) finds step by step solutions to the word problems on the mole concept ii) enable students' to solve word problems on their own…

  18. Solving the Sailors and the Coconuts Problem via Diagrammatic Approach

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2010-01-01

    In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…

  19. Solving Information-Based Problems: Evaluating Sources and Information

    ERIC Educational Resources Information Center

    Brand-Gruwel, Saskia; Stadtler, Marc

    2011-01-01

    The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…

  20. Affective Issues in Mathematical Problem Solving: Some Theoretical Considerations.

    ERIC Educational Resources Information Center

    McLeod, Douglas B.

    1988-01-01

    Mandler's theory of emotion is suggested as a framework for investigating affective issues in problem solving. Several dimensions of the emotional states of problem solvers are specified. Implications of this framework for research on affective issues in problem solving are also discussed. (PK)

  1. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    ERIC Educational Resources Information Center

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  2. A Descriptive Study of Cooperative Problem Solving Introductory Physics Labs

    ERIC Educational Resources Information Center

    Knutson, Paul Aanond

    2011-01-01

    The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those…

  3. A Tool for Helping Veterinary Students Learn Diagnostic Problem Solving.

    ERIC Educational Resources Information Center

    Danielson, Jared A.; Bender, Holly S.; Mills, Eric M.; Vermeer, Pamela J.; Lockee, Barbara B.

    2003-01-01

    Describes the result of implementing the Problem List Generator, a computer-based tool designed to help clinical pathology veterinary students learn diagnostic problem solving. Findings suggest that student problem solving ability improved, because students identified all relevant data before providing a solution. (MES)

  4. Gender Differences in Chemical Problem Solving amongst Nigerian Students.

    ERIC Educational Resources Information Center

    Adigwe, J. C.

    1992-01-01

    This study investigated sex differences in chemical problem solving among Nigerian secondary school chemistry students (100 males and 100 females). Male students excelled over the female students in the following problem-solving processes: (1) problem understanding; (2) construction and execution of solution plans; (3) exhibition of structural…

  5. Problem-Solving during Shared Reading at Kindergarten

    ERIC Educational Resources Information Center

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  6. Problem-Solving Test: Southwestern Blotting

    ERIC Educational Resources Information Center

    Szeberényi, József

    2014-01-01

    Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…

  7. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  8. The Problems with Problem Solving: Reflections on the Rise, Current Status, and Possible Future of a Cognitive Research Paradigm

    ERIC Educational Resources Information Center

    Ohlsson, Stellan

    2012-01-01

    The research paradigm invented by Allen Newell and Herbert A. Simon in the late 1950s dominated the study of problem solving for more than three decades. But in the early 1990s, problem solving ceased to drive research on complex cognition. As part of this decline, Newell and Simon's most innovative research practices--especially their method for…

  9. Verification of Algebra Step Problems: A Chronometric Study of Human Problem Solving. Technical Report No. 253. Psychology and Education Series.

    ERIC Educational Resources Information Center

    Matthews, Paul G.; Atkinson, Richard C.

    This paper reports an experiment designed to test theoretical relations among fast problem solving, more complex and slower problem solving, and research concerning fundamental memory processes. Using a cathode ray tube, subjects were presented with propositions of the form "Y is in list X" which they memorized. In later testing they were asked to…

  10. Cognitive Science: Problem Solving And Learning For Physics Education

    NASA Astrophysics Data System (ADS)

    Ross, Brian H.

    2007-11-01

    Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.

  11. Understanding the Problem. Problem Solving and Communication Activity Series. The Math Forum: Problems of the Week

    ERIC Educational Resources Information Center

    Math Forum @ Drexel, 2009

    2009-01-01

    Different techniques for understanding a problem can lead to ideas for never-used-before solutions. Good problem-solvers use a problem-solving strategy and may come back to it frequently while they are working on the problem to refine their strategy, see if they can find better solutions, or find other questions. Writing is an integral part of…

  12. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  13. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild.

  14. The role of conceptual understanding in children's addition problem solving.

    PubMed

    Canobi, K H; Reeve, R A; Pattison, P E

    1998-09-01

    The study examined the relationship between children's conceptual understanding and addition problem-solving procedures. Forty-eight 6- to 8-year-olds solved addition problems and, in a 2nd task, were prompted to judge whether a puppet could use the arithmetic properties of one problem to solve the next problem. Relational properties between consecutive problems were manipulated to reflect aspects of additive composition, commutativity, and associativity principles. Conceptual understanding was assessed by the ability to spontaneously use such relational properties in problem solving (Task 1) and to recognize and explain them when prompted (Task 2). Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving unrelated problems. The importance of conceptual understanding for addition development is discussed.

  15. Identifying, analysing and solving problems in practice.

    PubMed

    Hewitt-Taylor, Jaqui

    When a problem is identified in practice, it is important to clarify exactly what it is and establish the cause before seeking a solution. This solution-seeking process should include input from those directly involved in the problematic situation, to enable individuals to contribute their perspective, appreciate why any change in practice is necessary and what will be achieved by the change. This article describes some approaches to identifying and analysing problems in practice so that effective solutions can be devised. It includes a case study and examples of how the Five Whys analysis, fishbone diagram, problem tree analysis, and Seven-S Model can be used to analyse a problem.

  16. How Indirect Supportive Digital Help during and after Solving Physics Problems Can Improve Problem-Solving Abilities

    ERIC Educational Resources Information Center

    Pol, Henk J.; Harskamp, Egbert G.; Suhre, Cor J. M.; Goedhart, Martin J.

    2009-01-01

    This study investigates the effectiveness of computer-delivered hints in relation to problem-solving abilities in two alternative indirect instruction schemes. In one instruction scheme, hints are available to students immediately after they are given a new problem to solve as well as after they have completed the problem. In the other scheme,…

  17. Problem Solved: How To Coach Cognition.

    ERIC Educational Resources Information Center

    Krynock, Karoline; Robb, Louise

    1999-01-01

    When faced with real-world problems, students devise accurate, logical, and creative solutions using skills connecting to different subject areas. Students are intrigued by assignments involving preservation of species and design of environmentally friendly products and transit systems. Problem-based learning depends on coaching, modeling, and…

  18. A Decision Support System for Solving Multiple Criteria Optimization Problems

    ERIC Educational Resources Information Center

    Filatovas, Ernestas; Kurasova, Olga

    2011-01-01

    In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

  19. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  20. Developing an Instrument for Identifying a Person's Ability to Solve Problems: Results of a Pilot Study

    ERIC Educational Resources Information Center

    Wuttke, Eveline; Wolf, Karsten D.

    2007-01-01

    Increasing people's ability to solve complex problems is more and more often being seen as an integral part of vocational education. While there have been numerous empirically-based approaches to the didactic structuring of teaching and learning arrangements by which students' ability to solve problems can be increased, knowledge of how to…

  1. A Modeling Perspective on Metacognition in Everyday Problem-Solving Situations.

    ERIC Educational Resources Information Center

    Hjalmarson, Margret

    This paper describes a models and modeling framework that has been applied to various areas in teaching, learning and problem solving. It examines the implications of that framework on metacognition and higher order thinking during everyday problem-solving situations that required teams of students to produce complex solutions in approximately 1-2…

  2. Working Memory, Visual-Spatial-Intelligence and Their Relationship to Problem-Solving

    ERIC Educational Resources Information Center

    Buhner, Markus; Kroner, Stephan; Ziegler, Matthias

    2008-01-01

    The relationship between working memory, intelligence and problem-solving is explored. Wittmann and Suss [Wittmann, W.W., & Suss, H.M. (1999). Investigating the paths between working memory, intelligence, knowledge, and complex problem-solving performances via Brunswik symmetry. In P.L. Ackerman, R.D. Roberts (Ed.), "Learning and individual…

  3. Problem Solving in Technology Rich Contexts: Mathematics Sense Making in Out-of-School Environments

    ERIC Educational Resources Information Center

    Lowrie, Tom

    2005-01-01

    This investigation describes the way in which a case study participant (aged 7) represented, posed and solved problems in a technology game-based environment. The out-of-school problem-solving context placed numeracy demands on the participant that were more complex and sophisticated than the type of mathematics experiences he encountered in…

  4. Genetics Inquiry: Strategies and Knowledge Geneticists Use in Solving Transmission Genetics Problems.

    ERIC Educational Resources Information Center

    Thomson, Norman; Stewart, James

    2003-01-01

    Presents a study to determine the methods inquiry geneticists use to solve dynamic complex computer-generated transmission genetics problems; specifically, their strategies and conceptual knowledge. Develops a hierarchical framework and pathway for solving problems through geneticist solution protocols and interviews. (Contains 32 references.)…

  5. Learning Problem-Solving through Making Games at the Game Design and Learning Summer Program

    ERIC Educational Resources Information Center

    Akcaoglu, Mete

    2014-01-01

    Today's complex and fast-evolving world necessitates young students to possess design and problem-solving skills more than ever. One alternative method of teaching children problem-solving or thinking skills has been using computer programming, and more recently, game-design tasks. In this pre-experimental study, a group of middle school…

  6. Digit Delight: Problem-solving Activities Using 0 through 9.

    ERIC Educational Resources Information Center

    Balka, Don S.

    1988-01-01

    Several problem-solving activities involving only 0-9 to be used with sets of ceramic tiles are presented. Finding specified sums, differences, or products is the object of most of the problems. (MNS)

  7. Identifying, analysing and solving problems in practice.

    PubMed

    Hewitt-Taylor, Jaqui

    When a problem is identified in practice, it is important to clarify exactly what it is and establish the cause before seeking a solution. This solution-seeking process should include input from those directly involved in the problematic situation, to enable individuals to contribute their perspective, appreciate why any change in practice is necessary and what will be achieved by the change. This article describes some approaches to identifying and analysing problems in practice so that effective solutions can be devised. It includes a case study and examples of how the Five Whys analysis, fishbone diagram, problem tree analysis, and Seven-S Model can be used to analyse a problem. PMID:22848969

  8. Aquarium Problems: How To Solve Them

    ERIC Educational Resources Information Center

    DeFilippo, Shirley

    1975-01-01

    Presents some solutions to problems commonly encountered in maintaining a classroom aquarium: pH control, overfeeding, overcrowding of tank populations, incorrect temperature settings, faulty introduction of fish into the tank, and the buildup of too many nitrogenous wastes. (PB)

  9. An emergency medicine clinical problem-solving system.

    PubMed

    Papa, F J

    1985-07-01

    The availability of complete, accurate, and current medical information is an important aspect of clinical problem solving. As the body of medical information grows and increasingly is reformatted into problem-oriented references, information processing by physicians will grow in importance. The most popular clinical problem-solving method, the Weed problem-oriented medical record, primarily records information; it does not provide an explicit information-processing model. An emergency medicine clinical problem-solving system containing information recording and processing methodologies is presented. The information processing methodology of this system is highlighted.

  10. Trends in problem-solving research - Twelve recently described tasks.

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.; Morgan, B. B., Jr.

    1971-01-01

    Review of descriptions of the 12 problem-solving tasks developed since the last review (Ray, 1955) of this topic, indicating that the newer tasks are more sophisticated in design and provide for better experimental control than those used prior to 1953. Validity, reliability, sensitivity, trainability, problem structure, and problem difficulty are discussed as criteria for the selection of tasks to be used in studies of skilled problem-solving performance.

  11. Brain size predicts problem-solving ability in mammalian carnivores

    PubMed Central

    Benson-Amram, Sarah; Dantzer, Ben; Stricker, Gregory; Swanson, Eli M.; Holekamp, Kay E.

    2016-01-01

    Despite considerable interest in the forces shaping the relationship between brain size and cognitive abilities, it remains controversial whether larger-brained animals are, indeed, better problem-solvers. Recently, several comparative studies have revealed correlations between brain size and traits thought to require advanced cognitive abilities, such as innovation, behavioral flexibility, invasion success, and self-control. However, the general assumption that animals with larger brains have superior cognitive abilities has been heavily criticized, primarily because of the lack of experimental support for it. Here, we designed an experiment to inquire whether specific neuroanatomical or socioecological measures predict success at solving a novel technical problem among species in the mammalian order Carnivora. We presented puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species from nine families housed in multiple North American zoos. We found that species with larger brains relative to their body mass were more successful at opening the boxes. In a subset of species, we also used virtual brain endocasts to measure volumes of four gross brain regions and show that some of these regions improve model prediction of success at opening the boxes when included with total brain size and body mass. Socioecological variables, including measures of social complexity and manual dexterity, failed to predict success at opening the boxes. Our results, thus, fail to support the social brain hypothesis but provide important empirical support for the relationship between relative brain size and the ability to solve this novel technical problem. PMID:26811470

  12. Brain size predicts problem-solving ability in mammalian carnivores.

    PubMed

    Benson-Amram, Sarah; Dantzer, Ben; Stricker, Gregory; Swanson, Eli M; Holekamp, Kay E

    2016-03-01

    Despite considerable interest in the forces shaping the relationship between brain size and cognitive abilities, it remains controversial whether larger-brained animals are, indeed, better problem-solvers. Recently, several comparative studies have revealed correlations between brain size and traits thought to require advanced cognitive abilities, such as innovation, behavioral flexibility, invasion success, and self-control. However, the general assumption that animals with larger brains have superior cognitive abilities has been heavily criticized, primarily because of the lack of experimental support for it. Here, we designed an experiment to inquire whether specific neuroanatomical or socioecological measures predict success at solving a novel technical problem among species in the mammalian order Carnivora. We presented puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species from nine families housed in multiple North American zoos. We found that species with larger brains relative to their body mass were more successful at opening the boxes. In a subset of species, we also used virtual brain endocasts to measure volumes of four gross brain regions and show that some of these regions improve model prediction of success at opening the boxes when included with total brain size and body mass. Socioecological variables, including measures of social complexity and manual dexterity, failed to predict success at opening the boxes. Our results, thus, fail to support the social brain hypothesis but provide important empirical support for the relationship between relative brain size and the ability to solve this novel technical problem.

  13. Fourth Order Algorithms for Solving Diverse Many-Body Problems

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Forbert, Harald A.; Chen, Chia-Rong; Kidwell, Donald W.; Ciftja, Orion

    2001-03-01

    We show that the method of factorizing an evolution operator of the form e^ɛ(A+B) to fourth order with purely positive coefficient yields new classes of symplectic algorithms for solving classical dynamical problems, unitary algorithms for solving the time-dependent Schrödinger equation, norm preserving algorithms for solving the Langevin equation and large time step convergent Diffusion Monte Carlo algorithms. Results for each class of problems will be presented and disucss

  14. The Effects of Service Learning on Student Problem Solving

    ERIC Educational Resources Information Center

    Guo, Fangfang; Yao, Meilin; Wang, Cong; Yan, Wenfan; Zong, Xiaoli

    2016-01-01

    Previous research indicated that service learning (SL) is an effective pedagogy to improve students' problem-solving ability and increase their classroom engagement. However, studies on SL are rare in China. This study examined the effects of SL on the problem solving of Chinese undergraduate students as well as the mechanism through which it…

  15. Solving L-L Extraction Problems with Excel Spreadsheet

    ERIC Educational Resources Information Center

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  16. Emerging Consensus in Novice Physics Problem Solving Research.

    ERIC Educational Resources Information Center

    Roth, Christopher; Chaiklin, Seth

    During the summer of 1986 a conference funded by the National Science Foundation (NSF) was organized to assess the current state of cognitive research on the psychology of physics problem solving, and to examine the needs of physics instructors and instructional designers that must be addressed by a psychological theory of physics problem solving.…

  17. Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.

    2012-01-01

    Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…

  18. Selection and Use of Propositional Knowledge in Statistical Problem Solving.

    ERIC Educational Resources Information Center

    Broers, Nick J.

    2002-01-01

    Trained 10 undergraduate psychology students to have the knowledge needed to solve 5 multiple choice problems on descriptive regression analysis and asked them to think aloud while attempting to solve the problems. Analysis of responses shows that failure to select relevant information in the text, failure to retrieve relevant propositional…

  19. Measuring Problem Solving Skills in Plants vs. Zombies 2

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin

    2015-01-01

    We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

  20. Problem Solving in Social Studies: Concepts and Critiques.

    ERIC Educational Resources Information Center

    Van Sickle, Ronald L.; Hoge, John D.

    Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…

  1. A Longitudinal Study of Database-Assisted Problem Solving.

    ERIC Educational Resources Information Center

    Wildemuth, Barbara M.; Friedman, Charles P.; Keyes, John; Downs, Stephen M.

    2000-01-01

    Examines the effects of database assistance on clinical problem solving across three cohorts of medical students and two database interfaces. Discusses the relationship between personal domain knowledge and problem solving, personal domain knowledge and database searching, and comparisons of different interface styles in information retrieval…

  2. Toward a Comprehensive Model of Problem-Solving.

    ERIC Educational Resources Information Center

    Pitt, Ruth B.

    Presented is a model of problem solving that incorporates elements of hypothetico-deductive reasoning in the Piagetian sense, and heuristic-algorithmic processing in the information-processing sense. It assumes that people invoke both formal reasoning strategies and learned algorithms whenever they solve problems. The proposed model integrates the…

  3. Peer Instruction Enhanced Meaningful Learning: Ability to Solve Novel Problems

    ERIC Educational Resources Information Center

    Cortright, Ronald N.; Collins, Heidi L.; DiCarlo, Stephen E.

    2005-01-01

    Students must be able to interpret, relate, and incorporate new information with existing knowledge and apply the new information to solve novel problems. Peer instruction is a cooperative learning technique that promotes critical thinking, problem solving, and decision-making skills. Therefore, we tested the hypothesis that peer instruction…

  4. Facilitating Flexible Problem Solving: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Kalyuga, Slava; Renkl, Alexander; Paas, Fred

    2010-01-01

    The development of flexible, transferable problem-solving skills is an important aim of contemporary educational systems. Since processing limitations of our mind represent a major factor influencing any meaningful learning, the acquisition of flexible problem-solving skills needs to be based on known characteristics of our cognitive architecture…

  5. Computer-Based Inquiry into Scientific Problem Solving.

    ERIC Educational Resources Information Center

    Berkowitz, Melissa S.; Szabo, Michael

    1979-01-01

    Problem solving performance of individuals was compared with that of dyads at three levels of mental ability using a computer-based inquiry into the riddle of the frozen Wooly Mammoth. Results indicated significant interactions between grouping and mental ability for certain problem solving internal measures. (RAO)

  6. Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components.

    ERIC Educational Resources Information Center

    Marshall, Sandra P.

    This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…

  7. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    PubMed

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions.

  8. Learning from Examples versus Verbal Directions in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Fincham, Jon M.; Anderson, John R.

    2015-01-01

    This event-related fMRI study investigated the differences between learning from examples and learning from verbal directions in mathematical problem solving and how these instruction types affect the activity of relevant brain regions during instruction and solution periods within problem-solving trials. We identified distinct neural signatures…

  9. Best Known Problem Solving Strategies in "High-Stakes" Assessments

    ERIC Educational Resources Information Center

    Hong, Dae S.

    2011-01-01

    In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…

  10. A Markov Model Analysis of Problem-Solving Progress.

    ERIC Educational Resources Information Center

    Vendlinski, Terry

    This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…

  11. Students THINK: A Framework for Improving Problem Solving

    ERIC Educational Resources Information Center

    Thomas, Kelli R.

    2006-01-01

    This article presents the results of research about students' and teachers' use of an interaction framework (THINK) to guide group communication about problem solving. Students who used the THINK framework demonstrated greater gains in problem-solving achievement than students who did not use the framework.

  12. Problem Solving, Reasoning, and Analytical Thinking in a Classroom Environment

    ERIC Educational Resources Information Center

    Robbins, Joanne K.

    2011-01-01

    Problem solving, reasoning, and analytical thinking are defined and described as teachable repertoires. This paper describes work performed at a school serving special needs children, Morningside Academy, that has resulted in specific procedures developed over the past 15 years. These procedures include modifying "Think Aloud Pair Problem Solving"…

  13. "Opportunities in Work Clothes": Online Problem-Solving Project Structures.

    ERIC Educational Resources Information Center

    Harris, Judi

    1994-01-01

    Provides activity structures for and gives examples of problem-solving projects to be used with educational telecomputing. Highlights include information searches, electronic process writing, sequential creations, parallel problem solving, simulations, social action projects, and instructions for accessing information about these and other…

  14. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  15. A Case Study of Dynamic Visualization and Problem Solving

    ERIC Educational Resources Information Center

    Lavy, Ilana

    2007-01-01

    This paper reports an example of a situation in which university students had to solve geometrical problems presented to them dynamically using the interactive computerized environment of the "MicroWorlds Project Builder". In the process of the problem solving, the students used ten different solution strategies. The unsuccessful strategies were…

  16. Measuring Problem Solving with Technology: A Demonstration Study for NAEP

    ERIC Educational Resources Information Center

    Bennett, Randy Elliot; Persky, Hilary; Weiss, Andy; Jenkins, Frank

    2010-01-01

    This paper describes a study intended to demonstrate how an emerging skill, problem solving with technology, might be measured in the National Assessment of Educational Progress (NAEP). Two computer-delivered assessment scenarios were designed, one on solving science-related problems through electronic information search and the other on solving…

  17. Problem Solving and Collaboration Using Mobile Serious Games

    ERIC Educational Resources Information Center

    Sanchez, Jaime; Olivares, Ruby

    2011-01-01

    This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…

  18. Logo Programming, Problem Solving, and Knowledge-Based Instruction.

    ERIC Educational Resources Information Center

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  19. A New Approach: Computer-Assisted Problem-Solving Systems

    ERIC Educational Resources Information Center

    Gok, Tolga

    2010-01-01

    Computer-assisted problem solving systems are rapidly growing in educational use and with the advent of the Internet. These systems allow students to do their homework and solve problems online with the help of programs like Blackboard, WebAssign and LON-CAPA program etc. There are benefits and drawbacks of these systems. In this study, the…

  20. Problem Solving and the Development of Expertise in Management.

    ERIC Educational Resources Information Center

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  1. Students' Use of Technological Features while Solving a Mathematics Problem

    ERIC Educational Resources Information Center

    Lee, Hollylynne Stohl; Hollebrands, Karen F.

    2006-01-01

    The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

  2. Improving Students' Ability To Problem Solve through Social Skills Instruction.

    ERIC Educational Resources Information Center

    Hopp, Mary Ann; Horn, Cheryl L.; McGraw, Kelleen; Meyer, Jenny

    When elementary and middle level students lack effective problem-solving skills, they may make poor behavior choices in social conflicts, contributing to a negative learning and instructional environment. This action research project evaluated the impact of using social skills instruction to improve students' ability to solve problems related to…

  3. Connectedness Indicators and the Prediction of Problem Solving Success

    ERIC Educational Resources Information Center

    Yu-Shattuck, Sharon X.

    2009-01-01

    In this study, it was hypothesized that problem solving success is dependent upon two related but district types of mathematical knowledge, content indicators and connectedness indicators. Results did indeed display that the problem solving success of 188 undergraduate students was related to these two indicators. The correlations of content…

  4. Problem Solving: Getting to the Heart of Mathematics.

    ERIC Educational Resources Information Center

    Jarrett, Denise, Ed.

    2000-01-01

    This publication features articles that illustrate how several Northwest teachers are using problem solving to achieve rigorous and imaginative learning in their classrooms. Articles include: (1) "Open-Ended Problem Solving: Weaving a Web of Ideas" (Denise Jarrett); (2) "Teenager or Tyke, Students Learn Best by Tackling Challenging Math" (Suzie…

  5. Fostering Problem-Solving in a Virtual Environment

    ERIC Educational Resources Information Center

    Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George

    2015-01-01

    This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…

  6. A Descriptive Model of Information Problem Solving while Using Internet

    ERIC Educational Resources Information Center

    Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber

    2009-01-01

    This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information problems, while thinking aloud. In-depth analyses…

  7. Assessing Creative Problem-Solving with Automated Text Grading

    ERIC Educational Resources Information Center

    Wang, Hao-Chuan; Chang, Chun-Yen; Li, Tsai-Yen

    2008-01-01

    The work aims to improve the assessment of creative problem-solving in science education by employing language technologies and computational-statistical machine learning methods to grade students' natural language responses automatically. To evaluate constructs like creative problem-solving with validity, open-ended questions that elicit…

  8. Patterns of Problem-Solving in Children's Literacy and Arithmetic

    ERIC Educational Resources Information Center

    Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James

    2009-01-01

    Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years 1 and 2 on the…

  9. Social Problem Solving and Aggression: The Role of Depression

    ERIC Educational Resources Information Center

    Ozdemir, Yalcin; Kuzucu, Yasar; Koruklu, Nermin

    2013-01-01

    The purpose of the present study was to examine direct and indirect relations among social problem-solving, depression, and aggression, as well as the mediating role of depression in the link between social problem-solving and aggression among Turkish youth. Data for the present study were collected from 413 adolescents. The participants' age…

  10. The Effect of Strategy on Problem Solving: An FMRI Study

    ERIC Educational Resources Information Center

    Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.

    2010-01-01

    fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…

  11. Use of External Visual Representations in Probability Problem Solving

    ERIC Educational Resources Information Center

    Corter, James E.; Zahner, Doris C.

    2007-01-01

    We investigate the use of external visual representations in probability problem solving. Twenty-six students enrolled in an introductory statistics course for social sciences graduate students (post-baccalaureate) solved eight probability problems in a structured interview format. Results show that students spontaneously use self-generated…

  12. Autobiographical Memory and Social Problem-Solving in Asperger Syndrome

    ERIC Educational Resources Information Center

    Goddard, Lorna; Howlin, Patricia; Dritschel, Barbara; Patel, Trishna

    2007-01-01

    Difficulties in social interaction are a central feature of Asperger syndrome. Effective social interaction involves the ability to solve interpersonal problems as and when they occur. Here we examined social problem-solving in a group of adults with Asperger syndrome and control group matched for age, gender and IQ. We also assessed…

  13. Cognitive Restructuring as a First Step in Problem Solving.

    ERIC Educational Resources Information Center

    Bodner, George M.; McMillen, Theresa L. B.

    Chemists have bemoaned for years their students' inability to solve problems in introductory chemistry courses. However, at least part of this inability must be attributed to the fact that chemists have historically tried to teach their students to solve problems by doing nothing more than working examples. In recent years, chemists have begun to…

  14. Teaching Evidence-based Medicine Using Literature for Problem Solving.

    ERIC Educational Resources Information Center

    Mottonen, Merja; Tapanainen, Paivi; Nuutinen, Matti; Rantala, Heikki; Vainionpaa, Leena; Uhari, Matti

    2001-01-01

    Evidence-based medicine--the process of using research findings systematically as the basis for clinical decisions--can be taught using problem-solving teaching methods. Evaluates whether it was possible to motivate students to use the original literature by giving them selected patient problems to solve. (Author/ASK)

  15. Computers and Problem Solving for Sixth-Grade.

    ERIC Educational Resources Information Center

    Oughton, John M.

    1995-01-01

    Presents a curriculum unit designed for average sixth-grade students intended to engage them in problem-solving experiences and to teach them problem-solving strategies. The curriculum consists of 20 sessions in which students engage in various activities using the following software packages: The Adventures of Jasper Woodbury, Rescue at Boone's…

  16. Administrator Participation in Promoting Effective Problem-Solving Teams

    ERIC Educational Resources Information Center

    Rafoth, Mary Ann; Foriska, Terry

    2006-01-01

    Although the participation of administrators in problem-solving consultation teams is frequently mentioned in the literature as an important factor in the effectiveness of those teams, there has been little research into the impact of administrators on such teams. The impact of administrator participation on problem-solving consultation teams…

  17. Role of Multiple Representations in Physics Problem Solving

    ERIC Educational Resources Information Center

    Maries, Alexandru

    2013-01-01

    This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…

  18. Prospective Teachers' Problem Solving Skills and Self-Confidence Levels

    ERIC Educational Resources Information Center

    Gursen Otacioglu, Sena

    2008-01-01

    The basic objective of the research is to determine whether the education that prospective teachers in different fields receive is related to their levels of problem solving skills and self-confidence. Within the mentioned framework, the prospective teachers' problem solving and self-confidence levels have been examined under several variables.…

  19. Robotics and Children: Science Achievement and Problem Solving.

    ERIC Educational Resources Information Center

    Wagner, Susan Preston

    1999-01-01

    Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…

  20. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  1. Reading-Enhanced Word Problem Solving: A Theoretical Model

    ERIC Educational Resources Information Center

    Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.

    2012-01-01

    There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…

  2. Phenomenographic Study of Students' Problem Solving Approaches in Physics

    ERIC Educational Resources Information Center

    Walsh, Laura N.; Howard, Robert G.; Bowe, Brian

    2007-01-01

    This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…

  3. Future Problem Solving: Taking It beyond the Classroom.

    ERIC Educational Resources Information Center

    Hibel, John

    1991-01-01

    A former participant in the Future Problem Solving Program reminisces about his experience in local and national competitions, describes the program's unique features (its emphasis on creativity and focus on the future), and notes the usefulness of the problem-solving process in his work with the Corporate Audit Staff of General Electric. (JDD)

  4. Introduction to LogoWriter and Problem Solving for Educators.

    ERIC Educational Resources Information Center

    Yoder, Sharon Burrowes; Moursund, Dave

    This book about Logo programming and problem solving is designed to introduce preservice and inservice teachers to problem solving in a Logo programming environment. Such a unit of study can be an important part of an introductory computers in education course for educators. Although Logowriter--a version of Logo--was developed by Logo Computer…

  5. Improving Mathematical Problem Solving Skills: The Journey to Success

    ERIC Educational Resources Information Center

    Rousseau, Donna

    2009-01-01

    The purpose of this study was to determine if problem solving skills can be improved through the use of an interdisciplinary program incorporating reading, music, and mathematics. The study was conducted in seven fifth grade classrooms, and addresses the need to teach problem solving strategies in elementary school and the importance of problem…

  6. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled

  7. Solving complex-valued linear systems via equivalent real formulations

    SciTech Connect

    DAY,DAVID M.; HEROUX,MICHAEL A.

    2000-05-22

    Most algorithms used in preconditioned iterative methods are generally applicable to complex valued linear systems, with real valued linear systems simply being a special case. However, most iterative solver packages available today focus exclusively on real valued systems, or deal with complex valued systems as an afterthought. One obvious approach to addressing this problem is to recast the complex problem into one of a several equivalent real forms and then use a real valued solver to solve the related system. However, well-known theoretical results showing unfavorable spectral properties for the equivalent real forms have diminished enthusiasm for this approach. At the same time, experience has shown that there are situations where using an equivalent real form can be very effective. In this paper, the authors explore this approach, giving both theoretical and experimental evidence that an equivalent real form can be useful for a number of practical situations. Furthermore, they show that by making good use of some of the advance features of modem solver packages, they can easily generate equivalent real form preconditioners that are computationally efficient and mathematically identical to their complex counterparts. Using their techniques, they are able to solve very ill-conditioned complex valued linear systems for a variety of large scale applications. However, more importantly, they shed more light on the effectiveness of equivalent real forms and more clearly delineate how and when they should be used.

  8. Solving radiation problems at particle accelerators

    SciTech Connect

    Nikolai V. Mokhov

    2001-12-11

    At high-intensity high-energy particle accelerators, consequences of a beam-induced radiation impact on machine and detector components, people, environment and complex performance can range from negligible to severe. The specifics, general approach and tools used at such machines for radiation analysis are described. In particular, the world leader Fermilab accelerator complex is considered, with its fixed target and collider experiments, as well as new challenging projects such as LHC, VLHC, muon collider and neutrino factory. The emphasis is on mitigation of deleterious beam-induced radiation effects and on the key role of effective computer simulations.

  9. Behavioral flexibility and problem solving in an invasive bird.

    PubMed

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  10. Behavioral flexibility and problem solving in an invasive bird

    PubMed Central

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984

  11. Are We Solving the Big Problems?

    ERIC Educational Resources Information Center

    Shapiro, Edward S.

    2006-01-01

    In 2000, as part of an invited symposium celebrating the start of the new millennium, the author was asked to write an article for "School Psychology Review" in which he tried to look ahead to where the field of school psychology needed to focus its energy in addressing the academic skills problems of children in schools. The article noted that…

  12. Student Ecosystems Problem Solving Using Computer Simulation.

    ERIC Educational Resources Information Center

    Howse, Melissa A.

    The purpose of this study was to determine the procedural knowledge brought to, and created within, a pond ecology simulation by students. Environmental Decision Making (EDM) is an ecosystems modeling tool that allows users to pose their own problems and seek satisfying solutions. Of specific interest was the performance of biology majors who had…

  13. Solving the 10 Most Common Carpet Problems.

    ERIC Educational Resources Information Center

    Hilton, Michael

    1998-01-01

    Identifies the 10 most common carpet problems in school facilities and offers solutions. These include: transition areas, moisture, spot removal, recurring spots, cleaning agents, allergens, wicking, biological contamination, equipment selection, and cleaning methods. Ensuring a successful maintenance program results in satisfactory appearance,…

  14. Determinants of Learned Helplessness in Problem Solving.

    ERIC Educational Resources Information Center

    Keller, John M.

    Despite the support for the proposition that learning is enhanced by the reinforcement of correct responses, there remain learners who continue to fail when contingent reinforcement is administered, even though they may have the ability and be motivated to succeed. This condition, known as learned helplessness, presents a problem for instructional…

  15. Evolutionary strategies for solving optimization problems

    NASA Astrophysics Data System (ADS)

    Ebeling, Werner; Reimann, Axel; Molgedey, Lutz

    We will give a survey of applications of thermodynamically and biologically oriented evolutionary strategies for optimization problems. Primarily, we investigate the solution of discrete optimization problems, most of combinatorial type, using a certain class of coupled differential equations. The problem is to find the minimum on a large set of real numbers (the potential) Ui, defined on the integer set i = 1 ...s, where s is an extremely large nu mber. The stationary states of the system correspond to relative optima on the discrete set. First, several elementary evolutionary strategies are described by simple deterministic equations, leading to a high-dimensional system of coupled differential equations. The known equations for thermodynamic search processes and for simple models of biological evolution are unified by defining a two-parameter family of equations which embed both cases. The unified equations model mixed Boltzmann/Darwin- strategies including basic elements of thermodynamical and biological evolution as well. In a next step a master equation model in the occupation number space is defined. We investigate the transition probabilities and the convergence properties using tools from the theory of stochastic processes. Several examples are analyzed. In particular we study the optimization of theoretical model sequences with simple valuation rules. In order to demonstrate that the strategies developed here may also be used to investigate realistic problems we present an example application to RNA folding (search for a minimum free energy configuration).

  16. Solving College and University Problems Through Technology.

    ERIC Educational Resources Information Center

    Mebane, Donna Davis, Ed.

    Addressed to individuals in higher education who are concerned about the application of information and data processing technologies to problems in college and university administration, instruction, and research, the 43 papers in the collection are concerned with such topics as the nature of new information technology; the use of information…

  17. Problem Solving in Professional Adult Education.

    ERIC Educational Resources Information Center

    Commission of Professors of Adult Education.

    The papers in the collection reflect areas of concern to adult educators, especially at the university level. The first of the collection's three sections deals with graduate program design and contains three papers: Problems of Graduate Program Design, Wilson B. Thiede, and two reaction papers by John Ohliger and Clive C. Veri. Section 2 on…

  18. Assessing Thinking Skills in Social Problem Solving.

    ERIC Educational Resources Information Center

    Nagy, Philip

    The purpose of this report is to explore an analysis of discussions, among groups of elementary school children, of a social problem. The intent of the research is to contribute to the advancement of methods for program and student assessment, particularly toward goals not usually evaluated by traditional testing programs. The analysis method used…

  19. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  20. An Investigation on Chinese Teachers' Realistic Problem Posing and Problem Solving Ability and Beliefs

    ERIC Educational Resources Information Center

    Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven

    2011-01-01

    In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…