Sample records for solving important problems

  1. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  2. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  3. Problem Solving: How Do In-Service Secondary School Teachers of Mathematics Make Sense of a Non-Routine Problem Context?

    ERIC Educational Resources Information Center

    Mwei, Philip K.

    2017-01-01

    The concept of mathematical problem solving is an important mathematical process in mathematics curricula of education systems worldwide. These math curricula demand that learners are exposed to authentic problems that foster successful problem solving. To attain this very important goal, there must be mathematics teachers well versed in content…

  4. Investigating Problem-Solving Perseverance Using Lesson Study

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Huhn, Craig

    2017-01-01

    Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…

  5. The Relationship between Mathematical Problem-Solving Skills and Self-Regulated Learning through Homework Behaviours, Motivation, and Metacognition

    ERIC Educational Resources Information Center

    Özcan, Zeynep Çigdem

    2016-01-01

    Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students' self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving…

  6. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  7. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    PubMed

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  8. Examining problem solving in physics-intensive Ph.D. research

    NASA Astrophysics Data System (ADS)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.

  9. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  10. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  11. Cognitive Predictors of Everyday Problem Solving across the Lifespan

    PubMed Central

    Chen, Xi; Hertzog, Christopher; Park, Denise C.

    2017-01-01

    Background An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. Objectives The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT; [1]). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Method Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24–93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on the Everyday Problems Test. Results Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of fifty. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. Conclusion This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. PMID:28273664

  12. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  13. Perspectives on Problem Solving and Instruction

    ERIC Educational Resources Information Center

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  14. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  15. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  16. Improving the Efficiency of Problem-Solving Practice for Children with Retrieval Difficulties

    ERIC Educational Resources Information Center

    Hopkins, Sarah; de Villiers, Celeste

    2016-01-01

    Despite the importance placed on how children come to solve single-digit addition problems, many children count on to solve these problems when they are expected to use accurate retrieval-based strategies. In this study, we assessed if a subitising intervention improved the rate at which problem-solving practice promoted retrieval, using a…

  17. Tour of a Simple Trigonometry Problem

    ERIC Educational Resources Information Center

    Poon, Kin-Keung

    2012-01-01

    This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was…

  18. The Social Problem-Solving Questionnaire: Evaluation of Psychometric Properties among Turkish Primary School Students

    ERIC Educational Resources Information Center

    Dereli Iman, Esra

    2013-01-01

    Problem Statement: Children, like adults, face numerous problems and conflicts in their everyday lives, including issues with peers, siblings, older children, parents, teachers, and other adults. The methods children use to solve such problems are more important than actually facing the problems. The lack of effective social problem-solving skills…

  19. A Cognitive Simulator for Learning the Nature of Human Problem Solving

    NASA Astrophysics Data System (ADS)

    Miwa, Kazuhisa

    Problem solving is understood as a process through which states of problem solving are transferred from the initial state to the goal state by applying adequate operators. Within this framework, knowledge and strategies are given as operators for the search. One of the most important points of researchers' interest in the domain of problem solving is to explain the performance of problem solving behavior based on the knowledge and strategies that the problem solver has. We call the interplay between problem solvers' knowledge/strategies and their behavior the causal relation between mental operations and behavior. It is crucially important, we believe, for novice learners in this domain to understand the causal relation between mental operations and behavior. Based on this insight, we have constructed a learning system in which learners can control mental operations of a computational agent that solves a task, such as knowledge, heuristics, and cognitive capacity, and can observe its behavior. We also introduce this system to a university class, and discuss which findings were discovered by the participants.

  20. Deficiency of Self-Efficacy in Problem-Solving as a Contributory Factor in Family Instability: A Qualitative Study.

    PubMed

    Pourmovahed, Zahra; Mazloomy Mahmoodabad, Seyed Saied; Zareei Mahmoodabadi, Hassan; Tavangar, Hossein; Yassini Ardekani, Seyed Mojtaba; Vaezi, Ali Akbar

    2018-01-01

    Objective: Problem-solving ability is one of the most important means of family stability that enables the families to understand their roles, functions, and performances. Self-efficacy deficiency in problem-solving runs through many families. This qualitative study was conducted to investigate and describe how couples solve problems in their families. Method: This study was conducted to detect couples' self-efficacy deficiency in problem-solving using purposive sampling method. Several deep semi-structured interviews based on McMaster model and observations were conducted by nine family therapists and psychiatrists on four couples (eight persons) living in Yazd (Iran).The interviews were performed, audio-recorded, and transcribed verbatim. The analysis was interpreted through directed content analysis methods. Results: Families in Yazd (Iran) made some attempts to solve their problems, but their efforts were not enough, and thus they suffered from self-efficacy deficiency, which included 8 categories. The main theme distilled from the data of 17 participants was self-efficacy deficiency, which included the following categories: avoidance, insolvency, interference from others, ineffective self-treatment, behavioral problems, stubbornness, superficiality, and denial. Conclusion: It is of paramount importance to identify self-efficacy deficiency in families and promote problem- solving programs to increase family stability. In the present study, the main deficiencies in problem-solving were detected.

  1. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness.

    PubMed

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah

    2016-06-01

    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  2. The Physics Workbook: A Needed Instructional Device.

    ERIC Educational Resources Information Center

    Brekke, Stewart E.

    2003-01-01

    Points out the importance of problem solving as a fundamental skill and how students struggle with problem solving in physics courses. Describes a workbook developed as a solution to students' struggles that features simple exercises and advanced problem solving. (Contains 12 references.) (Author/YDS)

  3. Tour of a simple trigonometry problem

    NASA Astrophysics Data System (ADS)

    Poon, Kin-Keung

    2012-06-01

    This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was implemented in a high school and the results indicated that students are relatively weak in problem-solving abilities but they understand and appreciate the thinking process in different stages and steps of the activities.

  4. Cognitive functioning and social problem-solving skills in schizophrenia.

    PubMed

    Hatashita-Wong, Michi; Smith, Thomas E; Silverstein, Steven M; Hull, James W; Willson, Deborah F

    2002-05-01

    This study examined the relationships between symptoms, cognitive functioning, and social skill deficits in schizophrenia. Few studies have incorporated measures of cognitive functioning and symptoms in predictive models for social problem solving. For our study, 44 participants were recruited from consecutive outpatient admissions. Neuropsychological tests were given to assess cognitive function, and social problem solving was assessed using structured vignettes designed to evoke the participant's ability to generate, evaluate, and apply solutions to social problems. A sequential model-fitting method of analysis was used to incorporate social problem solving, symptom presentation, and cognitive impairment into linear regression models. Predictor variables were drawn from demographic, cognitive, and symptom domains. Because this method of analysis was exploratory and not intended as hierarchical modelling, no a priori hypotheses were proposed. Participants with higher scores on tests of cognitive flexibility were better able to generate accurate, appropriate, and relevant responses to the social problem-solving vignettes. The results suggest that cognitive flexibility is a potentially important mediating factor in social problem-solving competence. While other factors are related to social problem-solving skill, this study supports the importance of cognition and understanding how it relates to the complex and multifaceted nature of social functioning.

  5. Innovative problem solving by wild spotted hyenas

    PubMed Central

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  6. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  7. Development and validation of a physics problem-solving assessment rubric

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer Lynn

    Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.

  8. Cross-syndrome comparison of real-world executive functioning and problem solving using a new problem-solving questionnaire.

    PubMed

    Camp, Joanne S; Karmiloff-Smith, Annette; Thomas, Michael S C; Farran, Emily K

    2016-12-01

    Individuals with neurodevelopmental disorders like Williams syndrome and Down syndrome exhibit executive function impairments on experimental tasks (Lanfranchi, Jerman, Dal Pont, Alberti, & Vianello, 2010; Menghini, Addona, Costanzo, & Vicari, 2010), but the way that they use executive functioning for problem solving in everyday life has not hitherto been explored. The study aim is to understand cross-syndrome characteristics of everyday executive functioning and problem solving. Parents/carers of individuals with Williams syndrome (n=47) or Down syndrome (n=31) of a similar chronological age (m=17 years 4 months and 18 years respectively) as well as those of a group of younger typically developing children (n=34; m=8years 3 months) completed two questionnaires: the Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000) and a novel Problem-Solving Questionnaire. The rated likelihood of reaching a solution in a problem solving situation was lower for both syndromic groups than the typical group, and lower still for the Williams syndrome group than the Down syndrome group. The proportion of group members meeting the criterion for clinical significance on the BRIEF was also highest for the Williams syndrome group. While changing response, avoiding losing focus and maintaining perseverance were important for problem-solving success in all groups, asking for help and avoiding becoming emotional were also important for the Down syndrome and Williams syndrome groups respectively. Keeping possessions in order was a relative strength amongst BRIEF scales for the Down syndrome group. Results suggest that individuals with Down syndrome tend to use compensatory strategies for problem solving (asking for help and potentially, keeping items well ordered), while for individuals with Williams syndrome, emotional reactions disrupt their problem-solving skills. This paper highlights the importance of identifying syndrome-specific problem-solving strengths and difficulties to improve effective functioning in everyday life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Decision-Making and Problem-Solving Approaches in Pharmacy Education

    PubMed Central

    Martin, Lindsay C.; Holdford, David A.

    2016-01-01

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823

  10. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    PubMed

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  11. Role of Multiple Representations in Physics Problem Solving

    ERIC Educational Resources Information Center

    Maries, Alexandru

    2013-01-01

    This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…

  12. The profile of students’ problem-solving skill in physics across interest program in the secondary school

    NASA Astrophysics Data System (ADS)

    Jua, S. K.; Sarwanto; Sukarmin

    2018-05-01

    Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.

  13. Finding Trustworthy Experts to Help Problem Solving on the Programming Learning Forum

    ERIC Educational Resources Information Center

    Tseng, Shian-Shyong; Weng, Jui-Feng

    2010-01-01

    The most important thing for learners in Programming Language subject is problem solving. During the practical programming project, various problems may occur and learners usually need consultation from the senior programmers (i.e. the experts) to assist them in solving the problems. Thus, the inquiry-based learning with learning forum is applied…

  14. Internet computer coaches for introductory physics problem solving

    NASA Astrophysics Data System (ADS)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  15. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  16. Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components.

    ERIC Educational Resources Information Center

    Marshall, Sandra P.

    This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…

  17. Childhood Physical Punishment and Problem Solving in Marriage

    ERIC Educational Resources Information Center

    Cast, Alicia D.; Schweingruber, David; Berns, Nancy

    2006-01-01

    Drawing from social learning theories and symbolic interactionist understandings of social life, the authors suggest that physical punishment teaches aggressive and controlling strategies for solving the problems of living together and hinders the development of important problem-solving skills, specifically the ability to role take with others.…

  18. Exploring Primary Student's Problem-Solving Ability by Doing Tasks Like PISA's Question

    ERIC Educational Resources Information Center

    Novita, Rita; Zulkardi; Hartono, Yusuf

    2012-01-01

    Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term "problem solving" refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students' mathematical understanding and development. In addition, the contextual problem…

  19. The Problem-Solving Approach in the Teaching of Number Theory

    ERIC Educational Resources Information Center

    Toh, Pee Choon; Leong, Yew Hoong; Toh, Tin Lam; Dindyal, Jaguthsing; Quek, Khiok Seng; Tay, Eng Guan; Ho, Foo Him

    2014-01-01

    Mathematical problem solving is the mainstay of the mathematics curriculum for Singapore schools. In the preparation of prospective mathematics teachers, the authors, who are mathematics teacher educators, deem it important that pre-service mathematics teachers experience non-routine problem solving and acquire an attitude that predisposes them to…

  20. Exploring Business Students' Creative Problem-Solving Preferences

    ERIC Educational Resources Information Center

    Titus, Philip A.; Koppitsch, Steven

    2018-01-01

    Past research has established the importance of problem solving to business success. The authors explored the creative problem-solving (CPS) preferences of business students, addressing two primary issues: (a) Do CPS preferences vary across CPS stages and tasks? And (b) Do CPS preferences regarding collaboration and delegation vary by stage?…

  1. Social problem-solving deficits and hopelessness, depression, and suicidal risk in college students and psychiatric inpatients.

    PubMed

    D'Zurilla, T J; Chang, E C; Nottingham, E J; Faccini, L

    1998-12-01

    The Social Problem-Solving Inventory-Revised was used to examine the relations between problem-solving abilities and hopelessness, depression, and suicidal risk in three different samples: undergraduate college students, general psychiatric inpatients, and suicidal psychiatric inpatients. A similar pattern of results was found in both college students and psychiatric patients: a negative problem orientation was most highly correlated with all three criterion variables, followed by either a positive problem orientation or an avoidance problem-solving style. Rational problem-solving skills emerged as an important predictor variable in the suicidal psychiatric sample. Support was found for a prediction model of suicidal risk that includes problem-solving deficits and hopelessness, with partial support being found for including depression in the model as well.

  2. The Importance of Monitoring Skills in Physics Problem Solving

    ERIC Educational Resources Information Center

    Ali, Marlina; Talib, Corrienna-Abd; Hasniza Ibrahim, Nor; Surif, Johari; Halim Abdullah, Abdul

    2016-01-01

    The purpose of this paper is to show how important "monitoring" is as metacognitive skills in solving physics problems in the field mechanics. Based on test scores, twenty one students were divided into two groups: more successful (MS) and less successful (LS) problem solvers. Students were allowed to think-aloud while they worked on…

  3. Cognitive Science: Problem Solving And Learning For Physics Education

    NASA Astrophysics Data System (ADS)

    Ross, Brian H.

    2007-11-01

    Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.

  4. Task-Analytic Design of Graphic Presentations

    DTIC Science & Technology

    1990-05-18

    important premise of Larkin and Simon’s work is that, when comparing alternative presentations, it is fruitful to characterize graphic-based problem solving...using the same information-processing models used to help understand problem solving using other representations [Newell and Simon, 19721...luring execution of graphic presentation- 4 based problem -solving procedures. Chapter 2 reviews other work related to the problem of designing graphic

  5. Social Problem Solving as a Predictor of Well-Being in Adolescents and Young Adults

    ERIC Educational Resources Information Center

    Siu, Andrew M. H.; Shek, Daniel T. L.

    2010-01-01

    Social problem solving is the cognitive-affective-behavioral process by which people attempt to resolve real-life problems in a social environment, and is of key importance in the management of emotions and well-being. This paper reviews a series of studies on social problem solving conducted by the authors. First, we developed and validated the…

  6. A Structural Equation Model to Analyse the Antecedents to Students' Web-Based Problem-Solving Performance

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2015-01-01

    Web-based problem-solving, a compound ability of critical thinking, creative thinking, reasoning thinking and information-searching abilities, has been recognised as an important competence for elementary school students. Some researchers have reported the possible correlations between problem-solving competence and information searching ability;…

  7. An Information-Summarising Instruction Strategy for Improving the Web-Based Problem Solving Abilities of Students

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Kuo, Fan-Ray

    2011-01-01

    As knowledge rapidly expands and accumulates, training and assessing students' information searching ability for solving problems on the Internet has become an important and challenging issue. This research aims to improve the web-based problem solving abilities of primary school students by employing an information summarising approach for…

  8. Introduction to LogoWriter and Problem Solving for Educators.

    ERIC Educational Resources Information Center

    Yoder, Sharon Burrowes; Moursund, Dave

    This book about Logo programming and problem solving is designed to introduce preservice and inservice teachers to problem solving in a Logo programming environment. Such a unit of study can be an important part of an introductory computers in education course for educators. Although Logowriter--a version of Logo--was developed by Logo Computer…

  9. Three Measures of Family Problem Solving Behavior: A Procedural Manual.

    ERIC Educational Resources Information Center

    Nickerson, Mark; And Others

    The procedural details of three measures of family problem-solving behavior are presented. These measures are used to code videotapes that are recorded when family members discuss and try to solve a family problem that they consider important. The measures were developed to accompany methods for training parents and their preadolescent and…

  10. Skills and Dispositions for Creative Problem Solving during the Artmaking Process

    ERIC Educational Resources Information Center

    Pitri, Eliza

    2013-01-01

    In this article, Eliza Pitri states, "when allowed to make and explain their own choices, students develop invaluable creative problem-solving skills." Opportunities for such critical thinking abound in the art classroom. The importance of identifying how skills and dispositions related to creative problem solving are expressed in a…

  11. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools

    ERIC Educational Resources Information Center

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah

    2017-01-01

    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  12. Problem-solving skills and hardiness as protective factors against stress in Iranian nurses.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2014-02-01

    Nursing is a stressful occupation, even when compared with other health professions; therefore, it is necessary to advance our knowledge about the protective factors that can help reduce stress among nurses. The present study sought to investigate the associations among problem-solving skills and hardiness with perceived stress in nurses. The participants, 252 nurses from six private hospitals in Tehran, completed the Personal Views Survey, the Perceived Stress Scale, and the Problem-Solving Inventory. Structural Equation Modeling (SEM) was used to analyse the data and answer the research hypotheses. As expected, greater hardiness was associated with low levels of perceived stress, and nurses low in perceived stress were more likely to be considered approachable, have a style that relied on their own sense of internal personal control, and demonstrate effective problem-solving confidence. These findings reinforce the importance of hardiness and problem-solving skills as protective factors against perceived stress among nurses, and could be important in training future nurses so that hardiness ability and problem-solving skills can be imparted, allowing nurses to have more ability to control their perceived stress.

  13. Self-Affirmation Improves Problem-Solving under Stress

    PubMed Central

    Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751

  14. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  15. Self-affirmation improves problem-solving under stress.

    PubMed

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  16. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage

    PubMed Central

    Warren, David E.; Kurczek, Jake; Duff, Melissa C.

    2016-01-01

    Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N=5) and healthy normal comparison participants (N=5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. PMID:27010751

  17. Problem Solving in Relation to Resources in Everyday Life in Families of Children with Disabilities: A Pilot Study

    ERIC Educational Resources Information Center

    Ylven, Regina; Granlund, Mats; Persson, Carina

    2012-01-01

    Problem solving is recognized as a skill, helping families of children with disabilities to manage problems in everyday life. Family problem-solving skills may therefore be seen as an important outcome of a child and youth habilitation service. The aim of this pilot feasibility study was to examine the design of a future web-based questionnaire…

  18. Solving TSP problem with improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying

    2018-05-01

    The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.

  19. The needs analysis of learning Inventive Problem Solving for technical and vocational students

    NASA Astrophysics Data System (ADS)

    Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi

    2017-08-01

    Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.

  20. Three-M in Word Problem Solving

    ERIC Educational Resources Information Center

    Hajra, Sayonita Ghosh; Kofman, Victoria

    2018-01-01

    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  1. The perceived problem-solving ability of nurse managers.

    PubMed

    Terzioglu, Fusun

    2006-07-01

    The development of a problem-solving approach to nursing has been one of the more important changes in nursing during the last decade. Nurse Managers need to have effective problem-solving and management skills to be able to decrease the cost of the health care and to increase the quality of care. This descriptive study was conducted to determine the perceived problem-solving ability of nurse managers. From a population of 87 nurse managers, 71 were selected using the stratified random sampling method, 62 nurse managers agreed to participate. Data were collected through a questionnaire including demographic information and a problem-solving inventory. The problem-solving inventory was developed by Heppner and Petersen in 1982, and validity and readability studies were done. It was adapted to Turkish by Sahin et al (1993). The acquired data have been evaluated on the software spss 10.0 programme, using percentages, mean values, one-way anova and t-test (independent samples t-test). Most of the nurses had 11 or more years of working experience (71%) and work as charge nurses in the clinics. It was determined that 69.4% of the nurse managers did not have any educational training in administration. The most encountered problems stated were issues related to managerial (30.6%) and professional staff (25.8%). It was identified that nurse managers who had received education about management, following scientific publication and scientific meeting and had followed management models, perceived their problem-resolving skills as more adequate than the others (P>0.05). In this study, it was determined that nurses do not perceive that they have problem-solving skills at a desired level. In this context, it is extremely important that this subject be given an important place in both nursing education curriculum and continuing education programmes.

  2. Characterization and Developmental History of Problem Solving Methods in Medicine

    PubMed Central

    Harbort, Robert A.

    1980-01-01

    The central thesis of this paper is the importance of the framework in which information is structured. It is technically important in the design of systems; it is also important in guaranteeing that systems are usable by clinicians. Progress in medical computing depends on our ability to develop a more quantitative understanding of the role of context in our choice of problem solving techniques. This in turn will help us to design more flexible and responsive computer systems. The paper contains an overview of some models of knowledge and problem solving methods, a characterization of modern diagnostic techniques, and a discussion of skill development in medical practice. Diagnostic techniques are examined in terms of how they are taught, what problem solving methods they use, and how they fit together into an overall theory of interpretation of the medical status of a patient.

  3. Five Heads Are Better than One: Preliminary Results of Team-Based Learning in a Communication Disorders Graduate Course

    ERIC Educational Resources Information Center

    Epstein, Baila

    2016-01-01

    Background: Clinical problem-solving is fundamental to the role of the speech-language pathologist in both the diagnostic and treatment processes. The problem-solving often involves collaboration with clients and their families, supervisors, and other professionals. Considering the importance of cooperative problem-solving in the profession,…

  4. Use of Social Media in Different Contexts of Information Seeking: Effects of Sex and Problemsolving Style

    ERIC Educational Resources Information Center

    Kim, Kyung­-Sun; Sin, Sei­-Ching Joanna

    2015-01-01

    Introduction: Social media are increasingly popular and emerging as important information sources. The study investigates how users' sex and problem-solving style affect their use and evaluation of social media in two contexts. Method: A Web survey including the problem solving inventory (problem solving inventory) was used to collect data. Over…

  5. Socio-Demographic and Practice-Oriented Factors Related to Proficiency in Problem Solving: A Lifelong Learning Perspective

    ERIC Educational Resources Information Center

    Desjardins, Richard; Ederer, Peer

    2015-01-01

    This article explores the relative importance of different socio-demographic and practice-oriented factors that are related to proficiency in problem solving in technology-rich environments (PSTREs) and by extension may be related to complex problem solving (CPS). The empirical analysis focuses on the proficiency measurements of PSTRE made…

  6. The Motivation of Secondary School Students in Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Gasco, Javier; Villarroel, Jose-Domingo

    2014-01-01

    Introduction: Motivation is an important factor in the learning of mathematics. Within this area of education, word problem solving is central in most mathematics curricula of Secondary School. The objective of this research is to detect the differences in motivation in terms of the strategies used to solve word problems. Method: It analyzed the…

  7. The Impact of Parental Attitudes on Problem Solving Skills in High School Students

    ERIC Educational Resources Information Center

    Tösten, Rasim; Han, Bünyamin; Anik, Sabri

    2017-01-01

    Problem solving skill is one of the important skills which are expected to be gained during the educational programs. In the development of children's skills and shaping the behaviors, parental attitudes are believed to be effective. That means problem-solving skills and behavioral characteristics of individuals are closely related. From that…

  8. Incorporating the Common Core's Problem Solving Standard for Mathematical Practice into an Early Elementary Inclusive Classroom

    ERIC Educational Resources Information Center

    Fletcher, Nicole

    2014-01-01

    Mathematics curriculum designers and policy decision makers are beginning to recognize the importance of problem solving, even at the earliest stages of mathematics learning. The Common Core includes sense making and perseverance in solving problems in its standards for mathematical practice for students at all grade levels. Incorporating problem…

  9. Deliberate Learning in Health Care: The Effect of Importing Best Practices and Creative Problem Solving on Hospital Performance Improvement

    PubMed Central

    Nembhard, Ingrid M.; Cherian, Praseetha; Bradley, Elizabeth H.

    2015-01-01

    This article examines the effect on quality improvement of two common but distinct approaches to organizational learning: importing best practices (an externally oriented approach rooted in learning by imitating others’ best practices) and internal creative problem solving (an internally oriented approach rooted in learning by experimenting with self-generated solutions). We propose that independent and interaction effects of these approaches depend on where organizations are in their improvement journey – initial push or later phase. We examine this contingency in hospitals focused on improving treatment time for patients with heart attacks. Our results show that importing best practices helps hospitals achieve initial phase but not later phase improvement. Once hospitals enter the later phase of their efforts, however, significant improvement requires creative problem solving as well. Together, our results suggest that importing best practices delivers greater short-term improvement, but continued improvement depends on creative problem solving. PMID:24876100

  10. Complex Problem Solving: What It Is and What It Is Not

    PubMed Central

    Dörner, Dietrich; Funke, Joachim

    2017-01-01

    Computer-simulated scenarios have been part of psychological research on problem solving for more than 40 years. The shift in emphasis from simple toy problems to complex, more real-life oriented problems has been accompanied by discussions about the best ways to assess the process of solving complex problems. Psychometric issues such as reliable assessments and addressing correlations with other instruments have been in the foreground of these discussions and have left the content validity of complex problem solving in the background. In this paper, we return the focus to content issues and address the important features that define complex problems. PMID:28744242

  11. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  12. Representations in Problem Solving: A Case Study with Optimization Problems

    ERIC Educational Resources Information Center

    Villegas, Jose L.; Castro, Enrique; Gutierrez, Jose

    2009-01-01

    Introduction: Representations play an essential role in mathematical thinking. They favor the understanding of mathematical concepts and stimulate the development of flexible and versatile thinking in problem solving. Here our focus is on their use in optimization problems, a type of problem considered important in mathematics teaching and…

  13. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  14. The Effect of Dynamic and Interactive Mathematics Learning Environments (DIMLE), Supporting Multiple Representations, on Perceptions of Elementary Mathematics Pre-Service Teachers in Problem Solving Process

    ERIC Educational Resources Information Center

    Ozdemir, S.; Reis, Z. Ayvaz

    2013-01-01

    Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…

  15. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  16. Designing for Decision Making

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2012-01-01

    Decision making is the most common kind of problem solving. It is also an important component skill in other more ill-structured and complex kinds of problem solving, including policy problems and design problems. There are different kinds of decisions, including choices, acceptances, evaluations, and constructions. After describing the centrality…

  17. Beyond Objectivity: The Performance Impact of the Perceived Ability to Learn and Solve Problems

    ERIC Educational Resources Information Center

    Tews, Michael J.; Michel, John W.; Noe, Raymond A.

    2011-01-01

    The purpose of this research was to develop and provide initial validation evidence for the performance impact of a measure of an individual's perceived ability to learn and solve problems (PALS). Building on the self-efficacy literature and the importance of learning and problem solving, the fundamental premise of this research was that PALS…

  18. Cognitive and Motivational Impacts of Learning Game Design on Middle School Children

    ERIC Educational Resources Information Center

    Akcaoglu, Mete

    2013-01-01

    In today`s complex and fast-evolving world, problem solving is an important skill to possess. For young children to be successful at their future careers, they need to have the "skill" and the "will" to solve complex problems that are beyond the well-defined problems that they learn to solve at schools. One promising approach…

  19. An Overview of Problem Solving Studies in Physics Education

    ERIC Educational Resources Information Center

    Ince, Elif

    2018-01-01

    Education policies today aim to raise individuals with 21st Century skills considered as a universal necessity and problem-solving skill is the one of the skills that have emerged as a requirement of the 21st century. Teaching problem solving is one of the most important topics of physics education, it is also the field where students have the…

  20. Methodological Issues in the Measurement of Non-Random Family Problem Solving Interaction.

    ERIC Educational Resources Information Center

    Kieren, Dianne K.; Hurlbut, Nancy L.

    The family is an obvious group for whom problem solving effectiveness holds importance. Problem solving interaction refers to the manner in which the behavior of family members is organized to resolve situations in which there is an unachieved but attainable goal, and the means to overcoming the barriers to achieving the goal are not apparent, but…

  1. Instruction Emphasizing Effort Improves Physics Problem Solving

    ERIC Educational Resources Information Center

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  2. [Investigation of problem solving skills among psychiatric patients].

    PubMed

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  3. Mexican high school students' social representations of mathematics, its teaching and learning

    NASA Astrophysics Data System (ADS)

    Martínez-Sierra, Gustavo; Miranda-Tirado, Marisa

    2015-07-01

    This paper reports a qualitative research that identifies Mexican high school students' social representations of mathematics. For this purpose, the social representations of 'mathematics', 'learning mathematics' and 'teaching mathematics' were identified in a group of 50 students. Focus group interviews were carried out in order to obtain the data. The constant comparative style was the strategy used for the data analysis because it allowed the categories to emerge from the data. The students' social representations are: (A) Mathematics is…(1) important for daily life, (2) important for careers and for life, (3) important because it is in everything that surrounds us, (4) a way to solve problems of daily life, (5) calculations and operations with numbers, (6) complex and difficult, (7) exact and (6) a subject that develops thinking skills; (B) To learn mathematics is…(1) to possess knowledge to solve problems, (2) to be able to solve everyday problems, (3) to be able to make calculations and operations, and (4) to think logically to be able to solve problems; and (C) To teach mathematics is…(1) to transmit knowledge, (2) to know to share it, (3) to transmit the reasoning ability, and (4) to show how to solve problems.

  4. Problem Order Implications for Learning

    ERIC Educational Resources Information Center

    Li, Nan; Cohen, William W.; Koedinger, Kenneth R.

    2013-01-01

    The order of problems presented to students is an important variable that affects learning effectiveness. Previous studies have shown that solving problems in a blocked order, in which all problems of one type are completed before the student is switched to the next problem type, results in less effective performance than does solving the problems…

  5. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage.

    PubMed

    Warren, David E; Kurczek, Jake; Duff, Melissa C

    2016-07-01

    Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N = 5) and healthy normal comparison participants (N = 5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Do problem-solving interventions improve psychosocial outcomes in vision impaired adults: a systematic review and meta-analysis.

    PubMed

    Holloway, Edith E; Xie, Jing; Sturrock, Bonnie A; Lamoureux, Ecosse L; Rees, Gwyneth

    2015-05-01

    To evaluate the effectiveness of problem-solving interventions on psychosocial outcomes in vision impaired adults. A systematic search of randomised controlled trials (RCTs), published between 1990 and 2013, that investigated the impact of problem-solving interventions on depressive symptoms, emotional distress, quality of life (QoL) and functioning was conducted. Two reviewers independently selected and appraised study quality. Data permitting, intervention effects were statistically pooled and meta-analyses were performed, otherwise summarised descriptively. Eleven studies (reporting on eight trials) met inclusion criteria. Pooled analysis showed problem-solving interventions improved vision-related functioning (standardised mean change [SMC]: 0.15; 95% CI: 0.04-0.27) and emotional distress (SMC: -0.36; 95% CI: -0.54 to -0.19). There was no evidence to support improvements in depressive symptoms (SMC: -0.27, 95% CI: -0.66 to 0.12) and insufficient evidence to determine the effectiveness of problem-solving interventions on QoL. The small number of well-designed studies and narrow inclusion criteria limit the conclusions drawn from this review. However, problem-solving skills may be important for nurturing daily functioning and reducing emotional distress for adults with vision impairment. Given the empirical support for the importance of effective problem-solving skills in managing chronic illness, more well-designed RCTs are needed with diverse vision impaired samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Cognitive, emotive, and cognitive-behavioral correlates of suicidal ideation among Chinese adolescents in Hong Kong.

    PubMed

    Kwok, Sylvia Lai Yuk Ching; Shek, Daniel Tan Lei

    2010-03-05

    Utilizing Daniel Goleman's theory of emotional competence, Beck's cognitive theory, and Rudd's cognitive-behavioral theory of suicidality, the relationships between hopelessness (cognitive component), social problem solving (cognitive-behavioral component), emotional competence (emotive component), and adolescent suicidal ideation were examined. Based on the responses of 5,557 Secondary 1 to Secondary 4 students from 42 secondary schools in Hong Kong, results showed that suicidal ideation was positively related to adolescent hopelessness, but negatively related to emotional competence and social problem solving. While standard regression analyses showed that all the above variables were significant predictors of suicidal ideation, hierarchical regression analyses showed that hopelessness was the most important predictor of suicidal ideation, followed by social problem solving and emotional competence. Further regression analyses found that all four subscales of emotional competence, i.e., empathy, social skills, self-management of emotions, and utilization of emotions, were important predictors of male adolescent suicidal ideation. However, the subscale of social skills was not a significant predictor of female adolescent suicidal ideation. Standard regression analysis also revealed that all three subscales of social problem solving, i.e., negative problem orientation, rational problem solving, and impulsiveness/carelessness style, were important predictors of suicidal ideation. Theoretical and practice implications of the findings are discussed.

  8. Problem-solving skills appraisal mediates hardiness and suicidal ideation among malaysian undergraduate students.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. The participants consisted of 500 undergraduate students from Malaysian public universities. Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation.

  9. Teaching problem solving: Don't forget the problem solver(s)

    NASA Astrophysics Data System (ADS)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  10. Can deficits in social problem-solving in people with personality disorder be reversed?

    PubMed

    Crawford, M J

    2007-04-01

    Research evidence is beginning to emerge that social problem-solving can improve the social functioning of people with personality disorder. This approach is particularly important because it may be relatively easy to train healthcare workers to deliver this intervention. However, the costs and cost-effectiveness of social problem-solving need to be established if it is to be made more widely available.

  11. Design concepts for the development of cooperative problem-solving systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Bihari, Tom

    1992-01-01

    There are many problem-solving tasks that are too complex to fully automate given the current state of technology. Nevertheless, significant improvements in overall system performance could result from the introduction of well-designed computer aids. We have been studying the development of cognitive tools for one such problem-solving task, enroute flight path planning for commercial airlines. Our goal was two-fold. First, we were developing specific systems designs to help with this important practical problem. Second, we are using this context to explore general design concepts to guide in the development of cooperative problem-solving systems. These designs concepts are described.

  12. Behavioral flexibility and problem solving in an invasive bird.

    PubMed

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  13. Using Proportional Reasoning to Solve Geometric Problems

    ERIC Educational Resources Information Center

    Pandiscio, Eric A

    2004-01-01

    Students solve a geometric problem of measuring polygons with the help of proportional reasoning. Thus the importance of conceptual reasoning is emphasized as a highly efficient technique for teaching and strengthening mathematical content.

  14. Problem Solving. Workplace Strategies for Thoughtful Change.

    ERIC Educational Resources Information Center

    Diller, Janelle; Moore, Rita

    This learning module is designed to enable participants to look at problems from a variety of perspectives, to apply a basic problem-solving strategy, to implement a plan of action, and to identify problems that are of particular importance to their workplace. The module includes units for six class sessions. Each unit includes the following…

  15. Moisture and Home Energy Conservation: How to Detect, Solve and Avoid Related Problems.

    ERIC Educational Resources Information Center

    National Center for Appropriate Technology, Butte, MT.

    Moisture problems are identified as an important element in home energy conservation programs. A systematic approach to understanding, recognizing, solving, and preventing moisture-related problems is offered in this four-section report. Section I examines the root of moisture problems. Section II discusses symptoms and causes of excess moisture…

  16. Mothers' problem-solving skill and use of help with infant-related issues: the role of importance and need for action.

    PubMed

    Pridham, K F; Chang, A S; Hansen, M F

    1987-08-01

    Examination was made of the relationship of mothers' appraisal of the importance of and need for action around infant-related issues to maternal experience (parity and time since birth), use of help, and perceived problem-solving competence. Sixty-two mothers (38 primiparae and 24 multiparae) kept for 90 days post-birth a daily log of issues, rated for importance and for need for action, and of help used. Mothers also reported perceived problem-solving competence on an 11-item scale. Findings indicated tentativeness in ratings of importance and action. Ratings of importance were associated with action ratings, except for temperament issues. Action ratings for baby care and illness issues decreased significantly with time. Otherwise, maternal experience had no effect on ratings. More of the variance in perceived competence than use of help was explained by action and importance ratings.

  17. Math Is Not a Problem...When You Know How to Visualize It.

    ERIC Educational Resources Information Center

    Nelson, Dennis W.

    1983-01-01

    Visualization is an effective technique for determining exactly what students must do to solve a mathematics problem. Pictures and charts can be used to help children understand which mathematics facts are present and which are missing--an important step toward problem solving. (PP)

  18. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  19. On a New Approach to Education about Ethics for Engineers at Meijou University

    NASA Astrophysics Data System (ADS)

    Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu

    We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.

  20. More than just fun and games: the longitudinal relationships between strategic video games, self-reported problem solving skills, and academic grades.

    PubMed

    Adachi, Paul J C; Willoughby, Teena

    2013-07-01

    Some researchers have proposed that video games possess good learning principles and may promote problem solving skills. Empirical research regarding this relationship, however, is limited. The goal of the presented study was to examine whether strategic video game play (i.e., role playing and strategy games) predicted self-reported problem solving skills among a sample of 1,492 adolescents (50.8 % female), over the four high school years. The results showed that more strategic video game play predicted higher self-reported problem solving skills over time than less strategic video game play. In addition, the results showed support for an indirect association between strategic video game play and academic grades, in that strategic video game play predicted higher self-reported problem solving skills, and, in turn, higher self-reported problem solving skills predicted higher academic grades. The novel findings that strategic video games promote self-reported problem solving skills and indirectly predict academic grades are important considering that millions of adolescents play video games every day.

  1. The impact of two multiple-choice question formats on the problem-solving strategies used by novices and experts.

    PubMed

    Coderre, Sylvain P; Harasym, Peter; Mandin, Henry; Fick, Gordon

    2004-11-05

    Pencil-and-paper examination formats, and specifically the standard, five-option multiple-choice question, have often been questioned as a means for assessing higher-order clinical reasoning or problem solving. This study firstly investigated whether two paper formats with differing number of alternatives (standard five-option and extended-matching questions) can test problem-solving abilities. Secondly, the impact of the alternatives number on psychometrics and problem-solving strategies was examined. Think-aloud protocols were collected to determine the problem-solving strategy used by experts and non-experts in answering Gastroenterology questions, across the two pencil-and-paper formats. The two formats demonstrated equal ability in testing problem-solving abilities, while the number of alternatives did not significantly impact psychometrics or problem-solving strategies utilized. These results support the notion that well-constructed multiple-choice questions can in fact test higher order clinical reasoning. Furthermore, it can be concluded that in testing clinical reasoning, the question stem, or content, remains more important than the number of alternatives.

  2. The problem-solving approach in the teaching of number theory

    NASA Astrophysics Data System (ADS)

    Toh, Pee Choon; Hoong Leong, Yew; Toh, Tin Lam; Dindyal, Jaguthsing; Quek, Khiok Seng; Guan Tay, Eng; Him Ho, Foo

    2014-02-01

    Mathematical problem solving is the mainstay of the mathematics curriculum for Singapore schools. In the preparation of prospective mathematics teachers, the authors, who are mathematics teacher educators, deem it important that pre-service mathematics teachers experience non-routine problem solving and acquire an attitude that predisposes them to adopt a Pólya-style approach in learning mathematics. The Practical Worksheet is an instructional scaffold we adopted to help our pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. The Worksheet was initially used in a design experiment aimed at teaching problem solving in a secondary school. In this paper, we describe an application and adaptation of the MProSE (Mathematical Problem Solving for Everyone) design experiment to a university level number theory course for pre-service mathematics teachers. The goal of the enterprise was to help the pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. Our analysis of the pre-service mathematics teachers' work shows that the MProSE design holds promise for mathematics courses at the tertiary level.

  3. Problem-Solving Skills Appraisal Mediates Hardiness and Suicidal Ideation among Malaysian Undergraduate Students

    PubMed Central

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2015-01-01

    Objectives Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. Methods The participants consisted of 500 undergraduate students from Malaysian public universities. Results Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. Conclusion These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation. PMID:25830229

  4. The role of ego-resiliency in the relationship between social anxiety and problem solving ability among South Korean nursing students.

    PubMed

    Jun, Won-Hee; Lee, Gyungjoo

    2017-02-01

    Problem-solving is a core ability that nursing students should develop during their education. There is a need to better understand the importance of problem-solving and the factors related to it among nursing students. This study aimed to identify the role of ego-resiliency in the relationship between social anxiety and problem-solving ability in Korean nursing students. Data were collected from a total of 329 nursing students who were enrolled in three nursing programs in South Korea, using a self-administrated questionnaire. Data were mainly analyzed by Baron and Kenny's three-step regression analysis and the Sobel test. Ego-resiliency played a partial mediating role in the relationship between social anxiety and problem-solving ability. Further, the Sobel test suggested a mediating effect of ego-resiliency on the relationship between social anxiety and problem-solving (Z=-9.079, p<0.001). To enhance problem-solving ability in nursing students, nursing educators should establish educational strategies that decrease social anxiety and improve ego-resiliency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Problem-Solving: Scaling the "Brick Wall"

    ERIC Educational Resources Information Center

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  6. Computer Assisted Problem Solving in an Introductory Statistics Course. Technical Report No. 56.

    ERIC Educational Resources Information Center

    Anderson, Thomas H.; And Others

    The computer assisted problem solving system (CAPS) described in this booklet administered "homework" problem sets designed to develop students' computational, estimation, and procedural skills. These skills were related to important concepts in an introductory statistics course. CAPS generated unique data, judged student performance,…

  7. Using the Relational Paradigm: Effects on Pupils' Reasoning in Solving Additive Word Problems

    ERIC Educational Resources Information Center

    Polotskaia, Elena; Savard, Annie

    2018-01-01

    Pupils' difficulties in solving word problems continue to attract attention: while researchers highlight the importance of relational reasoning and modelling, school curricula typically use short word problems to develop pupils' knowledge of arithmetic operations and calculation strategies. The Relational Paradigm attributes the leading role in…

  8. Development and Design of Problem Based Learning Game-Based Courseware

    ERIC Educational Resources Information Center

    Chang, Chiung-Sui; Chen, Jui-Fa; Chen, Fei-Ling

    2015-01-01

    In an educational environment, instructors would always think of ways to provide students with motivational learning materials and efficient learning strategies. Hence, many researchers have proposed that students' problem-solving ability enhances their learning. Problem-solving ability plays an important role for users in dealing with problems…

  9. Enroute flight planning: Evaluating design concepts for the development of cooperative problem-solving systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.

    1995-01-01

    There are many problem-solving tasks that are too complex to fully automate given the current state of technology. Nevertheless, significant improvements in overall system performance could result from the introduction of well-designed computer aids. We have been studying the development of cognitive tools for one such problem-solving task, enroute flight path planning for commercial airlines. Our goal has been two-fold. First, we have been developing specific system designs to help with this important practical problem. Second, we have been using this context to explore general design concepts to guide in the development of cooperative problem-solving systems. These design concepts are described below, along with illustrations of their application.

  10. Changes in problem-solving appraisal after cognitive therapy for the prevention of suicide.

    PubMed

    Ghahramanlou-Holloway, M; Bhar, S S; Brown, G K; Olsen, C; Beck, A T

    2012-06-01

    Cognitive therapy has been found to be effective in decreasing the recurrence of suicide attempts. A theoretical aim of cognitive therapy is to improve problem-solving skills so that suicide no longer remains the only available option. This study examined the differential rate of change in problem-solving appraisal following suicide attempts among individuals who participated in a randomized controlled trial for the prevention of suicide. Changes in problem-solving appraisal from pre- to 6-months post-treatment in individuals with a recent suicide attempt, randomized to either cognitive therapy (n = 60) or a control condition (n = 60), were assessed by using the Social Problem-Solving Inventory-Revised, Short Form. Improvements in problem-solving appraisal were similarly observed for both groups within the 6-month follow-up. However, during this period, individuals assigned to the cognitive therapy condition demonstrated a significantly faster rate of improvement in negative problem orientation and impulsivity/carelessness. More specifically, individuals receiving cognitive therapy were significantly less likely to report a negative view toward life problems and impulsive/carelessness problem-solving style. Cognitive therapy for the prevention of suicide provides rapid changes within 6 months on negative problem orientation and impulsivity/carelessness problem-solving style. Given that individuals are at the greatest risk for suicide within 6 months of their last suicide attempt, the current study demonstrates that a brief cognitive intervention produces a rapid rate of improvement in two important domains of problem-solving appraisal during this sensitive period.

  11. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  12. Incremental planning to control a blackboard-based problem solver

    NASA Technical Reports Server (NTRS)

    Durfee, E. H.; Lesser, V. R.

    1987-01-01

    To control problem solving activity, a planner must resolve uncertainty about which specific long-term goals (solutions) to pursue and about which sequences of actions will best achieve those goals. A planner is described that abstracts the problem solving state to recognize possible competing and compatible solutions and to roughly predict the importance and expense of developing these solutions. With this information, the planner plans sequences of problem solving activities that most efficiently resolve its uncertainty about which of the possible solutions to work toward. The planner only details actions for the near future because the results of these actions will influence how (and whether) a plan should be pursued. As problem solving proceeds, the planner adds new details to the plan incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible. Through experiments, researchers illustrate how these new mechanisms significantly improve problem solving decisions and reduce overall computation. They briefly discuss current research directions, including how these mechanisms can improve a problem solver's real-time response and can enhance cooperation in a distributed problem solving network.

  13. Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept

    NASA Astrophysics Data System (ADS)

    Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.

    2017-09-01

    This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.

  14. An Exploration of Developing Active Exploring and Problem Solving Skill Lego Robot Course by the Application of Anchored Instruction Theory

    ERIC Educational Resources Information Center

    Chen, Chen-Yuan

    2013-01-01

    In recent years, researches had shown that the development of problem solving skill became important for education, and the educational robots are capable for promoting students not only understand the physical and mathematical concepts, but also have active and constructive learning. Meanwhile, the importance of situation in education is rising,…

  15. Behavioral flexibility and problem solving in an invasive bird

    PubMed Central

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984

  16. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students With Mathematics Problem-Solving Difficulties.

    PubMed

    Jitendra, Asha K; Harwell, Michael R; Dupuis, Danielle N; Karl, Stacy R

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their students in the larger study were randomly assigned to an SBI or control condition and teachers in both conditions then provided instruction on the topics of ratio, proportion, and percent. We found that students with MD-PS in SBI classrooms scored on average higher than their counterparts in control classrooms on a posttest and delayed posttest administered 9 weeks later. Given students' difficulties with proportional problem-solving and the consequences of these difficulties, an important contribution of this research is the finding that when provided with appropriate instruction, students with MD-PS are capable of enhanced proportional problem-solving performance.

  17. Spatial visualization in physics problem solving.

    PubMed

    Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary

    2007-07-08

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. 2007 Cognitive Science Society, Inc.

  18. Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving

    NASA Astrophysics Data System (ADS)

    Rakkapao, S.; Prasitpong, S.

    2018-03-01

    This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.

  19. Factor Structure and Item Level Psychometrics of the Social Problem Solving Inventory Revised-Short Form in Traumatic Brain Injury

    PubMed Central

    Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A.; Heaton, Shelley C.

    2016-01-01

    Primary Objective Social problem solving deficits characterize individuals with traumatic brain injury (TBI). Poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised Short Form (SPSI-R:S), for adults with moderate and severe TBI. Research Design Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S. Methods and Procedures An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. Main Outcomes and Results The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem solving orientation and skills; and negative problem solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. Conclusions The total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population. PMID:26052731

  20. Unconscious processing modulates creative problem solving: evidence from an electrophysiological study.

    PubMed

    Gao, Ying; Zhang, Hao

    2014-05-01

    Previous behavioral studies have identified the significant role of subliminal cues in creative problem solving. However, neural mechanisms of such unconscious processing remain poorly understood. Here we utilized an event-related potential (ERP) approach and sandwich mask technique to investigate cerebral activities underlying the unconscious processing of cues in creative problem solving. College students were instructed to solve divergent problems under three different conditions (conscious cue, unconscious cue and no-cue conditions). Our data showed that creative problem solving can benefit from unconscious cues, although not as much as from conscious cues. More importantly, we found that there are crucial ERP components associated with unconscious processing of cues in solving divergent problems. Similar to the processing of conscious cues, processing unconscious cues in problem solving involves the semantic activation of unconscious cues (N280-340) in the right inferior parietal lobule (BA 40), new association formation (P350-450) in the right parahippocampal gyrus (BA 36), and mental representation transformation (P500-760) in the right superior temporal gyrus (BA 22). The present results suggest that creative problem solving can be modulated by unconscious processing of enlightening information that is weakly diffused in the semantic network beyond our conscious awareness. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Factor structure and item level psychometrics of the Social Problem Solving Inventory-Revised: Short Form in traumatic brain injury.

    PubMed

    Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A; Heaton, Shelley C

    2016-01-01

    Social problem-solving deficits characterise individuals with traumatic brain injury (TBI), and poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised: Short Form (SPSI-R:S), for adults with moderate and severe TBI. Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S was performed. An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem-solving orientation and skills; and negative problem-solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. It was concluded that the total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population.

  2. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    PubMed

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. The development and evaluation of a web-based programme to support problem-solving skills following brain injury.

    PubMed

    Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody

    2017-10-24

    Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.

  4. Student’s thinking process in solving word problems in geometry

    NASA Astrophysics Data System (ADS)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-05-01

    This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.

  5. Problem-Solving Skills and Suicidal Ideation Among Malaysian College Students: the Mediating Role of Hopelessness.

    PubMed

    Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah

    2016-04-01

    Recent evidence suggests that suicidal ideation has increased among Malaysian college students over the past two decades; therefore, it is essential to increase our knowledge concerning the etiology of suicidal ideation among Malaysian college students. This study was conducted to examine the relationships between problem-solving skills, hopelessness, and suicidal ideation among Malaysian college students. The participants included 500 undergraduate students from two Malaysian public universities who completed the self-report questionnaires. Structural equation modeling estimated that college students with poor problem-solving confidence, external personal control of emotion, and avoiding style were more likely to report suicidal ideation. Hopelessness partially mediated the relationship between problem-solving skills and suicidal ideation. These findings reinforce the importance of poor problem-solving skills and hopelessness as risk factors for suicidal ideation among college students.

  6. Values in Principals' Thinking when Solving Problems

    ERIC Educational Resources Information Center

    Lazaridou, Angeliki

    2007-01-01

    The values that school principals use when solving organisational problems were studied. Data were collected by a think aloud procedure, in which the participants verbalised their thoughts while working on a set of five administrative problems. The results show that the principals referred to seven values that had subtle but important sub-texts:…

  7. Shifting College Students' Epistemological Framing Using Hypothetical Debate Problems

    ERIC Educational Resources Information Center

    Hu, Dehui; Rebello, N. Sanjay

    2014-01-01

    Developing expertise in physics problem solving requires the ability to use mathematics effectively in physical scenarios. Novices and experts often perceive the use of mathematics in physics differently. Students' perceptions and how they frame the use of mathematics in physics play an important role in their physics problem solving. In this…

  8. When Creative Problem Solving Strategy Meets Web-Based Cooperative Learning Environment in Accounting Education

    ERIC Educational Resources Information Center

    Cheng, Kai Wen

    2011-01-01

    Background: Facing highly competitive and changing environment, cultivating citizens with problem-solving attitudes is one critical vision of education. In brief, the importance of education is to cultivate students with practical abilities. Realizing the advantages of web-based cooperative learning (web-based CL) and creative problem solving…

  9. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  10. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  11. The relationship between mathematical problem-solving skills and self-regulated learning through homework behaviours, motivation, and metacognition

    NASA Astrophysics Data System (ADS)

    Çiğdem Özcan, Zeynep

    2016-04-01

    Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students' self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving skills. The aim of this study is to investigate the relationship between mathematical problem-solving skills and the three dimensions of self-regulated learning (motivation, metacognition, and behaviour), and whether this relationship is of a predictive nature. The sample of this study consists of 323 students from two public secondary schools in Istanbul. In this study, the mathematics homework behaviour scale was administered to measure students' homework behaviours. For metacognition measurements, the mathematics metacognition skills test for students was administered to measure offline mathematical metacognitive skills, and the metacognitive experience scale was used to measure the online mathematical metacognitive experience. The internal and external motivational scales used in the Programme for International Student Assessment (PISA) test were administered to measure motivation. A hierarchic regression analysis was conducted to determine the relationship between the dependent and independent variables in the study. Based on the findings, a model was formed in which 24% of the total variance in students' mathematical problem-solving skills is explained by the three sub-dimensions of the self-regulated learning model: internal motivation (13%), willingness to do homework (7%), and post-problem retrospective metacognitive experience (4%).

  12. Patterns of problem-solving in children's literacy and arithmetic.

    PubMed

    Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James

    2009-11-01

    Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years I and 2 on the arithmetic (addition and subtraction) than literacy-based tasks (reading and spelling). However, across all four tasks, the children showed a tendency to move from less sophisticated procedural-based strategies, which included phonological strategies for reading and spelling and counting-all and finger modellingfor addition and subtraction, to more efficient retrieval methods from Years I to 2. Distinct patterns in children's problem-solving skill were identified on the literacy and arithmetic tasks using two separate cluster analyses. There was a strong association between these two profiles showing that those children with more advanced problem-solving skills on the arithmetic tasks also showed more advanced profiles on the literacy tasks. The results highlight how different-aged children show flexibility in their use of problem-solving strategies across literacy and arithmetical contexts and reinforce the importance of studying variations in children's problem-solving skill across different educational contexts.

  13. A problem-solving routine for improving hospital operations.

    PubMed

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  14. Problem Solving Process Research of Everyone Involved in Innovation Based on CAI Technology

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shao, Yunfei; Tang, Xiaowo

    It is very important that non-technical department personnel especially bottom line employee serve as innovators under the requirements of everyone involved in innovation. According the view of this paper, it is feasible and necessary to build everyone involved in innovation problem solving process under Total Innovation Management (TIM) based on the Theory of Inventive Problem Solving (TRIZ). The tools under the CAI technology: How TO mode and science effects database could be very useful for all employee especially non-technical department and bottom line for innovation. The problem solving process put forward in the paper focus on non-technical department personnel especially bottom line employee for innovation.

  15. Sources of difficulty in the solution of verbal arithmetic problems by mentally retarded and nonretarded individuals.

    PubMed

    Bilsky, L H; Judd, T

    1986-01-01

    Effects of several logical (i.e., operation type and amount of extraneous information), memory (i.e., availability of memory aids and number of problem presentations), and semantic variables (i.e., problem text type) on verbal math problem-solving performance were assessed. Results revealed that the overall problem-solving performance of mildly mentally retarded adolescents was inferior to that of nonretarded fourth graders in spite of comparable performance on a computational screening test. Although the retarded individuals experienced particular difficulty with subtraction and static problem texts, the two groups responded similarly to the other experimental variables. The possibly important role of comprehension in problem-solving was discussed.

  16. Students’ Relational Thinking of Impulsive and Reflective in Solving Mathematical Problem

    NASA Astrophysics Data System (ADS)

    Satriawan, M. A.; Budiarto, M. T.; Siswono, T. Y. E.

    2018-01-01

    This is a descriptive research which qualitatively investigates students’ relational thinking of impulsive and reflective cognitive style in solving mathematical problem. The method used in this research are test and interview. The data analyzed by reducing, presenting and concluding the data. The results of research show that the students’ reflective cognitive style can possibly help to find out important elements in understanding a problem. Reading more than one is useful to identify what is being questioned and write the information which is known, building relation in every element and connecting information with arithmetic operation, connecting between what is being questioned with known information, making equation model to find out the value by using substitution, and building a connection on re-checking, re-reading, and re-counting. The impulsive students’ cognitive style supports important elements in understanding problems, building a connection in every element, connecting information with arithmetic operation, building a relation about a problem comprehensively by connecting between what is being questioned with known information, finding out the unknown value by using arithmetic operation without making any equation model. The result of re-checking problem solving, impulsive student was only reading at glance without re-counting the result of problem solving.

  17. Aiding the search: Examining individual differences in multiply-constrained problem solving.

    PubMed

    Ellis, Derek M; Brewer, Gene A

    2018-07-01

    Understanding and resolving complex problems is of vital importance in daily life. Problems can be defined by the limitations they place on the problem solver. Multiply-constrained problems are traditionally examined with the compound remote associates task (CRAT). Performance on the CRAT is partially dependent on an individual's working memory capacity (WMC). These findings suggest that executive processes are critical for problem solving and that there are reliable individual differences in multiply-constrained problem solving abilities. The goals of the current study are to replicate and further elucidate the relation between WMC and CRAT performance. To achieve these goals, we manipulated preexposure to CRAT solutions and measured WMC with complex-span tasks. In Experiment 1, we report evidence that preexposure to CRAT solutions improved problem solving accuracy, WMC was correlated with problem solving accuracy, and that WMC did not moderate the effect of preexposure on problem solving accuracy. In Experiment 2, we preexposed participants to correct and incorrect solutions. We replicated Experiment 1 and found that WMC moderates the effect of exposure to CRAT solutions such that high WMC participants benefit more from preexposure to correct solutions than low WMC (although low WMC participants have preexposure benefits as well). Broadly, these results are consistent with theories of working memory and problem solving that suggest a mediating role of attention control processes. Published by Elsevier Inc.

  18. A Study on the Application of Creative Problem Solving Teaching to Statistics Teaching

    ERIC Educational Resources Information Center

    Hu, Ridong; Xiaohui, Su; Shieh, Chich-Jen

    2017-01-01

    Everyone would encounter the life issue of solving complicated problems generated by economic behaviors among all activities for making a living. Various life problems encountered therefore could be generalized by economic statistics. In other words, a lot of important events in daily life are related to economic statistics. For this reason,…

  19. Emerging High School Students' Problem Solving Trajectories Based on the Use of Dynamic Software

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Cristobal-Escalante, Cesar

    2008-01-01

    This study documents problem solving approaches that high school students develop as a result of using systematically Cabri-Geometry software. Results show that the use of the software becomes an important tool for students to construct dynamic representations of the problems that were used to identify and examine different mathematical relations.…

  20. Can Students Identify the Relevant Information to Solve a Problem?

    ERIC Educational Resources Information Center

    Zhang, Lishan; Yu, Shengquan; Li, Baoping; Wang, Jing

    2017-01-01

    Solving non-routine problems is one of the most important skills for the 21st century. Traditional paper-pencil tests cannot assess this type of skill well because of their lack of interactivity and inability to capture procedural data. Tools such as MicroDYN and MicroFIN have proved to be trustworthy in assessing complex problem-solving…

  1. Determination of the Problem Solving Level of Gifted/Talented Students

    ERIC Educational Resources Information Center

    Saygili, Gizem

    2012-01-01

    It is important to determine and develop problem solving skills of gifted and talented children, who have different emotional characteristics compared to peers, in terms of using their potentials at the highest level. In this research, which was done with the aim of determining self sensations of gifted and talented children in problem solving…

  2. Development of Mastery during Adolescence: The Role of Family Problem Solving*

    PubMed Central

    Conger, Katherine Jewsbury; Williams, Shannon Tierney; Little, Wendy M.; Masyn, Katherine E.; Shebloski, Barbara

    2009-01-01

    A sense of mastery is an important component of psychological health and well-being across the life-span; however, relatively little is known about the development of mastery during childhood and adolescence. Utilizing prospective, longitudinal data from 444 adolescent sibling pairs and their parents, our conceptual model proposes that family SES in the form of parental education promotes effective family problem solving which, in turn, fosters adolescent mastery. Results show: (1) a significant increase in mastery for younger and older siblings, (2) parental education promoted effective problem solving between parents and adolescents and between siblings but not between the parents themselves, and (3) all forms of effective family problem solving predicted greater adolescent mastery. Parental education had a direct effect on adolescent mastery as well as the hypothesized indirect effect through problem solving effectiveness, suggesting both a social structural and social process influence on the development of mastery during adolescence. PMID:19413137

  3. Categorization and analysis of explanatory writing in mathematics

    NASA Astrophysics Data System (ADS)

    Craig, Tracy S.

    2011-10-01

    The aim of this article is to present a scheme for coding and categorizing students' written explanations of mathematical problem-solving activities. The scheme was used successfully within a study project carried out to determine whether student problem-solving behaviour could be positively affected by writing explanatory strategies to mathematical problem-solving processes. The rationale for the study was the recognized importance of mathematical problem-solving, the widely acknowledged challenge of teaching problem-solving skills directly and the evidence in the literature that writing in mathematics provides a tool for learning. The study was carried out in a first-year mathematics course at the University of Cape Town, South Africa. Students' written submissions were categorized and analysed through use of an adaptation of a journal entry classification scheme. The scheme successfully observed positive changes over the experimental period in students' level of engagement with the mathematical material and with their stance towards knowledge.

  4. The problem solving skills and student generated representations (SGRs) profile of senior high school students in Bandung on the topic of work and energy

    NASA Astrophysics Data System (ADS)

    Alami, Y.; Sinaga, P.; Setiawan, A.

    2018-05-01

    Based on recommendations from the Physics Education literature recommend the use of multiple representations to help students solve problems. The use of some good representations is considered important to study physics, so many good motivations to learn how students use multiple representations while solving problems and to learn how to solve problems using multiple representations. This study aims to explore the profile of high school students’ problem solving abilities and this study is part of a larger research focus on improving this ability in students in physics. The data is needed to determine the appropriate treatment to be used in subsequent research. A purposive sampling technique was used in this study and a survey was conducted to collect data. 74 students from one high school in Bandung were involved in this research.

  5. Development of mastery during adolescence: the role of family problem-solving.

    PubMed

    Conger, Katherine Jewsbury; Williams, Shannon Tierney; Little, Wendy M; Masyn, Katherine E; Shebloski, Barbara

    2009-03-01

    A sense of mastery is an important component of psychological health and wellbeing across the life-span; however relatively little is known about the development of mastery during childhood and adolescence. Utilizing prospective, longitudinal data from 444 adolescent sibling pairs and their parents, our conceptual model proposes that family socioeconomic status (SES) in the form of parental education promotes effective family problem-solving, which, in turn, fosters adolescent mastery. Results show: (1) a significant increase in mastery for younger and older siblings, (2) parental education promoted effective problem-solving between parents and adolescents and between siblings but not between the parents themselves, and (3) all forms of effective family problem-solving predicted greater adolescent mastery. Parental education had a direct effect on adolescent mastery as well as the hypothesized indirect effect through problem-solving effectiveness, suggesting both a social structural and social process influence on the development of mastery during adolescence.

  6. Nanomedicine: Problem Solving to Treat Cancer

    ERIC Educational Resources Information Center

    Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.

    2006-01-01

    Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…

  7. Problem Solving with Guided Repeated Oral Reading Instruction

    ERIC Educational Resources Information Center

    Conderman, Greg; Strobel, Debra

    2006-01-01

    Many students with disabilities require specialized instructional interventions and frequent progress monitoring in reading. The guided repeated oral reading technique promotes oral reading fluency while providing a reliable data-based monitoring system. This article emphasizes the importance of problem-solving when using this reading approach.

  8. [Problem solving abilities of nursing students: the experience of the bachelor degree course in nursing at the University of Udine].

    PubMed

    Bulfone, Giampiera; Galletti, Caterina; Vellone, Ercole; Zanini, Antonietta; Quattrin, Rosanna

    2008-01-01

    The process nurses adopt to solve the patients' problems is known as "Problem Solving" in the literature. Problem Solving Abilities include Diagnostic Reasoning, Prognostic Judgment and Decision Making. Nursing students apply the Problem Solving to the Nursing Process that is the mental and operative approach that nurses use to plan the nursing care. The purpose of the present study is to examine if there is a positive relationship between the number of Educational Tutorial Strategies (Briefing, Debriefing and Discussion according to the Objective Structured Clinical Examination Methodology) used for nursing students and their learning of Problem Solving Abilities (Diagnostic Reasoning, Prognostic Judgment and Decision Making). The study design was retrospective, descriptive and comparative. The Problem Solving Instrument, specifically developed for this study and proved for its reliability and validity, was used to collect the data from a sample of 106 nursing care plans elaborated by the second-year students of the Bachelor Degree in Nursing of the University of Udine. Nursing care plans were elaborated during three times consecutively, after students had participated in different Educational Tutorial Strategies. Results showed that the more the students took part in a higher number of Educational Tutorial Strategies the more they significantly increased their Problem Solving Abilities. The results demonstrate that it is important to use Educational Tutorial Strategies in the nursing education to teach skills.

  9. Problem solving stages in the five square problem

    PubMed Central

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794

  10. Problem solving stages in the five square problem.

    PubMed

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  11. Social problem solving, autobiographical memory, trauma, and depression in women with borderline personality disorder and a history of suicide attempts.

    PubMed

    Maurex, Liselotte; Lekander, Mats; Nilsonne, Asa; Andersson, Eva E; Asberg, Marie; Ohman, Arne

    2010-09-01

    The primary aim of this study was to compare the retrieval of autobiographical memory and the social problem-solving performance of individuals with borderline personality disorder (BPD) and a history of suicide attempts, with and without concurrent diagnoses of depression and/or post-traumatic stress disorder (PTSD), to that of controls. Additionally, the relationships between autobiographical memory, social problem-solving skills, and various clinical characteristics were examined in the BPD group. Individuals with BPD who had made at least two suicide attempts were compared to controls with regard to specificity of autobiographical memory and social problem-solving skills. Autobiographical memory specificity and social problem-solving skills were further studied in the BPD group by comparing depressed participants to non-depressed participants; and autobiographical memory specificity was also studied by comparing participants with and without PTSD. A total of 47 women with a diagnosis of BPD and 30 controls completed the Autobiographical Memory Test, assessing memory specificity, and the means-end problem solving-procedure, measuring social problem-solving skills. The prevalence of suicidal/self-injurious behaviour, and the exposure to violence, was also assessed in the BPD group. Compared to controls, participants with BPD showed reduced specificity of autobiographical memory, irrespective of either concurrent depression, previous depression, or concurrent PTSD. The depressed BPD group displayed poor problem-solving skills. Further, an association between unspecific memory and poor problem-solving was displayed in the BPD group. Our results confirmed that reduced specificity of autobiographical memory is an important characteristic of BPD individuals with a history of suicide attempt, independent of depression, or PTSD. Reduced specificity of autobiographical memory was further related to poor social problem-solving capacity in the BPD group.

  12. Innovation and behavioral flexibility in wild redfronted lemurs (Eulemur rufifrons).

    PubMed

    Huebner, Franziska; Fichtel, Claudia

    2015-05-01

    Innovations and problem-solving abilities can provide animals with important ecological advantages as they allow individuals to deal with novel social and ecological challenges. Innovation is a solution to a novel problem or a novel solution to an old problem, with the latter being especially difficult. Finding a new solution to an old problem requires individuals to inhibit previously applied solutions to invent new strategies and to behave flexibly. We examined the role of experience on cognitive flexibility to innovate and to find new problem-solving solutions with an artificial feeding task in wild redfronted lemurs (Eulemur rufifrons). Four groups of lemurs were tested with feeding boxes, each offering three different techniques to extract food, with only one technique being available at a time. After the subjects learned a technique, this solution was no longer successful and subjects had to invent a new technique. For the first transition between task 1 and 2, subjects had to rely on their experience of the previous technique to solve task 2. For the second transition, subjects had to inhibit the previously learned technique to learn the new task 3. Tasks 1 and 2 were solved by most subjects, whereas task 3 was solved by only a few subjects. In this task, besides behavioral flexibility, especially persistence, i.e., constant trying, was important for individual success during innovation. Thus, wild strepsirrhine primates are able to innovate flexibly, suggesting a general ecological relevance of behavioral flexibility and persistence during innovation and problem solving across all primates.

  13. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  14. Strategies to Support Students' Mathematical Modeling

    ERIC Educational Resources Information Center

    Jung, Hyunyi

    2015-01-01

    An important question for mathematics teachers is this: "How can we help students learn mathematics to solve everyday problems, rather than teaching them only to memorize rules and practice mathematical procedures?" Teaching students using modeling activities can help them learn mathematics in real-world problem-solving situations that…

  15. Generalised Assignment Matrix Methodology in Linear Programming

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2012-01-01

    Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…

  16. Interpersonal problem-solving deficits in self-poisoning patients.

    PubMed

    McLeavey, B C; Daly, R J; Murray, C M; O'Riordan, J; Taylor, M

    1987-01-01

    Self-poisoning patients (n = 40) were compared with psychiatric patients (n = 40) and nonpatient controls (n = 20) on measures of interpersonal problem-solving skills and locus of control in an effort to determine the importance of these cognitive and personality variables in self-poisoning behavior. The psychiatric and self-poisoning groups showed deficits on measures assessing interpersonal problem solving when compared with nonpatient controls. The self-poisoning group performed below the level of the psychiatric patients on all except one test, on which they performed at the level of the psychiatric group. Locus of control did not differentiate self-poisoning patients from nonpatient controls, and it was concluded that this variable is not an important factor in self-poisoning behavior.

  17. Distributed Cognition as a Lens to Understand the Effects of Scaffolds: The Role of Transfer of Responsibility

    ERIC Educational Resources Information Center

    Belland, Brian R.

    2011-01-01

    Problem solving is an important skill in the knowledge economy. Research indicates that the development of problem solving skills works better in the context of instructional approaches centered on real-world problems. But students need scaffolding to be successful in such instruction. In this paper I present a conceptual framework for…

  18. Junior High School Students’ Understanding and Problem Solving Skills on the Topics of Line and Angles

    NASA Astrophysics Data System (ADS)

    Irsal, I. L.; Jupri, A.; Prabawanto, S.

    2017-09-01

    Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.

  19. False memories from survival processing make better primes for problem-solving.

    PubMed

    Garner, Sarah R; Howe, Mark L

    2014-01-01

    Previous research has demonstrated that participants remember significantly more survival-related information and more information that is processed for its survival relevance. Recent research has also shown that survival materials and processing result in more false memories, ones that are adaptive inasmuch as they prime solutions to insight-based problems. Importantly, false memories for survival-related information facilitate problem solving more than false memories for other types of information. The present study explores this survival advantage using an incidental rather than intentional memory task. Here participants rated information either in the context of its importance to a survival-processing scenario or to moving to a new house. Following this, participants solved a number of compound remote associate tasks (CRATs), half of which had the solution primed by false memories that were generated during the processing task. Results showed that (a) CRATs were primed by false memories in this incidental task, with participants solving significantly more CRATs when primed than when unprimed, (b) this effect was greatest when participants rated items for survival than moving, and (c) processing items for a survival scenario improved overall problem-solving performance even when specific problems themselves were not primed. Results are discussed with regard to adaptive theories of memory.

  20. Impact of ageing on problem size and proactive interference in arithmetic facts solving.

    PubMed

    Archambeau, Kim; De Visscher, Alice; Noël, Marie-Pascale; Gevers, Wim

    2018-02-01

    Arithmetic facts (AFs) are required when solving problems such as "3 × 4" and refer to calculations for which the correct answer is retrieved from memory. Currently, two important effects that modulate the performance in AFs have been highlighted: the problem size effect and the proactive interference effect. The aim of this study is to investigate possible age-related changes of the problem size effect and the proactive interference effect in AF solving. To this end, the performance of young and older adults was compared in a multiplication production task. Furthermore, an independent measure of proactive interference was assessed to further define the architecture underlying this effect in multiplication solving. The results indicate that both young and older adults were sensitive to the effects of interference and of the problem size. That is, both interference and problem size affected performance negatively: the time needed to solve a multiplication problem increases as the level of interference and the size of the problem increase. Regarding the effect of ageing, the problem size effect remains constant with age, indicating a preserved AF network in older adults. Interestingly, sensitivity to proactive interference in multiplication solving was less pronounced in older than in younger adults suggesting that part of the proactive interference has been overcome with age.

  1. Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics.

    PubMed

    DeCaro, Marci S

    2016-10-01

    An important goal in mathematics is to flexibly use and apply multiple, efficient procedures to solve problems and to understand why these procedures work. One factor that may limit individuals' ability to notice and flexibly apply strategies is the mental set induced by the problem context. Undergraduate (N = 41, Experiment 1) and fifth- and sixth-grade students (N = 87, Experiment 2) solved mathematical equivalence problems in one of two set-inducing conditions. Participants in the complex-first condition solved problems without a repeated addend on both sides of the equal sign (e.g., 7 + 5 + 9 = 3 + _), which required multistep strategies. Then these students solved problems with a repeated addend (e.g., 7 + 5 + 9 = 7 + _), for which a shortcut strategy could be readily used (i.e., adding 5 + 9). Participants in the shortcut-first condition solved the same problem set but began with the shortcut problems. Consistent with laboratory studies of mental set, participants in the complex-first condition were less likely to use the more efficient shortcut strategy when possible. In addition, these participants were less likely to demonstrate procedural flexibility and conceptual understanding on a subsequent assessment of mathematical equivalence knowledge. These findings suggest that certain problem-solving contexts can help or hinder both flexibility in strategy use and deeper conceptual thinking about the problems.

  2. Mathematical Ability Relies on Knowledge, Too

    ERIC Educational Resources Information Center

    Sweller, John; Clark, Richard E.; Kirschner, Paul A.

    2011-01-01

    Recent "reform" curricula both ignore the absence of supporting data and completely misunderstand the role of problem solving in cognition. If, the argument goes, teachers are not really teaching people mathematics but rather are teaching them some form of general problem solving, then mathematical content can be reduced in importance. According…

  3. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.

    1972-01-01

    Continuing research is reported in a program aimed at the development of a robot computer problem solving system. The motivation and results are described of a theoretical investigation concerning the general properties of behavioral systems. Some of the important issues which a general theory of behavioral organization should encompass are outlined and discussed.

  4. A Cognitive Apprenticeship Approach to Facilitating Web-Based Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Kuo, Fan-Ray; Hwang, Gwo-Jen; Chen, Szu-Chuang; Chen, Sherry Y.

    2012-01-01

    Enhancing students' problem-solving abilities has been recognized as an important and challenging issue for technology-enhanced learning. Thus, previous research has attempted to address this issue by developing various mechanisms, among which a cognitive apprenticeship model can particularly enhance students' abilities. However, it is not clear…

  5. The Design of Computerized Practice Fields for Problem Solving and Contextualized Transfer

    ERIC Educational Resources Information Center

    Riedel, Jens; Fitzgerald, Gail; Leven, Franz; Toenshoff, Burkhard

    2003-01-01

    Current theories of learning emphasize the importance of learner-centered, active, authentic, environments for meaningful knowledge construction. From this perspective, computerized case-based learning systems afford practice fields for learners to build domain knowledge and problem-solving skills and to support contextualized transfer of…

  6. Working Together: The Art of Consulting & Communicating.

    ERIC Educational Resources Information Center

    DeBoer, Anita

    Productive learning occurs when educators work together to create new visions, analyze important issues, and evaluate outcomes. This book explores how educators can effectively engage in peer problem solving, focusing on three aspects of the process: (1) models for consulting with colleagues in problem solving; (2) communication skills necessary…

  7. Computer Problem-Solving Coaches for Introductory Physics: Design and Usability Studies

    ERIC Educational Resources Information Center

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-01-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how…

  8. Solving Accounting Problems: Differences between Accounting Experts and Novices.

    ERIC Educational Resources Information Center

    Marshall, P. Douglas

    2002-01-01

    Performance of 90 accounting experts (faculty and practitioners) and 60 novices (senior accounting majors) was compared. Experts applied more accounting principles to solving problems. There were no differences in types of principles applied and no correlation between (1) principles applied and number of breadth comments or (2) importance placed…

  9. Solving Large Problems with a Small Working Memory

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt; Stefanov, Emil

    2013-01-01

    We describe an important elaboration of our multiscale/multiresolution model for solving the Traveling Salesman Problem (TSP). Our previous model emulated the non-uniform distribution of receptors on the human retina and the shifts of visual attention. This model produced near-optimal solutions of TSP in linear time by performing hierarchical…

  10. Transformational Leadership and Creative Problem-Solving: The Mediating Role of Psychological Safety and Reflexivity

    ERIC Educational Resources Information Center

    Carmeli, Abraham; Sheaffer, Zachary; Binyamin, Galy; Reiter-Palmon, Roni; Shimoni, Tali

    2014-01-01

    Previous research has pointed to the importance of transformational leadership in facilitating employees' creative outcomes. However, the mechanism by which transformational leadership cultivates employees' creative problem-solving capacity is not well understood. Drawing on theories of leadership, information processing and creativity,…

  11. Young Children's Drawings in Problem Solving

    ERIC Educational Resources Information Center

    Bakar, Kamariah Abu; Way, Jennifer; Bobis, Janette

    2016-01-01

    This paper explores young children's drawings (6 years old) in early number and addition activities in Malaysia. Observation, informal interviews and analysis of drawings revealed two types of drawing, and gave insight into the transitional process required for children to utilise drawings in problem solving. We argue the importance of valuing and…

  12. Teaching Personal Finance Mathematical Problem Solving to Individuals with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Root, Jenny; Saunders, Alicia; Spooner, Fred; Brosh, Chelsi

    2017-01-01

    The ability to solve mathematical problems related to purchasing and personal finance is important in promoting skill generalization and increasing independence for individuals with moderate intellectual disabilities (IDs). Using a multiple probe across participant design, this study investigated the effects of modified schema-based instruction…

  13. Undermining belief in false memories leads to less efficient problem-solving behaviour.

    PubMed

    Wang, Jianqin; Otgaar, Henry; Howe, Mark L; Smeets, Tom; Merckelbach, Harald; Nahouli, Zacharia

    2017-08-01

    Memories of events for which the belief in the occurrence of those events is undermined, but recollection is retained, are called nonbelieved memories (NBMs). The present experiments examined the effects of NBMs on subsequent problem-solving behaviour. In Experiment 1, we challenged participants' beliefs in their memories and examined whether NBMs affected subsequent solution rates on insight-based problems. True and false memories were elicited using the Deese/Roediger-McDermott (DRM) paradigm. Then participants' belief in true and false memories was challenged by telling them the item had not been presented. We found that when the challenge led to undermining belief in false memories, fewer problems were solved than when belief was not challenged. In Experiment 2, a similar procedure was used except that some participants solved the problems one week rather than immediately after the feedback. Again, our results showed that undermining belief in false memories resulted in lower problem solution rates. These findings suggest that for false memories, belief is an important agent in whether memories serve as effective primes for immediate and delayed problem-solving.

  14. Problem solving for depressed suicide attempters and depressed individuals without suicide attempt.

    PubMed

    Roskar, Saska; Zorko, Maja; Bucik, Valentin; Marusic, Andrej

    2007-12-01

    Next to feelings of hopelessness, certain cognitive features such as problem solving deficiency, attentional bias and reduced future positive thinking are involved in the development and maintenance of suicidal behavior. The aim of this study was to examine feelings of hopelessness and problem solving ability in depressed suicide attempters and depressed individuals without a suicide attempt and to see whether these features change over time. Three groups of participants, depressed suicide attempters (N=23), psychiatric control group (N=27) and healthy volunteers (N=27) completed measures of hopelessness and executive planning and problem solving abilities. The two clinical groups completed all measures shortly after admission and then again 7 weeks later whereas the non-clinical control group completed measures at baseline only. Both clinical groups displayed a higher level of hopelessness and poorer problem solving ability when compared to non-clinical volunteers. However, no differences were found between the two clinical groups. In neither of the clinical groups was improvement in problem solving ability between baseline and retesting observed despite the lowering of feelings of hopelessness. The diagnoses in the psychiatric controls group were only obtained by the psychiatrist and not checked by further documentation or questionnaires. Furthermore we did not control for personality traits which might influence cognitive functioning. Since feelings of hopelessness decreased over time and problem solving ability nevertheless remained stable it is important that treatment not only focuses on mood improvement of depressed suicidal and depressed non-suicidal individuals but also on teaching problem solving techniques.

  15. Relationship of drug-addicted patients' personality disorders to social problem-solving changes during the rehabilitation process.

    PubMed

    Kolesnikova, Jelena; Miezitis, Solveiga; Osis, Guntars

    2013-08-01

    Drug-addicted patients exhibit various personality disorders that interfere with their adaptation to society, as well as their ability to participate in the rehabilitation process. The Latvian Rehabilitation Programme for drug addicts includes social problem-solving training to help patients reintegrate into society. However, the role of personality disorders has not been investigated in relation to this process. The aim of the study is to assess whether personality disorders predict changes in dimensions of social problem-solving after 6 months of rehabilitation for drug-addicted patients. The sample of this study consists of 31 drug-addicted patients from the Latvian rehabilitation centres aged 21-35 (females 21%, males 79%). Two inventories are used: the Social Problem-Solving Inventory--Revised (SPSI-R) and Millon(TM) Clinical Multiaxial Inventory--III (MCMI-III) adapted into Russian. Results of the study indicated that some MCMI-III personality disorders (Schizoid and Histrionic) negatively predicted SPSI-R Positive problem orientation, and narcissistic disorder positively predicted SPSI-R Avoidance style after 6 months in the Latvian Rehabilitation Programme. The other personality disorders did not predict social problem-solving dimensions. The results of the study suggest that some personality disorders are related to changes in social problem-solving dimensions for drug-addicted patients. Hence, it is important to consider the implications of particular personality disorders to facilitate the implementation of social problem-solving rehabilitation programmes.

  16. Graph cuts via l1 norm minimization.

    PubMed

    Bhusnurmath, Arvind; Taylor, Camillo J

    2008-10-01

    Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.

  17. A meta-heuristic method for solving scheduling problem: crow search algorithm

    NASA Astrophysics Data System (ADS)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  18. Problem-Framing: A perspective on environmental problem-solving

    NASA Astrophysics Data System (ADS)

    Bardwell, Lisa V.

    1991-09-01

    The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.

  19. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  20. Associations between conceptual reasoning, problem solving, and adaptive ability in high-functioning autism.

    PubMed

    Williams, Diane L; Mazefsky, Carla A; Walker, Jon D; Minshew, Nancy J; Goldstein, Gerald

    2014-11-01

    Abstract thinking is generally highly correlated with problem-solving ability which is predictive of better adaptive functioning. Measures of conceptual reasoning, an ecologically-valid laboratory measure of problem-solving, and a report measure of adaptive functioning in the natural environment, were administered to children and adults with and without autism. The individuals with autism had weaker conceptual reasoning ability than individuals with typical development of similar age and cognitive ability. For the autism group, their flexible thinking scores were significantly correlated with laboratory measures of strategy formation and rule shifting and with reported overall adaptive behavior but not socialization scores. Therefore, in autism, flexibility of thought is potentially more important for adaptive functioning in the natural environment than conceptual reasoning or problem-solving.

  1. [Out of hopelessness--problem solving training in suicide prevention].

    PubMed

    Perczel Forintos, Dóra; Póos, Judit

    2008-01-01

    Psychological studies have great importance in suicide prevention since psychological factors belong to the modifiable risk factors in suicide. These are the negative cognitive triad and hopelessness which are related to vague, over-generalized autobiographical memory and lead to poor problem solving abilities. In this paper we review the most relevant clinical psychology studies and models such as the cognitive model of suicide as well as the entrapment theory by Williams (2004). In the second part we describe the frequently used method of problem solving training/therapy which can be used in either individual or group format. We hope that the problem solving skill training will soon become a part of suicide prevention in Hungary also, since short,focused and evidence based interventions are much needed in psychiatric care.

  2. Physiological arousal, distress tolerance, and social problem-solving deficits among adolescent self-injurers.

    PubMed

    Nock, Matthew K; Mendes, Wendy Berry

    2008-02-01

    It has been suggested that people engage in nonsuicidal self-injury (NSSI) because they (a) experience heightened physiological arousal following stressful events and use NSSI to regulate experienced distress and (b) have deficits in their social problem-solving skills that interfere with the performance of more adaptive social responses. However, objective physiological and behavioral data supporting this model are lacking. The authors compared adolescent self-injurers (n = 62) with noninjurers (n = 30) and found that self-injurers showed higher physiological reactivity (skin conductance) during a distressing task, a poorer ability to tolerate this distress, and deficits in several social problem-solving abilities. These findings highlight the importance of attending to increased arousal, distress tolerance, and problem-solving skills in the assessment and treatment of NSSI.

  3. An episodic specificity induction enhances means-end problem solving in young and older adults.

    PubMed

    Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  4. An episodic specificity induction enhances means-end problem solving in young and older adults

    PubMed Central

    Madore, Kevin P.; Schacter, Daniel L.

    2014-01-01

    Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction- brief training in recollecting details of past experiences- enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem solving task as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the three tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the three tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem solving performance of older adults can benefit from a specificity induction as much as that of young adults. PMID:25365688

  5. Thai Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems

    ERIC Educational Resources Information Center

    Dahsah, Chanyah; Coll, Richard K.

    2007-01-01

    Stoichiometry and related concepts are an important part of student learning in chemistry. In this interpretive-based inquiry, we investigated Thai Grade 10 and 11 students' conceptual understanding and ability to solve numerical problems for stoichiometry-related concepts. Ninety-seven participants completed a purpose-designed survey instrument…

  6. Contribution of Equal-Sign Instruction beyond Word-Problem Tutoring for Third-Grade Students with Mathematics Difficulty

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Fuchs, Lynn S.

    2010-01-01

    Elementary school students often misinterpret the equal sign (=) as an operational rather than a relational symbol. Such misunderstanding is problematic because solving equations with missing numbers may be important for the development of higher order mathematics skills, including solving word problems. Research indicates equal-sign instruction…

  7. Professional Learning through the Collaborative Design of Problem-Solving Lessons

    ERIC Educational Resources Information Center

    Wake, Geoff; Swan, Malcolm; Foster, Colin

    2016-01-01

    This article analyses lesson study as a mode of professional learning, focused on the development of mathematical problem solving processes, using the lens of cultural-historical activity theory. In particular, we draw attention to two activity systems, the classroom system and the lesson-study system, and the importance of making artefacts…

  8. Problem Solving Abilities and Perceptions in Alternative Certification Mathematics Teachers

    ERIC Educational Resources Information Center

    Evans, Brian R.

    2012-01-01

    It is important for teacher educators to understand new alternative certification middle and high school teachers' mathematical problem solving abilities and perceptions. Teachers in an alternative certification program in New York were enrolled in a proof-based algebra course. At the beginning and end of a semester participants were given a…

  9. Students' Use of Technological Tools for Verification Purposes in Geometry Problem Solving

    ERIC Educational Resources Information Center

    Papadopoulos, Ioannis; Dagdilelis, Vassilios

    2008-01-01

    Despite its importance in mathematical problem solving, verification receives rather little attention by the students in classrooms, especially at the primary school level. Under the hypotheses that (a) non-standard tasks create a feeling of uncertainty that stimulates the students to proceed to verification processes and (b) computational…

  10. The Role of Spatial Ability and Strategy Preference for Spatial Problem Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Stieff, Mike; Ryu, Minjung; Dixon, Bonnie; Hegarty, Mary

    2012-01-01

    In organic chemistry, spatial reasoning is critical for reasoning about spatial relationships in three dimensions and representing spatial information in diagrams. Despite its importance, little is known about the underlying cognitive components of spatial reasoning and the strategies that students employ to solve spatial problems in organic…

  11. Geologic Problem Solving in the Field: Analysis of Field Navigation and Mapping by Advanced Undergraduates

    ERIC Educational Resources Information Center

    Riggs, Eric M.; Lieder, Christopher C.; Ballliet, Russell

    2009-01-01

    Field instruction is a critical piece of undergraduate geoscience majors' education, and fieldwork remains a major part of the work of professional geologists. Despite the central importance of field education, there exists relatively little educational research exploring how students learn to solve problems in geological fieldwork. This study…

  12. Problem Solving by 5-6 Years Old Kindergarten Children in a Computer Programming Environment: A Case Study

    ERIC Educational Resources Information Center

    Fessakis, G.; Gouli, E.; Mavroudi, E.

    2013-01-01

    Computer programming is considered an important competence for the development of higher-order thinking in addition to algorithmic problem solving skills. Its horizontal integration throughout all educational levels is considered worthwhile and attracts the attention of researchers. Towards this direction, an exploratory case study is presented…

  13. Development of Critical Thinking with Metacognitive Regulation and Toulmin Model

    ERIC Educational Resources Information Center

    Gotoh, Yasushi

    2017-01-01

    Developing critical thinking is an important factor in education. In this study, the author defines critical thinking as the set of skills and dispositions which enable one to solve problems logically and to attempt to reflect autonomously by means of metacognitive regulation of one's own problem-solving processes. To identify the validity and…

  14. Students' Explanations in Complex Learning of Disciplinary Programming

    ERIC Educational Resources Information Center

    Vieira, Camilo

    2016-01-01

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or…

  15. Problem Solving and Emotional Education in Initial Primary Teacher Education

    ERIC Educational Resources Information Center

    Caballero, Ana; Blanco, Lorenzo J.; Guerrero, Eloisa

    2011-01-01

    Our work is based on two premises. The first is that affective factors (beliefs, attitudes, and emotions) influence teaching and learning mathematics, and problem solving in particular. The second is that initial teacher education is an important element in the process of improving overall educational practice. On this basis, our research group…

  16. Computer-Based Assessment of Complex Problem Solving: Concept, Implementation, and Application

    ERIC Educational Resources Information Center

    Greiff, Samuel; Wustenberg, Sascha; Holt, Daniel V.; Goldhammer, Frank; Funke, Joachim

    2013-01-01

    Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate…

  17. Role of Beliefs and Emotions in Numerical Problem Solving in University Physics Education

    ERIC Educational Resources Information Center

    Bodin, Madelen; Winberg, Mikael

    2012-01-01

    Numerical problem solving in classical mechanics in university physics education offers a learning situation where students have many possibilities of control and creativity. In this study, expertlike beliefs about physics and learning physics together with prior knowledge were the most important predictors of the quality of performance of a task…

  18. Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving

    ERIC Educational Resources Information Center

    Kim, H. S.; Prevost, L.; Lemons, P. P.

    2015-01-01

    The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…

  19. An Appropriate Prompts System Based on the Polya Method for Mathematical Problem-Solving

    ERIC Educational Resources Information Center

    Lee, Chien I.

    2017-01-01

    Current mathematics education emphasizes techniques, formulas, and procedures, neglecting the importance of understanding, presentation, and reasoning. This turns students into passive listeners that are well-practiced only in using formulas that they do not understand. We therefore adopted the Polya problem-solving method to provide students with…

  20. Circumference and Problem Solving.

    ERIC Educational Resources Information Center

    Blackburn, Katie; White, David

    The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to…

  1. Phylogenetic prediction of Alternaria leaf blight resistance in wild and cultivated species of carrots (Daucus, Apiaceae)

    USDA-ARS?s Scientific Manuscript database

    Plant scientists make inferences and predictions from phylogenetic trees to solve scientific problems. Crop losses due to disease damage is an important problem that many plant breeders would like to solve, so the ability to predict traits like disease resistance from phylogenetic trees derived from...

  2. Future Primary and Preschool Pedagogy Specialization Students' Mathematical Problem Solving Competency

    ERIC Educational Resources Information Center

    Marchis, Iuliana

    2013-01-01

    Developing the problem solving competency is one of the main goals of school education, as it is a very important competency in someone's everyday life and career as well. Mathematics is highly appropriate for developing this competence. This research studies future Primary and Preschool Pedagogy specialization students' mathematical problem…

  3. Algorithmic Puzzles: History, Taxonomies, and Applications in Human Problem Solving

    ERIC Educational Resources Information Center

    Levitin, Anany

    2017-01-01

    The paper concerns an important but underappreciated genre of algorithmic puzzles, explaining what these puzzles are, reviewing milestones in their long history, and giving two different ways to classify them. Also covered are major applications of algorithmic puzzles in cognitive science research, with an emphasis on insight problem solving, and…

  4. Deep Learning towards Expertise Development in a Visualization-Based Learning Environment

    ERIC Educational Resources Information Center

    Yuan, Bei; Wang, Minhong; Kushniruk, Andre W.; Peng, Jun

    2017-01-01

    With limited problem-solving capability and practical experience, novices have difficulties developing expert-like performance. It is important to make the complex problem-solving process visible to learners and provide them with necessary help throughout the process. This study explores the design and effects of a model-based learning approach…

  5. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses

    PubMed Central

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3rd- to 12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons. PMID:29593606

  6. The Efficacy and Development of Students' Problem-Solving Strategies During Compulsory Schooling: Logfile Analyses.

    PubMed

    Molnár, Gyöngyvér; Csapó, Benő

    2018-01-01

    The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3 rd - to 12 th -grade students (aged 9-18) in Hungarian schools ( n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons.

  7. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    PubMed

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  8. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    NASA Astrophysics Data System (ADS)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  9. Special Operations Research Topics 2014

    DTIC Science & Technology

    2014-01-01

    problems . I encourage SOF personnel to contribute their experiences and ideas to the SOF community by submitting your completed research on these...and rapid problem solving. While this can be very beneficial in high-stress, time-sensitive situations, it may not be conducive to the development...a perception that everything is important and all problems must be quickly solved. Not only does this imply that slowing down to think is a waste

  10. Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin; Cheng, Runwei

    Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.

  11. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  12. Solving work-related ethical problems.

    PubMed

    Laukkanen, Laura; Suhonen, Riitta; Leino-Kilpi, Helena

    2016-12-01

    Nurse managers are responsible for solving work-related ethical problems to promote a positive ethical culture in healthcare organizations. The aim of this study was to describe the activities that nurse managers use to solve work-related ethical problems. The ultimate aim was to enhance the ethical awareness of all nurse managers. The data for this descriptive cross-sectional survey were analyzed through inductive content analysis and quantification. Participants and research context: The data were collected in 2011 using a questionnaire that included an open-ended question and background factors. Participants were nurse managers working in Finnish healthcare organizations (n = 122). Ethical considerations: Permission for the study was given by the Finnish Association of Academic Managers and Experts of Health Sciences. Nurse managers identified a variety of activities they use to solve work-related ethical problems: discussion (30%), cooperation (25%), work organization (17%), intervention (10%), personal values (9%), operational models (4%), statistics and feedback (4%), and personal examples (1%). However, these activities did not follow any common or systematic model. In the future, nurse managers need a more systematic approach to solve ethical problems. It is important to establish new kinds of ethics structures in organizations, such as a common, systematic ethical decision-making model and an ethics club for nurse manager problems, to support nurse managers in solving work-related ethical problems.

  13. Problem solving in the borderland between mathematics and physics

    NASA Astrophysics Data System (ADS)

    Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas

    2017-01-01

    The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems, where a major challenge is to formalize the problems in mathematics and physics terms. We analyse four concrete examples of unformalized problems for which the formalization involves different order of mathematization and applying physics to the problem, but all require mathematization. The analysis leads to the formulation of a model by which we attempt to capture the important steps of the process of solving unformalized problems by means of mathematization and physicalization.

  14. Linear complementarity formulation for 3D frictional sliding problems

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.; Mutlu, Ovunc

    2012-01-01

    Frictional sliding on quasi-statically deforming faults and fractures can be modeled efficiently using a linear complementarity formulation. We review the formulation in two dimensions and expand the formulation to three-dimensional problems including problems of orthotropic friction. This formulation accurately reproduces analytical solutions to static Coulomb friction sliding problems. The formulation accounts for opening displacements that can occur near regions of non-planarity even under large confining pressures. Such problems are difficult to solve owing to the coupling of relative displacements and tractions; thus, many geomechanical problems tend to neglect these effects. Simple test cases highlight the importance of including friction and allowing for opening when solving quasi-static fault mechanics models. These results also underscore the importance of considering the effects of non-planarity in modeling processes associated with crustal faulting.

  15. Engineering applications of metaheuristics: an introduction

    NASA Astrophysics Data System (ADS)

    Oliva, Diego; Hinojosa, Salvador; Demeshko, M. V.

    2017-01-01

    Metaheuristic algorithms are important tools that in recent years have been used extensively in several fields. In engineering, there is a big amount of problems that can be solved from an optimization point of view. This paper is an introduction of how metaheuristics can be used to solve complex problems of engineering. Their use produces accurate results in problems that are computationally expensive. Experimental results support the performance obtained by the selected algorithms in such specific problems as digital filter design, image processing and solar cells design.

  16. Investigating the psychological resilience, self-confidence and problem-solving skills of midwife candidates.

    PubMed

    Ertekin Pinar, Sukran; Yildirim, Gulay; Sayin, Neslihan

    2018-05-01

    The high level of psychological resilience, self-confidence and problem solving skills of midwife candidates play an important role in increasing the quality of health care and in fulfilling their responsibilities towards patients. This study was conducted to investigate the psychological resilience, self-confidence and problem-solving skills of midwife candidates. It is a convenience descriptive quantitative study. Students who study at Health Sciences Faculty in Turkey's Central Anatolia Region. Midwife candidates (N = 270). In collection of data, the Personal Information Form, Psychological Resilience Scale for Adults (PRSA), Self-Confidence Scale (SCS), and Problem Solving Inventory (PSI) were used. There was a negatively moderate-level significant relationship between the Problem Solving Inventory scores and the Psychological Resilience Scale for Adults scores (r = -0.619; p = 0.000), and between Self-Confidence Scale scores (r = -0.524; p = 0.000). There was a positively moderate-level significant relationship between the Psychological Resilience Scale for Adults scores and the Self-Confidence Scale scores (r = 0.583; p = 0.000). There was a statistically significant difference (p < 0.05) between the Problem Solving Inventory and the Psychological Resilience Scale for Adults scores according to getting support in a difficult situation. As psychological resilience and self-confidence levels increase, problem-solving skills increase; additionally, as self-confidence increases, psychological resilience increases too. Psychological resilience, self-confidence, and problem-solving skills of midwife candidates in their first-year of studies are higher than those who are in their fourth year. Self-confidence and psychological resilience of midwife candidates aged between 17 and 21, self-confidence and problem solving skills of residents of city centers, psychological resilience of those who perceive their monthly income as sufficient are high. Psychological resilience and problem-solving skills for midwife candidates who receive social support are also high. The fact that levels of self-confidence, problem-solving skills and psychological resilience of fourth-year students are found to be low presents a situation that should be taken into consideration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving

    NASA Astrophysics Data System (ADS)

    Kuzle, A.

    2018-06-01

    The important role that metacognition plays as a predictor for student mathematical learning and for mathematical problem-solving, has been extensively documented. But only recently has attention turned to primary grades, and more research is needed at this level. The goals of this paper are threefold: (1) to present metacognitive framework during mathematics problem-solving, (2) to describe their multi-method interview approach developed to study student mathematical metacognition, and (3) to empirically evaluate the utility of their model and the adaptation of their approach in the context of grade 2 and grade 4 mathematics problem-solving. The results are discussed not only with regard to further development of the adapted multi-method interview approach, but also with regard to their theoretical and practical implications.

  18. Generalizing Backtrack-Free Search: A Framework for Search-Free Constraint Satisfaction

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Frank, Jeremy

    2000-01-01

    Tractable classes of constraint satisfaction problems are of great importance in artificial intelligence. Identifying and taking advantage of such classes can significantly speed up constraint problem solving. In addition, tractable classes are utilized in applications where strict worst-case performance guarantees are required, such as constraint-based plan execution. In this work, we present a formal framework for search-free (backtrack-free) constraint satisfaction. The framework is based on general procedures, rather than specific propagation techniques, and thus generalizes existing techniques in this area. We also relate search-free problem solving to the notion of decision sets and use the result to provide a constructive criterion that is sufficient to guarantee search-free problem solving.

  19. Exploring a Structure for Mathematics Lessons That Foster Problem Solving and Reasoning

    ERIC Educational Resources Information Center

    Sullivan, Peter; Walker, Nadia; Borcek, Chris; Rennie, Mick

    2015-01-01

    While there is widespread agreement on the importance of incorporating problem solving and reasoning into mathematics classrooms, there is limited specific advice on how this can best happen. This is a report of an aspect of a project that is examining the opportunities and constraints in initiating learning by posing challenging mathematics tasks…

  20. Self-Explaining Steps in Problem-Solving Tasks to Improve Self-Regulation in Secondary Education

    ERIC Educational Resources Information Center

    Baars, Martine; Leopold, Claudia; Paas, Fred

    2018-01-01

    The ability to learn in a self-regulated way is important for adolescents' academic achievements. Monitoring one's own learning is a prerequisite skill for successful self-regulated learning. However, accurate monitoring has been found to be difficult for adolescents, especially for learning problem-solving tasks such as can be found in math and…

  1. Visualization of Problem Solving Related to the Quantitative Composition of Solutions in the Dynamic "GeoGebra" Environment

    ERIC Educational Resources Information Center

    Kostic, V. Dj.; Jovanovic, V. P. Stankov; Sekulic, T. M.; Takaci, Dj. B.

    2016-01-01

    Problem solving in the field of quantitative composition of solutions (QCS), expressed as mass share and molar concentration, is essential for chemistry students. Since successful chemistry education is based on different mathematical contents, it is important to be proficient in both mathematical and chemistry concepts as well as interconnections…

  2. Development of Critical Thinking with Metacognitive Regulation

    ERIC Educational Resources Information Center

    Gotoh, Yasushi

    2016-01-01

    In this research the author defines critical thinking as the set of skills and dispositions which enable one to solve problems logically and to attempt to reflect autonomously by means of Metacognitive regulation on one's own problem-solving processes. In order to develop their critical thinking, it is important for students to be able to use this…

  3. Theoretical Overview on the Improvement of Interest in Learning Theoretical Course for Engineering Students

    ERIC Educational Resources Information Center

    Xiao, Manlin; Zhang, Jianglin

    2016-01-01

    The phenomenon that engineering students have little interest in theoretical knowledge learning is more and more apparent. Therefore, most students fail to understand and apply theories to solve practical problems. To solve this problem, the importance of improving students' interest in the learning theoretical course is discussed firstly in this…

  4. Designing Interaction as a Learning Process: Supporting Users' Domain Knowledge Development in Interaction

    ERIC Educational Resources Information Center

    Choi, Jung-Min

    2010-01-01

    The primary concern in current interaction design is focused on how to help users solve problems and achieve goals more easily and efficiently. While users' sufficient knowledge acquisition of operating a product or system is considered important, their acquisition of problem-solving knowledge in the task domain has largely been disregarded. As a…

  5. Cognitive Correlates of Mathematical Achievement in Children with Cerebral Palsy and Typically Developing Children

    ERIC Educational Resources Information Center

    Jenks, Kathleen M.; van Lieshout, Ernest C. D. M.; de Moor, Jan M. H.

    2012-01-01

    Background: Remarkably few studies have investigated the nature and origin of learning difficulties in children with cerebral palsy (CP). Aims: To investigate math achievement in terms of word-problem solving ability in children with CP and controls. Because of the potential importance of reading for word-problem solving, we investigated reading…

  6. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  7. Pre-Service Teachers' Level of Problem Solving and Its Relation with Creative Drama Education

    ERIC Educational Resources Information Center

    Arslan, Suna

    2015-01-01

    This study seeks an answer to the question "Can Creative Drama programs be benefited from in developing the experiences of noticing educational and psychosocial problems and solving them in relation with the teaching profession?." The importance given to Creative Drama method in educational programs increases day by day. Drama education…

  8. Learning to Solve Addition and Subtraction Word Problems in English as an Imported Language

    ERIC Educational Resources Information Center

    Verzosa, Debbie Bautista; Mulligan, Joanne

    2013-01-01

    This paper reports an intervention phase of a design study aimed to assist second-grade Filipino children in solving addition word problems in English, a language they primarily encounter only in school. With Filipino as the medium of instruction, an out-of-school pedagogical intervention providing linguistic and representational scaffolds was…

  9. Learning from Mistakes: The Effect of Students' Written Self-Diagnoses on Subsequent Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Yerushalmi, Edit; Cohen, Elisheva; Singh, Chandralekha

    2016-01-01

    Helping students learn to think like a physicist is an important goal of many introductory physics courses. One characteristic distinguishing more experienced physicists from novice students is that they make better use of problem solving as a learning opportunity. Experts were found to spend more time than novices in monitoring their work,…

  10. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Iswari, T.; Asih, A. M. S.

    2018-04-01

    In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.

  11. The development of a culture of problem solving with secondary students through heuristic strategies

    NASA Astrophysics Data System (ADS)

    Eisenmann, Petr; Novotná, Jarmila; Přibyl, Jiří; Břehovský, Jiří

    2015-12-01

    The article reports the results of a longitudinal research study conducted in three mathematics classes in Czech schools with 62 pupils aged 12-18 years. The pupils were exposed to the use of selected heuristic strategies in mathematical problem solving for a period of 16 months. This was done through solving problems where the solution was the most efficient if heuristic strategies were used. The authors conducted a two-dimensional classification of the use of heuristic strategies based on the work of Pólya (2004) and Schoenfeld (1985). We developed a tool that allows for the description of a pupil's ability to solve problems. Named, the Culture of Problem Solving (CPS), this tool consists of four components: intelligence, text comprehension, creativity and the ability to use existing knowledge. The pupils' success rate in problem solving and the changes in some of the CPS factors pre- and post-experiment were monitored. The pupils appeared to considerably improve in the creativity component. In addition, the results indicate a positive change in the students' attitude to problem solving. As far as the teachers participating in the experiment are concerned, a significant change was in their teaching style to a more constructivist, inquiry-based approach, as well as their willingness to accept a student's non-standard approach to solving a problem. Another important outcome of the research was the identification of the heuristic strategies that can be taught via long-term guided solutions of suitable problems and those that cannot. Those that can be taught include systematic experimentation, guess-check-revise and introduction of an auxiliary element. Those that cannot be taught (or can only be taught with difficulty) include the strategies of specification and generalization and analogy.

  12. Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes and Pitfalls in the Tower of Hanoi

    PubMed Central

    Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni

    2016-01-01

    How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a “specialized” domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the “community structure” of the ToH and their difficulties in executing so-called “counterintuitive” movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand—a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits. PMID:27074140

  13. Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes and Pitfalls in the Tower of Hanoi.

    PubMed

    Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni

    2016-04-01

    How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a "specialized" domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the "community structure" of the ToH and their difficulties in executing so-called "counterintuitive" movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand-a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits.

  14. Eye Movements Reveal Students' Strategies in Simple Equation Solving

    ERIC Educational Resources Information Center

    Susac, Ana; Bubic, Andreja; Kaponja, Jurica; Planinic, Maja; Palmovic, Marijan

    2014-01-01

    Equation rearrangement is an important skill required for problem solving in mathematics and science. Eye movements of 40 university students were recorded while they were rearranging simple algebraic equations. The participants also reported on their strategies during equation solving in a separate questionnaire. The analysis of the behavioral…

  15. Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems

    NASA Astrophysics Data System (ADS)

    Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.

    2015-10-01

    In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.

  16. [Problem-solving strategies and marital satisfaction].

    PubMed

    Kriegelewicz, Olga

    2006-01-01

    This study investigated the relation between problem-solving strategies in the marital conflict and marital satisfaction. Four problem-solving strategies (Dialogue, Loyalty, Escalation of conflict and Withdrawal) were measured by the Problem-Solving Strategies Inventory, in two versions: self-report and report of partners' perceived behaviour. This measure refers to the concept of Rusbult, Johnson and Morrow, and meets high standards of reliability (alpha Cronbach from alpha = 0.78 to alpha = 0.94) and validity. Marital satisfaction was measured by Marriage Success Scale. The sample was composed of 147 marital couples. The study revealed that satisfied couples, in comparison with non-satisfied couples, tend to use constructive problem-solving strategies (Dialogue and Loyalty). They rarely use destructive strategies like Escalation of conflict or Withdrawal. Dialogue is the strategy connected with satisfaction in a most positive manner. These might be very important guidelines to couples' psychotherapy. Loyalty to oneself is a significant positive predictor of male satisfaction is also own Loyalty. The study shows that constructive attitudes are the most significant predictors of marriage satisfaction. It is therefore worth concentrating mostly on them in the psychotherapeutic process instead of eliminating destructive attitudes.

  17. Memory inhibition as a critical factor preventing creative problem solving.

    PubMed

    Gómez-Ariza, Carlos J; Del Prete, Francesco; Prieto Del Val, Laura; Valle, Tania; Bajo, M Teresa; Fernandez, Angel

    2017-06-01

    The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had been competitors during selective retrieval were much less likely to be provided as solutions in the RAT, demonstrating that performance in the problem-solving task was strongly influenced by the predetermined accessibility status of the solutions in memory. Importantly, this was so even when participants were unaware of the relationship between the memory and the problem-solving procedures in the experiments. This finding is consistent with an inhibitory account of retrieval-induced forgetting effects and, more generally, constitutes support for the idea that the activation status of mental representations originating in a given task (e.g., episodic memory) can unwittingly have significant consequences for a different, unrelated task (e.g., problem solving). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. [Survey on drug-related problems in Lithuania's pharmacies].

    PubMed

    Kubiliene, Loreta; Liukenskyte, Simona; Savickas, Arūnas; Jureniene, Kristina

    2006-01-01

    to survey the most common and the most important drug-related problems in Lithuania, to explore their solution and factors influencing it, to formulate recommendations for solving drug-related problems. Pharmacists from community pharmacies participated in a random survey. They filled in questionnaires about drug-related problems and their solutions. It was the first survey on drug-related problems ever carried out in Lithuania. For the first time, it was found out that in Lithuania pharmacists most commonly encountered drug-related problem--additional drug therapy (52.03% of respondents)--and most rarely encountered drug-related problem--dosage too high (3% of respondents). Pharmacists stated that all categories of drug-related problems were of equal importance. It was established that pharmacists commonly solved drug-related problems associated with noncompliance with instructions (72.5% of respondents) and rarely met the problem when improper drug was selected (39.56% of respondents). Patients taking prescription medicines commonly encounter additional drug therapy problem, and patients taking nonprescription medications commonly encounter problems related to noncompliance with instructions.

  19. The Effect of TMPT Program on Pre-School Children's Social Problem Solving Skills

    ERIC Educational Resources Information Center

    Gur, Cagla; Kocak, Nurcan

    2018-01-01

    Purpose: Starting Thinking Training at an early age is important. However, few studies were found regarding Thinking Training programs for pre-school children and the contributions of these programs to children's social problem-solving. In this context, the TMPT Program was developed for pre-school children and the effect of the program on 5-6…

  20. The Effects of Teaching Programming via Scratch on Problem Solving Skills: A Discussion from Learners' Perspective

    ERIC Educational Resources Information Center

    Kalelioglu, Filiz; Gülbahar, Yasemin

    2014-01-01

    Computer programming is perceived as an important competence for the development of problem solving skills in addition to logical reasoning. Hence, its integration throughout all educational levels, as well as the early ages, is considered valuable and research studies are carried out to explore the phenomenon in more detail. In light of these…

  1. Teachers' Conceptualization and Actual Practice in the Student Evaluation Process at the Upper Secondary School Level in Japan, Focusing on Problem Solving Skills.

    ERIC Educational Resources Information Center

    Wai, Nu Nu; Hirakawa, Yukiko

    2001-01-01

    Studied the participation and performance of upper secondary school teachers in Japan through surveys completed by 360 Geography teachers. Findings suggest that the importance of developing problem-solving skills is widely recognized among these teachers. Implementing training in such skills is much more difficult. Developing effective teaching…

  2. A Flowchart-Based Intelligent Tutoring System for Improving Problem-Solving Skills of Novice Programmers

    ERIC Educational Resources Information Center

    Hooshyar, D.; Ahmad, R. B.; Yousefi, M.; Yusop, F. D.; Horng, S.-J.

    2015-01-01

    Intelligent tutoring and personalization are considered as the two most important factors in the research of learning systems and environments. An effective tool that can be used to improve problem-solving ability is an Intelligent Tutoring System which is capable of mimicking a human tutor's actions in implementing a one-to-one personalized and…

  3. Linking Complex Problem Solving and General Mental Ability to Career Advancement: Does a Transversal Skill Reveal Incremental Predictive Validity?

    ERIC Educational Resources Information Center

    Mainert, Jakob; Kretzschmar, André; Neubert, Jonas C.; Greiff, Samuel

    2015-01-01

    Transversal skills, such as complex problem solving (CPS) are viewed as central twenty-first-century skills. Recent empirical findings have already supported the importance of CPS for early academic advancement. We wanted to determine whether CPS could also contribute to the understanding of career advancement later in life. Towards this end, we…

  4. Individual Differences in Students' Complex Problem Solving Skills: How They Evolve and What They Imply

    ERIC Educational Resources Information Center

    Wüstenberg, Sascha; Greiff, Samuel; Vainikainen, Mari-Pauliina; Murphy, Kevin

    2016-01-01

    Changes in the demands posed by increasingly complex workplaces in the 21st century have raised the importance of nonroutine skills such as complex problem solving (CPS). However, little is known about the antecedents and outcomes of CPS, especially with regard to malleable external factors such as classroom climate. To investigate the relations…

  5. The Computer-Based Assessment of Complex Problem Solving and How It Is Influenced by Students' Information and Communication Technology Literacy

    ERIC Educational Resources Information Center

    Greiff, Samuel; Kretzschmar, André; Müller, Jonas C.; Spinath, Birgit; Martin, Romain

    2014-01-01

    The 21st-century work environment places strong emphasis on nonroutine transversal skills. In an educational context, complex problem solving (CPS) is generally considered an important transversal skill that includes knowledge acquisition and its application in new and interactive situations. The dynamic and interactive nature of CPS requires a…

  6. A Specialist Professional Experience Learning Community for Primary Pre-Service Teachers Focussed on Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Cavanagh, Michael; McMaster, Heather

    2017-01-01

    Problem solving has been identified as an important approach to learning and teaching mathematics, yet many primary pre-service teachers (PSTs) struggle to implement it during their professional experience. In this paper, we report the experiences of a group of four primary PSTs who, in an additional professional experience placement, formed a…

  7. Integrating clinical communication with clinical reasoning and the broader medical curriculum.

    PubMed

    Cary, Julie; Kurtz, Suzanne

    2013-09-01

    The objectives of this paper are to discuss the results of a workshop conducted at EACH 2012. Specifically, we will (1) examine the link between communication, clinical reasoning, and medical problem solving, (2) explore strategies for (a) integrating clinical reasoning, medical problem solving, and content from the broader curriculum into clinical communication teaching and (b) integrating communication into the broader curriculum, and (3) discuss benefits gained from such integration. Salient features from the workshop were recorded and will be presented here, as well as a case example to illustrate important connections between clinical communication and clinical reasoning. Potential links between clinical communication, clinical reasoning, and medical problem solving as well as strategies to integrate clinical communication teaching and the broader curricula in human and veterinary medicine are enumerated. Participants expressed enthusiasm and keen interest in integration of clinical communication teaching and clinical reasoning during this workshop, came to the idea of the interdependence of these skills easily, and embraced the rationale immediately. Valuing the importance of communication as clinical skill and embracing the interdependence between communication and thought processes related to clinical reasoning and medical problem solving will be beneficial in teaching programs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Metacognition Difficulty of Students with Visual-Spatial Intelligence during Solving Open-Ended Problem

    NASA Astrophysics Data System (ADS)

    Rimbatmojo, S.; Kusmayadi, T. A.; Riyadi, R.

    2017-09-01

    This study aims to find out students metacognition difficulty during solving open-ended problem in mathematics. It focuses on analysing the metacognition difficulty of students with visual-spatial intelligence in solving open-ended problem. A qualitative research with case study strategy is used in this study. Data in the form of visual-spatial intelligence test result and recorded interview during solving open-ended problems were analysed qualitatively. The results show that: (1) students with high visual-spatial intelligence have no difficulty on each metacognition aspects, (2) students with medium visual-spatial intelligence have difficulty on knowledge aspect on strategy and cognitive tasks, (3) students with low visual-spatial intelligence have difficulty on three metacognition aspects, namely knowledge on strategy, cognitive tasks and self-knowledge. Even though, several researches about metacognition process and metacognition literature recommended the steps to know the characteristics. It is still important to discuss that the difficulties of metacognitive is happened because of several factors, one of which on the characteristics of student’ visual-spatial intelligence. Therefore, it is really important for mathematics educators to consider and pay more attention toward students’ visual-spatial intelligence and metacognition difficulty in designing better mathematics learning.

  9. Exploring students’ perceived and actual ability in solving statistical problems based on Rasch measurement tools

    NASA Astrophysics Data System (ADS)

    Azila Che Musa, Nor; Mahmud, Zamalia; Baharun, Norhayati

    2017-09-01

    One of the important skills that is required from any student who are learning statistics is knowing how to solve statistical problems correctly using appropriate statistical methods. This will enable them to arrive at a conclusion and make a significant contribution and decision for the society. In this study, a group of 22 students majoring in statistics at UiTM Shah Alam were given problems relating to topics on testing of hypothesis which require them to solve the problems using confidence interval, traditional and p-value approach. Hypothesis testing is one of the techniques used in solving real problems and it is listed as one of the difficult concepts for students to grasp. The objectives of this study is to explore students’ perceived and actual ability in solving statistical problems and to determine which item in statistical problem solving that students find difficult to grasp. Students’ perceived and actual ability were measured based on the instruments developed from the respective topics. Rasch measurement tools such as Wright map and item measures for fit statistics were used to accomplish the objectives. Data were collected and analysed using Winsteps 3.90 software which is developed based on the Rasch measurement model. The results showed that students’ perceived themselves as moderately competent in solving the statistical problems using confidence interval and p-value approach even though their actual performance showed otherwise. Item measures for fit statistics also showed that the maximum estimated measures were found on two problems. These measures indicate that none of the students have attempted these problems correctly due to reasons which include their lack of understanding in confidence interval and probability values.

  10. Sherlock Holmes, Master Problem Solver.

    ERIC Educational Resources Information Center

    Ballew, Hunter

    1994-01-01

    Shows the connections between Sherlock Holmes's investigative methods and mathematical problem solving, including observations, characteristics of the problem solver, importance of data, questioning the obvious, learning from experience, learning from errors, and indirect proof. (MKR)

  11. Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics.

    PubMed

    Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko

    2013-06-18

    Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.

  12. Unequal-area, fixed-shape facility layout problems using the firefly algorithm

    NASA Astrophysics Data System (ADS)

    Ingole, Supriya; Singh, Dinesh

    2017-07-01

    In manufacturing industries, the facility layout design is a very important task, as it is concerned with the overall manufacturing cost and profit of the industry. The facility layout problem (FLP) is solved by arranging the departments or facilities of known dimensions on the available floor space. The objective of this article is to implement the firefly algorithm (FA) for solving unequal-area, fixed-shape FLPs and optimizing the costs of total material handling and transportation between the facilities. The FA is a nature-inspired algorithm and can be used for combinatorial optimization problems. Benchmark problems from the previous literature are solved using the FA. To check its effectiveness, it is implemented to solve large-sized FLPs. Computational results obtained using the FA show that the algorithm is less time consuming and the total layout costs for FLPs are better than the best results achieved so far.

  13. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  14. Advice to Policy Makers Who Would Tackle Syria: The Problem with Problem Solving

    DTIC Science & Technology

    2014-01-01

    consensus on the specific way forward in Syria, there is one thing most do agree on; Syria is complex. It is complex in the familiar use of that term...SYRIA SYRIA SUPPLEMENTAL FEATURES | 125 strengthen stabilizing loops (ones that keep things from getting worse) or virtuous cycles (ones that make... things worse and worse over time). Second, and more importantly, affecting patterns can be the key to solving the problem of strained or insufficient

  15. Metacognitive skills and students' motivation toward chemical equilibrium problem solving ability: A correlational study on students of XI IPA SMAN 2 Banjarmasin

    NASA Astrophysics Data System (ADS)

    Muna, Khairiatul; Sanjaya, Rahmat Eko; Syahmani, Bakti, Iriani

    2017-12-01

    The demand for students to have metacognitive skills and problem solving ability can be seen in the core competencies of the 2013 curriculum. Metacognitive skills are the skills which affect students' success in solving problems depending on students' motivation. This explains the possibility of the relationship between metacognition and motivation in affecting students' achievement including problem solving. Due to the importance of metacognitive skills to solve problems and the possible relationship between metacognition and motivation, a study to find the relationship among the variables is necessary to conduct, particularly on chemistry problem solving. This one shot case study using quantitative method aimed to investigate the correlation between metacognitive skills and motivation toward problem solving ability focusing on chemical equilibrium. The research population was students of grade XI of majoring Science of Banjarmasin Public High Scool 2 (XI IPA SMAN 2 Banjarmasin) with the samples of 33 students obtained by using purposive sampling technique. The research data were collected using test and non-test and analyzed using multiple regression in SPSS 21. The results of this study showed that (1) the students' metacognitive skills and motivation correlated positively with coefficient of +0.450 to problem solving ability on chemical equilibrium: (2) inter-variables of students' motivation (self-efficacy, active learning strategies, science/chemistry learning value, performance goal, achievement goal, and learning environment stimulations) correlated positively to metacognitive skills with the correlation coefficients of +0.580, +0.537, +0.363, +0.241, +0.516, and +0.271, respectively. Based on the results, it is necessary for teachers to implement learning which develops students' metacognitive skills and motivation, such as learning with scientific approach. The implementation of the learning is also supposed to be complemented with the use of learning device, such as student worksheet, to help students use their metacognitive skills in solving problems, particularly on chemistry subject.

  16. Cognitive functioning and everyday problem solving in older adults.

    PubMed

    Burton, Catherine L; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2006-09-01

    The relationship between cognitive functioning and a performance-based measure of everyday problem-solving, the Everyday Problems Test (EPT), thought to index instrumental activities of daily living (IADL), was examined in 291 community-dwelling non-demented older adults. Performance on the EPT was found to vary according to age, cognitive status, and education. Hierarchical regression analyses revealed that, after adjusting for demographic and health variables, measures of cognitive functioning accounted for 23.6% of the variance in EPT performance. In particular, measures of global cognitive status, cognitive decline, speed of processing, executive functioning, episodic memory, and verbal ability were significant predictors of EPT performance. These findings suggest that cognitive functioning along with demographic variables are important determinants of everyday problem-solving.

  17. Investigating and developing engineering students' mathematical modelling and problem-solving skills

    NASA Astrophysics Data System (ADS)

    Wedelin, Dag; Adawi, Tom; Jahan, Tabassum; Andersson, Sven

    2015-09-01

    How do engineering students approach mathematical modelling problems and how can they learn to deal with such problems? In the context of a course in mathematical modelling and problem solving, and using a qualitative case study approach, we found that the students had little prior experience of mathematical modelling. They were also inexperienced problem solvers, unaware of the importance of understanding the problem and exploring alternatives, and impeded by inappropriate beliefs, attitudes and expectations. Important impacts of the course belong to the metacognitive domain. The nature of the problems, the supervision and the follow-up lectures were emphasised as contributing to the impacts of the course, where students show major development. We discuss these empirical results in relation to a framework for mathematical thinking and the notion of cognitive apprenticeship. Based on the results, we argue that this kind of teaching should be considered in the education of all engineers.

  18. Principle of serviceability and gratuitousness in transplantation?

    PubMed

    Pashkov, Vitaliy M; Golovanova, Iryna A; Noha, Petro P

    the issue of commercialization of transplantation analyses in the article. Attention is paid to the importance of transplantation as a method of treatment and saving human lives. the clarify the feasibility of the introduction of donation commercialization as an avenue to solve the shortage of donor organs and means of combating with black organ market and finding alternative avenues solving these problems, which are more morally acceptable for society is the aim of this article. the experience of foreign countries has been analyses in the research. Additionally, we used data from international organizations, conclusions scientists and report of Global Financial Integrity in the research. it is impossible to solve most problems by means of paid donation. therapeutic organ and tissue cloning based on genetic technology is the best way out and solving ethical transplantation problems.

  19. Personality-dependent differences in problem-solving performance in a social context reflect foraging strategies.

    PubMed

    Zandberg, Lies; Quinn, John L; Naguib, Marc; van Oers, Kees

    2017-01-01

    Individuals develop innovative behaviours to solve foraging challenges in the face of changing environmental conditions. Little is known about how individuals differ in their tendency to solve problems and in their subsequent use of this solving behaviour in social contexts. Here we investigated whether individual variation in problem-solving performance could be explained by differences in the likelihood of solving the task, or if they reflect differences in foraging strategy. We tested this by studying the use of a novel foraging skill in groups of great tits (Parus major), consisting of three naive individuals with different personality, and one knowledgeable tutor. We presented them with multiple, identical foraging devices over eight trials. Though birds of different personality type did not differ in solving latency; fast and slow explorers showed a steeper increase over time in their solving rate, compared to intermediate explorers. Despite equal solving potential, personality influenced the subsequent use of the skill, as well as the pay-off received from solving. Thus, variation in the tendency to solve the task reflected differences in foraging strategy among individuals linked to their personality. These results emphasize the importance of considering the social context to fully understand the implications of learning novel skills. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The Role of Cognitive Processes, Foundational Math Skill, and Calculation Accuracy and Fluency in Word-Problem Solving versus Pre-Algebraic Knowledge

    PubMed Central

    Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.

    2016-01-01

    The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534

  1. About decomposition approach for solving the classification problem

    NASA Astrophysics Data System (ADS)

    Andrianova, A. A.

    2016-11-01

    This article describes the features of the application of an algorithm with using of decomposition methods for solving the binary classification problem of constructing a linear classifier based on Support Vector Machine method. Application of decomposition reduces the volume of calculations, in particular, due to the emerging possibilities to build parallel versions of the algorithm, which is a very important advantage for the solution of problems with big data. The analysis of the results of computational experiments conducted using the decomposition approach. The experiment use known data set for binary classification problem.

  2. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the pioneering LA solutions to this problem, unequivocally demonstrates that LA can play an important role in solving complex combinatorial and integer optimization problems.

  3. The Effects of Two Strategic and Meta-Cognitive Questioning Approaches on Children's Explanatory Behaviour, Problem-Solving, and Learning during Cooperative, Inquiry-Based Science

    ERIC Educational Resources Information Center

    Gillies, Robyn M.; Nichols, Kim; Burgh, Gilbert; Haynes, Michele

    2012-01-01

    Teaching students to ask and answer questions is critically important if they are to engage in reasoned argumentation, problem-solving, and learning. This study involved 35 groups of grade 6 children from 18 classrooms in three conditions (cognitive questioning condition, community of inquiry condition, and the comparison condition) who were…

  4. Relationship among Students' Problem-Solving Attitude, Perceived Value, Behavioral Attitude, and Intention to Participate in a Science and Technology Contest

    ERIC Educational Resources Information Center

    Huang, Neng-Tang Norman; Chiu, Li-Jia; Hong, Jon-Chao

    2016-01-01

    The strong humanistic and ethics-oriented philosophy of Confucianism tends to lead people influenced by these principles to undervalue the importance of hands-on practice and creativity in education. GreenMech, a science and technology contest, was implemented to encourage real-world, hands-on problem solving in an attempt to mitigate this effect.…

  5. On unified modeling, theory, and method for solving multi-scale global optimization problems

    NASA Astrophysics Data System (ADS)

    Gao, David Yang

    2016-10-01

    A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.

  6. Problem-based learning on quantitative analytical chemistry course

    NASA Astrophysics Data System (ADS)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  7. Visual Representations in Mathematics Teaching: An Experiment with Students

    ERIC Educational Resources Information Center

    Debrenti, Edith

    2015-01-01

    General problem-solving skills are of central importance in school mathematics achievement. Word problems play an important role not just in mathematical education, but in general education as well. Meaningful learning and understanding are basic aspects of all kinds of learning and it is even more important in the case of learning mathematics. In…

  8. An accurate, fast, and scalable solver for high-frequency wave propagation

    NASA Astrophysics Data System (ADS)

    Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.

    2017-12-01

    In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and in parallel. We demonstrate that this produces an even more effective and parallelizable preconditioner for a single right-hand side. As before, additional speed can be gained by pipelining several right-hand-sides.

  9. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  10. Maternal DHA Status during Pregnancy Has a Positive Impact on Infant Problem Solving: A Norwegian Prospective Observation Study

    PubMed Central

    Braarud, Hanne Cecilie; Markhus, Maria Wik; Skotheim, Siv; Stormark, Kjell Morten; Frøyland, Livar; Graff, Ingvild Eide; Kjellevold, Marian

    2018-01-01

    Docosahexaenoic acid (DHA, 22:6, n-3) is a long-chain polyunsaturated fatty acid necessary for normal brain growth and cognitive development. Seafood and dietary supplements are the primary dietary sources of DHA. This study addresses the associations between DHA status in pregnant women and healthy, term-born infant problem-solving skills assessed using the Ages and Stages Questionnaire. The fatty acid status of maternal red blood cells (RBCs) was assessed in the 28th week of gestation and at three months postpartum. The infants’ fatty acid status (RBC) was assessed at three, six, and twelve months, and problem-solving skills were assessed at six and twelve months. Maternal DHA status in pregnancy was found to be positively associated with infants’ problem-solving skills at 12 months. This association remained significant even after controlling for the level of maternal education, a surrogate for socio-economic status. The infants’ DHA status at three months was associated with the infants’ problem solving at 12 months. The results accentuate the importance for pregnant and lactating women to have a satisfactory DHA status from dietary intake of seafood or other sources rich in DHA. PMID:29695097

  11. Maternal DHA Status during Pregnancy Has a Positive Impact on Infant Problem Solving: A Norwegian Prospective Observation Study.

    PubMed

    Braarud, Hanne Cecilie; Markhus, Maria Wik; Skotheim, Siv; Stormark, Kjell Morten; Frøyland, Livar; Graff, Ingvild Eide; Kjellevold, Marian

    2018-04-24

    Docosahexaenoic acid (DHA, 22:6, n -3) is a long-chain polyunsaturated fatty acid necessary for normal brain growth and cognitive development. Seafood and dietary supplements are the primary dietary sources of DHA. This study addresses the associations between DHA status in pregnant women and healthy, term-born infant problem-solving skills assessed using the Ages and Stages Questionnaire. The fatty acid status of maternal red blood cells (RBCs) was assessed in the 28th week of gestation and at three months postpartum. The infants’ fatty acid status (RBC) was assessed at three, six, and twelve months, and problem-solving skills were assessed at six and twelve months. Maternal DHA status in pregnancy was found to be positively associated with infants’ problem-solving skills at 12 months. This association remained significant even after controlling for the level of maternal education, a surrogate for socio-economic status. The infants’ DHA status at three months was associated with the infants’ problem solving at 12 months. The results accentuate the importance for pregnant and lactating women to have a satisfactory DHA status from dietary intake of seafood or other sources rich in DHA.

  12. Students’ Covariational Reasoning in Solving Integrals’ Problems

    NASA Astrophysics Data System (ADS)

    Harini, N. V.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.

  13. A Message Passing Approach to Side Chain Positioning with Applications in Protein Docking Refinement *

    PubMed Central

    Moghadasi, Mohammad; Kozakov, Dima; Mamonov, Artem B.; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.

    2013-01-01

    We introduce a message-passing algorithm to solve the Side Chain Positioning (SCP) problem. SCP is a crucial component of protein docking refinement, which is a key step of an important class of problems in computational structural biology called protein docking. We model SCP as a combinatorial optimization problem and formulate it as a Maximum Weighted Independent Set (MWIS) problem. We then employ a modified and convergent belief-propagation algorithm to solve a relaxation of MWIS and develop randomized estimation heuristics that use the relaxed solution to obtain an effective MWIS feasible solution. Using a benchmark set of protein complexes we demonstrate that our approach leads to more accurate docking predictions compared to a baseline algorithm that does not solve the SCP. PMID:23515575

  14. Role of beliefs and emotions in numerical problem solving in university physics education

    NASA Astrophysics Data System (ADS)

    Bodin, Madelen; Winberg, Mikael

    2012-06-01

    Numerical problem solving in classical mechanics in university physics education offers a learning situation where students have many possibilities of control and creativity. In this study, expertlike beliefs about physics and learning physics together with prior knowledge were the most important predictors of the quality of performance of a task with many degrees of freedom. Feelings corresponding to control and concentration, i.e., emotions that are expected to trigger students’ intrinsic motivation, were also important in predicting performance. Unexpectedly, intrinsic motivation, as indicated by enjoyment and interest, together with students’ personal interest and utility value beliefs did not predict performance. This indicates that although a certain degree of enjoyment is probably necessary, motivated behavior is rather regulated by integration and identification of expertlike beliefs about learning and are more strongly associated with concentration and control during learning and, ultimately, with high performance. The results suggest that the development of students’ epistemological beliefs is important for students’ ability to learn from realistic problem-solving situations with many degrees of freedom in physics education.

  15. A testable theory of problem solving courts: Avoiding past empirical and legal failures.

    PubMed

    Wiener, Richard L; Winick, Bruce J; Georges, Leah Skovran; Castro, Anthony

    2010-01-01

    Recent years have seen a proliferation of problem solving courts designed to rehabilitate certain classes of offenders and thereby resolve the underlying problems that led to their court involvement in the first place. Some commentators have reacted positively to these courts, considering them an extension of the philosophy and logic of Therapeutic Jurisprudence, but others show concern that the discourse surrounding these specialty courts has not examined their process or outcomes critically enough. This paper examines that criticism from historical and social scientific perspectives. The analysis culminates in a model that describes how offenders are likely to respond to the process as they engage in problem solving court programs and the ways in which those courts might impact subsequent offender conduct. This Therapeutic Jurisprudence model of problem solving courts draws heavily on social cognitive psychology and more specifically on theories of procedural justice, motivation, and anticipated emotion to offer an explanation of how offenders respond to these programs. We offer this model as a lens through which social scientists can begin to address the concern that there is not enough critical analysis of the process and outcome of these courts. Applying this model to specialty courts constitutes an important step in critically examining the contribution of problem solving courts. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. From problem solving to problem definition: scrutinizing the complex nature of clinical practice.

    PubMed

    Cristancho, Sayra; Lingard, Lorelei; Regehr, Glenn

    2017-02-01

    In medical education, we have tended to present problems as being singular, stable, and solvable. Problem solving has, therefore, drawn much of medical education researchers' attention. This focus has been important but it is limited in terms of preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness. In this paper, we use the Soft Systems Engineering principles to introduce the idea that in complex, team-based situations, problems usually involve divergent views and evolve with multiple solution iterations. As such we need to shift the conversation from (1) problem solving to problem definition, and (2) from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation in which the problem is manifested. Embracing such a focus on problem definition will enable us to advocate for novel educational practices that will equip trainees to effectively manage the problems they will encounter in complex, team-based healthcare.

  17. Critical Thinking Skills Of Junior High School Female Students With High Mathematical Skills In Solving Contextual And Formal Mathematical Problems

    NASA Astrophysics Data System (ADS)

    Ismail; Suwarsono, St.; Lukito, A.

    2018-01-01

    Critical thinking is one of the most important skills of the 21st century in addition to other learning skills such as creative thinking, communication skills and collaborative skills. This is what makes researchers feel the need to conduct research on critical thinking skills in junior high school students. The purpose of this study is to describe the critical thinking skills of junior high school female students with high mathematical skills in solving contextual and formal mathematical problems. To achieve this is used qualitative research. The subject of the study was a female student of eight grade junior high school. The students’ critical thinking skills are derived from in-depth problem-based interviews using interview guidelines. Interviews conducted in this study are problem-based interviews, which are done by the subject given a written assignment and given time to complete. The results show that critical thinking skills of female high school students with high math skills are as follows: In solving the problem at the stage of understanding the problem used interpretation skills with sub-indicators: categorization, decode, and clarify meaning. At the planning stage of the problem-solving strategy is used analytical skills with sub-indicators: idea checking, argument identification and argument analysis and evaluation skills with sub indicators: assessing the argument. In the implementation phase of problem solving, inference skills are used with subindicators: drawing conclusions, and problem solving and explanatory skills with sub-indicators: problem presentation, justification procedures, and argument articulation. At the re-checking stage all steps have been employed self-regulatory skills with sub-indicators: self-correction and selfstudy.

  18. Technology Implementation and Workarounds in the Nursing Home

    PubMed Central

    Vogelsmeier, Amy A.; Halbesleben, Jonathon R.B.; Scott-Cawiezell, Jill R.

    2008-01-01

    Objective This study sought to explore the relationship of workarounds related to the implementation of an electronic medication administration record and medication safety practices in five Midwestern nursing homes. Design As a part of a larger study, this qualitative evaluation was conducted to identify workarounds associated with the implementation of an electronic medication administration record. Data were collected using multimethods including direct observation, process mapping, key informant interviews, and review of field notes from medication safety team meetings. Measurements Open and axial coding techniques were used to identify and categorize types of workarounds in relation to work flow blocks. Results Workarounds presented in two distinct patterns, those related to work flow blocks introduced by technology and those related to organizational processes not reengineered to effectively integrate with the technology. Workarounds such as safety alert overrides and shortcuts to documentation resulted from first-order problem solving of immediate blocks. Nursing home staff as individuals frequently used first-order problem solving instead of the more sophisticated second-order problem solving approach used by the medication safety team. Conclusion This study provides important practical examples of how nursing home staff work around work flow blocks encountered during the implementation of technology. Understanding these workarounds as a means of first-order problem solving is an important consideration to understanding risk to medication safety. PMID:17947626

  19. Expecting innovation: psychoactive drug primes and the generation of creative solutions.

    PubMed

    Hicks, Joshua A; Pedersen, Sarah L; Pederson, Sarah L; Friedman, Ronald S; McCarthy, Denis M

    2011-08-01

    Many individuals expect that alcohol and drug consumption will enhance creativity. The present studies tested whether substance related primes would influence creative performance for individuals who possessed creativity-related substance expectancies. Participants (n = 566) were briefly exposed to stimuli related to psychoactive substances (alcohol, for Study 1, Sample 1, and Study 2; and marijuana, for Study 1, Sample 2) or neutral stimuli. Participants in Study 1 then completed a creative problem-solving task, while participants in Study 2 completed a divergent thinking task or a task unrelated to creative problem solving. The results of Study 1 revealed that exposure to the experimental stimuli enhanced performance on the creative problem-solving task for those who expected the corresponding substance would trigger creative functioning. In a conceptual replication, Study 2 showed that participants exposed to alcohol cues performed better on a divergent thinking task if they expected alcohol to enhance creativity. It is important to note that this same interaction did not influence performance on measures unrelated to creative problem solving, suggesting that the activation of creativity-related expectancies influenced creative performance, specifically. These findings highlight the importance of assessing expectancies when examining pharmacological effects of alcohol and marijuana. Future directions and implications for substance-related interventions are discussed. (c) 2011 APA, all rights reserved.

  20. Is self-generated thought a means of social problem solving?

    PubMed Central

    Ruby, Florence J. M.; Smallwood, Jonathan; Sackur, Jerome; Singer, Tania

    2013-01-01

    Appropriate social problem solving constitutes a critical skill for individuals and may rely on processes important for self-generated thought (SGT). The aim of the current study was to investigate the link between SGT and social problem solving. Using the Means-End Problem Solving task (MEPS), we assessed participants' abilities to resolve daily social problems in terms of overall efficiency and number of relevant means they provided to reach the given solution. Participants also performed a non-demanding choice reaction time task (CRT) and a moderately-demanding working memory task (WM) as a context in which to measure their SGT (assessed via thought sampling). We found that although overall SGT was associated with lower MEPS efficiency, it was also associated with higher relevant means, perhaps because both depend on the capacity to generate cognition that is independent from the hear and now. The specific content of SGT did not differentially predict individual differences in social problem solving, suggesting that the relationship may depend on SGT regardless of its content. In addition, we also found that performance at the WM but not the CRT was linked to overall better MEPS performance, suggesting that individuals good at social processing are also distinguished by their capacity to constrain attention to an external task. Our results provide novel evidence that the capacity for SGT is implicated in the process by which solutions to social problems are generated, although optimal problem solving may be achieved by individuals who display a suitable balance between SGT and cognition derived from perceptual input. PMID:24391621

  1. Recursive heuristic classification

    NASA Technical Reports Server (NTRS)

    Wilkins, David C.

    1994-01-01

    The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.

  2. The errors of metacognitive evaluation on metacognitive failure of students in mathematical problem solving

    NASA Astrophysics Data System (ADS)

    Huda, Nizlel; Sutawidjaja, Akbar; Subanji; Rahardjo, Swasono

    2018-04-01

    Metacognitive activity is very important in mathematical problems solving. Metacognitive activity consists of metacognitive awareness, metacognitive evaluation and metacognitive regulation. This study aimed to reveal the errors of metacognitive evaluation in students’ metacognitive failure in solving mathematical problems. 20 students taken as research subjects were grouped into three groups: the first group was students who experienced one metacognitive failure, the second group was students who experienced two metacognitive failures and the third group was students who experienced three metacognitive failures. One person was taken from each group as the reasearch subject. The research data was collected from worksheets done using think aload then followed by interviewing the research subjects based on the results’ of subject work. The findings in this study were students who experienced metacognitive failure in solving mathematical problems tends to miscalculate metacognitive evaluation in considering the effectiveness and limitations of their thinking and the effectiveness of their chosen strategy of completion.

  3. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  4. Extrusion Process by Finite Volume Method Using OpenFoam Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  5. Effect of differentiation of self on adolescent risk behavior: test of the theoretical model.

    PubMed

    Knauth, Donna G; Skowron, Elizabeth A; Escobar, Melicia

    2006-01-01

    Innovative theoretical models are needed to explain the occurrence of high-risk sexual behaviors, alcohol and other-drug (AOD) use, and academic engagement among ethnically diverse, inner-city adolescents. The aim of this study was to test the credibility of a theoretical model based on the Bowen family systems theory to explain adolescent risk behavior. Specifically tested was the relationship between the predictor variables of differentiation of self, chronic anxiety, and social problem solving and the dependent variables of high-risk sexual behaviors, AOD use, and academic engagement. An ex post facto cross-sectional design was used to test the usefulness of the theoretical model. Data were collected from 161 racially/ethnically diverse, inner-city high school students, 14 to 19 years of age. Participants completed self-report written questionnaires, including the Differentiation of Self Inventory, State-Trait Anxiety Inventory, Social Problem Solving for Adolescents, Drug Involvement Scale for Adolescents, and the Sexual Behavior Questionnaire. Consistent with the model, higher levels of differentiation of self related to lower levels of chronic anxiety (p < .001) and higher levels of social problem solving (p < .01). Higher chronic anxiety was related to lower social problem solving (p < .001). A test of mediation showed that chronic anxiety mediates the relationship between differentiation of self and social problem solving (p < .001), indicating that differentiation influences social problem solving through chronic anxiety. Higher levels of social problem solving were related to less drug use (p < .05), less high-risk sexual behaviors (p < .01), and an increase in academic engagement (p < .01). Findings support the theoretical model's credibility and provide evidence that differentiation of self is an important cognitive factor that enables adolescents to manage chronic anxiety and motivates them to use effective problem solving, resulting in less involvement in health-comprising behaviors and increased academic engagement.

  6. The role of cognitive processes, foundational math skill, and calculation accuracy and fluency in word-problem solving versus prealgebraic knowledge.

    PubMed

    Fuchs, Lynn S; Gilbert, Jennifer K; Powell, Sarah R; Cirino, Paul T; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Tolar, Tammy D

    2016-12-01

    The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of Grade 2; calculation accuracy and calculation fluency at end of Grade 2; and prealgebraic knowledge and word-problem solving at end of Grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than prealgebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students' foundational mathematics skills or cognitive processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Analog "neuronal" networks in early vision.

    PubMed Central

    Koch, C; Marroquin, J; Yuille, A

    1986-01-01

    Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172

  8. Analysis of problem solving on project based learning with resource based learning approach computer-aided program

    NASA Astrophysics Data System (ADS)

    Kuncoro, K. S.; Junaedi, I.; Dwijanto

    2018-03-01

    This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.

  9. Knowledge Inertia and Organizational Learning as the Explanation of Organizational Performance

    ERIC Educational Resources Information Center

    Aküzüm, Cemal

    2014-01-01

    Knowledge is an important concept for individuals and organizations both as a power and source. Thus, knowledge management has become important subject for researchers. However, when people encounter problems, they usually try to produce solutions by utilizing their previous knowledge and experience. Such problem solving strategies are called…

  10. Neurocognitive Effects of Transcranial Direct Current Stimulation in Arithmetic Learning and Performance: A Simultaneous tDCS-fMRI Study.

    PubMed

    Hauser, Tobias U; Rütsche, Bruno; Wurmitzer, Karoline; Brem, Silvia; Ruff, Christian C; Grabner, Roland H

    A small but increasing number of studies suggest that non-invasive brain stimulation by means of transcranial direct current stimulation (tDCS) can modulate arithmetic processes that are essential for higher-order mathematical skills and that are impaired in dyscalculic individuals. However, little is known about the neural mechanisms underlying such stimulation effects, and whether they are specific to cognitive processes involved in different arithmetic tasks. We addressed these questions by applying tDCS during simultaneous functional magnetic resonance imaging (fMRI) while participants were solving two types of complex subtraction problems: repeated problems, relying on arithmetic fact learning and problem-solving by fact retrieval, and novel problems, requiring calculation procedures. Twenty participants receiving left parietal anodal plus right frontal cathodal stimulation were compared with 20 participants in a sham condition. We found a strong cognitive and neural dissociation between repeated and novel problems. Repeated problems were solved more accurately and elicited increased activity in the bilateral angular gyri and medial plus lateral prefrontal cortices. Solving novel problems, in contrast, was accompanied by stronger activation in the bilateral intraparietal sulci and the dorsomedial prefrontal cortex. Most importantly, tDCS decreased the activation of the right inferior frontal cortex while solving novel (compared to repeated) problems, suggesting that the cathodal stimulation rendered this region unable to respond to the task-specific cognitive demand. The present study revealed that tDCS during arithmetic problem-solving can modulate the neural activity in proximity to the electrodes specifically when the current demands lead to an engagement of this area. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Investigating and analyzing prospective teacher's reflective thinking in solving mathematical problem: A case study of female-field dependent (FD) prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-05-01

    In the last few years, reflective thinking becomes very popular term in the world of education, especially in professional education of teachers. One of goals of the educational personnel and teacher institutions create responsible prospective teachers and they are able reflective thinking. Reflective thinking is a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. Reflective thinking can be applied in mathematics becauseby reflective thinking, students can improve theircuriosity to solve mathematical problem. In solving mathematical problem is assumed that cognitive style has an impact on prospective teacher's mental activity. As a consequence, reflective thinking and cognitive style are important things in solving mathematical problem. The subject, in this research paper, isa female-prospective teacher who has fielddependent cognitive style. The purpose of this research paperis to investigate the ability of prospective teachers' reflective thinking in solving mathematical problem. This research paper is a descriptive by using qualitativeapproach. To analyze the data related to prospectiveteacher's reflective thinking in solving contextual mathematicalproblem, the researchers focus in four main categories which describe prospective teacher's activities in using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  12. Exploring the relationship between work-related rumination, sleep quality, and work-related fatigue.

    PubMed

    Querstret, Dawn; Cropley, Mark

    2012-07-01

    This study examined the association among three conceptualizations of work-related rumination (affective rumination, problem-solving pondering, and detachment) with sleep quality and work-related fatigue. It was hypothesized that affective rumination and poor sleep quality would be associated with increased fatigue and that problem-solving pondering and detachment would be associated with decreased fatigue. The mediating effect of sleep quality on the relationship between work-related rumination and fatigue was also tested. An online questionnaire was completed by a heterogeneous sample of 719 adult workers in diverse occupations. The following variables were entered as predictors in a regression model: affective rumination, problem-solving pondering, detachment, and sleep quality. The dependent variables were chronic work-related fatigue (CF) and acute work-related fatigue (AF). Affective rumination was the strongest predictor of increased CF and AF. Problem-solving pondering was a significant predictor of decreased CF and AF. Poor sleep quality was predictive of increased CF and AF. Detachment was significantly negatively predictive for AF. Sleep quality partially mediated the relationship between affective rumination and fatigue and between problem-solving pondering and fatigue. Work-related affective rumination appears more detrimental to an individual's ability to recover from work than problem-solving pondering. In the context of identifying mechanisms by which demands at work are translated into ill-health, this appears to be a key finding and suggests that it is the type of work-related rumination, not rumination per se, that is important.

  13. A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints

    NASA Astrophysics Data System (ADS)

    Estiningsih, Y.; Farikhin; Tjahjana, R. H.

    2018-03-01

    Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.

  14. A Literature Review on Collaborative Problem Solving for College and Workforce Readiness. ETS GRE® Board Research Report. ETS GRE®-17-03. Research Report. ETS Research Report RR-17-06

    ERIC Educational Resources Information Center

    Oliveri, Maria Elena; Lawless, Rene; Molloy, Hillary

    2017-01-01

    The literature and the employee and workforce surveys rank collaborative problem solving (CPS) among the top 5 most critical skills necessary for success in college and the workforce. This paper provides a review of the literature on CPS and related terms, including a discussion of their definitions, importance to higher education and workforce…

  15. Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.

    PubMed

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney J

    2018-05-01

    Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.

  16. The efficacy of problem-solving treatments after deliberate self-harm: meta-analysis of randomized controlled trials with respect to depression, hopelessness and improvement in problems.

    PubMed

    Townsend, E; Hawton, K; Altman, D G; Arensman, E; Gunnell, D; Hazell, P; House, A; Van Heeringen, K

    2001-08-01

    Brief problem-solving therapy is regarded as a pragmatic treatment for deliberate self-harm (DSH) patients. A recent meta-analysis of randomized controlled trials (RCTs) evaluating this approach indicated a trend towards reduced repetition of DSH but the pooled odds ratio was not statistically significant. We have now examined other important outcomes using this procedure, namely depression, hopelessness and improvement in problems. Six trials in which problem-solving therapy was compared with control treatment were identified from an extensive literature review of RCTs of treatments for DSH patients. Data concerning depression, hopelessness and improvement in problems were extracted. Where relevant statistical data (e.g. standard deviations) were missing these were imputed using various statistical methods. Results were pooled using meta-analytical procedures. At follow-up, patients who were offered problem-solving therapy had significantly greater improvement in scores for depression (standardized mean difference = -0.36; 95% CI -0.61 to -0.11) and hopelessness (weighted mean difference =-3.2; 95% CI -4.0 to -2.41), and significantly more reported improvement in their problems (odds ratio = 2.31; 95% CI 1.29 to 4.13), than patients who were in the control treatment groups. Problem-solving therapy for DSH patients appears to produce better results than control treatment with regard to improvement in depression, hopelessness and problems. It is desirable that this finding is confirmed in a large trial, which will also allow adequate testing of the impact of this treatment on repetition of DSH.

  17. Inhibitory Control, but Not Prolonged Object-Related Experience Appears to Affect Physical Problem-Solving Performance of Pet Dogs.

    PubMed

    Müller, Corsin A; Riemer, Stefanie; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2016-01-01

    Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject's level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance.

  18. Inhibitory Control, but Not Prolonged Object-Related Experience Appears to Affect Physical Problem-Solving Performance of Pet Dogs

    PubMed Central

    Müller, Corsin A.; Riemer, Stefanie; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2016-01-01

    Human infants develop an understanding of their physical environment through playful interactions with objects. Similar processes may influence also the performance of non-human animals in physical problem-solving tasks, but to date there is little empirical data to evaluate this hypothesis. In addition or alternatively to prior experiences, inhibitory control has been suggested as a factor underlying the considerable individual differences in performance reported for many species. Here we report a study in which we manipulated the extent of object-related experience for a cohort of dogs (Canis familiaris) of the breed Border Collie over a period of 18 months, and assessed their level of inhibitory control, prior to testing them in a series of four physical problem-solving tasks. We found no evidence that differences in object-related experience explain variability in performance in these tasks. It thus appears that dogs do not transfer knowledge about physical rules from one physical problem-solving task to another, but rather approach each task as a novel problem. Our results, however, suggest that individual performance in these tasks is influenced in a complex way by the subject’s level of inhibitory control. Depending on the task, inhibitory control had a positive or a negative effect on performance and different aspects of inhibitory control turned out to be the best predictors of individual performance in the different tasks. Therefore, studying the interplay between inhibitory control and problem-solving performance will make an important contribution to our understanding of individual and species differences in physical problem-solving performance. PMID:26863141

  19. Students’ metacognitive activities in solving the combinatorics problem: the experience of students with holist-serialist cognitive style

    NASA Astrophysics Data System (ADS)

    Trisna, B. N.; Budayasa, I. K.; Siswono, T. Y. E.

    2018-01-01

    Metacognition is related to improving student learning outcomes. This study describes students’ metacognitive activities in solving the combinatorics problem. Two undergraduate students of mathematics education from STKIP PGRI Banjarmasin were selected as the participants of the study, one person has a holist cognitive style and the other a serialist. Data were collected by task-based interviews where the task contains a combinatorial problem. The interviews were conducted twice using equivalent problem at two different times. The study found that the participants showed metacognitive awareness (A), metacognitive evaluation (E), and metacognitive regulation (R) that operated as pathways from one function to another. Both, holist and serialist, have metacognitive activities in different pathway. The path of metacognitive activities of the holist is AERCAE-AAEER-ACRECCECC-AREERCE with the AERAE-AER-ARE-ARERE pattern, while the path of metacognitive activities of the serialist is AERCA-AAER-ACRERCERC-AREEEE with the AERA-AER-ARERER-ARE pattern. As an implication of these findings, teachers/lecturers need to pay attention to metacognitive awareness when they begin a stage in mathematical problem solving. Teachers/lecturers need to emphasize to students that in mathematical problem solving, processes and results are equally important.

  20. It's a kind of magic-what self-reports can reveal about the phenomenology of insight problem solving.

    PubMed

    Danek, Amory H; Fraps, Thomas; von Müller, Albrecht; Grothe, Benedikt; Öllinger, Michael

    2014-01-01

    Magic tricks usually remain a mystery to the observer. For the sake of science, we offered participants the opportunity to discover the magician's secret method by repeatedly presenting the same trick and asking them to find out how the trick worked. In the context of insightful problem solving, the present work investigated the emotions that participants experience upon solving a magic trick. We assumed that these emotions form the typical "Aha! experience" that accompanies insightful solutions to difficult problems. We aimed to show that Aha! experiences can be triggered by magic tricks and to systematically explore the phenomenology of the Aha! experience by breaking it down into five previously postulated dimensions. 34 video clips of different magic tricks were presented up to three times to 50 participants who had to find out how the trick was accomplished, and to indicate whether they had experienced an Aha! during the solving process. Participants then performed a comprehensive quantitative and qualitative assessment of their Aha! experiences which was repeated after 14 days to control for its reliability. 41% of all suggested solutions were accompanied by an Aha! experience. The quantitative assessment remained stable across time in all five dimensions. Happiness was rated as the most important dimension. This primacy of positive emotions was also reflected in participants' qualitative self-reports which contained more emotional than cognitive aspects. Implementing magic tricks as problem solving task, we could show that strong Aha! experiences can be triggered if a trick is solved. We could at least partially capture the phenomenology of Aha! by identifying one prevailing aspect (positive emotions), a new aspect (release of tension upon gaining insight into a magic trick) and one less important aspect (impasse).

  1. It's a kind of magic—what self-reports can reveal about the phenomenology of insight problem solving

    PubMed Central

    Danek, Amory H.; Fraps, Thomas; von Müller, Albrecht; Grothe, Benedikt; Öllinger, Michael

    2014-01-01

    Magic tricks usually remain a mystery to the observer. For the sake of science, we offered participants the opportunity to discover the magician's secret method by repeatedly presenting the same trick and asking them to find out how the trick worked. In the context of insightful problem solving, the present work investigated the emotions that participants experience upon solving a magic trick. We assumed that these emotions form the typical “Aha! experience” that accompanies insightful solutions to difficult problems. We aimed to show that Aha! experiences can be triggered by magic tricks and to systematically explore the phenomenology of the Aha! experience by breaking it down into five previously postulated dimensions. 34 video clips of different magic tricks were presented up to three times to 50 participants who had to find out how the trick was accomplished, and to indicate whether they had experienced an Aha! during the solving process. Participants then performed a comprehensive quantitative and qualitative assessment of their Aha! experiences which was repeated after 14 days to control for its reliability. 41% of all suggested solutions were accompanied by an Aha! experience. The quantitative assessment remained stable across time in all five dimensions. Happiness was rated as the most important dimension. This primacy of positive emotions was also reflected in participants' qualitative self-reports which contained more emotional than cognitive aspects. Implementing magic tricks as problem solving task, we could show that strong Aha! experiences can be triggered if a trick is solved. We could at least partially capture the phenomenology of Aha! by identifying one prevailing aspect (positive emotions), a new aspect (release of tension upon gaining insight into a magic trick) and one less important aspect (impasse). PMID:25538658

  2. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  3. Improve Problem Solving Skills through Adapting Programming Tools

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  4. Quantum Heterogeneous Computing for Satellite Positioning Optimization

    NASA Astrophysics Data System (ADS)

    Bass, G.; Kumar, V.; Dulny, J., III

    2016-12-01

    Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.

  5. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  6. The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schmuck, Frank Bernhard

    1988-01-01

    Reliable broadcast protocols are important tools in distributed and fault-tolerant programming. They are useful for sharing information and for maintaining replicated data in a distributed system. However, a wide range of such protocols has been proposed. These protocols differ in their fault tolerance and delivery ordering characteristics. There is a tradeoff between the cost of a broadcast protocol and how much ordering it provides. It is, therefore, desirable to employ protocols that support only a low degree of ordering whenever possible. This dissertation presents techniques for deciding how strongly ordered a protocol is necessary to solve a given application problem. It is shown that there are two distinct classes of application problems: problems that can be solved with efficient, asynchronous protocols, and problems that require global ordering. The concept of a linearization function that maps partially ordered sets of events to totally ordered histories is introduced. How to construct an asynchronous implementation that solves a given problem if a linearization function for it can be found is shown. It is proved that in general the question of whether a problem has an asynchronous solution is undecidable. Hence there exists no general algorithm that would automatically construct a suitable linearization function for a given problem. Therefore, an important subclass of problems that have certain commutativity properties are considered. Techniques for constructing asynchronous implementations for this class are presented. These techniques are useful for constructing efficient asynchronous implementations for a broad range of practical problems.

  7. The effect of daily challenges in children with autism on parents' couple problem-solving interactions.

    PubMed

    Hartley, Sigan L; Papp, Lauren M; Blumenstock, Shari M; Floyd, Frank; Goetz, Greta L

    2016-09-01

    The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents' couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. The Effect of Daily Challenges in Children with Autism on Parents’ Couple Problem-Solving Interactions

    PubMed Central

    Hartley, Sigan L.; Papp, Lauren M.; Blumenstock, Shari; Floyd, Frank; Goetz, Greta L.

    2016-01-01

    The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents’ couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. PMID:27336179

  9. Driving into the future: how imaging technology is shaping the future of cars

    NASA Astrophysics Data System (ADS)

    Zhang, Buyue

    2015-03-01

    Fueled by the development of advanced driver assistance system (ADAS), autonomous vehicles, and the proliferation of cameras and sensors, automotive is becoming a rich new domain for innovations in imaging technology. This paper presents an overview of ADAS, the important imaging and computer vision problems to solve for automotive, and examples of how some of these problems are solved, through which we highlight the challenges and opportunities in the automotive imaging space.

  10. A research strategy for the dynamic study of students' concepts and problem solving strategies using science software

    NASA Astrophysics Data System (ADS)

    Krajcik, Joseph S.; Simmons, Patricia E.; Lunetta, Vincent N.

    Microcomputers and appropriate software have the potential to help students learn. They can also serve as appropriate media for investigating how students learn. In this article we describe a research strategy examining learning and behavior when students interacted with microcomputers and software. Results from two preliminary studies illustrate the strategy.A major feature of the strategy included recording students interacting with microcomputer software interfaced with a VCR. The VCR recorded the video output from a microcomputer and students' verbal commentary via microphone input. This technique allowed students' comments about their observations, perceptions, predictions, explanations, and decisions to be recorded simultaneously with their computer input and the display on the microcomputer monitor.The research strategy described can provide important information about cognitive and affective behaviors of students engaged in using instructional software. Research studies utilizing this strategy can enhance our understanding of how students develop and employ important concepts and scientific relationships, how students develop problem-solving skills and solve problems, and how they interact with instructional software. Results of such studies have important implications for teaching and for the design of instructional software.

  11. Contemporary HIV/AIDS research: Insights from knowledge management theory.

    PubMed

    Callaghan, Chris William

    2017-12-01

    Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.

  12. Determination of criteria weights in solving multi-criteria problems

    NASA Astrophysics Data System (ADS)

    Kasim, Maznah Mat

    2014-12-01

    A multi-criteria (MC) problem comprises of units to be analyzed under a set of evaluation criteria. Solving a MC problem is basically the process of finding the overall performance or overall quality of the units of analysis by using certain aggregation method. Based on these overall measures of each unit, a decision can be made whether to sort them, to select the best or to group them according to certain ranges. Prior to solving the MC problems, the weights of the related criteria have to be determined with the assumption that the weights represent the degree of importance or the degree of contribution towards the overall performance of the units. This paper presents two main approaches which are called as subjective and objective approaches, where the first one involves evaluator(s) while the latter approach depends on the intrinsic information contained in each criterion. The subjective and objective weights are defined if the criteria are assumed to be independent with each other, but if they are dependent, there is another type of weight, which is called as monotone measure weight or compound weights which represent degree of interaction among the criteria. The measure of individual weights or compound weights must be addressed in solving multi-criteria problems so that the solutions are more reliable since in the real world, evaluation criteria always come with different degree of importance or are dependent with each other. As the real MC problems have their own uniqueness, it is up to the decision maker(s) to decide which type of weights and which method are the most applicable ones for the problem under study.

  13. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

    NASA Astrophysics Data System (ADS)

    Guo, Sangang

    2017-09-01

    There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

  14. A general strategy to solve the phase problem in RNA crystallography

    PubMed Central

    Keel, Amanda Y.; Rambo, Robert P.; Batey, Robert T.; Kieft, Jeffrey S.

    2007-01-01

    SUMMARY X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding a heavy-atom derivative to obtain high-quality experimental phase information. Existing techniques have drawbacks, severely limiting the rate at which important new structures are solved. To address this need, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G·U wobble pair cation binding motif we have identified an optimal version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This “directed soaking” strategy can be integrated fully into existing RNA and crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kα radiation. The success of this method has been proven in that it has already been used to solve several novel crystal structures. PMID:17637337

  15. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  16. Student Interaction with Campus Help-Givers: Mapping the Network's Efficacy.

    ERIC Educational Resources Information Center

    Huebner, Lois A.; And Others

    Procedures to map the broad outline of student interaction with various help-giving persons and campus agencies were investigated. A sample of 633 undergraduate students completed an 8-part problem-solving questionnaire that identified current problems, problems that previously existed, the 5 most important problems, improvement rates for the most…

  17. A multilevel finite element method for Fredholm integral eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Xie, Hehu; Zhou, Tao

    2015-12-01

    In this work, we proposed a multigrid finite element (MFE) method for solving the Fredholm integral eigenvalue problems. The main motivation for such studies is to compute the Karhunen-Loève expansions of random fields, which play an important role in the applications of uncertainty quantification. In our MFE framework, solving the eigenvalue problem is converted to doing a series of integral iterations and eigenvalue solving in the coarsest mesh. Then, any existing efficient integration scheme can be used for the associated integration process. The error estimates are provided, and the computational complexity is analyzed. It is noticed that the total computational work of our method is comparable with a single integration step in the finest mesh. Several numerical experiments are presented to validate the efficiency of the proposed numerical method.

  18. Intellectual Abilities That Discriminate Good and Poor Problem Solvers.

    ERIC Educational Resources Information Center

    Meyer, Ruth Ann

    1981-01-01

    This study compared good and poor fourth-grade problem solvers on a battery of 19 "reference" tests for verbal, induction, numerical, word fluency, memory, perceptual speed, and simple visualization abilities. Results suggest verbal, numerical, and especially induction abilities are important to successful mathematical problem solving.…

  19. Earth Trek...Explore Your Environment.

    ERIC Educational Resources Information Center

    Schneider, Gerald

    This publication introduces children to water, air, and noise pollution, solid waste disposal, and pesticide use problems. Several pollution problems are explained and the importance of solving them is stressed. Some concepts such as recycling, closed systems, and environments that are related to pollution problems are also introduced. Each…

  20. Computer as a Medium for Overcoming Misconceptions in Solving Inequalities

    ERIC Educational Resources Information Center

    Abramovich, Sergei; Ehrlich, Amos

    2007-01-01

    Inequalities are considered among the most useful tools of investigation in pure and applied mathematics; yet their didactical aspects have not received much attention in mathematics education research until recently. An important aspect of teaching problem solving at the secondary level deals with the notion of equivalence of algebraic…

  1. Right frontal gamma and beta band enhancement while solving a spatial puzzle with insight.

    PubMed

    Rosen, A; Reiner, M

    2017-12-01

    Solving a problem with an "a-ha" effect is known as insight. Unlike incremental problem solving, insight is sudden and unique, and the question about its distinct brain activity, intrigues many researchers. In this study, electroencephalogram signals were recorded from 12 right handed, human participants before (baseline) and while they solved a spatial puzzle known as the '10 coin puzzle' that could be solved incrementally or by insight. Participants responded as soon as they reached a solution and reported whether the process was incremental or by sudden insight. EEG activity was recorded from 19 scalp locations. We found significant differences between insight and incremental solvers in the Gamma and Beta 2 bands in frontal areas (F8) and in the alpha band in right temporal areas (T6). The right-frontal gamma indicates a process of restructuring which leads to an insight solution, in spatial problems, further suggesting a universal role of gamma in restructuring. These results further suggest that solving a spatial puzzle via insight requires exclusive brain areas and neurological-cognitive processes which may be important for meta-cognitive components of insight solutions, including attention and monitoring of the solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  3. Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carleton, James Brian; Parks, Michael L.

    Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less

  4. Student’s Critical Thinking in Solving Open-Ended Problems Based on Their Personality Type

    NASA Astrophysics Data System (ADS)

    Fitriana, L. D.; Fuad, Y.; Ekawati, R.

    2018-01-01

    Critical thinking plays an important role for students in solving open-ended problems. This research aims at describing student’s critical thinking in solving open-ended problems based on Keirsey’s personality types, namely rational, idealist, guardian, and artisan. Four students, with the higher rank in the mathematics’ test and representing each type of Keirsey personality, were selected as the research subjects. The data were collected from the geometry problem and interviews. The student’s critical thinking is described based on the FRISCO criteria. The result underlines that rational and idealist students fulfilled all FRISCO criteria, and but not for guardian and artisan students. Related to the inference criteria, guardian and artisan students could not make reasonable conclusions and connect the concepts. Related to the reason of criteria, rational student performed critical thinking by providing logical reason that supported his strategy to solve the problem. In contrast, the idealist student provided subjective reason. This results suggest that teachers should frequently train the students’ logical thinkingin every lesson and activity to develop student’s critical thinking and take the student’s personality character into account, especially for guardian and artisan students.

  5. Mobile code security

    NASA Astrophysics Data System (ADS)

    Ramalingam, Srikumar

    2001-11-01

    A highly secure mobile agent system is very important for a mobile computing environment. The security issues in mobile agent system comprise protecting mobile hosts from malicious agents, protecting agents from other malicious agents, protecting hosts from other malicious hosts and protecting agents from malicious hosts. Using traditional security mechanisms the first three security problems can be solved. Apart from using trusted hardware, very few approaches exist to protect mobile code from malicious hosts. Some of the approaches to solve this problem are the use of trusted computing, computing with encrypted function, steganography, cryptographic traces, Seal Calculas, etc. This paper focuses on the simulation of some of these existing techniques in the designed mobile language. Some new approaches to solve malicious network problem and agent tampering problem are developed using public key encryption system and steganographic concepts. The approaches are based on encrypting and hiding the partial solutions of the mobile agents. The partial results are stored and the address of the storage is destroyed as the agent moves from one host to another host. This allows only the originator to make use of the partial results. Through these approaches some of the existing problems are solved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Zhaojun; Yang, Chao

    What is common among electronic structure calculation, design of MEMS devices, vibrational analysis of high speed railways, and simulation of the electromagnetic field of a particle accelerator? The answer: they all require solving large scale nonlinear eigenvalue problems. In fact, these are just a handful of examples in which solving nonlinear eigenvalue problems accurately and efficiently is becoming increasingly important. Recognizing the importance of this class of problems, an invited minisymposium dedicated to nonlinear eigenvalue problems was held at the 2005 SIAM Annual Meeting. The purpose of the minisymposium was to bring together numerical analysts and application scientists to showcasemore » some of the cutting edge results from both communities and to discuss the challenges they are still facing. The minisymposium consisted of eight talks divided into two sessions. The first three talks focused on a type of nonlinear eigenvalue problem arising from electronic structure calculations. In this type of problem, the matrix Hamiltonian H depends, in a non-trivial way, on the set of eigenvectors X to be computed. The invariant subspace spanned by these eigenvectors also minimizes a total energy function that is highly nonlinear with respect to X on a manifold defined by a set of orthonormality constraints. In other applications, the nonlinearity of the matrix eigenvalue problem is restricted to the dependency of the matrix on the eigenvalues to be computed. These problems are often called polynomial or rational eigenvalue problems In the second session, Christian Mehl from Technical University of Berlin described numerical techniques for solving a special type of polynomial eigenvalue problem arising from vibration analysis of rail tracks excited by high-speed trains.« less

  7. Get Real!--Physically Reasonable Values for Teaching Electrostatics

    ERIC Educational Resources Information Center

    Morse, Robert A.

    2016-01-01

    Students get a sense of realistic values for physical situations from texts, but more importantly from solving problems. Therefore, problems should use realistic values for quantities to provide needed practice. Unfortunately, some problems on tests and in textbooks do not use realistic values. Physical situations in electrostatics seem to be…

  8. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  9. Language and Thought in Mathematics Staff Development: A Problem Probing Protocol

    ERIC Educational Resources Information Center

    Kabasakalian, Rita

    2007-01-01

    Background/Context: The theoretical framework of the paper comes from research on problem solving, considered by many to be the essence of mathematics; research on the importance of oral language in learning mathematics; and on the importance of the teacher as the primary instrument of learning mathematics for most students. As a nation, we are…

  10. Experiences Situating Mathematical Problem Solving at the Core of Early Childhood Classrooms

    ERIC Educational Resources Information Center

    Lopes, Celi Espasandin; Grando, Regina Célia; D'Ambrosio, Beatriz Silva

    2017-01-01

    Our goal in this article is to discuss the importance of problems in early childhood education for the child's development and engagement with the mathematics existing in childhood culture. Our assumption is that an important task for young children's education is to create a democratic and critical environment, in which multiplicity of…

  11. SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES

    EPA Science Inventory

    Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems, due to the complex nature of the problems, the need for complex assessments, and complicated ...

  12. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-10-23

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  13. Enhanced algorithms for stochastic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Alamuru S.

    1993-09-01

    In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less

  14. Performance evaluation of different types of particle representation procedures of Particle Swarm Optimization in Job-shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Izah Anuar, Nurul; Saptari, Adi

    2016-02-01

    This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.

  15. Towards a Cognitively Realistic Computational Model of Team Problem Solving Using ACT-R Agents and the ELICIT Experimentation Framework

    DTIC Science & Technology

    2014-06-01

    intelligence analysis processes. However, as has been noted in previous work (e.g., [42]), there are a number of important differences between the nature of the...problem encountered in the context of the ELICIT task and the problems dealt with by intelligence analysts. Perhaps most importantly, the fact that a...see Section 7). 6 departure from the reality of most intelligence analysis situations: in most real-world intelligence analysis problems agents have

  16. An investigation of the effects of interventions on problem-solving strategies and abilities

    NASA Astrophysics Data System (ADS)

    Cox, Charles Terrence, Jr.

    Problem-solving has been described as being the "heart" of the chemistry classroom, and students' development of problem-solving skills is essential for their success in chemistry. Despite the importance of problem-solving, there has been little research within the chemistry domain, largely because of the lack of tools to collect data for large populations. Problem-solving was assessed using a software package known as IMMEX (for Interactive Multimedia Exercises) which has an HTML tracking feature that allows for collection of problem-solving data in the background as students work the problems. The primary goal of this research was to develop methods (known as interventions) that could promote improvements in students' problem-solving and most notably aid in their transition from the novice to competent level. Three intervention techniques that were incorporated within the chemistry curricula: collaborative grouping (face-to-face and distance), concept mapping, and peer-led team learning. The face-to-face collaborative grouping intervention was designed to probe the factors affecting the quality of the group interaction. Students' logical reasoning abilities were measured using the Group Assessment of Logical Thinking (GALT) test which classifies students as formal, transitional, or concrete. These classifications essentially provide a basis for identifying scientific aptitude. These designations were used as the basis for forming collaborative groups of two students. The six possibilities (formal-formal, formal-transitional, etc.) were formed to determine how the group composition influences the gains in student abilities observed from collaborative grouping interventions. Students were given three assignments (an individual pre-collaborative, an individual post collaborative, and a collaborative assignment) each requiring them to work an IMMEX problem set. Similar gains in performance of 10% gains were observed for each group with two exceptions. The transitional students who were paired with concrete students had a 15% gain, and the concrete students paired with other concrete students had only a marginal gain. In fact, there was no statistical difference in the pre-collaborative and post-collaborative student abilities for concrete-concrete groups. The distance collaborative intervention was completed using a new interface for the IMMEX software designed to mimic face-to-face collaboration. A stereochemistry problem set which had a solved rate of 28% prior to collaboration was chosen for incorporation into this distance collaboration study. (Abstract shortened by UMI.)

  17. Cognitive constraints on high school students' representations of real environmental problems

    NASA Astrophysics Data System (ADS)

    Barnes, Ervin Kenneth

    One class of juniors and seniors was studied through one semester in the investigation of how students think about, learn from, and solve real environmental problems. The intention was to listen to student voices while researching the features of their representations of these problems, the beliefs they held (tenets), the cognitive processes they employed, and the principles of science, ecology, problem solving, and ethics they held as tenets. The focus was upon two self-selected groups as they perceived, engaged, analyzed, and proposed solutions for problems. Analysis of the student representations involved interpretation of the features to include both the perspective tenets and the envisioning processes. These processes included the intentive and attentive constraints as tenet acquisition and volitive and agential constraints as tenet affirmation. The perspective tenets included a variety of conceptual (basic science, ecological, ethical, and problem-solving) constraints as well as ontological, epistemological, and other cultural (role, status, power, and community) constraints. The perspective tenets were interpreted thematically including the ways populations of people cause and care about environmental problems, the magnitude of environmental problems and the science involved, the expectations and limitations students perceive for themselves, and the importance of community awareness and cooperation to addressing these problems. Some of these tenets were interpreted to be principles in that they were rules that were accepted by some people as true. The perspective tenets, along with the envisioning processes, were perceived to be the constraints that determined the environmental problems and limited the solution possibilities. The students thought about environmental problems in mature and principled ways using a repertoire of cognitive processes. They learned from them as they acquired and affirmed tenets. They solved them through personal choices and efforts to increase community awareness. The ways students think about, learn from, and solve real environmental problems were all constrained by the perspective tenets (including cultural tenets of role, status, and power) and envisioning processes. It was concluded that students need help from the community to go further in solving these real environmental problems.

  18. Importance biasing scheme implemented in the PRIZMA code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandiev, I.Z.; Malyshkin, G.N.

    1997-12-31

    PRIZMA code is intended for Monte Carlo calculations of linear radiation transport problems. The code has wide capabilities to describe geometry, sources, material composition, and to obtain parameters specified by user. There is a capability to calculate path of particle cascade (including neutrons, photons, electrons, positrons and heavy charged particles) taking into account possible transmutations. Importance biasing scheme was implemented to solve the problems which require calculation of functionals related to small probabilities (for example, problems of protection against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building algorithm to problem peculiarities.

  19. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  20. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  1. Too upset to think: the interplay of borderline personality features, negative emotions, and social problem solving in the laboratory.

    PubMed

    Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris

    2011-10-01

    Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.

  2. Computer problem-solving coaches for introductory physics: Design and usability studies

    NASA Astrophysics Data System (ADS)

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-06-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.

  3. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    PubMed

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  4. Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships

    ERIC Educational Resources Information Center

    Paknejad, Mohammad R.

    2016-01-01

    Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…

  5. Organizational and Pedagogical Conditions for Training Teachers under Distance Education Framework

    ERIC Educational Resources Information Center

    Khuziakhmetov, Anvar N.; Suleymanova, Dilyara N.; Nasibullov, Ramis R.; Yarullin, Ilnar F.

    2016-01-01

    Distance education in a professional higher school is of particular importance in terms of fundamental changes in modern educational institutions. This form of training together with the expansion of information technologies can effectively solve the problem of training students and life-long learning. Distance education is able to solve the…

  6. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  7. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  8. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.

  9. Solving large sparse eigenvalue problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef

    1988-01-01

    An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.

  10. Genetic algorithm parameters tuning for resource-constrained project scheduling problem

    NASA Astrophysics Data System (ADS)

    Tian, Xingke; Yuan, Shengrui

    2018-04-01

    Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.

  11. The role of nonverbal cognitive ability in the association of adverse life events with dysfunctional attitudes and hopelessness in adolescence.

    PubMed

    Flouri, Eirini; Panourgia, Constantina

    2012-10-01

    The aim of this study was to test whether nonverbal cognitive ability buffers the effect of life stress (number of adverse life events in the last year) on diatheses for depression. It was expected that, as problem-solving aptitude, nonverbal cognitive ability would moderate the effect of life stress on those diatheses (such as dysfunctional attitudes) that are depressogenic because they represent deficits in information-processing or problem-solving skills, but not on diatheses (such as hopelessness) that are depressogenic because they represent deficits in motivation or effort to apply problem-solving skills. The sample included 558 10- to 19-year-olds from a state secondary school in London. Nonverbal cognitive ability was negatively associated with both dysfunctional attitudes and hopelessness. As expected, nonverbal cognitive ability moderated the association between life adversity and dysfunctional attitudes. However, hopelessness was not related to life stress, and therefore, there was no life stress effect for nonverbal cognitive ability to moderate. This study adds to knowledge about the association between problem-solving ability and depressogenic diatheses. By identifying life stress as a risk factor for dysfunctional attitudes but not hopelessness, it highlights the importance of considering outcome specificity in models predicting adolescent outcomes from adverse life events. Importantly for practice, it suggests that an emphasis on recent life adversity will likely underestimate the true level of hopelessness among adolescents. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Recovery after Work: The Role of Work Beliefs in the Unwinding Process

    PubMed Central

    Zoupanou, Zoe; Cropley, Mark; Rydstedt, Leif W.

    2013-01-01

    According to the Effort-Recovery model, mental or physical detachment from work is an important mechanism of work related recovery, as delayed recovery has been associated with range of negative health symptoms. In this paper, we examine whether recovery from work (in the form of mentally disengagement from work) is affected by the concept of ‘work ethic’, which refers to beliefs workers hold about their work and leisure and the effects of experiencing interruptions at work. Two indices of post-work recovery were utilized: problem solving pondering and psychological detachment. The study was conducted with 310 participants employed from diverse occupational sectors. Main effects of positive and negative appraisal of work interruption and beliefs were analysed using mediated and moderated regression analysis on problem-solving pondering and detachment. Weakened belief in wasted time as a partial mediator, reduced problem-solving pondering post work when interruptions were appraised as positive, and a high evaluation of leisure partially mediated problem-solving pondering when interruptions were appraised as positive. The results also showed that a high evaluation of centrality of work and leisure moderated the effect of negative appraisal of work interruption on elevated problem-solving pondering. Positive appraisal of work interruption was related to problem-solving pondering, and the strength of this association was further moderated by a strong belief in delay of gratification. In addition, employees' positive appraisal of work interruption was related to work detachment, and the strength of this association was further moderated by strong beliefs in hard work and self-reliance. These findings are discussed in terms of their theoretical and practical implications for employees who are strongly influenced by such work beliefs. PMID:24349060

  13. Recovery after work: the role of work beliefs in the unwinding process.

    PubMed

    Zoupanou, Zoe; Cropley, Mark; Rydstedt, Leif W

    2013-01-01

    According to the Effort-Recovery model, mental or physical detachment from work is an important mechanism of work related recovery, as delayed recovery has been associated with range of negative health symptoms. In this paper, we examine whether recovery from work (in the form of mentally disengagement from work) is affected by the concept of 'work ethic', which refers to beliefs workers hold about their work and leisure and the effects of experiencing interruptions at work. Two indices of post-work recovery were utilized: problem solving pondering and psychological detachment. The study was conducted with 310 participants employed from diverse occupational sectors. Main effects of positive and negative appraisal of work interruption and beliefs were analysed using mediated and moderated regression analysis on problem-solving pondering and detachment. Weakened belief in wasted time as a partial mediator, reduced problem-solving pondering post work when interruptions were appraised as positive, and a high evaluation of leisure partially mediated problem-solving pondering when interruptions were appraised as positive. The results also showed that a high evaluation of centrality of work and leisure moderated the effect of negative appraisal of work interruption on elevated problem-solving pondering. Positive appraisal of work interruption was related to problem-solving pondering, and the strength of this association was further moderated by a strong belief in delay of gratification. In addition, employees' positive appraisal of work interruption was related to work detachment, and the strength of this association was further moderated by strong beliefs in hard work and self-reliance. These findings are discussed in terms of their theoretical and practical implications for employees who are strongly influenced by such work beliefs.

  14. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  15. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  16. The Galactic Spaceship Tour Challenge

    ERIC Educational Resources Information Center

    Engel, Bill; Schmidt, Diane

    2004-01-01

    A science fiction problem was placed before the students, they had to plan a profitable trip for Galactic spaceship tour and for which group of five students was made to solve the problem, which would encourage cooperative efforts, and different people in the group could work on different aspects. An important part of this problem is that students…

  17. Applications of Genetic Methods to NASA Design and Operations Problems

    NASA Technical Reports Server (NTRS)

    Laird, Philip D.

    1996-01-01

    We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.

  18. Hands Together! An Analog Clock Problem

    ERIC Educational Resources Information Center

    Earnest, Darrell; Radtke, Susan; Scott, Siri

    2017-01-01

    In this article, the authors first present the Hands Together! task. The mathematics in this problem concerns the relationship of hour and minute durations as reflected in the oft-overlooked proportional movements of the two hands of an analog clock. The authors go on to discuss the importance of problem solving in general. They then consider…

  19. Implementation of Problem Based Learning among Nursing Students

    ERIC Educational Resources Information Center

    Hamdan, Abdul Rahim; Kwan, Chan Li; Khan, Aqeel; Ghafar, Mohamed Najib Abdul; Sihes, Ahmad Johari

    2014-01-01

    Critical thinking and effective problem solving skills have been regarded as an important element and as an educational outcome in professional nursing. The purpose of this study is to examine the implementation of Problem Based Learning (PBL) among nursing students. More specifically, it compares pretest and post test scores of the implementation…

  20. Spacing and the Transition from Calculation to Retrieval

    ERIC Educational Resources Information Center

    Rickard, Timothy C.; Lau, Jonas; Pashler, Harold

    2008-01-01

    Many arithmetic problems can be solved in two ways: by a calculation involving several steps, and by direct retrieval of the answer. With practice on particular problems, memory retrieval tends to supplant calculation--an important aspect of skill learning. We asked how the distribution of practice on particular problems affects this kind of…

  1. Friendship and Gender Differences in Task and Social Interpretations of Peer Collaborative Problem Solving.

    ERIC Educational Resources Information Center

    Strough, JoNell; Berg, Cynthia A.; Meegan, Sean P.

    2001-01-01

    Examined how social aspects of a peer collaborative context related to differences in adolescents' interpretations of task and social problems while collaborating with peers in a naturalistic classroom setting. Found that salience of social problems, gender, and friendship were important for understanding project performance. Explored the value of…

  2. The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The generalized eigenvalue problem, Kx = Lambda Mx, is of significant practical importance, especially in structural enginering where it arises as the vibration and buckling problem. A new algorithm, LANZ, based on Lanczos's method is developed. LANZ uses a technique called dynamic shifting to improve the efficiency and reliability of the Lanczos algorithm. A new algorithm for solving the tridiagonal matrices that arise when using Lanczos's method is described. A modification of Parlett and Scott's selective orthogonalization algorithm is proposed. Results from an implementation of LANZ on a Convex C-220 show it to be superior to a subspace iteration code.

  3. Review on solving the forward problem in EEG source analysis

    PubMed Central

    Hallez, Hans; Vanrumste, Bart; Grech, Roberta; Muscat, Joseph; De Clercq, Wim; Vergult, Anneleen; D'Asseler, Yves; Camilleri, Kenneth P; Fabri, Simon G; Van Huffel, Sabine; Lemahieu, Ignace

    2007-01-01

    Background The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem. PMID:18053144

  4. Extraction of a group-pair relation: problem-solving relation from web-board documents.

    PubMed

    Pechsiri, Chaveevan; Piriyakul, Rapepun

    2016-01-01

    This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.

  5. A SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES

    EPA Science Inventory

    Evaluation and analysis of multiple objectives are very important in designing environmentally benign processes. They require a systematic procedure for solving multi-objective decision-making problems due to the complex nature of the problems and the need for complex assessment....

  6. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  7. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the context of discovery

    NASA Astrophysics Data System (ADS)

    Hafner, Robert; Stewart, Jim

    Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).

  9. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving

    PubMed Central

    Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.

    2016-01-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604

  10. Parent-Teacher Communication about Children with Autism Spectrum Disorder: An Examination of Collaborative Problem-Solving.

    PubMed

    Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M

    2016-12-01

    Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.

  11. Errors analysis of problem solving using the Newman stage after applying cooperative learning of TTW type

    NASA Astrophysics Data System (ADS)

    Rr Chusnul, C.; Mardiyana, S., Dewi Retno

    2017-12-01

    Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.

  12. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  13. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  14. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  15. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  16. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  17. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  18. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.

  19. Parallel computation with molecular-motor-propelled agents in nanofabricated networks.

    PubMed

    Nicolau, Dan V; Lard, Mercy; Korten, Till; van Delft, Falco C M J M; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V

    2016-03-08

    The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology.

  20. The Characteristics of Earth System Thinking of Science Gifted Students in relation to Climate Changes

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin

    2016-04-01

    This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking

  1. Hippocampal-neocortical functional reorganization underlies children's cognitive development

    PubMed Central

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C.; Menon, Vinod

    2014-01-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development – the transition from procedure-based to memory-based problem solving strategies – are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use continued to improve through adolescence into adulthood, and was associated with decreased activation but more stable inter-problem representations in the hippocampus. Our findings provide novel insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving, and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development. PMID:25129076

  2. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Errormore » analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.« less

  3. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  4. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr. (Editor); Grey, J.

    1974-01-01

    The potential achievements of solar system exploration are outlined, and a course of action is suggested which will maximize the rewards. Also provided is a sourcebook of information on the solar system and the technology being brought to bear for its exploration. The document explores the degree to which three practical questions can be answered: why it is necessary to explore the solar system, why understanding of the solar system is important to us, and why we cannot wait until all terrestrial problems are solved before an attempt is made to solve problems in space.

  5. Young Humeans: The Role of Emotions in Children's Evaluation of Moral Reasoning Abilities

    ERIC Educational Resources Information Center

    Danovitch, Judith H.; Keil, Frank C.

    2008-01-01

    Three experiments investigated whether children in grades K, 2, and 4 (n = 144) view emotional comprehension as important in solving moral dilemmas. The experiments asked whether a human or an artificially intelligent machine would be best at solving different types of problems, ranging from moral and emotional to nonmoral and pragmatic. In…

  6. How Does a Child Solve 7 + 8? Decoding Brain Activity Patterns Associated with Counting and Retrieval Strategies

    ERIC Educational Resources Information Center

    Cho, Soohyun; Ryali, Srikanth; Geary, David C.; Menon, Vinod

    2011-01-01

    Cognitive development and learning are characterized by diminished reliance on effortful procedures and increased use of memory-based problem solving. Here we identify the neural correlates of this strategy shift in 7-9-year-old children at an important developmental period for arithmetic skill acquisition. Univariate and multivariate approaches…

  7. An experience sampling study of learning, affect, and the demands control support model.

    PubMed

    Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth

    2009-07-01

    The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.

  8. What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective

    ERIC Educational Resources Information Center

    Wareham, Todd; Evans, Patricia; van Rooij, Iris

    2011-01-01

    Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…

  9. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  10. Generalization of Social Skills: Strategies and Results of a Training Program in Problem Solving Skills.

    ERIC Educational Resources Information Center

    Paraschiv, Irina; Olley, J. Gregory

    This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…

  11. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  12. Computational Study for Planar Connected Dominating Set Problem

    NASA Astrophysics Data System (ADS)

    Marzban, Marjan; Gu, Qian-Ping; Jia, Xiaohua

    The connected dominating set (CDS) problem is a well studied NP-hard problem with many important applications. Dorn et al. [ESA2005, LNCS3669,pp95-106] introduce a new technique to generate 2^{O(sqrt{n})} time and fixed-parameter algorithms for a number of non-local hard problems, including the CDS problem in planar graphs. The practical performance of this algorithm is yet to be evaluated. We perform a computational study for such an evaluation. The results show that the size of instances can be solved by the algorithm mainly depends on the branchwidth of the instances, coinciding with the theoretical result. For graphs with small or moderate branchwidth, the CDS problem instances with size up to a few thousands edges can be solved in a practical time and memory space. This suggests that the branch-decomposition based algorithms can be practical for the planar CDS problem.

  13. A globally convergent LCL method for nonlinear optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedlander, M. P.; Saunders, M. A.; Mathematics and Computer Science

    2005-01-01

    For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods solve a sequence of subproblems of the form 'minimize an augmented Lagrangian function subject to linearized constraints.' Such methods converge rapidly near a solution but may not be reliable from arbitrary starting points. Nevertheless, the well-known software package MINOS has proved effective on many large problems. Its success motivates us to derive a related LCL algorithm that possesses three important properties: it is globally convergent, the subproblem constraints are always feasible, and the subproblems may be solved inexactly. The new algorithm has been implemented in Matlab, with an optionmore » to use either MINOS or SNOPT (Fortran codes) to solve the linearly constrained subproblems. Only first derivatives are required. We present numerical results on a subset of the COPS, HS, and CUTE test problems, which include many large examples. The results demonstrate the robustness and efficiency of the stabilized LCL procedure.« less

  14. Modified artificial bee colony algorithm for reactive power optimization

    NASA Astrophysics Data System (ADS)

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-05-01

    Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.

  15. Problem-solving deficits in Iranian people with borderline personality disorder.

    PubMed

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  16. Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.

    PubMed

    Gonzalez, Vivian M; Neander, Lucía L

    2018-03-15

    This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.

  17. The Function Analysis of Informationization in New Rural Cooperatives Medical Service Management

    NASA Astrophysics Data System (ADS)

    Zhou, Yuefeng; Liu, Min

    The establishment of new rural cooperative medical system is an important action for comprehensive affluent society. It is an important measure for Central Party Committee and State Council to solve "three rural" issue effectively and to overall urban and rural, regional, coordinated economic and social development, building a well-off society in the new situation. It has important role to alleviate farmers to see a doctor expensively, see a doctor difficultly, reduce the burden on farmers and improve their level of health protection and quality of life, solve the problem of poor because of illness and the problem of returning poor due to illness, promote the production and rural economic development and stability in the rural areas. This article will analyze the function of informationization in new rural cooperative medical service management selectively.

  18. Influence of personality, age, sex, and estrous state on chimpanzee problem-solving success

    PubMed Central

    Hopper, Lydia M.; Price, Sara A.; Freeman, Hani D.; Lambeth, Susan P.; Schapiro, Steven J.

    2015-01-01

    Despite the importance of individual problem solvers for group- and individual-level fitness, the correlates of individual problem-solving success are still an open topic of investigation. In addition to demographic factors, such as age or sex, certain personality dimensions have also been revealed as reliable correlates of problem-solving by animals. Such correlates, however, have been little-studied in chimpanzees. To empirically test the influence of age, sex, estrous state, and different personality factors on chimpanzee problem-solving, we individually tested 36 captive chimpanzees with two novel foraging puzzles. We included both female (N = 24) and male (N = 12) adult chimpanzees (aged 14–47 years) in our sample. We also controlled for the females’ estrous state—a potential influence on cognitive reasoning—by testing cycling females both when their sexual swelling was maximally tumescent (associated with the luteinizing hormone surge of a female’s estrous cycle) and again when it was detumescent. Although we found no correlation between the chimpanzees’ success with either puzzle and their age or sex, the chimpanzees’ personality ratings did correlate with responses to the novel foraging puzzles. Specifically, male chimpanzees that were rated highly on the factors Methodical, Openness (to experience), and Dominance spent longer interacting with the puzzles. There was also a positive relationship between the latency of females to begin interacting with the two tasks and their rating on the factor Reactivity/Undependability. No other significant correlations were found, but we report tentative evidence for increased problem-solving success by the females when they had detumescent estrous swellings. PMID:24322874

  19. Influence of personality, age, sex, and estrous state on chimpanzee problem-solving success.

    PubMed

    Hopper, Lydia M; Price, Sara A; Freeman, Hani D; Lambeth, Susan P; Schapiro, Steven J; Kendal, Rachel L

    2014-07-01

    Despite the importance of individual problem solvers for group- and individual-level fitness, the correlates of individual problem-solving success are still an open topic of investigation. In addition to demographic factors, such as age or sex, certain personality dimensions have also been revealed as reliable correlates of problem-solving by animals. Such correlates, however, have been little-studied in chimpanzees. To empirically test the influence of age, sex, estrous state, and different personality factors on chimpanzee problem-solving, we individually tested 36 captive chimpanzees with two novel foraging puzzles. We included both female (N=24) and male (N=12) adult chimpanzees (aged 14-47 years) in our sample. We also controlled for the females' estrous state-a potential influence on cognitive reasoning-by testing cycling females both when their sexual swelling was maximally tumescent (associated with the luteinizing hormone surge of a female's estrous cycle) and again when it was detumescent. Although we found no correlation between the chimpanzees' success with either puzzle and their age or sex, the chimpanzees' personality ratings did correlate with responses to the novel foraging puzzles. Specifically, male chimpanzees that were rated highly on the factors Methodical, Openness (to experience), and Dominance spent longer interacting with the puzzles. There was also a positive relationship between the latency of females to begin interacting with the two tasks and their rating on the factor Reactivity/Undependability. No other significant correlations were found, but we report tentative evidence for increased problem-solving success by the females when they had detumescent estrous swellings.

  20. Fostering Perseverance

    ERIC Educational Resources Information Center

    Lewis, Jennifer M.; Özgün-Koca, S. Asli

    2016-01-01

    Sustaining engagement with a mathematics task is not a novel suggestion for effective mathematics teaching. "Principles and Standards for School Mathematics" (2000) specified that "students need to know that a challenging problem will take some time and that perseverance is an important aspect of the problem-solving process and of…

  1. Early Intervention To Prevent Violence.

    ERIC Educational Resources Information Center

    Lumsden, Linda

    2000-01-01

    This publication summarizes five works exploring the key role schools can play in dealing with emotionally disturbed students, in part because teachers are more reliable sources of information about troubled youths. The importance of interpersonal cognitive problem-solving (ICPS) skills is analyzed in "Preventing Violence the Problem Solving…

  2. Cognition-emotion interactions: patterns of change and implications for math problem solving

    PubMed Central

    Trezise, Kelly; Reeve, Robert A.

    2014-01-01

    Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds’ algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry “unstable across time” subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities. PMID:25132830

  3. Multigrid methods for bifurcation problems: The self adjoint case

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1987-01-01

    This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.

  4. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  5. The Relationship between Students' Problem Posing and Problem Solving Abilities and Beliefs: A Small-Scale Study with Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven

    2013-01-01

    The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…

  6. An Investigation of the Effects on Students' Attitudes, Beliefs, and Abilities in Problem Solving and Mathematics after One Year of a Systematic Approach to the Learning of Problem Solving.

    ERIC Educational Resources Information Center

    Higgins, Karen M.

    This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…

  7. Contemporary HIV/AIDS research: Insights from knowledge management theory

    PubMed Central

    Callaghan, Chris William

    2017-01-01

    Abstract Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn’s paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the ‘crowd,’ thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process. PMID:28922967

  8. Self-Regulation in the Midst of Complexity: A Case Study of High School Physics Students Engaged in Ill-Structured Problem Solving

    NASA Astrophysics Data System (ADS)

    Milbourne, Jeffrey David

    The purpose of this dissertation study was to explore the experiences of high school physics students who were solving complex, ill-structured problems, in an effort to better understand how self-regulatory behavior mediated the project experience. Consistent with Voss, Green, Post, and Penner's (1983) conception of an ill-structured problem in the natural sciences, the 'problems' consisted of scientific research projects that students completed under the supervision of a faculty mentor. Zimmerman and Campillo's (2003) self-regulatory framework of problem solving provided a holistic guide to data collection and analysis of this multi-case study, with five individual student cases. The study's results are explored in two manuscripts, each targeting a different audience. The first manuscript, intended for the Science Education Research community, presents a thick, rich description of the students' project experiences, consistent with a qualitative, case study analysis. Findings suggest that intrinsic interest was an important self-regulatory factor that helped motivate students throughout their project work, and that the self-regulatory cycle of forethought, performance monitoring, and self-reflection was an important component of the problem-solving process. Findings also support the application of Zimmerman and Campillo's framework to complex, ill-structured problems, particularly the cyclical nature of the framework. Finally, this study suggests that scientific research projects, with the appropriate support, can be a mechanism for improving students' selfregulatory behavior. The second manuscript, intended for Physics practitioners, combines the findings of the first manuscript with the perspectives of the primary, on-site research mentor, who has over a decade's worth of experience mentoring students doing physics research. His experience suggests that a successful research experience requires certain characteristics, including: a slow, 'on-ramp' to the research experience, space to experience productive failure, and an opportunity to enjoy the work they are doing.

  9. Tribal ecoAmbassadors Program

    EPA Pesticide Factsheets

    Describes EPA's Tribal ecoAmbassadors Program that partners with Tribal College and University (TCU) with EPA scientists to solve the environmental problems most important to their tribal communities.

  10. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms ofmore » a suggested framework model based on discrete event simulation.« less

  11. Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.

    PubMed

    Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang

    2017-01-01

    Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.

  12. Effect of Cooperative Problem-Based Lab Instruction on Metacognition and Problem-Solving Skills

    ERIC Educational Resources Information Center

    Sandi-Urena, Santiago; Cooper, Melanie; Stevens, Ron

    2012-01-01

    While most scientists agree that laboratory work is an important part of introductory science courses, there is scant evidence for the relationship between laboratory work and student learning, particularly at the college level. This work reports the quantitative component of a mixed-methods study of the effect of cooperative problem-based…

  13. A Novel Numerical Method for Fuzzy Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Can, E.; Bayrak, M. A.; Hicdurmaz

    2016-05-01

    In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.

  14. Student’s scheme in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  15. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  16. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  17. The Problem-Solving Process in Physics as Observed When Engineering Students at University Level Work in Groups

    ERIC Educational Resources Information Center

    Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta

    2015-01-01

    The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…

  18. Social Problem Solving and Depressive Symptoms Over Time: A Randomized Clinical Trial of Cognitive Behavioral Analysis System of Psychotherapy, Brief Supportive Psychotherapy, and Pharmacotherapy

    PubMed Central

    Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.

    2011-01-01

    Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885

  19. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    NASA Astrophysics Data System (ADS)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  20. Universal Skills and Competencies for Geoscientists

    NASA Astrophysics Data System (ADS)

    Mosher, S.

    2015-12-01

    Geoscience students worldwide face a changing future workforce, but all geoscience work has universal cross-cutting skills and competencies that are critical for success. A recent Geoscience Employers Workshop, and employers' input on the "Future of Undergraduate Geoscience Education" survey, identified three major areas. Geoscience work requires spatial and temporal (3D & 4D) thinking, understanding that the Earth is a system of interacting parts and processes, and geoscience reasoning and synthesis. Thus, students need to be able to solve problems in the context of an open and dynamic system, recognizing that most geoscience problems have no clear, unambiguous answers. Students must learn to manage uncertainty, work by analogy and inference, and make predations with limited data. Being able to visualize and solve problems in 3D, incorporate the element of time, and understand scale is critical. Additionally students must learn how to tackle problems using real data, including understand the problems' context, identify appropriate questions to ask, and determine how to proceed. Geoscience work requires integration of quantitative, technical, and computational skills and the ability to be intellectually flexible in applying skills to new situations. Students need experience using high-level math and computational methods to solve geoscience problems, including probability and statistics to understand risk. Increasingly important is the ability to use "Big Data", GIS, visualization and modeling tools. Employers also agree a strong field component in geoscience education is important. Success as a geoscientist also requires non-technical skills. Because most work environments involve working on projects with a diverse team, students need experience with project management in team settings, including goal setting, conflict resolution, time management and being both leader and follower. Written and verbal scientific communication, as well as public speaking and listening skills, are important. Success also depends on interpersonal skills and professionalism, including business acumen, risk management, ethical conduct, and leadership. A global perspective is increasingly important, including cultural literacy and understanding societal relevance.

  1. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  2. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    PubMed

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  3. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  4. Co-rumination and co-problem solving in the daily lives of adolescents with major depressive disorder.

    PubMed

    Waller, Jennifer M; Silk, Jennifer S; Stone, Lindsey B; Dahl, Ronald E

    2014-08-01

    This study examines differences in the prevalence and nature of co-rumination during real-world social interactions with peers and parents among adolescents with major depressive disorder (MDD) compared to healthy controls. A total of 60 youth (29 with current MDD and 31 controls without psychopathology) completed a self-report measure of co-rumination and a 3-week ecological momentary assessment (EMA) protocol that measured the nature of face-to-face social interactions with peers and parents after a negative event in the adolescents' daily lives. Specifically, EMA was used to assess rates of problem talk, including both co-rumination and co-problem solving. Group differences in self-report and EMA measures were examined. Adolescents with MDD reported co-ruminating more often than adolescents with no Axis 1 disorders during daily interactions with both parents (Cohen's d = 0.78) and peers (d = 1.14), and also reported more co-rumination via questionnaire (d = 0.58). Adolescents with MDD engaged in co-problem solving with peers less often than did healthy controls (d = 0.78), but no group differences were found for rates of co-problem solving with parents. Results are consistent with previous research linking co-rumination and depression in adolescence and extend these self-report-based findings to assessment in an ecologically valid context. Importantly, the results support that MDD youth tend to co-ruminate more and to problem-solve less with peers in their daily lives compared to healthy youth, and that co-rumination also extends to parental relationships. Interventions focused on decreasing co-rumination with peers and parents and improving problem-solving skills with peers may be helpful for preventing and treating adolescent depression. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  6. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  7. Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children

    ERIC Educational Resources Information Center

    Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.

    2007-01-01

    This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…

  8. Solving inverse problem for Markov chain model of customer lifetime value using flower pollination algorithm

    NASA Astrophysics Data System (ADS)

    Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji

    2015-12-01

    Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.

  9. Synthesis and characterization of catalysts and electrocatalysts using combinatorial methods

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ramnarayanan

    This thesis documents attempts at solving three problems. Bead-based parallel synthetic and screening methods based on matrix algorithms were developed. The method was applied to search for new heterogeneous catalysts for dehydrogenation of methylcyclohexane. The most powerful use of the method to date was to optimize metal adsorption and evaluate catalysts as a function of incident energy, likely to be important in the future, should availability of energy be an optimization parameter. This work also highlighted the importance of order of addition of metal salts on catalytic activity and a portion of this work resulted in a patent with UOP LLC, Desplaines, Illinois. Combinatorial methods were also investigated as a tool to search for carbon-monoxide tolerant anode electrocatalysts and methanol tolerant cathode electrocatalysts, resulting in discovery of no new electrocatalysts. A physically intuitive scaling criterion was developed to analyze all experiments on electrocatalysts, providing insight for future experiments. We attempted to solve the CO poisoning problem in polymer electrolyte fuel cells using carbon molecular sieves as a separator. This approach was unsuccessful in solving the CO poisoning problem, possibly due to the tendency of the carbon molecular sieves to concentrate CO and CO 2 in pore walls.

  10. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio

    2015-06-01

    Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.

  11. Personality, problem solving, and adolescent substance use.

    PubMed

    Jaffee, William B; D'Zurilla, Thomas J

    2009-03-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.

  12. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.

  13. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  14. Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.

    ERIC Educational Resources Information Center

    Camacho, Moises; Good, Ron

    1989-01-01

    Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…

  15. From Whole Numbers to Invert and Multiply

    ERIC Educational Resources Information Center

    Cavey, Laurie O.; Kinzel, Margaret T.

    2014-01-01

    Teachers report that engaging students in solving contextual problems is an important part of supporting student understanding of algorithms for fraction division. Meaning for whole-number operations is a crucial part of making sense of contextual problems involving rational numbers. The authors present a developed instructional sequence to…

  16. Introduction: Occam’s Razor (SOT - Fit for Purpose workshop introduction)

    EPA Science Inventory

    Mathematical models provide important, reproducible, and transparent information for risk-based decision making. However, these models must be constructed to fit the needs of the problem to be solved. A “fit for purpose” model is an abstraction of a complicated problem that allow...

  17. Worry and problem-solving skills and beliefs in primary school children.

    PubMed

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  18. Selection of neurosurgical trainees.

    PubMed

    Myles, S T; McAleer, S

    2003-02-01

    Medical students in Canada must make career choices by their final year of medical school. Selection of students for a career in neurosurgery has traditionally been based on marks, reference letters and personal interviews. Studies have shown that marks alone are not accurate predictors of success in medical practice; personal skills and attributes which can best be assessed by letters of reference and interviews may be more important. This study was an attempt to assess the importance of, and ability to teach, personal skills and attitudes necessary for successful completion of a neurosurgical training program. A questionnaire was sent to 185 active members of the Canadian Neurosurgical Society, asking them to give a numerical rating of the importance of 22 personal skills and attributes, and their ability to teach those skills and attributes. They were asked to list any additional skills or attributes considered important, and rate their ability to teach them. Sixty-six (36%) questionnaires were returned. Honesty, motivation, willingness to learn, ability to problem solve, and ability to handle stress were the five most important characteristics identified. Neurosurgeons thought they could teach problem solving, willingness to consult informed sources, critical thinking, manual dexterity, and communication skills, but honesty, motivation, willingness to learn and ability to handle stress were difficult or impossible to teach. Honesty, motivation, willingness to learn, ability to problem solve and handle stress are important for success in a neurosurgical career. This information should be transmitted to medical students at "Career Day" venues. Structuring letters of reference and interviews to assess personal skills and attributes will be important, as those that can't be taught should be present before the start of training.

  19. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    NASA Astrophysics Data System (ADS)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  20. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  1. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Visuo–spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition

    PubMed Central

    Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Metcalfe, Arron W.S.; Swigart, Anna G.; Menon, Vinod

    2014-01-01

    The study of developmental disorders can provide a unique window into the role of domain-general cognitive abilities and neural systems in typical and atypical development. Mathematical disabilities (MD) are characterized by marked difficulty in mathematical cognition in the presence of preserved intelligence and verbal ability. Although studies of MD have most often focused on the role of core deficits in numerical processing, domain-general cognitive abilities, in particular working memory (WM), have also been implicated. Here we identify specific WM components that are impaired in children with MD and then examine their role in arithmetic problem solving. Compared to typically developing (TD) children, the MD group demonstrated lower arithmetic performance and lower visuo-spatial working memory (VSWM) scores with preserved abilities on the phonological and central executive components of WM. Whole brain analysis revealed that, during arithmetic problem solving, left posterior parietal cortex, bilateral dorsolateral and ventrolateral prefrontal cortex, cingulate gyrus and precuneus, and fusiform gyrus responses were positively correlated with VSWM ability in TD children, but not in the MD group. Additional analyses using a priori posterior parietal cortex regions previously implicated in WM tasks, demonstrated a convergent pattern of results during arithmetic problem solving. These results suggest that MD is characterized by a common locus of arithmetic and VSWM deficits at both the cognitive and functional neuroanatomical levels. Unlike TD children, children with MD do not use VSWM resources appropriately during arithmetic problem solving. This work advances our understanding of VSWM as an important domain-general cognitive process in both typical and atypical mathematical skill development. PMID:23896444

  3. Optimistic expectations in early marriage: a resource or vulnerability for adaptive relationship functioning?

    PubMed

    Neff, Lisa A; Geers, Andrew L

    2013-07-01

    Do optimistic expectations facilitate or hinder adaptive responses to relationship challenges? Traditionally, optimism has been characterized as a resource that encourages positive coping efforts within relationships. Yet, some work suggests optimism can be a liability, as expecting the best may prevent individuals from taking proactive steps when confronted with difficulties. To reconcile these perspectives, the current article argues that greater attention must be given to the way in which optimistic expectancies are conceptualized. Whereas generalized dispositional optimism may predict constructive responses to relationship difficulties, more focused relationship-specific forms of optimism may predict poor coping responses. A multi-method, longitudinal study of newly married couples confirmed that spouses higher in dispositional optimism (a) reported engaging in more positive problem-solving behaviors on days in which they experienced greater relationship conflict, (b) were observed to display more constructive problem-solving behaviors when discussing important marital issues with their partner in the lab, and (c) experienced fewer declines in marital well-being over the 1st year of marriage. Conversely, spouses higher in relationship-specific optimism (a) reported engaging in fewer constructive problem-solving behaviors on high conflict days, (b) were observed to exhibit worse problem-solving behaviors in the lab-particularly when discussing marital issues of greater importance-and (c) experienced steeper declines in marital well-being over time. All findings held controlling for self-esteem and neuroticism. Together, results suggest that whereas global forms of optimism may represent a relationship asset, specific forms of optimism can place couples at risk for marital deterioration. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation.

    PubMed

    Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei

    2013-10-01

    The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  6. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  7. Problem-Solving Deficits in Iranian People with Borderline Personality Disorder

    PubMed Central

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169

  8. Enhancing memory and imagination improves problem solving among individuals with depression.

    PubMed

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  9. Nash equilibrium and multi criterion aerodynamic optimization

    NASA Astrophysics Data System (ADS)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  10. PROBLEMS OF CYBERNETICS AND SPACE MEDICINE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parin, V.V.; Baevskii, R.M.

    1963-01-01

    Problems of cybernetics are discussed with reference to space medicine. The information theory is widely used for solving the problems relevant to radiotelemetric transmission of biological data. Construction of devices for automatic medical control of the condition of the crew of the space ship has a direct bearing to electron diagnostic machines. Mathematical methods and the computing technic are used for analyzing experimental evidence. The theory of automatic regulation was applied for modeling physiological reactions, for developing closed ecological systems, and for solving the problems of driving space ships. The problems bearing on the modifications undergone by the information inmore » the brain are of primary importance for the study of the effect of the space flight conditions upon the efficiency of man, the activity of his nervous system and of his analyzers. (P.C.H.)« less

  11. Measuring Family Problem Solving: The Family Problem Solving Diary.

    ERIC Educational Resources Information Center

    Kieren, Dianne K.

    The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…

  12. Personalized Education; Solving a Group Formation and Scheduling Problem for Educational Content

    ERIC Educational Resources Information Center

    Bahargam, Sanaz; Erdos, Dóra; Bestavros, Azer; Terzi, Evimaria

    2015-01-01

    Whether teaching in a classroom or a Massive Online Open Course it is crucial to present the material in a way that benefits the audience as a whole. We identify two important tasks to solve towards this objective; (1) group students so that they can maximally benefit from peer interaction and (2) find an optimal schedule of the educational…

  13. Goal specificity and knowledge acquisition in statistics problem solving: evidence for attentional focus.

    PubMed

    Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J

    2004-12-01

    Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.

  14. Benchmark problems and solutions

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1995-01-01

    The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available.

  15. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes

    PubMed Central

    Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.

    2017-01-01

    Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109

  16. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    PubMed

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. New Ideas on the Design of the Web-Based Learning System Oriented to Problem Solving from the Perspective of Question Chain and Learning Community

    ERIC Educational Resources Information Center

    Zhang, Yin; Chu, Samuel K. W.

    2016-01-01

    In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…

  18. Perceived problem solving, stress, and health among college students.

    PubMed

    Largo-Wight, Erin; Peterson, P Michael; Chen, W William

    2005-01-01

    To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.

  19. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  20. Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving

    ERIC Educational Resources Information Center

    Both, Lilly; Needham, Douglas; Wood, Eileen

    2004-01-01

    The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…

  1. Model Eliciting Activities: A Home Run

    ERIC Educational Resources Information Center

    Magiera, Marta T.

    2013-01-01

    An important goal of school mathematics is to enable students to formulate, approach, and refine problems beyond those they have studied, allowing them to organize and consolidate their mathematical thinking. To achieve this goal, students should be encouraged to develop expertise in a variety of areas, such as problem solving, reasoning and…

  2. Specific Cognitive Predictors of Early Math Problem Solving

    ERIC Educational Resources Information Center

    Decker, Scott L.; Roberts, Alycia M.

    2015-01-01

    Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…

  3. Tertiary EE Student Projects: What the Academics Learnt

    ERIC Educational Resources Information Center

    Meehan, Barry; Thomas, Ian

    2006-01-01

    Problem solving and teamwork abilities are important skills for graduates entering the environment profession. Through a problem based learning approach small groups of students from the environmental courses at RMIT University have been gaining these professional skills by undertaking projects in Vietnam. With three years experience in running…

  4. Improving Procedural Knowledge and Transfer by Teaching a Shortcut Strategy First

    ERIC Educational Resources Information Center

    DeCaro, Marci S.

    2015-01-01

    Students often memorize and apply procedures to solve mathematics problems without understanding why these procedures work. In turn, students demonstrate limited ability to transfer strategies to new problem types. Math curriculum reform standards underscore the importance of procedural flexibility and transfer, emphasizing that students need to…

  5. Human Gene Discovery Laboratory: A Problem-Based Learning Experience

    ERIC Educational Resources Information Center

    Bonds, Wesley D., Sr.; Paolella, Mary Jane

    2006-01-01

    A single-semester elective combines Mendelian and molecular genetics in a problem-solving format. Students encounter a genetic disease scenario, construct a family pedigree, and try to confirm their medical diagnoses through laboratory experiences. Encouraged to generate ideas as they test their hypotheses, students realize the importance of data…

  6. Indoor Air Quality Basics for Schools.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This fact sheet details important information on Indoor Air Quality (IAQ) in school buildings, problems associated with IAQ, and various prevention and problem-solving strategies. Most people spend 90 percent of their time indoors, therefore the Environmental Protection Agency ranks IAQ in the top four environmental risks to the public. The…

  7. Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2012-01-01

    A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify…

  8. A New Problem-Posing Approach Based on Problem-Solving Strategy: Analyzing Pre-Service Primary School Teachers' Performance

    ERIC Educational Resources Information Center

    Kiliç, Çigdem

    2017-01-01

    This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…

  9. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  10. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    ERIC Educational Resources Information Center

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  11. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    ERIC Educational Resources Information Center

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  12. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  13. Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding

    ERIC Educational Resources Information Center

    Domin, Daniel; Bodner, George

    2012-01-01

    The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…

  14. Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving

    ERIC Educational Resources Information Center

    Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.

    2012-01-01

    People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…

  15. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  16. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…

  17. Problem Solving with the Elementary Youngster.

    ERIC Educational Resources Information Center

    Swartz, Vicki

    This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…

  18. Social Problems in Turkish Social Studies Coursebooks and Workbooks

    ERIC Educational Resources Information Center

    Yesiltas, Erkan; Eryilmaz, Önder; Pehlivan, Aysegül

    2016-01-01

    In Turkey, the social studies course, which is taught in elementary 5th to 7th grades, prepares students to solve problems they may encounter in their future life. Therefore, the teaching of social problems to help students get to know them is one of the most important issues for the social studies course. The primary aim of this study is to…

  19. A Comparison between the Effectiveness of PBL and LBL on Improving Problem-Solving Abilities of Medical Students Using Questioning

    ERIC Educational Resources Information Center

    He, Yunfeng; Du, Xiangyun; Toft, Egon; Zhang, Xingli; Qu, Bo; Shi, Jiannong; Zhang, Huan; Zhang, Hui

    2018-01-01

    In daily patient-history taking and diagnosis practice, doctors ask questions to gather information from patients and narrow down diagnostic hypotheses. Training medical students to be efficient problem solvers through the use of questioning is therefore important. In this study, the effectiveness of problem-based learning (PBL) and lecture-based…

  20. Building a Career Mathematics File: Challenging Students to Find the Importance of Mathematics in a Variety of Occupations

    ERIC Educational Resources Information Center

    Keleher, Lori A.

    2006-01-01

    The Career Mathematics file is an occupational problem-solving system, which includes a wide range of mathematical problems and solutions, collected from various resources and helps students establish connections between mathematics and their environment. The study shows that the problems given can be used as realistic examples to study and…

  1. Automation and adaptation: Nurses' problem-solving behavior following the implementation of bar coded medication administration technology.

    PubMed

    Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion

    2013-08-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.

  2. Automation and adaptation: Nurses’ problem-solving behavior following the implementation of bar coded medication administration technology

    PubMed Central

    Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion

    2012-01-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642

  3. Do problem-solving skills affect success in nursing process applications? An application among Turkish nursing students.

    PubMed

    Bayindir Çevik, Ayfer; Olgun, Nermin

    2015-04-01

    This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.

  4. Use of EPR to Solve Biochemical Problems

    PubMed Central

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.

    2013-01-01

    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  5. How do video-based demonstration assessment tasks affect problem-solving process, test anxiety, chemistry anxiety and achievement in general chemistry students?

    NASA Astrophysics Data System (ADS)

    Terrell, Rosalind Stephanie

    2001-12-01

    Because paper-and-pencil testing provides limited knowledge about what students know about chemical phenomena, we have developed video-based demonstrations to broaden measurement of student learning. For example, students might be shown a video demonstrating equilibrium shifts. Two methods for viewing equilibrium shifts are changing the concentration of the reactants and changing the temperature of the system. The students are required to combine the data collected from the video and their knowledge of chemistry to determine which way the equilibrium shifts. Video-based demonstrations are important techniques for measuring student learning because they require students to apply conceptual knowledge learned in class to a specific chemical problem. This study explores how video-based demonstration assessment tasks affect problem-solving processes, test anxiety, chemistry anxiety and achievement in general chemistry students. Several instruments were used to determine students' knowledge about chemistry, students' test and chemistry anxiety before and after treatment. Think-aloud interviews were conducted to determine students' problem-solving processes after treatment. The treatment group was compared to a control group and a group watching video demonstrations. After treatment students' anxiety increased and achievement decreased. There were also no significant differences found in students' problem-solving processes following treatment. These negative findings may be attributed to several factors that will be explored in this study.

  6. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  7. Tracing for the problem-solving ability in advanced calculus class based on modification of SAVI model at Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Pujiastuti, E.; Waluya, B.; Mulyono

    2018-03-01

    There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.

  8. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  9. Analogy as a strategy for supporting complex problem solving under uncertainty.

    PubMed

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.

  10. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  11. Insightful problem solving and emulation in brown capuchin monkeys.

    PubMed

    Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A

    2017-05-01

    We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.

  12. Dysfunctional attitudes and poor problem solving skills predict hopelessness in major depression.

    PubMed

    Cannon, B; Mulroy, R; Otto, M W; Rosenbaum, J F; Fava, M; Nierenberg, A A

    1999-09-01

    Hopelessness is a significant predictor of suicidality, but not all depressed patients feel hopeless. If clinicians can predict hopelessness, they may be able to identify those patients at risk of suicide and focus interventions on factors associated with hopelessness. In this study, we examined potential predictors of hopelessness in a sample of depressed outpatients. In this study, we examined potential demographic, diagnostic, and symptom predictors of hopelessness in a sample of 138 medication-free outpatients (73 women and 65 men) with a primary diagnosis of major depression. The significance of predictors was evaluated in both simple and multiple regression analyses. Consistent with previous studies, we found no significant associations between demographic and diagnostic variables and greater hopelessness. Hopelessness was significantly associated with greater depression severity, poor problem solving abilities as assessed by the Problem Solving Inventory, and each of two measures of dysfunctional cognitions (the Dysfunctional Attitudes Scale and the Cognitions Questionnaire). In a stepwise multiple regression equation, however, only dysfunctional cognitions and poor problem solving offered non-redundant prediction of hopelessness scores, and accounted for 20% of the variance in these scores. This study is based on depressed patients entering into an outpatient treatment protocol. All analyses were correlational in nature, and no causal links can be concluded. Our findings, identifying clinical correlates of hopelessness, provide clinicians with potential additional targets for assessment and treatment of suicidal risk. In particular, clinical attention to dysfunctional attitudes and problem solving skills may be important for further reduction of hopelessness and perhaps suicidal risk.

  13. Detecting math problem solving strategies: an investigation into the use of retrospective self-reports, latency and fMRI data.

    PubMed

    Tenison, Caitlin; Fincham, Jon M; Anderson, John R

    2014-02-01

    This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Human factors involvement in bringing the power of AI to a heterogeneous user population

    NASA Technical Reports Server (NTRS)

    Czerwinski, Mary; Nguyen, Trung

    1994-01-01

    The Human Factors involvement in developing COMPAQ QuickSolve, an electronic problem-solving and information system for Compaq's line of networked printers, is described. Empowering customers with expert system technology so they could solve advanced networked printer problems on their own was a major goal in designing this system. This process would minimize customer down-time, reduce the number of phone calls to the Compaq Customer Support Center, improve customer satisfaction, and, most importantly, differentiate Compaq printers in the marketplace by providing the best, and most technologically advanced, customer support. This represents a re-engineering of Compaq's customer support strategy and implementation. In its first generation system, SMART, the objective was to provide expert knowledge to Compaq's help desk operation to more quickly and correctly answer customer questions and problems. QuickSolve is a second generation system in that customer support is put directly in the hands of the consumers. As a result, the design of QuickSolve presented a number of challenging issues. Because the produce would be used by a diverse and heterogeneous set of users, a significant amount of human factors research and analysis was required while designing and implementing the system. Research that shaped the organization and design of the expert system component as well.

  15. Problem solving therapy - use and effectiveness in general practice.

    PubMed

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  16. Collection of solved problems in physics

    NASA Astrophysics Data System (ADS)

    Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

  17. Pre-service mathematics teachers’ ability in solving well-structured problem

    NASA Astrophysics Data System (ADS)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  18. An Investigation on Chinese Teachers' Realistic Problem Posing and Problem Solving Ability and Beliefs

    ERIC Educational Resources Information Center

    Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven

    2011-01-01

    In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…

  19. STEM education and Fermi problems

    NASA Astrophysics Data System (ADS)

    Holubova, Renata

    2017-01-01

    One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.

  20. Revisiting software specification and design for large astronomy projects

    NASA Astrophysics Data System (ADS)

    Wiant, Scott; Berukoff, Steven

    2016-07-01

    The separation of science and engineering in the delivery of software systems overlooks the true nature of the problem being solved and the organization that will solve it. Use of a systems engineering approach to managing the requirements flow between these two groups as between a customer and contractor has been used with varying degrees of success by well-known entities such as the U.S. Department of Defense. However, treating science as the customer and engineering as the contractor fosters unfavorable consequences that can be avoided and opportunities that are missed. For example, the "problem" being solved is only partially specified through the requirements generation process since it focuses on detailed specification guiding the parties to a technical solution. Equally important is the portion of the problem that will be solved through the definition of processes and staff interacting through them. This interchange between people and processes is often underrepresented and under appreciated. By concentrating on the full problem and collaborating on a strategy for its solution a science-implementing organization can realize the benefits of driving towards common goals (not just requirements) and a cohesive solution to the entire problem. The initial phase of any project when well executed is often the most difficult yet most critical and thus it is essential to employ a methodology that reinforces collaboration and leverages the full suite of capabilities within the team. This paper describes an integrated approach to specifying the needs induced by a problem and the design of its solution.

Top